
INTRODUCTION

Testing and characterization of high-quality lenses have been 
perfected into fine art with the advent of lasers, phase-shifting
interferometers, charge-coupled device (CCD) cameras, and 
computers. A bewildering array of techniques is described in
Malacara’s classic reference book on the subject (Malacara, 1992).
Several of these techniques, in particular the Twyman–Green inter-
ferometer and the star test, are applicable to testing of microscope
objective lens.

Characterizing high numerical aperture (NA) objective lenses
presents unique challenges. Many of the standard approaches,
including Twyman–Green interferometry, are in fact comparative
techniques. They require a reference object — an objective or a
concave reflective surface — of the same or larger numerical aper-
ture and of perfect (comparatively speaking) optical quality. This
is problematic. Even if two lenses of the same type are available,
a problem still remains of apportioning the measured aberrations
to the individual lenses. The star test, which is absolute, hits a
similar problem in that the Airy disk produced by the lens being
tested is impossible to observe directly, and hence it has to be 
magnified by a lens with a similar or better resolution, that is, 
higher NA. Immersion lenses create further complications. All tests
described in this chapter are free from these problems. They are
absolute and use a small point scatterer or a flat mirror to create a
reference wavefront against which the lens aberrations are checked.
Together with advanced interferometric techniques and processing
algorithms, this results in a range of techniques suitable for routine
characterization of all available microscope objective lenses.

A few words have to be said regarding identity of the lenses
used throughout this chapter. Although the principal data for the
specimens used in our test is given, the name of their manufac-
turers is not. This is done for several reasons, not least to avoid
accusations of not using most up-to-date lenses from company A
to make it look worse than company B. As a university laboratory
we rely on the stock of lenses which have accumulated over the
years. A few people also brought their own lenses to test. Not all 
of these are necessarily the best in class. This work is about 
testing techniques and typical problems with high NA lenses, not
about relative merits of individual lenses or their respective 
manufacturers.

Before describing specific lens testing techniques it might be
useful to repeat here a few basic facts about microscope objective
lenses in general. Modern objective lenses are invariably designed
for infinite conjugate ratio, that is, the object of observation is
placed in the front focal plane and its image is formed at infinity.
In order to obtain a real intermediate image, a separate lens, called

the tube lens, is used. The focal length of this lens F (which ranges
from 165mm for Zeiss and 180mm for Olympus to 200mm for
Leica and Nikon) together with the magnification of the objective
M gives the focal length of the objective f = F/M.

One of the basic postulates of aberration-free lens design is
that it has to obey Abbe’s sine condition. For a microscope objec-
tive treated as a thick lens, this can be interpreted as the fact that
its front principal surface is actually a sphere of radius f 
centered at the front focus. Any ray leaving the focus at an angle
a to the optical axis is intercepted by this surface at the height 
d = f sina and emerges from the back-focal plane parallel to the
axis at the same height, as shown in Figure 11.1. For immersion
lenses this has to be multiplied by the refractive index of the
immersion fluid n.

In most high NA objective lenses, the back-focal plane, also
called the pupil plane, is located inside the lens and is not, there-
fore, physically accessible. Fortunately, lens designers tend to put
an aperture stop as close to this plane as possible, which greatly
simplifies the task of identifying the pupil plane when re-imaging
it using an auxiliary lens. Any extra elements, such as phase rings
in phase contrast lenses or variable aperture iris diaphragms, will
also be located in the back-focal plane.

The physical aperture of an objective lens D is related to its
numerical aperture n sina via

(1)

Ultimately it is limited by the size of the objective thread. For a
modern low magnification high NA immersion lens with, say, n sin
a = 1 and M = 20, D can be as large as 20mm. This is one of the
reasons why some lens manufacturers (notably Leica and Nikon)
have now abandoned the former gold standard of the Royal 
Microscopical Society (RMS) thread and moved to larger thread
sizes.

Every infinity-corrected lens needs a field lens to produce the
intermediate image. Field lenses differ considerably between man-
ufacturers and even between their various microscope ranges.
Strictly speaking, one should test each objective lens together with
its matching tube lens. We chose not to do this for several reasons.
First, there is general movement to confine all aberration correc-
tion to the objective lens. The only aberration that is still some-
times corrected in the tube lens is the lateral color. This does not
affect the results of our measurements. Moreover, there is a ten-
dency to use objective lenses individually without their respective
field lenses, especially in laboratory-built scanning systems. All
this implies the importance of knowing imaging properties of high
NA objective lenses as individual units.
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MEASURING POINT SPREAD FUNCTION

A perfect lens transforms a plane wave front into a converging
spherical wave. If they are not too dramatic, any deviations from
this ideal behavior can be described by introducing a complex
Pupil Function P(r, q), where r is the normalized radial coordi-
nate in the pupil plane and m is the azimuthal angle in the same
plane. Both amplitude and phase aberrations can be present in a
lens, but it is the latter that usually play the dominant role. The
amplitude aberrations are typically limited to some apodization
towards the edge of the pupil; these are discussed in more detail
in the section “Apodization.”

The optical field distribution produced by this (possibly aber-
rated) converging wave is termed the point spread function, or PSF,
of the lens. This distribution can be obtained in its most elegant
form if dimensionless optical coordinates in lateral

(2)

and axial

(3)

directions are used. In these coordinates the intensity distribution
in the PSF is independent of the NA of the lens, and the surface 
u = v corresponds to the edge of the geometric shadow. The actual
focal field distribution in these newly defined cylindrical coordi-
nates is given by (Born and Wolf, 1998):

(4)

The exponential term in front of the integral is nothing else than a
standard phase factor of a plane wave 2pnz/l.

For the aberration-free case P = 1 and the integral over q can
be calculated analytically to give 2pJ0(vr). Equation 4 now sim-
plifies to
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This equation is readily calculated either numerically or using
Lommel functions. The resulting intensity distributions are well
known and can be found, for example, in Born and Wolf (1998).
Not only that, but also PSFs subjected to various aberrations have
been calculated countless times in the past and are instantly rec-
ognizable to most microscopists. It is precisely for this reason that
a relatively straightforward measurement of the PSF can frequently
provide an instant indication of what is wrong with a particular
objective lens.

Equations 4 and 5 are, of course, scalar approximations. This
approximation works remarkably well up to angular apertures of
about 60°. Even above these angles the scalar approximation can
be safely used as a qualitative tool. For those few lenses that seem
to be beyond the scalar approach (and for the rigorous purists)
there is always an option to use a well-developed vectorial theory
(Richards and Wolf, 1959).

Fiber-Optic Interferometer
The requirement to measure both amplitude and phase of the PSF
calls for an interferometer-based setup. The fiber-optic interfer-
ometer, Figure 11.2, that was eventually chosen for the task has
several important advantages. It is an almost common-path system,
which dramatically improves long-term stability. It is also a self-
aligning system: light coupled from the fiber to the lens and scat-
tered in the focal region is coupled back into the fiber with the
same efficiency. For convenience, the whole setup is built around
a single-mode fiber-optic beam-splitter, the second output of which
is index-matched in order to remove the unwanted reflection. A
helium–neon (He–Ne) laser operating at 633nm is used as a light
source. The whole setup bears cunning resemblance to a confocal
microscope. In fact, it is a confocal microscope, or at least can be
used as such (Wilson et al., 1994). Provided that light emerging
from the fiber overfills the pupil of the objective lens, the former
acts as an effective pinhole ensuring spatial filtering of the
backscattered light (see Chapter 26, this volume). Thus, if the
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FIGURE 11.1. Schematic diagram of a typical high NA planapochromat objective lens. Principal surfaces, aperture stop, and marginal ray are indicated.



object can be regarded as a point scatterer, then the amplitude of
the optical signal captured by the fiber

(6)

that is, its magnitude is equal to the intensity of the PSF whereas
the phase is twice the phase of the PSF. In order to measure both
these parameters, light reflected back along the fiber from the tip
is used as a reference beam r. Wavefronts of both signal and ref-
erence beams are perfectly matched in a single-mode fiber — this
is the beauty of the fiber-optic interferometer. Furthermore, the
fiber tip is dithered to introduce a time-varying phase shift between
the interfering beams f(t) = f0 coswt. The interference signal
reaching the photodetector is now given by

(7)

where r was assumed to be real for simplicity. It is now a simple
matter to extract both Re(R) and Im(R) from this signal by using
lock-in detection technique. The signal of Eq. 7 is multiplied by
coswt and the result is low-pass filtered to give

(8)

whereas synchronous demodulation with cos2wt yields

(9)

By appropriately adjusting the modulation amplitude f0, it is easy
to achieve J1(f0) = J2(f0) and, by substituting Eq. 6, to 
calculate

(10)

Thus, the goal of obtaining both the amplitude and phase of
the PSF of the objective lens has been achieved. Of course, in order
to obtain full two- (2D) or three-dimensional (3D) PSF corre-
sponding scanning of the object, the point scatterer is still required.

Point Spread Function Measurements
In order to demonstrate the effectiveness of this method in detect-
ing small amounts of aberrations, it was tested on a special kind
of objective lens. This 60 ¥ 1.2 NA water-immersion plan-
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apochromat was developed for deconvolution applications and
hence was specifically designed to have a well-corrected PSF. It
was also equipped with a correction collar to compensate for cover
glass thicknesses in the range 0.14 to 0.21mm. One hundred
nanometer colloidal gold beads mounted beneath a #1.5 coverslip
of nominal thickness (0.17mm) acted as point scatterers in this
case. The coverslip was in turn mounted on a microscope slide and
a gap between them was filled with immersion oil so as to elimi-
nate reflection from the back surface of the coverslip. The size of
the bead was carefully chosen experimentally in order to maximize
the signal level without compromising the point-like behavior.
Indeed, a control experiment using 40nm beads yielded similar
results to those presented below but with a vastly inferior signal-
to-noise ratio.

In principle, this apparatus is capable of producing full 3D
complex PSF data sets. It was found however that in most cases
xz-cross–sections provided sufficient insight into the aberration
properties of the lens without requiring too long acquisition times.
Such results are shown in Figure 11.3 for two settings of the cor-
rection collar. In order to emphasize the side lobe structure, the
magnitude of the PSF is displayed in decibels with the peak value
taken to be 0dB. It can be seen that a collar setting of 0.165mm
gives a near-perfect form to the PSF. The axial side lobes are sym-
metric with respect to the focal plane and the phase fronts away
from this plane quickly assume the expected spherical shape. On
the other hand, a small 10% deviation from the correct setting
already has a quite pronounced effect on the PSF in the bottom
row of Figure 11.3. The symmetry is broken, the axial extent of
the PSF has increased by about 30%, and distinct phase singular-
ities appeared on the phase fronts. Everything points towards a
certain amount of uncompensated spherical aberration being
present in the system. It is interesting to note that, as the phase
map of the PSF seems to be more sensitive to the aberrations than
the magnitude, this can be used as an early warning indicator of
the trouble. It also underlines the importance of measuring both
the magnitude and phase of the PSF.

Although so far the measured PSF has been described in purely
qualitative terms, some useful quantitative information about the
objective lens can also be extracted from these data. One parame-
ter that can be readily verified is the objective’s NA. Axial extent
of the PSF is more sensitive to the NA than its lateral shape. Using
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FIGURE 11.2. Schematic diagram of the fiber-optic interferometer–based setup for measuring objective PSFs.



the axial section of the PSF is therefore the preferred method to
determine the NA. Besides, the interference fringes present in the
z-scan provide a natural calibration scale for the distance in z. 
The actual measurement was obtained by finding the best fit to the
curve in Figure 11.4. A somewhat surprising result of this exercise

was that the best fit corresponded to NA of 1.15, rather than the
nominal value of 1.2. This is not a coincidence: such discrepan-
cies were found with other high NA objective lenses as well. The
reason for this kind of behavior will become clear in the section
“Pupil Function.”

CHROMATIC ABERRATIONS

Chromatic aberrations constitute another class of aberrations that
can adversely affect the performance of any microscopy system.
These aberrations are notoriously difficult to overcome in high NA
objective lens design. The reason, at least in part, is the relative
uniformity of dispersion properties of common glasses used in
objective lenses. Ingenious solutions have been found at an
expense of dramatic increase of the number of lens elements —
typically to more than a dozen in apochromats. Even then, part of
the correction may need to be carried out in the elements external
to the objective.

Lateral and axial color, as they are called by lens designers,
are usually treated as separate chromatic aberrations. The former,
which manifests itself as the wavelength-dependent magnification,
is easy to spot in conventional microscopes as coloring of the edges
of high-contrast objects. Lateral chromatic aberration is also the
more difficult of the two to correct. Traditionally this has been
done by using the tube lens, or even the ocular, to offset the 
residual lateral color of the lens. Some of the latest designs claim
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FIGURE 11.3. The amplitude and phase of the
effective PSF for 60 ¥ 1.2 NA water-immersion lens
with correction collar. Results for two different collar
settings are shown. Image size in both x (horizontal)
and z (vertical) are 5mm.

FIGURE 11.4. Measured (dots) and calculated (line) amplitude axial
responses for the same lens.



to have achieved full compensation within the objective lens itself
— claims to be treated with caution. The correct testing procedure
for the lateral color should include at least a matched tube lens.
The simplest test would probably be to repeat the experiments
described in the section “PSF Measurements” for several wave-
lengths at the edge of the field of view and record the shift of the
lateral position of the point image.

In confocal microscopy, where the signal is determined by the
overlap of the effective excitation and detection PSFs, the loss of
register between them should lead to a reduction of signal towards
the edge of the field of view. It has to be said, though, that in most
confocal microscopes, almost always, only a small area around the
optical axis is used for imaging, hence this apodization is hardly
ever appreciable. Axial color, on the other hand, is rarely an issue
in conventional microscopy, but it can be of serious consequence
for confocal microscopy, especially when large wavelength shifts
are involved, such as in multi-photon or second and third harmonic
microscopy. Mismatch in axial positions of excitation and detec-
tion PSFs can easily lead to degradation or even complete loss of
signal, even in the center of the field of view. Below we describe
a test setup which uses this sensitivity of the confocal system to
characterize axial chromatic aberration of high NA objective
lenses.

Apparatus
Ideally, one could conceive an apparatus similar to that in Figure
11.2, whereby the laser is substituted with a broadband light
source. One problem is immediately obvious: it is very difficult to
couple any significant amount of power into a single-mode fiber
from a broadband light source, such as an arc lamp. Using multi-
ple lasers provides only a partial (and expensive) solution. Instead,
it was decided to substitute the point scatterer with a plane reflec-
tor. Scanning the reflector axially produces the confocal signal
(Wilson and Sheppard, 1984):
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The maximum signal is detected when the plane reflector lies in
the focal plane. This will change with the wavelength if chromatic
aberration is present. Using a mirror instead of a bead has another
advantage: the resulting signal is one-dimensional, function of u
only, and hence a dispersive element can be used to directly obtain
2D spectral axial responses without the necessity of acquiring 
multiple datasets at different wavelengths.

The resulting apparatus, depicted in Figure 11.5 and described
in more detail in Juškaitis and Wilson (1999), is again based
around a fiber-optic confocal microscope setup, but the interfer-
ometer part is now discarded. Instead, a monochromator prism
made of SF4 glass is introduced to provide the spectral spread in
the horizontal direction (i.e., in the image plane). Scanning in the
vertical direction was introduced by a galvo-mirror moving in syn-
chronism with the mirror in the focal region of the objective lens.
The resulting 2D information is captured by a cooled 16-bit slow-
scan CCD camera. A small-arc Xe lamp is used as a light source
providing approximately 0.2 mW of broadband visible radiation in
a single-mode fiber. This is sufficient to produce a spectral snap-
shot of a lens in about 10s.

Axial Shift
Typical results obtained by the chromatic aberration measurement
apparatus are shown in Figure 11.6. Because the raw images are
not necessarily linear either in z or l, a form of calibration proce-
dure in both coordinates is required. To achieve this, the arc lamp
light source was temporarily replaced by a He–Ne and a multi-line
Ar+ lasers. This gave enough laser lines to perform linearization in
l. As a bonus, coherent laser radiation also gave rise to inter-
ference fringes in the axial response with the reflection from the
fiber tip acting as a reference beam, just as in the setup shown in
Figure 11.2. When a usual high NA objective lens was substituted
with a low NA version, these fringes covered the whole range of
the z-scan and could be readily used to calibrate the axial coordi-
nate. The traces shown in Figure 11.6 have been normalized to
unity at each individual wavelength. The presence of longitudinal
chromatic aberration is clearly seen in both plots. Their shapes are
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FIGURE 11.5. Experimental setup for measuring axial chromatic aberration of objective lenses.



characteristic for achromats in which the longitudinal color is cor-
rected for two wavelengths only. It is interesting also to note the
change of the shape of the axial response with the wavelength. This
is noticeable for a 32 ¥ 0.5 NA plan-achromat but it becomes par-
ticularly dramatic for a 50 ¥ 0.8 NA plan-achromat [Fig. 11.6(b)].
Clearly the latter lens suffers from severe spherical aberration at
wavelengths below 550nm, which results in multiple secondary
maxima at one side of the main peak of the axial response.

An interesting problem is posed by the tube lens in Figure 11.5.
This lens may well contribute to the longitudinal chromatic aber-
ration of the microscope as a whole and, therefore, it is desirable
to use here a proper microscope tube lens matched to the objec-
tive. In fact it transpired that in some cases the tube lens exhibited
significantly larger axial color aberration than the objective itself.
This is hardly surprising: a typical tube lens is a simple triplet and,
sometimes, even a singlet. Clearly, it is impossible to achieve any
sophisticated color correction in such an element taken separately,
therefore the objective lens would have to be designed to take this
imperfection into account. Further information on this can be
found in Chapter 7.

In this experiment, however, the main task was to evaluate the
properties of the objective lens itself. A different approach was
therefore adopted. The same achromatic doublet (Melles Griot 01
LAO 079) collimating lens was used with all objective lenses.
Because the chromatic aberrations of this lens are well documented
in the company literature, these effects could be easily removed
from the final results presented in Figure 11.7. Figure 11.7(B) pre-
sents the same data but in a form more suited to confocal
microscopy, whereby the chromatic shift is now expressed in
optical units as defined in Eq. 3. The half width of the axial
response to a plane mirror is then given by 2.78 optical units at all
wavelengths and for all NAs. This region is also shown in the
figure. The zero in the axial shift is arbitrarily set to correspond to
l = 546nm for all the objectives tested.

As could be expected these results show improvement in per-
formance of apochromats over achromats. They also show that
none of the tested objectives (and this includes many more not
shown in Figure 11.7 for fear of congestion) could meet the
requirement of having a spectrally flat — to within the depth of
field — axial behavior over the entire visible range. This was only
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possible to achieve by stopping down a 1.4 NA apochromat using
a built-in aperture stop — the trick to be repeated several times
again before this chapter expires.

PUPIL FUNCTION

Pupil function is the distribution of the phase and amplitude across
the pupil plane when the lens is illuminated by a perfect spherical
wave from the object side. It is related in scalar approximation to
the PSF via a Fourier-like relationship (Eq. 4). It would appear,
therefore, that they both carry the same information and therefore
the choice between them should be a simple matter of convenience.
Reality is a bit more complicated than that. Calculating the pupil
function from the PSF is an ill-posed problem and therefore very
sensitive to noise. Measurements of the pupil function provide
direct and quantitative information about the aberrations of the lens
— information that can only be inferred from the PSF measure-
ments.

The trouble with mapping the pupil function is that a source
of a perfect spherical wave is required. Such a thing does not exist
but, fortunately, the dipole radiation approximates such a wave
rather well, at least as far as phase is concerned. The approach
described in this section is based on using small side-illuminated
scatterers as sources of spherical waves. The actual pupil func-
tion measurement is then performed in a phase-shifting Mach–
Zender interferometer in a rather traditional fashion.

Phase-Shifting Interferometry
The experimental setup depicted in Figure 11.8 comprised a fre-
quency doubled Nd:YAG laser which illuminated a collection of
20nm diameter gold beads deposited on the surface of a high
refractive index glass prism acting as dipole scatterers (Juškaitis
et al., 1999). Because the laser light suffers total internal reflec-
tion at the surface of the prism, no direct illumination can enter
the objective lens. The gold scatterers convert the evanescent field
into the radiating spherical waves that were collected by the lens
and converted into plane waves. These waves were then superim-
posed on a collimated reference wave. A 4-f lens system was then
used to image the pupil plane of the lens onto a CCD camera. A
pinhole in the middle of this projection system served to select a
signal from a single scatterer. The size of this pinhole had to be
carefully controlled so as not to introduce artifacts and degrade
resolution in the image of the pupil function. A second CCD
camera was employed to measure the PSF at the same time.

One of the mirrors in the reference arm of the interferometer
was mounted on a piezoelectric drive and moved in synchronism
with the CCD frame rate to produce successive interferograms of
the pupil plane shifted by 2p/3 rad

(12)

Using these three measurements the phase component of the pupil
function was then calculated as

(13)

The lens, together with the prism, was mounted on a pivoting
stage which could rotate the whole assembly around the axis
aligned to an approximate location of the pupil plane. Thus, the
off-axis as well as on-axis measurements of the pupil function
could be obtained. A set of such measurements is presented in
Figure 11.9, which clearly demonstrates how the performance of
the lens degrades towards the edge of the field of view. Not only
appreciable astigmatism and coma are introduced, but also
vignetting becomes apparent. The presence of vignetting would be
very difficult to deduce from direct measurements of the PSFs
shown in Figure 11.10, as it could be easily mistaken for astig-
matism. Not that such vignetting is necessarily an indication that
something is wrong with the lens; it may well be deliberately intro-
duced there by the lens designer to block off the most aberrated
part of the pupil.

Zernike Polynomial Fit
Traditionally, the phase aberrations of the pupil functions are
described quantitatively by expanding them using a Zernike circle
polynomial set:

(14)

where ai are aberration coefficients for corresponding Zernike
polynomials Zi(r, q). Significant variations between different 
modifications of Zernike polynomials exist. In this work a set from
Mahajan (1994) was used. The first 22 members of this set are
listed in Table 11.1 together with their common names. This list
can be further extended. In practice, however, expansion beyond
the second-order spherical aberration is not very reliable due 
to experimental errors and noise in the measured image of 
P(r, q).
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FIGURE 11.8. Phase-shifting Mach–Zehnder interferometer used for the pupil function measurements. Laser is frequency-doubled Nd:YAG laser.
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FIGURE 11.9. Phase distributions in the pupil plane of a representative range of objective lenses. Left to right: 10 ¥ 0.5 NA, 25 ¥ 0.8 NA multi-immersion,
40 ¥ 1.2 NA water-immersion, and 63 ¥ 1.4 NA oil-immersion objectives. Performance at the different positions in the field of view as measured in the inter-
mediate image plane is shown. Regular phase tilt added to facilitate visualization.

FIGURE 11.10. Point spread functions for the same lenses as in Figure 11.9.



The determination of the expansion coefficients ai should, in
principle, be a simple procedure, given that the Zernike polyno-
mials are orthonormal. Multiplying the measured pupil function by
a selected polynomial and integrating over the whole pupil area
should directly yield the corresponding aberration coefficient. 
The real life is a bit more complicated, especially when process-
ing the off-axis data, such as shown in Figure 11.9. One obstacle
is vignetting: the standard Zernike set is no longer orthonormal
over a non-circular pupil. Even without vignetting, the 2p phase
ambiguity poses a problem. Before the expansion procedure can
be applied, the phase of the pupil function has to be unwrapped —
not necessarily a trivial procedure.

An entirely different expansion technique was developed to
overcome these difficulties. This technique is based on a simulated,
iterative wavefront correction routine, originally conceived to be
used in adaptive optics applications together with a diffractive
optics wavefront sensor (Neil et al., 2000). The essence of the
method is that small simulated amounts of individual Zernike aber-
rations are applied in turns to the measured pupil function. After
each variation, the in-focus PSF is calculated and the whole
process iteratively repeated until the Strehl ratio is maximized. The
final magnitudes of the Zernike terms are then taken to be (with
opposite signs) the values of the Zernike expansion coefficients of
the experimentally measured, aberrated pupil function. This pro-
cedure is reasonably fast and sufficiently robust, provided that the
initial circular aperture can still be restored from the vignetted
pupil.

The power of this technique is demonstrated in Figure 11.11,
where a 40 ¥ 1.2 NA water-immersion lens was investigated at
three different settings of the correction collar. As expected, adjust-
ing the collar mainly changes the primary and secondary spheri-
cal aberration terms. Variations in the other terms are negligible.
The optimum compensation is achieved close to d = 0.15mm
setting, where small amounts of both aberrations with opposite
signs cancel each other. The usefulness of the Zernike expansion
is further demonstrated by the fact that the main residual term in

this case was the defocus, which, although not an aberration itself,
could be easily mistaken for a spherical aberration upon visual
inspection of the interference pattern.

Restoration of a 3D Point Spread Function
Nowhere is the power of the pupil function approach to the objec-
tive lens characterization more apparent than in cases when the full
3D shape of the PSF needs to be determined. Such need may arise,
for example, when using deconvolution techniques to process
images obtained with a confocal microscope.

As is clear from Eq. 4, it is not only possible to calculate an
in-focus PSF from a measured pupil function, but the same can be
done for any amount of defocus by choosing an appropriate value
for the axial coordinate u. Repeating the process at regular steps
in u yields a set of through-focus slices of the PSF. These can then
be used to construct a 3D image of the PSF in much the same
manner that 3D images are obtained in a confocal microscope.
Compared to the direct measurement using a point scatterer,
advantages of this approach are clear. A single measurement of the
pupil function is sufficient and no scanning of the bead in three
dimensions is required. Consequently, exposures per image pixel
can be much longer. As a result, this method provides much
improved signal-to-noise ratio in the final rendering of the PSF,
allowing even the faintest sidelobes to be examined.

Obviously, presenting a complete 3D image on a flat page is
always going to be a problem but, as Figure 11.12 shows, even just
two meridional cross-sections of a 3D PSF provide infinitely more
information than a plain 2D in-focus section of the same PSF at
the bottom of Figure 11.9. Thus, for example, the yz-section clearly
shows that the dominant aberration for this particular off-axis posi-
tion is coma. Comparing the two sections it is also possible to note
different convergence angles for the wavefronts in two directions
— a direct consequence of vignetting.
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FIGURE 11.11. Variations in wavefront aberration function expressed via
Zernike modes when correction collar of a water-immersion lens is adjusted.

TABLE 11.1. Orthonormal Zernike Circle Polynomials

i n m Zi(r, q) Aberration Term

1 1 0 1 Piston
2 1 1 2rcos q Tilt
3 1 -1 2r sinq Tilt
4 2 0 (2r2 - 1) Defocus
5 2 2 r2 cos2q Astigmatism
6 2 -2 r2 sin2q Astigmatism
7 3 1 (3r3 - 2r) cosq Coma
8 3 -1 (3r3 - 2r) sinq Coma
9 3 3 r3 cos3q Trefoil

10 3 -3 r3 sin3q Trefoil
11 4 0 (6r4 - 6r2 + 1) Primary spherical
12 4 2 (4r4 - 3r2) cos2q
13 4 -2 (4r4 - 3r2) sin2q
14 4 4 r4 cos4q
15 4 -4 r4 sin4q
16 5 1 (10r5 - 12r3 + 3r) cosq
17 5 -1 (10r5 - 12r3 + 3r) sinq
18 5 3 (5r5 - 4r3) cos3q
19 5 -3 (5r5 - 4r3) sin3q
20 5 5 r5 cos5q
21 5 -5 r5 sin5q
22 6 0 (20r6 - 30r4 + 12r2 - 1) Secondary spherical7

2 3
2 3
2 3
2 3
2 3
2 3

10
10
10
10
5

2 2
2 2
2 2
2 2

6
6
3



Empty Aperture
Testing objective lenses with highest NAs (1.4 for oil, 1.2 for water
immersion), one peculiar aberration pattern is often encountered.
As shown in Figure 11.13, the lens is well corrected up to 90% to
95% of the aperture radius, but after that we see a runaway phase
variation right to the edge. Speaking in Zernike terms, residual
spherical aberration components of very high order are observed.
Because of this high order, it appears unlikely that the aberrations
are caused by improper immersion fluid or some other trivial
reason. These would manifest themselves via low-order spherical
as well. More realistically, this is a design flaw of the lens.

The portion of the lens affected by this feature varies from few
to about 10%. For the lens in Figure 11.13, the line delimiting the
effective aperture was somewhat arbitrarily drawn at NA = 1.3.
What is undeniable is that the effect is not negligible. In all like-
lihood, this form of aberration is the reason for the somewhat mys-
terious phenomenon when a high NA lens exhibits a PSF that is
perfect in all respects except for an apparently reduced NA. This
was the case in “PSF Measurements” and also described by other
researchers (Hell et al., 1995).

It is quite clear that competitive pressures push the lens design-
ers towards the boundary (and sometimes beyond the boundary)
of the technical possibilities of the day. A few years ago no micro-
scope lens manufacturer could be seen without a 1.4 NA oil-
immersion lens when the Joneses next door were making one. The

plot is likely to be repeated with the newly emerging 1.45 NA
lenses. It is also true that a hefty premium is charged by the man-
ufacturers for the last few tenths in the NA. It is quite possible that
in many cases this is a very expensive empty aperture, which,
although physically present, does not contribute to the resolving
power of the lens.

This discussion may seem to be slightly off the point because
many users buy high NA lenses not because of their ultimate res-
olution, but because of their light gathering efficiency in fluores-
cence microscopy. This property is approximately proportional to
NA2 and therefore high NA lenses produce much brighter, higher
contrast images. At first glance it may seem that the aberrated edge
of the pupil will not affect this efficiency and hence buying a high
NA lens, however aberrated, still makes sense. Unfortunately, this
is not true. Because the phase variation at the edge is so rapid, the
photons passing through it reach the image plane very far from 
the optical axis. They do not contribute to the main peak of the
diffraction spot, instead they form distant sidelobes. In terms of
real life images, it means that the brightness of the background,
and not the image itself, is increased. Paradoxically, blocking the
outermost portion of the pupil would in this case improve the
image contrast!

The last statement may well be generalized in the following
way: in the end, the only sure way of obtaining a near-perfect high
NA objective lens is to acquire one with larger-than-required
nominal NA and then stop it down. Incidentally, in certain situa-
tions this may be happening even without our deliberate interven-
tion. Consider using an oil immersion lens on a water-based
sample: no light at NA >1.33 can penetrate the sample anyway and
hence the outer aperture of the lens is effectively blocked. Not that
such use should be ever considered unless in dire need: see Chapter
20 for a graphic description of the Bad Things that will happen.

MISCELLANEA

In this section a few more results obtained with the pupil function
evaluation apparatus are presented. These need not necessarily be
of prime concern to most microscope users but might be of inter-
est to connoisseurs and, indeed, could provide further insight into
how modern objective lenses work.

Temperature Variations
Many microscopists should recall seeing 23°C on a bottle of
immersion oil as a temperature at which the refractive index is
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FIGURE 11.12. Three-dimensional PSF restored from
pupil function data, shown here via two meridional 
sections.

FIGURE 11.13. Pupil function of 63 ¥ 1.4 NA oil immersion lens with both
nominal (outer ring) and effective working (inner ring) apertures indicated.



specified, typically n = 1.518 at l = 546nm. But how important is
this standard laboratory temperature to the performance of high
NA lenses? In order to answer this question, the pupil function of
a 100 ¥ 1.4 NA oil-immersion lens was measured at a range of
temperatures and the results were processed to obtain the variation
of the primary aberration coefficients with the temperature.

The major factor in the degradation of the imaging qualities 
of the immersion lenses with temperature is the variation of the
refractive index of the immersion oil, usually at the level of dn/dT
= 3 - 4 ¥ 10-4. The effect of this change is similar to that of intro-
ducing a layer of a refractive-index–mismatched material between
the lens and the sample. The resulting aberrations are well under-
stood, their exhaustive analysis can be found in Török and col-
leagues (1995). In short, spherical aberrations of various orders
will be generated; the relative weight of higher-order terms rises
dramatically with the NA of the lens. This is corroborated by the
experimental data in Figure 11.14 which show steady, almost linear
variation in both the primary and secondary spherical aberration
terms with temperature. Less predictably, the same plot also reg-
isters significant variations in the other first-order aberrations:
coma, astigmatism, and trefoil. Because of their asymmetry, these
aberrations cannot be explained by the oil refractive index
changes. They are probably caused by small irregular movements
of individual elements within the objective lens itself.

Strictly speaking, aberrations caused by refractive index
changes in the immersion fluid should not be regarded as lens aber-
rations. In practice, however, the lenses are designed for a partic-
ular set of layers of well-defined thicknesses and refractive indexes
between the front of the lens and the specimen. Any change in
these parameters upsets the fine optical phase balance in the system
and results in aberrated PSF. This might be an argument why it
makes sense to treat the immersion medium as being a part of the
objective lens. The temperature effect depends dramatically on the
type of the immersion fluid used. Water with dn/dT ª 8 ¥ 10-5 is
far less sensitive; dry lenses, of course, are not affected at all.
Long-working-distance lenses will be at a disadvantage too due to
longer optical paths in the immersion fluid.

Closer analysis of Figure 11.14 reveals that the aberrations are
indeed minimized around 23°C, where the combined primary and
secondary spherical aberrations are close to their minimum. A
small but noticeable hysteresis effect was also noted when, after a
few temperature cycles, the aberration coefficients failed to return
to their low initial values. It is tempting to connect this effect to
the fact that the imaging properties of even the best of lenses
always deteriorate with age — although accidental straining during
experiments is still likely to remain the prevailing factor.

Polarization Effects
Polarization effects encountered when imaging a dipole with a
high NA lens have been covered elsewhere (Wilson et al., 1997).
For the purposes of this investigation they are interesting inasmuch
as the imperfections of the lens contribute to them. When an image
of a small scatterer is viewed between the crossed polarizers, a
characteristic “clover leaf” pattern emerges. An image of the pupil
plane, Figure 11.15, is particularly telling. It shows that only the
rays that travel very close to the edge of the pupil pass through the
polarizer.

This happens because the polarization of light in these four
segments is slightly rotated from its original x-direction. The
reason for this rotation is 2-fold. First of all the radiation of a dipole
is linearly polarized in the meridional plane, which can only be
approximated by a uniformly polarized plane wave for small
angles a. When this spherical wavefront is straightened by the lens
and projected into the pupil plane, only light propagating in xz and
yz possesses perfect x-polarization, the remainder is rotated to
some degree. The degree of rotation increases dramatically with
higher aperture angles. This effect is fundamentally geometrical;
its close cousin is a well-known problem of how to comb a hairy
ball.

The second reason for the polarization rotation is more prosaic:
Fresnel losses. These tend to be higher for s than for p polarized
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FIGURE 11.14. Temperature variation of primary (red) and secondary
(purple) spherical aberrations as well as magnitudes of astigmatism (blue),
coma (orange), and trefoil (green). The latter three were defined as a =

, where a2
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s are the sine and cosine components of the cor-
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FIGURE 11.15. Polarization and apodization effects in a high NA lens. An image of a dipole scatterer viewed at the pupil plane of a 100 ¥ 1.4 NA lens with
crossed (left) and parallel (center) analyzers. Principal cross-sections, together with the theoretical predictions according to Eq. 15 (red line), are also shown.



light. For a beam travelling in a plane bisecting the xz- and yz-
planes, the overall tendency would be to rotate the polarization
towards the radial direction. Hence, this effect seems to work in
the opposite direction to that caused by the geometric factor, which
favors the azimuthal direction.

Apodization
So far the emphasis of this investigation has been on measuring
the phase aberrations. This is justified by the fact that the phase
deviations from an ideal spherical wavefront have considerably
more impact on the shape of the PSF than similar imperfections in
amplitude. Nevertheless, for completeness’ sake it might be inter-
esting now to have a closer look at the apodization effects occur-
ring in high NA lenses. Using dipole radiation as a probe offers
unique advantages in this task. Because the angular intensity dis-
tribution of the dipole radiation is well defined, any deviations
from perfect lens behavior should be easy to spot.

Let’s assume that the polarization vector of a dipole situated
in the focus is aligned in the x-direction. Angular intensity distri-
butions in the xz- and yz- (i.e., meridional and equatorial) planes
will be given by, respectively, Ix ~ cos2 a and Iy = const. Due to
purely geometric reasons, these distributions will change when
light propagates to the pupil plane even if the lens is perfect. With
reference to Figure 11.11 and to the sine condition d = nf sina, it
is not too difficult to show that an extra factor of sec a has to be
introduced when going from the object to the pupil side of the
objective in order to satisfy the energy conservation law. This
factor has been well known since the early days of high NA lens
theory (Richards and Wolf, 1959). Intensity distributions in the
pupil plane should therefore look like Ix ~ cosa and Iy ~ sec a or,
with the help of sine condition:

(15)

An experiment to measure these distributions was carried out
on the setup shown in Figure 11.8 by simply blocking the refer-
ence beam and capturing the pupil intensity image alone. To
produce the results shown in Figure 11.15 images of eight indi-
vidual scatterers were acquired and averaged in the computer.
Intensity distributions in the two principal planes were then
extracted. They follow the theoretical predictions rather well up to
about half of the pupil radius. After that, apodization is apparent,
and increases gradually, reaching about 30% to 50% towards the
edge of the pupil.

The cause of this apodization in all likelihood is the Fresnel
losses in the elements of the objective lens. Broadband anti-
reflection coatings applied to these elements are less effective at
the higher incidence angles that the high aperture rays are certain
to encounter. Because of the nature of these losses, they are likely
to be very individual for each particular type of objective lens. It
is also worth noting a slight polarization dependence of the losses
that contributes to polarization effects described in the previous
section.

CONCLUSION

The range of experimental setups and techniques dedicated to the
characterization of the high NA objective lenses could be contin-
ued. For example, the lateral chromatic aberration has not been
considered thus far. One has to be practical, however, and draw a
line at some point.
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From the tests described in this chapter, the measurement of
the pupil function provides the most detailed and insightful infor-
mation about the capabilities of a particular lens. In many cases,
two or three pupil functions measured across the field of view and,
perhaps, tabulated in the form of Zernike coefficients, would be
more than sufficient to predict the lens performance in most prac-
tical situations. It is disheartening to think of how much wasted
time, frustration, and misunderstandings could be avoided if such
information were to be supplied with the objective lenses by their
manufacturers.

My overall conclusion is that the vast majority of currently
designed objective lenses perform really well. Any imperfections
visible in a microscope image are far more likely to be a result of
a sloppy practice (e.g., tilted coverslip, incorrect immersion fluid,
etc.) than of a fault of the lens itself. That said, cutting-edge
designs are always going to be a problem and the very highest NA
lenses should be approached with caution. It is also worth point-
ing out that elements of the microscope other than the objective
lens may also be a factor in imaging quality. The tube lens is one
such element of particular concern. Having evolved little over the
last years, this lens simply has too few elements to achieve the
aberration correction on par with that of an all-singing all-dancing
objective lens. This situation is further exacerbated by the advent
of a new breed of low magnification high NA objectives with their
enormous back apertures.
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Juškaitis, R., Neil, M.A.A., and Wilson, T., 1999, Characterizing high quality
microscope objectives: a new approach, SPIE Proc. 3605:140–145.

Mahajan, V.N., 1994, Zernike circle polynomials and optical aberrations of
systems with circular pupils, Appl. Optics 33:8121–8124.

Malacara, D., 1992, Optical Shop Testing, John Wiley and Sons, New York.
Neil, M.A.A., Booth, M.J., and Wilson, T., 2000, New modal wave-front

sensor: A theoretical analysis, J. Opt. Soc. Am. A 17:1098–1107.
Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems

II. Structure of the image field in an aplanatic system, Proc. Roy. Soc.
Lond. A 253:358–379.

Török, P., Varga, P., and Németh, G., 1995, Analytical solution of the diffrac-
tion integrals and interpretation of wave-front distortion when light is
focused through a planar interface between materials of mismatched
refractive-indexes, J. Opt. Soc. Am. A 12:2660–2671.

Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning
Optical Microscopy, Academic Press, London.
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