
Chapter 2
The Charge Sheet Model Revisited

2.1 Why the Charge Sheet Model?

We review in this chapter the main attributes of the ‘Charge Sheet Model’ (C.S.M.)
introduced by J.R. Brews in 1978 (Brews 1978; Van de Wiele 1979). Although its
name contains the word ‘Model’, the C.S.M is not a design tool. It is an invaluable
means however for understanding some of the mechanisms governing current in
MOS transistors for it scrutenizes phenomena otherwise difficult to apprehend. Un-
fortunately, the C.S.M. concerns only long channel MOS transistors implemented
in a uniformly doped substrate (gradual channel approximation). Trying to predict
drain currents of real transistors with the C.S.M. does not work.

Figure 2.1 depicts the structure of the NMOS transistor considered throughout
this chapter. The two vertical lines without any other demarcation called respec-
tively S and D symbolize the source and drain junctions. Two-dimensional effects
are ignored, obliterating consequently items such as channel length modulation,
Drain Induced Barrier Lowering (DIBL), etc. The source, drain and gate voltages
are called respectively VS ; VD and VG , the surface potential  S and the non-
equilibrium voltage V .1 The latter, called also the channel voltage, varies from VS at
the source to VD at the drain. Single indices relate to voltages defined with respect
to the substrate. Double indices relate to voltages defined with respect to references
other than the substrate. For instance, VGS is the voltage difference between the gate
and the source.

2.2 The Generic Drain Current Equation

Current in MOS transistors results from mobile carries moving in the channel. It can
be represented by the expression below where W is the width of the transistor and
Q0i the mobile charge density along the channel:

ID D W �
�
�Q0i

�
� velocity (2.1)

1 V is the difference between the “quasi Fermi level” of electrons in the inversion layer and the
“quasi Fermi level” of holes in the substrate.
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Fig. 2.1 The gradual channel MOS transistor

Two transport mechanisms are taking place currently: drift and diffusion. The drift
current velocity is supposed to be proportional to the electrical field E:

drift current velocity D ��E (2.2)

The mobility coefficient � is assumed to be constant generally. This is correct as
long as electrical fields do not exceed some limit. Modern transistors face very large
fields for their gate lengths are ever shorter while supply voltages don’t scale down
necessarily at the same rate. As electrical fields are getting larger, the velocity of the
carriers starts to slow down so that mobility declines. The effect can be taken into
account by making � a function of the electrical field.

The diffusion current is governed by the non-uniform concentration of carriers
(like gas scattering in a closed vessel to homogenize the pressure). The diffusion
current velocity is supposed to be proportional to the carrier’s concentration:

diffusion current velocity D �D
1

n

@n

@x
D �D

1

Q0i

@Q0i
@x

(2.3)

The diffusion constant D is related to the mobility � by the Einstein relation:

D D �UT (2.4)

As the electrical field along the channel is replaced by the derivative of the surface
potential  S :

E D �
d S

dx
(2.5)
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Equation 2.1 can be rewritten as follows:

ID D �W

�
�Q0i

d S

dx
C UT

dQ0i
dx

	
(2.6)

or:
ID dx D �W



�Q0i d S C UT dQ

0
i

�
(2.7)

While the left side of the above equation lends itself to integration (current is con-
stant along the channel), the right part doesn’t. One of the two integration variables
should be expressed as a function of the other. Two strategies are possible. In the
Charge Sheet Model, the charge density is expressed as a function of the surface
potential. In the compact model, discussed in Chapter 4, the surface potential is
expressed as a function of the charge density. The first representation follows a rig-
orous treatment while the second implies an approximation. The first does not lend
itself to circuit design, the second does.

2.3 The Charge Sheet Model Drain Current Equation

In this chapter, we lay down the grounds of the Charge Sheet Model. We take the
surface potential as integration variable rewriting the right part of Eq. 2.7 as shown
below after introducing the gate oxide capacitance per unit-area C 0ox:

ID dx D �C
0

oxW

�
�
Q0i
C 0ox
C UT

d

d S

�
Q0i
C 0ox

�	
d S (2.8)

To perform the integration, an expression of Q0i=C
0
ox versus the surface potential

is required. The equation is derived currently from the total charge densityQt=C 0ox

expression obtained after combining the Gauss law, the Poisson equation and Boltz-
mann statistics (detailed computations can be found in textbooks):

�
Q0t
C 0ox
D � �

�
UT exp

�
 S � 2�B � V

UT

�
C  S

	1=2
(2.9)

where:

V represents the non-equilibrium voltage along the channel
˚B is the bulk potential, depending on the ratio of the substrate doping concen-
tration N over the intrinsic carrier density of silicon ni

�B D UT log
�
N

ni

�
(2.10)
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� is the Gamma commonly used in SPICE, which depends on N and the oxide
thickness via the oxide capacitance C 0ox:

� D
1

C 0ox

p
2 q"SN (2.11)

where q is the electron charge,
"S the silicon permittivity
N the substrate impurity concentration
The two terms under the square root of Eq. 2.9 relate respectively to the inversion

charge density (left term) and the depleted charge density (right term). If we ignore
the first term, in other words if the mobile charge density Q0i vanishes, the total
charge density Q0t resumes to the fixed charge density Q0b so that what remains of
Eq. 2.9 boils down to:

�
Q0
b

C 0ox
D �

p
 S (2.12)

An expression of the mobile carrier’s density lies now for the hand. We start from
the Gauss law2:

VG D �
Q0t
C 0ox
C  S (2.13)

Since Q0t is the sum of mobile and fixed charge densities, we may write owing to
Eq. 2.12:

VG D �
Q0i
C 0ox
C �

p
 S C  S (2.14)

which leads to the expression of Q0i=C
0
ox versus the surface potential that we are

looking for:

�
Q0i
C 0ox
D VG � �

p
 S �  S (2.15)

We can evaluate now the derivative with respect to the surface potential ofQ0i=C
0
ox:

d

�
�
Q0i
C 0oc

�
D �

�
1C

�

2
p
 S

�
d S (2.16)

and combine Eqs. 2.8, 2.15 and 2.16 to get the differential equation below ready for
integration:

IDdx D �C
0
oxW �

�
VG � �

p
 S �  S C UT

�
1C

�

2
p
 S

�	
d S (2.17)

2 The contact potentials between the gate material, the substrate material and the metal connections
as well as the fixed charges trapped in the oxide produce a shift of the gate voltage that can be taken
into account by adding to the gate voltage a constant voltage, called the Flat Band Voltage VFB.
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After integration, the expression of the drain current below is found where  SD and
 SS represent respectively the surface potential at the drain and the source and ˇ as
usual �C 0oxW=L:

ID D ˇ ŒF . SD/ � F . SS/� (2.18)

with the function F. S / given by:

F . S / D �
1

2
 2S �

2

3
�  1:5S C .VG C UT /  S C � UT 

0:5
S (2.19)

Equations 2.18 and 2.19 are interesting and frustrating results in the same time. The
good news is that the drain current can be expressed as a polynomial of the square
root of the surface potential. The bad news is that we must find a way to connect
the source and drain surface potentials  SS and  SD to VS and VD . No analytical
expression is available. The only way out is to extract the surface potential from the
expression below resulting from the combination of Eqs. 2.13 and 2.9.

VG D � �

�
UT exp

�
 S � 2�B � V

UT

�
C  S

	1=2
C  S (2.20)

Since Eq. 2.20 is an implicit non-linear equation of  S , the evaluation must be done
numerically. The MATLAB function surfpot residing in the Matlab toolbox under
‘extras.springer.com’ takes care of this. For more details, please consult Annex 2.

2.4 Common Source Characteristics

The analytical expression of the drain current given by Eqs. 2.18 and 2.19 together
with the surfpot function solving Eq. 2.20 pave the road towards experiments that
help understanding the behavior of MOS transistors under low-power low-voltage
conditions. Some examples are reviewed in the next sections considering an N-
channel transistor implemented in a substrate having an impurity concentration
equal to 1017 atoms cm�3 and an oxide thickness equal to 5 nm. The flat-band volt-
age VFB is supposed to be equal to 0.6 V and the temperature equal to be 300 K. The
reader can make use of the toolbox to run additional ‘experiments’, like those of
Annex 3, which examine the impact of technology and temperature on transistor’s
performances.

2.4.1 The ID.VD/ Characteristics

The curves displayed in Fig. 2.2 show drain currents versus the drain voltage char-
acteristics obtained by means of the program below making use of two additional
MATLAB function, pMat and IDsh, reported in the toolbox. The unusual semilog
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Fig. 2.2 Drain current versus drain voltage obtained by means of the IDsh file (MATLAB
fig022.m)

vertical scale used for the display is chosen in order to plot drain currents from weak
to strong inversion in a single diagram encompassing five orders of magnitude.
clear
clf
% data techno
T = 300;
N = 1e17;
tox = 5;
VFB = .6;

% compute pMat(technology vector)
p = pMat(T,N,tox);

% computeID(VD)
VS = 0;
M = 201; VD = linspace(.01,2,M).’;
UG = linspace (2,.5,7);
for k = 1: length(UG),

ID(:,k) = IDsh(p,VS,VD,UG(1,k) + VFB);
end
% plot
semilogy(VD,ID,’k’); axis([0 2 1e-8 1e-3]);
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A series of well-known facts are clearly visible:

1. The Charge Sheet Model represents drain currents in a smooth way all over the
so-called linear (resistive) and saturated modes of operation. The model is ‘con-
tinuous’. In other words it does not require several equations to describe distinct
modes of operation.

2. The passage from strong to weak inversion and vice – versa is gradual and con-
tinuous too.

3. The distances between adjacent ID.VD/ characteristics gets larger as one goes
from strong to weak inversion. Since all gate voltage increments are identical,
the transconductance over drain current ratio is larger in weak than in strong
inversion (remind weak and moderate inversion conditions achieve better gains).

4. The pinch-off voltage is very small in weak inversion and remains quasi-constant
throughout the weak inversion regime. It is of the order of 100 mV, similar to the
saturation voltage of bipolar transistors.

5. Drain currents in saturation are quasi-constant for the C.S.M. ignores effects like
channel length modulation and DIBL. The transistor behaves like a perfect cur-
rent source.

2.4.2 The ID.VG/ Characteristic of the Saturated Transistor

Figure 2.3 shows the drain current versus the gate voltage of the same transistor as
above when saturated (the drain voltage VD has no influence on the drain current).
The almost linear section left attests clearly that below 0.5 V (weak inversion) the

Fig. 2.3 Drain current of the saturated common source transistor (MATLAB fig023.m)
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drain current increases quasi-exponentially. In this region, the ‘subthreshold’ slope
S determines the so-called slope factor n:

n D
S

UT log .10/
(2.21)

Beyond the exponential, the drain current levels off gradually while the transistor is
entering moderate and strong inversion. The trend in the strong inversion region is
quadratic.

2.4.3 Drift and Diffusion Contributions to the Drain Current

The C.S.M. offers the possibility to compare the contributions of drift and diffusion
currents to the drain current. All what is needed therefore is to break the polynomial
representation of ID of Eq. 2.19 into two parts. For the diffusion current, the two
last terms of Eq. 2.17 are considered and for the drift current what remains. The
polynomials are respectively:

Pdiffusion D Œ0 0 UT � UT 0� (2.22)

and

Pdrift D

�
�
1

2
�
2

3
� VG 0 0

	
(2.23)

The drift and diffusion currents displayed in Fig. 2.4 show clearly the dominance of
one current over the other depending on which mode of operation is taking the lead.
Diffusion dominates in weak inversion while drift takes over in strong inversion. In
the middle, around 0.6 V, drift and diffusion currents have almost the same magni-
tudes. In strong inversion, the total current coincides practically with the quadratic
approximation of ID . The same holds true for the exponential current in weak in-
version. Many analog circuits, especially low-power low-voltage circuits, operate
nowadays in the so-called moderate inversion region.

2.5 Weak Inversion Approximation of the Charge Sheet Model

The fact that diffusion current overwhelms drift current in weak inversion leads to a
number of useful approximate expressions. Because the first of the two right terms
of Eq. 2.6 can be ignored, one has:

ID dx � ��C
0
oxW UT d

�
�
Q0i
C 0i

�
(2.24)
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Fig. 2.4 Same as Fig. 2.3 with explicit representations of the drift and diffusion currents
(MATLAB fig024.m)

Consequently, the drain current in weak inversion is given by:

ID � ��C
0
ox

W

L
UT

��
�
Q0iD
C 0ox

�
�

�
�
Q0iS
C 0ox

�	
(2.25)

Let us find now an approximate expression of Q0i=C
0
ox in weak inversion. The

inversion layer charge density is extracted from the equality:

�
Q0i
C 0ox
D �

Q0t
C 0ox
C
Q0
b

C 0ox
(2.26)

where Q0t=C
0
ox and Q0b=C

0
ox are replaced by Eqs. 2.9 and 2.12. This leads to:

�
Q0i
C 0ox
D � �

�
UT exp

�
 S � 2�B � V

UT

�
C  S

	1=2
� �

p
 S (2.27)

Since the contribution of the first of the two terms under the square root (drift cur-
rent) is small compared to that of the second (diffusion current), the equation above
can be approximated as follows:

�
Q0i
C 0ox
D �

p
smal l C  S � �

p
 S � �

smal l

2
p
 S

(2.28)
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This leads to:

�
Q0i
C 0ox
� �

UT

2
p
 S

exp
�
 S � 2�B

UT

�
� exp

�
�
V

UT

�
(2.29)

The surface potential  S depends practically only on the gate voltage. In weak in-
version, Eq. 2.14 boils down indeed to a second order equation relating the gate
voltage VG to  S forQ0i=C

0
ox is small in comparison to the contribution of the de-

pletion layer represented by the two last terms. An expression of the weak inversion
surface potential  Swi can be extracted then from the latter:

 Swi D

"

�
�

2
C

r��
2

�2
C VG

#2
(2.30)

When  Swi is put in Eq. 2.29 and the latter combined with Eq. 2.25, the next expres-
sion of the drain current in weak inversion is obtained:

ID �
1

2
ˇ� U 2T

1
p
 Swi

exp
�
 Swi � 2�B

UT

�

„ ƒ‚ …
A

�

�
exp

�
�
VS

UT

�
� exp

�
�
VD

UT

�	

(2.31)
This is an interesting result for it shows that the drain current in weak inversion is
controlled exponentially by the source and drain voltages owing to the fact that the
factor A depends only on the gate voltage. Another interesting observation concerns
the drain voltage when the transistor enters saturation. Rewriting Eq. 2.31 in terms
of the drain-to-source voltage difference VDS turns the above expression into:

ID � A � exp
�
�
VS

UT

�
�

�
1 � exp

�
�
VDS

UT

�	
(2.32)

The drain current saturates as soon as the drain-to-source voltage attains 100 mV
(nearly four times UT). The impact of the gate voltage is more difficult to apprehend
for it is hidden in the A factor, which depends on the geometry via ˇ, and �; �B and
the surface potential. The point is discussed more in detail further.

2.6 The gm=ID Ratio in the Common Source Configuration

An analytic expression of the transconductance over drain current ratio cannot be
derived from the Charge Sheet Model. The ratio must be evaluated numerically by
taking the derivative with respect to the gate voltage of the log of the drain current:

gm

ID
D

1

ID

@ ID

@ VG
D
@ log .ID/
@ VG

(2.33)
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Fig. 2.5 The gm=ID ratio derived from the ID.VG/ plot of Fig. 2.4, which is reproduced in the
background (MATLAB fig025.m)

The gm=ID ratio is shown in Fig. 2.5. It is larger in weak than in strong inversion
but displays a slightly decaying trend under very small currents. The phenomenon
can be explained as follows. Consider the derivative versus the gate voltage of the
expression hereafter extracted from Eq. 2.31:

�
gm

ID

�

W:I:

�
@

@VG
log

�
1

p
 Swi

exp
�
 Swi � 2�B

UT

�	
(2.34)

The derivative is done into two steps, first with respect to VG , second to  Swi:

�
gm

ID

�

W:I:

�

�
�

1

2 Swi
C

1

UT

�
@ Swi

@VG
(2.35)

When the derivative of the weak inversion surface potential with respect to the gate
voltage is extracted from Eq. 2.30, one has:

�
gm

ID

�

W:I:

D
1

UT
�
1 � UT

2 Swi

1C �

2
p
 Swi

(2.36)
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Notice the similarity with the approximate gm=ID ratio of Eq. 1.13 in the first
chapter, stating that: �

gm

ID

�

W:I:

D
1

nUT
(2.37)

The comparison of Eq. 2.36 with 2.37 brings about an interesting analytical expres-
sion of the weak inversion subthreshold slope factor, called nwi:

nwi D
1C �

2
p
 Swi

1 � UT
2 Swi

(2.38)

The signification of nwi gets clear when several gm=ID plots are merged as their
source voltages changes. Figure 2.6 shows clearly that when the transistor enters
weak inversion, all gm=ID ratios come together forming a single consolidated enve-
lope, which coincides with Eq. 2.36.

Near the origin, the envelope bends down more rapidly for the width of the de-
pleted region under the gate is getting smaller as the source voltage decreases. The
ratio of the capacitive divider formed by the gate oxide and the depleted region
increases, modifying consequently the slope factor nwi.

One may substitute a more compact and more familiar expression to Eq. 2.31:

ID � Io exp
�

VG

nwiUT

�

„ ƒ‚ …
A

�

�
exp

�
�
VS

UT

�
� exp

�
�
VD

UT

�	
(2.39)

Fig. 2.6 Plot of gm=ID ratios when the source voltage changes from 0 V (left) to 2 V (right) in
steps 0.5 V wide. The distance separating gm=ID’s is a little more than 0.5 V owing to the body-
effect discussed more in detail in the next chapter (MATLAB fig026.m)
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2.7 Common Gate Characteristics of the Saturated Transistor

Let us consider now the common-gate configuration. The gate voltage is fixed while
the source VS is the input now. Figure 2.7 shows the ID.VS / curve obtained after
running the same file as above when the gate voltage is equal to 2 V and the source
voltage VS varies from 0 to 2 V. The drain voltage is supposed to be large enough
in order to keep the transistor saturated under any circumstance. As VS increases,
the gate-to-source voltage VGS decreases abating the drain current. First, the drain
current slows down gradually for the transistor is still in strong inversion. Once the
transistor is in weak inversion, the current decreases exponentially. In this region,
the slope of the drain current follows the exp.VS=UT / law predicted by Eq. 2.31.
Put differently, the slope factor is equal to one in strong contrast with the slope factor
of the common source slope factor.

The same plot shows also the gms=ID ratio inferred from the drain current charac-
teristic. Like in the common-source configuration, the ratio is given by the slope of
the semilog-scaled drain current. The ‘transconductance’ is now gms instead of gm.
The sequence is being reversed with respect to the common-source configuration
for the gms=ID is flipped horizontally with respect to gm=ID .

In weak inversion, the gms=ID ratio is equal to 1=UT in accordance with the
unity slope factor mentioned above. This once again underlines the similarity MOS

Fig. 2.7 The gms=ID ratio (plain lines) versus the source voltage is obtained by taking the deriva-
tive of the log scaled drain current plotted in dashed lines (VG is equal to 2 V) (MATLAB fig027.m)
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transistors share with bipolar transistors when operating in weak inversion. Two
reasons explain this. First, the drain current is dominated by diffusion current as
in the neutral base of the bipolar transistor. Second, the front and back gates co-
operate whereas the back-gate remains idle in the common source configuration.
The common-gate configuration ignores consequently the partitioning inherent to
the common-source configuration.

We will show in later chapters that real transistors do not conform to the unity
slope factor in weak inversion in the common-gate configuration. The slope factor is
generally slightly larger than one. This is due to the drain-to-source voltage variation
going along with the gate-to-source voltage modifications. In the C.S.M. the drain
voltage has no effect on the current as long as the transistor is saturated, but with
real transistors, changes of the drain voltage modify the space charge near the drain
and below the inversion layer. The drain influences thus the current even though
the transistor is saturated. The gms=ID ratio of real transistors in weak inversion is
smaller thus than the predicted 1=UT .

2.8 A Few Concluding Remarks Concerning the C.S.M.

The Charge Sheet Model is a physical model that predicts drain currents whatsoever
mode of operation, weak or strong inversion, saturation or not. It is relevant and
particularly instrumental for understanding the basic mechanisms controlling low-
power operation. In addition, the model bridges drain currents to physical quantities
such as the substrate impurity concentration, oxide thickness and temperature. It
offers therefore the possibility to scrutinize sensitivity aspects. The validity of the
C.S.M. is restricted however to ideal transistors implemented in a uniformly doped
substrate with gate lengths sufficiently large to obliterate short channel effects.

An interesting observation can be made as far as the threshold voltage. So far,
the concept has not been mentioned except occasionally, for instance when the
quadratic model was considered. The Charge Sheet Model ignores actually the
concept. The reason is that the threshold voltage is not a physical quantity but a
parameter embodied on measurements. Its interpretation varies according to the
evaluation techniques. This does not mean that the threshold voltage is a useless
concept. On the contrary, it is a landmark, like the voltage drop across forward bi-
ased junctions. It is an essential parameter exploited in every circuit oriented model.
In the next chapter, we are going to clarify the concept.
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