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Foreword

IC designers appraise currently transistors sizes while having to fulfill simulta-

neously a large number of objectives like a prescribed gain-bandwidth product,

minimal power consumption, minimal area, low-voltage design, dynamic range,

non-linear distortion, etc. Making appropriate decisions is not always obvious. How

to meet gain-bandwidth specifications while minimizing power consumption of an

Op. Amp without area penalty? Should moderate inversion be preferred to strong in-

version? Is sizing an art or a mixture of design experience and repeated simulations?

Or is it a constrained multivariate optimization problem? Optimization algorithms

are attractive without doubt but they require translating not always well-defined con-

cepts into mathematical expressions. The interactions amid semiconductor physics

and systems are not always easy to implement.

The objective of the book is to devise a methodology enabling to fix currents

and transistors widths of CMOS analog circuits so as to meet specifications such as

gain-bandwidth while optimizing attributes like low power and small area. A special

attention is given to low-voltage circuits. The sizing method takes advantage of the

gm=ID ratio and makes use of either ‘semi-empirical’ data or compact models. The

‘semi-empirical’ approach utilizes large look-up tables derived from physical mea-

surements carried out on real transistors or advanced models. The compact model

approach offers the possibility to make use of analytic expressions. Unfortunately

when it comes to real transistors, especially sub-micron devices, this isn’t true any-

more. Other means are necessary to keep track of high order effects without the

risk to loose the inherent simplicity of compact models. Bias dependent instead of

constant parameters offer the possibility to extend the validity of a model like the

E.K.V. model.

In the first chapter, the Intrinsic Gain Stage, is sized making use of the classical

strong and weak inversion large signal models of MOS transistors. This leaves open

the moderate inversion region, a region that offers the best compromises generally

as far as power consumption and sizes. To be able to size circuits in moderate in-

version, we need a reliable large signal MOS model. The Charge Sheet Model that

is considered in Chapter 2 is an invaluable tool for understanding the mechanisms

governing current in MOS transistors, but it is not fitted for real transistors for it

relies on the gradual channel approximation and makes use of mathematical ex-

pressions that are too complicated. The MATLAB tools that are available under
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viii Foreword

‘extras.springer.com’ overcome the mathematical aspects and offer the possibility

to perform ‘ideal experiments’. Some of the abstract aspects of the Charge Sheet

Model moreover are bridged in Chapter 3 by the introduction of a graphical repre-

sentation of the drain current that combines physical aspects and practical circuits.

The E.K.V. basic model discussed in Chapter 4, offers clearly more flexibility.

It is an approximation of the Charge Sheet Model and a forerunner of what is viewed

nowadays as compact Surface Potential Models. The model paves the way towards

analytical expressions not only for the drain current but also for the terminal volt-

ages whatsoever the mode of operation of the transistor, whether saturated or not.

Unfortunately, the simple E.K.V. model is a gradual channel model like the Charge

Sheet Model, unfit thus for real transistors, in particular short channel device.

The fact that drain currents predicted by the E.K.V. compact model look so simi-

lar to real drain currents opens the question whether the model could not be extended

to real devices. In Chapter 5, we show that currents very close to real drain currents

can be predicted when the parameters of the E.K.V. model vary with bias, even with

100 nm devices. The explanation may be the quasi-one-dimensional nature of the

channel opposed to the two-dimensional space charge below the inversion layer. As

a result, gradual channel conditions prevail in the inversion layer any longer than

in the space charge when the gate length is shrinking. An algorithm is proposed to

acquire the model parameters.

The Intrinsic Gain Stage is reconsidered in Chapter 6 in the light of the variable

parameters compact model. Currents and transistor width obtained by means of the

compact model reproduce very closely the values obtained by means of the ‘semi-

empirical’ method. A series of examples considering a low-frequency and a one

GHz gain-bandwidth product I.G.S. are described.

The remaining Chapters 7 and 8 extend the method respectively to the common-

gate stage and to the basic Miller Op. Amp. The latter illustrates how to meet both,

specifications and attributes. Specifications concern the gain-bandwidth product and

phase margin, attributes low power and area. These determine optimal regions in

the 2D sizing space defined by the first and second stages of the Miller Op. Amp. A

MATLAB file compares design strategies.

I want to express my gratitude to Piet Wambacq for the opportunity he gave me

to check the validity of the variable parameter E.K.V. model on a 90 nm technol-

ogy developed by IMEC. I am also very thankful Prof. Gilbert Declerck, former

President CEO and Ludo Deferm, executive vice-president of IMEC, who gave me

permission to publish the results and the data listed under the ‘extras.springer.com’.

My sincere thanks go to Prof. Fernando Silveira who published in 1996 the first

paper illustrating the potential of the gm=ID methodology. I want to thank him as

well as Prof. A. Vladimirescu for the very detailed comments and suggestions they

made of the first chapters. I also want to associate Prof. D. Flandre to my thanks

owing to our long-term collaboration at the Microelectronics lab of the Université

Catholique de Louvain.

Though the specific current put to use in the book is the one defined in the E.K.V.

model, I owe much to two research groups. I am indebted to Prof. Eric Vittoz for the
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E.K.V. model, and to Prof. Carlos Galup-Montoro and Marcio C. Schneider for the

A.C.M. model. I thank the supporters of the two models for motivating discussions

and in particular the opportunity Prof. Montoro and Schneider gave me to visit them

at the Federal University of Santa Catarina, Brasil.

Tervuren, July 2009 P. Jespers
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Notations

A,ADC , AAC voltage gain, DC and AC voltage gain

A.C.M. Advanced Compact Model

C.L.M. Channel Length Modulation

C.S.M. Charge Sheet Model

C capacitor value

C 0ox gate oxide capacitance per unit area

CGB gate-to-substrate capacitance

CGD gate-to-drain capacitance

CGS gate-to-source capacitance

CJ junction capacitance

CJsw peripheral side-wall junction capacitance

CJswg gate side–wall junction capacitance

Cm Miller capacitance

CMOS Complementary MOS

D diffusion constant

D.I.B.L. Drain Induced Barrier Lowering

E.K.V. Enz, Krumenacher and Vittoz compact model

G.V.O. Gate Voltage Overdrive voltage

gd output conductance

gm gate transconductance

gmb bulk transconductance

gms source transconductance

i; iF ; iR normalized drain current, forward and reverse i

I.G.S. Intrinsic Gain Stage

ID DC drain current

IDu unary DC drain current (W = L)

IS specific current

ISu unary specific current (W = L)

ISuo weak inversion unary specific current

L gate length

N impurity concentration

n slope factor

xv



xvi Notations

PolyN,PolyP mobility degradation polyn. of N- and P-channel transistors

q; qF ; qR normalized mobile charge density, forward and reverse q

qs, qD normalized mobile charge density at the source and drain

Q0
B bulk charge density

Q0
i ; mobile charge density

Q0
t ; total charge density

R.H.P. Right Half Plane zero

SV To threshold voltage sensitivity factor with respect to VDS
ThN,ThP mobility degradation function of N- and P-channel transistors

UT thermal voltage kT/q
V; I; v; i large and small signal voltage or current

VA Early voltage
VS , VG ; VD source, gate and drain voltage with respect to substrate

VGS ; VDS gate and drain voltage with respect to the source

VP ; VPS pinch-off voltage with respect to the substrate or the source

vsat saturation velocity of mobile carriers

VT threshold voltage with respect to the substrate

VTo threshold voltage with respect to the source

W gate width

W.I, M.I, S.I weak, moderate and strong inversion

ˇ �C’ox W/L of MOS transistor
� gamma of SPICE program

� mobility

�o low-field mobility

 S surface potential

! angular frequency (2�f /

!c angular cut-off frequency (2�fc/

!T angular transition frequency (2�fT )



Chapter 1
Sizing the Intrinsic Gain Stage

1.1 The Intrinsic Gain Stage

Sizing methods assessing drain currents and gate widths of a simple circuit are

reviewed in this chapter. The circuit, shown in Fig. 1.1, consists of a saturated com-

mon source transistor loaded by a capacitor. A constant current source is feeding

the drain. The circuit is called currently the ‘Intrinsic Gain Stage’ (I.G.S.), the name

‘intrinsic’ underlining the fact that few parts aside the transistor control the perfor-

mances of the circuit.

Our objective is to find gate widths and drain currents enabling to achieve a

prescribed gain-bandwidth product !T . We therefore consider the small signal

equivalent circuit shown in Fig. 1.2. The input is an open circuit while the output

consists of a dependent current source gmvin (where gm represents the transconduc-

tance of Q) in parallel with the output conductance gd and the capacitor C.

1.2 The Intrinsic Gain Stage Frequency Response

We divide the I.G.S in high and low frequency sub-circuits to evaluate its frequency

response. At high frequencies, all the current delivered by the current source flows

through the capacitor for C behaves like a short with respect to the output resis-

tance. Hence:

gmvin D �j! C vout (1.1)

The AC gain is given consequently by:

AAC D �
�
gm

C

�
j!

(1.2)

At low frequencies, the opposite takes place. The capacitor C is practically an open

circuit so that the current flows through the output conductance gd . Hence:

gmvin D �gd vout (1.3)

P.G.A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-voltage Analog CMOS
Circuits, Analog Circuits and Signal Processing, DOI 10.1007/978-0-387-47101-3 1,

1

c� Springer Science+Business Media, LLC 2010
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Fig. 1.1 The ‘Intrinsic Gain
Stage’

Fig. 1.2 The equivalent small signal circuit of the ‘Intrinsic Gain Stage’

The DC gain is given by:

ADC D �gm
gd

(1.4)

To get closer to real world transistors, we are going to take into consideration the

dependence on bias conditions of the output conductance gd . Generally, the im-

pact of the current on gd is acknowledged by replacing the output conductance by

the ratio of the drain current over the so-called Early voltage VA. The Early voltage

is supposed to be constant, which implies that all ID.VD/ characteristics cross the

horizontal axis at a unique point once extrapolated. While more or less correct in

weak inversion,1 this is a rather crude approximation in strong inversion, particu-

larly with sub-micron transistors. Our goal being presently to lay down the grass

roots of sizing, we are going to assume nevertheless that VA is constant and post-

pone more advanced representations to later chapters. Equation 1.4 may be rewritten

then as follows:

ADC D �gm
ID

VA (1.5)

1 Weak inversion occurs when MOS transistors are biased with gate voltages lower than the thresh-
old voltage resulting in an exponential relationship between drain current and gate voltage (Vittoz
1977). Strong inversion designates the region where the classic quadratic current to voltage re-
lationship holds true. The transition from weak to strong inversion is currently referred to as the
moderate inversion region. This region plays a key role in CMOS analog circuits.
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Fig. 1.3 The frequency
response of the Intrinsic Gain
Stage

Figure 1.3 shows the frequency response of the Intrinsic Gain Stage according

to Eq. 1.5 for the low frequency part and according to Eq. 1.2 for the high fre-

quency part.

The point where the two asymptotes cross each other !c is called currently the

cut-off angular frequency and the point !T where the high frequency response

crosses the horizontal axis (the 0 dB gain point) the transition angular frequency:

!T D gm

C
(1.6)

The name gain-bandwidth product is given also to the transition angular frequency

for !T is equal to !c times the gain since the Intrinsic Gain Stage is a true first

order system. !T is a more significant landmark than !C for it characterizes the

high frequency behavior of the I.G.S. without the need to know highly unpredictable

Early voltages.

1.3 Sizing the Intrinsic Gain Stage

How can one fix the drain current and aspect ratioW=L of the I.G.S so as to achieve

a desired transition frequency fT ? As far as the transconductance, there is no choice

for Eq. 1.6 fixes already gm:

gm D !TC D 2�fTC (1.7)

The problem boils down consequently to find means to connect the drain current ID
and the W=L ratio to the transconductance gm. A large signal model of the transis-

tor is needed therefore. The first that comes up of course is the classical quadratic

MOS model.
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1.3.1 Sizing the I.G.S. with the Quadratic Model

The drain current of saturated MOS transistors is given by the well-known quadratic

expression:

ID D ˇ
.VG � Vth/2

2 n
(1.8)

Vth being the threshold voltage, while

ˇ D �C 0ox
W

L
(1.9)

where

� is the mobility of the mobile carries of the channel

C 0ox the gate oxide capacitance per unit-area (the 0 meaning capacitance per

unit-area)

W and L respectively the gate width and length

n the slope factor generally comprised between 1.2 and 1.5

The derivative of ID with respect to VG yields the transconductance gm:

gm D @ID

@VG
D ˇ

VG � Vth

n
D
r
2ˇID

n
(1.10)

W=L and ID are connected thus to the gain-bandwidth product through gm. Com-

bining Eqs. 1.9 and 1.10, one has:

W

L
D ng2m
2�C 0ox

� 1
ID

(1.11)

Instead of a single ID and W=L, many doublets achieve the desired gain-bandwidth

product. We can put forward thus additional objectives, like a large DC gain.

Since according to Eq. 1.5 the gain varies like the reciprocal of the drain current,

the smaller the drain current, the larger the gain. Not only the gain increases, but

the power consumption lessens in the same time. Something is wrong however for

zero drain current is supposed to entail infinite gain! In fact, as the current is get-

ting smaller, the transistor enters successively in moderate and weak inversion. The

quadratic model does not represent the drain current anymore. Another model is

required.

1.3.2 Sizing the I.G.S. by Means of the Weak Inversion Model

In weak inversion, the drain current can be represented by means of an exponential

expression (Vittoz 1977):
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ID D Io exp

�
VG

nUT

�
(1.12)

The transconductance is given then by:

gm D ID

nUT
(1.13)

where UT stands for kT=q and k for the Boltzmann constant. To attain the desired

!T , the drain current must be equal to:

IDmin D nUT gm (1.14)

This is a very different result from what we got in strong inversion. The drain current

alone fixes the gain-bandwidth product while the aspect ratio has no influence at all.

The outcome recalls bipolar transistors for their transition frequency also depends

on the collector current only and not on the emitter size (as long as strong injection

does not take place of course). MOS transistors in weak inversion and bipolar tran-

sistors share indeed a common feature: their currents are mainly diffusion currents.

1.3.3 Sizing the I.G.S. in the Moderate Inversion Region

Sizing in moderate inversion requires a better model. A good candidate is the

compact model introduced in Chapter 4, which leads to the expression below

demonstrated in Section 4.7:

W

L
D ngm

2

2�C 0ox
1

ID � IDmin

(1.15)

The expression is valid in all modes of operation, from strong to weak inversion.

Suppose we want to design an Intrinsic Gain Stage loaded by a 1 pF capacitor tar-

geting a transition frequency of 100 MHz. The transistor’s �C 0ox and slope factor

n are respectively equal to 4 � 10�4 A:V�2 and 1.2. Figure 1.4 displays the aspect

ratios versus drain current achieving the desired gain-bandwidth product. The result

is compared to the strong and weak inversion approximations considered earlier.

Below IDmin, nearly 20�A, it is impossible to achieve the desired gain-bandwidth

product. Above, W=L’s conform to a hyperbolic curve whose asymptotes coincide

with the strong and weak inversion approximations. But in moderate inversion,

large differences are clearly visible with respect to the strong and weak inversion

approximations.

The same figure displays also the AC gain predicted by Eq. 1.5 considering an

Early voltage of 10 V. Since the gain varies like the reciprocal of ID , small drain

currents mean large gains. When the drain current reaches the minimum given
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Fig. 1.4 Aspect ratio W/L and AC gain versus the drain current, of an (ideal) Intrinsic Gain Stage
aiming at a transition frequency of 100 MHz with a load capacitance of 1 pF. The Early voltage is
assumed to be constant and equal to 10. Circles display the difference between gate and threshold
voltages, the so-called Gate Voltage Overdrive (GVO) (MATLAB fig014.m)

by Eq. 1.14, the gain is largest and equal to the expression below obtained after

combining Eqs. 1.5 and 1.13:

AAC max D � VA

nUT
(1.16)

Since the thermal voltage UT at room temperature is only 26 mV, very large gains

can be obtained depending on VA. This once again stresses the commonality shared

by bipolar transistors and MOS transistors in weak inversion. The only difference is

the n factor. With bipolar transistors, the slope factor is equal to one.

Moderate inversion offers interesting compromises. Currents are smaller than in

strong inversion while the W=L ratios are more acceptable than in weak inversion.

Gains moreover are only slightly lesser than in weak inversion. Moderate inversion

however brings about some drawbacks also. The larger widths that are needed en-

tail more parasitic capacitances than in strong inversion. These require enhancing

transconductances, thus also the drain currents, one of the reasons designers kept

away from moderate inversion for a long time until the advent of short channel

devices.
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Where lies the boundary between moderate and strong inversion? To answer the

question, consider the .VG �Vth/ difference, called also the Gate Voltage Overdrive
(G.V.O.). According to (Lak 1994) strong inversion takes place as soon as the gate

voltage overdrive (marked by circles in Fig. 1.4) exceeds 0.2 V. When this happens,

moderate inversion W=L’s coincide practically with the strong inversion asymptote.

Where does weak inversion start? A clear limit is harder to trace, but the fast increase

of W=L once the current approaches IDmin is clearly a sign that weak inversion is

taking place. More rigorous limits will be proposed in Chapter 4 when the compact

model is introduced.

1.4 The gm=ID Sizing Methodology

The transconductance over drain current ratio is a resourceful tool for performing

sizing.2 The method exploits the fact that transconductances and drain currents vary

like the gate width (as long as the widths are large enough to avoid border effects of

course). Because the gm=ID ratio doesn’t depend on the gate width, drain currents

achieving any prescribed gain-bandwidth product can be derived from the expres-

sion below where the numerator is the transconductance given by Eq. 1.7 and the

denominator the transistor’s gm=ID ratio derived from a similar device whose gate

width W � and gate length L� are known:

ID D gm�
gm

ID

�� (1.17)

Knowing the drain currents, widths follow from the proportionality:

W D .W /�
ID

.ID/
� (1.18)

Equations 1.17 and 1.18 form a set of parametric equations that determines drain

currents and gate widths achieving the gain-bandwidth product fixed by gm.3 The

key of the sizing methodology is the denominator of Eq. 1.17, for it plays the role

of a parameter enabling to sweep the transistor through all modes of operation. It is

actually the slope of the drain current characteristic plotted versus the gate voltage

in semilog axes, for:

�
gm

ID

��
D 1

I �D

dI �D
dVG

D d

dVG
log

�
I �D
�

(1.19)

2 The gm/ID sizing methodology was introduced for the first time by the paper of (Silveira et al.
1996). Since then, the concept is referred to in many publication (Binkley et al. 2003; Binkley
2007) and (Girardi et al. 2006).
3 When ID and gm are interchanged, sizing is aiming at slew-rate instead of the gain-bandwidth
product.
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In weak inversion, the slope of the drain current characteristic is large and practically

constant. The currents derived from Eq. 1.17 are the smallest currents fulfilling the

gain-bandwidth specifications. As we move towards strong inversion the slope de-

creases so that larger currents are needed to meet the gain-bandwidth specification.

The question is how to set up the denominator of Eq. 1.17? Two issues lie for

the hand: experimental or analytical. The first makes use of Eq. 1.19 and derives

the transconductance over drain current ratio from experimental ID.VGS/ character-

istics. The currents stored in look-up tables are the result of measurements carried

out on real transistors whose width W � and gate length L� are known a priori. The

drain currents may be derived also from advanced models such as BSIM or PSP4

for these allow reconstructing drain currents that are very close to real drain cur-

rents. We call this the semi-empirical gm=ID sizing method. The other method, the

model-driven method, makes use of analytical expressions for .gm=ID/
�. It requires

having at one’s disposal an accurate large signal model that lends itself to analyti-

cal expressions. The basic E.K.V. model introduced in Chapter 4 leads to analytic

expressions of the transconductance over drain current ratio. Unfortunately, it is not

a good candidate for it is too basic to take into consideration important second or-

der effects like threshold voltage roll-off, D.I.B.L, gate length modulation etc that

plague real MOS transistors. More elaborated version of the E.K.V. model (Enz and

Vittoz 2006) do take care of these but evade chances to take advantage of analytic

expressions owing to the large number of parameters and expressions they require.

The semi-empirical method does not suffer of this drawback of course.

Yet, a simple model taking care of second order effects would be an asset. Fur-

ther in this book, we show that when its parameters are not constant but vary with

bias conditions and gate lengths, the basic E.K.V. model can be a good candidate

nevertheless for model-driven sizing. Though the model itself ignores second or-

der effects, the parameters reflect their impact. What makes this method attractive

is the fact that analytic expressions offer sensible manners to control the mode of

operation of the transistors, whereas the semi-empirical method proceeds blindly.

1.5 Conclusions

In this introductory chapter, we review the basics of sizing CMOS analog circuits.

The transconductance over drain current ratio5 offers a an interesting alternative for:

4 BSIM is a widely used state-of-the-art model that is available in the public domain, see [BSIM].
It is based on threshold voltage formulations and this may explain some weaknesses in moderate
inversion.

PSP for Penn State University and Philips (now NXP) is considered to be the more accurate
industrial standard available nowadays (PSP 2006). It is based on the surface potential model (like
the Charge Sheet Model).
5 The method can be extended to other (trans)conductances. When the numerator and denominator
of Eq. 1.17 are replaced respectively by gd and gd=ID , the algorithm performs sizing in view of
the output conductance.
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� gm=ID is a technological attribute bridging the transconductance, a small signal

quantity, to the drain current, a large signal quantity. As soon one is fixed, the

other follows.

� The gm=ID ratio controls gain and power consumption, the larger gm=ID , the

smaller the drain current and the larger the gain.

� The gm=ID sizing methodology applies however only as long as the widths

are large enough to ignore lateral effects, a condition that holds true with most

CMOS analog circuits.

Two approaches are possible: semi-empirical or model-driven. The first takes

advantage of real measurements or data derived from advanced MOS models. The

second makes use of models supposed to be accurate and simple enough to pave

the way towards reliable analytical expressions of the transconductance over drain

current ratios. Unfortunately no such model exists, except the basic E.K.V. model

when its parameters are allowed to vary with bias conditions and gate lengths. We

show further that the results are comparable to those obtained by means of the semi-

empirical method.



Chapter 2
The Charge Sheet Model Revisited

2.1 Why the Charge Sheet Model?

We review in this chapter the main attributes of the ‘Charge Sheet Model’ (C.S.M.)

introduced by J.R. Brews in 1978 (Brews 1978; Van de Wiele 1979). Although its

name contains the word ‘Model’, the C.S.M is not a design tool. It is an invaluable

means however for understanding some of the mechanisms governing current in

MOS transistors for it scrutenizes phenomena otherwise difficult to apprehend. Un-

fortunately, the C.S.M. concerns only long channel MOS transistors implemented

in a uniformly doped substrate (gradual channel approximation). Trying to predict

drain currents of real transistors with the C.S.M. does not work.

Figure 2.1 depicts the structure of the NMOS transistor considered throughout

this chapter. The two vertical lines without any other demarcation called respec-

tively S and D symbolize the source and drain junctions. Two-dimensional effects

are ignored, obliterating consequently items such as channel length modulation,

Drain Induced Barrier Lowering (DIBL), etc. The source, drain and gate voltages

are called respectively VS ; VD and VG , the surface potential  S and the non-

equilibrium voltage V .1 The latter, called also the channel voltage, varies from VS at

the source to VD at the drain. Single indices relate to voltages defined with respect

to the substrate. Double indices relate to voltages defined with respect to references

other than the substrate. For instance, VGS is the voltage difference between the gate

and the source.

2.2 The Generic Drain Current Equation

Current in MOS transistors results from mobile carries moving in the channel. It can

be represented by the expression below where W is the width of the transistor and

Q0
i the mobile charge density along the channel:

ID D W � ��Q0
i

� � velocity (2.1)

1 V is the difference between the “quasi Fermi level” of electrons in the inversion layer and the
“quasi Fermi level” of holes in the substrate.

P.G.A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-voltage Analog CMOS
Circuits, Analog Circuits and Signal Processing, DOI 10.1007/978-0-387-47101-3 2,

11

c� Springer Science+Business Media, LLC 2010
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Fig. 2.1 The gradual channel MOS transistor

Two transport mechanisms are taking place currently: drift and diffusion. The drift
current velocity is supposed to be proportional to the electrical field E:

drift current velocity D ��E (2.2)

The mobility coefficient � is assumed to be constant generally. This is correct as

long as electrical fields do not exceed some limit. Modern transistors face very large

fields for their gate lengths are ever shorter while supply voltages don’t scale down

necessarily at the same rate. As electrical fields are getting larger, the velocity of the

carriers starts to slow down so that mobility declines. The effect can be taken into

account by making � a function of the electrical field.

The diffusion current is governed by the non-uniform concentration of carriers

(like gas scattering in a closed vessel to homogenize the pressure). The diffusion

current velocity is supposed to be proportional to the carrier’s concentration:

diffusion current velocity D �D1
n

@n

@x
D �D 1

Q0
i

@Q0
i

@x
(2.3)

The diffusion constant D is related to the mobility � by the Einstein relation:

D D �UT (2.4)

As the electrical field along the channel is replaced by the derivative of the surface

potential  S :

E D �d S
dx

(2.5)
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Equation 2.1 can be rewritten as follows:

ID D �W

�
�Q0

i

d S

dx
C UT dQ

0
i

dx

	
(2.6)

or:

ID dx D �W

�Q0

i d S C UT dQ0
i

�
(2.7)

While the left side of the above equation lends itself to integration (current is con-

stant along the channel), the right part doesn’t. One of the two integration variables

should be expressed as a function of the other. Two strategies are possible. In the

Charge Sheet Model, the charge density is expressed as a function of the surface

potential. In the compact model, discussed in Chapter 4, the surface potential is

expressed as a function of the charge density. The first representation follows a rig-

orous treatment while the second implies an approximation. The first does not lend

itself to circuit design, the second does.

2.3 The Charge Sheet Model Drain Current Equation

In this chapter, we lay down the grounds of the Charge Sheet Model. We take the

surface potential as integration variable rewriting the right part of Eq. 2.7 as shown

below after introducing the gate oxide capacitance per unit-area C 0ox:

ID dx D �C 0oxW
�
�Q

0
i

C 0ox
C UT d

d S

�
Q0
i

C 0ox

�	
d S (2.8)

To perform the integration, an expression of Q0
i=C

0
ox versus the surface potential

is required. The equation is derived currently from the total charge densityQt=C
0
ox

expression obtained after combining the Gauss law, the Poisson equation and Boltz-

mann statistics (detailed computations can be found in textbooks):

� Q0
t

C 0ox
D � �

�
UT exp

�
 S � 2�B � V

UT

�
C  S

	1=2

(2.9)

where:

V represents the non-equilibrium voltage along the channel

˚B is the bulk potential, depending on the ratio of the substrate doping concen-

tration N over the intrinsic carrier density of silicon ni

�B D UT log

�
N

ni

�
(2.10)
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� is the Gamma commonly used in SPICE, which depends on N and the oxide

thickness via the oxide capacitance C 0ox:

� D 1

C 0ox

p
2 q"SN (2.11)

where q is the electron charge,

"S the silicon permittivity

N the substrate impurity concentration

The two terms under the square root of Eq. 2.9 relate respectively to the inversion

charge density (left term) and the depleted charge density (right term). If we ignore

the first term, in other words if the mobile charge density Q0
i vanishes, the total

charge density Q0
t resumes to the fixed charge density Q0

b so that what remains of

Eq. 2.9 boils down to:

� Q0
b

C 0ox
D �

p
 S (2.12)

An expression of the mobile carrier’s density lies now for the hand. We start from

the Gauss law2:

VG D �Q
0
t

C 0ox
C  S (2.13)

Since Q0
t is the sum of mobile and fixed charge densities, we may write owing to

Eq. 2.12:

VG D �Q
0
i

C 0ox
C �p S C  S (2.14)

which leads to the expression of Q0
i=C

0
ox versus the surface potential that we are

looking for:

� Q0
i

C 0ox
D VG � �

p
 S �  S (2.15)

We can evaluate now the derivative with respect to the surface potential ofQ0
i=C

0
ox:

d

�
�Q

0
i

C 0oc

�
D �

�
1C �

2
p
 S

�
d S (2.16)

and combine Eqs. 2.8, 2.15 and 2.16 to get the differential equation below ready for

integration:

IDdx D �C 0oxW �
�
VG � �

p
 S �  S C UT

�
1C �

2
p
 S

�	
d S (2.17)

2 The contact potentials between the gate material, the substrate material and the metal connections
as well as the fixed charges trapped in the oxide produce a shift of the gate voltage that can be taken
into account by adding to the gate voltage a constant voltage, called the Flat Band Voltage VFB.
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After integration, the expression of the drain current below is found where  SD and

 SS represent respectively the surface potential at the drain and the source and ˇ as

usual �C 0oxW=L:

ID D ˇ ŒF . SD/ � F . SS/� (2.18)

with the function F. S / given by:

F . S / D �1
2
 2S �

2

3
�  1:5S C .VG C UT /  S C � UT 0:5S (2.19)

Equations 2.18 and 2.19 are interesting and frustrating results in the same time. The

good news is that the drain current can be expressed as a polynomial of the square

root of the surface potential. The bad news is that we must find a way to connect

the source and drain surface potentials  SS and  SD to VS and VD . No analytical

expression is available. The only way out is to extract the surface potential from the

expression below resulting from the combination of Eqs. 2.13 and 2.9.

VG D � �
�
UT exp

�
 S � 2�B � V

UT

�
C  S

	1=2

C  S (2.20)

Since Eq. 2.20 is an implicit non-linear equation of  S , the evaluation must be done

numerically. The MATLAB function surfpot residing in the Matlab toolbox under

‘extras.springer.com’ takes care of this. For more details, please consult Annex 2.

2.4 Common Source Characteristics

The analytical expression of the drain current given by Eqs. 2.18 and 2.19 together

with the surfpot function solving Eq. 2.20 pave the road towards experiments that

help understanding the behavior of MOS transistors under low-power low-voltage

conditions. Some examples are reviewed in the next sections considering an N-

channel transistor implemented in a substrate having an impurity concentration

equal to 1017 atoms cm�3 and an oxide thickness equal to 5 nm. The flat-band volt-

age VFB is supposed to be equal to 0.6 V and the temperature equal to be 300 K. The

reader can make use of the toolbox to run additional ‘experiments’, like those of

Annex 3, which examine the impact of technology and temperature on transistor’s

performances.

2.4.1 The ID.VD/ Characteristics

The curves displayed in Fig. 2.2 show drain currents versus the drain voltage char-

acteristics obtained by means of the program below making use of two additional

MATLAB function, pMat and IDsh, reported in the toolbox. The unusual semilog
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Fig. 2.2 Drain current versus drain voltage obtained by means of the IDsh file (MATLAB
fig022.m)

vertical scale used for the display is chosen in order to plot drain currents from weak

to strong inversion in a single diagram encompassing five orders of magnitude.

clear
clf
% data techno
T = 300;
N = 1e17;
tox = 5;
VFB = .6;

% compute pMat(technology vector)
p = pMat(T,N,tox);

% computeID(VD)
VS = 0;
M = 201; VD = linspace(.01,2,M).’;
UG = linspace (2,.5,7);
for k = 1: length(UG),

ID(:,k) = IDsh(p,VS,VD,UG(1,k) + VFB);
end
% plot
semilogy(VD,ID,’k’); axis([0 2 1e-8 1e-3]);
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A series of well-known facts are clearly visible:

1. The Charge Sheet Model represents drain currents in a smooth way all over the

so-called linear (resistive) and saturated modes of operation. The model is ‘con-

tinuous’. In other words it does not require several equations to describe distinct

modes of operation.

2. The passage from strong to weak inversion and vice – versa is gradual and con-

tinuous too.

3. The distances between adjacent ID.VD/ characteristics gets larger as one goes

from strong to weak inversion. Since all gate voltage increments are identical,

the transconductance over drain current ratio is larger in weak than in strong

inversion (remind weak and moderate inversion conditions achieve better gains).

4. The pinch-off voltage is very small in weak inversion and remains quasi-constant

throughout the weak inversion regime. It is of the order of 100 mV, similar to the

saturation voltage of bipolar transistors.

5. Drain currents in saturation are quasi-constant for the C.S.M. ignores effects like

channel length modulation and DIBL. The transistor behaves like a perfect cur-

rent source.

2.4.2 The ID.VG / Characteristic of the Saturated Transistor

Figure 2.3 shows the drain current versus the gate voltage of the same transistor as

above when saturated (the drain voltage VD has no influence on the drain current).

The almost linear section left attests clearly that below 0.5 V (weak inversion) the

Fig. 2.3 Drain current of the saturated common source transistor (MATLAB fig023.m)
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drain current increases quasi-exponentially. In this region, the ‘subthreshold’ slope

S determines the so-called slope factor n:

n D S

UT log .10/
(2.21)

Beyond the exponential, the drain current levels off gradually while the transistor is

entering moderate and strong inversion. The trend in the strong inversion region is

quadratic.

2.4.3 Drift and Diffusion Contributions to the Drain Current

The C.S.M. offers the possibility to compare the contributions of drift and diffusion

currents to the drain current. All what is needed therefore is to break the polynomial

representation of ID of Eq. 2.19 into two parts. For the diffusion current, the two

last terms of Eq. 2.17 are considered and for the drift current what remains. The

polynomials are respectively:

Pdiffusion D Œ0 0 UT � UT 0� (2.22)

and

Pdrift D
�
�1
2
� 2

3
� VG 0 0

	
(2.23)

The drift and diffusion currents displayed in Fig. 2.4 show clearly the dominance of

one current over the other depending on which mode of operation is taking the lead.

Diffusion dominates in weak inversion while drift takes over in strong inversion. In

the middle, around 0.6 V, drift and diffusion currents have almost the same magni-

tudes. In strong inversion, the total current coincides practically with the quadratic

approximation of ID . The same holds true for the exponential current in weak in-

version. Many analog circuits, especially low-power low-voltage circuits, operate

nowadays in the so-called moderate inversion region.

2.5 Weak Inversion Approximation of the Charge Sheet Model

The fact that diffusion current overwhelms drift current in weak inversion leads to a

number of useful approximate expressions. Because the first of the two right terms

of Eq. 2.6 can be ignored, one has:

ID dx � ��C 0oxW UT d

�
�Q

0
i

C 0i

�
(2.24)
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Fig. 2.4 Same as Fig. 2.3 with explicit representations of the drift and diffusion currents
(MATLAB fig024.m)

Consequently, the drain current in weak inversion is given by:

ID � ��C 0ox
W

L
UT

��
�Q

0
iD

C 0ox

�
�
�
�Q

0
iS

C 0ox

�	
(2.25)

Let us find now an approximate expression of Q0
i=C

0
ox in weak inversion. The

inversion layer charge density is extracted from the equality:

� Q0
i

C 0ox
D � Q

0
t

C 0ox
C Q0

b

C 0ox
(2.26)

where Q0
t=C

0
ox and Q0

b=C
0
ox are replaced by Eqs. 2.9 and 2.12. This leads to:

� Q0
i

C 0ox
D � �

�
UT exp

�
 S � 2�B � V

UT

�
C  S

	1=2 � �p S (2.27)

Since the contribution of the first of the two terms under the square root (drift cur-

rent) is small compared to that of the second (diffusion current), the equation above

can be approximated as follows:

� Q0
i

C 0ox
D �

p
smal l C  S � �

p
 S � �

smal l

2
p
 S

(2.28)
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This leads to:

� Q0
i

C 0ox
� �

UT

2
p
 S

exp

�
 S � 2�B

UT

�
� exp

�
� V

UT

�
(2.29)

The surface potential  S depends practically only on the gate voltage. In weak in-

version, Eq. 2.14 boils down indeed to a second order equation relating the gate

voltage VG to  S forQ0
i=C

0
ox is small in comparison to the contribution of the de-

pletion layer represented by the two last terms. An expression of the weak inversion

surface potential  Swi can be extracted then from the latter:

 Swi D
"
��
2
C
r��

2

�2 C VG
#2

(2.30)

When  Swi is put in Eq. 2.29 and the latter combined with Eq. 2.25, the next expres-

sion of the drain current in weak inversion is obtained:

ID � 1

2
ˇ� U 2T

1p
 Swi

exp

�
 Swi � 2�B

UT

�
„ ƒ‚ …

A

�
�

exp

�
� VS
UT

�
� exp

�
�VD
UT

�	

(2.31)

This is an interesting result for it shows that the drain current in weak inversion is

controlled exponentially by the source and drain voltages owing to the fact that the

factor A depends only on the gate voltage. Another interesting observation concerns

the drain voltage when the transistor enters saturation. Rewriting Eq. 2.31 in terms

of the drain-to-source voltage difference VDS turns the above expression into:

ID � A � exp

�
� VS
UT

�
�
�
1 � exp

�
�VDS

UT

�	
(2.32)

The drain current saturates as soon as the drain-to-source voltage attains 100 mV

(nearly four times UT). The impact of the gate voltage is more difficult to apprehend

for it is hidden in the A factor, which depends on the geometry via ˇ, and �; �B and

the surface potential. The point is discussed more in detail further.

2.6 The gm=ID Ratio in the Common Source Configuration

An analytic expression of the transconductance over drain current ratio cannot be

derived from the Charge Sheet Model. The ratio must be evaluated numerically by

taking the derivative with respect to the gate voltage of the log of the drain current:

gm

ID
D 1

ID

@ ID

@ VG
D @ log .ID/

@ VG
(2.33)
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Fig. 2.5 The gm=ID ratio derived from the ID.VG/ plot of Fig. 2.4, which is reproduced in the
background (MATLAB fig025.m)

The gm=ID ratio is shown in Fig. 2.5. It is larger in weak than in strong inversion

but displays a slightly decaying trend under very small currents. The phenomenon

can be explained as follows. Consider the derivative versus the gate voltage of the

expression hereafter extracted from Eq. 2.31:�
gm

ID

�
W:I:

� @

@VG
log

�
1p
 Swi

exp

�
 Swi � 2�B

UT

�	
(2.34)

The derivative is done into two steps, first with respect to VG , second to  Swi:�
gm

ID

�
W:I:

�
�
� 1

2 Swi
C 1

UT

�
@ Swi

@VG
(2.35)

When the derivative of the weak inversion surface potential with respect to the gate

voltage is extracted from Eq. 2.30, one has:

�
gm

ID

�
W:I:

D 1

UT
�
1 � UT

2 Swi

1C �

2
p
 Swi

(2.36)
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Notice the similarity with the approximate gm=ID ratio of Eq. 1.13 in the first

chapter, stating that: �
gm

ID

�
W:I:

D 1

nUT
(2.37)

The comparison of Eq. 2.36 with 2.37 brings about an interesting analytical expres-

sion of the weak inversion subthreshold slope factor, called nwi:

nwi D
1C �

2
p
 Swi

1 � UT

2 Swi

(2.38)

The signification of nwi gets clear when several gm=ID plots are merged as their

source voltages changes. Figure 2.6 shows clearly that when the transistor enters

weak inversion, all gm=ID ratios come together forming a single consolidated enve-

lope, which coincides with Eq. 2.36.

Near the origin, the envelope bends down more rapidly for the width of the de-

pleted region under the gate is getting smaller as the source voltage decreases. The

ratio of the capacitive divider formed by the gate oxide and the depleted region

increases, modifying consequently the slope factor nwi.

One may substitute a more compact and more familiar expression to Eq. 2.31:

ID � Io exp

�
VG

nwiUT

�
„ ƒ‚ …

A

�
�

exp

�
� VS
UT

�
� exp

�
�VD
UT

�	
(2.39)

Fig. 2.6 Plot of gm=ID ratios when the source voltage changes from 0 V (left) to 2 V (right) in
steps 0.5 V wide. The distance separating gm=ID’s is a little more than 0.5 V owing to the body-
effect discussed more in detail in the next chapter (MATLAB fig026.m)



2.7 Common Gate Characteristics of the Saturated Transistor 23

2.7 Common Gate Characteristics of the Saturated Transistor

Let us consider now the common-gate configuration. The gate voltage is fixed while

the source VS is the input now. Figure 2.7 shows the ID.VS / curve obtained after

running the same file as above when the gate voltage is equal to 2 V and the source

voltage VS varies from 0 to 2 V. The drain voltage is supposed to be large enough

in order to keep the transistor saturated under any circumstance. As VS increases,

the gate-to-source voltage VGS decreases abating the drain current. First, the drain

current slows down gradually for the transistor is still in strong inversion. Once the

transistor is in weak inversion, the current decreases exponentially. In this region,

the slope of the drain current follows the exp.VS=UT / law predicted by Eq. 2.31.

Put differently, the slope factor is equal to one in strong contrast with the slope factor

of the common source slope factor.

The same plot shows also the gms=ID ratio inferred from the drain current charac-

teristic. Like in the common-source configuration, the ratio is given by the slope of

the semilog-scaled drain current. The ‘transconductance’ is now gms instead of gm.

The sequence is being reversed with respect to the common-source configuration

for the gms=ID is flipped horizontally with respect to gm=ID .

In weak inversion, the gms=ID ratio is equal to 1=UT in accordance with the

unity slope factor mentioned above. This once again underlines the similarity MOS

Fig. 2.7 The gms=ID ratio (plain lines) versus the source voltage is obtained by taking the deriva-
tive of the log scaled drain current plotted in dashed lines (VG is equal to 2 V) (MATLAB fig027.m)
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transistors share with bipolar transistors when operating in weak inversion. Two

reasons explain this. First, the drain current is dominated by diffusion current as

in the neutral base of the bipolar transistor. Second, the front and back gates co-

operate whereas the back-gate remains idle in the common source configuration.

The common-gate configuration ignores consequently the partitioning inherent to

the common-source configuration.

We will show in later chapters that real transistors do not conform to the unity

slope factor in weak inversion in the common-gate configuration. The slope factor is

generally slightly larger than one. This is due to the drain-to-source voltage variation

going along with the gate-to-source voltage modifications. In the C.S.M. the drain

voltage has no effect on the current as long as the transistor is saturated, but with

real transistors, changes of the drain voltage modify the space charge near the drain

and below the inversion layer. The drain influences thus the current even though

the transistor is saturated. The gms=ID ratio of real transistors in weak inversion is

smaller thus than the predicted 1=UT .

2.8 A Few Concluding Remarks Concerning the C.S.M.

The Charge Sheet Model is a physical model that predicts drain currents whatsoever

mode of operation, weak or strong inversion, saturation or not. It is relevant and

particularly instrumental for understanding the basic mechanisms controlling low-

power operation. In addition, the model bridges drain currents to physical quantities

such as the substrate impurity concentration, oxide thickness and temperature. It

offers therefore the possibility to scrutinize sensitivity aspects. The validity of the

C.S.M. is restricted however to ideal transistors implemented in a uniformly doped

substrate with gate lengths sufficiently large to obliterate short channel effects.

An interesting observation can be made as far as the threshold voltage. So far,

the concept has not been mentioned except occasionally, for instance when the

quadratic model was considered. The Charge Sheet Model ignores actually the

concept. The reason is that the threshold voltage is not a physical quantity but a

parameter embodied on measurements. Its interpretation varies according to the

evaluation techniques. This does not mean that the threshold voltage is a useless

concept. On the contrary, it is a landmark, like the voltage drop across forward bi-

ased junctions. It is an essential parameter exploited in every circuit oriented model.

In the next chapter, we are going to clarify the concept.



Chapter 3
Graphical Interpretation of the Charge
Sheet Model

3.1 A Graphical Representation of ID

An interesting representation of the drain current can be obtained when the expres-

sion below is used for the drain current (Tsividis 1999):

ID D �C 0ox
W

L
�
VDZ
VS

�
� Q

0
i

C 0ox

�
dV (3.1)

The equation is derived from, the proportionality of the minority carrier density to

the exponential function acknowledged by Boltzmann statistics:

Q0
i / exp

�
 S � 2�B � V

UT

�
(3.2)

After differentiating the two sides of the above expression, an equation connecting

the differentials of Q0
i ;  S and V is obtained:

UT
dQ0

i

Q0
i

D d S � dV (3.3)

This enables us to replace the drift and diffusion current contributions considered in

the previous chapter by a single term, Q0
i d S , turning Eq. 2.7 into the expression

below, which leads to Eq. 3.1 after integration:

ID dx D �C 0oxW
�
� Q

0
i

C 0ox

�
dV (3.4)

Although Eq. 3.1 is more compact than Eq. 2.8, we haven’t booked any progress

for the integration has to be carried out now with respect to the channel voltage V

while the expression between brackets is a function of the surface potential  S as

reminded by Eq. 2.15 reproduced hereunder for convenience:

P.G.A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-voltage Analog CMOS
Circuits, Analog Circuits and Signal Processing, DOI 10.1007/978-0-387-47101-3 3,

25

c� Springer Science+Business Media, LLC 2010
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Fig. 3.1 Representation
versus the non-equilibrium
voltage V of the surface
potential  S and the
threshold voltage with respect
to the substrate VT . The p
vector is given by
pMat(300,1e17,5) and the
gate voltage equal to 2 V
(MATLAB fig031.m)

� Q0
i

C 0ox
D VG � �

p
 S �  S (3.5)

Equations 3.4 and 3.5 pave the road however towards a graphical interpretation of

the drain current. The idea is illustrated by the two curves shown in Fig. 3.1: the

lower one representing the surface potential  S versus the non-equilibrium voltage

V , the upper one, called VT , the sum hereunder:

VT D �
p
 S C  S (3.6)

According to Eqs. 3.5 and 3.6, VT is the voltage to apply to the gate in order to zero

the mobile charge density Q0
i . When VG is larger than VT , the semiconductor sur-

face is inverted and when VG is smaller than VT there is no inversion layer. Hence,

VT can be assimilated to a kind of threshold voltage, which should not be confused

with the threshold voltage Vth currently associated to the quadratic representation of

the drain current. The first is defined with respect to the substrate, the second with

respect to the source.

Because the difference between VG and the threshold voltage VT is in a repre-

sentation of �Q0
i=C

0
ox, we may rewrite Eq. 3.1 as follows:

ID D �C 0ox
W

L
�
VDZ
VS

.VG � VT / dV (3.7)
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Fig. 3.2 Graphical illustration of the drain current of a MOS transistor whose VS and VD are
respectively equal to 0.3 and 1.0 V. The gate voltage, oxide thickness, substrate doping and tem-
perature are the same as in Fig. 3.1 (MATLAB fig032.m)

This leads to the graphical interpretation of the drain current1 represented by the

hatched area of Fig. 3.2. The surface delineated by VG and VT and the vertical lines

VS and V is indeed a representation of the drain current divided by ˇ according to

Eq. 3.7. This representation can be used in order to visualize how the terminal volt-

ages control the drain current. Consider for instance a grounded source transistor

whose drain voltage VD increases gradually, starting from zero. When VD is small,

the area representing the drain current divided by beta resolves to a narrow stripe

very close to the vertical axis like in the first of the four views shown in Fig. 3.3.

As the drain voltage increases, the area widens but the growth rate declines as we

approach the point where VT gets close to VG . Beyond this point, the drain current

does not increase anymore for the triangularly shaped area representing the drain

current remains practically constant. We reached the pinch-off voltage. The transis-

tor is now saturated.

1 The graphical interpretation of the drain current is designated generally by the name their authors
Memelink–Jespers. It was reported first in (Jespers et al. 1977) and taken over in a number of
publications among which Cand et al. (1986), Wallinga and Bult (1989) and Enz and Vittoz (2006).
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Fig. 3.3 Graphical illustration of ID.VD/=beta considering a grounded source transistor with a
constant VG of 2 V and a drain voltages stepping from 0.050 V, to 0.250 V, 0.750 V and 2,00 V
(MATLAB fig033.m)

3.2 More on the VT Curve

Before we illustrate by means of a few examples the use that can be made of the

graphical construction, we look more closely to the surface potential curve shown

in Fig. 3.1 in order to explain its shape.

Figure 3.4 shows two representations of S . The left one traces the surface poten-

tial  S versus the gate voltage VG considering a series of constant non-equilibrium

voltages V increments from 0 to 2 V in steps of 0.5 V. The right figure shows similar

data, plotted versus the non-equilibrium voltage V .

Left, near the origin, all the surface potential curves merge. Soon breakpoints

appear beyond which  S remains quasi constant. Breakpoints shift to larger gate

voltages as V increases. Left to every breakpoint the surface is not inverted. The

width of the depleted region is widening in order to balance the gate charge as

VG increases. The non-linear capacitive divider formed by the gate oxide and the

depleted region determines the surface potential. Right to the breakpoints, mobile

charges start accumulating along the semiconductor surface. The width of the de-

pleted region doesn’t change anymore for the charge represented by the mobile
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Fig. 3.4  S versus VG (left) and V (right) (MATLAB fig034.m)

carriers increases almost at the same rate as the gate charge. The surface poten-

tial does not change either. Of course, larger gate voltages are needed to invert the

surface as V increases. In the right figure, the roles of the gate voltage and the non-

equilibrium voltage are interchanged. The surface potential is plotted versus the

non-equilibrium voltage V while the gate voltage VG is kept constant. Consider for

instance a VG equal to 3 V, corresponding to the vertical line of the left plot. As we

move up along this line, the charge in the inversion layer decreases while the width

of the depleted region increases in order to balance the more or less constant gate

charge. When the point is reached where the vertical line meets the depleted charac-

teristic, the inversion charge vanishes. The surface potential remains quasi-constant

notwithstanding the fact that V keeps on growing, the excess charge being taken

over by the widening depleted region.

3.3 Two Approximate Representations of VT

The strong resemblance to a broken line of the surface potential in the right part

of Fig. 3.4 legitimates the introduction of approximations. These lead to two well-

known expressions of ID that are reviewed briefly hereunder.

3.3.1 The ‘Linear’ Surface Potential Approximation

Since the slope of the surface potential below pinch-off remains almost constant,

 S may be approximated by means of a linear expression:

 S D  So C V (3.8)
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 So being the surface potential at the origin, generally equal to 2˚B plus k times

UT , k being comprised between 4 and 8:

 So D 2ˆB C kUT (3.9)

The threshold voltage VT with respect to the substrate defined by Eq. 3.6 is then

given by:

VT D �
p
 So C V C  So C V (3.10)

which can be rewritten as follows:

VT D VTo C �
�p

 So C V �
p
 So

�
C V (3.11)

Plugging this expression in Eq. 3.7 leads to the well-known expression of the drain

current below:

ID D ˇ

�
.VG �  So/ V � 2

3
� .VG C  So/1:5 � 1

2
V 2
	VD

VS

(3.12)

Figure 3.5 shows the drain current predicted by Eq. 3.12 considering various values

of k and a gate voltage of 3 V (no flat band voltage correction). Below saturation, the

Fig. 3.5 Comparison of the drain current evaluated by means of Eq. 3.12 to the current predicted
by the Charge Sheet Model. The parameter k illustrated by the curves in the ellipse varies from 4
to 8 by steps equal to 1 (MATLAB fig035.m)
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current reproduces nicely the current predicted by the C.S.M. transistor of Chapter 2

when k is equal to 7. Beyond the maximum, the drain current should not drop of

course but remain constant. The difference comes from the linear approximation

of VT , which should break away instead of growing above the pinch-off voltage.

While more or less correct in strong inversion, Eq. 3.12 does not represent the reality

however in moderate and weak inversion for the abrupt change of VT that occurs at

the pinch-off voltage departs strongly from the smooth passage conveyed by the

Charge Sheet Model.

3.3.2 The ‘Linear’ Threshold Voltage VT Approximation

Below pinch-off, we can approximate the threshold voltage by a linear expression.

The approximate expression of VT is given then by the equation below where the

slope factor n is supposed to be constant and slightly larger than one:

VT D VTo C nV (3.13)

Of course, we should expect a larger error for VT sums up not only of the quasi-

linear surface potential but also � times the square root of the surface potential. This

turns Eq. 3.7 into the well-known ‘quadratic’ drain current equation:

ID D ˇ
h
.VG � VTo/ V � n

2
V 2
iVD

VS

(3.14)

The point where VT crosses VG , the pinch-off point, is given now by the well-known

expression:

VP D VG � VTo
n

(3.15)

The graphical representation of the drain current illustrated by Fig. 3.3 is now very

simple. The plot representing VT resumes to a broken line consisting of a straight

line with a slope n crossing the vertical axis at the threshold voltage VTo, which

turns into a horizontal line at the pinch-off voltage when VT equals VG . When VD is

smaller than the pinch-off voltage VP , the area boils down to the difference between

a rectangle and a triangle. The area of the rectangle is equal to .VG �VTo/ times VD
and the area of the triangle given by nVD2=2. When VD is larger than VP , the current

is given by .VG � VTo/:VP =2 or .VG � VTo/
2=2n. These reproduce the well-known

quadratic drain currents expressions after multiplication by ˇ.
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3.4 A Few Examples Illustrating the Use
of the Graphical Construction

In the sections hereafter, we review a series of examples illustrating the use that

can be made of the graphical construction. We consider for VT the last linear

approximation.

3.4.1 The MOS Diode

The first example is given by the diode-connected common source MOS transistor

shown in Fig. 3.6. Since VG is equal to VD , the vertical line representing VD and

the horizontal line representing VG cross each other on the dashed line dividing the

square in two equal parts. The graphical counterpart of the drain current boils down

then to the triangle entangled between the vertical axis (VS is equal to zero), the

horizontal line representing the gate voltage VG and the threshold voltage VT . As

VG is lifted up, the area – or the current – grows quadratically. It is clear that diode-

connected MOS transistors are always saturated, whatsoever the drain current for

the pinch-off voltage (the point where VG crosses VT ) lies always below VD .

3.4.2 The MOS Source Follower

Figure 3.7 represents a source follower fed by a constant current source ID . The

transistor is supposed to be saturated. Since the current is fixed, the area of the tri-

angle representing the drain current remains constant. The horizontal side of the

triangle is fixed by VG as usual while the vertical corresponding to the source volt-

age VS is fixed by the current, thus the area. When VG changes, the triangle glides

along VT causing a concomitant shift of the source voltage. The ratio �VS over

Fig. 3.6 Graphical
illustration of the
current-voltage relation
of a MOS diode
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Fig. 3.7 Graphical illustration of the input-output relation the MOS source-follower

Fig. 3.8 Graphical illustration of the input-output characteristic of a CMOS inverter

�VG , which represents the gain of the source follower, is equal to the reciprocal of

the slope factor n confirming the well-known fact that MOS source followers have

gains always smaller than one by 20–40%.

3.4.3 The CMOS Inverter

Logical inverters combine N and P-type MOS transistors. Two VT ’s must be con-

sidered instead of one thus. The substrate is the reference of the N-MOS transistor

and the N well connected to the power supply VDD the reference of the P-MOS tran-

sistor. The lower-left corner of the plot of Fig. 3.8 is thus the origin of axes for the

N-MOS transistor while the upper-right corner is the origin for the P-MOS tran-

sistor. The VT ’s of the two transistors are shown respectively. Since the gates are

shorted, the horizontal lines representing the gate voltages of both transistors are
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merged. Similarly, the drain voltages of the N- and P-type transistors are represented

by means of a single vertical line. The areas representing the currents of the N- and

P-type transistors are now sketched. They are proportional naturally for the same

current is flowing in the two transistors. If the W=L’s are sized in order to compen-

sate the unfavorable mobility ratios of holes over electrons, the areas must be equal.

The graphical construction boils down then to a simple geometrical problem: find

the drain voltage that makes the hatched areas equal. When VG is low, the area of

N-type transistor confines to a small triangle. The only way to equalize areas is to

shift the vertical line very close to VDD. The N-channel transistor is saturated while

the P-channel isn’t. When VG is large, the opposite holds true.

Since the gate and drain terminals represent respectively the input and the output

of the logic inverter, the intersection of the VG and VD lines reproduces the inverter

I/O transfer characteristic after flipping horizontal and vertical axes. Since the slope

along the transfer characteristic represents the small signal gain of the inverter, the

gain grows as we move towards the centre until VG gets equal to half the power

supply (assuming both transistors have identical threshold voltages). The currents

in the N- and P-channel transistors are then represented by means of two identi-

cal triangles, meaning that both transistors are saturated. Any VD between the two

pinch-off voltages is then a plausible output voltage. The small signal gain is thus

infinite! Of course, this is not correct. The errors comes from the fact that the con-

struction assumes the output conductance of saturated transistors is equal to zero.

Like in the Charge Sheet Model, the construction does not take into account second

order effects, like the Early effect.

3.4.4 Small Signal Transconductances

Besides large signal quantities, the graphical construction helps also to ‘visualize’

small signal parameters like gm or gms. What is needed therefore is to consider small

changes of the drain current illustrated by small departures of the lines representing

VG or VS . In Fig. 3.9, we consider the drain current changes resulting from gate

voltage variations:

Fig. 3.9 Graphical
evaluation of gm
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�VG.VD � VS / D �ID

ˇ
(3.16)

This implies that:
gm

ˇ
D .VD � VS / (3.17)

and, when the transistor is saturated:

gm

ˇ
D .VP � VS / (3.18)

The length of the segment comprised between VS and VD is the graphical counter-

part thus of the transconductance gm divided by ˇ.

Similarly, when the vertical line representing VS moves slightly around its steady

state position, one has:
gms

ˇ
D .VG � VT / (3.19)

We see that when the transistor is saturated, the ratio of the source transconductance

over gate transconductance is equal to n, confirming a statement made earlier in

Chapter 2:
gms

gm
D VD � VS
VG � VT D n (3.20)

3.4.5 CMOS Transmission Gates

One can make use of the graphical construction in order to explain why some cir-

cuits are preferred to others. For instance: why are digital CMOS transfer gates

implemented by means of parallel complementary transistors rather than by sin-

gle transistors? Figure 3.10 compares the conductance of a single transistor to

that of a complementary switch. The upper part of the figure relates to the single

transistor, which is supposed to be connected between a voltage source and a load

capacitor. The current is equal to zero for we assume that steady state conditions are

attained. The area representing the drain current resumes to a segment whose length

represents the conductance of the switch divided by ˇ. It is obvious that so-called

‘dead zones’ occur for some input voltages. Two MOS transistors of opposite types

in parallel like in the lower part of the same figure do not suffer from the same im-

pairment. The conductance of the transmission gate is the sum of two segments. As

one is vanishing, the other is taking over. There is no ‘dead zone’.
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Fig. 3.10 The digital ‘transmission gate’

3.4.6 How to Implement Quasi-linear Resistors
with MOS Transistors

Continuous filters make use currently of integrated resistors and capacitors. Quasi-

linear capacitors are normally available in MOS technology but resistors require

dedicated circuits. The circuit of Fig. 3.11 shows an implementation of a quasi-

linear resistor. The gate of the MOS transistor is connected to a constant bias voltage

VG while the source and drain undergo equal and opposite voltage excursions with

respect to a constant reference voltage Vo called DV. If VT is assimilated to a linear

function of V , it is clear that the trapezoidal hatched area is equal to the area of the

rectangle with thick lines. The drain current depends linearly on DV thus.

VT however is a slightly quadratic function of V and this impairs the resis-

tor’s linearity. A better ‘resistor’ proposed by (Banu and Tsividis 1984) is shown

in Fig. 3.12.

The circuit consists of two MOS ‘resistors’ with common sources and drains

but distinct gate voltages. When the current delivered by one ‘resistor’ is subtracted

from the current delivered by the other, the non-linearity associated with VT doesn’t

impair performances any more. The area of the rectangle representing the difference

of the two currents is independent of VT (Wallinga and Bult 1989). In practice,

non-linear distortion decreases substantially but doesn’t disappear. Another cause
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Fig. 3.11 A MOS transistor implementing a ‘resistor’

Fig. 3.12 Implementation of a quasi-linear resistor

of imperfection still remains: the vertical electrical fields in the two transistors are

not identical. Mobility mismatch is now the prime source of non-linear distortion.

3.4.7 Source-Bootstrapping

Dynamic circuits can produce voltages that are larger than the supply voltage. The

way such circuits operate can be illustrated intuitively by the graphical construction.

The source bootstrap circuit shown in Fig. 3.13 offers a typical example.
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Fig. 3.13 Source bootstrapping

The circuit consists of a MOS transistor whose source is connected to ground

through a capacitor CS in parallel with a switch S1. The gate is connected to the

supply voltage through another switch S2. When both switches open, current starts

charging CS . As the source voltage increases, it pushes the gate voltage up through

the capacitive divider formed by C2 and C1. The gate voltage increase is actually

an attenuated replica of the source voltage. As the source voltage increases, the tri-

angle representing the drain current divided by ˇ moves from left to right squeezed

between the gate voltage and the threshold voltage VT lines. The area of the tri-

angle decreases gradually until the point is reached where the transistor begins to

de-saturate. Finally, the source attains VDD and the current is zeroed. The gate volt-

age is then equal to VDD
�.C1 C 2C2/=.C1 C C2/. Because the slope of the line

representing the gate voltage is smaller than that of VT , there is point beyond which

the gate voltage cannot go.

This illustrates clearly the performance limitations caused by the substrate effect

or the slope factor n. The same construction can be used in order to illustrate the

functioning of Bucket-Brigade Devices.

3.5 A Closer Look to the Pinch-Off Region

So far, all the examples we considered concern strong inversion. They don’t show

what is happening near the pinch-off voltage. When the transistor enters moderate

and weak inversion, the approximation representing VT by means of a broken line

is too basic. A more correct image of the surface potential near pinch-off is shown
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Fig. 3.14 Representation of VT near the pinch-off voltage, in the moderate and weak inversion
regions. The plot is an enlarged view Fig. 3.1. The hatched are represents the drain current divided
by ˇ when VG and VS are respectively equal to 2 V and 1.25 V (MATLAB fig314.m)

in Fig. 3.14. It represents Eq. 3.6 when  S is evaluated by means of the Charge

Sheet Model.

It is obvious that the difference between VG and VT does not vanish abruptly

but tends to decrease exponentially as predicted by Eq. 2.29. The exponential trend

of VT explains why the current is decreasing exponentially. Four to five ‘time con-

stants’ is enough to level off the drain current, supporting the earlier made statement

that drain-to-source voltages as low as 100 mV suffice to saturate MOS transistors

in weak inversion.

3.6 Conclusion

In Chapter 3, a construction allowing to ‘visualize’ the drain current of CMOS cir-

cuits is introduced and a number of examples are reviewed. Although most of the

examples relate to strong inversion, the graphical representation applies to all modes

of operation. The compact model introduced in the next chapter follows a similar

way while making use of an analytical approximation of VT .



Chapter 4
Compact Modeling

4.1 The Basic Compact Model

Though the C.S.M is very instrumental for understanding the operation modes of

MOS transistors, it is not suited for circuit design. More appropriate models have

been developed for this purpose, namely the E.K.V. model (for Enz, Krumenacher

and Vittoz (Enz and Vittoz 2006)) and the A.C.M. model (for Advanced Compact

Model (Cunha et al. 1998)). These belong to a category designated currently by the

name of compact models. Like the C.S.M, they derive from the gradual channel

approximation. More advanced versions encompassing short channel effects and

mobility degradation have been developed (Enz and Vittoz 2006), but at the expense

of growing complexity. This chapter reviews the basics of the E.K.V and A.C.M

models.

What is making the C.S.M. inappropriate for circuit design is the intricacy of

the expressions connecting the gate voltage VG and the surface potential  S to the

mobile charge density Q0
i . In the Charge Sheet Model we integrate the right part

of Eq. 2.7 with respect to the surface potential. The integration with respect to the

mobile carrier density is not considered for an explicit expression of the surface

potential versus Q0
i does not exist as reminded by the expression below, which is a

replica of Eq. 2.16:

d

�
� Q

0
i

C 0oc

�
D �

�
1C �

2
p
 S

�
d S (4.1)

To get across the difficulty, the E.K.V. and A.C.M. models take advantage of the fact

that the term between brackets right varies little, whatsoever the mode of operation,

weak or strong inversion, saturation or not. Modern transistors exhibit indeed � 0s
slightly less than one while the surface potential doesn’t vary much. The factor

multiplying d S is assimilated consequently to a constant generally between 1.2

and 1.5, which is called the slope factor n.1 The approximation offers the possibility

1 The name ‘slope factor’ given to n covers slightly different concepts in the literature. In strong
inversion, the slope factor is invoked generally in order to model the body effect. In weak inversion,
n is given by the maximum of the subthreshold slope.

P.G.A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-voltage Analog CMOS
Circuits, Analog Circuits and Signal Processing, DOI 10.1007/978-0-387-47101-3 4,
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to integrate Eq. 2.7 with respect to the mobile charge density while getting rid of the

surface potential. As a result, Eq. 4.1 is turned into the expression below

d

�
� Q

0
i

C 0ox

�
D �nd S (4.2)

which can be written as follows:

d S D �2UT dq (4.3)

after introducing the normalized mobile charge density:

q D � Q0
i

2nUTC 0ox
(4.4)

4.2 The E.K.V. Model

We present hereafter a comprehensive review of the E.K.V. model and stress the fact

that the assumption concerning the constant slope factor n paves the way towards

analytical expressions of both VT and ID . This is the cornerstone of the model.

4.2.1 The VT .V / Characteristic

We start from Boltzmann statistics like in Chapter 3, taking the total differential of

Eq. 3.2:
dQ0

i

Q0
i

D dq

q
D d S � dV

UT
(4.5)

When dq is substituted to d S according to Eq. 4.3, the above expression becomes a

differential equation relating the non-equilibrium voltage to the normalized mobile

charge density:

� dV D UT

�
2C 1

q

�
dq (4.6)

The integration is performed from source to drain considering respectively qS
and qD for the normalized charge densities while VS and VD represent the non-

equilibrium voltage:

VD � VS D UT

�
2 .qS � qD/C log

�
qS

qD

�	
(4.7)

The scope of this expression is very broad for it is the result of solid-state physics

considerations only (Brun et al. 1990). The equation however suffers from a draw-

back. Saturated transistors give way to very small qD
0s making the difference
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.VD�VS / run out of control. Another presentation would be more appealing; all the

more MOS transistors are generally saturated in analog circuits. In the alternative

presentation below, the integration limits resume to a constant and a variable q for

the mobile charge density. The constant is equal to one and the concomitant volt-

age defined as the pinch-off voltage VP . For the variable mobile charge density, the

corresponding limit is non-equilibrium voltages V :

VP � V D UT Œ2 .q � 1/C log .q/� (4.8)

The normalized mobile charge density q is plotted in Fig. 4.1 versus the difference

V � VP . It consists practically of two quasi-linear sections separated by a sharp

break when V is nearing VP .

An upside-down replica of Fig. 4.1 is shown in Fig. 4.2 where the vertical axis

has been multiplied by 2nUT . The plot represents now Q0
I=C

0
ox, or the difference

.VG � VT /. The curve is thus an illustration of VT similar to that of Fig. 3.1, except

for the axes; in Fig. 4.2, the threshold voltage is plotted against the gate voltage

and the zero of the horizontal axis is the pinch-off voltage, while in Fig. 3.1, VT is

plotted against the substrate.

It is clear that the break in the middle corresponds to what is meant by the pinch-

off voltage. The concept entails consequently a clear definition .q D 1/. What is

Fig. 4.1 Illustration of Eq. 4.8. The transistor is in strong inversion left and in weak inversion right
(MATLAB fig041.m)
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Fig. 4.2 is an upside-down replica of Fig 4.1 after multiplying q by 2nUT so that the vertical axis
represents �Q0

i =C
0

ox or VG � VT (MATLAB fig041.m)

still missing however is an expression connecting VP to the gate voltage VG . To get

this, imagine that q is getting very large so that Eq. 4.8 boils down to:

Vp � V D 2qUT (4.9)

After multiplying both sides by the slope factor n, the expression below bridging

the pinch-off to the gate voltage is obtained:

n
�
Vp � V

� D 2nUT q D VG � VT (4.10)

This shows that VT becomes a linear function of V deep in strong inversion. We

may write then:
VT D nV C V � (4.11)

where V � is a constant that is equal to:

V � D VG � nVP (4.12)

We can now connect the pinch-off voltage to the gate voltage owing to the fact that

the last equation boils down to:

Vp D VG � V �
n

(4.13)
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Only two constants are required thus to relate VP to VG and vice-versa, the slope

factor n and V �. We define the latter as the threshold voltage VTO of the compact

model,2 turning Eq. 4.13 into:

Vp D VG � VTO

n
(4.14)

4.2.2 The Drain Current

For the drain current, we start from Eq. 2.7 reproduced below after replacing the

mobile charge density by its normalized counterpart:

IDdx D 2nUT�W Œqd S � UT dq� (4.15)

Like in the previous section, we take advantage of Eq. 4.3 substituting dq to d S :

IDdx D �2nU 2T �C 0oxW Œq C 1� dq (4.16)

The integration with respect to q yields:

i D 

q2 C q�VS

VD
(4.17)

after introduction of the normalized drain current i :

i D ID

IS
(4.18)

and the specific current IS 3:

IS D 2nU 2T �C
0
ox

W

L
D 2nU 2Tˇ (4.19)

Remarkably, the contributions of the drift and diffusion currents are still identifiable

for q2 and q are the counterparts of the Charge Sheet Model corresponding currents.

The two equilibrate when q is equal to one. At this point, which corresponds to the

pinch-off voltage, the drain current ID equals twice the specific current IS .

2 VTO should not be confused with VT .0/. The latter represents the magnitude of VT when V is
equal to and is a function thus of the gate voltage and the pinch-off voltage whereas VTO is a
constant.
3 Slightly different definitions of the specific current are given by Enz and Vittoz (2006) and Cunha
et al. (1998). The first makes use of Eq. 4.19 while the second substitutes the factor 0.5 to the
factor 2.



46 4 Compact Modeling

The normalized mobile charge or the specific current are currently advocated to

differentiate strong from weak inversion. Both measure how deep transistors are in

strong (q or i >> 1) or weak inversion (q or i << 1). The normalized drain current

is called therefore also the inversion index (Enz and Vittoz 2006).

4.2.3 The Equations of the Basic E.K.V. Model

The slope factor n, the specific current IS and the threshold voltage VT0 are the three

basic parameters common to the E.K.V. and A.C.M. models. Equation 4.20 reviews

the set of equations making up the model. The first line recalls the definition of

the normalized drain current. The second line relates the normalized drain current

to the normalized mobile charge density and vice-versa (the Charge Sheet Model

doesn’t have an explicit expression for the second). The third line relates the channel

voltage V to the normalized mobile charge density and the pinch-off voltage VP .

Since Eq. 4.20d cannot be inverted, a MATLAB function called invq is introduced

allowing to derive q from VP and V (see Matlab Toolbox and Annex 2). The fourth

line connects the pinch-off voltage to the gate voltage and the threshold voltage VT0.

i D ID

Is
.a/

i D q2 C q .b/ q D 0:5
�p

1C 4i � 1
�

.c/

VP � V
UT

D 2 .q � 1/C log .q/ .d/ q D invq
�
VP � V
UT

�
.e/

VP D VG � VTO

n
.f/ (4.20)

An interesting interpretation can be obtained when the transistor is not saturated

(Chatelain 1979). It takes advantage of two normalized drain currents: the forward
normalized current iF , associated to the source terminal, and the reverse normal-
ized current iR, associated to the drain:

iF D q2S C qS (4.21)

iR D q2D C qD (4.22)

With these, the drain current of the non-saturated transistor boils down to the dif-

ference of a forward and a reverse current each representing the drain current of

saturated MOS transistors whose source voltages are respectively VS and VD

i D iF � iR (4.23)
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4.2.4 Graphical Interpretation of the E.K.V. Model

The E.K.V. model can be ‘visualized’ by means of the graphical interpretation

presented in Chapter 3. Consider a saturated grounded source transistor whose pa-

rameters n; VT0 and IS are respectively equal to 1.2, 0.4 V and 0:7�A.

The thick dashed line across Fig. 4.3 is a representation of Eq. 4.11, where VT0 is

put in the place of V �. We consider three gate voltages respectively equal to 0.60,

0.35 and 0.30 V. The corresponding pinch-off voltages predicted by Eq. 4.20f are

marked by circles. To plot the three VT .V / curves, we proceed by choosing realistic

values of q, e.g. a logarithmic scale from 10�3 to 10, evaluate V for every VP by

means of Eq. 4.8 and subtract 2nUTq from the gate voltage like in Fig. 4.2. All

curves are copies of a same mold shifted along the dashed line.

We know from Chapter 3, that the hatched areas displayed in Fig. 4.3 stand for

the drain currents divided by ˇ and are equal to 2nUT 2i owing to the definition of

IS given by Eq. 4.19. When the gate voltage is large (0.6 V), the pinch-off voltage

is positive while the area representing the drain current has a more or less triangular

shape that is typical of strong inversion. As the gate voltage decreases (0.35 and

0.30 V), the pinch-off voltage VP shifts left becoming negative as the gate voltage

Fig. 4.3 Graphical illustration of the drain current delivered by a saturated grounded source tran-
sistor whose gate voltage takes three distinct values. The hatched areas represent the drain currents
divided by ˇ (MATLAB fig043.m)
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Fig. 4.4 Graphical illustration of the drain current of a non-saturated grounded source transis-
tor. The vertically and horizontally hatched areas stand respectively for the forward and reverse
currents. Their difference represents ID=ˇ (MATLAB fig044.m)

gets smaller than VTO. The area representing the drain current is not only smaller,

but it varies exponentially for V is controlled by the log.q/ term, the other term

being constant. The drain current varies exponentially with V for we are in weak

inversion.

Consider now the same transistor when it is not saturated. The drain voltage is

only 0.1 V while the gate voltage is equal to 0.6 V. According to Eq. 4.23, the drain

current is represented now by the difference between forward and reverse currents.

The vertically and horizontally hatched areas of Fig. 4.4 represent the graphical

counterparts of these, respectively 2nUT 2iF and 2nUT 2iR, and the difference the

actual drain current.

4.3 The Common Source Characteristics ID.VG /

To get familiar with the model, we consider a few examples. To begin with, we

evaluate the drain current of a grounded source .VS D 0/ saturated MOS transistor

.qR D 0/ whose gate voltage VG varies from 0 to 1.2 V. The slope factor n is

supposed to be equal to 1.2, IS equal to 0:70�A and VTO 0.40 V like above. To

evaluate the drain current one can proceed along two ways, the ‘parametric’ or the

‘direct’ hereafter.

In the parametric method, illustrated by Eq. 4.24, the normalized drain current

and the pinch-off voltage are evaluated in terms of an arbitrary q vector taking
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advantage of Eq. 4.20b and d, The drain current ID and the gate voltage VG fol-

low with Eq. 4.20a and f.

q )
8<
:

i D q2 C q ) ID D i � Is

VP D UT .2 .q � 1/C log .q//) VG D nVP C VTO

(4.24)

In the ‘direct’ method illustrated by Eq. 4.25, the starting point is the gate voltage

VG , which leads to VP by means of Eq. 4.20f. The normalized mobile charge density

q is extracted from VP by means of the invq function of Eq. 4.20e. This leads to the

normalized drain current i owing to Eq. 4.20b.

VG ) VP D VG � VTO

n
) q D invq

�
VP

UT

�
) i D q2 C q) ID D i IS

(4.25)

The two methods yield the same results. Figure 4.5 shows the drain current plotted

versus the gate voltage and displays the weak and strong inversion approximations

of ID.VGS/ derived from the EK.V model. These are discussed more in detail in the

next section.

Fig. 4.5 The compact model drain current ID is compared to the strong and weak inversion drain
current approximations (MATLAB fig045.m)
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4.4 Strong and Weak Inversion Asymptotic Approximations
Derived from the Compact Model

Approximate expressions of the drain current that are valid in weak and strong

inversion can be derived easily from the compact model. In strong inversion q is

supposed to be large. The pinch-off voltage is thus almost equal to 2UT q and since

the drift current overwhelms the diffusion current, q can be neglected with respect

to q2. One has then:

VP D VG�VTO
n

� 2UTq � 2UT
p
i D 2UT

q
ID

IS

or

ID � �C 0ox WL
.VG�VTO/

2

2n

(4.26)

In weak inversion, the opposite holds true. Since q is larger than q2, the normalized

drain current i is equal to q:

VP D VG�VTO
n

� UT .�2C log .q// � UT .�2C log .i// � UT

�
�2C log

�
ID

IS

��
or W
ID � IS exp

�
2 � VTO

nUT

�
exp

�
VG

nUT

�
D I0 exp

�
VG

nUT

�
(4.27)

The strong and weak inversion approximations of the drain current are illustrated

in Fig. 4.5 by means of dashed lines.

4.5 Checking the Compact Model Against the C.S.M.

How to assess the performances of the compact model? What is the impact of the

assumption underlying Eq. 4.3? To answer these questions, we compare currents

evaluated by means of the compact model to currents predicted by the C.S.M. To

do this, we must set up first an acquisition algorithm extracting n; IS and VTO from

C.S.M. currents, second, reconstruct currents by means of the E.K.V model and,

third, compare the results to the original data.

4.5.1 The Acquisition Algorithm (MATLAB Identif3.m)

The acquisition algorithm extracting the slope factor, the threshold voltage and the

specific current from C.S.M drain currents takes advantage of the common-gate

configuration. The configuration is commonly advocated in the literature (Enz and

Vittoz 2006; Coltinho et al. 2001). The algorithm that follows proceeds in two steps:

first, we evaluate the unary specific current ISu (the specific current when W is

equal to L), second, the slope factor n and the threshold voltage VTO.
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We start with ISu. The algorithm takes advantage of the fact that in the pinch-off

voltage VP is constant for it depends only on VG , which is fixed in the common-gate

configuration (see Eq. 4.20f). Changing VS does not affect the pinch-off voltage

thus. The idea is to search the value of ISu that must be plugged in the equations

below to keep VP constant when the source voltage VS varies modifying the drain

current IDu.

IDu

ISu
D i)q D 0:5

�p
1C 4i � 1

�
)VP � VS D UT .2 .q � 1/C log .q//

(4.28)

To this effect, we set up a test vector called ISu
�, which is supposed to encompass

the unknown unary specific current ISu usually comprised between 10�7 and 10�5
A. We consider various source voltages VS and divide the matching drain currents

IDu by the ISu
� vector. Then according to the equations above, we evaluate the

normalized current vectors i�, then the normalized mobile carrier density vectors q�
and there from the pinch-off voltage vectors VP

�. Because the individual specific

currents making out the ISu
� vector are all different, the pinch-off voltages listed

in every VP
� vector are distinct. All vectors however encompass necessarily the

pinch-off voltage VP . All intersect thus at VP .

Two source voltages at least are needed, preferably one in strong and one in weak

inversion. We consider the ratio R� of the corresponding VP
� vectors and find ISu

when the ratio gets equal to one, which can be done by means of the MATLAB

interpolation instruction below:

ISu D interp1
�
R�; I �Su; 1;0cubic0

�
(4.29)

We make use of a second interpolation for the pinch-off voltage VP :

VP D interp1
�
I �Su; V �P ; ISu;0cubic0

�
(4.30)

When more that two source voltages are considered, one gets not one but several

unary specific currents. Remarkably, these are practically identical for the differ-

ences are generally less than 0.1%.

Now that the unary specific current is known, we can proceed to the second step

of the identification algorithm and get n and VTO. The algorithm makes use of the

linear dependence of the pinch-off and gate voltages illustrated by Eq. 4.20f. All

what is needed thus is to repeat the ISu acquisition algorithm considering not one

but several gate voltages and to plot the pinch-off voltages versus the gate voltages.

All the points should lie on a straight line whose slope and constant term yield

respectively n and VTO. A linear regression takes care of this:

P D polyfit.VP ; VG ; 1/I
n D P.1/I
VTO D P.2/I

(4.31)
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4.5.2 Verification

To assess the correctness of the acquisition algorithm and verify the validity of the

model in the same time, we make a test: we set up a number of common-gate C.S.M

drain currents, extract the E.K.V parameters and reconstruct the original currents by

means of the compact model.

For what concerns the C.S.M, we consider a unary .W DL/ N-type transistor

having a substrate impurity concentration equal to 1018 at=cm3, an oxide thickness

of 2 nm and a VFB equal to 0.9 V (VFB controls the threshold voltage but has no

impact on the specific current whatsoever). The temperature is 300ıK.

We select two source voltages, respectively to 0.1 and 0.6 V, one in weak and

one in strong inversion, and consider seven gate-to-substrate voltages from 0.6 to

1.2 V in steps 0.1 V wide. The seven unary specific currents obtained after running

the acquisition algorithm display less than 0.1% deviation and yield a ISu of 1:263�
10�6 A. The slope factor and the threshold voltage, n and VTo, are respectively 1.153

and 0.5003.

Fig. 4.6 IDu.VS / characteristics of a saturated common-gate transistor. The continuous lines
represent the original currents of the Charge Sheet Model, circles point to the data put to used
by the acquisition algorithm and crosses show the reconstructed E.K.V. drain currents (MATLAB
fig046.m)
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Knowing ISu; n and VTo, we reconstruct the drain currents by means of the

E.K.V model. Figure 4.6 compares the reconstructed to the original C.S.M currents.

The continuous lines represent the C.S.M. drain currents, circles mark the strong

and weak inversion currents used in order to assess the unary specific currents and

crosses represent the reconstructed drain currents.

The fact that the errors are smaller than 1% is clearly the sign that the E.K.V com-

pact model is a good approximation of the Charge Sheet Model, notwithstanding the

assumption assimilating the slope factor n to a constant. Whether the parameters are

true physical entities is not relevant; all the more that the Charge Sheet Model ig-

nores the concept of threshold voltage. The fact that the model reproduces static

drain currents as well as gm=I
0

D s over a wide range of terminal voltages with satis-

factory accuracy is what matters.

Figure 4.7 compares reconstructed to C.S.M common-source currents consider-

ing various back-bias voltages. The correspondence is satisfactory except deep in

weak inversion and low back-bias voltages. The explanation is related in all proba-

bility to the slope factor decrease in weak inversion illustrated by Eq. 2.38 and the

plot of Fig. 2.6. The model does not take this into account.

Fig. 4.7 ID.VG/ characteristics of the same transistor considering various back-bias voltages.
The continuous lines represent the drain currents of the Charge Sheet Model. Crosses show the
reconstructed drain currents taking advantage of the E.K.V model (MATLAB fig046.m)
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4.6 Evaluation of gm=ID

An analytical expression of the gm=ID ratio in terms of the E.K.V compact model

exists contrarily to what happens with the C.S.M. We start from the definition of the

transconductance over drain current ratio and take into consideration the fact that

the specific current is constant:

gm

ID
D 1

ID

dID

dVG
D d log .ID/

dVG
D d log .i/

dVG
(4.32)

The differentials of log.i/ and VG are evaluated separately by taking advantage of

the expressions listed under Eq. 4.20. We consider moreover a saturated transistor:

d log .i/ D di

i
D 2q C 1

i
dq

and

dVG D ndVP D nUT

�
2C 1

q

�
dq D nUT

2q C 1
q

dq

(4.33)

Hence:
gm

ID
D 1

nUT

q

i
D 1

nUT

1

q C 1 (4.34)

or when q is replaced by i :

gm

ID
D 1

nUT

2p
1C 4i C 1 (4.35)

In weak inversion, since q and i are much smaller than one, the gm=ID ratio is

almost constant and equal to 1=.nUT /. In strong inversion gm=ID declines like the

reciprocal of the square root of the normalized drain current. Equation 4.35 leads

to an interesting observation moreover: the weak and strong inversion asymptotic

approximations of gm=ID in a loglog representation cross each other at the point

where i is equal to one.

In order to compare gm=ID ratios predicted by the compact model and the

C.S.M, we consider the same example as above. Since no analytical expression of

gm=ID ratios is available in the C.S.M, these are evaluated numerically by taking

the derivative of the log of the drain current. The results displayed in Fig. 4.8 show

that the differences between the C.S.M and compact model representations are al-

most negligible, except again at very low currents, deep in weak inversion, for the

compact model does not take into consideration the slight decrease of the subthresh-

old slope mentioned earlier.

When plotted versus the drain current instead of the gate voltage, the gm=ID of

the compact model boils down to a single characteristic, which is the result of the

combination of Eqs. 4.18 and 4.35 and reflects the fact that the slope factor and the

specific current are supposed to be constants. The plot shown in Fig. 4.9 tends to

confirm the observation for all curves tend to merge. The utmost difference, once

more, is due to the lessening slope factor in weak inversion. One can summarize by
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Fig. 4.8 gm=ID curves of the same transistor as in Figs. 4.6 and 4.7. Plain lines relate to the
Charge Sheet Model, crosses to the compact model (MATLAB fig048.m)

saying that this difference is the most prominent effect that results from the basic

assumption on which the compact model is based.

4.7 Sizing the Intrinsic Gain Stage by Means
of the E.K.V. Model

We derived W=L ratios and drain currents of the Intrinsic Gain Stage in Chapter 1.

Only the strong and weak inversion results were demonstrated for an analytic ex-

pressions connecting gm to ID was lacking. We can now reformulate the problem

with the compact model. The starting point is the expression below (see Eq. 1.17)

where the numerator gm is equal to !T times and load capacitance C , the gm=ID
ratio given by Eq. 4.34:

ID D gm�
gm

ID

� D gmnUT .1C q/ (4.36)
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Fig. 4.9 The gm=ID curves of Fig. 4.8 plotted against the drain currents. All curves tend to merge,
whatsoever the source voltage (MATLAB fig048.m)

Since the factor gmnUT represents the minimum drain current IDmin needed to sus-

tain the gain-bandwidth product !T in weak inversion according to Eq. 1.14, the

above equation may be rewritten as follows:

ID D IDmin .1C q/ (4.37)

A second equation is needed in order to connect the aspect ratio W/L to q. This is

straightforward for W/L is the ratio of the drain current ID over the unary drain

current IDu, the latter being equal to the specific current Isu times the normalized

drain current i , which in turn is the sum of q2 and q. One has thus:

W

L
D ID

ISu i
D ID

ISu

1

q2 C q (4.38)

The expression linking W=L to ID is obtained consequently after eliminating q

between Eqs. 4.37 and 4.38:

W

L
D I 2Dmin

ISu

1

ID � IDmin

D n
!2TC

2

2K

1

ID � IDmin

(4.39)
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The result is illustrated in Fig. 1.4 by the continuous curve matching the strong and

weak inversion asymptotic conducts predicted by Eqs. 1.11 and 1.14.

4.8 The Common-Gate gms=ID Ratio

The common-gate gms=ID ratio is evaluated like the gm=ID ratio, dVS being sub-

stituted to dVG . To know dVS we differentiate Eq. 4.20d keeping in mind that VP
is constant:

dVS D �UT
�
2C 1

q

�
dq D �UT 2q C 1

q
dq (4.40)

The gms=ID is similar to the common-source gm=ID , the sign however is opposite

while the n factor disappears:

gms

ID
D � 1

UT

2p
1C 4i C 1 (4.41)

The gms=ID ratio of the model (represented by means of crosses) is compared to its

C.S.M. counterpart represented by the continuous line in Fig. 4.10. The gate voltage

is equal to 1.2 V.

Fig. 4.10 Comparison of gms=ID curves obtained with the model (crosses) and Charge Sheet
Model (continuous lines) for VG equal to 1.2 V (MATLAB fig410.m)
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4.9 An Earlier Compact Model

The majority of compact models take advantage of the forward and reverse current

concept introduced in 1979 by Chatelain (1979). In 1982, Oguey and Cserveny

(1982) proposed a continuous model, which turns out to be a mathematical inter-

polation joining weak and strong inversion approximate equations in a continuous

manner. The forward and reverse currents (named respectively F and R as above)

are represented by the expression below where VP and IS represent the pinch-off

voltage and the specific current considered earlier:

IF;R D IS � log2
�
1C exp

VP � VS;D
2U

T

�
(4.42)

When the transistor is saturated, the reverse current is equal to zero for the drain

voltage is larger than the pinch-off voltage. The current resumes then to the equation

below after replacing VP by Eq. 4.20f:

ID D IS � log2
�
1C exp

�
VG � VTO

2nUT

��
(4.43)

In strong inversion, where the gate voltage overdrive VG �VTO is large compared to

2nUT , Eq. 4.42 boils down to:

ID D IS �
�
VG � VTO

2nUT

�2
D ˇ � .VG � VTO/

2

2n
(4.44)

In weak inversion, the classical exponential approximation is found:

ID D IS �
�

exp

�
VG � VTO

2nUT

��2
D IS � exp

�
VG � VTO

nUT

�
(4.45)

While the asymptotic expressions conform to the strong and weak inversion approx-

imations, what occurs in between is a matter of mathematics, not semiconductor

physics. The difference with respect to real drain currents is small, but larger than

what can be achieved with the compact model considered throughout this chapter.

A analytical expression of gm=ID can be derived also from Eq. 4.43 by taking the

derivative of the log.ID/with respect to the gate voltage. After lengthy calculations,

one has:

gm

ID
D 1

nUT
�
1 � exp

�
�
q
ID

IS

�
q
ID

IS

(4.46)

The asymptotic expressions are similar to those predicted by the weak and

strong inversion approximations, but not identical. The gm=ID ratio is somewhat
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overestimated in moderate inversion. The approximations in weak and strong in-

version cross each other at the point where i is equal to one like in the E.K.V.

compact model.

4.10 Modeling Mobility Degradation

The E.K.V. – A.C.M. model like the C.S.M. give a faithful account on the modes

of operation of gradual channel MOS transistors, but mobility degradation is ig-

nored. The assumed proportionality between electrical fields and mobile carrier’s

velocity embodied by Eq. 2.2 holds true only as long as electrical fields do not tres-

pass some limit. Beyond, the rate at which the carrier’s velocity increases with the

electrical field slows down gradually. When fields are very large, the carriers move

almost at constant speed. The phenomenon is designated commonly by the name

of “mobility degradation”. Short channel MOS transistors are plagued strongly

by this phenomenon not only because of their smaller dimensions but also supply

voltages not scaling down at the same rate as channel lengths. To contain mobility

degradation, modern transistors undergo a series of dedicated implants relaxing the

electrical field near the drain.

4.10.1 The Impact of Mobility Degradation on the Drain Current

The dependence of the mobility on the electrical field is a complex matter. Publi-

cations deal with the problem (Bücher 1999; Enz and Vittoz 2006). Generally the

longitudinal and vertical electrical fields are treated separately and distinct scatter-

ing mechanisms invoked. The impact of the longitudinal electrical field on the drain

current can be sketched without too much difficulty however. One can make use

of the first order approximation below, which has the merit to keep mathematical

treatments within acceptable limits:

v D �o

1C �o

vsat
jEj

� E (4.47)

The factor multiplying the electrical field E is called generally the ‘effective mobil-
ity’. When E is small, the effective mobility boils down to the low-field mobility

�o, and when E is large, mobility declines as the speed of the carriers levels off

until it reaches vsat. The low-field mobility �o depends on the type of transistor.

It is about three times larger for electrons than for holes. The drift saturation ve-

locity of electrons is around 1:53 � 109 T�0:87 cm=s and that of for holes around

1:62 � 108 T�0:52 cm=s (Muller and Kamins 1977). In a loglog scale, the plot rep-

resenting the velocity versus the electrical field resumes consequently to two lines:
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a straight line through the origin for low fields with a slope equal to �o and a hor-

izontal line vsat for high fields. The two cross each other at a point called currently

the ‘critical field’ Ecrit.

In the Charge Sheet Model, the impact of the longitudinal electrical field on the

drain current can be dealt with without too much difficulty thanks to Eq. 4.47, since

the mobility is already a function of the integration variable. The diffusion current

moreover can be omitted since degradation takes place in strong inversion chiefly.

In the compact model, the interpretation is slightly more intricate. The integration of

the drift current is supposed to be performed with respect to the normalized mobile

charge density q, which is related to the surface potential  S through the approxi-

mation given by Eq. 4.3. This changes the electrical field d S=dx into �2UT dq=dx
so that one has:

ID dx D �2 nU 2T
�oC

0
ox

1 � 2UT �o

vsat

dq
dx

W .2q C 1/ dq (4.48)

The following expression is obtained after rearranging terms:

ID D
�
�2nU 2T�oC 0oxW .2q C 1/C 2UT �ovsat

ID

	
� dq
dx

(4.49)

After integration, one gets the result below where qS and qD represent respectively

the normalized mobile charge densities at the source and drain as usual:

ID D
�
�IS

�
q2 C q�C 2UT �o

vsatL
ID q

	qD

qS

(4.50)

Equation 4.50 may be rewritten as follows after introduction of the factor 	 repre-

senting �o=vsatL:

ID D IS

�
q2S C qS

� � �q2D C qD�
1C 	 .qS � qD/ (4.51)

Since the numerator is nothing but the drain current when mobility degradation is

ignored, Eq. 4.51 can be rewritten as follows:

ID D ID without velocity saturation

1C 	 .qS � qD/ (4.52)

This leads to the well-known expression below after VD � VS is substituted to the

difference of the normalized mobile charge densities. This is acceptable since in

strong inversion the difference qS � qD is larger than the log term of Eq. 4.7:

ID D ID without velocity saturation

1C 	2 .VD � VS / (4.53)

The plot of Fig. 4.11 compares drain currents with and without mobility degrada-

tion considering an N-channel transistor whose VG is equal to 1 V. The E.K.V.
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Fig. 4.11 Drain current of a variable mobility transistor (continuous lines) compared to the current
delivered by the same transistor having a constant mobility (dashed lines) (MATLAB fig411.m)

parameters n; IS and VTO are supposed to be respectively equal to 1.4,

1:2 � 10�6 A. and 0.4 V. The gate length is equal to 100 nm,4 C 0ox is equal to

1:5� 10�6 F=cm2 .tox D 2:3 nm/ and vsat equal to 107 cm=s. The resultant 	 factor

is equal to 0.22.

Mobility degradation not only affects the magnitude of the drain current but an

unexpected phenomenon is clearly visible just after the maximum. The explanation

is the following. As the drain current is nearing its maximum, electrical fields get

very large. Since dq/dx varies like the electrical field, the factor between brackets

in Eq. 4.49 must get very small in order to keep the drain current constant. When

the maximum current is reached, the electrical field is infinite and the expression

between brackets equal to zero. This leads to an expression where from we can

extract a qP zeroing the expression between brackets:

IDmax D IS

	
.2qP C 1/ (4.54)

Beyond the maximum, the sign of the electrical field changes, explaining the de-

crease of ID . Drain currents do not decrease actually for the carriers have reached

4 Such short gate lengths require taking into consideration many other short channel effects. The
results should be considered as indicative only since many other effects are not considered.
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their maximum speed. Since the carrier’s density remains unchanged, the drain cur-

rent comes thus to a horizontal line. Consequently, the point where the drain current

is largest is an estimate of the actual pinch-off voltage. This VP is smaller than the

pinch-off voltage of the ideal transistor. We can extract the saturated drain current

from Eq. 4.54 if qp is known. To find this, one must search the qD zeroing the

derivative with respect to qD of Eq. 4.50. The answer is:

qP D qS C
�
1 �

p
1C .2qS C 1/ 	

�.
	 (4.55)

The normalized charge density at the pinch-off point is a function thus of 	 and qS ,

the latter being a function of the source voltage VS and the gate voltage VG through

Eq. 4.20d and f. Negative as well as positive values can be found for qP . Negative

qP ’s mean that that velocity saturation does not take place yet so that the drain

current can still increase. When qP is positive or equal to zero, velocity saturation

is taking place. In the example above, velocity saturation takes place when qS is

equal to 2.13, which yields a VP of 0.079 V and a VG equal to 0.51 V. The ID.VD/

characteristics plotted under Fig. 4.12 show that the onset of velocity saturation

starts indeed for gate voltages somewhere between 0.5 and 0.6 V.

Fig. 4.12 ID(VD) characteristics of the same transistor as in Fig. 4.10 for VG varying from 0.3 V
to 1.0 V. Asterisks mark the onset of velocity saturation. Notice the quasi-constant distance sep-
arating drain currents in saturation, a feature typical of mobility degradation. The dashed lines
represent the drain currents without mobility degradation (MATLAB fig412.m)
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Fig. 4.13 Saturated drain current versus the gate voltage VG of the same transistor as in Fig. 4.12
with and without mobility degradation (MATLAB fig413.m)

Table 4.1 Typical thetas for N- and P-channel transistors
taking in account the impact of the longitudinal .theta1/
and vertical .theta2/ electrical fields on the drain current

	1.V
�1/ 	2.V

�1/

NMOS 0.06 0.3

PMOS 0.11 0.14

Figure 4.13 shows the drain current of the saturated transistor versus the gate

voltage. Below 0.4 V, mobility degradation doesn’t affect the drain current. When

the gate voltage increases, the difference with respect to the constant mobility model

increases.

Besides the longitudinal electrical field, the vertical field influences strongly also

the mobility. Taking this effect into account is more difficult. Often, a second term

is added to the denominator of Eq. 4.47 so that the mobility reduction factor takes

the form below.

� D �o

1C 	1 .VG � VTo/C 	2 .VD � VS / (4.56)

Typical values of 	 factors are listed in Table 4.1. More elaborated models make use

of series expanded in powers of .VD � VS / and .VG � VTO/.
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4.10.2 The Impact of Mobility Degradation on the gm=ID Ratio

The impact of mobility degradation on the gm over ID ratio of the grounded source

transistor is briefly discussed hereafter. The ratio being the derivative of log.ID/

with respect to VG , the evaluation proceeds as usual. Two expressions of the gm=ID
ratio are possible whether velocity saturation takes place or not. In the absence of

velocity saturation, gm=ID is given by:

gm

ID
D 1

nUT
�
�

1

1C qS �
	 qS

2	 q2S C .	 C 2/ qS C 1
�

(4.57)

When velocity saturation occurs:

gm

ID
D 1

nUT
� 2

.2qP C 1/ �
qS

.2qS C 1/ �
 
1 � 1p

1C 	 .2qS C 1/

!
(4.58)

Figures 4.14 and 4.15 compare the gm over ID ratios versus VG and ID of the

same transistor as above. The impact of mobility degradation is illustrated by the

Fig. 4.14 The gm/ID of the constant mobility transistor (dashed lines) is compared to the gm/ID of
the same transistor making use of the first order mobility model. The continuous lines are obtained
by taking the numerical derivative of the log of the current displayed in Fig. 4.13. The circles
and asterisks represent gm/ID evaluated respectively by means of Eqs. 4.57 and 4.58 (MATLAB
fig414.m)
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Fig. 4.15 Same data as in Fig. 4.14 versus the drain current (MATLAB fig414.m)

difference between the two curve, the upper curve relating to the ideal transistor,

the lower curve to mobility degradation. Circles correspond to Eq. 4.57, asterisks to

Eq. 4.58.

Figure 4.15 shows a representation of gm=ID versus the drain current like in

Fig. 4.9. It is clear that the impact of mobility degradation gets serious in strong

inversion. This makes questionable attempts to identify the specific current from the

intersection of weak and strong inversion asymptotes.

4.10.3 Sizing the Intrinsic Gain Stage in the Presence
of Mobility Degradation

Mobility degradation requires to enlarge W=L’s for more current is needed in order

to compensate the loss of transconductance in strong inversion. Figure 4.16 shows

the impact of the longitudinal electrical field on the Intrinsic Gain Stage. The tran-

sistor is the same as above while the gm=ID is given by Eq. 4.57 and 4.58. Notice

that the result is still too optimistic for the influence of the vertical electrical field is

not taken into consideration.
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Fig. 4.16 Larger W/L ratios are needed in order to counteract mobility degradation due to the
longitudinal electrical field

4.11 Conclusion

The E.K.V.–A.C.M. compact model is a straightforward and rather accurate substi-

tute to the Charge Sheet Model of Chapters 2 and 3. It relies on an approximation

that allows replacing the differential of the surface potential by the differential of the

mobile carrier’s density. This simplifies considerably the computations. Only three

parameters are required, the subthreshold factor n, the specific current IS and the

threshold voltage VTO. The model is continuous from weak to strong inversion, but

ignores the impact of mobility degradation and the influence other effects inherent

to short channel devices. It does not provide a direct connection moreover to physi-

cal parameters like the oxide thickness, substrate doping, and temperature what the

Charge Sheet Model does.

In the next chapter, we are going to show that the introduction of variable param-

eters embodies the simple E.K.V. model with the faculty to predict drain currents

and gm=ID and gd=ID ratios of real transistors with satisfactory accuracy, even

with short channel devices. The price to pay is the introduction of look-up tables,

but the availability of few analytical expressions is an undeniable asset as far as

sizing.



Chapter 5
The Real Transistor

The basic E.K.V. model considered in the previous chapter is not suited for real

transistors for it makes use of the “gradual channel” approximation, like the C.S.M.

Non-uniform doping, mobility degradation, short channel effects, etc. are ignored.

Advanced models like BSIM and PSP, which are primarily circuit simulation tools,

take care of these but don’t offer the degree of flexibility that is desirable.

We show in this chapter that as long as the source and drain voltages with respect

to the substrate remain constant, DC currents, gm=ID and gd=ID ratios of real

transistors, even sub-micron devices, can be reconstructed by means of the basic

E.K.V model. Once VS or VD is modified, the parameters must be updated. The

model remains unchanged however.

5.1 Short Channel Effects

Figure 5.1 shows the constituents of a short channel transistor. The region under the

thin oxide in the middle embodies the active region. The rest makes up passive parts.

The source and drain consist of narrow n- implanted regions, which run on larger

n C diffused regions, themselves connected to the contact regions through silicide

layers.

With long channel devices, the proportion of fixed charge below the inversion

layer that is controlled by the gate is always much larger than that controlled by

the source and drain. Consequently, as the gate length decreases the threshold volt-

age remains practically constant for the gate-controlled charge varies almost like

the gate length. This isn’t true with short channel devices. The depleted charge con-

trolled by the gate decreases faster than the gate length owing to the consistent

contributions of the source and drain. As a result, the threshold voltage begins to

roll-off. Dedicated ion implantations help postponing the effect but generally at the

expense of a slight increase of the threshold voltage just before roll-off, an effect

called the reverse short channel effect.
Short channel roll-off is not the only issue. The drain voltage influences also

the threshold voltage. As the drain voltage increases, the drain takes over a larger

share of the depleted region previously controlled by the gate. The threshold voltage

P.G.A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-voltage Analog CMOS
Circuits, Analog Circuits and Signal Processing, DOI 10.1007/978-0-387-47101-3 5,
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Fig. 5.1 A typical short channel N-MOS transistor

decreases thus, an effect designated currently by the name Drain Induced Barrier
Lowering (D.I.B.L.). Contrarily to roll-off, D.I.B.L. is bias dependent and therefore

a source of non-linear distortion for it affects VTo dynamically.

Other effects plague short channel devices, like mobility degradation caused by

high electrical fields. With short channel devices, the electrical field along the chan-

nel increases rapidly not only for gate lengths are getting smaller but also because

supply voltages often don’t scale down at the same rate. The increasing mobility

degradation produces a loss of current capability that can be partly compensated by

the introduction of lowly doped stripes bridging the channel to the drain region as

illustrated in Fig. 5.1. These lessen the impact of the longitudinal electrical field

somehow but don’t restore the original transconductances.

The model considered in the previous chapter doesn’t take any of these ef-

fects in consideration. However, real ID.VGS/ characteristics look very similar to

characteristics predicted by the Charge Sheet and E.K.V.–A.C.M. models. A quasi-

exponential region and a more or less quadratic strong inversion region are clearly

identifiable. Does this mean that it is possible to reconstruct ID.VG/ characteristics

with the compact model of Chapter 4 even with short channel devices? As long as

the source-to-substrate and the drain-to-substrate voltages don’t change, the answer

may be yes. The spatial distributions of the charge in the inversion layer and in the

depleted region underneath may explain this. The thickness of the inversion layer is

small compared to the gate length (even down to 100 nm gate lengths). To push a

little, what happens in the inversion layer boils down to a 1D problem while in the

depleted region beneath, things are different. As ‘long channel’ conditions prevail

more or less in the inversion layer, the spatial distribution of the electric field in

the depleted region conforms to a 2D problem owing to the large source and drain

contributions. This may be the reason why ID.VG/ characteristics of submicron

transistors can be modeled reasonably well with the compact model as long as the

source and drain voltages don’t change, which implies that all the parameters must

be updated as soon as one of these is modified.
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5.2 Checking the Validity of the Compact Model
when its Parameters vary with the Source
and Drain Voltages

The sample displayed in Fig. 5.21 represents drain currents of a 10�m wide

N-channel MOS transistor whose drain-to-source voltage is stepped from 0.2 to

1.2 V, considering two source voltages VS (0 and 0.8 V) and two gate lengths (0.1

and 1�m). Although distinct, all curves are similar.

The question is: can we reconstruct each of these characteristics dependably by

means of the compact model of the previous chapter taking advantage of parameters

that depend on the source and drain voltages? To answer the question, we must

compare drain currents predicted by the model to real ID.VGS/ characteristics. An

identification algorithm is needed up therefore.

Fig. 5.2 Drain currents of an N-channel unary transistor .W=L D 1/ considering two gate length
0.1 and 1�m, various drain-to-source and back-bias voltages. The device belongs to a low-power,
low-voltage 90 nm technology developed by IMEC (Courtesy of IMEC)

1 The currents shown in this figure are reconstructed drain currents obtained by means of the PSP
compact MOSFET model. The parameters were extracted from measurements carried out on real
physical transistors (courtesy of IMEC). The assumption that reconstructed currents agree fairly
well with the physical currents is accepted implicitly. The PSP compact MOSFET model is a
product of Philips Semiconductors and Penn State University (now respectively NXP and Arizona
State University) (PSP 2006).
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5.2.1 E.K.V Parameter Identification (MATLAB IdentifDemo.m)

The identification algorithm2 makes use of the E.K.V equations introduced in the

previous chapter. These are divided in two groups, general equations:

VP � VS D UT .2 .qF � 1/C log .qF // (5.1)

VP � VD D UT .2 .qR � 1/C log .qR// (5.2)

i D q2F C qF � q2R � qR (5.3)

and equations involving the parameters n; VT0 and IS :

VP D VG � VTO

n
(5.4)

ID D iIS (5.5)

Before we review the acquisition algorithm, three preliminary remarks ought to

be made. The first concerns the transistor configuration for data acquisition. The

algorithm described in the previous chapter cannot be used for the acquisition

method makes use of the common-gate configuration, violating thus the conditions

formulated above regarding constant source and drain voltages. The parameters

must be extracted from ID.VGS/ characteristics exclusively.

The second remark concerns the reference terminal when carrying out measure-

ments. The reference terminal is generally the source of the transistor while the

substrate is back-biased. This requires to rewrite the equations above accordingly.

The pinch-off voltage of Eq. 5.1 becomes VPS, the left part of Eq. 5.2 is replaced

by VPS � VDS while the expression below is substituted to Eq. 5.4. Notice that the

threshold voltage VTo (with a lower case zero) below is defined also with respect to

the source.

VPS D VGS C VTo
n

(5.6)

The third remark concerns geometry. All the ‘experimental’ drain currents are

divided by W=L prior to identification. We consider only unary drain currents
IDu.VGS/ and unary specific currents.

Let us consider now the acquisition algorithm. The two parameters that are iden-

tified first are the slope factor and the threshold voltage. Both emanate from the

derivative of the log.ID.VGS// characteristics, in other words from gm=ID . The

slope factor is derived from the maximum of gm=ID as usual, while the threshold

2 The identification algorithm can be found in the 0start directory under IdentN.m and IdentP.m.
The algorithm makes use of the ‘semi-empirical’ N- and P-channel data listed under n90.mat and
p90.mat. The compact model parameters outputted by the identification algorithm are stored under
ParamN.mat and ParamP.mat,. These are turned into global variables when running Glob.m (see
also Annex 1).
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Fig. 5.3 Reconstructed and original gm=ID’s (respectively dashed and plain lines) of a grounded
source N-channel transistor whose L is equal to 100 nm and VDS equal to 0.6 V. The circle
corresponds to R equal to 0.7. The MATLAB IdentifDemo.m file illustrates the identification
mechanism when the variable M on top of the data list is made equal to one3

voltage is the result of a fitting procedure illustrated by Fig. 5.3. The idea is to

search the VTo that forces the gm=ID predicted by the E.K.V model to pass through

a predefined point .gm=ID/o of the ‘experimental’ gm=ID curve supposed to lie in

moderate inversion, say 80% to 50% below the maximum of gm=ID . The acquisi-

tion starts with the evaluation of the normalized mobile charge density qFo, which is

derived from the ratio .gm=ID/o over the maximum gm=ID , calledR, and Eq. 4.34:

R D nUT

�
gm

ID

�
o

D 1

1C qFo (5.7)

Knowing qFo, we evaluate the pinch-off voltage VPSo by means of Eq. 5.1:

VPSo D UT .2 .qFo � 1/C log .qFo// (5.8)

This allows extracting the threshold voltage from the expression below derived from

Eq. 5.6, where VGSo represents the gate-to-source voltage at the selected coinci-

dence point:

VTo D �nVPSo C VGSo (5.9)

3 The MATLAB file IdentifDemo.m illustrates dynamically the evolution of Fig. 5.3 when the drain
voltage symbolized by a vertical landmark is swept from 0 to 1.2 V.
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The extraction method is fairly reliable for changes of R by 5–10 cent do not affect

VTo by more than 1–2 mV.

Now that n and VTo are known, we identify the unary specific current. The eval-

uation is straightforward. All what is needed therefore indeed is to divide the drain

current IDuo (the drain current at the point considered for the evaluation of VTo) by

the normalized drain current io, which is know since qFo has been assessed already.

In a nutshell, the slope factor is extracted from the subthreshold drain cur-

rent characteristic, the threshold voltage from the progressive bending of the drain

current in moderate inversion and the specific current from the drain currents

coincidence.

One may argue that Eq. 5.7 supposes that the transistor be saturated, which may

not be the case. To take care of non-saturation, the expression below, demonstrated

further under Eq. 5.20, must substituted to Eq. 5.7:

R D 1

1C qFo C qRo (5.10)

The introduction of qRo requires however having at one’s disposal an additional

expression linking qRo to VDS. To get this equation, we subtract Eq. 5.2 from Eq. 5.1:

VDS D UT

�
2 .qFo � qRo/C log

�
qFo

qRo

��
(5.11)

Equations 5.10 and 5.11 form a system of non-linear implicit equations that can

be solved by means of MATLAB interpolation instructions. All what is needed

therefore is to generate a logspace vector qR encompassing all possible reverse nor-

malized mobile charge densities and extract the corresponding forward qF ’s from

Eq. 5.10. One makes then use of Eq. 5.11 to find the concomitant drain to source

voltage vector UDS. The qFo to be put in Eq. 5.8 is found by running the MATLAB

interpolation instruction below making use of the UDS and qF vectors. Notice that

the problem requires to be solved only once.

qFo D interp1 .UDS; qF ; VDS; ‘cubic’/ (5.12)

The reconstructed gm=ID curve (represented by the dashed line in Fig. 5.3) calls for

a few comments. The ‘experimental’ and reconstructed curves coincide of course at

the reference point. Differences appear else. In weak inversion, the model operates

like a filter wiping out a number of local disparities that may be inherent to the ‘ex-

perimental’ data or reflect physical effects like side currents or a shift of the drain

current in volume (with P-channel transistors namely). The fact that these differ-

ences are smeared out does not represent a problem per see but raises the question

as how to define the maximum of gm=ID and, more specifically, what is the impact

of small variations of the slope factor n on the final threshold voltage VTo? The an-

swer is little, for small variations of n are synonymous of small variations of R and
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the threshold voltage does not depend much on R. The departure in strong inversion

between original and reconstructed gm=ID curves is more serious. This difference

is discussed in the next section.

A final remark concerns the source voltage of the reverse transistor. Since it is not

the same as that of the original transistor, results may be questionable. Yet, examples

show that Eq. 5.12 yields generally more consistent results than Eq. 5.7.

5.2.2 How to Introduce Mobility Degradation?

After gm=ID , let us reconstruct the drain current. The result is shown in Fig. 5.4. In

weak and moderate inversion the ‘experimental’ and model-driven curves coincide

practically, but diverge substantially in strong inversion. The reason is that we didn’t

take mobility degradation into consideration. In the acquisition method described

in the previous section, the mobility factor � that appears in the specific current

expression of Eq. 4.19 is evaluated at the reference point, in other words in moderate

inversion. It is supposed not to vary. Mobility degradation can be modeled however

by making � a function of the electrical field like in Chapter 2.

Fig. 5.4 Representation of the real drain current (plain lines) and model-reconstructed current
(dashed lines) making use of the three parameters identified so far. The circle refers to the point
selected for the threshold identification (see curve M D 2 of the MATLAB IdentifDemo.m file)
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Fig. 5.5 The impact of mobility degradation in strong inversion is illustrated by the roll-off of the
plain line curve representing the ratio of the constant weak inversion specific current ISuo over the
effective specific current ISu. Crosses represent the approximation based on the theta polynomial
	.i/. The gate length is 100 nm, the source is grounded and the drain voltage equal to 0.6 V like in
the two previous figures (see curve M D 3 of the MATLAB IdentifDemo.m file)

The continuous curve of Fig. 5.5 shows the ratio of the ‘semi-empirical’ over

model-reconstructed current represented by means of a dashed line in Fig. 5.4. Two

regions are clearly identifiable. Left, the ratio is more or less constant and equal

to one for the reconstructed and ‘experimental’ drain currents coincide practically.

Above 0.4 V, mobility degradation is taking over steadily. One can model the trend

by turning the unary specific current into a variable. We can define ISu for instance

as the product of the constant specific current ISuo of the previous section times a

function that rolls-off progressively in strong inversion. In weak inversion, the spe-

cific current ISu boils down to the constant weak inversion unary specific current
ISuo. Else, mobility degradation is acknowledged by dividing � by a polynomial

function (like in Eq. 4.56). Generally, the polynomial is expanded versus VGS and

VDS. We take a different approach. We expand the polynomial versus the normal-

ized drain current instead of the gate and drain voltages. The idea is to coalesce the

effects of the gate, drain and source voltages by means of the sole normalized drain

current. The plot illustrated by crosses in Fig. 5.5, which makes use of a fourth or-

der polynomial fit 	.i/, shows that this is feasible. Eventually a third or even second

order polynomials can be put to use.
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5.2.3 Drain Current Reconstruction

In the previous section, we described the acquisition of the parameters, n; VTo; ISuo
and the fitting polynomial theta.i/.4 Figure 5.6 compares drain currents predicted

by the model (dots) to the data shown in Fig. 5.2. The two match reasonably well.

Relative errors are of the order of 1–2% in moderate and strong inversion. In weak

inversion, they attain 4–8% because the model doesn’t take into consideration the

gradual decline of the gm=ID ratio mentioned before. The errors with P-channel

transistors are generally larger reaching eventually 10–15% over 8 decades drain

current. The reason is probably due to the different nature of the inversion layer,

which may be deeper in the substrate than with N-channel transistors.

A 3D representation comparing experimental and reconstructed drain currents

versus the drain and gate voltages is represented in Fig. 5.7.

Fig. 5.6 This figure compares reconstructed drain currents (dots) to the currents of Fig. 5.2 (plain
lines) where from the E.K.V. parameters were evaluated by means of the identification algorithm
described in the previous section

4 The MATLAB IdentifN.m and IdentifP.m files implementing the acquisition algorithm can be
found in the Glob directory together with the ‘semi-empirical’ data where from the compact model
parameters are extracted. It is possible to retrieve the extraction algorithm with other ‘experimental’
data when desired. To get familiar with the data organization, please consult Annex 1.
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Fig. 5.7 3D representations of the drain current of the 100 nm N-channel grounded source tran-
sistor. The reconstructed model is shown left, the original right. The gate voltage varies from 0 to
1.2 V and the drain from 0.15 to 1.2V

5.3 Compact Model Parameters Versus Bias and Gate Length

The fact that the model reproduces characteristics of short channel devices with few

parameters opens interesting prospects. Measurements carried out on large numbers

of ‘identical’ transistors pave the road towards sensitivity analyses by assessing

mismatches affecting the slope factor, threshold voltage and specific current. The

impact of the temperature can be transposed likewise in terms of parameters sensi-

tivities (see Annex 3). Small modifications of the terminal voltages can be expressed

in terms of parameter modifications moreover, which allow evaluating small signal

parameters. In a nutshell, the possibility to scrutinize the dependence of the param-

eters on the gate length and bias conditions opens interesting investigation fields.

A few examples are reviewed hereafter.

5.3.1 The Influence of the Gate Length on the Model Parameters

The gate length brings to the fore a number of well-known effects, such as threshold

voltage roll-off, reverse short channel effect, D.I.B.L. and C.M.L.

The plot of Fig. 5.8 illustrates the impact of the gate length on the slope factors of

N- and P-channel transistors. The slope factors tend to increase when the gate length

is shrinking. The effect is more pronounced for P- than for N-channel devices owing

to their distinct structure. The drain voltage has very little effect on the slope factor.

The curves of Fig. 5.9 illustrate the influence of the gate length on VTo. The

threshold voltage of long channel devices does not depend practically on the gate

length nor the drain voltage, whether N or P channel transistors are considered.
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Fig. 5.8 Plot of the subthreshold slope n versus the gate length of grounded source N and P
channel transistors for six equally spaced drain voltages (MATLAB SlopeFact1.m)

Fig. 5.9 Plot of the threshold voltage VTo versus the gate length of grounded source N and P
channel transistors considering six equally spaced drain voltages comprised between 0.2 and 1.2 V
(MATLAB ThresVolt1.m)



78 5 The Real Transistor

Fig. 5.10 Plot of the weak inversion specific current Isuo versus the gate length of the grounded
source N and P channel transistors considering six equally spaced drain voltages comprised be-
tween 0.2 and 1.2 V (MATLAB SpecCur1.m)

Below 1�m, the threshold voltage starts to increase progressively until a rapid

roll-off occurs at short gate lengths. The global increase, called the reverse short
channel effect, reflects the actions taken during fabrication in order to postpone

roll-off. The rise contrasts sharply with the abrupt roll-off due to the source and

the drain depleted regions taking over a larger share of the gate-controlled depleted

region. It shows that one is getting close to the minimum achievable gate length.

The data displayed in Fig. 5.10 illustrate the influence of the gate length on

ISuo. Though the W=L ratio of unary transistors is constant and equal to one, unary

specific currents increase slightly when the drain voltage increases. The widening

depleted region near the drain is shortening indeed the effective gate length. As a

result, ISuo tends to increase. The effect is commonly designated by the acronym

C.L.M for Channel Length Modulation.

5.3.2 The Influence of Bias Conditions on the Parameters

The next figures illustrate the influence of the drain-to-source and source-to-

substrate voltages. The impact of the drain-to-source voltage on the slope factor n

is relatively small and can be ignored as shown already in Fig. 5.8. The influence
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Fig. 5.11 The threshold voltage of the N-channel transistor exhibits almost a linear dependence
on the drain-to-source voltage over a wide range, whatsoever the gate length (VS is equal to zero)
(MATLAB ThresVolt2.m)

of VDS on the threshold voltage is more central as shown in Fig. 5.11. As VDS

increases, the drain takes over a larger share of the control exercised by the gate,

especially when the gate length is small. This lowers the potential barrier carriers

must overcome to reach the drain. As a result, the threshold voltage decreases. The

effect is designated by the acronym D.I.B.L for Drain Induced Barrier Lowering.

It affects strongly the derivative dVTo=dVDS, called the sensitivity factor SVTo, that

characterizes the quasi-linear evolution of VTo: SVTo is of the order of �0:13mV=V

with the 4�m transistor but reaches �66mV=V and �85mV=V with the 100 nm

transistor considering back-bias voltages respectively equal to 0 and 0.8 V. While

negligible when L is larger than 2�m, D.I.B.L plays a major role with submicron

transistors.

A number of other effects are visible also in the same figure. The global shift

upwards with shorter gate lengths illustrates the reverse short channel effect men-

tioned in connection with Fig. 5.9. Threshold voltages grow until the trend changes

once roll-off starts to take place below 130 nm. The P-channel transistor is a little

less sensitive to D.I.B.L. Its SVTo is equal to �34mV=V for 100 nm transistors and

vanishes faster than with N-channel transistors.

Figure 5.12 displays the influence of back-bias on the threshold voltage of the

100 nm N- and P-channel transistors considering several drain-to-source voltages.

The systematic increase of the threshold voltage is an illustration of the well-known

body effect. It is more pronounced for the N- than for the P-channel transistors.
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Fig. 5.12 Plot of the threshold voltage VTo versus the source-to-substrate voltage VS considering
N- and P-channel transistors with a gate length of 100 nm and six equally spaced drain-to-source
voltages (MATLAB ThresVolt3.m)

The impact VDS and VGS have on the specific current ISu is trickier but exempli-

fies several interesting effects. The overall decline of ISu that is clearly visible in the

3D representation of Fig. 5.13 when the gate-to-source voltage trespasses 0.4 V re-

flects the growing mobility degradation caused by the electrical field. Below 0.4 V,

VGS has little effect but the impact of the drain-to-source voltage is subtler. When

VDS decreases, the longitudinal field lessens so that the specific current should be in-

creasing instead of decreasing. Mobility degradation is not the only item to consider

however for the specific current depends also on C.L.M. When the drain voltage

decreases, the channel length increases slightly owing to the lessening W=L ratio.

Mobility and C.L.M impact the specific current in opposite directions thus. The first

tends to decrease, the second to increase ISu. According to Fig. 5.13, C.M.L over-

whelms mobility degradation in weak and moderate inversion. In strong inversion,

the explanation is a bit trickier and requires separating more clearly the impact of

D.I.B.L and C.M.L. Fig. 5.14 proposes an interpretation.

The figure represents the unary specific current ISu divided by ISuo, in other words

the reciprocal of ‘theta’ function. Dividing the specific current by ISuo eludes C.L.M.

The fact that the ratio remains practically equal to one in weak and partly in mod-

erate inversion whichever VDS supports the idea. When the gate-to-source voltage

trespasses 0.4–0.5 V and mobility degradation starts to grow, we observe a smooth

lift up in the non-saturated region. In this region, the longitudinal electrical field
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Fig. 5.13 Illustration of the dependence of ISu on the gate and drain voltages for the grounded-
source N-channel 100 nm transistor (MATLAB SpecCur2.m)

Fig. 5.14 3D representation of the reciprocal of the theta polynomial considering the 100 nm
N-channel transistor with zero back-bias (MATLAB SpecCur2.m)
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is lessening, mobility degradation decreases thus. Ultimately, when VDS is equal

to zero, only the vertical electrical field remains. It looks like if the ‘theta’ func-

tion discriminates the contributions of the vertical and longitudinal electrical fields.

The interpretation of Fig. 5.13 is more intricate for mobility degradation and C.L.M

combine their effects with non-saturation.

5.4 Reconstructing ID.VDS/ Characteristic

The crucial role played by bias dependent parameters is clearly illustrated when

we reconstruct ID.VDS/ characteristics. We proceed like in the previous chapter.

The specific current is multiplied by the normalized drain current, which requires

to know the normalized mobile charge densities qF and qR, themselves derived

from the applied voltages and the pinch-off voltage. But, contrarily to what happens

in the Charge Sheet model where the drain current remains practically constant in

saturation, in the compact model the current varies for all the parameters vary with

VDS. With short channel devices, the forward mobile carrier density increases with

VDS for the threshold voltage decreases owing to D.I.B.L, whereas in long channel

devices the gate length decreases owing to C.L.M.

Figures 5.15 and 5.16 compare reconstructed drain currents (represented by

means of crosses) to original (continuous) drain currents considering the same

Fig. 5.15 Comparison of the drain currents of the 100 nm grounded source N- channel transis-
tor when VGS is equal to 0.70 V. The plain line curve represents the ‘experimental’ data, crosses
illustrate the predicted drain current. The dashed lines relate to the model when the mobility is
supposed to be invariant (MATLAB fig515.m)
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Fig. 5.16 Comparison of the drain currents of the 100 nm grounded source N-channel transistor
when VGS is equal to 0:20 V (weak inversion). The plain line curve represents the ‘experimental’
data, crosses the predicted drain current. There is no difference between the dashed characteristic
(constant mobility) and the current predicted by the model (MATLAB fig515.m)

100 nm N-channel grounded source transistor as above. Two distinct gate voltages,

are contemplated, respectively 0.70 and 0.20 V. With the first, the transistor is in

strong inversion, with the second it is in weak inversion. Notice that the dashed

curve in the first figure represents the drain current without mobility degradation.

The curve lies definitely above the actual drain current while in the second figure

the curves coincide for mobility does not take place.

Predicted and ‘experimental’ drain currents differ by less than a few per-cent.

The large dissimilarity between the two figures calls for an explanation. In strong

inversion, the saturated drain current increases steadily whereas in weak inversion

the current displays a quasi-exponential behavior. Avalanche breakdown is not the

reason of course for the drain voltage is too low. The explanation is related to the

impact of the threshold voltage on the pinch-off voltage. The mechanism is illus-

trated by means of Fig. 5.17, which takes advantage of the graphical construction

introduced in Chapter 3. Left, we consider a large gate voltage so that strong in-

version prevails. Right, the opposite holds true. Hatched areas represent the drain

currents divided by beta as explained in Chapter 3. Since the drain voltages and

gate lengths are identical in the two figures, the impact of the drain voltage on the

threshold voltages is the same. Increasing VDS shifts VTo downwards as illustrated by
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Fig. 5.17 The impact of DIBL on the drain current in strong (left) and weak (right) inversion is
illustrated by means of the graphical construction presented in Chapter 3. The current increases
almost linearly left, exponentially right

the two thick equal lengths arrows visible in both figures. Grey areas represent the

concomitant increases of the drain currents. In strong inversion, the current grows

almost linearly. In weak inversion, though the current is small, the relative increase

is much larger because currents encompass a region where VT varies exponentially.

5.5 Evaluation of gx=ID Ratios

The gm=ID and gd=ID ratios require to evaluate the derivatives of log.IDu/ with

respect to VGS and VDS. Both derivatives can be derived from the general expression:

gx

ID
D d

dV x
log .IDu/ D d

dV x
log .i/C d

dV x
log .ISu/ (5.13)

where:

log .ISu/ D log .ISuo/ � log .	 .i// (5.14)

Thus:
gx
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dISuo
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(5.15)

which can be rewritten also as follows:
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dV x
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dV x
(5.16)
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For the evaluation of the differential of the log of the normalized drain current, we

take advantage of Eqs. 4.8 and 4.21–4.23 (remember VP ; VS and VD are defined

with respect to the substrate):

1

i

d i

dV x
D 1

UT

�
1

1C qF C qR
dVP

dVx
� qF

i

dVS

dVx
C qR

i

dVD

dVx

	
(5.17)

5.5.1 The gm=ID Ratio

Equations 5.16 and 5.17 boil down to the expression below in the common-source

configuration, since ISuo doesn’t depend on VGS:

gm

ID
D 1
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1C qF C qR
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�
dV P

dV G
(5.18)

which, can be rewritten as follows according to Eq. 4.14:

gm

ID
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nUT
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1C qF C qR
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d	.i/

d i

�
(5.19)

In weak and in moderate inversion, the gm=ID ratio can be further simplified for

mobility degradation must not be considered. This gives birth to the expression put

to use by the acquisition algorithm:

gm

ID
D 1

nUT

1

1C qF C qR (5.20)

In strong inversion, the evaluation of the derivative inside the parenthesis can be

implemented by means of the MATLAB polyval and polyder instructions:

i

	

d	.i/

d i
) polyval.Œpolyder.PSu/ 0�; i/

polyval.PSu; i /
(5.21)

The denominator makes use of the polynomial counterpart of the ‘theta’ function

to return 	 (the polynomial PSu is derived from the global variable PolyN or

PolyP -). The polyder instruction in the numerator takes care of the derivative of

PSu with respect to i . The zero after the polyder instruction increments the order of

the derivative to multiply the result by the normalized drain current i .

Figure 5.18 compares predicted to ‘exact’ gm=ID’s considering the 100 nm N-

channel transistor (the ‘exact’ data are obtained by taking the numerical derivative

of the log of the ‘semi-empirical’ drain current). The difference between dashed

and crossed lines in strong inversion illustrates the impact of mobility degradation

predicted by Eq. 5.21. In weak and moderate inversion, gm=ID is not affected legit-

imating the assumptions made in the acquisition algorithm.
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Fig. 5.18 Exact (plain lines) and model (crosses) gm=ID ratios versus the gate-to-source voltage
VGS (left) and unary drain current (right) considering the grounded source 100 nm N-channel tran-
sistor. The drain-to-source voltage is equal to 0.6 V (MATLAB fig518.m)

The three next figures illustrate the influence of the gate length, the drain-to-

source voltage and back-bias on the semi-empirical and model-driven gm=ID ratios.

In Fig. 5.19, the gate length is expanded from 0.1 to 4�m. The smaller gm=ID of

the 0:1�m transistor in weak inversion reflects the larger slope factor illustrated

by Fig. 5.8 that is characteristic of short channel devices. Similarly, the larger gate

voltages required by the short channel device in moderate and strong inversion result

from the reverse short channel effect mentioned under Fig. 5.9.

In the right figure, the impact of the gate length on the mobility degradation is

clearly visible. The decay of gm=ID is much faster with the short channel device.

Both gm=ID’s are compared to the asymptotic construction put to use in Fig. 4.15

for the ideal transistor. The large difference with respect to the ideal transistor, even

with long channel devices, is a clear warning not to infer specific currents from mea-

surements based on the intersection of the strong and weak inversion asymptotes.

The two plots of Fig. 5.20 illustrate the influence of the drain voltage. The little

impact VDS has on the slope factor is corroborated by the almost similar gm=ID
ratios in weak inversion. When the transistor is not saturated .VDS D 0:1V/; gm=ID
collapses very rapidly.

Figure 5.21 shows the influence of back-bias on the gm=ID ratio. The left side

illustrates the anticipated threshold voltage and slope factor increase associated with
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Fig. 5.19 Exact (plain lines) and compact model (crosses) gm=ID ratios versus gate-to-source
voltage VGS (left) and unary drain current (right) considering 0.1 and 4:0�m gate lengths. The
source is grounded and the drain-to-source voltage equal to 0.6 V (MATLAB fig519.m)

Fig. 5.20 Exact (plain lines) and compact model (crosses) gm=ID ratios versus the gate-to-source
voltage VGS (left) and unary drain current (right) considering a non-saturated .VDS D 0:1V/ and
a saturated transistor .VDS D 1:2V/. The source is grounded and the gate length equal to 100 nm
(MATLAB fig520.m)
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Fig. 5.21 Exact (plain lines) and compact model (crosses) gm=ID ratios versus the gate-to-source
voltage VGS (left) and unary drain current (right) considering three source voltages equal to 0, 0.4
and 0.8 V (left to right). The gate length is equal to 100 nm and the drain-to-source voltage 0.6 V
(MATLAB fig521.m)

the growing back-bias voltage. In the right side, the curves merge practically in

strong inversion (MATLAB fig521.m).

Figure 5.22 shows a magnified view of the gm=ID of the 100 nm N-channel tran-

sistor in weak and moderate inversion for VDS equal to 0.6 V. The figure illustrates

the ‘filtering’ effect of the compact model mentioned earlier. The model ignores the

small dip near 2.7 V, which is probably due to side current.

5.5.2 The gd=ID Ratio

The drain conductance over drain current ratio gd=ID derived from Eqs. 5.16

and 5.17 boils down to the expression below where the influence of the drain voltage

on the slope factor n has been neglected for it is small compared to the influence of

VTo. When the transistor is saturated, the impact of the drain voltage is reflected by

the sensitivity factor SVTo and by the derivative of the log of the specific current.

gd

ID
D 1

nUT

�
1 � i
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Fig. 5.22 Second order effects are ignored by the compact model (MATLAB fig522.m)

The merit of this expression is that it separates clearly the contributions of

mobility degradation (the first parenthesis), D.I.B.L. (the first term in the second

parenthesis), de-saturation (the second term in the second parenthesis) and C.L.M.

(the last term). The impact every item has on the reciprocal of gd=ID , can be

assessed separately thus. The point is illustrated in Figs. 5.23 and 5.24, which rep-

resent the Early voltages5 of the N-channel transistors. In the first, VGS is equal

to 0.3 V (moderate inversion), in the second 0.6 V (strong inversion). Both figures

report results obtained with two gate lengths: 0:1�m left and 1�m right. Curve

(1) represents the Early voltage without D.I.B.L and C.L.M terms. As soon as the

transistor enters saturation, the output conductance gets very small, almost zero,

making the Early voltage very large. The transistor becomes practically an ideal

current source like in the C.S.M. When second order effects are introduced, the pic-

ture changes drastically. Curve (2) shows the influence of D.I.B.L without C.L.M,

whereas curve (3) combines the two. With the 1�m transistor, the Early voltage in

saturation is fixed essentially by C.L.M. The impact of D.I.B.L. is almost negligible

5 The Early voltage is defined generally as the voltage where the tangent to the ID.VDS/ character-
istic crosses the horizontal axis. The Early voltage considered here is the difference between the
aforementioned crossing point and the actual drain-to-source voltage. This makes ID=VA identical
to gd . When the Early voltage is large, the two definitions coincide more or less, but this doesn’t
hold true with short channel devices. In weak inversion, the zero crossing may be located even to
the right of the origin owing to the exponential characteristic of the drain current like in Fig. 5.16.
The Early voltage would be negative with the first definition.
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Fig. 5.23 Cumulated contributions to the Early voltage predicted by Eq. 5.23, considering a
grounded 100 nm N-channel transistor (left) and a 1�m (right). Crosses illustrate the actual semi-
empirical Early voltage. The gate-to-source voltage is equal to 0.3 V (MATLAB gdID.m)

Fig. 5.24 Cumulated contributions to the Early voltage predicted by Eq. 5.23, considering a
grounded 100 nm N-channel transistor (left) and a 1�m (right). Crosses illustrate the actual semi-
empirical Early voltage. The gate-to-source voltage is equal to 0.6 V (MATLAB gdID.m)
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in strong inversion, small but not negligible in moderate inversion. With the 0:1�m

transistor, the opposite holds true. D.I.B.L overwhelms C.L.M.

The line consisting of crosses in the two figures illustrates the Early voltage pre-

dicted by the semi-empirical model. The ‘semi-empirical’ and model-driven Early

voltages are more similar in moderate than in strong inversion. The difference in-

creases with longer gate lengths owing to the increasing noise that comes with the

drastic reduction of the derivatives of ISuo. A more accurate approach is considered

in the next chapter that does not require the derivatives of VTo and ISuo.

5.6 Conclusions

Drain currents predicted by the model of Chapter 4 are very similar to real drain

currents. Can one extend the compact model to real transistors? The answer is yes

prided some conditions are fulfilled. The model reproduces reasonably well real

ID.VGS/ characteristic even those of short-channel devices as long as the source

and drain voltages are kept constant. Not only drain currents, but also gm=ID and

gd=ID ratios can be reconstructed with acceptable accuracy. As soon as the drain

or source voltage are modified, all parameters must be updated.

A parameter extraction algorithm is set up evaluating the slope factor, the

threshold voltage, the specific current and a polynomial fit taking care of mobility

degradation. The result brings about a number of interesting observations highlight-

ing the impact of short channel effects on the parameters of the compact model,

namely D.I.B.L and C.L.M.

The simplicity of the model lays down the grounds for analytical expressions.

These allow performing sizing without the need to explore blindly wide ranges of

drain currents. The idea is to control MOS transistors by means of variables like the

normalized drain current or the forward mobile charge density qF . A first example

is considered is the next chapter concerning the sizing the real I.G.S. The method

takes advantage of few parameters instead of complex advanced models with large

numbers of parameters.



Chapter 6
The Real Intrinsic Gain Stage

In Chapter 1, the Intrinsic Gain Stage was sized in strong and weak inversion and,

in Chapter 4, in moderate inversion. Only gradual channel models were utilized.

The extension of the E.K.V model to short channel devices considered in Chapter 5

paves the way towards the sizing of real Intrinsic Gain Stages.

6.1 The Dependence on Bias Conditions of the gm=ID

and gd=ID Ratios (MATLAB fig061.m)

Before undertaking the sizing, let us look to the dependence of gm=ID and gd=ID
on the gate-to-source and drain-to-source voltages taking advantage of ‘semi-

empirical’ data instead of models. The ratios are derived from the numerical

derivatives with respect to the gate and the drain voltages of the log of the drain

currents (see Annex A1.1 for more details regarding the derivatives).

Figures 6.1 and 6.2 display respectively constant contour plots of gm=ID and the

reciprocal of gd=ID versus VGS and VDS considering a N-channel transistor with

a gate length of 0:5�m. In the middle of the first plot, the contours narrowing il-

lustrates the rapid roll-off of gm=ID in the moderate inversion region. The drain

voltage has little influence except in the upper left corner where the transistor is not

saturated. In the second plot, which displays the Early voltage VA, the commonly

accepted idea that the extrapolated drain currents converge more or less to a single

point on the VDS axis is defeated. The only region where the Early voltage does not

depend practically on the gate voltage is weak inversion.

The combination of the two plots yields the intrinsic gain for:

jAj D gm

gd
D gm

ID
� ID
gd

D gm

ID
� VA (6.1)

Large gm=ID ratios and Early voltages are required to achieve sizeable gains. The

first is synonymous of moderate and weak inversion. The second implies strong

inversion and large drain-to-source voltages. Figure 6.3 shows that the best per-

formances are obtained in moderate and weak inversion, where large gm=ID’s

P.G.A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-voltage Analog CMOS
Circuits, Analog Circuits and Signal Processing, DOI 10.1007/978-0-387-47101-3 6,

93

c� Springer Science+Business Media, LLC 2010
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Fig. 6.1 gm=ID contours versus drain and gate voltages of a grounded source N-channel MOS
transistor having a gate length equal to 0:5�m

overcome poor Early voltages boosting the intrinsic gain up to 200. The gain is

strongly influenced by the gate length; it ranks from 15 for 100 nm gates to more

than 1,000 with 4�m gates.

6.2 Sizing the I.G.S with ‘Semi-empirical’ Data

Like in previous chapters, our objective is to evaluate drain currents and sizes en-

abling to design Intrinsic Gain Stages that achieve a prescribed gain-bandwidth

product. As stated earlier, the sizing methodology requires to have at one’s disposal

the .gm=ID/
� ratio of a transistor that has the same gate length, same source and

drain voltages as the transistor making out the I.G.S and a known width W �. This

ratio is obtained by taking the derivative with respect to the gate voltage of the log

of the ‘reference’ drain current ID
�:�

gm

ID

� �
D 1

I �D
dI �D
dV G

D d

dV G
log

�
I �D
�

(6.2)
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Fig. 6.2 Early voltage or ID=gd contours versus drain and gate voltages of a grounded source
N-channel MOS transistor having a gate length equal to 0:5�m

6.2.1 Sizing the I.G.S Loaded by a Constant Total Capacitance

In the semi-empirical method, the reference gm over ID is derived from measure-

ments performed on physical transistors or reconstructed characteristics derived

from advanced models. No model is put to use. The strategy is recalled in Fig. 6.4.

The drain currents achieving the desired gain-bandwidth product are devised from

the ratio of the transconductance gm over the reference .gm=ID/
�, where gm is

equal to !T times the output capacitance C . The widths W follow from the propor-

tionality widths – drain currents.

The MATLAB file below illustrates the method. We consider an I.G.S loaded by

a 1 pF capacitor that is supposed to achieve a transition frequency of 100 MHz. The

gate length, the gate-to-source voltage, the drain-to-source voltage and the source-

to-substrate are listed in the first paragraph of the file. The second paragraph shares

the persistent 4D arrays listed under the global instruction (for more details consult

Annex 1). In the first line of the 3d paragraph, the ‘reference’ drain current IDu is

derived from the global variable IDRAINn (the index ‘u’ stands for unary transistors

whoseW=L is equal to one). Further, the reference matrix .gm=ID/
�, named gmID,

is set up by taking the derivative of the log of IDu. The computation is performed in

two steps. We evaluate the differences between consecutive rows of the log of the
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Fig. 6.3 Intrinsic gain contours versus drain and gate voltages of a grounded source N-channel
MOS transistor having a gate length equal to 0:5�m

Fig. 6.4 Semi-empirical sizing method of the Intrinsic Gain Stage. The squares represent matrices
whose rows and columns are controlled by variables associated to the arrows
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drain current matrix by means of the diff instruction to begin with (if the matrix were

transposed, the derivatives would be taken with respect to VDS, yielding gd=ID).

Then, the result .gm=ID/1, called gmID1, is interpolated to recover the length of the

original drain current vector (remind diff instructions curtail matrices by one row).

Finally, the drain currents and gate widths achieving the desired gain-bandwidth

product are evaluated in the fourth paragraph.

% 1 data
fT = 1e8; % Hz
C = 1e-12; % pF
VDS = .25: .25: 1; % V
VS = 0; % V
UG = (.1: .025: 1.2)’; % V
zG = length(UG);
L = .5; % �m
% 2 compute
global LL IDRAINn GMn GDSn CGGn
lg = find(LL==L);
UG = (.1: .025: 1.2)’; zG = length(UG);
vgs = round(40?UG + 1);
vds = round(40?VDS + 1);
vs = round(10?VS + 1);
% 3 construct IDu and gm/ID matrices
IDu = .1?L?squeeze(IDRAINn(lg,vgs,vds,vs));
VG = UG(:,ones(1,length(VDS)));
gmID1 = diff(log(IDu))./diff(VG);
UG1 = .5?(UG(1:zG-1) + UG(2:zG));
[X,Y] = meshgrid(VDS,UG1);
gmID = interp2(X,Y,gmID1,VDS,UG,’cubic’);

% 4 size
gm = 2?pi?fT?C;
ID = gm./gmID;
W = L?ID./IDu;
% 5 gain
A = squeeze(GMn(lg,vgs,vds,vs))./squeeze: : :
(GDSn(lg,vgs,vds,vs));

Figure 6.5 displays a series of gate widths achieving the desired gain-bandwidth

product considering four drain voltages VDS from 0.25 to 1 V. The rapid increase of

the gate widths at low drain currents denotes clearly the onset of weak inversion.

No implementation is possible below a minimal current. The gate voltages VGS and

gains A are shown also. As stated earlier, gain is largest in weak inversion. In strong

inversion, gate widths drop more or less like the reciprocal of the drain current, but

when VGS exceeds 0.5 V larger widths than expected are needed owing to mobility

degradation.
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Fig. 6.5 Plot representing the gate widths W (in �m), gate-to-source voltage VG (V) and gain
A versus drain current of an N-channel I.G.S loaded by a 1 pF capacitor achieving a transition
frequency of 100 MHz. The transistor has a gate length of 0:5�m. The source is grounded and the
drain-to-source voltage varies from 0.25 until 1 V in steps of 0.25 V (MATLAB fig065.m)

Figure 6.6 shows the influence of the gate length on the gate width, gate-to-source

voltage and gain when L is stepped down from 0.500 to 0.160 and 0.100 nm. The

influence on the gain is huge.

In the examples of Figs. 6.5 and 6.6, the frequency is supposed to be low enough

to ignore the carrier’s transit time in the channel. Because quasi-stationary prevails,

all parameters are constants. When the transition frequency increases, there is a

limit beyond which things begin to change. A landmark checking whether quasi-

stationarity (q.s) conditions are likely to be met is desirable. A commonly advocated

marker is the angular frequency represented by the ratio of the transistor’s transcon-

ductance over its input capacitance 2 fnqs. When it is attained, the current gain

of the I.G.S is equal to 1. Generally, one considers that quasi-stationarity holds as

long as the frequency stays one order of magnitude below fnqs (Tsividis 1999). The

question is worth considering when fT gets much larger like in Fig. 6.7, where the

transition frequency has been pushed up to 1 GHz. With the 0:5�m gate length, the

fnqs landmark illustrated by means of crosses lies entirely below the tenfold transi-

tion frequency limit illustrated by the thick horizontal line. To achieve the desired

gain-bandwidth product, the gate length must be shortened. The 100 nm gate length

fulfills quasi-stationarity even in weak inversion but the loss of the gain caused by

poor Early voltages is not worth the tiny reduction of current shorter channel al-

lows. The 160 nm transistor is a better candidate. The gain is around 30–40 while

quasi-stationarity can be achieved in moderate inversion (Fig. 6.7).
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Fig. 6.6 Same experiment as in Fig. 6.5 illustrating the influence of the gate length (MATLAB
fig066.m)

6.2.2 Introduction of Extrinsic Capacitances

As the gate width increases, the extrinsic junction capacitances increase too. Be-

cause the drain junction parallels the output capacitance, the total load capacitance

gets larger. Keeping the capacitive load constant as we did so far, boils down to low-

ering the budget left over for the external load. To keep the external load unchanged,

one must sum up the nominal load capacitance and the drain junction capacitance.

This worsens the requirements regarding the transconductance and may lead to sub-

stantial differences, especially in low-power circuits. To evaluate the impact of drain

junction parasitics, we take a closer look first to the junction capacitances.

The parasitic junction capacitances under the contact regions CJS and CJD illus-

trated in Fig. 6.8 make up a substantial part of the parasitic load of the I.G.S. The

dimensions of the junctions are fixed by the technology, namely the contact holes.

In the technology we consider, junctions may not be thinner than a few tenths of

a micron. Though this is more than the minimum tolerated gate length, one should

not forget that the capacitance of both, N and P type junctions, are still 10–15 times

smaller than the gate oxide capacitance. Not only vertical, but also peripheral junc-

tion capacitances must be considered moreover. For what concerns the periphery, a

distinction must be made between two regions: the region surrounding the junction

outside the active region of the MOS transistor and the region facing the implanted
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Fig. 6.7 We consider in this figure the same gate lengths as in Fig. 6.6, but fT is pushed up to
1 GHz. The curves consisting of crosses represent fmax (in GHz). Quasi-stationarity implies that
the latter lie above the thick horizontal line representing ten times the I.G.S. transition frequency

Fig. 6.8 The various contributions to the ‘extrinsic’ junction capacitance



6.2 Sizing the I.G.S with ‘Semi-empirical’ Data 101

Fig. 6.9 Layout of a multigate transistor with a total gate width equal to four times w

zones that implements the transition from diffusion to channel. We call the first CJsw

for side-wall peripheral capacitance, the second CJswg since it relates to the gate-

side. The capacitance per unit length of the second is generally somewhat larger

than that at the external periphery owing to larger amounts of impurity concentra-

tions. Typical values for CJsw and CJswg are of the order 10�16 and 3�10�16 F=�m.

Transistor partitioning offers means to reduce the impact of the junction capaci-

tances. The idea is to divide the transistor in smaller devices connected in parallel as

shown in Fig. 6.9. Compare for instance two implementations of a same transistor,

one making use of a single gate and one consisting of two halved transistors in paral-

lel that share a common drain junction. While the capacitance of the source junction

doesn’t change practically, the drain junction capacitance is halved and the side-wall

capacitance substantially reduced. Partitioning not only reduces the junction capac-

itances but also decreases the series resistance of the gates of every sub-transistor,

an essential feature for high frequency applications (Grabinski et al. 2006).

The junction capacitances of partitioned transistors is given by the sum:

CJ D AJCJ C PswCJsw C PswgCJswg (6.3)

where AJ ; Psw and Pswg represent respectively the area, side-wall and gate-side

lengths of the junction. Typical values for w1 and w2 are respectively 0.45 and

0:35�m. For inner drain junctions, one has:

AJD D 0:5N � w � w2
PswD D N � w2 (6.4)

PswgD D N � w
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whereas, for source junctions:

AJS D w .2w1 C .0:5N � 1/w2/
PswS D 2 .wC 2w1/C .N � 2/w2 (6.5)

PswgS D N � w

When the width W does not justify partitioning, Eqs. 6.4 and 6.5 must be replaced

by the expressions below without D and S indices since nothing differentiates the

source from the drain:

AJ D W � w1
Psw D W C 2w1 (6.6)

Pswg D W

The benefit offered by partitioning is illustrated by the curves displayed in Fig. 6.10.

These compare the source and drain junction capacitances of multi-stripe implemen-

tations to the capacitance CJ1 of a single stripe transistor having the same total width

W . The horizontal axis represents the total gate width divided by the largest toler-

ated width wmax of every sub-transistor. The ratio is equal to one until W exceeds

wmax. Every sub-transistor has a width that is a fraction between 50% and 100% of

wmax. Notice that the drain junction capacitance drops by almost 30% as soon as

the transistor is divided in two parts. The source capacitance decreases more slowly

than the drain capacitance owing to the outer junctions.

Fig. 6.10 Partitioning reduces the source and drain junction capacitances with respect to single-
stripe transistors
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6.2.3 Sizing the I.G.S Loaded by a Constant Load Capacitance

Sizing the Intrinsic Gain Stage while taking into account the parasitic drain junction

capacitance is done by following the same procedure as above but requires to repeat

the sizing procedure a few times to take care of the increasing capacitive load as-

sociated with the widening gates. The parasitic capacitance inferred from the width

obtained at the end of the first run is added to the nominal output capacitance. This

requires a slightly larger transconductance and gives way to new drain currents, gate

widths, etc. After a few runs, convergence is reached generally. In weak inversion, a

point may be reached however beyond which ID starts to grow instead of decreas-

ing as illustrated in Fig. 6.11. Deep in weak inversion, the width of the transistor is

getting so large that the parasitic drain junction is overwhelming progressively the

nominal load capacitance. It is clear that the optimum lies else, in the middle of the

moderate inversion region. In the example of Fig. 6.11, a drain current of 400�A is

a good choice. The gain is not far from 40 and the non-quasi-stationarity landmark

fnqs still larger than ten times the transition frequency.

Fig. 6.11 Impact of the parasitic drain junction capacitance on the 160 nm I.G.S. considered in
Fig. 6.7. The partitioning factor N illustrated by the broken line is fixed by the 10�m maximum
width imposed to every sub-transistor (MATLAB fig611.m)
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6.3 Model Driven Sizing of the I.G.S.

We now undertake sizing considering the compact model instead of ‘semi-

empirical’ data. The presentation is divided into two parts: first, the evaluation

of W and ID , second, the Intrinsic Gain A.

6.3.1 Sizing W and ID (MATLAB fig612.m)

The model-driven method makes use of the same equations as the semi-empirical

but implements the reference .gm=ID/
� differently. In the semi-empirical approach,

the ratio was evaluated numerically. In the model-driven, it is derived from the pa-

rameters n; VTo; ISuo and the Theta. function. One takes advantage moreover of

the fact that the model-driven method offers the possibility to focus sizing on a

well-defined region or mode of operation. As a result, one can perform sizing while

trading gain against low power consumption by selecting appropriate gm=ID’s.

Other pointers than the transconductance over drain current ratio can be put to use

as well. The normalized drain current and the forward normalized mobile charge

density qF are attractive contenders for they measure how deep transistors operate

in moderate, weak or strong inversion. For instance, qF equal to one lies middle in

the moderate inversion region, qF ’s smaller than 0.1 correspond to weak inversion

and qF ’s larger than 10 to strong inversion. The fact that qF is not a voltage or a

current doesn’t matter; once sizing is completed the variable disappears like in the

parametric method illustrated by Eq. 4.24.

The excerpts from the MATLAB file below show an example. First, the compact

model parameters are extracted from global variables having the same names1. We

define a qF logspace vector that encompasses the moderate inversion region. This

leads to the evaluation of the pinch-off voltage VP (remind VS is equal to 0), paving

the road towards the gate-to-source voltages VGS and the normalized reverse mo-

bile charge density vector qR. The normalized drain current i follows. The sizing

algorithm is put to use in three steps. To begin with, we evaluate the unary drain cur-

rent and gm=ID ratio without considering mobility degradation nor parasitic drain

junction capacitance.

global LL nN VToN ISuoN PolyN
: : :

n = nN(vds,vs,lg);
VTo = VToN(vds,vs,lg);
ISuo = ISuoN(vds,vs,lg);
P = squeeze(PolyN(vds,vs,lg,:));
: : :

1 These consist of arrays controlled by the drain-to-source voltage VDS, the source-to-substrate
voltage VS and the gate length L (see Annex 1).
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qF = logspace(-1.8,.8,30);
VP = UT?(2?(qF-1) + log(qF));
VGS = n?VP + VTo;
qR = invq((VP-VDS)/UT);
i = qF.ˆ2 + qF - qR.ˆ2 - qR;
IDu = ISuo.?i;
gmID1 = 1./(n?UT.?(1+qF+qR));

The drain current ID1 and width W1 vectors achieving the desired gain-

bandwidth product are obtained then like in Section 6.2.1. The result is illustrated

by the dashed curve of Fig. 6.12 connecting the weak and strong inversion asymp-

totes represented by the two thick straight lines like in Chapter 1, the vertical for

weak inversion, the other for strong inversion.

During the second sizing step, we introduce mobility degradation by adding the

lines below to the file. The first line evaluates ISu, the second IDu and the two last

the gm=ID ratio according to Eqs. 5.19 and 5.20.

Fig. 6.12 Model-driven sizing of the 1 GHz gain-bandwidth I.G.S. considered in Fig. 6.11. The
source is grounded, the drain voltage equal to 0.6 V, the gate length equal to 160 nm and the max
width of partitioned transistors 10�m. The broken line relates to the transistor partitioning. The
vertical lines correspond to three qF’s (MATLAB fig612.m)
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P = PolyN(vds,:,vs,lg); ISu = ISuo?polyval(P,i);
IDu = i.?ISu;
Z = (1 - polyval([polyder(P) 0],i)./polyval(P,i);
gmIDD = gmID1.?Z;

The result is illustrated by the plain line curve of Fig. 6.12. In weak inversion,

widths merge with those computed earlier. Mobility degradation comes to the fore

only in strong inversion as the plain line curve moves away increasingly from the

dashed curve.

In the third step, we introduce the drain junction parasitic capacitance paralleling

the output load. Since the parasitic capacitance varies like the transistor width and

the latter is a function the transconductance, the algorithm makes use of a loop.

Crosses and the staircase curve illustrate the widths and partitioning factor.

C = Co;
for k = 1:10,
Gm = 2?pi?fT?C;
ID2 = Gm./gmIDD;
WsL2 = ID1./IDu;
W2 = WsL2?L;
JCap2 = jctCap(L,W2,maxW,VDS); CJD2 = JCap2(:,:,1);
N = JCap2(:,:,3);
C = Co + CJD2;

end

It is clear that widths larger than 100�m don’t make sense. The currents and

widths within the region delineated by the vertical dashed lines defined by qF ’s

respectively equal to 0.2, 0.5 represent good compromises. Naturally, moderate in-

version offers the best compromise.

Notice that all the curves coincide more or less in the moderate inversion re-

gion. In this region, the widths and currents are not strongly influenced by mobility

degradation nor drain parasitic capacitance. Three parameters, n; VTo and ISuo, are

enough in order to size the I.G.S in this region thus.

6.3.2 Evaluation of the Intrinsic Gain (MATLAB fig613.m)

To evaluate the intrinsic gain we multiply the transconductance over drain current

ratio by the Early voltage:

A D
�
gm

ID

�� �
ID

gd

��
D
�
gm

ID

��
V �A (6.7)

taking for the reciprocal of the Early voltage the expression below:

gd

ID
D d

dVDS
log .IDu/ D d

dVDS
log .i/C d

dVDS
log .ISu/ (6.8)
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Since VS and VGS are constants, the derivative of the log of the normalized drain

current boils down to the expression below derived from Eq. 5.17:

d log .i/

dV VS
D qR

i UT
� 1

nUT

1

1C qF C qR SV To (6.9)

The first term after the equal sign takes care of de-saturation and the second of

D.I.B.L. The first vanishes as soon as the drain voltage exceeds 100 m. The remain-

der consists of two factors: one is the gm=ID ratio evaluated earlier, the other the

threshold voltage sensitivity factor. Since the threshold voltage varies quasi-linearly

with VDS, a first order expansion of the threshold voltage suffices. The lines hereafter

illustrate the evaluation of the sensitivity factor:

U = (0:.025: 1.2)’; zu = length(U);
P1 = polyfit(U(2:zu),VToN(2:zu,vs,lg),1);
SVTo = P1(1);

The second term of Eq. 6.8, which relates to channel length modulation (C.L.M.),

requires computing the derivative of the log of the specific current with respect to

the drain current instead of the gate voltage. To perform the derivation in the orthog-

onal direction, we compute the specific current considering the nominal and two

adjacent drain voltages and take the averaged diff of the log of the specific currents.

Y = ISuN(vds+(-1:1),:, vs,lg);
CLM = mean(diff(log(Y)))/.025;

The reciprocal of the Early voltage can now be evaluated by summing the contribu-

tions of D.I.B.L and C.L.M in de-saturation:

gdID = qR/(UT?i) - SVTo?gmID1 + CML;

We can evaluate the intrinsic gain ‘A’ by combining the gm=ID found earlier with

the gd=ID above according to Eq. 6.7. Figure 6.13 compares the model-driven gain

to the ‘semi-empirical’ gain evaluated in Section 6.2 (the figure compares also the

widths and gate voltages). Physical and model-driven approaches are equivalent

with the exception of the gain in strong inversion when the transistor de-saturates.

Contrarily to the ‘physical’ approach, the model-driven appends some features. It

offers the possibility to sense the respective contribution of D.I.B.L and C.L.M. The

fact that omitting the C.L.M term in the expression above doesn’t change practically

the gain of the 100 nm transistor is a clear confirmation that D.I.B.L is overwhelm-

ing C.L.M in short channel devices. The opposite holds true with the 4�m transistor.

6.3.3 An Alternative Method to Evaluate the Gain
(MATLAB fig615.m)

The derivatives required in order to evaluate gain introduce computation noise, in

particular the derivative of the specific current. While short channel devices are not

too much affected by noise, long channel encounter problems due to the smallness
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Fig. 6.13 The figure compares the width, gate-to-source voltage and intrinsic gain predicted by the
model (continuous lines) to its semi-empirical counterparts (crosses). The gain-bandwidth product
is equal to 1 GHz and the output capacitor equal to 1 pF like in the previous figure (MATLAB
fig613.m)

of the C.L.M and D.I.B.L. contributions. Better results can be obtained when the

derivatives are evaluated at a later stage. In the approach hereafter, the gain is in-

ferred from the slope of the I.G.S transfer characteristic.

Consider once more the 160 nm grounded source transistor targeting a gain-

bandwidth product of 1 GHz. We select a quiescent qFo of 0.5 that corresponds

to the middle vertical dashed line represented in Fig. 6.12. The I.G.S operates

clearly in moderate inversion. To find the gain we construct the transfer charac-

teristic sweeping the drain voltage throughout the entire output range and search the

correspondent gate voltages. Though the drain current does not vary for the I.G.S.

is fed by a current source, the normalized drain current does for the specific current

depends on the drain voltage. Dividing the constant drain current by the variable

specific current paves the way to the normalized drain current, which in turn leads

to the normalized mobile charge density qF and pinch-off voltage vectors. The gate

voltage follows since the slope factor and threshold voltage dependence on the drain

voltage are known.

The procedure is illustrated by means of the MATLAB file hereafter, which takes

into account mobility degradation and transistor de-saturation. Since we don’t know

the reverse mobile charge density qR nor the degree of mobility degradation when

we start, the calculation proceeds by reiterating the evaluation a few times. For the

first run qR is supposed to be equal to zero and the theta function equal to one.
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After every cycle, a better approximation of the pinch-off voltage is obtained, for

we reevaluate qR by subtracting VDS from VPS. After a few runs, the algorithm con-

verges. An interpolation step expressing the drain voltage as a function of the gate

voltage is performed.

qR = 0;
TH = 1;
[X1,Y1] = meshgrid(U);
er = 1;
while er > 1e-3,
QR = qR;
i = IDo.?TH./(W/L?ISuo);
qF = .5?(sqrt(1 + 4?(i+QR.ˆ2+QR)) - 1);
VPS = UT?(2?(qF - 1) + log(qF));
qR = invq((VPS-VDS)/UT);
VGS = n.?VPS + VTo;
TH = diag(interp2(X1,Y1,ThN(:,:,vs,lg),VGS,VDS’,
’cubic’));
er = max(abs(1 - QR./qR));

end

The transfer characteristic is illustrated in Fig. 6.14 together with the forward and

reverse mobile charge densities qF and qR. When VDS is equal to 0.6 V, qF is equal

Fig. 6.14 The transfer characteristic, forward and reverse normalized charge densities of the
N-channel transistor achieving a gain-bandwidth product of 1 GHz. The supply voltage VDD is
equal to 1.2 V. The steady state point corresponds to the circle



110 6 The Real Intrinsic Gain Stage

Fig. 6.15 D.C. gain of the I.G.S. considered in the previous figure. The characteristic predicted by
the model is represented by means of plain lines and the semi-empirical by dashed lines

to 0.5. The transistor is saturated and qR negligible. As the drain voltage lessens, the

transistor progressively de-saturates, and qR begins to increase pushing qF upwards

to keep the drain current constant.

The gain of the I.G.S can be derived from the slope of the transfer characteristic.

The result shown in Fig. 6.15, compares the gain predicted by the model to the gain

of the ‘semi-empirical’ model.

Notice that the current source feeding the I.G.S must not be an ideal current

source necessarily. If a P- channel transistor is put in the place of the current source,

the drain current becomes a function of the output voltage. Once the drain current

and voltage known, the construction of the transfer function proceeds like above.2

6.3.4 A Simplified Sizing Procedure

It is clear that moderate inversion offers the most interesting compromise as far as

power consumption and transistor widths. In moderate inversion, the impact of mo-

bility degradation is small and may be neglected generally. Sizes and drain currents

can be evaluated in a straightforward manner as long as the transistor is saturated.

The process is illustrated by the flow chart of Fig. 6.16. The starting point is the

2 Computing the transfer function allows to evaluate harmonic distortion.
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Fig. 6.16 I.G.S sizing flow chart in moderate inversion

choice of an appropriate normalized forward mobile charge density qF scalar or

vector. The drain current ID achieving the desired gain-bandwidth product is ob-

tained by multiplying the transconductance gm by the reciprocal of gm=ID . The

width W is found by dividing ID by the unary drain current, which is equal to ISuo
times the normalized drain current. Eventually, the parasitic drain capacitance is

added to C , which implies to reiterate the evaluation of ID andW . The gate voltage

is derived from the pinch-off voltage VP .

6.4 Slew-Rate Considerations

Output voltage changes require to charge and discharge the capacitor loading the

output terminal of the I.G.S. When the output voltage increases, the current deliv-

ered by the current source in the drain is split in two parts. A fraction charges the

output capacitor while the rest feeds the transistor. When the rate at which the out-

put voltage increases gets too large, the current feeding the transistor may dry out.

The output voltage increases still but the slope dVout=dt cannot exceed the limit set

by the ‘slewing rate’ ID=C where ID is the DC current delivered by the current

source.

The slewing rate, the gain-bandwidth product, and the gm=ID ratio are

related, for:

slewing rate D ID

C
D gm=C

gm=ID
D !T

gm=ID
(6.10)

So far, our only concern has been to lower power consumption and to get more

gain. We haven’t considered slew-rate. The latter however impacts the I.G.S perfor-

mances since the largest slope sine waves the I.G.S. can display depends on both,

the magnitude .V / and the angular frequency .!/:�
dVout

dt

�
max

D ! V (6.11)
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When combined, Eqs. 6.10 and 6.11 lead to the expression below, which must be

satisfied to avoid non-linear distortion:

!V <
!T
gm

ID

(6.12)

Sine wave peaks cannot trespass the reciprocal of gm=ID thus at the transition

frequency. This is a severe limitation not to overlook. An I.G.S. intended to operate

in a unity gain loop may require for instance enhancing the transition frequency by a

large factor depending on the targeted gm=ID and the required dynamic range. The

sizing algorithm doesn’t change but the transition frequency needs to be enhanced.

With low-voltage circuits fortunately, the impact is less acute for the dynamic range

is necessarily small.

6.5 Conclusions

The Intrinsic Gain Stage sizing procedure described in Chapters 1 and 4 is revisited

considering real transistors. ‘Semi-empirical’ data are considered first. The compact

model introduced in Chapter 5 follows. The two yield close results.

One of the assets of the model-driven methodology is that sizing can be done in

well-defined regions. The normalized forward mobile charge density offers an ef-

fective means to restrain sizing to moderate inversion whereas the semi-empirical

method proceeds blindly. The model allows moreover tracing the relative contribu-

tions of second order effects, like D.I.B.L and C.L.M. Although not a major asset

for sizing, the physical insight the model provides is worth mentioning.



Chapter 7
The Common-Gate Configuration

7.1 Drain Current Versus Source-to-Substrate Voltage
(Matlab fig071.m)

In the common gate configuration, the gate-to-source and the drain-to-source volt-

ages, VGS and VDS, vary with the source-to-substrate voltage VS . As a result, the

compact model parameters require continuing updating.

Figure 7.1 displays the drain current versus the source voltage VS of the 100 nm

N-channel transistor considered in the previous chapter taking advantage of updated

n; VTo and ISuo parameters. The gate- and drain-to-substrate voltages are constant

and respectively equal to 0.9 and 1.0 V. The currents predicted by the compact model

with and without mobility degradation are represented respectively by the continu-

ous and dashed curves. Crosses represent the ‘semi-empirical’ drain current. When

VS is small, the impact of mobility degradation is considerable for the gate-to-source

and drain-to-source voltages are large. As VS increases, the two curves concur pro-

gressively until they merge in weak inversion giving birth to the distinctive weak

inversion straight line.

The transconductance over drain current ratios of the model and ‘semi-empirical’

data are represented in Fig. 7.2. The model gms=ID ratio is derived from Eq. 5.16:

gms

ID
D
�
1 � i

	

d	

di

�
1

i

d i

dV s
C 1

ISuo

dISuo

dVs
(7.1)

Since the drain-to-substrate voltage VD is constant, the derivative of the normalized

drain current with respect to VS given by Eq. 5.17, boils down to the expression:

1

i

d i

dVS
D 1

UT

�
1

1C qF C qR
�
dVP

dVS

�
� qF

i

	
(7.2)

which can be further simplified when the transistor is saturated:

1

i

d i

dVS
D 1

UT

1

1C qF
�
1 � dVP

dVS

�
(7.3)
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Fig. 7.1 Common gate drain current versus the source-to-substrate voltage of the unary 100 nm
N-channel transistor. The drain-to-substrate voltage VD and the gate-to-substrate voltage VG are
constant and respectively equal to 1 and 0.9 V. Crosses represent the ‘exact’ current obtained by
mean of the semi-empirical method. The dashed and continuous lines relate to the compact model
without and with mobility degradation (MATLAB: fig071.m)

In weak inversion, the factor between parentheses in Eq. 7.1 can be omitted turning

the gms=ID ratio into the expression:

gms

ID
D 1

UT

�
1 � dVP

dVS

�
C d log .ISuo/

dVS
(7.4)

If all parameters were constant, the maximum of gms=ID would be equal to 1=UT
for the derivatives of the pinch-off voltage and the specific current vanish. With real

transistors, this isn’t the case. The pinch-off voltage varies with VGS and VDS for it

depends on VTo and n. The same holds true for the specific current ISuo. The result

is a maximum gms=ID below the theoretical limit of 38V�1. In the example, the

maximum is equal to 34V�1, which corresponds to a slope factor of 1.13. Contrarily

to the Charge Sheet Model, the slope factor in weak inversion is not equal to one

but slightly larger owing to the influence of the drain.
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Fig. 7.2 gms=ID ratio of the transistor of Fig. 7.1. The model is illustrated by means of the dashed
and continuous lines like in Fig 7.1, the semi-empirical ratio by means of crosses (MATLAB:
fig071.m)

7.2 The Cascoded Intrinsic Gain Stage

Common-gate stages are currently put to use in order to perform impedance trans-

formations. The impedance looking into the source of the common gate transistor

is a replica of the output impedance divided by the gain while the impedance seen

at the drain is a replica of the load in the source multiplied by the gain. The fore-

most example of a circuit taking advantage of this is the cascode circuit shown in

Fig. 7.3. It consists of two transistors, a grounded source and a common gate transis-

tor. The transconductance is set by the common source stage for the same current is

flowing through the two transistors. The output impedance is a replica of the output

impedance of the common-source transistor times the gain A2 of the common-gate

transistor for the source of Q2, which is also the drain of Q1, replicates the output

of the cascode divided by the gain A2.

7.2.1 Sizing the Cascode (Matlab fig074.m)

The circuit represented in Fig. 7.3 is actually a cascoded version of the Intrinsic

Gain Stage. Sizing follows similar lines. Consider a low-power low-voltage cascode
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Fig. 7.3 The basic cascode
configuration

stage loaded by a 1 pF capacitor supposed to achieve a gain-bandwidth product of

100 MHz. The two transistors are saturated and their drain-to-substrate voltages V1

and V2 are respectively equal to 0.3 and 0.6 V. Since the source and drain voltages

of both transistors are fixed, all parameters are at hand.

We confine the mode of operation of the two transistors to moderate inversion for

this is the best compromise as far as gain and power consumption. We assume that

the increased sensitivity of transistors operating in this mode can be counteracted by

proper bias circuitry. Let us choose a gate length of 0:5�m for both transistors and

start with the sizing ofQ1. Consider a qF1 vector in moderate inversion, for instance

from 0.1 to 2. Mobility degradation is not be taken into consideration to evaluate the

unary drain current IDu1. The transconductance gm1 is obtained by multiplying the

desired angular transition frequency by the output capacitance. The drain current

vector ID1 follows from the ratio gm1 over .gm=ID/1 while the aspect ratio W1=L1

is obtained by dividing ID1 by the unary drain current IDu1 as usual. Consider now

Q2. Generally, one chooses for Q2 the same width as for Q1. Since the drain cur-

rent and width of the common-gate stage are known, we evaluate the normalized

drain current by dividing IDu2 (which is equal to IDu1) by ISuo2. This leads to the

normalized mobile charge density qF2. We can now calculate the pinch-off voltages

ofQ1 andQ2 and find the gate-to-source voltages of both transistors as well as their

gate-to-substrate voltages. The procedure is repeated a few times to take care of the

parasitic junction capacitance paralleling the 1 pF output load. Mobility degradation

can be introduced eventually at this stage if needed.

The result shown in the left part of Fig. 7.4 displays the transistor’s widths and

gate-to-substrate voltages achieving the desired 100 MHz gain-bandwidth product

considering normalized mobile charge densities comprised between 0.03 and 2. The

lower limit of qF1 is clearly unpractical. The upper limit isn’t interesting either for

less power consumption can be attained with reasonable widths. The 20�m width

marked by a circle seems to be a good compromise. The normalized mobile charge

densities qF1 and qF2 are respectively equal to 0.32 and 0.33 (clearly in moderate in-

version), the drain current ID is equal to 31:5�A, and the gate-to-substrate voltages

VG1 and VG2 are respectively equal to 0.320 and 0.671 V.
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Fig. 7.4 Width and gate voltages of two cascoded Intrinsic Gain Stages loaded by a 1 pF ca-
pacitance. Left, the gain-bandwidth product is equal 100 MHz, right 1 GHz. The gate lengths are
respectively 500 and 100 nm (MATLAB fig074.m)

In the right part of the same figure, the transition frequency is increased from

100 MHz to 1 GHz while the gate length is reduced from 500 to 100 nm. Widths

and drain currents increase of course. For the 50�m width marked by the circle, the

drain current is equal to 310�A; VGI and VG2 are equal to 0.400 and 0.736 V and

qF1 and qF2 nearly the same as in the left plot.

To summarize, the sizing methodology of the cascaded I.G.S. proceeds as fol-

lows: (1) fix a range of normalized mobile charge densities offering a good compro-

mise power consumption versus sizes. (2) Evaluate the normalized drain currents

and gm=ID’s. (3) Make use of the gm=ID methodology to get drain currents and

aspect ratios fulfilling the gain-bandwidth requirements. (4) Choose the widths of

Q1 andQ2 that achieve low drain current and evaluate the gate-to-source voltages of

the two transistors. (5) Retrieve the file to take care of the parasitic output junction

capacitance paralleling the output load and mobility degradation.

7.2.2 Gain Evaluation of the Cascode (MATLAB fig075.m)

How to evaluate gain? Rather than assessing derivatives, we opt for the same

approach as in Section 6.3.3, where the gain was derived from the transfer charac-

teristic. Suppose the current IDo feeding the cascode is delivered by an ideal current

source like in the I.G.S. The method proceeds as follows: search input voltages that
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Table 7.1 Gains of the two cascode circuits of Fig. 7.4

Type DV2 (mV) DV1 .�V/ A2 (dB) DVGS1 .�V/ A1 (dB) A (dB)

100 MHz 500 nm 2 17.8 41 0.178 40 81

1 GHz 100 nm 2 154 22.3 12.9 21.5 43.8

keep the drain current unchanged when the output voltage is slightly modified. The

evaluation proceeds in two steps. First, we evaluate the voltage excursion DV1 at

the source of the common gate transistor that results from the output voltage varia-

tion DV2. Second, we evaluate the concomitant input voltage variation DVGS1 of the

common source transistor. The method takes advantage of interpolation techniques

like in Section 6.3.4. These track accurately small signals. Suppose for instance that

the drain voltage V2 ofQ2 is incremented by 1 mV. To find the corresponding source

voltage change DV1, we set up a source test-vector VS1 and make use of interpolated

parameters to evaluate the concomitant drain current vector ID . The source volt-

age we are looking for is extracted from VS1 by means of a second interpolation

instruction searching the source voltage that makes the drain current equal to IDo.

The voltage step DV1 caused by DV2 lies now for the hand. Knowing DV1, we de-

rive DVGS1 along similar lines. Not only we get the gain of the cascode by dividing

DV2 by DVGS1, but also the gains A1 and A2 of the two stages making out the cas-

code. The gains of the two circuits are reported under Table 7.1. The fact that gms is

larger than gm explains why the gain of Q2 is always slightly large than that of Q1

notwithstanding back-bias.

7.2.3 The Poles of the Cascode Circuit (MATLAB fig075.m)

The sizing procedure above does not consider whether the cascode is a stable cir-

cuit or not. We acted as if the output node represents the only pole of the circuit.

There is a second pole however that is related to the phase lag caused by the para-

sitic capacitance at the common node of Q1 and Q2. The capacitance at this node

consists not only of the junction capacitances ofQ1 andQ2, but also of the intrinsic

source capacitance of Q2. While junction parasitic capacitances can be evaluated

easily, the intrinsic source capacitance of Q2 is more difficult to apprehend. It is the

sum of the source-to-gate and source-to-substrate capacitances plus source-to-drain

intrinsic capacitance, which is negative. In practice, the total intrinsic capacitance

is close to the halved gate capacitance in strong inversion. Since the non-dominant

pole must lie beyond the transition frequency to yield stability, a rough estimate of

the intrinsic capacitance suffices.

The frequency responses of the cascoded circuits are shown in Figs. 7.5 and 7.6.

The small signal parameters of the common source and common gate stages put

to use for the evaluation of the frequency responses are derived from the compact

model with the exception of the intrinsic source capacitances, which is extracted

from the ‘exact’ semi-empirical global variable CSSn. The phase margins justify

the assimilation of both circuits to dominant pole first order systems.
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Fig. 7.5 Frequency response of the left-sided cascode circuit of Fig. 7.4. Plain lines represent
the open-loop magnitude and phase characteristics. The dashed lines relates to the unity-gain
configuration

Fig. 7.6 Frequency response of the right-sided cascode circuit of Fig. 7.4. Plain lines represent
the open-loop magnitude and phase characteristics. The dashed lines relates to the unity-gain con-
figuration



Chapter 8
Sizing the Miller Op. Amp.

8.1 Introductory Considerations

Fixing currents and transistors widths of Op. Amps is a multifaceted task owing to

the growing number of choices that can be made. Sizing implies hierarchy. Some ob-

jectives ought to be satisfied whichever choices. They shape the specifications list. A

typical example is the I.G.S gain-bandwidth product. Other objectives are desirable

but not mandatory. They determine attributes like power consumption versus area.

Specifications determine the dimensions of the gm=ID sizing space while attributes
delineate optimization areas within the sizing space. The specifications of the Miller

Op. Amp considered in this chapter are twofold: a prescribed gain-bandwidth

product and an assessment regarding stability. The sizing space conforms to a two-

dimensional space. Every point represents a distinct Miller Op. Amp that fulfills the

same specifications. Low-power consumption demarcates a region within the 2D

sizing space. Area minimization relates to another region. Eventually regions inter-

sect easing choices. Whichever combination, specifications must be met anyway.

The axes of the sizing space play the same role as the gate voltage, drain current

or normalized drain current in the I.G.S. They represent variables controlling the

modes of operation of transistors or ensembles of transistors. In the Miller Op. Amp,

we are going to focus on the two stages and control their behavior by means of two

distinct vectors. Each vector is supposed to control transistors that have a strong

impact on the fulfillment of the specifications.

8.2 The Miller Op. Amp.

The Miller Op. Amp that we consider in this chapter consists of two cascaded stages,

a differential amplifier followed by a common source stage. In the circuit shown in

Fig. 8.1, the first stage consists of a P-channel differential stage, the second of a

N-channel common-source stage. The second stage is a true Intrinsic Gain Stage.

The AC current generated by the differential pair is fed to the input of the second

stage through a current mirror. Complementary transistors ease the transfer from the

P.G.A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-voltage Analog CMOS
Circuits, Analog Circuits and Signal Processing, DOI 10.1007/978-0-387-47101-3 8,

121

c� Springer Science+Business Media, LLC 2010
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Fig. 8.1 The basic Miller Op. Amp

first to the second stage by lifting up the small signals DC level to the ground level.

The choice of PMOS transistors for the first stage is credited to the better 1/f noise

performances of P-channel with respect to N-MOS transistors. While the input of

the Op. Amp is symmetrical, the output is asymmetrical.

The Op. Amp has two high impedance nodes marked 1 and 2, which determine

two poles. These lie generally below the transition frequency and turn the Op. Amp

into a second order system. Without proper action, instability is unavoidable for the

amplifier is not short of additional phase lag sources. The purpose of the capacitor

Cm is to change the Op. Amp into a first order system by shifting the pole associ-

ated with node 1 to low frequencies and the pole associated to node 2 beyond the

transition frequency. The name of ‘Miller capacitance’ given to Cm is a tribute to

J.M. Miller (Miller 1920) who first recognized the role of the capacitance bridging

in and output terminals of inverting amplifiers.

8.2.1 Analysis of the Miller Operational Amplifier

Before sizing, a preliminary analysis of the Miller Op. Amp is carried out in order

to identify the principal mechanisms controlling its frequency response. We there-

fore replace the amplifier by the equivalent circuit shown in Fig. 8.2, which consists

of two cascaded Intrinsic Gain Stages. The first stands for the differential amplifier

plus the current mirror. Since each transistorQ1 ‘sees’ half of the symmetrical input

signal, the contributions ofQ1a andQ1b to the overall transconductance are halved.

The global transconductance gm1 of the first stage however is the same as that of

Q1a orQ1b for the current mirror recombines the output currents of the differential
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Fig. 8.2 Simplified equivalent circuit of the Miller Op. Amp

Table 8.1 Numerical values
of the equivalent circuit of
Fig. 8.2. The parameters gm3
and C3 of the current mirror
that load the first stage are not
considered in the equivalent
circuit. They are introduced
later

gm1 1.76e-04 S

gm2 1.76e-03 S

gm3 1.62e-04 S

gd1 1.56e-06 S

gd2 2.00e-05 S

Cm 5.62e-13 F

C1 1.26e-13 F

C2 1.04e-12 F

C3 8.93e-14 F

stage. The output conductance gd1 of the first stage is the sum of the output conduc-

tances of transistor Q3b and the halved output conductance of Q1b for the source

of the latter is connected to the source of Q1a. The transconductance of the second

stage is called gm2 and gd2 globalizes the output conductances of Q2 and Q4.

Three capacitances are contemplated. The first C1, counts for the gate capac-

itance of Q2 plus the junction capacitances of the drains of Q1b and Q3b . The

second encompasses the output load C2 plus the parasitic junction capacitances of

the drains of Q2 and Q4. The third is the Miller capacitance Cm, bridging the in-

put and output nodes of the second stage. The role of this capacitor is explained

hereafter.

8.2.2 Pole Splitting

Table 8.1 lists the transconductances and capacitances of the Miller Op. Amp con-

sidered for the analysis that follows. The gain-bandwidth product is supposed to be

equal to 50 MHz.

The poles associated to the high impedance nodes 1 and 2, respectively gd1=C1
and gd2=C2, determine cut-off frequencies respectively equal to 1.99 and 3.06 MHz.

The amplifier is thus clearly a second order system since both poles lie well be-

low the transition frequency. The purpose of the Miller capacitance is to split these

poles apart, pushing one beyond fT , the other to much lower frequencies. This
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turns the Op. Amp into a first order or dominant pole unconditionally stability

circuit. The way Cm transforms the two poles into a very low frequency pole and a

high frequency pole is reviewed briefly hereafter. To illustrate the mechanism, we

analyze the frequency response of the Miller Op. Amp from DC to high frequency.

The DC gain is obtained by multiplying the DC gain A1 of the first stage by

the DC gain A2 of the second stage. These are respectively equal to 41 and 39 dB

making the overall gain equal to 80 dB:

Ao D A1 � A2 D gm1

gd1
� gm2
gd2

(8.1)

Now let us increase progressively the frequency. The first capacitance that is going

to affect the performances of the amplifier is the Miller capacitance. The current

flowing through Cm is much larger indeed than the current flowing through C1 even

though the magnitudes of the two capacitances are similar. The reason is that the

voltage difference across Cm is an enlarged replica of the voltage across C1 equal

to .1 � A2/v. The impact on node 1 of the Miller capacitance can be emulated

consequently by means of a grounded capacitance equal to .1�A2/ times Cm. The

admittance y of node 1 is given consequently by:

y D j! Cm .1 � A2/ � j! Cm
gm2

gd2
(8.2)

This is a huge capacitance that enhances considerably the time constant associated

to node 1 and gives raise to a the low frequency pole that can be approximated by

the expression:

!1 D gd1

A2Cm
D gd1

Cm
� gd2
gm2

(8.3)

According to the data listed in Table 8.1, the pole associated to node 1 is positioned

at 5 kHz. The consecutive break affecting the gain A1 is visible in Fig. 8.3, Beyond

5 kHz, and as long as the gain of the second stage is real, the magnitude of the gain

of the first stage decreases steadily at �20 dB/decade. Things change however when

the cut-off frequency of the second stage is reached. The angular cut-off frequency

of this stage is given by the expression below for transistorQ2 is feeding not onlyC2
but also Cm. The left terminal of the Miller capacitance connected to input gate of

Q2, may be assimilated indeed to the virtual ground of the sub-Op Amp represented

by the second stage.

!2 D gd2

C2 C Cm (8.4)

Beyond !2, the gain of the second stage becomes imaginary so that the transfer

function can be approximated by the expression:

A2 � �gm2
ı
.C2 C Cm/
j!

(8.5)
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The 90ı phase lag associated to A2 modifies drastically the load on the first stage

represented by the Miller capacitance for the nature of the latter changes from ca-

pacitive to resistive. Indeed, we must consider now that y is given by:

y D j! Cm

 
1C

gm2

C2CCm

j!

!
� gm2

Cm

C2 C Cm (8.6)

The load on node 1 boils down now to a small resistance equal to 1:6 k�. Now that

A1 is loaded by a resistance, the gain of the first stage remains constant. In fact, the

pole of the second stage gives birth to a zero as far as the first stage. Both cancel

out exactly so that the overall frequency response of the Op Amp ignores what is

happening at node 1 and continues to decay steadily as shown in Fig. 8.3. But this

holds true only as long as the gain of the second stage is large enough to sustain the

resemblance with a sub-Op. Amp. When the gain of the second stage is no more

than a few dB’s, the approximation isn’t correct anymore of course. This is what

happens at high frequency when the capacitances overwhelm the conductances. The

transfer function of the Op. Amp boils down then to:

A D gm1

j!Cm
� gm2 � j! Cm
gm2 C j! .C1 C C2 C C1C2=Cm/ (8.7)

While the factor in front of the above expression takes care of the �20 dB/decade

roll-off, the second reveals what happens near and beyond the transition frequency.

Fig. 8.3 Asymptotic frequency response of the Miller Op. Amp.
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A pole and a zero are acknowledged in this region. The zero lies in the right part of

the complex plane, the pole in the left part.

The R.H.P. (for Right Half Plane) zero witnesses actually the fact that the Miller

capacitance bypasses Q2 at very high frequency. The signal from the first stage

reaches the output terminal directly through Cm wiping out the 180ı phase shift in-

herent to the second stage. Unfortunately, this introduces a global 90ı excess phase

lag, which reduce the phase margin. Cumulated with the 180ı phase shift of the

dominant and the non-dominant poles, the total phase lag amounts now to 270ı.
Stability requires consequently that the R.H.P zero and non-dominant pole be put to

the right of the angular transition frequency. This implies that the gain-bandwidth

product of the second stage must exceed !T in order to keep the resistive character

of the impedance of node 1 near the transition frequency. The price one has to pay

therefore is a low gain of the first stage in this region.

The gain bandwidth product of the Miller amplifier lies now for the hand. Since

the Op Amp may be assimilated to a first order system, !T is equal to the product

of the dominant pole times the DC gain. This leads to the well-known expression of

the angular transition frequency:

!T D gm1

Cm
(8.8)

8.2.3 The Impact of the Current Mirror

Figure 8.4 shows the open-loop frequency response of the Miller Op Amp derived

the symbolic expression listed under Eq. 8.10 and compares the result to the data

displayed by Fig. 8.3.

The frequency responses are almost identical except far beyond the transition

frequency. The explanation is due to the current mirror. In the analysis above, we

assumed that the current entering node 1 is the algebraic sum of the drain currents

delivered by Q1a and Q1b . This is a simplification for it ignores the time lag asso-

ciated to the current mirror. The AC current feeding node 1 consists indeed of two

distinct currents, current from Q1b reaching node 1 directly, and current from Q1a
transiting through the current mirror. The voltage drop across the diode connected

transistor Q3a controls the current delivered by the mirror. This introduces a time

constant that depends on the conductance gm3 of Q3a and the parasitic gate capac-

itances of transistors Q3a and Q3b plus the parasitic junction capacitances of Q3a
andQ1a. This time constant is much smaller than that of node 1 for the conductance

gm3 of the diode is much larger than gd3 whereas the parasitic capacitance C3 does

not differ substantially from that of node 1 (remember the ratio gm3=gd3 represents

the intrinsic gain of Q3).

The impact can be accounted for by multiplying gm1 by a correction factor:

gm1 WD gm1
gm3 C j! C3=2
gm3 C j! C3 (8.9)
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Fig. 8.4 Plain lines represent the magnitude and phase of the Miller Op. Amp frequency response
derived from the symbolic equations listed under Eq. 8.10. The magnitude is compared to the
asymptotic counterpart represented by means of dashed lines

The current mirror introduces thus a pole and a zero one octave beyond, in other

words a doublet. In the example, the frequencies corresponding to the pole and zero

are respectively 144 and 288 MHz. Since they are almost three times larger than the

transition frequency, the doublet has practically no influence on the phase margin.

8.2.4 Poles and Zeros

The pole splitting effect is clearly visible in the plot of Fig. 8.5, which shows the

trajectories of the poles and zeros of the Op. Amp when Cm varies from a very small

to a very large value (singularities can be obtained by means of the roots MATLAB

instruction). The numerator and the denominator of the transfer function obtained

be means of a symbolic simulator are listed hereunder:

% numerator

N2 D �2�Cm�C3�gm1I
N1 D �2�Cm�gm3�gm1C C3�gm2�gm1I
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Fig. 8.5 Pole and zeros versus Cm of the Miller Op Amp with the current mirror doublet

N0 D 2�gm2�gm3�gm1I
num D ŒN2 N1 N0�I
% denominator

D3 D 2�Cm�C1�C3C 2�Cm�C2�C3C 2�C1�C2�C3I
D2 D 2�Cm�C3�gd1C 2�C2�C3�gd1C 2�Cm�C3�gd2C 2�C1�C3�gd2 � � �

CCm�C3�gm2C 2�Cm�C1�gm3C 2�Cm�C2�gm3C 2�C1�C2�gm3I
D1 D 2�C3�gd1�gd2C 2�Cm�gd1�gm3C 2�C2�gd1�gm3C � � �

C2�Cm�gd2�gm3C 2�C1�gd2�gm3C 2�Cm�gm2�gm3I
D0 D 2�gd1�gd2�gm3I
den D ŒD3 D2 D1 D0�I

(8.10)

As long as the Miller capacitance is negligible, the poles associated to nodes 1 and

2 are clearly distinguishable at the bottom of the figure together with the high fre-

quency doublet. Pole splitting takes place when Cm increases. The dominant pole

moves left. The other goes right until it merges with the pole of the doublet form-

ing a complex conjugate pair of which only the real part is visible. As Cm further

increases, the Right Half Plane (RHP) zero enters the plot, slowly overruling high

frequency poles and zeros. The optimal combination lies naturally in the region

marked by the ellipse where the magnitude of Cm is just large enough to turn the Op.

Amp into a first order system. The plain horizontal line in the middle represents the

capacitance reported in Table 8.1. The dominant pole lies then at 5 kHz while the

aggregate consisting of a complex conjugate pole plus a left and a right-sided zero

lies beyond !T . When Cm goes above the horizontal line, the transition frequency
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follows the dashed curve predicted by Eq. 8.8, paralleling the RHP zero locus leav-

ing other singularities far away. The dominant pole and the R.H.P zero control the

phase lag almost exclusively. Though clearly unconditionally stable, the Op. Amp

displays a gain-bandwidth product that is severely impaired by a needlessly too

large Cm. Below the horizontal line, the validity of the dominant pole approxima-

tion ceases while the influence of the other singularities increases. The order of the

system increases causing a more rapid drop of the angular transition frequency than

what is suggested by the dashed line.

A well-known technique allowing to get rid of the phase lag associated to the

RHP zero consists in putting a resistor in series with the Miller capacitance. If this

resistance is equal to the reciprocal of the transconductance of the second stage,

the zero is relegated to infinity. Larger resistances return the zero into the left half

complex plane offering the possibility to perform eventually pole-zero cancellations.

The method is not for free for it generates another far end pole threatening the

phase margin. When the resistor is properly calibrated however, the overall gain-

bandwidth product can be enhanced by a factor nearly equal to two.

8.3 Sizing the Miller Operational Amplifier (MATLAB
OpAmp.m)

So far for the analysis, let us focus now on sizing. The output voltage of the Miller

Op. Amp is supposed to be equal to VDD=2 while the input terminals connected to

a symmetrical small signal source is centered half the power supply. We consider

only the right-sided P-channel transistor Q1b for its source potential may be assim-

ilated to an artificial ground owing to symmetry. Though the input signal is halved,

the transconductance of Q1b needs not to be divided by two for the current mirror

doubles the small signal current. VS1 and the gate voltage of Q2 are not fixed yet

for they depend on currents and aspect ratios unknown so far. The gate voltage of

Q4 and Q5 are left open to keep a degree of freedom.

We mentioned in the beginning that gain-bandwidth and unconditional stabil-

ity determine the specifications of the Op. Amp whereas power consumption and

area are attributes. The gain-bandwidth product is given by Eq. 8.8. The right half

plane zero and non-dominant pole controlling the phase margin, are extracted from

Eq. 8.71:

!Z D gm2

Cm
(8.11)

!NDP D gm2

Cm
� C 2m
Cm .C1 C C2/C C1C2 (8.12)

1 Singularities like the doublet associated with the current mirror are omitted for they lie beyond
the gain-bandwidth product. Their impact is considered later.
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We must now choose suitable !Z=!T and !NDP=!T ratios. We call these respec-

tivelyZ and NDP. Generally, the zero is put one decade beyond the gain-bandwidth

product and the non-dominant pole somewhere between. A Z equal to ten and NDP
equal to four yield a phase margin around 60ı to 70ı. The transconductances of Q1
and Q2 can be extracted then from Eqs. 8.8, 8.11 and 8.12:

gm1 D !TCm (8.13)

gm2 D !ZCm D Zgm1 (8.14)

While !T and Z and NDP are known a priori, the Miller capacitance Cm is un-

known. If the parasitic capacitances of nodes 1 and 2 were available, Cm could be

extracted from the inverted Eq. 8.12:

Cm D NDP
Z

 
C1 C C2 C

r
.C1 C C2/2 C 4C1C2 Z

NDP

!
(8.15)

The capacitance of node 1 requires knowing the gate-to-source capacitance of tran-

sistor Q2 plus the parasitic junction capacitances of Q3b and Q1b . Similarly, C2
requires knowing the parasitic capacitance paralleling the output load capacitance.

None of these are known so far for the widths are not fixed yet. What is possible

however is to estimate a likely value of Cm, derive from this guess the correspond-

ing transconductances gm1 and gm2, then find currents and aspect ratios by means of

the gm=ID methodology and there from derive approximated parasitic capacitances

from the transistor sizes. The new Miller capacitance extracted from Eq. 8.15 can

be reutilized to redo the same calculations until a stable Cm is obtained. A few ad-

ditional constraints should be fixed in the same time. The gate-to-source voltage of

Q3b and the gate-to-source voltage VGS4 are not known so far. For what concerns

the drain voltage of Q3, it should be a replica of the drain voltage of Q3a to avoid a

systematical input offset of the differential stage. Consequently, the gate-to-source

voltage of Q3b must be equal to the gate-to-source voltage of Q2. For what con-

cerns transistor Q4, keep in mind that this P-channel device is driving 90% of the

total current. It might be very large. One may be better off fixingW4 instead of VGS4

for this offers a direct control over the area occupied by Q4.

8.3.1 Sizing a Low-voltage Miller Op. Amp.

We implement in this section a low-voltage Op. Amp (1.2 V) loaded by a 3 pF ca-

pacitor that achieves a gain-bandwidth product of 20 MHz. Small gate lengths are

not required, for the transition frequency is low. We choose larger gate lengths to

enhance gain.

Q1 Q2 Q3 Q4 Q5

L .�m/ 1:0 0:5 1:0 0:5 1:0
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Sizing is performed now in a 2D sizing space, one axis per stage. Several issues are

possible. The variables may be the gm=ID’s of Q1 and Q2 or suitable ranges of

qF1 and qF 2. We opt for the second and set up qF1 and qF 2 matrices encompassing

moderate inversion to optimize power consumption without the risk to end up with

oversized transistors.

X = logspace(-1.,0,20); % qF1 horiz.
Y = logspace(-1.,0,30)’; % qF2 vert.
[qF1,qF2] = meshgrid(X,Y);

Next, we evaluate the parameters of every transistor over the entire sizing space. For

Q2 the appraisal is straightforward since the source and drain voltages VS2 and VD2
are respectively equal to 0 to VDD=2:

vds2 = round(40?VDS2 + 1);
vs2 = round(10?VS2 + 1);
n2 = nN(vds2,vs2,lg2);
VTo2 = VToN(vds2,vs2,lg2);
ISuo2 = ISuoN(vds2,vs2,lg2);

Knowing the parameters, we evaluate the unary drain current IDu2 and gate voltage

VGS2 matrices of Q2:

i2 = qF2.ˆ2 + qF2;
IDu2 = i2?ISuo2;
VPS2 = UT?(2?(qF2 - 1) + log(qF2));
VGS2 = n2?VPS2 + VTo2;

Next consider the parameters ofQ3b . The source ofQ3b is grounded while the drain

voltage is fixed by VGS2. The VGS2 matrix does comply with the nominal entries of

the parameter matrices. Consequently, they do not give access to parameter look-up

tables. Every parameter must be interpolated. For IDu3, the evaluation follows the

same lines as above.

vs3 = round(10?VS3 + 1);
n3 = interp1(U,nN(:,vs3,lg3),VGS2,’cubic’);
VTo3 = interp1(U,VToN(:,vs3,lg3),VGS2,’cubic’);
ISuo3 =
interp1(U,ISuoN(:,vs3,lg3),VGS2,’cubic’);
VPS3 = (VGS2 - VTo3)./n3;
qF3 = invq(VPS3/UT);
i3 = qF3.ˆ2 + qF3;
IDu3 = i3.?ISuo3;

Things are a bit more complicated forQ1. All we know so far is that its gate voltage

is equal to VDD=2 and the drain voltage a function of VGS2.2 Though the source

2 For P-channel transistors, voltages are defined with respect to VDD.
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voltage is unknown for it depends on currents and sizes not fixed yet, VS1 can be

anticipated more or less for sensible gate-to-source voltages lie around 0.4 V. We

consider a likely VS1 even if the source voltage must be corrected after sizing. For

the rest, the procedure is the same as with Q2.

vs1 = round(10?VS1 + 1);
VDS1 = VDD - VS1 - VGS2;
n1 = interp1(U,nP(:,vs1,lg1),VDS1,’cubic’);
VTo1 = interp1(U,VToP(:,vs1,lg1),VDS1,’cubic’);
ISuo1 =
interp1(U,ISuoP(:,vs1,lg1),VDS1,’cubic’);
i1 = qF1.ˆ2 + qF1;
IDu1 = i1.?ISuo1;
VPS1 = UT?(2?(qF1 - 1) + log(qF1));
VGS1 = n1.?VPS1 + VTo1;

The source and the drain voltages of Q4 are respectively 0 V and VDD=2. Instead

of choosing VGS4, we make W4 equal to W2 to keep control over the size of Q4 as

mentioned earlier. Knowing W4 we can evaluate the unary drain current, there from

the normalized drain current i4 and qF 4 and get the gate voltage VGS4. Notice that

qF 4 is necessarily larger than qF 2, which is a desirable feature as far as sensitivity

of the current sources feeding the Op. Amp.

vds4 = round(40?VDS4 + 1);
vs4 = round(10?VS4 + 1);
n4 = nP(vds4,vs4,lg4);
VTo4 = VToP(vds4,vs4,lg4);
ISuo4 = ISuoP(vds4,vs4,lg4);
WsL4 = W4/LL(lg4);
IDu4 = ID2./WsL4;
i4 = IDu4/ISuo4;
qF4 = .5?(sqrt(1 + 4?i4) - 1);
VPS4 = UT?(2?(qF4 - 1) + log(qF4));
VGS4 = n4.?VPS4 + VTo4;

The evaluation of the parameters and unary drain current of Q5 is straightforward

and follows the same lines as with Q2. The source, drain and gate voltages are

respectively 0 V, VS1 and VGS4.

We now review briefly the specifications list before launching the sizing algo-

rithm:

1. The transconductance gm1 given by Eq. 8.13 requires to know the Miller capaci-

tance. Since this is not the case, we choose a plausible Cm, for example half the

output capacitance (the choice is not critical). Running the sizing algorithm a few

times yields the actual Miller capacitance.

2. The tranconductance gm2 is extracted from Eq. 8.14. Z controls the position of

the R.H.P with respect to the gain-bandwidth product, it is chosen equal to ten.
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3. The position of the non-dominant pole with respect to the gain-bandwidth

product controls the phase margin together with the R.H.P zero. A phase margin

of 60ı to 70ı requires an N.D.P of four.3

The excerpt below shows the actual sizing algorithm. The drain current and width

matrices of Q1 and Q2 are evaluated taking advantage of the gm=ID methodology.

W1 and W2 and the widths of Q3 and Q4 are combined in order to evaluate the

parasitic capacitances of nodes 1 and 2 where from we derive a new Cm according

to Eq. 8.15.

Cm = .5?C;
for k = 1:10,

GM1 = 2?pi?fT?Cm;
ID1 = n1?UT.?(1 + qF1).?GM1;
WsL1 = ID1./IDu1;
W1 = WsL1?LL(lg1);
GM2 = Z?GM1;
ID2 = n2?UT.?(1 + qF2).?GM2;
WsL2 = ID2./IDu2;
W2 = WsL2?LL(lg2);
WsL3 = ID1./IDu3;
W3 = WsL3?LL(lg3);
W4 = W2;
y1 = jctCap(LL(lg1),W1,R,VDD-VGS2);
y3 = jctCap(LL(lg3),W3,R,VGS2);
C1 = y1(:,:,1) + y3(:,:,1) + W2.?CGS2u;
y2 = jctCap(LL(lg2),W2,R,VDS2);
y4 = jctCap(LL(lg4),W4,R,VDD-VDS2);
C2 = C + y2(:,:,1) + y4(:,:,1);
Cm = 0.5?NDP/Z?(C1 + C2 + sqrt((C1+C2).ˆ2 +

C1.?C2?4?Z/NDP));
end

The contribution of the gate-to-source capacitance of Q2 to node 1 is derived in the

file above from the global semi-empirical capacitance CGS. A representation of the

gate-to-source capacitance based on the compact model is described in Annex 4.

This brings the first part of the sizing procedure to an end. Matrices representing

currents, widths of all the transistors are now available.4 Every point in the sizing

space points towards currents or widths of distinct Op. Amps fulfilling the same

gain-bandwidth and phase margin specifications. To compare their performances,

we have to weight now attributes, for instance power consumption against ‘active’

3 The positions of the poles and zeros beyond the angular transition frequency play a major role.
A change of NDP can cause substantial modifications. A drop from 4 to 3 may cause ringing,
while an increase from 4 to 5 enhances the power consumption by nearly 25% without improving
the step function response.
4 Rows depend on qF1, columns on qF2.
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Fig. 8.6 Constant D.C current (plain elliptic), constant active area (plain hyperbolic) and constant
gain (dashed) contours versus first and second stage qF ’s

area.5 One can make use of 3D representations to ‘visualize’ the performances or

consider contours plots like in the constant power and area contours displayed in

Fig. 8.6. The hyperbolic-shaped contours delineate ‘active areas’, while elliptic con-

tours determine the total D.C current. Contours show clearly the pros and cons of

the choices we can make. Small qF ’s for instance, mean less current and larger

transistors. If qF gets too small, parasitics get so large that the total current starts to

grow again like in the I.G.S. Opposed, if we increase the D.C current by 10%, the

‘active’ area can be divided by a factor of four.

Constant gain contours derived from the semi-empirical data are displayed in the

same plot (dashed lines). As currents decrease, the gain increases of course owing

to larger gm=ID’s. Though clearly visible in the upper part of the figure, the trend

seems to revert slightly in the lower part suggesting that the second stage should

not go too deep in moderate inversion. When qF 2 decreases, the gate-to-source

voltage ofQ2 tends to lessen indeed. Since the drain and gate voltages of the current

mirror’s transistors follow the same trend, widths must grow to sustain the current

delivered by the differential stage. Consequently, the conductance of Q3b increases

and this has a harmful effect on the gain of the first stage.

5 By ‘active area’, we mean the sum of the areas occupied by the gate and junctions of every
transistor.
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Fig. 8.7 Representation versus the gate-to-source voltages of Q1 and Q2 of the data displayed in
Fig. 8.6

Table 8.2 Gate voltages, currents, widths and transconductances of the 20 MHz gain-bandwidth
Miller Op. Amp that corresponds to the circle displayed in Figs. 8.6 and 8.7

Q1 Q2 Q3 Q4 Q5

qF 0.35 0.45 0.57 1.54

VGS.V/ 0.292 0.327 0.327 0.392 0.392

I.mA/ 0.0069 0.0912 0.0069 0.0912 0.0138

W.�m/ 66.0 47.9 5.61 47.9 24.0

gm.mS/ 0.176 1.76 0.125

Another presentation than the one shown in Fig. 8.6 may be desirable for nor-

malized mobile carrier densities are not widespread design parameters. Figure 8.7

displays the same data, versus gate-to-source voltages of Q1 and Q2. The passage

from one representation to the other is easy for the connection from qF to VGS via

VP is straightforward.

Let us choose an Op. Amp, for instance the one marked by a circle in the two

last figures. The Op. Amp has a gain equal to 82 dB (43.95 for the first stage and

38.06 dB for the second). The D.C current is equal to 105�A and the active area

is comprised between 200 and 250�m2. With the recommended Miller capaci-

tance of 1.41 pF, the phase margin is 70:2ı. Table 8.2 lists the currents, widths,

transconductances, gate-to-source voltages versus the qF ’s of every transistor (the

qF coordinates of the circle are of printed in bold characters).
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Fig. 8.8 Frequency response (magnitude and phase) of the Op. Amp marked by the circle in the
two preceding figures. The dashed line represents the unity gain response

Going up along the 82 dB gain contour, the power consumption increases slightly

while the area decreases a little before increasing again. Downwards, the supply

current drops by a few % but the area grows rapidly. Along the constant 105�A

contour, the active area decreases before the opposite takes place while loosing gain.

If area counts more than gain and D.C current, larger qF ’s (or gate voltages) are

recommended. The choice is a matter of ruling.

Figure 8.8 shows the frequency response of the open-loop (magnitude and phase)

and unity-gain configurations (illustrated by means of the dashed line). The plot

makes use of the transfer function given by Eq. 8.10 and the small signal parameters

listed above. Consequently, the current mirror doublet ignored during the sizing pro-

cess is acknowledged. As expected, the doublet does not impair the performances of

the Op. Amp, but its impact is clearly visible in the poles-zeros display represented

in Fig. 8.9. Like in Fig. 8.5, the non-dominant pole and the pole of the doublet merge

and form a conjugated pair as they get closer. The merge takes place when Cm is

nearing the plain horizontal line representing the recommended Miller capacitance.

The configuration for the recommended Miller capacitance is the following:
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Fig. 8.9 Evolution of the zeros and poles as the Miller capacitance varies from a very small to a
very large value

dom. pole : �1:55 103
complex conj. pole: .�1:31 C = � 0:24/ 108

doublet zero : �2:82 108
RHP zero : C1:59 108

The next figure illustrates the step function response of the Op. Amp. The quasi-

exponential evolution in the right part shows that the combination of Z and NDP

derived from the phase margin specifications is adequate notwithstanding the fact

that the current mirror doublet has been ignored during sizing. Steady state condi-

tions are reached after nearly 40 ns. Notice that the output voltage goes first briefly

in the wrong direction. The high frequency bypass between node 1 and the output

represented by the Miller capacitance explains the glitch. The signal outputted by

the differential stage reaches the output before the second stage has the time to react.

(Fig. 8.10).

More attributes can be incorporated of course, the 1/f noise generated by the

N-channel current mirror for instance. Because the noise is proportional to the re-

ciprocal of the gate area, it may seem tempting to increase the gate length and width
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Fig. 8.10 The step function response of the unity gain Op. Amp is represented left. The right plot
represents the difference between the input and output signals

of the current mirror transistors Q3. Not only, the 1/f noise will lessen, but the gain

will improve also owing to the lessening of the conductance of Q3b . Suppose we

extend the 1�m gate lengths of the current mirror transistors to 4�m. Figure 8.11

shows the modified area and the gain contours. The constant current contours don’t

change notably. Suppose we choose the Op. Amp marked by the circle. The gain

increases by 4 dB’s with respect to Fig. 8.7 while the total D.C current is kept un-

changed. The active area reaches now 350�m2 while the currents and widths listed

in Table 8.3 replace those of Table 8.2.

Figure 8.12 shows the impact of the larger parasitic capacitance of node 1 that is

caused by the nearly 16 times larger area of Q3. This moves the doublet closer to

!T as is illustrated by the new set of poles and zeros:

dom. pole : �0:976 103
complex conj. pole: .�0:304 C = � 0:260/ 108

doublet zero : �0:344 108
RHP zero : C1:15 108
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Fig. 8.11 Same as Fig. 8.7 when the gate length of Q3 is increased from 1 to 4�m in an attempt
to reduce the 1/f noise generated by the N-channel current mirror

Table 8.3 Gate voltages, currents, widths and transconductances of
the 20 MHz gain-bandwidth Miller Op. Amp corresponding to the
circle displayed in Fig. 8.11

Q1 Q2 Q3 Q4 Q5

qF 0.44 0.43 0.65 1.48

VGS.V/ 0.303 0.324 0.327 0.387 0.387

I.mA/ 0.0074 0.0903 0.0074 0.0903 0.0148

W.�m/ 52.3 50.7 20.7 50.7 28.5

gm.mS/ 0.177 1.77 0.131

The complex conjugate pole and the zero of the doublet are only a little more

than one octave beyond !T . Though the phase margin is still 65ı because the spec-

ifications did not change, the ‘harmless’ doublet causes a lot of ringing as shown in

Fig. 8.12. The time to reach steady state conditions is almost multiplied by a factor

two. Increasing the area of Q3 beyond 1�m is definitely not a good idea.
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Fig. 8.12 The step function response of the unity gain Op. Amp when the size of transistors Q3

is enhanced

8.3.2 Sizing a High-Frequency Low-Power Miller Op. Amp.

Let us now trade gain for speed aiming at a gain-bandwidth product of 200 MHz.

The supply voltage, output capacitance, etc. don’t change. The gate lengths are

shortened of course: 160 and 130�m for Q1 and Q2 respectively, 160�m for Q4
and 500�m for Q3 and Q5. Moderate inversion implementations are still feasible.

Figure 8.13 shows the sizing space versus the VGS axes. Transistor sizes and

currents are reported in Table 8.4. The currents are nearly ten times larger than in

the previous Op. Amp. The minimum supply current is around 1 mA. Gain is smaller

of course. The active area doesn’t change much. It is even smaller for shorter gate

lengths help to achieve larger aspect ratios without enhancing necessarily widths.

Suppose we select the Op. Amp marked by the circle at the crossing of the 1.1 mA

and 61.5 dB contours. The gains of the first and second stages are respectively 35.7

and 25.8 dB, while the ‘active’ area is smaller than 100�m2. Notwithstanding the

larger gain-bandwidth product, we can meet the specifications withQ1 andQ2 still

being in moderate inversion.
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Fig. 8.13 Sizing space of the 1.2 V Miller Op. Amp achieving a gain-bandwidth product of
200 MHz (same 3 pF load as in previous figures)

Table 8.4 Gate voltages, currents, widths and transconductances of
a 200 MHz gain-bandwidth Miller Op. Amp corresponding to the cir-
cle displayed in Fig. 8.12

Q1 Q2 Q3 Q4 Q5

qF 0.55 0.43 1.23 1.44

VGS.V/ 0.415 0.430 0.430 0.474 0.474

I.mA/ 0.089 0.922 0.089 0.922 0.178

W.�m/ 54.3 123.6 11.3 123.6 29.2

gm.mS/ 1.74 17.4 1.12

The recommended Miller capacitance is equal to 1.38 pF and the phase margin

equal to 70:6ı. The step function response is similar to that of Fig. 8.10 with the

exception of the horizontal scale, which is divided of course by ten. The poles and

zeros are:

dom pole: �1:59 105
complex conj. pole: .�1:02 C = � 0:555 i/ 109

doublet zero: �2:13 109
RHP zero: 1:60 109
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The Op. Amp reaches steady state conditions after nearly 5 ns. Since the slew-rate

2ID1=Cm is equal to 128V=�s, the largest output voltage swing tolerated after

5 ns is equal to 0.64 V (nearly half the power supply). Notice that when the slew-

rate is specified instead of the gain-bandwidth product, sizing can be performed

along similar lines. The current in the first stage is known for it is fixed by the load

capacitance and the slewing rate. The width of Q1 is evaluated the same way and

nothing changes for the rest. The drain current ID1 is automatically updated after

each run.

8.4 Conclusion

The Miller Op. Amp discussed in this chapter broadens the conclusions made

earlier about the Intrinsic Gate Stage. The methodology is similar but a stronger

specification-attribute dichotomy is needed to separate clearly specifications from

optimization objectives. The first determine the dimensions of the sizing space. The

second delineate optimal areas within the optimization space. The method doesn’t

select ‘the’ ideal implementation but orients choices. The intersection of a constant

current contour with a constant ‘active area’ contour for instance tells us that two

implementations with the same power consumption and silicon real estate are pos-

sible. Shifting the ‘active area’ contour in the up/right direction until the two points

merge paves the way to the smallest ‘active area’ possible for a given supply cur-

rent. Repeating the experiment with different currents, connects power consumption

to minimal area implementations.

A thorough understanding of the Op. Amp’s behavior is recommended of course

to separate first order from second order objectives. The simplifications bring about

the need for checking results by means of high level tools. The merit of the gm=ID
method is that the designer is guided towards nearly optimal implementations keep-

ing fine tuning for advanced simulation tools.



Annex 1
How to Utilize the Data available
under ‘extras.springer.com’

The data provided under ‘extras.springer.com’ consist of look-up tables listing the

semi-empirical data and E.K.V. parameters of the N- and P-channel devices consid-

ered throughout the book. These are global variables that must be declared before

undertaking any other action.

A1.1 Global Variables

Thz Glob.m file residing in the 0 start directory must be run before any other file

in order to declare the global variables (this must be done once when starting). The

global variables encompass the arrays listed hereunder:

Semi-empirical Global Variables – Courtesy of IMEC

1. Drain currents .W D 10�m/

IDRAINn/p Drain currents1 ID
2. Transconductance .W D 10�m/

GMn/p The gate transconductance gm
GMBn/p The back-gate transconductance gmb

GDSn/p The drain conductance gds
3. Intrinsic capacitances .W D 10�m/

CGGn/p The gate capacitance Cgg

CGSn/p The gate-to-source capacitance Cgs

CGDn/p The gate-to-drain capacitance Cgd

CGBn/p The gate-to-substrate capacitance Cgb

CSSn/p The source capacitance (com-gate) Css

4. Gate lengths .�m/

LL Available gate lengths

and

1 The lower case letter ending each array refers to N- or P-channel transistors.
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Compact Model Global Parameters (W=L D 1)

nN/P Slope factor n

VToN/P Threshold voltage VTo

ISuoN/P Unary specific current ISuo
ThN/P Mobility degradation factor

PolyN/P Theta polynomial

A1.2 An Example Making Use of the ‘Semi-empirical’ Data:
The Evaluation of Drain Currents and gm=ID Ratio
Matrices (MATLAB A12.m)

Once Glob.m run, files can access global variables. The name of the global vari-
ables put to use must be listed on top of the files. For instance, a file making use of

N-channel drain currents must begin with:

global IDRAINn: : : (A1.1)

IDRAINn (like any other global variable, transconductance or capacitance) consists

of a ‘9 by 49 by 49 by 9 4D array that can be accessed by means of subscripts

specifying addresses: lg for the 9 available gate lengths, vgs for the 49 gate-to-source

voltages, vds for the 49 drain-to-source voltages and vs for the 9 source-to-substrate

voltages.

The available gate lengths are listed under the global variable LL:

LL D Œ0:10 0:11 0:12 0:13 0:14 0:16 0:50 1:00 4:00� �m (A1.2)

The available gate-to-source VGS, drain-to-source VDS and source-to-substrate volt-

ages VS are:

Gate-to-source voltages 0 W 0:025 W 1:200.V/
Drain-to-source voltages 0 W 0:025 W 1:200.V/
Substrate voltages 0 W 0:100 W 0:800.V/ (A1.3)

Voltages can be translated into addresses2:

vgs D round .40 � VGSC 1/ (A1.4)

vds D round .40 � VDSC 1/ (A1.5)

vs D round .10 � VSC 1/ (A1.6)

To go from addresses to voltages, we make use of:

2 The optional round instruction is recommended to avoid eventual non-integer subscripts resulting
from arithmetic calculations.
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VGS D 0:025 � .vgs � 1/ (A1.7)

VDS D 0:025 � .vds � 1/ (A1.8)

VS D 0:1 � .vs � 1/ (A1.9)

Consider an example: suppose we want to construct the drain current matrix of a

100 nm .lg D 1/ grounded source transistor .vs D 1/ whose VGS is swept across the

full range of gate voltages while the drain voltage varies from 0.6 to 1.2 V in steps

0.2 V wide (VDS D 0.6: 0.2: 1.2). For vgs, a colon suffices since we consider all

possible VGS’s. For vds, according to A1.5:

vds D round.40 � VDSC 1/I

The size of the resulting drain currents array, named ID, is [1 49 4 1].

ID D IDRAINn.lg; W; vds; vs/

To turn ID into a 49 rows and 4 columns matrix, one makes use of global variable
the squeeze instruction:

ID D squeeze.ID/I
The file below computes the derivative of log.ID/ with respect to VG to generate

the gm=ID matrix and plot the result versus the gate voltage. The derivative takes

advantage of the diff instruction. Since diff instructions are carried out vertically,

the drain current matrix must be organized along gate controlled rows and drain

controlled columns.

1% test
2 clear
3 clf
4
5 global IDRAINn
6
7 lg = 1;
8 vs = 1;
9 VGS = (0:.025: 1.2)’; z = length(VGS);
10 VDS =.6:.2: 1.2; vds = round(40*VDS + 1);
11 ID = squeeze(IDRAINn(lg,:,vds,vs)); size(ID)
12
13 gmID1 = diff(log(ID))/.025;
14 U =.5* (VGS(1:z-1) + VGS(2:z));
15 [X,Y] = meshgrid(VDS,U);
16 gmID = interp2(X,Y,gmID1,VDS,VGS);
17
18 plot(VGS,gmID,’k’);
19 xlabel(‘V G S (V)’); ylabel(‘gm/ID (1/V)’);
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Fig. A1.1 The gm/ID curves obtained after running the file above

Care is needed regarding the size of gmID1. Owing to the differentiation, the num-

ber of rows of gmID1 is one step shorter than those of ID matrix. To get a gm=ID
matrix with the same dimensions, the number of rows must be incremented by one

unit. Resizing gmID1 in the vertical direction is done by means of the interp2
instruction of line 16. We calculate therefore the X and Y matrix-coordinates of

gmID1. This is done by means of the meshgrid instruction of line 15, which re-

quires the pseudo-gate voltage U of gmID1 first. Figure A1.1 shows the final gm=ID
curves. Notice that the same method can be put to use in order to calculate gd=ID
when the drain current matrix is transposed before the diff instruction is performed.

A1.3 An Example Making Use of the E.K.V Global Variables:
The Elaboration of an ID(VGS) Characteristic
(Matlab A13.m)

The global variables nN/P, VToN/P and ISuoN/P, respectively the compact model

slope factor, threshold voltage and unary specific current, of the compact model

consist of ‘49 by 9 by 9’ 3D arrays. These can be accessed by means of subscripts

specifying vds, vs and lg, the same as with the ‘semi-empirical’ data. The model

ignore VGS by definition.
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Fig. A1.2 The semilog representation the drain current versus the gate-to-source voltage resulting
from the file above

The global variables PolyN/P and ThN/P are 4D arrays allowing to calculate the

mobility degradation factor. The three first subscripts of both variables are the same

as above. The fourth subscript of PolyN/P is always a colon. PolyN/P displays the

coefficients ordered in descending powers of the mobility degradation polynomial.

The number of coefficients is 5 (order 4 polynomial) and the argument of the poly-

nomial the normalized drain current. The second global variable ThN/P makes use

vds, vs, lg while the fourth subscript vgs calculates the degradation factor along the

same lines as the polynomial representation.

The file below shows an example. The transistor is the same as above but the

drain voltage is now constant and equal to 0.6 V. The slope factor n, the threshold

voltage VTo and the unary specific current ISuo are scalars. A squeeze instruction

is needed in order to turn the coefficients of the mobility degradation polynomial in

to a vector. The calculation of the drain current is straightforward and follows the

steps presented in Chapter 5. The result is shown in Fig. A1.2.

global nN VToN ISuoN PolyN
% data ------------------
lg = 1;
vs = 1;
VDS = 0.6;
% compute ----------------
UT =.026;
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vds = round(40*VDS + 1);
n = nN(vds,vs,lg);
VTo = VToN(vds,vs,lg);
ISuo = ISuoN(vds,vs,lg);
P = squeeze(PolyN(vds,vs,lg,:));
VGS = 0:.025: 1.2;
VP = (VGS - VTo)./n;
qF = invq(VP/UT);
qR = invq((VP - VDS)/UT);
i = qF.ˆ2 + qF - qR.ˆ2 - qR;
ID = i.*ISuo./polyval(P,i);
% plot ------------------
semilogy(VGS,ID); grid
xlabel(‘V G S (V)’); ylabel(‘I D (A)’);
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The ‘MATLAB’ Toolbox

A series of dedicated functions enabling to run MATLAB files referenced

throughout the book are accessible in the toolbox. It is strongly recommended to
make use of the set path facility before running any file that makes use of functions
of the toolbox. If not done, the functions will not be accessed.

A2.1 Charge Sheet Model Files

The files hereafter are intended to reproduce figures of Chapters 2 and 3 and to carry

out ‘software experiments’.

A2.1.1 The pMat(T,N,tox) Function

The pMat function puts together the technology vector p (or matrix) needed to

run C.S.M. functions like the IDsh function. The input data are scalars and/or equal

lengths row vectors representing: T (the temperature in K),N (the doping concentra-

tion expressed in at:cm�3) and tox(the oxide thickness in nm). A sign is associated

to the doping concentration N to differentiate semiconductor types, positive for N-

type substrates, negative for P-type. Else, the sign is ignored. The output of the

pMat function consists of (a) column vector(s). The three first rows list �B ; � , and

UT , which are utilized by the IDsh instruction described further. The fourth row

yields K, the product of the mobility � times the oxide capacitance per unit area

C 0ox derived from the oxide thickness tox. The default value of � is 500 cm2=Vs for

N-type and 190 cm2=Vs for P-type transistors (open the pMat file to change these).

The fifth row represents the gate oxide capacitance per unit area C 0ox. Every item

can be accessed separately by means of its row index. For instance, p(3) reads UT
or kT/q.

Consider a N-channel transistor with a doping concentration equal

to 1017 at:cm�3 and an oxide thickness of 5 nm. T is equal to 300 ıK:

149



150 Annex 2 The ‘MATLAB’ Toolbox

p D pMat.300; 1e17; 5/ (A2.1)

pMat outputs one column, the interpretation of which is:

p.1/ D 0:4078 V ( ˆB
p.2/ D 0:2646 V ^.0:5/ ( �

p.3/ D 0:0259 V ( UT
p.4/ D 3; 45e � 4 A=V ^2 ( K D �C 0ox
p.5/ D 6; 90e � 7 F=cm^2 ( C 0ox

(A2.2)

The parameters are updated automatically when the temperature changes owing to

appropriate expressions stored in the pMat file. Consider for instance three temper-

atures 250, 300 and 350ıK (MATLAB A13.m):

p D pMat.250 W 50 W 350; 1e17; 5/I (A2.3)

The output consists now of a 5 rows and 3 columns matrix. Each column corre-

sponds to a temperature, 250 first, etc (� and C 0ox are constants of course):

p D 0:4832 0:4462 0:4078

0:2646 0:2646 0:2646

0:0173 0:0216 0:0259

0:7762 0:4968 0:3450 �e-3

0:6900 0:6900 0:6900 �e-6

(A2.4)

A2.1.2 The surfpot(p,V,VG) Function

The surfpot function calculates the surface potential by solving the non-linear im-

plicit function listed under Eq. 2.20. The input data are the Technology vector p, the

non-equilibrium voltage V and the gate voltage VG . These may be scalars and/or

equal length column-vectors.

Consider the same example as above with T equal to 300 ıK. The gate-to-

substrate voltage is constant and equal to 2 V while the non-equilibrium voltage

V varies from 0 to 2 V. Two lines suffice in order to evaluate the surface potential,

the Technology vector given by Eq. A2.1 and the surfpot function:

psiS D surfpot.p; linspace.0; 2; 100/0; 2/I (A2.5)

The resulting surface potential is shown in Fig. 3.1. Knowing the surface potential,

we can evaluate the threshold voltage VT given by Eq. 3.6. All what is needed is to

add the line below where p.2/ stands for � .

VT D p.2/� sqrt .psiS/C psiSI (A2.6)
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A2.1.3 The IDsh(p,VS,VD,VG) Function

The IDsh function evaluates the drain current of ‘unary’ transistors according to

the C.S.M model (‘unary’ means that the W over L ratio is equal to one). The

input data consist of the Technology vector p and the terminal voltages with respect

to the substrate: VS ; VD and VG . These may be scalars, equal length vectors or

combinations. The function makes use of the MATLAB polyval instruction:

ID

ˇ
D polyval

�
P;
p
 SD

�
� polyval

�
P;
p
 SS

�
(A2.7)

The surface potentials  SD and  SS are derived from the surfpot function, V being

equal to VD and VS . P is a row vector consisting of the coefficients ranked from

highest to lowest order of the polynomial listed under Eq. 2.19:

P D
�
�1

2
� 2

3
� .VG C UT / � UT 0

	
(A2.8)

It is recommended to add a realistic flat band voltage VFB to VG to take into consid-

eration interface charges and the gate work function. VFB is a separate variable that

makes the gate voltage look more realistic. It does not reside in the Technology vec-
tor and is chosen freely. The flat-band voltage of N-channel transistors lies generally

in the range 0.6–0.9 V. It depends on the physical treatments the transistor has been

subjected to during fabrication, such as oxidation temperature, ion implantation, etc.

An example illustrating the use of the IDsh function is given in Annex 3.

A2.2 Compact Model Files

The files hereafter relate to the compact model of Chapters 4 and 5.

A2.2.1 The Identif 3(Nb,tox,VFB,T) Function

The Identif3 function bridges the C.S.M. to the E.K.V. compact model. The func-

tion extracts n; VTo and ISuo from C.S.M. drain currents. The input data are the

substrate impurity concentration, oxide thickness, flat-band voltage plus the tem-

perature. The parameter extraction is done by means of the algorithm described

under Section 4.5.1.
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A2.2.2 The invq(z) Function

The invq function inverts Eq. 4.2.3d:

VP � V D UT .2 .q � 1/C log .q// (A2.9)

and computes the normalized mobile charge density q

q D invq
�
VP � V
UT

�
(A2.10)

The pinch-off voltage VP and non-equilibrium or channel voltage V may be scalars,

equal size vectors or matrices.

A2.2.3 The ComS(VGS,VDS,VS,lg) Function

The function ComS evaluates the drain current ID and the output conductance gd
versus VDS of the variable parameters compact model. The gate-to-source voltage

VGS must be a scalar, the drain-to-source voltage VDS a row vector (or a scalar)

and the source voltage a scalar. Both, VGS and VDS, can take any value between 0

and 1.2 V whereas VS should be one of the nine equally spaced source-to-substrate

voltages comprised between 0 and 0.8 V.

The function evaluates n; VTo; ISuo and the Theta function considering for the

drain voltage two VDS vectors separated by ˙1mV. The output conductance gd is

derived from the diff of the drain current vectors divided by the 2 mV difference

separating the drain voltages. The drain current ID is the mean of the two drain

currents. The output of the ComS function consists of a two columns matrix y, the

first column represents the drain current ID , the second the output conductance gd .

A2.3 Other Functions

A2.3.1 The jctCap(L,W,R,V) Function

The JctCap function evaluates junction capacitances knowing the gate length

L.�m/ and the gate width W.�m/ of N- and P-channel transistors (see

Section 6.2.2). L and W may be scalars, vectors or matrices. The transistors

are partitioned automatically in sub-transistors with identical widths comprised

between maximal and minimal tolerated values fixed by R and R=2 .�m/. Parti-

tioning takes place as soon as W gets larger than R. The fourth variable V takes

care of the reverse voltage applied to the junction. V is defined with respect to
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the substrate for N-channel transistors and VDD for P-channel. All capacitances are

multiplied by the factor:

.1C V=:5/:^.�0:5/
Every capacitance combines a vertical junction capacitance CJ, two peripheral

capacitances CJsw (outside periphery) and CJswg (inside periphery – the side ca-

pacitance between the junction and the channel) as illustrated in Fig. 6.9. The

unit-capacitances are respectively equal to:

1e-15F=�m2 for CJ

1e-16F=�m for CJsw

3e-16F=�m for CJswg

The JctCap function outputs a 5D array y(:,:, 1 to 5) consisting of matrices having

the same dimensions as L and W (the sizes of L and W determine the number of

colons). These represent:

y(:,:,1) the drain junction cap. CJD

y(:,:,2) the source junction cap. CJS

y(:,:,3) the number of sub-transistors

y(:,:,4) the width of each sub-transistor

y(:,:,5) the total area of the transistor

Source capacitances are always larger than drain capacitances since the first sur-

round the second.

A2.3.2 The Gss(x,H) Function

The Gss function calculates the Gaussian distribution of data listed in the column

vector x. H is an optional variable representing the mean of x. The Gaussian distribu-

tion encompasses the 20 bins histogram of x (opening the Gss file allows changing

the number of bins called M). The file outputs a graph representing the histogram,

Gaussian distribution and lists the 3-sigma of the data in the command window.



Annex 3
Temperature and Mismatch, from C.S.M.
to E.K.V.

The influence of temperature and mismatch on the drain current and gm=ID of the

Charge Sheet Model is examined hereafter. It is extended to the E.K.V. model.

A3.1 The Influence of the Temperature on the Drain Current
(MATLAB A31.m)

The influence of the temperature on ID can be illustrated by means of the IDsh
function of the MATLAB toolbox. The file below shows an example considering

a grounded source transistor undergoing a temperature change from 250 to 350 K.

The doping concentration of the substrate is supposed to be equal to 1017 at:cm�3,

the oxide thickness equal to 5 nm and the flat band voltage equal to 0.8 V. The drain

voltage is large enough to keep the transistor saturated while the gate voltage varies

from 0 to 2 V.

After inputting technological and electrical data, the pMAT function is called in

order to set up the Technology Matrix required by the IDsh function.

% influence of T on ID(VG)
clear
clf
% technological data ------------------------
T = 250: 50: 350; % row vector
N = 1e17;
tox = 5;
VFB = 0.8;
% electrical data ---------------------------
VS = 0;
VD = 2;
VG = linspace(0,2,50)’; % column vector.
% compute -------------------------------
p = pMat(T,N,tox);
for k = 1:length(T),
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ID(:,k) = IDsh(p(:,k),VS,VD,VG + VFB);
end
% plot ---------------------------------
semilogy(VG,ID);
xlabel(‘V G (V)’); ylabel(‘I D (A)’); grid (A3.1)

A number of well-known effects are illustrated in Fig. A3.1. When the temperature

increases, the drain current grows rapidly in weak inversion while the opposite holds

true in strong inversion. Conflicting effects explain the antagonist trends. The influ-

ence of the rising temperature on the factor A of Eq. 2.31 explains the increase in

weak inversion. Mobility degradation explains the decrease in strong inversion. The

first overrules the second in weak inversion while the opposite holds true in strong

inversion. Around 0.8 and 1V, the two cancel out.

A3.2 The Influence of the Temperature on gm/ID
(Matlab A32.m)

The evaluation the influence the temperature has on gm=ID is straightforward since

the ratio boils down to the slope of the curves plotted in Fig. A3.1. The result is

Fig. A3.1 C.S.M. drain current for temperatures of 250, 300 and 350 K
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Fig. A3.2 gm=ID versus temperature of the transistor considered in the previous figure

Table A3.1 Comparison of temperature sensitivities of gm=ID’s

T (K) nw:i: (Eq. 2.38) UT 0.026.T/300 1=nUT .V
�1/ max.gm=ID/ (C.S.M.)

250 1.1628 0.0217 39.69 39.79

300 1.1749 0.0260 32.74 32.75

350 1.1892 0.0303 27.72 27.62

displayed in Fig. A3.2. The lessening of the subthreshold slope in weak inversion

has a strong impact on the maximum gm=ID .

Table A3.1 compares the maximum of gm=ID predicted by the C.S.M. (most

right column) to 1=nUT . The first is derived from the maximum of the derivative

of log.ID/ whereas the second takes advantage of the analytic expression of the

slope factor given by Eq. 2.38. The table shows that the latter is clearly a good

approximation of the C.S.M. slope factor.
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A3.3 Temperature Dependence of E.K.V Parameters
(MATLAB A33.m)

We showed in Chapter 4 that the basic E.K.V model is an approximation of the

C.S.M. The acquisition method enabling to extract E.K.V parameters from C.S.M

drain currents described in Section 4.5 offers the possibility consequently to assess

the impact of the temperature of n; VTo and ISuo. The plots of Fig. A3.3 show the

influence of the temperature of the slope factor n, the threshold voltage VTo and

the unary specific current ISu when the temperature goes from 250 to 350 K. The

threshold voltage, which is equal to 0.3984 V at 300 K, drops by 1:31mV=ıC, the

slope factor, equal to 1.1267, increases by 8:2 � 10�5 perıC, and the unary specific

current, equal to 4:44 � 10–7A, decreases by 62.3 pA perıC.

Fig. A3.3 influence of the temperature on the E.K.V parameters
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A3.4 The Impact of Technological Mismatches on the Drain
Current (Matlab A34.m)

The impact of substrate doping and oxide thickness mismatches on the drain current

can be assessed easily with the C.S.M model. We consider the same transistor as

above with T equal to 300 K and suppose that the doping concentration N and the

oxide thickness tox obey Gaussian distributions, with sigmas respectively equal to

2.0% and 0.5%. We consider two constant gate voltages, one in weak and one in

strong inversion. The two histograms of Fig. A3.4 give an idea of the spread of

the drain current caused by the mismatches. Left, the gate voltage is equal to 0.2 V,

right it is equal to 0.6 V. The mean unary drain currents are respectively 5.56 nA

and 8:87�A. The high mismatch sensitivity of MOS transistors in weak inversion

is corroborated by a large spread.

% influence of N and tox mismatch on ID(VG)
clear
clf
% technological data ----------------
T = 300;
z = 1000; % number of samples
N = 1e17*(1 +.02*randn(1,z));
tox = 5*(1 +.005*randn(1,z));
VFB = 0.8;
% electrical data
VS = 0;
VD = 2;
VG = 0.2;
% compute
for k = 1:z,
p = pMat(T,N(1,k),tox(1,k));
ID(:,k) = IDsh(p,VS,VD,VG + VFB);
end
% plot --------------------------
M = mean(ID);
[n,x] = hist(ID(1,:),10);
bar(x/M,n)
h = findobj(gca,’Type’,’patch’);
set(h,’FaceColor’,’w’,’EdgeColor’,’k’)
axis([0 1.5 0 300]);
xlabel(‘I D/mean(I D)’);
ylabel(‘histogram 1000 samples’);
text(.3,200,’V G = 0.2 V’)
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Fig. A3.4 Comparative histograms of relative drain currents spreads left, VG is equal to 0.2 V
(weak inversion), right, VG is equal to 0.6 V (stong inversion)

Fig. A3.5 Probability densities of E.K.V. model parameters
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A3.5 Mismatch and E.K.V Parameters (MATLAB A35.m)

Since the C.S.M. offers the possibility to evaluate the impact of mismatches on

drain currents, we can also evaluate their impact on the parameters of the equiv-

alent E.K.V. model. We consider a Gaussian mismatch of the substrate impurity

concentration centered around 1017 at:cm�3. The sigma is equal to 1%. The oxide

thickness and flat band voltage are constant and the same as in the previous example.

The probability densities of n; VTo and ISuo are displayed in Fig. A3.5.

The impact of mismatches on the parameters is illustrated by the three-sigma

deviations listed below:

3¢.n/ D 0:0018%

3¢.VTo/ D 5:6mV

3¢.ISu/ D 1:16 nA



Annex 4
E.K.V. Intrinsic Capacitance Model

The intrinsic gate-to-source and gate-to-drain capacitances of the E.K.V model

are compared to their ‘semi-empirical counterparts in this annex. We consider a

grounded source N-channel transistor and sweep the gate and drain voltages from 0

to 1.2 V. The ‘semi-empirical’ capacitances are extracted from the global variables

CGSn and CGDn (Courtesy of IMEC). We make use of the expressions below for

the model, where Cox stands for the oxide capacitance fixed by the width and the

length of the transistor (Section 5.3.1 of Enz and Vittoz 2006):

Cgsi D Cox
qF

3
� 2qF C 4qR C 3
.qF C qR C 1/2

(A4.1)

Cgdi D Cox
qR

3
� 2qR C 4qF C 3
.qF C qR C 1/2

(A4.2)

To evaluate qF and qR versus the gate and drain voltages, the E.K.V. parameters

are extracted first from ‘semi-empirical’ drain currents by means of the acquisition

algorithm presented in Chapter 5.

The ‘semi-empirical’ capacitances include overlap capacitances that are ignored

by the E.K.V model. To separate extrinsic from intrinsic ‘semi-empirical’ ca-

pacitances, we evaluate the ‘semi-empirical’ capacitances under bias conditions

minimizing the contribution of the intrinsic capacitances. For instance, we get rid

of the inversion layer by zeroing the gate-to-source voltage to evaluate the gate-to-

source overlap capacitance Cgsov. The fact that the overlap capacitances per �m gate

width listed in Table A4.1 are not affected by gate lengths changes while the gate

capacitances per �m do, supports the idea.

Figures A4.1 and A4.2 compare ‘semi-empirical’ (left) to model intrinsic ca-

pacitances (right) considering two gate lengths: 500 and 100 nm. To make a fair

comparison, we add the gate-to-source overlap capacitance derived from the ‘ex-

perimental’ data to the intrinsic capacitances of the model and adjust the vertical

scale to get the same maximum capacitance. It is clear that the E.K.V. intrinsic gate-

to-source capacitance is not a bad representation, except when the transistor is not

saturated.

Caution is needed however as far as the overlap capacitances. These depend

not only on extrinsic contributions but also on the underlying junction-to-substrate

163
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Table A4.1 Extrinsic and
intrinsic gate-to-source
capacitances (exper. data)

L .�m/ Cgsov .fF=�m/ Cgsi .fF=�m/

0.100 0.363 0:413

0.110 0.413 0:469

0.120 0.413 0:574

0.130 0.413 0:683

0.140 0.412 0:792

0.160 0.412 1:010

0.500 0.408 4:806

1.00 0.408 10:258

4.00 0.419 42:189

Fig. A4.1 The gate-to-source capacitance of the 500 nm gate length transistors

voltage (see Section 10.3 of Enz and Vittoz 2006). The phenomenon is clearly visi-

ble in Figs. A4.3 and A4.4, which displays gate-to-drain overlap capacitances Cgdov

according to the method above.

When the transistor is saturated, the gate-to-drain capacitance is far from being

constant, especially when the gate length effects are not visible on the gate-to-

source. The gate-to-drain capacitances predicted by the model is a poor representa-

tions of CDS when the transistor is saturated contrarily to CGS.
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Fig. A4.2 The gate-to-source capacitance of the 100 nm gate length transistors

Fig. A4.3 The gate-to-drain capacitance of the 500 nm gate length transistor
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Fig. A4.4 The drain-to-source capacitance of the 100 nm, gate length transistor
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