
INTRODUCTION

Image analysis is the process of making quantitative structural
and functional measurements from an image. With the widespread
availability of three-dimensional (3D) microscopy, coupled with a
growing trend towards quantitative studies, there is an increasing
need for 3D image analysis. The goal of this chapter is to describe
3D image analysis techniques, with an emphasis on highly auto-
mated methods.

Figure 15.1 shows two examples of 3D image analysis. In the
first (top row), confocal microscopy is used to image cell nuclei
from the rat hippocampus using a DNA stain, and the transcription
products (mRNA) of an immediate early gene (Arc) are labeled by
fluorescence in situ hybridization (FISH) (Guzowski et al., 1999;
Guzowski and Worley, 2001; Vazdarjanova et al., 2002). The table
on the right is a partial display of the results of the 3D image analy-
sis. It consists of a table listing all the nuclei, their morphometric
features, and the amount of FISH signal associated with each
nucleus. The second example (lower row) illustrates 3D analysis
of a dye-injected neuron imaged by confocal microscopy (So et
al., 2000; Brown et al., 2001; Al-Kofahi et al., 2002; Jain et al.,
2002). Various windows in this screen view are from a software
system (Neuroexplorer, Microbrightfield, Inc.) that indicates 
automatically generated traces, branch points, and morphological
measurements.

The motivation for 3D image analysis is to achieve correct
morphometry of biological structures without the errors associated
with projecting onto a two-dimensional (2D) plane. For example,
it is difficult to distinguish overlapping objects from 2D projec-
tions, whereas 3D imaging provides richer segmentation cues.
Many structures, such as neurons and vasculature, are often thicker
than the depth-of-field of the microscope, necessitating 3D
imaging and analysis. Often, non-planar regions are of interest. For
such cases, optical sectioning via confocal microscopy better pre-
serves 3D spatial relationships compared to physical sectioning,
and can therefore lead to more accurate morphometry, and 
correct topological analysis. Finally, 3D imaging can often result
in faster and more convenient sampling of tissue for large-scale
studies.

A particular emphasis of this chapter is automated 3D image
analysis. This term is understood to imply that the amount of
manual image analysis is minimal, typically in the 0% to 10%
range. These methods are distinct from manual methods, whether
or not computer assistance is involved. In other words, computer-
assisted methods are not considered to be automated. For example,
sophisticated software/hardware packages are available for tracing
neuronal processes using a computer pointing device such as a
tablet or mouse (Capowski, 1989; Glaser and Glaser, 1990). Often,
these packages are enhanced with visualization tools such as stereo
projections and devices such as the camera lucida (Glaser and
Glaser, 1990; Marko and Leith, 1992). These are examples of 
computer-assisted, but not automated, image analysis. Computer-
assisted methods are very appropriate when a small number of
images need to be analyzed, or if the complexity of the scene is
too high for successful automated analysis. On the other hand,
there are software packages available that accept the 3D digital
image file as input, and generate as output another computer file
representing a tracing of the neuron (Al-Kofahi et al., 2002). This
output may require modest amounts of oversight and/or editing.
This latter type of software is appropriately termed automated and
is needed when a large number of images must be analyzed.

Stereology is an important class of computer-assisted image
analysis methods (Howard and Reed, 1998; Russ and DeHoff,
2000; Mouiton, 2002). In these methods, the manual observer per-
forms a systematic subsampling of the image data using statisti-
cally motivated rules and assumptions. For example, it is assumed
that the tissue of interest has certain uniformity properties. In con-
trast, the methods of interest in this chapter are designed to analyze
each and every object in a given image, without assumptions.

Although manual image analysis methods are, in principle, far
more powerful than automated methods, due to the inherent supe-
riority of the human visual system over any algorithm, there are
many reasons for seeking highly automated methods. While the
human visual observer excels at pattern recognition/classification
tasks, s/he is often poor at detailed scoring tasks. It is common for
the human observer to miss objects, score objects twice, and
produce unsteady traces (Jaeger, 2000; Al-Kofahi et al., 2002).
Indeed, it is common for the same observer to produce different
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FIGURE 15.1. Two illustrations of 3D image
analysis. In the first example (top row), con-
focal microscopy is used to image cell nuclei
from the rat hippocampus using a DNA stain,
and fluorescence in situ hybridization (FISH)
is used to image the transcription products
(mRNA) of an immediate early gene (Arc).
The cell nuclei are segmented, and FISH
activity is measured relative to the segmenta-
tion, generating a wealth of measurements.
The table on the right is a partial display of
the results of 3D image analysis. In the second
example (lower row), a dye-injected neuron is
traced automatically, generating a wealth of
topological and morphological measurements
displayed in tables and dendrograms (image
courtesy: Microbrightfield, Inc., USA).

markups for the same image at different times. Computer automa-
tion makes sense when a large number of images must be ana-
lyzed. It can eliminate the tedium and labor associated with manual
methods. It is ruthlessly consistent compared to manual methods,
eliminating the subjectivity inherent to manual analysis. Faster
computers make automated methods faster, and they can work
round the clock.

Automated methods are free from many limitations of manual
analysis. For example, manual methods are limited in their ability

to process 3D data because the manual observer is limited to visual
observation of stereo pairs, which are merely a projection of the
3D reality of interest. Occasionally, some observers have visual
handicaps, and most observers are susceptible to optical illusions.
Finally, if a study needs to be redone, it is much easier to run mod-
ified software rather than ask manual scorers to repeat a tedious
task. Overall, manual methods are limited to small numbers of
images, are unavoidably subjective, and are limited in the handling
of three-dimensionality.
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TYPES OF AUTOMATED IMAGE 
ANALYSIS STUDIES

Figure 15.2 illustrates the most common type of image 
analysis–based hypothesis testing study or assay. In this type of
study, tissue samples are subjected to a condition of interest 
(e.g., exposed to a biochemical). As a reference, normal (untreated)
tissue samples are also obtained, maintaining other conditions 
the same. Confocal microscopy is performed to generate batches
of 3D images. Image analysis on these batches results in 
numerical tables representing cytometric and/or histometric 
data. Statistical hypothesis testing can be performed on these 
data. We are interested in discovery and quantification of all sta-
tistically significant differences between the treated and untreated
samples. The result of hypothesis testing and an understanding 
of the nature of changes is a powerful source of biological 
insight.

Figure 15.3 illustrates a type of study that is now feasible,
thanks to advances in methods and apparatus for live tissue
imaging (in vitro or in vivo), as exemplified by the data in Figure
15.4. In this type of study, one collects a temporal series of images
from the same region. In addition to statistical analysis of mor-
phometric data as a function of time, it is possible to register the
3D time-series images, and identify the changes in a direct manner.

The types of changes that may be caused by the tested condi-
tions can be diverse, and can occur at multiple levels. At the lowest
level, molecular and subcellular effects can be detected by fluo-
rescent tagging (Valeur, 2002). At the cellular level, changes can
take the form of increasing/decreasing cell counts, and changes in
morphometric features of cells. Finally, subtle high-level and/or
long-range changes in tissue architecture can be analyzed by mon-
taging the results of image analysis from a large number of over-
lapping windows across large specimens (Becker et al., 1996). The
diversity and complexity of these changes define the breadth and
scope of image analysis problems.

FIGURE 15.2. Illustrating the role of image analysis systems in hypothesis testing studies. Test and normal (control) tissue are imaged to generate batches of
3D images. Image analysis systems process this volumetric data to generate concise tables of measurements that are subjected to statistical analysis.

FIGURE 15.3. Illustrating the methodology for hypothesis testing with time-series data. In this case, successive images are registered (aligned) and compared.
The registration algorithms usually, but not always, operate on the output of the image analysis results. Registered images (or summarized image analysis results)
are compared to generate tables of change measurements that are analyzed statistically.
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COMMON TYPES OF BIOLOGICAL 
IMAGE OBJECTS

Notwithstanding the diversity of changes that may be of interest,
it is advantageous to identify and study certain generic types of
image objects, and common image analysis tasks associated with
these object types. Practically speaking, an object is really a col-
lection of voxels representing a biological structure imaged by the
microscope. Three of the most common object types in the context
of confocal microscopy are listed below.

1. Blob-like objects: The labeled cell nuclei in Figure 15.1(A)
are examples of 3D blobs, and blobs are by far the most common
type of object of interest in automated image analysis. Geometri-
cally, they can be thought of as 3D ellipsoids that have been
deformed irregularly. These apparently simple objects nevertheless
provide a rich set of challenges from the standpoint of automated
image analysis, due to preparation and imaging artifacts (Lin et al.,
2003).

2. Tube-like objects: Vasculature and neurons [Fig. 15.1(C)]
are examples of tube-like objects. Geometrically, they can be
thought of as non-uniformly deformed 3D cylinders (Al-Kofahi et
al., 2002; Abdul-Karim et al., 2003). Like blobs, these objects too
provide a rich set of challenges for automated image analysis
systems. Tube-like objects can be filled (i.e., solid) (Al-Kofahi et
al., 2002; Abdul-Karim et al., 2003; He et al., 2003) or hollow
(Weichert et al., 2003) in appearance.

3. Irregular cloud-like distributions: The diffuse FISH
signals in Figure 15.1(A) are a good example of this class of object
(Lin et al., 2003). The diversity and specificity of fluorophores,
coupled with the ability of modern microscopes to image multiple
fluorophores, makes this an important category of image analysis
targets. Although these objects do not have distinctive geometries,
they are amenable to quantitation by spatial association with bio-
logically related blob-like or tube-like objects. For the example in
Figure 15.1(A), segmentation of the nuclei provides spatial masks
over which the intra-nuclear FISH signals are integrated. The

extra-nuclear FISH signals are associated with the nearest nucleus
by means of a Euclidean distance transformation (Lin et al., 2003).

SPECIMEN PREPARATION AND IMAGE
PREPROCESSING METHODS

Data Collection Guidelines for Image 
Analysis Purposes

Specimen preparation and microscopy procedures for successful
automated image analysis are stricter than for manual scoring.
Unlike humans, computers are easily misled by confounding
objects, artifacts, variability, and clutter. Therefore, it is important
to make every effort during the specimen preparation and imaging
procedures to ensure that the objects of interest are delineated with
a high degree of contrast against the uninteresting structures in the
tissue. It is helpful to experiment with specimen handling steps,
reagents, fluorophores, and software tools such as those for spec-
tral unmixing. Figure 15.5 illustrates structure-specific imaging
using multiple fluorophores. The different highlighted structures
(astrocytes, microglia, and vasculature) appear in separate image
channels, eliminating the need for separating structures by image
analysis. It is wise to make sure that the automated scoring soft-
ware is well behaved when used on a small pilot set of images
before embarking on large-scale data collection. It is important 
to maintain a high degree of uniformity in specimen handling,
reagents, imaging protocols, and instrument settings across a batch.

Sampling conditions may be different for image analysis. For
example, lossy image compression algorithms are best avoided.
While image analysis algorithms are driven by the desire to max-
imize the accuracy of morphometry, the percentage impact of 
a single-voxel error depends heavily on the number of voxels 
representing the object. If the tissue is fairly uniform, it is often
possible to sample across the tissue in a random manner, using
standard stereological sampling principles (Howard and Reed,

Day 4

Bar = 100 mm

Day 1 Day 2

Day 3

FIGURE 15.4. Time series in vivo
images (each 768 ¥ 512 ¥ 32, 8 bit/pixel)
of fluorescently labeled skin vasculature
altered by growth of a nearby tumor,
shown in their maximum intensity pro-
jections (x-y, y-z, and x-z). Automated
segmentation (tracing) results are over-
laid in green. Volumes highlighted in blue
are common overlapping regions across
all images in this set of time series
images, where measurements only from
these common regions are used to
analyze the changes in vasculature
between time points. (image courtesy:
Microvascular Research.)
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FIGURE 15.6. Examples of imaging artifacts in the context of neuron
imaging. (A) Blobs of dye. (B) Neurites with relatively dim and discontinuous
appearance. (C) Strip of noise, resembling neurites. (image courtesy: Natalie
Dowell at the Wadsworth Center.)

1998; Russ and DeHoff, 2000; Mouton, 2002). If this assumption
is not valid, it makes sense to resort to montaging. The border
regions in 3D images and optical slices near the top and bottom of
a stack often capture partial objects. These objects should be elim-
inated in a systematic manner using Howard’s brick rule (Howard
et al., 1985), which is easily implemented on the spreadsheet tables
of measurements generated by the software.

If live tissue is being imaged in a time-lapse series, it is impor-
tant to ensure that the same region of tissue is imaged every time
(Brown et al., 2001). Additionally, automatic image registration
tools can be used to refine the alignment (Al-Kofahi et al., 2003).
Once registered, the changes can be quantified over the overlap-
ping regions (Addul-Karim et al., 2003). Figure 15.4 shows a time
series of in vivo images (each 768 ¥ 512 ¥ 32, 8 bit/pixel) of 
fluorescently labeled vasculature of skin altered by growth of a
nearby tumor.

Confocal microscopes are unavoidably anisotropic in terms of
the spatial sampling density because the axial resolution of confo-
cal microscopes is lower than the lateral resolution. Image resam-
pling by techniques such as shape-based interpolation often
simplifies 3D image analysis at the expense of generating a larger
image data set (Raya and Udupa, 1990).

Finally, the image analyst must be aware that the brightness of
a voxel in a confocal image is not necessarily only proportional to
the fluorophore concentration (Pawley, 2000).

Image Preprocessing Methods
Common imaging artifacts include non-uniformity and the pres-
ence of uninteresting/nuisance objects. Their effects on the image
analysis results can sometimes be reduced by preprocessing.
Figure 15.6 shows several imaging artifacts in neuron and vascu-
lature images.

Morphological filters (Serra and Soille, 1994; Bovik et al.,
2001), background subtraction (Russ, 1994), and signal 
attenuation–correction (Adiga and Chaudhuri, 2001b; Can et al.,
2003) are examples of common preprocessing methods for confo-
cal images. Morphological filters, such as the median and top-hat

filter, are typically utilized to reduce image noise, such as blobs of
dye in the background, or to smooth out Poisson noise (Sarti et al.,
2000) and non-uniformities of foreground intensity. However, the
optimal method for removing Poisson noise is full 3D deconvolu-
tion (see Chapter 25, this volume). Background subtraction is 
performed to correct illumination non-uniformity across the entire
image. Signal attenuation–correction is useful to rectify depth-

FIGURE 15.5. Neurobiology example illustrating the use of multiple fluorophores to simplify image analysis by performing selective imaging of specific struc-
tures in the same region of tissue. Maximum projections of rat cortices altered by the implantation of a model neuroprosthesis. In panel (A), the green regions
represent astrocytes, the blue regions represent microglia. In panel (B), the red regions additionally represent vasculature. These different structures are avail-
able to the image analysis system as separate images. The images when compared to controls (not shown) demonstrate increased numbers of astrocytes, microglia
and proliferator of vessels. (image courtesy: Dr. Beth Sipple at Wadsworth.)
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dependent attenuation of signals (Can et al., 2003). In general,
images are preprocessed globally, that is, without localizing the pre-
processing operations to a subset of the image. This makes prepro-
cessing computationally expensive. Furthermore, the preprocessor
parameters usually need to be fine-tuned to ensure preservation of
objects of interest while reducing unwanted artifacts.

Another rationale to preprocessing is to generate standardized
images where one segmentation method is used for images coming
from different sources. Yet another is to highlight particular struc-
tures, for example, images of neuronal processes and vasculature
may be preprocessed to highlight the tube-like morphology of
these biological objects (Sato et al., 1998).

GENERAL SEGMENTATION METHODS
APPLICABLE TO CONFOCAL DATA

Segmentation is the process of labeling some or all of the voxels
in the image as being part of specific objects of interest (the fore-
ground) and not part of the background. This is the process of
transitioning from a conceptually simple array of point measure-
ments (voxels) to the more abstract and more informative notion
of image objects, or parts thereof (Haralick and Shapiro, 1985).
Following segmentation, it is straightforward to make morpholog-
ical and functional measurements. The purpose of this section is
to summarize the main segmentation approaches. The reader inter-
ested in more detailed descriptions is referred to other sources
(Bhanu, 1982; Wilson and Spann, 1988; Bhanu and Lee, 1994;
More and Solimini, 1995; Rezaee, 1998; Suri et al., 2002).

The difficulty of segmenting biological images is largely attrib-
utable to their sheer complexity and variability. Interestingly, it is
simpler to segment 3D images, compared to 2D images because,
in the former, some overlapping objects can be distinguished on
the basis of 3D depth information (Ancin et al., 1996).

The prior literature on segmentation is vast (Zucker, 1977;
Kanade, 1978; Sklansky, 1978; Rosenfeld and Davis, 1979;
Ranade and Prewitt, 1980; Fu and Mui, 1981; di Zenzo, 1983; Har-
alick and Shapiro, 1985; Mitiche and Aggarwal, 1985; Nevatia,
1986; Cooper, 1998; Kerfoot and Bresler, 1999; Pham et al., 2000).
Generally, techniques for image segmentation can be grouped into
three categories: bottom-up methods, top-down methods, and
hybrid methods. Regions and boundaries are two common con-
cepts commonly used in segmentation. Intuitively, an object is out-
lined by its boundary and a region is contained by a boundary. In
addition, segmentation may be performed either image wide, or in
an exploratory manner. Non-exploratory methods visit each voxel
and label them. Exploratory methods (Can et al., 1999; Al-Kofahi
et al., 2002; Streekstra and van Pelt, 2002; Abdul-Karim et al.,
2003) begin with voxels known or estimated to be on the object,
such as a point on a vessel, and proceed to segment adjacent voxels
of the same object.

Bottom-Up Segmentation Methods
Bottom-up methods start with an over-segmentation of the image
and iteratively merge object fragments based on some measure of
similarity. They can be described in terms of three steps: identify-
ing the set of initial regions representing object fragments (Zucker,
1976; Besl and Jain, 1988; Adams and Bischof, 1994; Trucco and
Fisher, 1995; Zhu and Yuille, 1996), identifying an appropriate
region-similarity measure (Blake and Zisserman, 1987; Black and
Rangarajan, 1996), and merging the voxels that share these fea-

tures into objects (Guigues et al., 2003). Other related methods are
graph based, for example, the work of Shi and colleagues (Beck
et al., 2000) has presented a global criterion termed the “normal-
ized cut” for segmenting the graph. Ying and Uberbacher (1997)
proposed a 2D image segmentation using a minimum spanning tree
partitioning approach. In the bottom-up category, there are four
main approaches: intensity thresholding, region based, boundary
based, and integrated techniques. These are detailed in the fol-
lowing paragraphs.

Intensity Threshold–Based Segmentation
Methods
In this approach (Sahoo et al., 1988), all voxels whose values lie
within a certain range belong to one class. Global thresholding
(Shapiro and Stockman, 2001; Koh et al., 2002) uses a single
threshold value for an entire image. When the threshold value
changes for different regions of the image, it is called adaptive
thresholding (Cohen et al., 1994; Kim et al., 2001; He et al., 2003).
Thresholding may be sufficient for segmentation when the back-
ground intensity range does not overlap with the foreground inten-
sity range. To overcome the limitations of thresholding, such as
susceptibility to background noise and intensity non-uniformity,
connected components analysis (Dillencourt et al., 1992; Ancin et
al., 1996) is commonly used to link voxels belonging to an object
of interest, and reject overly small clusters of pixels.

Region-Based Segmentation Methods
Region-based methods (Zucker, 1996; Hojjatoleslani and Kittler,
1998) rely on the assumption that neighboring voxels within one
region of an object are homogeneous according to a specified
measure. This leads to a class of algorithms known as split-and-
merge (Horowitz and Pavlidis, 1974; Haralick and Shapiro, 1985;
Chang and Li, 1994), seeded region growing (Adams and Bischof,
1994; Hojjatoleslami and Kittler, 1998), and partitional clustering
(Mackin et al., 1993; Roysam et al., 1994). The general procedure
is to compare each voxel to its neighbors. If the criterion of homo-
geneity is satisfied, the voxel is said to belong to the same class.
Neighboring voxels are examined and added to the region if they
are evaluated to have similar characteristics. This region growing
process will eventually converge, yielding a delineation of the
object. The growing volume should be constrained for maximum
success. Multiple regions can be initialized in the image, and
regions can be merged with each other. Obviously, the perfor-
mance of this approach largely depends on the selected homo-
geneity criterion.

In the split-and-merge technique, the entire image is initially
considered as one region. In each step, each heterogeneous region
of the image is divided into four rectangular segments and the
process is terminated when all regions are homogeneous. After 
the splitting, a merging process unifies the similar neighboring
regions. Quadtree-structured split-and-merge (Pavlidis, 1977) is a
popular approach because of its simplicity and computational effi-
ciency. Seeded region growing techniques (Adams and Bischof,
1994; Hojjatoleslami and Kittler, 1998) select some initial image
points, and then segments the image into regions, each originating
with a single seed. Clustering-based methods (Mackin et al., 1993;
Roysam et al., 1993, 1994) treat the segmentation problem as a
partitional cluster analysis (Theodoridis and Koutroumbas, 1999)
in a four-dimensional space [(x, y, z), I(x, y, z)], combining the
usual spatial coordinates with the image intensity. This approach
is most valuable when the available geometric information about
the objects is weak (Shain et al., 1999).
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Boundary-Based Segmentation Methods
Boundary-based methods (Davis, 1975) detect image edges
(Ballard and Brown, 1982), and link them into contours/surfaces
representing object boundaries. The output of most existing edge
detectors can only provide candidates for the region boundaries
because the edges obtained are normally discontinuous or over-
detected. However, the actual region boundaries should be closed
curves. Therefore, some postprocessing, such as edge tracking, gap
filling, smoothing, and thinning should be performed to obtain the
closed region boundaries. Such postprocessing is often problem-
atic, and this is an inherent limitation of boundary-based methods
(Shapiro and Stockman, 2001).

Integrated Segmentation Methods
Integrated methods combine boundary and region criteria. In 
this class of methods, the morphological watershed algorithm is
widely studied and used for efficient object separation (Beucher,
1991; Dougherty, 1993; Vincent, 1993; Serra and Soille, 1994;
Shafarenko et al., 1997). Introduced by Digabel and Lantuejoul
(1978), extended by Beucher (1982), analyzed theoretically by
Maisonneuve (1982), and formally defined in terms of flooding
simulations by Vincent and Soille (1991), the term “watershed”
comes from a graphic analogy attributed to Vincent and Soille. In
this analogy, the gray level image is treated as a topographic inten-
sity surface. It is assumed that holes have been punched in each
valley bottom. If this surface is “flooded” from these holes, the
water will progressively flood the catchment basins (set of surface
points whose steepest slope paths reach a given minimum) of the
image. At the end of this flooding procedure, each minimum is
completely surrounded by “dams,” which delimit its associated
“catchment basins.” The set of dams obtained in this way corre-
sponds to watersheds (called the watershed surface in 3D case)
from a geophysical analogy, and provides a tessellation of the input
image into its different catchment basins. Unlike the boundary-
based methods above, the watershed is guaranteed to produce
closed boundaries even if the transitions between regions are of
variable strength or sharpness. Its popularity is also attributable to
its computational efficiency and extendability to 3D spaces
(Higgins and Ojard, 1993; Sijbers et al., 1997).

The second method in the class is variable-order surface fitting
(Besl and Jain, 1988) that starts with a coarse segmentation of the
image into several surface-curvature-sign primitives (e.g., pit,
peak, ridge, etc.) which are refined by an iterative region-growing
method based on variable-order surface fitting.

Another method in the class is to integrate region-growing and
edge-detection (Pavlidis and Liow, 1990). This starts with a split-
and-merge algorithm, and eliminates or modifies region bound-
aries based on some criterion using boundary smoothness and the
variation of image gradients. Haddon and Boyce (1993) generate
regions by partitioning the image co-occurrence matrix and then
refining them by relaxation using edge information.

Top-Down Segmentation Methods
Unlike bottom-up algorithms, such as those described in the pre-
vious section, which are based on low-level image-based cues,
such as coherence of brightness, color, texture or motion, top-down
methods rely on prior models for the objects in the image to carry
out the segmentation. Even sophisticated pre- and postprocessing
techniques cannot overcome the inherent limitations of purely
intensity-based methods. Actually, for automatic object seg-

mentation, some kind of prior related knowledge can and must be
incorporated into the algorithms. The mid- and high-level knowl-
edge must be used to either confirm or modify the initial seg-
mentation. This leads to the top-down approach, where the
segmentation is guided by some known representation or prior
knowledge of the objects under study. One method in this class is
model-based segmentation, which optimizes the fit between a
model and the image data. Different procedures, such as
deformable shape models (Cootes et al., 1995; McInerney and Ter-
zopoulos, 1996; Lorigo et al., 2001; Ghanei and Soltanian-Zadeh,
2002) and statistical models (Vemuri and Radisavljevic, 1994;
Staib and Duncan, 1996), have been proposed. Deformable
models, also known as “snakes” or “active contours,” have been
used as a way to incorporate application-specific a priori knowl-
edge. For example, in order to segment a bone in a medical image
or in order to visually track a person, models describing the pos-
sible contours of the objects of interest are used. The parameters
of the models specify object properties such as the pose, size, and
shape. Sunil Kumar and Desai (1999) presented a method of joint
segmentation and image interpretation. Neumann (2003) proposed
a knowledge-guided segmentation in 3D imagery. Statistical shape
modeling methods depend upon the availability of parametric
models to describe the objects. These parameters must be selected
carefully in order to accurately characterize the objects, and 
discriminate outliers from real objects in an effective manner. 
The set of parameters must be rich enough to describe complex
objects.

Although top-down methods are appealing because they seem
similar to the human cognitive process, they have the disadvan-
tage that they require a large amount of a priori knowledge (e.g.,
object models, number of regions) and this tends to limit the scope
of applicability.

Hybrid Segmentation Methods Combining
Bottom-Up and Top-Down Processing
Both top-down and bottom-up methods have their advantages 
and disadvantages. The latest segmentation methods often
combine both low-level and high-level approaches (Roysam et al.,
1992; Roysam and Miller, 1992; Bhattacharjya and Roysam,
1994). However, as these approaches tend to be computationally
intensive and overly specialized, they are not described in further
detail here. More pragmatic approaches do exist. One such is
described in the following section.

EXAMPLE ILLUSTRATING BLOB 
SEGMENTATION

Accurate, reliable, and highly automated segmentation of 
fluorescently labeled cell nuclei from 3D confocal images is an
essential first step for quantification by association of various
genomic and proteomic products in nuclear or cytoplasmic com-
partments [Fig. 15.1(A)]. Tightly packed cell layers, which often
result in the appearance of “touching objects” in image stacks, is
a common segmentation problem. Precise segmentation of nuclei
is an absolute requirement for correct assignment of gene tran-
scription products to nuclear versus cytoplasmic locations for
achieving optimal temporal resolution (Lin et al., 2003).

Lin and colleagues (2003, 2004) described an algorithm that
uses a statistical model-based approach to combine the attractive
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features of the 3D watershed algorithm, with algorithms that exploit
available intensity-gradient–based cues, and the knowledge of the
expected anatomic shape of the object. Whenever the cell shapes
are well defined, the best-available methods for separating touch-
ing objects are based on the watershed algorithm (Ancin et al., 1996;
Lin et al., 2003). When the cell shapes are poorly defined, 
partitional cluster-analysis algorithms work better (Roysam et al.,
1994).

The watershed algorithm is widely studied and used for effi-
cient object separation (Vincent and Soille, 1991; Ancin et al.,
1996; Malpica et al., 1997; Solorzano and Rodriguez, 1999).
Notwithstanding its popularity, watershed algorithm has several
limitations arising from the fact that it relies on touching objects
exhibiting a narrow “neck” in the region of contact. These neck-
lines play a critical early role in estimating the number of objects
in a given cluster, and is notoriously error prone. Considerable
effort has been devoted to the design of algorithms for generating
the correct set of “geometric markers” to guide the object seg-
mentation. The problem of determining the correct number of such
markers is inherently a difficult one, and is conceptually similar to
the problem of automatically determining the number of groups in
multi-dimensional statistical data. To overcome the above diffi-
culties, Lin and colleagues (2003) proposed a “gradient-weighted
distance transform,” that combines object separation hints derived
from geometric and intensity cues in the image data to improve
watershed segmentation. Specifically, the geometric-distance
transform D (Borgefors, 1986) and the gradient transform G (Lin
et al., 2003) are combined into a single representation that cap-
tures the object separation cues available in the data, as given by
the following formula.
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max min
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where Gmin and Gmax are the minimum and maximum values of the
gradient G needed for normalization. It is easy to observe that the
modified distance value D¢, has a high value at positions closer to
the center of foreground objects, and for voxels with smaller 
gradient values. It has smaller values close to the boundary of the
foreground objects, or where the gradient is relatively large. This
expresses the object separation cue that the voxels with bigger gra-
dient values tend to lie on the boundary of an object. In practice,
the watershed algorithm requires the inverse of this distance trans-
formation. This inverse is denoted T, and is computed as follows:

T = Sg(max(D¢) - D¢),

where max(D¢) is the global maximum within the distance images,
and Sg represents a Gaussian smoothing operator (Castleman,
1996). The smoothing operation is needed because the transformed
image may contain tiny noise-caused intensity peaks, usually due
to uneven cell staining. Figure 15.7 illustrates the effectiveness of
the combined measure. Panel (A) shows a sample image, with the
nuclei indicated in blue, and the FISH signal displayed in red. Panel
(B) is a surface plot of the geometric distance D for the region indi-
cated by the white box in (A). Panel (C) is the result of combining
the geometric and gradient measures D and G above. It is clear that
the combined transformation in Panel (E) is effective in discrimi-
nating this touching nuclear cluster even though it does not have
the characteristic bottleneck-shaped connection pattern.

Model-Based Object Merging
Although the gradient-weighted distance transform described
above essentially eliminates under-segmentation, the problem of
over-segmentation remains. To correct the over-segmentation, it is
necessary to detect and break (eliminate) false watershed surfaces
and thereby merge cell objects (Adiga amd Chaudhuri, 2001a; Lin

FIGURE 15.7. Illustrating the combined gradient-weighted distance transform as a cue of separating connected objects. (A) A small portion of a 3-D confocal
image stack, showing nuclei in the CA1 region of a rat brain. The white box in panel (A) indicates the region of interest, which includes two touching nuclei.
Panel (B) shows a surface plot showing a standard geometric distance map D which is not adequate for nuclei separation. The combined gradient-weighted dis-
tance map in panel (D) results in the correct segmentation shown in panel (E). (Courtesy: Journal of Cytometry.)



324 Chapter 15 • B. Roysam et al.

Watershed breakingw
1
wc

2
wc

wc
wccc www »»= 21

A

1w
2w

c
breaking  1w

21 ww cc ss >
2w

1wc

B 

FIGURE 15.8. Illustrating two example cases encountered by the watershed
surface-breaking algorithm for touching objects. Panel (A) shows a case that
leads to merging of the two objects. Panel (B) shows the case that one object
has multiple watershed surfaces (two in this example). In this case, there are
two candidate watershed surfaces to choose from for breaking. The watershed
surface w that has a greater merging score Cw is given the higher priority, indi-
cating better fit to the object model, thus the higher confidence towards its
breaking. (Courtesy: Journal of Cytometry.)

objects. The model-based watershed surface breaker effectively
eliminates almost all of these over-segmented nuclei during the
postprocessing. One example is shown in Figure 15.9, where the
above algorithm achieves a 97% accuracy compared to a consen-
sus of three expert observers.

EXAMPLE ILLUSTRATING SEGMENTATION OF
TUBE-LIKE OBJECTS

Two broad types of algorithms exist for segmenting tube-like
objects (neurons, vasculature): (i) skeletonization and (ii) vector-
ization. Skeletonization methods work by systematically eroding
a binarized version (the results of adaptive thresholding) of the
image until only the innermost voxels (i.e., the skeleton) remains.
They are attractive for applications in which the objects are irreg-
ular, for example, spiny neurons (Koh et al., 2002). On the other
hand, vectorization-based methods are valuable when the objects
are much more regular in appearance, and can be modeled as gen-
eralized cylinders in 3D space (Al-Kofahi et al., 2002; Abdul-
Karim et al., 2003, 2005). The latter method embeds more
assumptions about the objects of interest, and is therefore better at
rejecting image clutter than skeletonization-based methods. Figure
15.10 shows an example of skeletonization results (Koh et al.,
2002; He et al., 2003) and Figure 15.11 exemplifies vectorization
results (Al-Kofahi et al., 2002), both on dye-injected neurons
imaged by a confocal microscope.

Skeletonization Methods
These methods work by performing adaptive segmentation (pro-
ducing a binary image) followed by skeletonization and graph
extraction (Koh et al., 2002; He et al., 2003). The 3D skeleton of
an object is a connected set of lines (traces) that coincide with its
medial axis, and which can be obtained by repeatedly performing
erosion operations and connectivity analysis on the 3D binary
volume, until only the medial skeleton of the object remains. During
the thinning process, a voxel is considered deletable if its removal
does not cause any other voxels to become disconnected. Clearly,
improved detection of voxel connectivity allows more voxels to be
deleted, and hence a more concise skeleton can be obtained. The
traditional methods (Tsao and Fu, 1981; Gong and Bertrand, 1990)
for 3D skeletonization are based on analyzing a 3 ¥ 3 ¥ 3 window
around each voxel to test for voxel deletability. One drawback of
such methods is their inability to detect many cases when voxels are
connected via more circuitous paths, especially in noisy data such
as that from confocal microscopy. Specifically, these algorithms can
magnify each of the however-small noise-caused surface irregular-
ities into full skeletal appendages, resulting in an excessively
complex skeleton. Cohen and colleagues (1994) developed a thin-
ning algorithm based on performing voxel detability tests over
windows much larger than 3 ¥ 3 ¥ 3, and using long-range bound-
ary detection criteria (He et al., 2003).

Vectorization Methods
In contrast, vectorization methods utilize a more rigid model that
embeds tighter assumptions about the objects. For example, it
often explicitly models tube-like objects geometrically, say using
a generalized cylinder constrained by parallel boundaries 
(Al-Kofani et al., 2002) (Fig. 15.12). Figure 15.4 illustrates an 
example of tracing tumor microvasculature using a semi-rigid

et al., 2003). Currently, the best methods rely on a quantitative
score based on a mathematical model of the objects of interest (i.e.,
the nuclei). The object model is described by a vector of features
that are denoted as Xc for object (cell nucleus) c. The features
include measurements such as volume, texture, convexity, circu-
larity, and shape. The merging score based on these features is
given below assuming that they are Gaussian-distributed:

T = Sg(max(D¢) - D¢),

where X– and SX are the mean and covariance matrix of the train-
ing feature set respectively, which are obtained from some
example intact nuclei in the given image stack.

Intuitively, the merging decisions are based on the following
two criteria: (i) the merging score Scw, that is, the score of the com-
bined object by nucleus c1

w, c2
w, and watershed surface w should be

higher than the score of either nucleus Sc
1
w or Sc

2
w before merging.

(ii) The gradient of watershed surface w should be relatively large
compared with the gradient of the nucleus c1

w and c2
w. It is assumed

that intranuclear gradients are smaller than internuclear gradients.
With these observations in mind, the following ratios are 
calculated:

The final decision-making criterion is the combination of the above
two ratios:

Rw = Rsw
¥ Rgw

≥ b,

where b is an empirically set decision threshold. Further details
concerning the above algorithms are provided in Lin and col-
leagues (2003). Figure 15.8 illustrates two example cases encoun-
tered by the watershed surface-breaking algorithm for touching
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FIGURE 15.9. Segmentation result generated by the model-based merging procedure (i.e., the watershed surface breaker). There were 66 watershed surfaces
broken, and most cases of over-segmentation were eliminated. An explicit mathematical model for the anatomic characteristics of cell nuclei, such as size, texture,
convexity and shape measures, is incorporated during the post-merging procedure. Panel (A) shows the segmentation right after the enhanced watershed algo-
rithm. As can be seen, clusters of nuclei are basically eliminated, and the over-segmentation is allowed, as indicated by yellow arrows. Panel (B) shows the final
results after the model-based merging procedure. (Data courtesy: Carol Barnes Lab at the University of Arizona.)

FIGURE 15.10. Illustrating neuron tracing by skeletonization. (A) 3-D image of a dye-injected neuron, shown in maximum-intensity projection (8-bit/voxel,
383 ¥ 328 ¥ 150). (B) Segmented image by adaptive thresholding. (C) Skeletonized neuronal process shown with the detected soma. The skeletonization method
is very general, so it can apply to spines, for example, but it is not nearly as fast and selective as the vectorization method. (image courtesy: Microscopy and
Microanalysis.)



FIGURE 15.11. Illustrating neuron tracing using a generalized cylinder model and vectorization. (A) A 3-D, 512 ¥ 480 ¥ 301 grayscale image of a dye-injected
neuron shown by the x-y, x-z, and y-z maximum intensity projections. (B) The segmentation results using a rigid, generalized cylinder model. Notice that since
the segmentation is guided using a spatio-physical model, no background voxels are misclassified since they do not fit the generalized cylinder model. This
approach can be much more selective than the skeletonization method and substantially faster. However, it is not as effective at segmenting non-tube-like struc-
tures such as spines.
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FIGURE 15.12. (A) Modeling a tube-like object using a generalized cylinder. Irregularities of the object boundary relative to the straight-boundary assumption
are incorporated into the model. (B) Illustrates the recursive exploratory tracing (vectorization) of a tube-like structure, advancing with the information gathered
from best-fit cylinder at each point. (pictures courtesy: Microvascular Research, IEEE Press.)

model. The following paragraphs describe the core ideas in further
detail.

At the simplest level, tube-like structures can be modeled as
piecewise-linear segments, where each segment is a generalized
cylinder (Al-Kofahi et al., 2002). The key geometric property is
the existence of anti-parallel edges located a small distance apart.
Even this apparently simplistic modeling leads to a highly suc-
cessful analysis exemplified by Figure 15.11. In practice, the strict
cylinder model is relaxed to account for slight irregularities in the
vasculature boundaries [Fig. 15.12(A)] by incorporating a toler-
ance to deviations from the strict cylinder model in the software
implementation. Often, the structures of interest are much more
irregular, as exemplified by the tumor microvasculature in Figure
15.4. This irregularity can be modeled by the use of robust statis-
tics, which implies the use of a median instead of the arithmetic
mean (Abdul-Karim et al., 2003). This method is described below,
and illustrated diagrammatically in Figure 15.12(B).

At the core of this method is the estimation of boundary 
locations and direction. The estimation utilized directional edge
detectors, called templates, comprised of linearly stacked one-
dimensional (1D) edge detectors (Sun et al., 1995) of the form 
[-1, -2, 0, 2, 1]T along a direction. Along a particular direction,
the edge strengths from each 1D edge detector are averaged [using
mean (Al-Kofahi et al., 2002) or median (Abdul-Karim et al.,
2003)] and the resulting value is associated with the correspond-
ing template, referred to as a template response. This can be
expressed mathematically as

where U is the set of unit vectors along directions in the neigh-
borhood of ui and K is the set of all template lengths. The vector
u is a unit vector along a particular 3D angle q, while u� is the
unit vector perpendicular to u. The parameter M is the user-defined
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diameter of the widest expected vasculature. Values bi, ui, ki are
the results of this exhaustive search at iteration i, each represent-
ing the [x, y, z] location, orientation, and length, respectively, of
the template that returns the maximum response R. This search is
performed four times corresponding to the four templates that
make up the generalized cylinder model [Fig. 15.12(A)]. The cor-
responding mean and median template response, respectively, are
expressed as

and

where r(b,u�) is the response of a single 1D edge detector at b along
the direction that is perpendicular to u. Notice that a template of
length k is comprised of k 1D edge detectors stacked together, hence,
r is essentially a template of length 1. The simple switch from mean
to median averaging deserves a closer inspection. By using the
median, the response function is robust to at most 50% of outliers
(Huber, 1981), loosely termed as bad edges. Figure 15.13 
further demonstrates the difference between these two averaging
methods.

Notice that by using this rigid model both the centerline and
boundary are readily obtained while segmenting the image, yield-
ing morphometrics such as length (cumulative distance between
center points) and diameter (distance between boundary points) on
the fly. In contrast, the skeletonization approach requires much
more sophisticated postprocessing to extract these morphometrics.
In either case, additional processing must be performed for branch
analysis and to extract any other morphometrics from the seg-
mented structure. Details of this method are described elsewhere
(Al-Kofahi et al., 2002; Abdul-Karim et al., 2003).
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FIGURE 15.13. Illustrates the results of using mean template response (A), and the median template response (B) on noisy confocal images. Note the reduc-
tion in terms of erroneous false-positive traces when using the median template response. (image courtesy: IEEE Press.)

EXAMPLE COMBINING TUBE AND 
BLOB SEGMENTATION

One sometimes encounters images containing both blob-like and
tube-like objects. From an image analysis standpoint, it is best to
use distinctive fluorophores to highlight these two types of struc-
tures (e.g., Fig.15.5), and apply the appropriate analysis method to
each image channel (Lin et al., 2005). An example is shown in
Figure 15.14(A), which shows an original image containing both
blob-like objects (nuclei) in red and the tube-like cerebral vascula-
ture in green. Figure 15.14(B) shows the resulting composite image
after the separate segmentation of cell nuclei in the red channel and
tracing of vasculature in the green channel. Figure 15.14(C) shows
the original image containing blob-like objects (nuclei) in red and
the cloud-like cytoskeleton in green. Figure 15.14(D) shows the
resulting composite image after the segmentation of cell nuclei and
cytoskeleton in the cytoplasm. After the initial image segmentation,
a variety of postanalyses can be performed, such as morphometrics
quantification, spatial analysis of different objects, object classifi-
cation, and statistical analysis. Overall, these automated methods
provide the useful tools for biologists replacing manual procedures
that are tedious, subjective, and time consuming.

REGISTRATION AND MONTAGE 
SYNTHESIS METHODS

Registration is the process of spatially aligning two or more dif-
ferent images of the same region. When the object of interest is
larger than the field-of-view of the microscope, two or more par-
tially overlapping images must be acquired and then registered to
provide an extended view of the specimen. Conversely, a sequence
of images, taken at two different times, say before and after treat-
ment, must then be registered to yield a common image subset to
detect corresponding changes. Broadly, there are two approaches:
landmark-based registration (Can et al., 2002; Al-Kofahi et al.,
2003) and intensity-correlation based registration (Capek and
Krekule, 1999; Beck et al., 2000). Landmark-based registration
relies on matching a set of distinctive points (landmarks) in pairs
of the images in sequence, for example, spatially or temporally.
Intensity-based registration methods work directly with the volu-
metric image data, utilizing all of the voxels. They compute a
measure of correlation between the image pairs to estimate their
relative spatial disposition. Finally, hybrid methods that combine
ideas from landmark and intensity correlation methods are now
emerging (Abu-Tarif, 2002). Most of these methods are well
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implemented in toolkit form, for example, the Insight toolkit from
the National Library of Medicine (2001).

The transformation model used should have adequate degrees
of freedom to account for motion and possible distortion between
the two images (Hartley and Zisserman, 2000). For example, if
only rigid body motion is considered between the two images, a
rigid body transformation (rotation and translation) is adequate.
However, if the anisotropic nature of the voxels and confocal
system artifacts such as curvature of field and geometric distor-
tions are present, a higher order transformation should be used.
The affine model was proposed as a good compromise between
model complexity and flexibility.

Landmark-based methods are generally fast and can scale up
easily with higher-order transformation models, but their use is
limited to the images where good landmarks can be extracted first.

Centerline locations and branching points of tube-like objects (Al-
Kofahi et al., 2003) and the centroids of blob-like objects (Becker
et al., 1996) are examples of landmarks that can be used for reg-
istration. Although intensity-correlation–based methods do not
require the landmark extraction step prior to registration, they are
susceptible to imaging artifacts, such as non-uniform illumination,
and do not exploit specific knowledge of the application context
to simplify the problem. Furthermore, correlation-based algo-
rithms are naturally far more computationally intensive than the
landmark-based methods.

Montage synthesis, also known as mosaicing, is the process 
of stitching together a large number of partial local views
(“windows”) of the biological scene of interest to generate a more
complete or extended field of view. This is especially valuable
when the object/scene of interest is significantly larger than the

FIGURE 15.14. Image analysis examples illustrating (A) blob-like objects (nuclei) in red channel and tube-like objects (cerebral vasculature) in green channel;
(C) blob-like objects (nuclei) in red channel and cloud-like objects (cytoskeleton) in the green channel. In both cases, image analysis is performed one spectral
channel at a time, using separate methods for segmenting the blobs and tubes/clouds. Once this is done, it is possible to quantify the spatial relationships between
the two kinds of objects. (data courtesy: Chris Bjornsson and Karen Smith at the Wadsworth Center, and Jan Stegemann Laboratory at Rensselaer.)
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FIGURE 15.15. Sample views of an Alexa stained neuron from a rat brain. X-y maximum intensity projection. Top row, before flipping; the specimen was trans-
lated to capture the whole neuron between the positions in (A) and (B) respectively. Bottom row, after flipping; again, the specimen was translated to capture
the whole neuron between the positions in (C) and (D) respectively. Each image is 512 ¥ 480 ¥ 261 voxels in size, except for the one in (C), 512 ¥ 480 ¥ 323
voxels. The neuron is larger than the microscope field of view, the four views cover the whole neuron maintaining high resolution. The sampling rates are 
0.375mm/voxel for x and y dimensions and 0.5mm/voxel for the z dimension. (courtesy: Journal of Microscopy.)

field of the microscope. The simplest type of montage synthesis
consists of directly stitching together confocal images. Commonly,
the microscope stage can be stepped in a series of overlapping 
two-dimensional (2D) or 3D windows that can then be merged 
into a single composite image that can be analyzed all at once.
Alternatively, each of the windows can be subjected to automated
image analysis, and the results stitched together to generate a 
synthetic montage-like representation. In addition to the common
grayscale montage, it is possible to generate artificial representa-
tions such as segmentation label montages, and ball/stick dia-
grams, also known as object montages (Becker et al., 1996).

Another application for registration/montage synthesis is
multi-view deconvolution (Cogswell et al., 1996; Heintzmann et
al., 2000) and multi-view attenuation correction (Can et al., 2003).
In the former, confocal images are blurred by the point spread
function (PSF), which is asymmetric in the x-, y-, and z-
dimensions. Multiple views can sometimes be used to account for
the missing information and improve the axial resolution; ideally,
we need tilted views separated by 90° angle. In the latter, the exci-
tation/fluorescent light attenuates as a function of depth according
to Beer’s law (Weast, 1974) although spherical aberration is a more
common cause of signal loss with depth. To correct for the atten-
uation, two views separated by 180° are used. In this scenario, the

portions of one image with low signal-to-noise ratio (S/N) (far
from the objective) are closer to the objective in the other image,
with higher S/N, and vice versa (see also Chapter 37, this volume).
These two images can be montaged to produce a more faithful rep-
resentation of the entire specimen.

Figures 15.15 and 15.16 illustrate many of the issues described
above. The neuron shown in Figure 15.15 was larger than the micro-
scope field-of-view at the recording resolution. Also, the specimen
was thick (more than 300 mm) which resulted in a significant signal
loss for the deeper parts of the specimen. Montage synthesis was
used to overcome these limitations; the specimen was mounted
between two coverslips (Can et al., 2003) to allow imaging from
both sides. The first image stack was captured in the conventional
way, then the specimen was moved using the x,y-stage, and the
second image stack was taken to capture the adjacent x,y-field. To
correct for attenuation and to increase the imaging depth, the spec-
imen was then flipped top-to-bottom, and two more sets of images
were captured as before. Figure 15.16 shows the result of montag-
ing the four image stacks with attenuation correction; the result is
clearly a more faithful representation of the specimen. It captures
the whole neuron, with high resolution and better S/N.

Finally, the microscopist is often faced with multi-channel
data. Techniques for registering and montaging such data are 
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A B

FIGURE 15.16. Mosaic image constructed from the
four views in Figure 15.15 (A) top view (x-y), and
(B) side view (x-z), maximum intensity projection.
The result of the montaging is a high-resolution
image for the whole neuron with increased effective
imaging depth. (courtesy: Journal of Microscopy.)

analogous as long as corrections for chromatic aberration are 
performed. Figure 15.17(A) illustrates a two-channel mosaic 
representing one hemisphere of a rat brain section. The green
regions are the nuclei and red color indicates the FISH signal. The
full mosaic consists of 7911 ¥ 6188 voxels (140MB), and is syn-
thesized from 70 imaging windows each of width 1024 ¥ 1024
pixels. The inset is an enlarged view of a small portion of the
montage at higher resolution. Figure 15.17(B) illustrates the mon-
taging based on the traced vasculature structure.

METHODS FOR QUANTITATIVE
MORPHOMETRY

Morphometric data are either the end goal of image analysis or 
an intermediate step towards testing a hypothesis. Listed below 
are common types of object measurements for blob-like and/or
tube-like objects. Interested readers are referred to other books
(Theodoridis and Koutroumbas, 1999; Shapiro and Stockman,
2001) for details on the algorithms needed to calculate these 
measurements.

• Size measures: Diameter, volume, surface area, length, width.
• Intensity and spectral measurements: Integrated, mean, and

median intensity of one or more spectral channels over an
object.

• Shape measures: Eccentricity, elongatedness, compactness,
convexity, thickness, shape complexity, tortuosity, area-
perimeter ratio, bending energy.

• Texture measures: Intensity variance, clumping, homogeneity.
• Location and pose: Centroid, major and minor axes, angle of

tilt.
• Interest points: Convex/concave corners, inflexion points,

bifurcations.

• Invariants: Dimensionless ratios such as shape factors, affine
invariant moments.

• Topological measures: Branching factors and angles.
• Group properties: Group size and shape, repetition length.

Morphometric data can be generated from the segmented
objects during segmentation or by postprocessing the segmenta-
tion results (Koh et al., 2002; Williams et al., 2003). In some cases,
the segmentation algorithms that produce just a segmented 
volume may need postprocessing steps such as skeletonization
(Lee et al., 1994; Maddah et al., 2003) to obtain the measurements.
In the analysis of cellular compartment temporal activity by 
fluorescence in situ hybridization (catFISH) example, a set of 
measurements are made for each segmented nucleus. The mea-
surements include nuclear features such as volume, intensity,
texture, shape, and FISH measurements such as FISH spot 
volume, z-depth and intensity value, intranuclear and cytoplasmic
FISH measurement, etc. Figure 15.1(B) shows a part of a spread-
sheet containing such data. This data is ready for the statistical
analysis required for hypothesis testing. It can also be used 
for manual evaluation to verify the accuracy of the automated
results.

In the vessel tracing example, a region of interest is defined
for each image of a time series data set by the intersection of the
image and all other images in the set. Morphometric data collected
within these regions include total vasculature length, average vas-
culature segment length, average horizontal width, and average
vertical width, all extracted by the tracing algorithm. Statistics and
traces generated outside these regions are ignored. The generated
statistics are entered into a spreadsheet and plotted to highlight the
changes. Actual change measurements such as percentage reduc-
tion in the total number of vasculature segments or percentage
increase in the total vasculature length can be obtained directly
from the spreadsheet.
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FIGURE 15.17. Illustrating the feature-based montaging of multi-spectral confocal microscope images. (A) Each individual image is first segmented, and a set
of features (cell nuclei) are extracted from the segmented objects. These images are the basis of pairwise registration to montage the images. (B) Neurites are
traced first, which become the basis of the montaging.
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METHODS FOR VALIDATING THE
SEGMENTATION AND MAKING CORRECTIONS

Validation can and should be performed at various stages of auto-
matic image analysis. The main objective is to quantify the dis-
agreement between automated results and the “ground truth,”
where a measurement of the disagreements is interpreted as the
error. The ground truth is usually obtained manually. Being sub-
jective, it is prone to inter- and intraobserver variability. This can
be reduced by using multiple and independent manual segmenta-
tion results that are combined to approximate the ground truth. An
effective method for combining the manual segmentations is to
establish a consensus. For this, each disagreement between manual
observers is resolved by careful discussion. Furthermore, the type
of disagreement between the manual and automated results
depends upon the type of objects.

For blobs, the types of errors include false detection (false pos-
itives), misses (false negatives), errors in separating connected
objects, and errors in correctly delineating the boundaries of
objects (Chawla et al., 2004). For tube-like objects, image analy-
sis errors include falsely traced segments and branch points (false
positives) and missed segments and branch points (false nega-
tives), accuracy of the trace, accuracy of width measurements, and
accuracy in locating branching/crossover points (Abu-Tarif et al.,
2002; Al-Kofahi et al., 2003). When considering time-lapse series
of live specimens (Abdul-Karim et al., 2003), it is also useful to
quantify registration errors, and errors in detecting change.

As an example, the catFISH automated image analysis soft-
ware was validated with respect to three criteria: (1) accuracy of
nuclear segmentation, (2) accuracy in classifying intranuclear foci;
and (3) accuracy in classifying cytoplasmic FISH signal. The
manual image analysis was performed using MetaMorph software
(Universal Imaging Corporation, West Chester, PA). Three sepa-
rate experts manually rated each of the test image stacks for
numbers of nuclei, nuclei that contained FISH signal, and cells that
contained cytoplasmic FISH signal. Statistical analysis was done
using a “consensus count” established by three experts.

Quantitative validation may also involve voxel-to-voxel com-
parisons of the segmented volume, or comparisons of any other
entities derived from the segmented volume such as the vascula-
ture centerline or the cell centroid. The comparison can be per-
formed automatically to further reduce the subjectivity of
validating the segmentation results (Al-Kofahi et al., 2002). In the
case of tube-like objects, the centerline locations are extremely
important because almost all morphometrics depend on them. Cen-
terline locations are typically validated for the deviation from a
“true” centerline (reflects the accuracy of the automated method),
and the centerline coverage of the objects in the image (reflects how
much manual editing the automated result needs). To obtain the
accuracy metric, a distance map (Borgefors, 1986) can be used to
calculate the average Euclidean distance between every voxel of
manually segmented centerlines and every voxel of automatically
segmented centerlines that are within a certain Euclidean distance.

Going further, validation of the extracted measurements from
a segmented volume requires manual extraction of the measure-
ments from the manually segmented volume. This is a prohibi-
tively time-consuming procedure in 3D image analysis, and as the
results will be subjective, it may not be useful. Instead, phantoms
or artificial images are generated using ideal models (blobs, tubes,
or clouds) of the biological objects with known morphometrics.
Measurements are extracted automatically using the automated
methods, and validated with the known values. Noise and other
irregularities may be introduced to the phantoms to simulate actual
images.

Manual editing is usually assisted by some software tools.
Figure 15.2 shows the catFISH example of such software devel-
oped by this group. After manual validation obtained by consen-
sus of several independent observers, automated segmentation
results are further corrected using the convenient tools, such as
buttons for add/delete, split/merge, and shrink/dilate in the
catFISH system, as shown in Figure 15.18. Figure 15.19 illustrates
the common editing to the tube-like object segmentation. Note
that, by editing the automated results, the subjectivity factor of
manual analysis is reduced down to the correspondence between
manual and automated results.

FIGURE 15.18. Illustrating common image analysis errors associated with blob segmentation, and manual editing tools to correct them: (A) Adding a missed
object using a region growing tool; (B) Splitting connected objects; (C) Correcting a boundary location error.
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FIGURE 15.19. Illustrating the manual edits to the tube-like object segmentation. (A) Original image; (B) Automated tracing results; (C) Manually modified
traces shown in light blue; (C) Final results.

ANALYSIS OF MORPHOMETRIC DATA

The statistical analysis of morphometric data is necessarily 
application-specific. The following paragraphs provide two exam-
ples illustrating the main ideas.

In the catFISH system, the important goal is to classify the
nuclei in the image based on the presence of the intranuclear and
cytoplasmic FISH signal. The measurements are integrated and
associated spatially with the nuclear segmentation results to gen-
erate a detailed tabular/database representing the location and
detailed morphometric parameters for each nucleus, and the asso-
ciated FISH signals. Nucleus class information is defined by the
user according to some criteria such as the color channels, pres-
ence or absence of signal, and location of the signal. The software
uses this information to automatically classify each nucleus as neg-
ative or as containing intranuclear and/or cytoplasmic FISH signal
based upon its morphometric and functional (FISH) measure-

ments. The final result is output into a text file including total
nuclear count and the number and percentage of nuclei in each
class.

In the angiogenesis example, the primary intent is to quanti-
tate temporal vessel changes in a set of time-series images. There
are two broad methods for change analysis. One method is to
compute morphometric data from images at each temporal sam-
pling point, and to perform a statistical comparison of these data.
A more ambitious approach is to register the images over time and
extract detailed changes on a vessel-segment by vessel-segment
basis. In this work, the less ambitious approach was adopted as a
starting point. Vessel lengths, widths, and count can be readily
obtained from the traces generated by the automatic tracing algo-
rithm described. Naturally, only vasculature segments located in
the volume common to all four images contributed to these statis-
tics. An overall Change Index is calculated as the simple ratio of
the current measurement over the previous measurement.
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DISCUSSION, CONCLUSION,
AND FUTURE DIRECTIONS

We have attempted to summarize techniques for automated 3D
image analysis by organizing the methods into those suitable for
a small number of categories of features (blobs, tubes, clouds,
mixed). By recognizing image objects along these lines, the reader
is better able to select from the available image analysis tools. It
has also served as the basis for organizing image analysis pack-
ages such as the catFISH system.

The life-sciences researcher is often able to perform automated
2D image analysis using off-the-shelf software, for example, NIH
Image, MetaMorph by Universal Imaging, and VoxelView by Vital
Images (more examples discussed in Chapter 14, this volume). The
sheer complexity and variability of biological imagery and the
current state of evolution of automated 3D image analysis tech-
nology imply that the assistance of an image analysis specialist is
often called for. It is hoped that the terminology and language pre-
sented here can bridge these disciplines. The organization of image
analysis by type of objects also forms a good basis for facilitating
productive discussion between life-sciences researchers and com-
puter scientists.

Automated image analysis is a dynamic computer-intensive
discipline. It has benefited tremendously from problems posed by
life-science researchers. Much work remains to be done. For
example, the algorithms are still not nearly as adaptive as the
human visual system. Given a novel set of image data, the human
observer can be trained much more quickly than new image analy-
sis tools can be designed and tested. Nevertheless, development of
new tools is worthwhile whenever large amounts of data must 
be processed, for instance, in the development of high-content
screening assay as described in Chapter 46, this volume. This
chapter has accordingly devoted attention to studies that require
this type of sophisticated automation.
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