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Abstract By applying the probability estimation of the unavailable attributes derived from 
the available attributes to the neighborhood system, the suited degree of each 
neighbor to a given object is depicted. Therefore, the neighborhood space with 
guaranteed suited precision is obtained. We show how to shrink the rule search 
space via VPRS model for this space, and also, we will prove the incredibility 
degree of decision class is guaranteed by the two-layer thresholds. 
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1. Introduction 
Classical rough sets theory [1] is too rigid to be applied to the real-life environment 

due to the requirement that all the characters of an object in the system are available 
[2]. Kryszkiewicz [4] extended the rough set approximation method in incomplete in­
formation systems through the tolerance relation with the "missing values" semantics. 
Slowinski [5] and Stefanowski [6] used similarity relation instead of indiscemibility 
relation to express the "absent values" semantics. Furthermore, the latter defined a 
"tolerance class" under the hypothesis that an equivalent probability was associated 
with each element among such values. The variable precision rough set model [7] 
classified the objects, probably bearing a family of misclassification(based on a P 
threshold) in the graduation layer [9-11], 

Our research gives a probabilistic angle of view to incomplete values while gener­
ating the approximations: the distribution of "missing" or "absent" values is quantifi-
cationaliy taken into account when the relevant neighborhood is generated, to achieve 
which the guarantee of the covering quality is elucidated by a granulation threshold 
A. After this, a symmetric graduation threshold ,5 is proposed to satisfy predefined 
certainty requirements. The (A, ,5) threshold pair includes the certain defined lines 
which are applied to qualify the approximation regions with the price of controllable 
imprecision. 
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2. Rough sets preliminaries 

An information system AS is a pair {U, A, V, f) where [/ 7̂  0 is a non empty set of 
objects and A is a non empty set of attributes. For Vc € A under f -.U —^ Vc, Vc is the 
domain of c and V = |J{Ve : Vc 6 / ! } . For any B C. A,&n indiscernibility relation 
IND{B) is defined with IND(B) = {{x,y) e U x U rici e B,c4x) = c,,{y)}. 
U/IND{B)(or U/B) is the family of all the equivalence classes of the indiscernibility 
relation IND{B) with U. 

For any non empty subset of objects X C U,the B - lower , B — upper approx­
imations and B - boundary are defined with XB = U { ^ G V/B\Y C X}, X^ = 
{J{Y e U/B\Y n X ^ 0}, Bn{X) = X'^\XB apart. The B ~ lower is also called 
positive region, while the supplement of the B — upper is also called negative region. 

A decision informadon system DS is an information system while A = C [J{d) 
and d ^ C, here d is called decision and C is called condition attribute set. Any 
decision rule is represented as: 

(^ = \,eBiciiai) = v) -+ {d.{ai) = w), (1) 

where Cj e B C C, and v and w are the corresponding attribute values of a, e t/ 
respectively. Here, the left side of the implication is noted by s and t on the opposite. 
Let [s] denote the set of the objects in DS satisfying .s and [t] for t accordingly. A 
decision rule with s —> t is certain if and only if [s] C [t]. Otherwise, possible 
decision rules in the inconsistent decision information system can be induced from the 
upper approximation of a decision class expressed in t. 

3. Probabilistic Approximation Space 

AS is an incomplete information system when some values are not available, and 
the unavailable values are denoted by '• * ", The approximate relations are proposed 
mainly based on two hypothetical semantics for the unknown values. The lower and 
upper approximations are derived from the cover of relation r instead of the indis­
cernibility class. The cover in a neighborhood system {U, IC) is defined as: 

C = U{/(xO|V,6u.,e/(.)(y"0}, (2) 

in which, accordingly, I{x) denotes the neighborhood of a: and r denotes the relation 
defined in the information system. The tolerance and similarity approach are proposed 
in terms of a different explanation for the unavailable values. The key concept of tol­
erance approach is the tolerance class. Tolerance class denoted by IB [X) of any object 
X eU IS induced from the tolerance relation Tg which is reflexive and symmetric, but 
not necessarily transitive relation and obeys a "missing value" hypothesis[4]. Given 
an information system AS and a subset of attributes B C A'ls defined as; 

^x,veUxu{TB{x,y) ^ Vc,ei3(c;(x) = Cj{y) V Cj{x) = * V c.j{y) = *)), (3) 

where for each object the binary relation TB identifies a tolerant class I six) = {j/ £ 
U\TB{x,y)}, and consequently, the B - lower and B - upper of an object set are 
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Xg = {x e U\IB{X) C X] and X^ = {x € U\IB{X) n X 7̂  0} = {J{x e 

X\IB{X)} respectively. 
The non-symmetric similarity relation is similar with the tolerance relation except 

that the former is a partial order on the set U under an "absent value" hypothesis[5, 6], 
Homoplastically, for a given information system ^15 and a subset of attributes B C A, 
the similarity relation 5 B is defined as; 

'^z^yeUxuiSsix,y) <=^ Vo,e3(^,(1) = * V Cj{x) = Xj{y))). (4) 

Consequently, similarity class RB{X) and converse similarity class R'^^{x) of ob­
ject X & U with respect to B are defined as R.B{X) = {y e U\SB[y,x)] and 
^B^i'x) = {y € U\SB{x,y)}. B - lower and B — upper are X^ = {x e 
U\Rg\x) C X} and X | = [J{x e X\RB{X)} separately. 

Most of the approximation methods are built based on both relations mentioned 
above. Furthermore, many quantitative and qualitative extensions[8] are applied to the 
above relations. Among the proposed methods of the incomplete information system, 
the unbending matching of either tolerance or similarity relation cannot control the 
inflation of the neighborhood, which results in the bilateral expansion of the B — 
boundary. All these induce the inefficiency of the reducing search space. From the 
perspective of the probability [12] of the unknown attribute value for two given objects 
x and y, the tolerance relation supports that any attribute value is suited iff all the 
available values are suited, while the valued tolerance relation regulates the possibihty 
of the "missing value" followed by an equiprobable distribution hypothesis throughout 
the domain. Nevertheless, the probability of Cj (y) matching c/(x) on any Cj e B with 
Cj{x) = * V Cj{x) = * held is intuitively higher than Cj{y) = 1/|K;| when the 
available values are all suited. 

D E F I N I T I O N 1 Given Cj e B and x,y £ U in an incomplete information system 
AS, ifcj{x) G Vc and Cj{y) = *, the probability ofcj{y)¥tcj{x) fJR represents the 
matching of y to x on Cj) denoted by P^{cj) is relative to the cardinality of all the 
suited attributes |{Vc,|c,(a:;)Kcj(jy) € 14} I independently. 

Obviously, AS is in tolerance relation when P'^{ej) = 1 and Jft denotes " = " 
and it is in valued tolerance relation while P'^{cj) — l/IKI' Definition 1 is given 
to depict the suited possibility of two objects on unknown attributes relevant to the 
cardinality percentage of the available suited attributes, and the unknown attributes 
are independent from each other. 

P R O P O S I T I O N 2 Given a neighborhood system [U, IC), the expected function of 
any two objects x, y € U can he expressed by the percentage of suited attributes: 

Pixry)^ n P^. (5) 

For the neighborhood system in Proposition 2, the mapping combination of x' and y 
on Cj has three possible cases due to the unavailable values. When c.j{y) = c./(:c) y^ *, 
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the matching of y to a; on Cj is certain, so the percentage of \{cj{y) = Ci{x) ^ *} | 
to \C\ represents the conditional probability of any uncertain matching concerning 
certain matching. Under the "missing" semantics, the probability of c,(j/)5Rcj(x) 
equals to " 1 " iff y are certainly suited to x on Cj, so that the total probability of 
all the certain suited attributes equals to " 1 " and is denoted by P^, otherwise, it 
equals to "0". When Cjixj) = * A c^[:t) ^ •, from Definition 1, we assert thai 
P{cj{y)''Rcj{x)) is a joint probability on P^ and P=, this equation comes into ex­
istence when Cj{x) = * A Cj{y) ^ * due to the symmetry of the tolerance relation. 
Furthermore, Cj(;y) = Cj{x) = * has a bilateral effect on the total probability of two 
objects. From all the above, the probability of two objects with xry held depends on 
the P^ exponentially, and the power is the arisen times of *. The similarity relation 
holds Proposition 2 except for the range of the percentage and the power due to its 
unilateralism. 

The threshold A is used to control the power of the total probability. Therefore, the 
neighborhood of a given object can be controlled, and accordingly, the probability of 
all objects in the neighborhood of the given objects is not less than (1 — A) . 

4. Probabilistic Approximations Regions 

The classical rough set theory is extended by variable precision rough set method 
(VPRS) in [7, 9, 10, 11], partial classilication is taken into account by introducing an 
error probability threshold 8 g [0,0.5), and it identifies all the condition classes with 
any decision class if the error ratio is not higher than this threshold. Given the approx­
imation space ([/, IND), an absolute certainty gain (gabs) is proposed to qualify the 
degree of the dependency from determinative class to conditional class: 

D E F I N I T I O N 3 // F is definable in (U, IND), titen the absolute certainty gain be-
tH'een sets X and Y is given by: 

\ZECY P{E)P{X\E) - P{X) ZECY P{E)\ 
ga,bs{X\Y) = J = =̂  — ^— K (6) 

l^ECY P\E) 

where P{E) and P(X) are the probabilities of conditional class E and determina­
tive class X, and P{X\E) is the conditional probability of X. All these probabili­
ties are estimated by the ratios of cardinalities of the sample data. The probability 
of the rule s -^ t is depicted by gahs{;rx\Y) — ,(/a6s(X|y), while X and Y are 
the corresponding classes of s and t. With the symmetric limits proposed, a preci­
sion control parameter denoted with /9 is utilized to define the positive and negative 
regions of X. All the rules with approximation threshold ft satisfied can guarantee 
the corresponding associated level o'i classiticaiion quality of the both approxima­
tion regions, and the domination of the approximation regions can be elucidated with 
POS0[X, -nX) = U{£;: gabs{X\E) > 3~ P{X)}. Let X,Y CUhea non empty 
set of objects, the error ratio of X pertinent to Y denoted by c{X, Y) is defined as: 

( i~\xnY\/\x\, \x\ >o, 
ciX,Y)={ (7) 

0, 1X1=0. 
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The operator || denotes the cardinality in short. For given (3 € [0,0.5), therefore, 
the B — lower and B — upper approximations of X with threshold P derived from 
U C yl are i?'|(X) = {s 6 U\C{\X]B,X) < (3]- Rfj{X) = {x e U\C{[X]B,X) < 
I - 6} respectively. Here, [X]B denotes the equivalence class including x e U with 
respect to B and it can be expressed as: \X]B ~ {E e U/B\x e E}. 

From Proposition 2, the associate level of quality of the neighborhood can be dom­
inated by a granulation threshold A with predefined covering certainty satisfied, and it 
can be denoted with /T(X) = U{y : P{xTy) > (1 - A)l^'^^}. For a given threshold 
pair (A, /3), the neighborhood system ([/, IC) like equation (2) can be generated so that 
each I{x) includes any object y with no less matching probability than (1 - A)!^'^"^. 
Therefore, the absolute certainty gain between any sets X and the universe U can 
be depicted by P{X) P{X\Ir{x)) and P{Ir{x)) similarly with equation (6), and the 
graduation threshold /? can be utilized to guarantee the associated level of quality of 
neighborhood of the approximation regions. To depict the elements of all three cases 

in Proposition 2, let E{x,y) = {cj 6 C\cj{x) = Cj(y) = *} denotes the attributes 
subset where x and y are unavailable, E*{x,y) = {c, G G\cj{x) — * A Cj{y) ^ *} 
and E.t,{x,y) = {cj € C|c,(x') 7̂  * A Cj{y) = *} denote the similar meaning. 
Because similarity relation has a unilateral effect on both P'^ and the joint power 
compared with tolerance relation as shown in Proposition 2, the two-layer domination 
has different forms for both the "missing value" and "absent value" semantics. 

For the "missing value" semantics, the unavailable value is ju.st lost. Following the 
discussion in Proposition 2, the error ratio is 

r(r.\ 1 \k^^y)\ + \E*{x,y)\ + \E.,{x,y)\ 

Let TB be tolerance relation, then Tgix) denotes the tolerance class of a; according 
to the threshold of the credible granulation A 6 (0.5,1], and it can be denoted with 
TB(X) = {v £ U\TB{x,y) A CT(X',;(/) > A}. For the tolerance relation with the 
granulation and graduation credible threshold pair (A, 0), the two-layer approximation 
regions can be induced with the predefined associated level of quality of both the 
granulation and graduation certainty satisfied. 

D E F I N I T I O N 4 The two-layer lower and upper approximations of X C U are 

-^^>3];X^,r = ixeU Xfj. = U ' G [/ 
T ^ ( ^ - ) | n | x | ^ ^ _ ^ 

\n{ 

For the "absent value" semantics, the unavailable value is not to be considered. E 
does not affect the granulation credibility as discussed in Proposition 2, the error ratio 

. (r .„) ^ 1 \E*ix,y)\ + \E4x,y)\ 

Let SB be non-symmetric similarity relation, then RB{X) denotes the similarity 
class and Rf{x) denotes converse similarity class of .x with the granulation credibil­
ity threshold A e (0.5,1] satisfied are ^^(a,') = {y e U\SB{y,x) Acs(x,y) > A and 
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Rf{x) = {y e U\SB{x,y)Acs{x,y) > X] respectively. For the non-symmetric sim­
ilarity relation and the credibility threshold pair (A,/^), the two-layer approximation 
regions can be induced as: 

D E F I N I T I O N 5 The two-layer lower and upper approximations of X C U are 

Xfs = {'x^U \^i-)\^\^^>p),x!;^^\.eu 
\Rf{x)\ 

\RU^^\n\X\^^__^ 
|i?^(x)| 

We suppose any decision class Z),„ in U/[d] = {Di, D2---Dr} according to Z?,„ = 
{a; G U\d{x) = u)} where w = {l,2...r}, then the universal form of decision class 
can be derived from this form through a simple transformation, so a decision rule can 
be presented in the following form where D'J^ denotes the positive region of Dm 
under relation T. 

P R O P O S I T I O N 6 For the approximation space based on a neighborhood relation 
T, each X G D'J^Q can induce a decision rule as: 

A (c,-,c,'(a;))-^rf{.T;) = to. (10) 

5. Comparisons and Experiments 
Compare the model in Definition 4-5 with their counterparts in Chapter 3. Our 

approximation model will provide some advantages. Let BN'^{X) = X^\X'g, 
BNiiX) = Xi\Xi, BN'/^iX) = X^J\Xl% and BN^^iX) = XfJ\Xj^, 
we give the most important properties as follows: 

W yO,! _ YT- VBT _ YB. yO,! _ y S . Y^S __ Y^ ^BT — ^B^ A „ i — A-p, A g g - A g , A Q ^ - A g 

( 2 ) A D CI A D ' T I i z : A , g o C A C l A \ ^ L : A \ o ) ^ Xrp 

(3) X§ C X ^ l C X C Xf/ C X | 

(4) BN^^T^iX) < BNliX); BN^^iX) < BNi{X) 

From the definition of the two-layer probabilistic model in the former two sections, 
property (1) is obvious. 

For property (2), the partial order of the lower approximation based on tolerance 
between the two-layer and classic method(denoted by Xg C X'J^) can be considered 
into the two threshold respectively. Because A £ [0.5,1), some objects which partially 
match X are in IB{X) while not in T^{x). All objects in iBix) must belong to Tg{x) 
because of the complete inclusion of the objects in tolerance relation class, and it 
results in TQ{X) C /B(.X-). For each x e U, suppose /B(:C) C X, then T^ix) C X 
and the reverse does not exist because the objects in T^{X)\IB{X) do not definitely 
belong to X. From the analysis above, supposing Xg^ = {x € U\T^ix) C X}, 
we assert X'g C X^j,. Given the neighborhood noted by TQ{X) of any object in 
the universe, Xg^ includes all the objects according to |TB(;t) n X\/\T^{x)\ > 0 
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but X^j. only includes the objects whose neighborhood outright belong to X, so the 
existence of the objects supports 1 > \TQ{X) fl X\/\Tg{x)\ > [3, and it results in 
^BT ^ ^BT- From all the above, we assert X j C X^'^ C X. The proof of X^'^ C 
X g l is similar with X g C X | in [6], so we assert X | C Xg% C X ^ f C X; also 
because the upper approximation is symmetric to the lower approximation, property 
(2) is proven. 

Similar with the above proof, the partial order relation between Rf{x) and IB{X) 
can induce property (3). 

We can deduce property (4) from property (2) and (3). 
Example in Table 1 is introduced to compare the tolerance, similarity and proba­

bilistic approximation model. The probabilistic approximations based on similarity 
are a refinement of those obtained under the tolerance relation as shown in property 
(4), so the following analyzes the probabilistic method only based on tolerance relation 
and the results of the former is better. 

Table 1. An given incomplete table 

c 
Cl 

C2 

C3 

C4 

d 

fll 

3 
2 
1 
0 
# 

0,2 

2 
3 
2 
0 
$ 

0-3 

2 
3 
2 
0 
* 

(14 

* 
2 
* 
1 
$ 

ar, 
.+ 

2 
* 
1 
vl/ 

ae 
2 
3 
2 
1 
* 

0-7 

3 
* 
* 
3 
$ 

0,8 

* 
0 
0 
* 
* 

ag 

3 
2 
1 
3 
* 

OlO 

1 
* 
* 
* 
$ 

O i l 

* 
2 
* 
* 
« 

a i 2 

3 
2 
1 
* 
$ 

For the above system DS = {[/, B; {d},V, / } , the results of two-layer tolerance 
neighborhood and approximation regions with the threshold pair (0.6,0.6) are: 

rB(ai) : (01,011,0,12), TB(02) : (0,2,0,3), rB(o,3) ; (02,0,3), 
TB(a4) ; (0,4,012), Tsiar,) • (as, ai2), TBiag) (a.6), 

(0,7,09,011,012), rB(o,7) : (07,09,012), TB(O,8) ; (og), ^^(ag) 
2"s(aio) : (oio), r s (o i i ) : (01,09,011), TB(ai2) : (01,04,05,07,09,012); 

'^BT = (a-i,0,4,07,010,012); *A/j = (01,02,03,04,05,07,09,010,012); 
* B r = (06,08,On); xE'fjKO.e,0.6) - (0,2,03,05,06,08,09,011). 

Table 2. The cardinality of approximation result 
Probabilistic method with pair{X, 13) 

^P ^ ^ (0.6,0.6) (0.6,0.7) (0.7,0.6) (0.7,0.7) 

iL($)| 
|if(*)| 
|L(*)! 
\H{n 

0 
11 
1 
12 

2 
9 
3 
10 

5 
9 
3 
7 

3 
10 
2 
10 

5 
8 
4 
7 

3 
8 
4 
9 

Given different threshold pairs, the cardinalities of the lower and upper approxima­
tions through two-layer method are listed in Table 2 for comparison, where TB and 
SB are classical methods. Except for the properties mentioned above, relative to the 
existent methods, the probabilistic method has another two advantages to control the 
boundary concerning the precision thresholds quantitatively. The probability based 
two-layer method can increase the positive region and decrease the boundary through 
the threshold pair (A, /J); the quality of the two-layer method decreases while A rises 
and the quality rises while P rises. 
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6. Conclusion 
This paper begins witli the functions of approximation sets in the view of decision 

reducing, and then it expands the boundary approximation with a probabiHstic method 
though two layers. The major contribution of this paper is to control the cardinality of 
the rough set of decision class under both the granulation credibility threshold and the 
graduation credibility threshold. More topics such as reducing algorithm development 
and the experimental analysis of parameters on large real-life dataset will be done in 
further research. 
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