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Using Statistical Models to Study
Temporal Dynamics of
Animal–Landscape Relations

KEVIN J. GUTZWILLER AND SAMUEL K. RIFFELL

Abstract. Temporal variation in animal responses to landscape conditions may
affect animal distributions, population and community structure, and resource use.
Measuring such variation and studying its influence is essential for developing
a realistic understanding of animal–landscape relations. Several statistical mod-
eling approaches are appropriate for explicitly incorporating time into analyses
of animal–landscape relations, but landscape ecologists have not commonly used
them. Analytical assessment of temporal variation in animal–landscape relations
may involve independent or dependent data. In the case of independent data, inter-
action effects involving time and landscape metrics can be estimated using cross-
product terms. This approach permits direct comparison of animal–landscape re-
gression curves across levels of time, enabling one to infer explicitly how relations
vary temporally. With dependent (repeated measures) data, analytical assessment
of temporal variation in animal–landscape relations may involve one (time), two
(space, time), or three (two space, one time) dimensions. Independent-error meth-
ods to test for differences among means or regression curves are not valid in these
situations. When data are recorded at equal time intervals, covariance structures that
reflect correlations among observations that decrease with time, such as the autore-
gressive structure, can be used. When data are recorded at unequal time intervals,
appropriate covariance structures include the power law, Gaussian, and spherical
structures. A mixed-model approach can be used to draw inferences about interac-
tions involving time and landscape metrics when one-, two-, and three-dimensional
repeated measures are involved. In summary, several methods accessible to those
with moderate training in statistics can be used to incorporate time into studies of
animal–landscape relations. Land-use planning and biological conservation will
benefit greatly from a better understanding of the temporal aspects of such relations.

6.1. Introduction

The study of animal–landscape relations has mushroomed in recent years as
ecologists and conservation biologists have begun to appreciate more fully the po-
tential effects of the surrounding landscape on animals at local sites. This landscape
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perspective is improving understanding of the broad-scale factors that influence
species richness, abundance, population dynamics, and habitat use. Because these
advances are leading to better representations of reality, their application may
improve conservation effectiveness (Gutzwiller, 2002).

Landscapes and animal populations are dynamic. Disturbances such as plant
diseases, storms, fire, floods, commercial and residential development, agricultural
development, road construction, and silviculture alter the structure and composi-
tion of landscapes at specific extents. The time frame for such changes can range
from days to decades. Animal populations can fluctuate seasonally and yearly with
changes in food availability and quality, the quality and quantity of habitat, survival
and reproduction driven by unpredictable weather, and life-history factors such as
nomadic behavior and events occurring on distant wintering ranges.

Together, these sources of variation can lead to temporal variation in animal–
landscape relations. For instance, habitats can be population sources in some years,
but sinks in others (McCoy et al., 1999). Substantial year-to-year variation occurs in
Great Lakes water levels, and coastal wetlands can be inundated one year but not the
next, resulting in different animal–landscape relations in successive years (Riffell
et al., 2003). Density dependence has been implicated as a source of temporal
variation in animal–habitat relations (O’Connor, 1986). Even during periods when
broad-scale habitat conditions are stable, considerable interannual variation in
bird–landscape relations can occur (Gutzwiller and Barrow, 2001, 2002). Many
examples exist for seasonal differences in habitat use, which may reflect niche
shifts or niche extensions (Shochat and Tsurim, 2004 and references therein).

If we hope to understand and predict animal–landscape relations, our analytical
approaches must incorporate temporal variation in explicit and robust ways. Tem-
poral variation in animal-habitat relations—including relations at broad spatial
scales—is poorly understood and in need of immediate study (Morrison, 2002).
Compared to studies that do not address temporal factors, studies that explicitly
include time are likely to yield information about animal–landscape relations that
is more realistic and hence more useful to land-use planners and conservation
biologists.

Several statistical approaches are appropriate for explicitly incorporating time
into analyses of animal–landscape relations, but landscape ecologists have not
commonly used them. The statistical modeling methods we discuss are well-
established, and we anticipate their use will increase substantially once landscape
ecologists become familiar with their utility and ease of application. The primary
goal of this chapter is to increase understanding and application of these tech-
niques so that temporal influences are more frequently incorporated into studies
of animal–landscape relations.

6.2. Objectives

To accomplish this goal, we define uncommon statistical terms used in this chapter,
explain when techniques for analyzing independent data and dependent data
should be applied, and demonstrate statistical-modeling approaches for studying
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temporal variation in animal–landscape relations. Researchers with modest
statistical training—knowledge of basic analysis of variance and regression,
for example—can implement the modeling techniques we consider. We use
SAS software (SAS Institute, 2002) in our examples because it is widely
available, it can be used to model many types of response variables of interest
to landscape ecologists, it enables one to model a large array of temporal and
spatial covariance structures, and it is the platform with which we are most
familiar.

We explain how to use SAS for five statistical modeling approaches that
explicitly incorporate time: (1) time-related interaction terms in regression mod-
els using independent observations; (2) mixed models for temporally dependent
observations that are equally spaced in time; (3) mixed models for temporally
dependent observations that are not equally spaced in time; (4) mixed models for
temporally and spatially dependent observations; and (5) mixed models for data
that exhibit dependence in two spatial dimensions and one temporal dimension.
To improve understanding of the techniques discussed in this chapter, we provide
simplified definitions of statistical terms (Box 6.1).

Box 6.1. Definitions of statistical terms.

Autocorrelation—correlation between temporally or spatially successive ob-
servations of a variable in a data set.

Covariance structures—different patterns of correlation among observations
from the same or different sampling units.

Cross-product—the result of multiplying the values of two explanatory vari-
ables together for a particular sampling unit. Cross-products for an entire sample
can be used as the data for estimating the coefficient for an interaction variable
in regression models.

Fixed effect—an effect whose levels in an analysis represent all possible
levels, or at least all of the levels about which inference is to be made.

Full model—the most complex mean model under consideration, containing
all fixed effects of interest.

Maximum likelihood (ML)—a method of estimating parameter values based
on maximizing the likelihood function.

Mixed model—a model containing both fixed and random effects.
Random effect—an effect whose levels in an analysis represent a random

subset of the possible levels.
Repeated measures—multiple observations obtained from the same sampling

unit (e.g., plot, animal, station) in sequence over time. This term also is used to
describe types of analyses designed to accommodate such data (e.g., repeated
measures analysis of variance).

Restricted maximum likelihood (REML)—a method of parameter estimation
restricted to maximizing the likelihood function over the random effects
portion of a model.
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6.3. Assessing Temporal Variation in Animal–Landscape
Relations Using Independent Observations

6.3.1. Independent Data in Landscape Studies

In a number of research situations, animal metrics (e.g., species richness,
abundance, habitat use) may be measured in different landscapes over time. Time
frames may include a single season, multiple seasons, or different years. It is not
always feasible to gather synchronous observations in many landscapes, or multi-
ple observations through time in each of many landscapes. Remote locations, and
constraints on personnel or time available for research, for example, can prevent
simultaneous or near-simultaneous surveys of all landscapes. The result can be one
measure of the response variable for each of many separate landscapes but across
a span of time (e.g., Pearson, 1993; McGarigal and McComb, 1995; Naugle et al.,
1999).

For instance, we may need to study mammal–landscape relations during a
breeding season based on asynchronous surveys in different landscapes. But
mammals might occupy landscapes differently as the season progresses because
of the phenology of plants, changes in temperature, or changes in other en-
dogenous or exogenous factors to which mammals respond. Under these cir-
cumstances, assessment of the relation between mammals and landscape fea-
tures would be misleading if time was influential but was left out of the
analysis; i.e., if mammal–landscape relations varied with the time of the sea-
son, it would be essential to explicitly incorporate time into the modeling
process.

As another example, consider a scenario in which snake density was sampled in
numerous landscapes during a two-year study. Not enough funding was available
to survey any landscape more than once. Instead of obtaining multiple observa-
tions over time in the same landscapes, the investigators decided to allocate their
resources in a way that would provide information about a larger number of land-
scapes. This decision was motivated in part by available resources but also by the
desire to include a wide range of landscape conditions in the analyses so that any
resulting model would have greater potential for robust prediction in the study
region. Accordingly, snake density was measured for half of the landscapes dur-
ing the first year and for the other half during the second year. The landscapes
were far enough apart that the estimates of snake density for the different land-
scapes were independent. Thus, the researchers had a set of independent observa-
tions with the potential to exhibit interaction effects between time and landscape
features.

6.3.2. Interaction Effects

When data for a response variable are collected at independent locations over
time, temporal variation in animal–landscape relations can be studied by an-
alyzing whether there are significant time-related interaction effects involving



P1: GFZ

SVNY323-Bissonitte January 22, 2007 17:22

6. Using Statistical Models to Study Temporal Dynamics 97

landscape variables. Returning to our snake research scenario, grassland cover
was expected to be a key determinant of snake density, so the researchers used
a geographic information system and digital land-cover data to measure percent
grassland cover for each landscape. The study objective was to assess the rela-
tion between snake density and percent cover of grassland, but the relation be-
tween snake density and grassland cover may not have been the same during both
years.

Specifically, the change in snake density per unit change in grassland cover
(regression slope) may have differed between years. When the effect of an ex-
planatory variable (e.g., grassland cover) on the response variable (e.g., snake
density) varies with the level of another explanatory variable (e.g., year), an in-
teraction effect (involving the two explanatory variables) exists on the response
variable. Note that a grassland cover × year interaction effect would differ from
a significant main effect for grassland cover (in which there would simply be a
relation between snake density and grassland cover) and from a significant main
effect for year (in which there would simply be a between-year difference in snake
density).

With independent data, landscape ecologists can employ interaction terms
in standard least-squares and logistic regression models to test whether there
is a significant difference in animal–landscape relations over time. A conve-
nient way to test for such dynamics is to calculate the cross-products (Neter
et al., 1989) of a landscape and time metric. The cross-products are the data
used in the analysis to test for an interaction effect. Any combination of
discrete or continuous variables can be used to form the cross-product vari-
able, and the regression coefficient associated with the cross-product vari-
able represents the interaction term in the model. Multiple interaction terms
can be examined in the same regression model. Examination of interac-
tion effects enables one to infer how animal–landscape relations vary over
time.

6.3.3. Example of SAS Code and Results

Continuing with our snake example, the data for the interaction effect is the
product of grassland cover multiplied by an indicator for year; the first year
is represented in the data set with a 1 and the second year is represented
with a 0. Coding of indicator variables is a common technique in regression
(Neter et al., 1989). The data used in this example are available from the
authors.

Using lndscape to represent landscape, msnkden to represent mean snake
density, grasscov to represent grassland cover in the landscape, year to repre-
sent the year when mean snake density was measured, and grssxyr to represent
the cross-products for the grassland cover × year interaction, SAS code for a
standard least-squares regression to test for the interaction would look like the
following:
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data snake;

input lndscape msnkden grasscov years;

cards;

1 0.25 10 1

2 0.20 15 1

. . .

. . .

39 0.42 51 0

40 0.35 39 0

run;

grssxyr = grasscov∗year;/∗calculating the cross-product∗/
proc reg;

model msnkden = grasscov year grssxyr;

run;

To determine whether there is a significant interaction effect, we examine the table
of parameter (regression coefficient) estimates in the output:

Parameter estimates

Parameter Standard

Variable DF estimate error t Pr > |t |
intercept 1 0.3272 0.0275 11.92 <0.0001

grasscov 1 0.0014 0.0005 2.70 0.0106

year 1 −0.1451 0.0376 −3.86 0.0004

grssxyr 1 0.0039 0.0007 5.88 <0.0001

The parameter estimate for the interaction term (grssxyr) is significantly
different from zero, implying that the relation between mean snake density and
grassland cover varies with year. We can visualize this result by plotting the relation
between mean snake density and grassland cover for each year separately on the
same graph (Fig. 6.1). When the regression lines in this type of graph are not
parallel (slopes are not equal), there is evidence of an interaction (Neter et al.,
1989). In our example, mean snake density increased with grassland cover, but it
did so at a higher rate in year 1 compared to year 2. Thus, the animal–landscape
relation exhibited temporal flux.

This approach to assessing interaction effects also can be applied in a gen-
eral linear model context (using SAS’s Proc GLM) and in a logistic regression
setting (using SAS’s Proc Logistic) (SAS Institute, 2002). In Proc GLM and
Proc Logistic, an assignment statement to define the interaction is not needed be-
fore the model statement; the interaction term is specified in the model statement
itself.
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FIGURE 6.1. Relation between mean snake density and percent grassland cover in 40 land-

scapes based on hypothetical data. The non-parallel regression lines indicate a grassland

cover × year interaction effect on mean snake density, which implies that the relation

between mean snake density and grassland cover varied with year.

6.4. Assessing Temporal Variation in Animal–Landscape
Relations Using Dependent Observations

6.4.1. Repeated-Measures Data in Landscape Studies

Landscape ecologists frequently collect temporally repeated measures data.
Typical situations include successive locations of radio-tagged animals, multi-
ple observations of an organism’s behavior, abundance or richness data collected
at the same sites during successive years, and land-use change within a region.
One rationale for collecting data on the same sampling units over time is that
animal–landscape relations may vary temporally. By obtaining serial measure-
ments from the same sampling units, one can develop an understanding of the
nature and degree of this variation and incorporate it into uncertainty analyses.
Another reason repeated measures data are collected is that sequential observa-
tions from the same units tend to have less variation than an equal number of
observations from different sampling units, because intrinsic and extrinsic sources
of variation are reduced. This condition can improve a landscape ecologist’s ability
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to develop better inferences about the issue at hand because there is less noise that
may obscure relations.

6.4.2. Statistical Nature of Repeated-Measures Data

Data collected over time from the same sampling unit (organism, plot, landscape
element, watershed, physiographic region) tend to be correlated. This violates the
independent errors assumption of many statistical procedures for comparing the
means of two or more groups (e.g., the t-test, standard analysis of variance) and
for assessing relations between response variables and landscape characteristics
(e.g., standard correlation and regression). Violations of this assumption can lead
to artificially low standard errors, inflated Type I error rates, and hence spurious
conclusions.

Common methods for analyzing repeated measures data are to conduct separate
analyses for each time period, or to average responses across time periods. But
these approaches avoid the temporal component entirely (Littell et al., 1998), do
not permit simultaneous inference about both spatial and temporal components,
and can result in less power because the sample size for one period of a study
will be smaller than the sample size for all periods combined. Another option is to
use a procedure that accommodates temporally correlated observations, such as
traditional repeated-measures analysis of variance. However, this method requires
that all pairs of measurements on a sampling unit are equally correlated regardless
of the amount of elapsed time between observations (Littell et al., 1998), and that
sets of observations taken at various points in time have equal variances. These
conditions are rarely met in studies of animal–landscape relations. Observations
on the same sampling unit taken close together in time are often more highly
correlated than are observations obtained farther apart in time (Littell et al., 1998),
and the variance of animal response variables often differs among time periods.

6.4.3. Advantages of Using Mixed Models to Analyze
Repeated-Measures Data

Development of general mixed models (Laird and Ware, 1982) has provided
straightforward and flexible methods for assessing temporal dynamics of animal–
landscape relations. Mixed models permit tests of fixed effects through either
maximum likelihood (ML) or restricted maximum likelihood (REML) estimation.
Temporal autocorrelation is accounted for by including temporal variables. The
syntax for mixed models is similar to that of classic analysis of variance, and one
can easily describe models, include interactions, and write code with basic SAS
familiarity.

Mixed models represent a significant improvement over traditional repeated-
measures analysis of variance in several ways:
� Mixed models allow for simultaneous inference about both spatial and temporal

factors through the use of fixed and random effects.
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� Mixed models apply more generally to a variety of covariance (correlation)
structures and permit investigators to choose an appropriate covariance structure
for the data being analyzed.

� Traditional repeated-measures analysis of variance does not readily allow for
missing data. For example, if an observation for one individual is missing for
one of the time periods, the data for all time periods for that individual must be
excluded from the analysis, unless an estimate for the missing datum can be gen-
erated. Sometimes it is reasonable to do this by computing a mean based on the
other observations in the same treatment group and time period, but this approach
reduces the variance of the group and may thereby alter the outcome of the anal-
ysis in ways that are not defensible. Mixed models, on the other hand, accommo-
date incomplete records without the need for such estimates (Littell et al., 1998).
Landscape ecologists may include temporal effects in a mixed model for at least

three reasons. One might be to control for effects of temporal variation. Adjusting
parameter estimates, standard errors, and test statistics for temporal effects can
prevent spurious conclusions and strengthen inferences. A second reason might be
to examine potential interactions between time and spatial components. Although
the effects of experimental treatments, landscape structure, or both are usually
the primary concerns, understanding how these factors vary across time is often
of interest as well. A third reason might be to identify the pattern of temporal
correlation that best describes the data. For example, one might be interested in
whether within-site correlations remain constant over time (compound symmetry)
or whether these correlations decrease with time (autoregressive).

Below we demonstrate the basic approach for modeling temporally repeated-
measures data with mixed models. We then demonstrate how to model more com-
plex situations involving temporally and spatially dependent observations that
landscape ecologists may encounter in analyses of temporal dynamics of animal–
landscape relations. For more detailed instruction about mixed models than we
provide here, we refer readers to guides for mixed models using SAS (Littell et al.,
1996) or S-plus (Pinheiro and Bates, 2000).

6.4.4. Temporally Dependent Observations, Equally
Spaced in Time

When the same sampling units (landscapes, sites, individuals) are sampled over
time at regular intervals (year, breeding season, week, day, etc.), the observations
are equally spaced in time and are likely to be temporally dependent. Regular
long-term monitoring of the same sites is a common source of such data. Se-
quential locations of radio-tagged individuals also may be temporally dependent;
indeed, major radio-tracking texts (e.g., White and Garrott, 1990; Millspaugh and
Marzluff, 2001) include discussion about the time interval between locations and
independence of observations.

In many situations, mixed models can be used to model correlations between
successive animal locations (e.g., Bowne et al., 1999). Mixed models can enable
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analysts to use more of the location data—because no observations have to be
discarded—and to gain insight about the time interval within which successive
locations are correlated. The example we describe next involves equally spaced
repeated measures data and serves as a vehicle for describing the basic steps in
analyzing mixed models.

Example: Pine Siskin (Carduelis pinus) in Subalpine Forests

During each year of a 5-year experiment to assess effects of human intrusion
on wildlife, birds were counted at 30 randomly placed permanent 1.0-ha sites in
Wyoming subalpine forest (Fig. 6.2). Investigators randomly selected 20 of the 30
sites to receive experimental intrusions designed to mimic recreational disturbance
by solitary hikers. The remaining 10 sites were unintruded controls. The treatments
at these 30 permanent sites were the same during all 5 years, and n for the entire
study was 5 × 30 = 150. Full details of this experiment are available in Gutzwiller
et al. (2002) and references therein.

For this example, we analyze the abundance of a small forest passerine, the pine
siskin. This species’ abundance at each site for a given year was calculated as the
mean number of individuals detected during ten weekly point counts. Percentages
of a 7.1-ha area around each site that were occupied by several land-cover types
were estimated, but here we only use data for non-forested openings. Thus, for
our example analysis, the important variables are pine siskin abundance, site, year,
intrusion treatment, and percentage of the surrounding landscape covered by non-
forested openings. Readers may obtain these data from the authors.

FIGURE 6.2. Map of study area in which pine siskin abundance was sampled during 1989–

1993.
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For purposes of demonstration, we asked two questions, one relating to a cate-
gorical landscape variable and another relating to a continuous landscape variable.
Our first question was, “Does experimental intrusion, which mimicked human
recreational activity in the landscape, increase or decrease pine siskin abundance?”
Intrusion treatment was modeled as a categorical (1 or 0) variable. We consider
a categorical variable in our example because evaluating animal–landscape rela-
tions often involves relating animal responses to categorical variables. Examples
of such evaluations include comparing animal responses (e.g., nest success, move-
ment rate, turning behavior, abundance) between edge sites vs. interior sites, be-
tween connected vs. unconnected patches, among different forest-cutting patterns,
or among different landscape contexts.

Our second question, which involved a continuous variable, was, “Did pine
siskin abundance vary with the percentage of the surrounding landscape covered
by non-forested openings?” Landscape ecologists frequently investigate animal–
landscape relations involving continuous landscape variables. Examples include
species-area relations, relating animal metrics to gradients of urbanization or frag-
mentation, and using principal components of correlated landscape characteristics
as predictor variables (e.g., Saab, 1999; Gutzwiller and Barrow, 2001; Riffell et al.,
2003).

Step 1: Specifying Fixed Effects

The first step in modeling repeated-measures data is to specify the fixed ef-
fects portion of the model. Temporal components are usually modeled using the
repeated statement (see below). The initial model should contain all fixed main
effects and interactions of interest. That is, the initial model should be a full model,
and this full model should be fit using REML (Wolfinger, 1993). Using the pine
siskin example, a program in SAS would look like this:

data pisi;

input site treat year pisi nfor;

cards;

1 0 1989 0.0 74

2 1 1989 0.0 64

. . .

. . .

29 1 1993 0.4 0

30 0 1993 0.5 0

run;

proc mixed method = reml;

class year treat site;

model pisi = treat nfor year treat*year nfor*year/

ddfm = kenwardroger;

repeated year/subject = site(treat) type = cs r;

run;
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This code enabled us to test whether pine siskin abundance (pisi) differed be-
tween intrusion treatments (treat), was related to amount of non-forested habitat
in the surrounding landscape (nfor), and differed among years (year). To test
whether the effects of intrusion and non-forested habitat varied from year to year,
we used the interaction terms treat*year and nfor*year, respectively.

In the proc mixed statement above, the method=reml option requests res-
tricted maximum likelihood estimation. In the model statement, the
ddfm=kenwardroger option provides a small-sample adjustment of degrees
of freedom for tests of fixed effects (Kenward and Roger, 1997). The repeated
statement indicates that year is the repeated measure, and the options indicate
the following specifications: subject=site(treat) specifies the individual
sites (nested within treatment) as the subjects (sampling units) that are repeatedly
sampled; type=cs specifies a compound symmetry covariance structure; and
r causes printing of the estimated variance-covariance matrix (covariance matrix
hereafter).

Step 2: Selecting a Temporal Covariance Structure

Because we collected data on the same sites during each of 5 years, the five data
points for a particular site may not have been independent. To address this issue,
we can use a mixed model and consider the five yearly observations at each site
to be repeated measures. Rather than ignoring or avoiding the implications of
temporally correlated observations, the covariance structure of such data can be
directly modeled, thereby supplying more detailed information about temporal
dynamics of animal–landscape relations.

The ability to compare and select a covariance structure is a key advantage of the
mixed model approach for repeated measures. SAS Proc Mixed offers over three
dozen covariance structures (SAS Institute, 2002; see Table 6.1 in this chapter
for five common examples), and they provide extraordinary flexibility in model-
ing temporal correlations. With so many possible structures, however, there is the
possibility that selecting a covariance structure could become a “fishing expedi-
tion.” To prevent this, we provide a general procedure for selecting an appropriate
covariance structure (Box 6.2).

Selection should be done with two considerations in mind. First, are there any
ecologically plausible temporal covariance structures? In our example below, we
considered the possibility that abundances from the same site were equally cor-
related (perhaps because of habitat or environmental similarities) regardless of
the number of years between pairs of observations; this structure is referred to as
compound symmetry. We also considered an autoregressive covariance structure,
which represented the possibility that repeated measures of pine siskin abundance
obtained closer together in time would be more highly correlated than would obser-
vations made farther apart in time. Many passerine species are faithful to breeding
sites from one year to the next, but these species typically live only a few years.
Thus, abundance estimates from two successive years may involve some of the
same individual birds, but estimates obtained more than 1 year apart may involve



P1: GFZ

SVNY323-Bissonitte January 22, 2007 17:22

6. Using Statistical Models to Study Temporal Dynamics 105

Box 6.2. General procedure for selecting a covariance structure.

1. Fit the fixed effects portion of the model.
2. Identify a set of candidate covariance structures.

� Consider ecological and biological characteristics of the dependent vari-
ables. For example, consider whether the biology of the organism suggests
that the variance of the response variable might fluctuate from year to year.

� Consider parsimony of the covariance structure relative to available sample
size. Many of the available covariance structures require a large number
of extra parameters, which may exceed the number of parameters that can
be confidently estimated for a given sample size.

3. Fit a separate mixed model (with an identical fixed effects portion) using
each of the candidate covariance structures.

4. Select the most appropriate covariance structure using one or more model
fit statistics such as Akaike’s Information Criterion (AIC) or Schwarz’s
Bayesian Criterion (SBC or BIC).

increasingly higher proportions of new individuals, reducing potential correlation
in responses.

Another characteristic of many animal populations is the potential for both the
abundance and the variance in abundance to fluctuate from year to year. SAS in-
cludes heterogeneous versions (Wolfinger, 1996) of the compound symmetry and
autoregressive structures. Heterogeneous structures may be useful for modeling
variable populations because they allow the diagonals of the covariance structure
(the yearly variances in our pine siskin example) to be different each year (see
Table 6.1), unlike the standard compound symmetry, autoregressive, and many
other structures. We therefore evaluated heterogeneous versions of these covari-
ance structures in the analysis presented below.

A second consideration for choosing a temporal covariance structure should be
the number of additional parameters that a particular structure will require. In our
pine siskin example, the unstructured covariance structure would have required
the estimation of 15 parameters (Table 6.1) just for the temporal covariance part
of the model. Including fixed effects and the intercept, we would have had con-
siderably fewer than 10 observations per parameter (our total n was 150). Having
few observations relative to the number of parameters can decrease power and in-
crease the probability of spurious effects (Flack and Chang, 1987; Morrison et al.,
1998; Burnham and Anderson, 2002). Accordingly, we did not consider the un-
structured covariance structure or other covariance structures with a large number
of parameters.

This left us with a set of four candidate covariance structures (number of parame-
ters in parentheses): compound symmetry (2), heterogeneous compound symmetry
(t + 1 = 6, where t = number of time intervals), autoregressive (2), and hetero-
geneous autoregressive (t + 1 = 6). To evaluate these four covariance structures,
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TABLE 6.1 Examples of five covariance structures available in SAS Proc Mixed.

Compound

Symmetry

(CS)

⎡
⎢⎢⎢⎢⎣

σ 2 + σ1 σ1 σ1 σ1 σ1

σ1 σ 2 + σ1 σ1 σ1 σ1

σ1 σ1 σ 2 + σ1 σ1 σ1

σ1 σ1 σ1 σ 2 + σ1 σ1

σ1 σ1 σ1 σ1 σ 2 + σ1

⎤
⎥⎥⎥⎥⎦

Heterogeneous

Compound

Symmetry

(CSH)

⎡
⎢⎢⎢⎢⎣

σ 2
1 σ1σ2ρ σ1σ3ρ σ1σ4ρ σ1σ5ρ

σ2σ1ρ σ 2
2 σ2σ3ρ σ2σ4ρ σ2σ5ρ

σ3σ1ρ σ3σ2ρ σ 2
3 σ3σ4ρ σ3σ5ρ

σ4σ1ρ σ4σ2ρ σ4σ3ρ σ 2
4 σ4σ5ρ

σ5σ1ρ σ5σ2ρ σ5σ3ρ σ5σ4ρ σ 2
5

⎤
⎥⎥⎥⎥⎦

Autoregressive

(AR[1])
σ 2

⎡
⎢⎢⎢⎢⎣

1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

⎤
⎥⎥⎥⎥⎦

Heterogeneous

Autoregressive

(ARH[1])

⎡
⎢⎢⎢⎢⎣

σ 2
1 σ1σ2ρ σ1σ3ρ

2 σ1σ4ρ
3 σ1σ5ρ

4

σ2σ1ρ σ 2
2 σ2σ3ρ σ2σ4ρ

2 σ2σ5ρ
3

σ3σ1ρ
2 σ3σ2ρ σ 2

3 σ3σ4ρ σ3σ5ρ
2

σ4σ1ρ
3 σ4σ2ρ

2 σ4σ3ρ σ 2
4 σ4σ5ρ

σ5σ1ρ
4 σ5σ2ρ

3 σ5σ3ρ
2 σ5σ4ρ σ 2

5

⎤
⎥⎥⎥⎥⎦

Unstructured

(UN)

⎡
⎢⎢⎢⎢⎣

σ 2
1 σ12 σ13 σ14 σ15

σ21 σ 2
2 σ23 σ24 σ25

σ31 σ32 σ 2
3 σ34 σ35

σ41 σ42 σ43 σ 2
4 σ45

σ51 σ52 σ53 σ54 σ 2
5

⎤
⎥⎥⎥⎥⎦

we used four separate runs of Proc Mixed. Each time we fit the same fixed effects
portion of the model but modified the repeated statement to include a different
covariance structure. We show the different repeated statements below; the rest
of the SAS code remained exactly as shown previously.

repeated year/subject=site(treat) type=cs r;

repeated year/subject=site(treat) type=csh r;

repeated year/subject=site(treat) type=ar(1) r;

repeated year/subject=site(treat) type=arh(1) r;

SAS provides several model fit statistics that can be used to select a covari-
ance structure. Of these, Akaike’s Information Criterion (AIC) and Schwarz’s
Bayesian Criterion (BIC or sometimes SBC) are common choices (Littell et al.,
1996; Wolfinger, 1996, 1997). Both are based on the log likelihood and include
a penalty proportional to the number of covariance parameters (BIC provides
a stiffer penalty than does AIC). Burnham and Anderson (2002) recommend
using the small-sample version of Akaike’s Information Criterion (AICc, also
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provided by SAS) when n < 40 per estimated parameter in a model (including
all covariance parameters, fixed effect parameters, intercept, and error terms).
We used AICc to select the most appropriate covariance structure for our
example.

AICc (smaller is better) indicated that the heterogeneous compound symme-
try covariance structure was the most appropriate choice, but that the heteroge-
neous autoregressive structure was a very close second (difference in AICc <

0.1).

Covariance structure AICc

Compound symmetry 22.7
Heterogeneous compound symmetry 16.4
Autoregressive 23.3
Heterogeneous autoregressive 16.5

When two or more covariance structures have similar measures of appropriate-
ness, it is not clear which structure is more appropriate. If the primary goal is to
improve inference about fixed effects, the choice among appropriate covariance
structures does not present a major dilemma. Littell et al. (1996, p. 321) note
that, “the major impact on inference results from using a reasonable covariance
model. The specific model used is not nearly as important, as long as it is ‘in the
ballpark.’”

In many studies, experimental treatments may affect the variance instead of (or
in addition to) the mean. One option in this situation is to used the group= option
in the repeated statement, which permits different values for each parameter in
the covariance structure for each level of the group effect (SAS Institute, 2002).
The repeated statement would look like the following:

repeated year/subject=site(treat)type=cshgroup=treatr;

In our current pine siskin example, both intrusion treatments would exhibit het-
erogeneous compound symmetry structure but the variances (diagonals) could be
different for sites in each treatment. The group= option should be used with cau-
tion, especially with small sample sizes, because it greatly increases the number
of parameters in and the complexity of the covariance structure.

Step 3: Inference about Dynamics of Animal–Landscape Relations

The third step involves making the statistical inference using the previously se-
lected covariance structure. Thus, we used the following SAS statements. Note that
the type= option in the repeated statement is set to csh for heterogeneous
compound symmetry.
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data pisi;

input site treat year pisi nfor;

cards;

1 0 1989 0.0 74

2 1 1989 0.0 64

. . .

. . .

29 1 1993 0.4 0

30 0 1993 0.5 0

run;

proc mixed method = reml;

class year treat site;

model pisi = treat nfor year treat*year nfor*year/

ddfm = kenwardroger;

repeated year/subject = site(treat) type = csh r;

run;

One useful output from this program is the table of parameters for the covariance
matrix:

Covariance parameter estimates

Covariance

parameter Subject Estimate

Var(1) site(treat) 0.0173

Var(2) site(treat) 0.0264

Var(3) site(treat) 0.0389

Var(4) site(treat) 0.0682

Var(5) site(treat) 0.0497

CSH site(treat) 0.1205

In this output in the Estimate column, the yearly variances in pine siskin abundance
(i.e., Var(1) for 1989 = 0.0173, Var(2) for 1990 = 0.0264, etc.) are the diagonals
of the CSH covariance matrix (see Table 6.1 and Box 6.3). The variances generally
increase with year, confirming the choice of heterogeneous structures. The CSH
parameter in the Estimate column is the constant (ρ) in the covariance part of the
matrix (see Table 6.1 and Box 6.3). Overall, these results imply that heterogeneous
compound symmetry was a reasonable covariance structure for our data.

Next, we look at the tests of fixed effects.

Type 3 tests of fixed effects

Numerator Denominator

Effect DF DF F Pr > F

treat 1 26.9 0.10 0.7582

year 4 58.2 15.75 <0.0001

nfor 1 26.9 4.24 0.0493

year*treat 4 58.2 0.95 0.4424

nfor*year 4 58.2 3.42 0.0140
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Box 6.3. Example calculations for a covariance structure.

Generic heterogeneous compound symmetry (CSH) structure (in the first ma-
trix below) compared to the specific CSH structure parameterized for the pine
siskin abundance data. Example calculations for the first column of covariances
are presented in the second matrix. The specific structure (third matrix) was
generated by the analysis described in 6.4.4. Temporally Dependent Observa-
tions, Equally Spaced in Time (Step 3: Inference about Dynamics of Animal–
Landscape Relations).

Generic CSH

Structure

⎡
⎢⎢⎢⎢⎣

σ 2
1 σ1σ2ρ σ1σ3ρ σ1σ4ρ σ1σ5ρ

σ2σ1ρ σ 2
2 σ2σ3ρ σ2σ4ρ σ2σ5ρ

σ3σ1ρ σ3σ2ρ σ 2
3 σ3σ4ρ σ3σ5ρ

σ4σ1ρ σ4σ2ρ σ4σ3ρ σ 2
4 σ4σ5ρ

σ5σ1ρ σ5σ2ρ σ5σ3ρ σ5σ4ρ σ 2
5

⎤
⎥⎥⎥⎥⎦

Example

Calculations for

Specific CSH

Structure

(see text)

⎡
⎢⎢⎢⎢⎣

0.0173 σ1σ2ρ σ1σ3ρ σ1σ4ρ σ1σ5ρ√
0.0264

√
0.0173 (0.1205) 0.0264 σ2σ3ρ σ2σ4ρ σ2σ5ρ√

0.0389
√

0.0173 (0.1205) σ3σ2ρ 0.0389 σ3σ4ρ σ3σ5ρ√
0.0682

√
0.0173 (0.1205) σ4σ2ρ σ4σ3ρ 0.0682 σ4σ5ρ√

0.0497
√

0.0173 (0.1205) σ5σ2ρ σ5σ3ρ σ5σ4ρ 0.0497

⎤
⎥⎥⎥⎥⎦

Specific CSH

Structure†

⎡
⎢⎢⎢⎢⎣

0.0173 0.002573 0.003127 0.004139 0.003533

0.002573 0.0264 0.003858 0.005108 0.004360

0.003127 0.003858 0.0389 0.006207 0.005298

0.004139 0.005108 0.006207 0.0682 0.007013

0.003533 0.004360 0.005298 0.007013 0.0497

⎤
⎥⎥⎥⎥⎦

† To produce the specific covariance structure as SAS output, use the r option in the
repeated statement of Proc Mixed.

In any multifactor model with interactions, one should first check for significant
interactions (Wolfinger, 1997) because when an interaction effect is present, the
influence of one main effect depends on the level of the other main effect involved in
the interaction (Underwood, 1997). The nfor*year interaction was significant
(see above), so we focused our interpretation on the nfor*year interaction
instead of on the associated main effects. Our conclusions, based on the table
above, were: pine siskin abundance was not lower on intruded sites; pine siskin
abundance differed significantly among years, but this effect varied with the percent
of the surrounding landscape in non-forested area; and pine siskin abundance was
related to the percent of non-forested area in the surrounding landscape, but this
relation varied among years. These latter two interpretations are alternate ways of
viewing the nfor*year interaction effect.

To explore the temporal dynamics of the relation between pisi and nfor

further, we can modify our mixed-model code so it produces intercepts and slopes
for the relation between pine siskin abundance and non-forested openings for each
year separately. This is accomplished by dropping the nformain effect and other
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non-significant terms, and by specifying two options in the model statement:
noint tells Proc Mixed not to fit a common intercept, but five separate intercepts
(one for each year); solution requests the estimates for all of the fixed-effect
parameters.

data pisi;

input site treat year pisi nfor;

cards;

1 0 1989 0.0 74

2 1 1989 0.0 64

. . .

. . .

29 1 1993 0.4 0

30 0 1993 0.5 0

run;

proc mixed method=reml;

class year treat site;

model pisi-year nfor*year/ddfm=kenwardroger noint

solution;

repeated year/subject=site(treat) type=csh r;

run;

This program generated the following output:

Solutions for fixed effects

Effect Date Estimate Standard error DF t Pr > |t |
year 1989 0.0731 0.0287 28.2 2.55 0.0166

year 1990 0.0901 0.0342 29.2 2.63 0.0134

year 1991 0.1593 0.0415 28.9 3.84 0.0006

year 1992 0.4157 0.0560 27.3 7.43 <0.0001

year 1993 0.4326 0.0479 27.0 9.03 <0.0001

nfor*year 1989 −0.0009 0.0013 28.2 −0.65 0.5222

nfor*year 1990 0.0052 0.0016 29.2 3.35 0.0022

nfor*year 1991 0.0050 0.0019 28.9 2.65 0.0130

nfor*year 1992 0.0007 0.0026 27.3 0.26 0.7964

nfor*year 1993 0.0009 0.0022 27.0 0.43 0.6725

In the Estimate column above, the coefficients for year are intercepts, and the
coefficients for nfor*year are slopes. The intercept estimates indicate that pine
siskin abundance and its standard error generally increased over time. The slope
estimates indicate the relation between pine siskin abundance and nfor was strongly
positive in 1990 and 1991, as indicated by the significant t statistics, but not
during the other 3 years. Using these results, one can explore, through theoretical
arguments or further experiments, why this relation was significant in these 2 years
but not the others.
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6.4.5. Temporally Dependent Observations, Unequally
Spaced in Time

Temporally repeated observations often occur at irregular intervals. Consider the
following hypothetical example of an unequally spaced design: an investigative
team planted vegetative corridors in different matrix types and then monitored
animal use of those corridors 1 year, 2 years, 4 years, 7 years, and 10 years later.
A situation like this could arise simply because of funding or other logistical
constraints that prohibit sampling at equal intervals. Unequally spaced observa-
tions also may occur when weather conditions restrict sampling to specific but
unpredictable times, or when a marked animal is relocated after a period of being
undetectable.

With unequally spaced temporal observations, landscape ecologists can still
use mixed models, but temporal correlations must be modeled as a function of
“distance” rather than as a function of a regular time interval. In this situation,
“distance” is the single dimension of time, not two- or three-dimensional space,
and structures commonly used to model spatial covariance (power law, Gaussian,
spherical, etc.) are used to model temporal covariance (Littell et al., 1996). Land-
scape ecologists have fully recognized the utility of spatial covariance structures for
modeling spatial variation in animal–landscape relations (e.g., Selmi and Boulin-
ier, 2001; Keitt et al., 2002; Evans and Gaston, 2005), but the same covariance
structures, and very similar SAS code, also can be used to model covariance
among unequally spaced, temporally correlated observations. Recent versions of
SAS include over a dozen spatial covariance parameters that can be included in
the type= option of the repeated command in Proc Mixed.

Although our pine siskin data contain equally spaced repeated measures, we
used it as an example of how to code for unequally spaced repeated measures
below. We used a power law spatial covariance, which provides a generalization
of the autoregressive (AR[1]) structure for equally spaced data.

data pisi;

input site treat year pisi nfor;

cards;

1 0 1989 0.0 74

2 1 1989 0.0 64

. . .

. . .

29 1 1993 0.4 0

30 0 1993 0.5 0

run;

data pisi2; set pisi;

year1=year;

run;

proc mixed method=reml data=pisi2 order=data;

class year treat site;
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model pisi = treat nfor year treat*year nfor*year/

ddfm=kenwardroger;

repeated year/subject=site(treat)

type=sp(pow)(year1) r;

run;

An important caveat is that the spatial covariance analysis requires that year be a
continuous variable in the type= option of the repeated statement. Using a
data step, we created a second time variable, year1, that was identical to the
categorical year variable, except that it was considered continuous (notice that
year1 is not in the class statement).

6.4.6. Temporally and Spatially Dependent Observations,
Two Dimensions

Research efforts on animal–landscape relations often result in data that are corre-
lated through both space and time. For example, if invertebrates were sampled in
multiple stream reaches in each of several watersheds over time, there might be
correlations among reaches located in the same watersheds (spatial dependence)
and correlations among temporal observations in the same reaches (temporal de-
pendence). Another example would involve serial sampling of the same patches
over time in distinct physiographic regions. A third example would be repeated
location data on individual animals that form groups in different areas.

Pine Siskin Example: Doubly Repeated Measures

Returning to the pine siskin example, Fig. 6.2 indicates that the 30 sites occurred
in two basic groups, one in the southwestern part of the study area and one in the
northeastern part of the study area. These two groups corresponded to two areas
that were relatively snow-free and hence accessible during the early part of the
breeding season. The sites were positioned randomly, treatments were randomly
assigned to sites, and there were no major vegetation differences between treatment
groups. For demonstration purposes, we assume that in addition to the temporally
repeated measures associated with year, the two groups (or clusters) of sites involve
spatially repeated measures within each cluster. Thus, our challenge now is to
simultaneously model the correlation among temporally repeated measures and
the correlation among sites within a cluster.

Doubly repeated measures can be dealt with in mixed models by using the
repeated statement, the random statement, or both. In addition to the temporal
effect year, which is specified by the repeated statement, we can assign group
membership to a categorical variable (coded 1 or 2), named cluster here, and
model the spatial dependence as a random effect:

data pisi;

input site treat year pisi nfor cluster;
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cards;

1 0 1989 0.0 74 1

2 1 1989 0.0 64 1

. . .

. . .

29 1 1993 0.4 0 2

30 0 1993 0.5 0 2

run;

class year treat site cluster;

model pisi=treat nfor year treat*year nfor*year/

model pisi = treat nfor year treat*year nfor*year/

ddfm=kenwardroger;

random cluster;

repeated year/subject=site(treat) type=csh r;

run;

This program generated the following output.

Covariance parameter estimates

Covariance

parameter Subject Estimate

Cluster — 0.0072

Var(1) site(treat) 0.0200

Var(2) site(treat) 0.0184

Var(3) site(treat) 0.0284

Var(4) site(treat) 0.0652

Var(5) site(treat) 0.0599

CSH site(treat) 0.0799

In this output, as before, Var(1) through Var(5) in the Estimate column are the yearly
variances in pine siskin abundance (diagonals of the covariance matrix), and the
CSH parameter is the constant in the covariance part of the matrix (Table 6.1).
Notice in the Estimate column for Cluster that the covariance associated with the
groups of sites was an order of magnitude smaller than were the other covari-
ance parameters. Furthermore, the fixed-effect results (not shown) did not change
appreciably, so in this example the spatial grouping of the sites was not important.

6.4.7. Temporally and Spatially Dependent Observations,
Three Dimensions

Three-dimensional repeated-measures data—a temporal correlation (repeated
measures over time) and correlation in two spatial dimensions (typically x and y
geographic coordinates)—often arise when studying animal–landscape relations.
This situation occurs when there is a set of permanent sampling stations located
throughout a landscape or region, and these stations are sampled repeatedly over
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time. Animal metrics measured at nearby stations may be more correlated than are
those for distant stations, and animal metrics measured close together in time may
be more correlated than are those measured farther apart in time. Furthermore,
spatial correlations may change over time, and temporal correlations may change
through space. Examples of three-dimensional repeated-measures data include the
30 stations at which investigators repeatedly sampled pine siskins, and the thou-
sands of Breeding Bird Survey routes sampled annually across North America
(Robbins et al., 1986; Sauer et al., 2005).

Although Proc Mixed would allow a temporal variable to be treated as a third
spatial dimension (e.g., type=sp(pow)(easting northing year1)),
this is not appropriate because time and space do not have comparable units (Sch-
abenberger and Gotway, 2005). Other possible approaches for three-dimensional
situations would be to either conduct separate spatial analyses for each level of the
time dimension, or conduct separate temporal analyses for each location. However,
these approaches do not account for possible interactions between spatial and tem-
poral processes. The ideal approach would be to model the spatial and temporal
correlations and space–time interactions simultaneously, but techniques for doing
this are not well-developed or readily accessible in common statistical packages.

If certain assumptions are met, one can analyze 3-dimensional repeated-
measures data using either separable covariance structures, or non-separable
covariance structures. Separable covariance structures permit joint analysis of
spatio-temporal data, but do not permit space-time interactions to be investigated
(Mitchell and Gumpertz, 2003; Schabenberger and Gotway, 2005), whereas tech-
niques based on non-separable covariance structures allow for both joint and in-
teraction analyses (Schabenberger and Gotway, 2005). Unfortunately, use of these
two types of structures is complex, and writing code for the analyses is not simple
in popular statistical packages (but see Mitchell and Gumpertz, 2003 for a spatio-
temporal analysis using several SAS procedures). The references cited above are
an excellent starting point for researchers interested in pursuing these techniques.

6.4.8. Summary of Mixed Models for Repeated Measures

Mixed models provide an opportunity to explicitly incorporate simultaneous infer-
ence about time and space in studies of animal–landscape relations. These models
are flexible, allowing temporal and spatial effects to be addressed in different ways
and with different levels of dimensionality.

For our inferences about pine siskin, the mixed-model approach was beneficial
in three major ways. First, it enabled us to estimate effects of human intrusion
treatments and percent of the surrounding landscape composed of non-forested
openings after accounting for different covariance structures in the data, which re-
duced the possibility of spurious conclusions. Second, it provided the ability to use
all of the observations in a single analysis and thereby avoid the loss of statistical
power that might have been incurred by splitting the dataset and conducting anal-
yses for each year separately. Finally, the mixed-model approach enabled us to
make simultaneous inferences about spatial and temporal factors.
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The basic protocol for conducting mixed-model analyses in the context of tem-
porally repeated measures can be summarized as follows:
Step 1: Fit the fixed effects portion of the model using REML. Generally, this

part of the model should contain all main effects and interactions of
interest.

Step 2: With thought to ecological processes and sample size restrictions, choose
a set of candidate covariance structures and select the best-fitting structure
using a model fit statistic such as AIC.

Step 3: Apply the selected covariance structure for inference in the final model
using REML.

Note that after selecting the appropriate covariance structure, investigators may
wish to evaluate several different competing fixed-effect models. Often, AIC (or
another model selection criterion) is used to select the “best” model(s) for in-
ference (Burnham and Anderson, 2002). There are two important considerations
when doing this. First, investigators should use maximum likelihood (use the
method=ml option in the proc mixed statement) when comparing models
with different fixed-effect specifications, because REML restricts the optimiza-
tion of the likelihood function to the random-effects portion of the model
(Wolfinger, 1993). Second, one should verify that SAS Proc Mixed uses the
number of parameters (including intercepts and error terms) specified in Burn-
ham and Anderson (2002) for AIC calculations (see Stafford and Strickland,
2003).

6.4.9. Additional Information About Mixed Models

Mixed-Model Diagnostics

For classical linear modeling approaches like regression and analysis of variance,
various tools are available to assess the overall fit of the model to the data and to
examine the influence of individual observations on the model. These tools include
residual analysis, collinearity analysis, and influence analysis. Such analyses can be
useful for assessing the degree to which model assumptions are met and identifying
individual data points that have a strong influence on structuring the model. In
mixed models for repeated measures, these assessments are more difficult because
it is not the influence of individual observations (e.g., a particular pine siskin
survey) that is of interest, but rather the influence of a particular site that was
observed multiple times (e.g., over several years). Recent versions of SAS include
options to produce influence diagnostics that allow assessment of the fit of both
random- and fixed-effect components (Schabenberger, 2004).

Mixed Models for Non-Traditional Data

We have focused on linear models involving continuous response variables that are
normally distributed, but the mixed-modeling concepts and techniques we have
described can be extended to other types of response variables. Mixed models can
be applied to binomial or Poisson distributions via Proc Glimmix (Littell et al.,
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1996; Schabenberger, 2005) using syntax and theory that are similar to those
described above. Mixed-model approaches can be extended to non-linear models
via Proc Nlinmixed in SAS (Littell et al., 1996), or with S-Plus (Pinheiro and Bates,
2000). Detailed discussion of these options is beyond the scope of this chapter,
but we mention them for readers with interests in applications to binary and count
data and to non-linear processes. The references cited above are good portals into
the pertinent literature.

6.5. Conclusions

Several established modeling methods accessible to those with moderate training in
statistics can be used to incorporate time into studies of animal–landscape relations.
Typical advantages of explicitly modeling time in such relations include: results
that are more defensible on technical grounds; better understanding of the ecology
involved; knowledge of the magnitude of temporal variation in the relations, which
can be used to characterize temporal flux in, and level of uncertainty about, the
relations; and robust predictions about animal use of landscapes over time. Knowl-
edge about temporal variation in animal–landscape relations also can be used to
parameterize and structure simulation models (Gutzwiller and Barrow, 2001).

These advantages hold promise for advancing the disciplines of landscape ecol-
ogy, land-use planning, and biological conservation for the following reasons.
Defensible results are crucial for establishing policy and management guide-
lines. The value of a model lies largely in the ecological understanding it pro-
vides, and models that address temporal flux are more likely to provide better
ecological understanding than are models that that do not account for such dy-
namics. The utility of an animal–landscape model can be constrained by un-
certainty about whether it holds over time, and explicitly modeling temporal
dynamics can help one identify levels of uncertainty. Predictions from models
that consider temporal dimensions also are likely to be more robust because
they probably represent reality more accurately. Simulation models are frequently
used to predict consequences of environmental disturbances and management de-
cisions. By incorporating temporally explicit statistical models as key compo-
nents (sub-models), simulation models may represent temporal dynamics more
realistically.
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