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Abstract 

N ormal cardiovascular development requires complex remodeling of the outflow tract 
and pharyngeal arch arteries to create the separate pulmonic and systemic circula­
tions. During remodeling, the outflow tract is septated to form the ascending aorta 

and the pulmonary trunk. The initially symmetrical pharyngeal arch arteries are remodeled to 
form the aortic arch, subclavian and carotid arteries. Remodeling is mediated by a population 
of neural crest cells arising between the mid-otic placode and somite four called the cardiac 
neural crest. Cardiac neural crest cells form smooth muscle and pericytes in the great arteries, 
and the neurons of cardiac innervation. In addition to the physical contribution of smooth 
muscle to the cardiovascular system, cardiac neural crest cells also provide signals required for 
the maintenance and differentiation of the other cell layers in the pharyngeal apparatus. Recip­
rocal signaling between the cardiac neural crest cells and cardiogenic mesoderm of the second­
ary heart field is required for elaboration of the conotruncus and disruption in this signaling 
results in primary myocardial dysfunction. Cardiovascular defects attributed to the cardiac 
neural crest cells may reflect either cell autonomous defects in the neural crest or defects in 
signaling between the neural crest and adjacent cell layers. 

Introduction 
The neural crest are a pluripotent population of cells responsible for the formation or re­

modeling of a large number of tissues and organ systems. Neural crest cells can form a wide 
variety of cell types including neurons, glia, Schwann cells, cartilage, bone, and smooth muscle.^ 
The neural crest is divided into two major regions termed cranial (mid-diencephalon to somite 
5) and trunk (cells arising caudal to somite 5) based upon the rostral-caudal position at which 
they arise and their subsequent developmental potential.^ The cranial neural crest form ecto­
derm derived mesenchyme (ecto-mesenchyme or mesectoderm) that is characterized by the 
ability to difi^erentiate into numerous cell types normally associated with mesoderm including 
muscle and bone.^ Trunk neural crest however, are restricted in developmental potential to 
melanocytes, neurons and their support cells.^ A sub-population of cranial neural crest provide 
material contribution of pericytes and smooth muscle to the cardiovascular system as well as 
the neurons and ganglia of symapthetic and parasympathetic cardiac innervation. ' This popu­
lation of neural crest cells has been termed the "cardiac neural crest" (Fig. lA). 
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Figure 1. Diagram illustrating the contribution of cardiac neural crest cells to the pharyngeal arch arteries 
and pharyngeal glands. A) Neural crest form the smooth muscle of the great vessels and connective tissues 
of the thyroid, parathyroids, and thymus. B) Remodeling of the pharyngeal arches results in a right-sided 
aortic arch in chickens and a left-sided aortic arch in mouse and human. The third arches in chickens 
(purple) form the right and left brachiocephalic arteries and form portions of the common carotids in 
mice. In chickens, left and right ductus arteriosus are formed from the sixth arches (blue). A single ductus 
arteriosus forms in the mouse (blue). The right fourth arch (green) forms the aortic arch in the chicken, 
while the left fourth arch forms the transverse segment of the aortic arch in mice. Ao, aorta; P, pulmonary 
trunk; rpa, right pulmonary artery; Ipa, left pulmonary artery; rda, right ductus arteriosus; Ida, left ductus 
arteriosus; da, ductus arteriosus; rsc, right subclavian artery; rcc, right common carotid artery; Ice, left 
common carotid artery; Isc, left subclavian artery; be, brachiocephalic artery; dAo, descending aorta. 
Adapted from: Kirby ML. Contribution of neural crest to heart and vessel morphology. In: Rosenthal 
RPHN, ed. Heart Development. New York: Academic Press, 1999:179-193;'^^ ©1999 with permission 
from Elsevier. 
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Identification and Characterization of the Cardiac Neural Crest 
Neural crest contribution to the cardiovascular system was first demonstrated in avian mod­

els of quail-chicken chimeras. Le Douarin and colleagues transplanted the entire rhomben­
cephalon primordium from quail into chicken and observed quail cell contribution to the walls 
of the brachiocephalic arteries, the carotid arteries, the pulmonary trunk and proximal aorta.^ 
Margaret Kirby and colleagues utilized the quail nuclear marker QCPN coupled with small 
neural tube transplants in quail-chicken chimeras for more detailed analysis of neural crest 
contribution to the cardiovascular system. These chimera experiments confirmed the results 
of Le Douarin and localized the cardiac neural crest to the region of the neural tube between 
the mid-otic placode and somite three (rhombomeres G-S). Subsequent fate mapping analysis 
in chicken and mouse have suggested that the caudal boundary of the cardiac neural crest may 
extend to somite four. '̂  These cells populate pharyngeal arches 3, 4 and 6 and the outflow 
tract (Fig. lA).^'^ Neural crest entering pharyngeal arches 3 and 4 interact with the endoderm 
to produce the pharyngeal glands (thymus, and parathyroid glands) (Fig. lA). This popula­
tion of neural crest cells also forms the enteric ganglia of the midgut and hindgut (Fig. 2Q)}^'^^ 
Thus the term "cardiac neural crest" refers to the unique role of this cell population in cardio­
vascular patterning and does not imply that these cells are restricted to cardiovascular lineages. 

One of the first direct comparative analyses of mouse and chicken neural crest contribution 
to cardiovascular patterning used a connexin 43 (Cx43) enhancer-Z^f Z transgene.'^ These 
experiments demonstrated that mouse cardiac neural crest cells are targeted to the pharyngeal 
arches, outflow tract and cardiac ganglia consistent with results in the chicken (Fig. 1). Defini­
tive fate mapping of cardiac neural crest was subsequently preformed using the CreLoxP sys­
tem in transgenic mice. At least four transgenic mouse lines that drive expression of Cre in 
neural crest cell populations have been reported. '̂ ^ Three of these lines, PO-Qvt, Pax3-Cre 
and Wntl-CrCy are active in the dorsal neural tube and allow for lineage tracing of neural crest 
from the time of emergence into the final mature structures when mated to a Lac Z reporter 
line (R26R).^^-'^''^ Human tissue plasminogen activator {ht-PA) Cre is not active in the neural 
tube and labels later migratory and post-migratory neural crest. All four lines demonstrate 
cardiac neural crest contribution of smooth muscle to the aortic arch, the pulmonary trunk, 
brachiocephalic artery, the right subclavian artery, the right and left common carotid arteries 
and the remnant of the ductus arteriosus (ligamentum arteriosum) (Fig. 2A,C-E). The left sub­
clavian artery, pulmonary arteries and descending aorta are not stained in neural crest lineage 
analysis, reflecting their mesodermal origin (Fig. 2A,E). Fate mapping using aTbxl-Cre mouse 
line that labels pharyngeal mesoderm confirms the mesodermal origin of these vessels and 
demonstrates that the conal portions of the aorta and pulmonary trunk are mesodermally 
derived (Fig. 2B).^^ The cardiac ganglia and parasympathetic nerve fibers are also labeled as 
neural crest derivatives (Fig. 2C,D). Cardiac neural crest are seen in the leaflets of the 
aortic and pulmonic valves and the interventricular septum although their role in these tissues 
is unknown. ̂ '̂̂ ^ A few fate-mapped cells of unknown function have also been observed in 
unexpected locations including in the inflow tract, the epicardium, the coronary arteries, the 
myocardium and in close apposition to the conduction system. ̂ '̂̂ ^ Although labeling of cells 
is highly consistent between the Cre lines, the Wntl-Qrt mouse line has become the predomi­
nant line used for fate mapping and conditional gene inactivation. Some controversy remains 
over the exact number of cells labeled with each mouse line, and over which mouse line most 
faithfully labels the true cardiac neural crest niche. 

Cardiac Neural Crest Function in Cardiac Development 
and Remodeling 

The first functional heart is a linear tube composed of an endocardial layer and a myocar­
dial layer separated by specialized extracellular matrix. At the heart tube stage, blood enters 
through a common atria and ventricle, and exits through a common outflow tract 
(conotruncus). Blood flows through paired pharyngeal arch arteries and into paired dorsal 
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Figure 2. Fate mapping of cardiac neural crest cells with Wnt 1 -Cre and R26R. A) Ventral view of an X-gal 
stained neonatal Wntl-Cre::R26R heart revealing cardiac neural crest derivatives. Note staining in the 
aortic arch to the level of the left subclavian artery (between black arrowheads). Small arrows denote 
neuronal staining associated with the coronary arteries. B) Ventral view of an X-gal stained Tbx 1 -Cre: :R26R 
neonatal heart demonstrating mesodermal contribution to the aortic arch arteries. The proximal pulmo­
nary trunk (PT) and aorta are labeled. The aortic arch is not labeled showing a reciprocal pattern to the 
neural crest staining (compare region between arrowheads in A, B). The right subclavian artery, left 
subclavian artery and dorsal aorta (dAo) are labeled using Tbx 1-Cre and are not neural crest derived. C) 
Dorsal view of a Wntl-Cre::R26R neonatal heart with esophagus and nervous tissue in place. Labeled 
neural crest contribute to the enteric ganglia in the esophagus, and the left (XI) and right (Xr) vagal 
branches. D) Dorsal view of the heart in C with noncardiac tissue removed. Extensive labeling of the 
neural crest derived cardiac ganglia and nerve tracts is observed (arrows). E) Left lateral view of the 
Wntl-Cre::R26R heart from C,D. Neural crest contributes extensively to the aortic arch (AoA). The 
pulmonary trunk shows lower levels of neural crest contribution with no expression in the conus. The 
left pulmonary artery (Ipa) and lung (lu) show no neural crest contribution. 

aorta (Fig. lA) (for reviews see refs. 24,25). As development proceeds, the conotruncus is 
split into the pulmonary trunk and aorta while the symmetrical arch arteries are remodeled 
into the asymmetrical mature forms (for review see refs. 11,26). Ablation of the cardiac 
neural crest in chickens demonstrated that these ceils are required for both septation of the 
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conotruncus, and for the remodeling of the pharyngeal arch arteries. ̂ "̂ ^ Final separation of 
the four heart chambers is accomplished by elaboration of atrial and ventricular septa and by 
the formation of the mitral and tricuspid valves. Chamber formation is not believed to be 
dependent on the activity of neural crest, although defects may be observed which reflect 
compensatory changes secondary to defective remodeling of the outflow tract and pharyn­
geal arch arteries. 

Neural Crest Ablation 
The functional requirement for cardiac neural crest in normal cardiovascular develop­

ment was first demonstrated in the chicken embryo by mechanical or laser ablation (Fig. 
3). Following ablation, no new cells arise from the ablated regions, and these gaps are 
not repopulated by adjacent neural crest populations. The outflow tract fails to elongate 
resulting in altered cardiac looping. Cardiovascular defects following ablation include 
double outlet right ventricle (DORV), Teratology of Fallot, persistent truncus arteriosus 
(PTA), and anomalous development of the pharyngeal arteries (Fig. 3).^^'^^ T h e severity of 
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Figure 3. Phenotypic consequences of cardiac neural crest ablation in the chicken. Ablation of the cardiac 
neural crest causes defective inflow morphology, defective pharyngeal arch patterning, defective outflow^ 
septation and alignment defects. Hypoplasia or aplasia of the pharyngeal glands is also noted. Modified 
from: Kirby ML. Trends Cardiovasc Med 1993; 3(l):18-23;'^^ ©1993 with permission from Elsevier. 
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the defects observed depends on the number of cells ablated.^^ In the absence of neural 
crest persistence of pharyngeal arch arteries is variable with unpredictable loss or mainte­
nance of individual vessels. These experiments demonstrated that the cardiac neural crest 
cells are required for persistence rather than formation of the arch arteries.^^ Hypoplasia or 
aplasia of pharyngeal glands is also seen following ablation (Fig. 3).^^ Deletion of smaller 
numbers of neural crest cells causes misalignment of the pulmonary trunk and aorta with­
out a septation defect. This suggests an indirect role for neural crest in alignment of the 
outflow vessels. In addition to defects in patterning, neural crest ablation also causes heart 
failure.^^-^^ 

Cardiac Neural Crest Function in Pharyngeal Arch Patterning 
The pharyngeal arches are transient "bulges" of mesoderm that arise on the ventral sur­

face of the head flanking the primitive foregut.^^ Each of the pharyngeal arches houses a 
single artery. ' In chicken, mouse and human five pairs of pharyngeal arch arteries arise in 
symmetric pairs and connect the common outflow tract to the paired dorsal aortae (Fig. lA). 
The arch arteries arise as endothelial tubes. The endothelial cells of the arteries are 
mesodermally derived and are one of the few cell types not formed by neural crest. Cardiac 
neural crest form pericytes and smooth muscle in the arteries as they mature.̂ " '̂̂ ^ During 
remodeling of the pharyngeal arch system, asymmetric contributions of neural crest cells is 
thought to be a major determinant of whether a particular vascular component persists or is 
reabsorbed. 

During remodeling, pharyngeal arch arteries 1 and 2 are remodeled into capillary beds. ' 
Arch arteries three, four and six persist and are remodeled to become components of the 
mature vasculature (Figs. 1,4). There are several important differences between birds and 
mammals in the remodeling of the pharyngeal arches (Fig. IB).^^'^^ In birds remodeling is 
predominantly right-sided while in the mouse the left side is dominant. In chicken, remod­
eling occurs between the initiation of circulation at Hamburger and Hamilton stage 12 
(45-49 hours) and stage 34 (approximately day 8) (Fig. 5).^^ In birds, the third arch arteries 
are remodeled into two branchiocephalic arteries (left and right) (Figs. IB, 4A,D). The left 
and right common carotid and subclavian arteries originate from the branchiocephalic arter­
ies. The arch of the aorta forms from the right fourth arch while the left fourth arch re­
gresses. Each sixth arch forms a ductus arteriosus (an embryonic vascular shunt that directs 
circulation away from the developing lungs).^^ It is important to note that while the pulmo­
nary arteries connect to the sixth arch arteries during patterning, they are not "derived" by 
remodeling from the sixth arch vessels. Thus, pulmonary arteries with ectopic origin are 
formed in embryos lacking the sixth arch. In the mouse, remodeling occurs between embry­
onic day 10.5 and 13 (Fig. 5)."̂ ^ The right third and fourth arch arteries along with the 
proximal right dorsal aorta are remodeled to form a single brachiocephalic artery from which 
originates the right subclavian and right common carotid arteries (Figs. IB, 4E). The left 
fourth arch forms the "bridge", or transverse segment, connecting the ascending aorta to the 
descending aorta while the right fourth arch regresses (Fig. IB). The left common carotid 
and left subclavian arteries originate from the aortic arch (Fig. 4B,E). The left sixth arch 
forms a single ductus arteriosus while the right sixth arch regresses. ^ In both mammals and 
birds, the ductus arteriosus closes in the early neonatal period in response to a sudden in­
crease in oxygen concentration. 

Cardiac Neural Crest in Outflow Tract Septation and Alignment 
In addition to mediating pharyngeal arch remodeling, cardiac neural crest cells are also 

required to separate the outflow tract into the pulmonary trunk and aorta (Figs. 5,6). ' ' 
While it is universally accepted that cardiac neural crest cells play a fundamental role in this 
process and provide material contribution of smooth muscle to the aorta and pulmonary trunk, 
the specifics of septation are a matter of controversy. In embryological terms, the conotruncus 
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Figure 4. Acrylic resin cast analysis of chicken and mouse pharyngeal arch arteries. A,D) Acrylic resin cast 
of the pharyngeal arch arteries from a 10 day in ovo chicken embryo. Red acrylic resin was injected into 
the left ventricle and blue resin in the right ventricle. The pulmonary trunk (PT) has become dissociated 
from the ascending aorta during processing and is shifted up artificially in this image. D) Labeled sketch 
of the arteries shown in A. Note that the first branch from the ascending aorta(Ao) is the left brachio­
cephalic artery (Ibca) followed by the right brachiocephalic artery (rbca). The carotid and subclavian 
arteries branch from the brachiocephalic arteries. There is both a left (Ida) and right (rda) ductus arte­
riosus in chickens. B,E) Single color resin injection demonstrating normal pharyngeal arch structure in 
a neonatal mouse. E.) The pulmonary trunk (PT) arises anterior to the aorta (Ao) and here is backfilled 
through the single left sided ductus arteriosus (da). The first branch from the aortic arch is the single 
brachiocephalic artery (bca). The right subclavian (rsa) and right common carotid (rca) branch from the 
brachiocephalic. The left common carotid (lea) and left subclavian (Isa) arise directly from the aortic arch 
as independent branches. The pulmonary arteries (pa) originate from the pulmonary trunk. C,F) Abnor­
mal arch patterning in a Semaphorin3C null embryo. F) This embryo has persistent truncus arteriosus 
(PTA) and an interrupted aortic arch type B between the left common carotid (lea) and left subclavian 
(Isa) arteries. The ductus arteriosus is greatly distended and serves as the vascular channel for systemic 
circulation in this embryo. Pulmonary arteries (pa) arise from the ductus arteriosus. 

is generally synonymous with "outflow tract". The conus refers to the proximal portion below 
the level of the valves while the truncus refers to the region above the valves and below the 
aortic sac (Fig. 6A). The aortic sac is the nonmuscuiarized connection between the conotruncus 
and the arch arteries. Septation involves a twisting or "spiraling" of the outflow tract, fusion 
of the endocardial cushions and significant investiture of the cushions with cardiac neural 
crest.'^^' ^' ^ One popular model argues that the neural crest form an aorticopulmonary septum 
in the roof of the aortic sac that connects to prongs of neural crest that invade the truncal 
cushions (Fig. 6). In this model the aorticopulmonary septum processes down the truncus 
separating the aorta and pulmonary artery. O the r investigators argue that there is no 
aorticopulmonary septation complex and that separation of the vessels is achieved through 
cushion fusion and neural crest mediated formation of the facing walls of the aorta and pulmo­
nary artery. The conus region below the level of the valves is also extensively remodeled, and 
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Figure 5. Timeline of cardiac neural crest migration in the chicken and mouse. Timelines for cardiac 
neural crest migration are presented indicating neural crest position and cardiovascular patterning events 
relative to developmental age. The black arrowhead on the chick timeline indicates the timing of neural 
crest ablation at Hamburger and Hamilton stage 9-10. The black arrow indicates the onset of detectable 
myocardial dysfunction at H&H stage 13-14. Cardiac neural crest do not contact primary myocardium 
until H&H stage 23-24. Cardiac neural crest cells colonize the mouse outflow tract around El0.5 and 
septation is completed by El3.5. 

is likely to be involved in an additional contribution of myocardial cells (myocardialization) 
from the inner curvature of the heart. ' Remodeling of the conus causes a change in position 
of the aorta and pulmonary trunk resulting in a shift from side by side alignment to the correct 
anterior-posterior positioning. The process of rearrangement and valve placement is called 
aortic wedging (Fig. 6B).2^'2^The aortic valve comes into fibrous continuity with the mitral 
and tricuspid valves, whereas the pulmonary valve is elevated by a band of muscle. Defective 
remodeling of the conus can produce malalignment in the presence of a fully septated truncus 
indicating that alignment and septation are independent processes. 

Myocardial Dysfunction, Elongation, Alignment and the Secondary 
Heart Field 

Myocardial dysfunction is observed in cardiac neural crest ablated chicken embryos. Fol­
lowing neural crest ablation, the heart has reduced ejection fraction and ventricular dilation 
accompanied by reduced calcium current and dysregulated excitation-contraction coupling. 
Similar myocardial dysfunction has been observed in the Splotch mouse. ' ^ Myocardial dys­
function is too early to be explained by direct neural crest interaction with myocardium in the 
heart tube (Fig. 5). Another unexplained outcome of neural crest ablation is the failure of 
outflow tract elongation that resiJts in altered looping. Classic embryological experiments in 
the chicken embryo demonstrated that outflow tract elongation occurs through addition of 
cells from outside of the heart tube. ^ The issue of outflow tract elongation has recently been 
revisited using a variety of molecular markers. These experiments demonstrated that elonga­
tion is due to cell addition from a population of anterior pharyngeal splanchnic mesoderm 
(Fig. 7)."̂ '̂̂ ^ In the chicken this mesoderm popidation gives rise to the conotruncus and is 
called the secondary heart field.^^ In the mouse a similar region of pharyngeal mesoderm gives 
rise to the conotruncus and right ventricle and has been called the anterior heart-forming 
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Figure 6. Diagram of neural crest mediated septation of the outflow tract and aortic valve wedging. A) 
Illustration of the popular model of outflow tract septation involving an aorticopulmonary septation 
complex and spiraling ridges of conotruncal cushions. B) Diagram of aortic valve wedging. The aortic valve 
is wedged between the mitral and tricuspid valves and the valves are in fibrous continuity with no intervening 
myocardium (pink). Panel A is from: Waldo KL et al. Dev Biol 1999; 208(2):307-323;'^ 1999 with 
permission from Elsevier. Panel B is from: Hutson MR, Kirby ML. Birth Defects Res C Embryo Today 2003; 
69(0:2-13;^^ ©2003 with permission from Wiley-Liss, Inc., a subsidiar of John Wiley & Sons, Inc. 

field"^ '̂̂ ^ (reviewed in ref. 52). Loss of early reciprocal signaling between the cardiac neural 
crest and secondary heart field mesoderm in the pharynx presumably explains the myocardial 
dysfunction phenotype in neural crest deficient embryos, and this signaling in chickens ap­
pears to involve fibroblast growth factors. Outflow tract elongation is deficient in ablated 
embryos due to lack of cell addition from the secondary heart field. It has also been proposed 
that continuous addition of cells to the truncus provides a mechanical force important for 
wedging.^^'^ Neural crest thus affects both elongation and septation of the outflow tract as 
well as alignment of the great vessels by influencing the elaboration or differentiation of cells 
from the secondary/anterior heart field. 
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Figure 7. Comparison of the extent, location and contribution of cells from the anterior or secondary heart 
field to the outflow tract and right ventricle. A) Lateral view of an E9.5 embryo and ventral view of an E l l .5 
mouse heart demonstrating the origin and contribution of the "anterior hean field" (red) to the conotruncus 
and right ventricle as described by Kelly et al using an FgflO-lacZ mouse line.^° B) Lateral view of a chick 
stage 16 embryo and ventral view of a stage 22 heart demonstrating the origin and contribution of the 
"anterior heart field" (blue) mesoderm to the distal con us and truncus as defined by Mjaatvedt et al.̂ ^ C) 
Lateral view of the "secondary heart field" (yellow) as described by Waldo et al. at stage 14 in the chick and 
limited contribution of secondary heart field mesoderm to the distal truncus myocardium of the heart at 
stage 22.^^ D) Ventral view of anE9.5 mouse (comparable to stage 12 chicken) demonstrating relationship 
of the heart and pharyngeal arches (ph). E) Ventral view of the embryo in D with the heart removed 
demonstrating the overlap in described secondary or anterior heart field pharyngeal mesoderm. Red ovals 
are sites of heart connection to the vasculature at the arterial (upper oval) and venous (lower flat oval) poles. 
Abbreviations: Aos,aortic sac; T,truncus; c, conus; RV,right ventricle; LV, left: ventricle. Modified from: 
Abu-Issa Ret al. Dev Biol 2004; 272(2):281-285;^^ ©2004 with permission from Elsevier. 

Molecular Pathways 
Numerous signaling pathways and individual genes have been implicated in cardiac neural 

crest induction, migration and diflFerentiation following the observation of outflow tract or pha­
ryngeal arch artery malformations in homozygous null mouse embryos. Analysis of the regulation 
of gene function and signaling pathways in the cardiac neural crest is complicated by the complex 
cellular interactions associated with normal cardiac morphogenesis. Defective development, or 
disruption of signaling pathways in any of these cell populations can result in cardiovascular 
abnormalities consistent with disrupted cardiac neural crest. The use of tissue specific-Cre mouse 
lines for conditional gene inactivation in the mouse is beginning to unravel the cell-specific gene 
requirements during neural crest mediated cardiovascular remodeling. Here we focus on a subset 
of genes that have known impact on cardiac neural crest mediated cardiovascular remodeling. 
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Mouse Model of Cardiac Neural Crest Deficiency 
The Splotch mouse is the most extensively studied mouse model of cardiac neural crest 

dysfunction. The first Splotch allele was identified in 1954 and is named for the white belly spot 
apparent in heterozygous mice.^ '̂̂  Homozygous Splotch mice die in utero by day 14 and 
resemble the chick neural crest ablation phenotype of persistent truncus arteriosus, pharyngeal 
arch patterning defects and hypoplasia or aplasia of the thymus and parathyroid glands. 
The exact defect in cardiac neural crest in Splotch embryos is controversial. Splotch alleles repre­
sent mutations in the Pax3 gene, a member of the paired box family of transcription fac­
tors. ̂ ^ Pax3 is known to regulate cell migration through transcriptional regulation of the 
scatter factor receptor c-met^^ Transgenic expression o'iPaxd in neural crest cells in Splotch null 
embryos rescues the cardiovascular defects arguing for a cell autonomous function. Cardiac 
neural crest cells are formed and colonize the pharyngeal arches and conotruncal cushions in 
Splotch null embryos, albeit in reduced number and lacking proper positional identity arguing 
against a primary migration defect. However, several investigators have suggested a delay in 
cardiac neural crest emigration from the neural tube that may be consistent with a role of Pax3 
in regulating factors required for migration. '̂ ^ It has also been proposed that cardiac neural 
crest cell numbers in Splotch may be decreased due to a failure of expansion of the neural crest 
stem cell population. Inappropriate or precocious differentiation would result in a decrease in 
the total number of neural crest cells. This role in stem cell regulation would be consistent 
with the recent observation that Pax3 in melanocyte stem cells plays a dual role in initiating 
lineage restriction and maintenance of the lineage restricted stem cell population. ^ A similar 
role is played by the related paired box gene Pax7 in skeletal muscle stem cells. ' The relative 
importance of Pax3 in mediating lineage restriction and maintenance of the cardiac neural 
crest stem cell niche to the observed Splotch phenotypes remains to be determined. 

Neurotrophins 
The neurotrophins (nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) 

neurotrophin 3 (NT-3) and neurotrophin 4/5 (NT4/5) are a family of growth factors that 
regulate neural survival and differentiation. Neurotrophins signal through the Trk class of 
tyrosine kinase receptors. ' Neurotrophin-3 {NT-3) and its receptor trkCsire expressed in a 
subset of neural crest, in the neural crest-derived subendothelial mesenchyme of the aorta 
and pulmonary trunk, and in the neurons of the cardiac ganglia. NT-3 is also expressed 
by some endothelial cells. Knockout of the NT-3 or it's receptor trkC results in cardio­
vascular defects including atrial and ventricular septal defects, abnormal valves and conotruncal 
defects including persistent truncus arteriosus and Tetralogy of Fallot at low penetrance. 
Neurotrophins have been proposed to function in maintenance and lineage restriction of the 
neural crest stem cell niche. Youn and colleagues analyzed trkC null cardiac neural crest cells 
in explant culture.^^ Three types of neural crest stem cells were identified in explant culture. 
Cardiac neural crest stem cells (CNC-SC) were able to self renew and could assume any 
terminal fate including neurons, Schwann cells, pigment cells, chondrocytes and smooth 
muscle. Restricted cardiac neural crest cells (CNC-RC) form mostly smooth muscle cells, 
and do not form pigment cells or neurons. Smooth muscle stem cells (CNC-SmC) were 
committed to the smooth muscle lineage with little proliferative capacity.^^ Explants from 
trkC null embryos contained more lineage-restricted stem cells (CNC-RC) and reduced lev­
els of uncommitted neural stem cells (CNC-SC). The decrease in uncommitted stem cell 
numbers in ^r^C null embryos suggests that neurotrophins function to retain pluripotency in 
the cardiac neural crest stem cell niche. 

Forkhead Transcription Factors FoxCl/FoxC2 
Foxcl/Mfl and Foxc2/Mfhl are closely related forkhead/winged helix transcription factors. ' 

Both genes are expressed in head mesoderm, pharyngeal arch mesenchyme and endothelial 
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cells and Foxcl is expressed in cardiac neural crest. Both Foxcl and Foxc2 nulls exhibit cardio­
vascular defects including coarctation and interruption of the aortic arch and ventricular septal 
defects. ' Foxcl/Foxc2 compound heterozygote and homozygote embryos display more se­
vere cardiovascular defects indicating that these genes compensate for one another and that 
function is dose dependant. Migration of cardiac neural crest cells and expression of neural 
crest markers appears normal in Foxcl and Foxc2 nulls suggesting that the cardiovascular de­
fects observed are not due to a cell-autonomous neural crest defect.^^ Foxcl and Foxc2 can 
r^ulate expression of theT-box transcription factor Tbxl in tissues where they are coexpressed. 
Thxl is a transcription factor implicated in the etiology of DiGeorge syndrome, the most 
common congenital heart syndrome in humans. '̂ ^ Tbxl has an important non 
cell-autonomous role in regulating cardiac neural crest maintenance and differentiation through 
a signaling cascade involving Fibroblast growth factor(Fgf) ligands. 

Tbxl, Fibroblast Growth Factors and DiGeorge Syndrome 
DiGeorge syndrome, velocardiofacial syndrome, and conotruncal anomaly face syndrome 

(DiGeorge spectrum disorders) are the most common human congenital cardiovascular disor­
ders affecting as many as 1 in 4000 births. The majority of patients with these syndromes have 
chromosome 22ql 1 deletions. ̂ '̂ These patients exhibit an incompletely penetrant pheno-
type including hypoplasia of the thymus and parathyroid, craniofacial and skeletal abnormali­
ties, cardiac abnormalities, and speech and learning disabilities. Common heart defects include 
interrupted aortic arch type B, persistent truncus arteriosus, tetralogy of Fallot, tetralogy of 
Fallot with pulmonary atresia, and posterior malalignment ventricular septal defect. These 
defects are consistent with neural crest dysfunction, and the DiGeorge spectrimi disorders have 
long been considered "neurocristopathies". Mouse models of DiGeorge syndrome have been 
developed by deletions on mouse chromosome 16 in regions syntenic to human chromosome 
22 (the DiGeorge critical region) ̂ '̂̂ ^ and these models helped to identify the transcription 
factor TBOXl (TBXl) as a candidate gene. 

Tbxl is one of the genes contained within the DiGeorge critical region in hiunans and 
mice. Targeted inactivation of Tbxl results in cardiac defects (similar to those seen in patients 
with 22ql 1 deletions) in mice heterozygous or homozygous for the mutations. ' ' Recently, 
three independent cases of TBXl mutations in human patients with conotruncal anomaly face 
syndrome were reported^^ confirming that TBXl is a major genetic determinant in the DiGeorge 
spectrum disorders. Tbxl is expressed in pharyngeal mesoderm and endoderm but not in neu­
ral crest cells indicating that the neural crest defects are non cell-autonomous.^^ Tbxl is also 
expressed in precursors of the secondary heart field suggesting a cell autonomous role in 
conotruncal patterning. 

Fibroblast growth factor {FgfS and FgflO) signaling has been reported as a critical mediator 
of aortic arch development and conotruncal septation downstream of Tbxl. Fgf3 and FgflO 
expression is down regulated in Tbxl nulls, and FgfS hypomorphic embryos exhibit cardiovas­
cular defects reminiscent of Tbxl nulls. Neural crest cells migrate normally in FgfS hypomor-
phs, but there are increased levels of apoptosis of neural crest cells within the pharyngeal 
arches.^^'^ This suggests that Fgf8 expression in the pharyngeal arches is required for neural 
crest cell survival. Tissue specific inactivation of FgfS in the ectoderm results in defective pha­
ryngeal arch artery patterning.^^ Deletion of FgfS in the Tbxl expression domain results in 
defects of conotruncal septation and malpositioning of the proximal great vessels. Thus, FgfS 
is required both for neural crest survival/differentiation and in the secondary heart field. Hu et 
al recendy identified an FgfS enhancer that is dependent on Tbxl in vivo for regulating expres­
sion specifically in the cardiac outflow tract, but were unable to show direct transcriptional 
activation by TbxlP^ Direct transcriptional regulation of FgflO by Tbxl has recently been 
demonstrated.^^ Determination of the relative roles of i^;^ and FgflO in cardiovascular pat­
terning is an area of active research. 
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Retinoic Acid 
It has long been known that too much or too Uttle Vitamin A, or the biologically active 

form retinoic acid, causes neural crest dependent cardiovascular defects. ̂ ^̂ '̂ ^̂  Retinoic acid(RA) 
is synthesized from retinol by the action of retinol and retinal dehydrogenases. In mouse the 
enzyme retinaldehyde dehydrogenase 2 (RALDH-2) is apparendy the primary rate-limiting 
enzyme for RA synthesis. Deletion of RALDH-2 recapitulates the full spectrum of RA defi­
ciencies. RA signals through heterodimers of retinoic acid receptors (RAR a, P and y) and 
retinoid X receptors (RXR a, P and y).^^^ RARs can be aaivated by RA or 9-cis RA^^^ whereas 
only 9-cis RA efficiently activates RXRs.^^^ Further complexity is generated through different 
receptor splice isoforms. JIA also binds to cellular retinol binding proteins I and II and cellular 
retinoic acid binding proteins I and II and this binding may regulate RA signaling by decreas­
ing free RA in the cell.^^^ 

Stereotypical retinoic acid deficient phenotypes are only observed in compound RAR (a l p2, 
aP2, ay) nulls indicating functional receptor redundancy. ̂ ^̂  The cardiovascular defects ob­
served following retinoic acid exposure or compound receptor knockout include persistent 
truncus arteriosus, interrupted aortic arch and double oudet right ventricle. These defects are 
consistent with defects in the cardiac neural crest. ̂ ^̂  Neural crest fate mapping analysis in 
RARal/RARp compound null embryos demonstrated normal migration and differentiation of 
cardiac neural crest in animals exhibiting persistent truncus arteriosus.^^^ Wntl-Cre mediated 
tissue specific RAR deletion does not result in cardiovascular defects suggesting that RA effects 
on the neural crest are non cell-autonomous.^^^ Cardiovascular defects may arise due to altered 
signaling between the cardiac neural crest and a retinoic acid responsive neighboring cell popu­
lation. RA regulation of Fibroblast growth factor ligand expression may explain the observed 
cardiovascidar defects. Fgf3 is expressed in the pharyngeal ectoderm and endoderm and is 
required for maintenance or differentiation of both neural crest and secondary heart field cells. 
Retinoic acid has been shown to directly activate expression from an Fgf3 genomic enhancer in 
vitro^^^ and to induce FgflO expression in vivo.^ ^ Both Fgfs are proposed to have a non 
cell-autonomous role in regulating neural crest function in the pharyngeal arches and 
conotruncus. 

Cell-Cell Contact (Connexins) 
Connexin 43, also known as alpha! connexin, is a gap junction protein expressed in cardiac 

neural crest.^^^ Gap junctions are membrane channels that allow passage of low molecular 
weight molecules and ions between cells. Dye coupling experiments have shown that cardiac 
neural crest cells maintain inter-cell continuity while migrating. Cx43 is involved in cardiac 
neural crest migration. Both increase and decrease of Cx43 levels in cardiac neural crest result 
in outflow patterning defects. ̂ ^ ' Deletion of Cx43 results in outflow tract obstruction and 
conotruncal defects. Loss of Cx43 expression or expression of a dominant negative form of 
Cx43 in cardiac neural crest results in decreased migration and decreased cardiac neural crest in 
the outflow tract.^ '̂ ^̂  Overexpression of Cx43 causes the opposite effect with increased cell 
motility and more cells in the outflow tract. ̂  ̂  These results suggest a primary role for Cx43 in 
regulating neural crest cell motility. In addition to neural crest, Cx43 is also expressed in the 
pro-epicardium and is required for normal formation of the coronary arteries. Cx43 deficient 
proepicardial cells display increased proliferation and decreased migration rates in culture. ̂ ^̂  

Platelet Derived Growth Factor (PDGF) 
Platelet-derived growth factors are broadly expressed growth factors that have been implicated 

in regulation of cell migration, survival and proliferation. ^̂  Interest in PDGF stems from the 
observation that the PDGF a receptor (PDGFRa) is deleted in the Patch mouse Patch (Ph).^^^ 
Heterozygous Patch mice exhibit defective melanocyte migration causing a white belly spot. Patch 
homozygotes exhibit PTA, interrupted aortic arch, decreased thymus and other defects associated 
with deficient cardiac neural crest. ̂ ^̂  Homozygous null PDGFRa mice phenocopy Patch} ^ 
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While the Patch deletion also encompasses some enhancers for the c-kit gene, similarity in pheno-
type su^ests that loss oiPDGFRa is the primary defect. Tissue specific inactivation o£ PDGFRa 
in neural crest causes PTA and abnormal patterning of the right subclavian artery. ̂ '̂ ^ However, 
the exaa role of PDGF signaling in neural crest is unclear. There are no obvious defects in migra­
tion, proliferation or survival of cardiac neural crest in conditional null animals and patterning 
defects are seen in only slighdy more than 50% of conditional null embryos. 

Endothelin 
Endothelins (ET) are a family of small signaling peptides {ET-l, ET-2y ET-3)}^^T\iQ active 

forms of Endothelin are generated from large precursor proteins through the activity of 
endotheUn converting enzyme-1 and-2 {ECE-1 and ECE-2)}^^ Endothelins signal through 
two G-protein coupled receptors named ET-A and ET-B. ET-A binds ET-l and ET-2 but not 
ET-3.^ '^^ ET-A and its receptor ET-1 are expressed in complimentary patterns. In the mouse, 
ET'l is expressed in the endothelium of pharyngeal arch vessels and ET-A is expressed on 
migratory neural crest and in neural crest derived mesenchyme of the pharyngeal arches. 
Mice lacking the ligand ET-1, the receptor ET-A, or the converting enzyme ECE-1 have defec­
tive pharyngeal arch and conotruncal patterning. The converting enzyme ECE-1 is expressed 
in both endothelium and mesenchyme in the arches.^ '^^^The most common malformations 
in ECE-1 and ET-A null embryos are type B aortic arch interruption and absent right subcla­
vian artery. Outflow tract defects include overriding aorta, double oudet right ventricle and 
rare cases of PTA. Most embryos also have a peri-membraneous ventricular septal defect. Car­
diac neural crest appear to migrate normally in ECE-1 and ET-A null embryos and cardiovas­
cular defects appear to result from deficient paracrine signaling between pharyngeal arch en­
dothelial cells and neural crest derived mesenchyme.^ ^ 

TGPP Superfamily Members 
Bone morphogenetic proteins (BMP) and transforming growth factor beta (TGFp) are 

members of the transforming growth factor beta superfamily of signaling molecules and are 
important mediators of embryogenesis.^^^'^^^ TGPP family ligands signal through heteromeric 
serine-threonine kinase receptor complexes of a Type II receptor {TBR2) and a Type I receptor 
(activin-like kinase 5 (AlkS), also known as TBRl)}^^'^^^ BMPs similarly utilize a single BMP 
type 2 receptor {Bmpr2) but multiple type I receptors (Alks) to transduce signals from different 
ligands. One type I receptor, Alkl appears to be utilized by both TGFp and BMP in certain 
celltypes.^^^'^^^ 

There are three Tgfp ligands (Tgfpi, Tgfp2, and Tgfp3). Tgfpl null embryos die in early 
gestation from a defect in volk sac vasculogenesis.^^^ Tgfp3 knockouts die shortly after birth 
and display cleft palate.^ Knockout of the ligand TGFp2 results in cardiovascular defects 
including DORV, short or absent brachiocephalic artery, and retroesophageal right subclavian 
artery.^^"Bodi Type II TGpp {TBR2) receptor and Type I TGFp (TBRl) receptor null mice 
die before ElO from defective vascularization of the yolk sac and placenta. ' Wnt-Cre 
mediated deletion of TBR2 in neural crest cells results in PTA, ventricular septal defects, pha­
ryngeal artery remodeling defects as well as defects in the thymus, parathyroids and craniofacial 
structures. ^ Neural crest migration and survival appear normal in conditional TBR2 nulls 
but neural crest fail to form smooth muscle. Traditional knockout of the bi-functional Alk2 
receptor results in embryonic lethality at gastrulation. Wntl-Cre mediated deletion o£Alk2 in 
the neural crest results in PTA and abnormal pharyngeal arch maturation with right ventricular 
hypertrophy. Cardiac neural crest migration is decreased and smooth muscle differentiation 
of neural crest is impaired mAlk2 conditional nulls suggesting xh2.tAlk2 may be the ftmctional 
Type I Tgfp receptor in cardiac neural crest. ̂ "̂^ 

BMP signaling is known to play a role in induction and maintenance of the neural crest. 
Double knockout of Bmp63ind Bmp7le2ids to cardiac outflow tract, valve and septal defects, 
and expression of a hypomorphic Bmpr2 causes an interrupted aortic arch with an unusual 
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subvaJvular PTA.^^ Neural cresr specific deletion of the BMP receptor lA (Bmprla also called 
Alk3) causes shortened cardiac outflow tract, defective septation and acute heart failure with 
reduced proliferation of the myocardium. ̂ ^ These defects are consistent with the previously 
described indirect effect of reciprocal signaling from the cardiac neural crest to the secondary 
heart field and not a primary defect in neural crest differentiation. Nkx2.5Cre deletion of 
BMP4 (a Bmprla ligand) in the caudal pharyngeal arches, splanchnic mesoderm and truncus 
results in defective septation, aortic arch interruptions, abnormal arch artery remodeling with 
decreased smooth muscle recruitment, decreased myocardial differentiation in the truncus, 
and hypoplastic conotruncal cushions.^ These defects imply a multi-tissue role for BMP4 in 
cardiac neural crest, secondary heart field and cushion tissues. BMP7 expression in the condi­
tional BMP4 mutant embryos may prevent more severe conotruncal defects since BMP7 null 
embryos with reduced levels of BMP4 have a shortened outflow tract consistent with a BMP 
requirement in the secondary heart field. 

Semaphorins 
Semaphorins were originally identified as neural pathfinding molecides providing predomi-

nandy repulsive axon guidance cues.^ ^ It has subsequendy been appreciated that semaphorin 
signaling can be attractive or repulsive depending on the cell type and environmental con­
text. Class 3 semaphorins are secreted ligands known to signal through a heteromeric com­
plex of class A plexins and either neuropilin-!(«/>«-/) or neuropilin-2 (npn-2)} Semaphorin 
3C (Sema3C) null embryos die at birth of interrupted aortic arch and PTA (Fig. 4C).^^^ SemadC 
is expressed inliie conotruncal myocardium and pharyngeal arch mesenchyme at El0.5. The 
Semaphorin receptor PlexinA2 is expressed in cardiac neural crest suggesting a role for semaphorin 
signaling in guidance during migration.^ Decreased levels of cardiac neural crest are observed 
in the conotruncal cushions oiSe7na3C n\A\sy consistent with a defect in neural crest cell migra­
tion. However, normal levels of neural crest were observed in the pharyngeal arches in Sema3C 
nulls indicating that the Sema3C phenotype was not due to a global defect in neural crest 
homing or migration. Recent experiments suggest an additional role for class 3 semaphorin 
signaling through plexin Dl in endothelial cells of the pharyngeal arch arteries. '̂ ^^ 

Pitx2 and Laterality 
One of the enduring mysteries of pharyngeal arch patterning is how stereotyped left sided 

(mouse) or right-sided (chicken) asymmetry is achieved. ̂ ^̂  The bicoid-related homeodomain 
transcription factor Pitx2 plays a critical role in directing asymmetric cardiovascular remodel­
ing (for review see re£ 152). Three isoforms of Pitx2 are produced by alternate splicing and 
alternate promoter use but only the Pitx2c isoform is expressed asymmetrically in the develop­
ing heart. In the cardiac crescent stage Pitx2c is expressed only in the left heart field. At the 
linear and looped heart stages Pitx2c retains left sided expression in the entire heart tube and 
extending into the body wall at both the arterial and venous poles. Between E9.5 and El0.5 
Pitx2c is asymmetrically expressed in the left pharyngeal arch mesoderm, splanchnic meso­
derm and outflow tract myocardium. This left-sided expression suggests a role for the Pitx2c 
isoform in asymmetric pharyngeal arch patterning. ̂ ^̂  

Pitx2 expression is regulated by a wnt signaling pathway involving disheveled 2{Dvl2) and 
jj-catenin. ' The global knockout of all three Pitx2 isoforms (Pitx2abc) causes right atrial 
isomerism (RAI), PTA, DORV, and atrial and ventricular septal defects. ̂ ^̂  Knockout of Dvl2 
or Wntl-Cre mediated deletion of P-catenin results in loss of expression of all Pitx2 isoforms. ̂ ^ 
Global loss of Pitx2 expression results in decreased numbers of cardiac neural crest cells due to 
an arrest in proliferation. ' Thus, Pitx2 has a cell autonomous effect in regulating cardiac 
neural crest proliferation. 

Pitx2c null embryos exhibit most of the cardiovascular phenotype of the Pitx2abc null, but 
do not exhibit PTA. In addition, Pitx2c nulls display pharyngeal arch patterning anomalies 
seen only with this knockout. Null Pitx2c mice display patterning defects including right-sided 
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aorta and double aortic arch, although apparendy normal levels of cardiac neural crest are 
observed in the pharyngeal arches and outflow tract. These mutations are believed to result 
from a loss of reciprocal signaling between the cardiac neural crest expressing all three Pitx2 
isoforms and pharyngeal mesenchyme expressing only Pitx2c.^^^ The laterality pathway down­
stream of Pitx2 is imknown, however the asymmetric expression of Semaphorin 3C in the 
conotruncus is mediated by Pitx2c.^^^ 

Summary 
Our understanding of neural crest contribution to cardiovascular development has increased 

gready since the early observations of quail cells in the great vessels of chimeric chicken em­
bryos. The primary challenges now facing the field involve deciphering the complex reciprocal 
signaling events between the cardiac neural crest and the myriad cell populations with which 
they interact, and in deciphering the pathway relationships between the ever expanding list of 
genes with cardiac neural crest associated phenotypes. There exists a surprisingly large number 
of knockout mice with "cardiac neural crest defects" in which there is no demonstrable defect 
in migration, siu^ival or differentiation of the neural crest. The defects in these mice must lie in 
either poorly understood tissue layer interaaions, or in as of yet undiscovered aspects of neural 
crest biology. The generation of new tissue specific Cre-recombinase mouse lines and condi­
tional alleles will be critical for the careful molecular dissection of tissue specific gene function 
during cardiovascular patterning. The recent realization of the importance of reciprocal signal­
ing between neural crest and the secondary/anterior heart field demonstrates that many impor­
tant aspects of cardiac neural crest biology remain to be elucidated. 
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