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Abstract In this paper, we introduce a real-time temporal knowledge logic, called RTKL, 
which is a combination of real-time temporal logic and knowledge logic. It 
is showed that temporal modalities such as "always in an interval", "until in 
an interval", and knowledge modalities such as "knowledge in an interval" and 
"common knowledge in an interval" can be expressed in such a logic. The model 
checking algorithm is given. Furthermore, we add cooperation modalities to 
RTKL and get a new logic RATKL, which can express not only real-time temporal 
and epistemic properties but also cooperation properties. The model checking 
algorithm for RATKL is also given. 
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1. Introduction 
The field of multi-agent systems has recently become interested in the prob­

lem of verifying complex systems. In MAS, modal logics representing concepts 
such as knowledge, belief, and intention. Since these modalities are given in­
terpretations that are different from the ones of the standard temporal operators, 
it is not straightforward to apply existing model checking tools developed for 
LTL\CTL temporal logic to the specification oiMAS. The recent developments 
of model checking MAS can broadly be divided into streams: in the first cat­
egory standard predicates are used to interpret the various intensional notions 
and these are paired with standard model checking techniques based on tem­
poral logic. Following this line is [12] and related papers. In the other category 
we can place techniques that make a genuine attempt at extending the model 
checking techniques by adding other operators. Works along these lines include 
[3, 10] and so on. 
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Real-time is sometimes an important feature of software system. To de­
scribe the property of real-time MASs, one should express not only real-time 
temporal temporal but also epistemic property. In this paper, we present a real­
time temporal knowledge logic RTKL, which is an extension of knowledge 
by adding real-time temporal modalities. Although its syntax is very simple, 
we can express the property such as "always in an interval", "until in an in­
terval", "knowledge in an interval", "common Icnowledge in an interval" and 
etc. We also studied the model checking algorithm for RTKL. To express the 
cooperation property, we extend RTKL to RATKL and give its model checking 
algorithm. 

The rest of the paper is organized as follows: In Section 2, we present a 
real-time temporal knowledge logic RTKL, give its syntax, semantics. Further­
more, we give the model checking algorithm. In Section 3, we add cooper­
ation modalities to RTKL, and get a new logic RATKL. The model checking 
algorithm for RATKL is also given. The paper is concluded in Section 4. 

2. Real-Time Temporal Epistemic Logic RTKL 
In this section, we introduce a real-time temporal knowledge logic RTKL, 

which can express the epistemic property and real-time behaviour in MAS. 

Syntax of RTKL 

The well form formulas of RTKL are defined as follows. 
Definition 1 The set of formulas in RTKL, called L^'^^^, is given by the 

following rules: 
(1) Uip eatomic formulas set E, then ip G L^-^^^ .̂ 
(2) If c/? Gproposition variables set V, then (/? e j^RTKL^ 
(3) If <p G L«^^<^ then -^^ e L^^^<^. 
(4) If V?, -0 e L^^^'^, then (̂  A V̂  G L^'^^^. 
(5) If </?, ^ G L^'^'^^, then Qip, {]ip, fU'ip G L^'^'^^. Intuitively, Q means 

next, [] means always and U means until. 
(6) If ^, 0 G L^^'<^, then [jj,,,]^, v [̂/[,,,]'0 G L«^^^. Intuitively, [][.,,]^ 

means that (p holds in the interval [i, j]. (pU^i^j^ijj means there is /c G [i,j], such 
that V̂  holds at time k and (p holds in the interval [0, fc]. 

(7) If (/9 G L^^^^'^, then KaP, Erp, CrV> G L^"^^^ ,̂ where a G Agent, 
r C E. Intuitively, Ka^ means that agent a knows if. Er^p means that every 
agent in T knows (p. Cr<y3 means that 99 is a common knowledge by every agent 
in r . 

Using RTKL, we can express various of real-time knowledge properties. For 
example, Ka{]iij]p means that agent a knows ip always holds in the inter­
val [i,j]. [j^ij^Ka'p means that in the interval [i,j], agent a always knows 
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if holds. {}Cr^ means eventually, if is the common knowledge of group F, 

where QIIJ = ~^[]^4'-

Semantics of iJTXZ 

We will describe the semantics of RTKL, that is, a formal model that we can 
use to determine whether a given fomiula is true or false. 

Definition 2 (Models) Given a set of agents A = {1, •••,n}, a temporal 
epistemic model (or simply a model) is a tuple S — (Q,r , ~ i , . . . ,~„, V), 
where 

Q is the set of the global states for the system (henceforth called simply 
states); 

T C Q X Q isa total binaiy (successor) relation on G; 
~aC Q X Q (a € A) is an epistemic accessibility relation for each agent 

a € A defined by s ~a s' iff ^^(A') = la{s'), where the flmction la- Q —> La 
returns the local state of agent a from a global state s; obviously ~o is an 
equivalence relation; 

V : Q —f 2^^^ is a valuation function for a set of prepositional variables 
PVK such that true e V{s) for all s e Q. V assigns to each state a set of 
propositional variables that are assumed to be true at that state. 

We can now turn to the definition of semantics of RTKL. 
Computations. A computation in M is a possibly infinite sequence of states 

K = (so,.Si,...) such that (s,. Sj+i) e T for each •* G N. Specifically, we 
assume that (s,;, s,;+i) € T iff Sj+i = t{si, acti), i.e., ,s,:+i is the result of ap­
plying the transition function t to the global state s,;, and an action acti. In the 
following we abstract from the transition function, the actions, and the proto­
cols, and simply use T, but it should be clear that this is uniquely determined 
by the interpreted system under consideration. Indeed, these are given explic­
itly in the example in the last section of this paper. In interpreted systems 
terminology a computation is a part of a ran; note that we do not require so 
to be an initial state. For a computation IT = (SQ, si,...), let 7r[fc] = Sk, and 
T'k = (so, •••) Sfc), for each k e N.By Tl{s) we denote the set of all the infinite 
computations starting at s in M. 

Definition 3 Semantics of RTKL 
Mis = {q\p€ 7r{q)}; 
{b^]]s = Q- M]s; 
[[if A ip]}s = M]s n [[i>]]s; 
[[0'P]]s = {Q I for all computations IT € n(g), we have 7r[l] G [[y'jjs.}; 
[[[]{/3]]5 = {q I for all computations n e Il{q) and all positions m > 0, we 

havcTrH € [M]s.}; 
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[[9?l7i/̂ ]]5 = {q I for all computations TT e n(g) , there exists a position 
m > 0, such that 7r[rrt] G [[V ]̂]s and for all positions 0 < fc < m, we have 

m e Mh.y, 
l[{]li,j]^]]s ~ {q I for all computations TT G Il{q) and all positions i < rn < 

j , wehavcTrH G [['/']]s-}; 
[[v^[ij]'^]]s = {Q I for all computations TT G n(g) , there exists a position 

i < m < j , such that 7r[m] G [[4>]]s and for all positions 0 < A; < rn, we have 
m € [M]s.}; 

[(î a.95]]5 = {q I for all r G {[tf]]s and r G~a (<?) with ~a (g) = {q' \ 
iq,q')^-a}} 

{[Erf]]s = {q I for all r G {[(p]]s and r G--f (g) with - f (g) = {g' | 
(g,g') G ~ f } } , here ~ f = (U„6r ~a)-

[[C'rV'lls = {<? I for all r G [[^p]]s and r G~p (g) with ~ ^ (g) = {g' | 
(g, g') G~p }}, here ~p ' denotes the transitive closure of ~j? . 

Formally, given a model S, we say that if is satisfiable in S", and write 5, g |= 
(/p, if g G [[</?]]s for some q in Q. 

Model Checking for RTKL 

In this section we give a model checking algorithm for RTKL. The mode! 
checking problem for RTKL asks, given a model S and a RTKL formula ip, for 
the set of states in Q that satisfy ip. In the following, we denote the desired set 
of states by Eval{(p). 

For each p' in Sub{ip) do 
case ip' = p : Eval{ip') := Reg{'p) 
case p>' =• ^9 : Eval{ip') := Eval{tr-ue) — Eval{B) 
case V?' = 6*1 A 02 : Eval{p') := Eval{di) n Eval(92) 
case <̂ ' = O ^ : Eva.l{p') := PTe{Eval{e)) 
case t '̂ = [](? : 

Eval(p') := Eval{tnie) 
pi := Eval{e) 
repeat 

Eval{(p') := £;'ya/(99')npi 
pi := Pre(Eval{p')) D Eval{e) 

until pi = Eval{ip') 
case cp' = 0iU92 : 

Eval{ip') := Eval{false) 
pi ~ Eval{9i) 
P2 := ^t;a/(02) 
repeat 

Eval{p') := Eval{<p') U p2 
P2 := Pre{Eval{p')) n pi 
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until pi = Eval{ip') 
case If' = ^\ij]6 '• 

k:=j ' 
Eval{Lp') := Eval{true) 
while k y^ 0 do 

k:=k-l 
ifk > i then Eval{(p') := Pre{Eval{ip')) D Eval{0) 
else Eval{f') := Pre{Eval{<f')) 

end while 
caset^' = 6iUipq]02 : 

k := J 
Eval{(p') := Eval{false) 
while A; 7̂  0 do 

k ~ k - l 
Eval{ip') := Pre{EvaliLp') U Eval{e2)) fl Eval{Bi) 

end while 
case (/?' = KaO : Eval{ip') := {g | Irng{q, ~o) C Eval{6)} 
case 99' = E'rfi' : Eval{ip') := r\a(^TEval{Ka9) 
case 93' = CV^ : 

Eval{'p') := Eval{true) 
repeat 

p ;= Eval{ip') 
Evaiy') •- r\aeT{{q\Irng{q,^a) Q Eval{e)} n p) 

until p = Eval{<fi') 
end case 

return £;t!a?((/?) 
The algoritlim uses the following primitive operations: 
(1) The flmction Sub, when given a formula </?, returns a queue of syntactic 

subformulas of 93 such that if ifi is a subformula of ip and (/?2 is a subformula 
of ipi, then ip2 precedes ipi in the queue Sub{ip). 

(2) The function Reg, when given a proposition p E U, returns the set of 
states in Q that satisfy p. 

(3) The function Pre, when given a set p C Q of states, returns the set of 
states q such that from q the next state to lie in p. Formally, Pre{p) contains 
state q &Q such that {q,s) eTt where s € p. 

(4) The function Img : Q x 2*5̂ *5 ^ Q^ which takes as input a state q and 
a binary relation R C Q x Q, and returns the set of states that are accessible 
from q via R. That is, Irng{q, R) = {q' \ qRq'}-

(5) Union, intersection, difference, and inclusion test for state sets. Note 
also that we write Eval{true) for the set Q of all states, and write Eval{ false) 
for the eiTipty set of states. 



68 IIP 2006 

Partial correctness of the algorithm can be proved induction on the structure 
of the input formula ip. Termination is guaranteed since the state space Q is 
finite. The cases where </?' = KaO, (p' = Ej^O and ip' = CrO simply involve 
the computation of the Img function at most \Q\^ times, each computation 
requiring time at most 0{\Q\^). Furthermore, real-time CTL model checking 
algorithm can be done in polynomial time. Hence the above algorithm for 
RTKL requires at most polynomial time. 

Proposition 1 The algorithm given in the above terminates and is correct, 
i.e., it returns the set of states in which the input formula is satisfied. Further­
more, the algorithm costs at most polynomial time on \Q\. 

3. Adding Cooperation Modalities to RTKL 

To express the cooperation property in open systems, Alur and Henzinger 
introduced alternating-time temporal logic ATL in [2], which is a generalisa­
tion of CTL. The mam difference between ATL and CTL is that in ATL, 
path quantifies are replaced by cooperation modalities. For example, the ATL 
formula ((F)) Q '^^ where F is a group of agents, expresses that the group F 
can cooperate to achieve a next state that ip holds. Thus, we can express some 
properties such as "agents 1 and 2 can ensure that the system never enters a 
fail state". An ATL model checking systems called MOCHA was developed 
[1]. In MAS, agents are intelligent, so it is not only necessary to represent 
the temporal properties but also necessary to express the mental properties. 
For example, one may need to express statements such as "if it is common 
knowledge in group of agents F that (̂ , then F can cooperate to ensure (/'". To 
represent and verify such properties, a temporal epistemic logic AT EL was 
presented in [10]. This logic extended ATL with knowledge modalities such 
as "every knows" and common knowledge. In this section, we extend RTKL 
by adding cooperation modalities and get a new logic RATKL, which can ex­
press real-time temporal, cooperation and knowledge properties. Furthermore, 
a model checking algorithm for RATKL was given. 

Syntax aiRATKL 

Definition 4 The set of formulas in RATKL, called L^'^^^^, is given by the 
following rules; 

(1) li<p Gatomic formulas set Ft, then ip G L^^'^^^. 
(2) If (/? Gproposition variables set V, then <fi e L^''^'^^'"^. 
(3) If (̂  G L^^T^^, then -^p G L^^^^^^. 
(4) lip, i> G L '̂̂ 4TA-L^ jĵ gĵ  ^ /^ .^1, g ^RATKL^ 

(5) If v., i> e L^^^'<^, F C E, then ((F)) Q V, m)[]v, ((r»</pf/'0 G 
£BATKL 

(6)If<^,^ G L^-4"^^,F C E, then ((F))Oi.jiV', ((r))</̂ C/(,,,-]Z^ G L^-^^^^. 
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(7) If ¥5 G L^ATKL^ tjjgjj j ^ ^ ^ ^ £;^^^ (j^^ g j^RATKL^ ^jjgj.g p g S . 

Semantics of iL47XZ 

Definition 5 A model S of RATKL is a concurrent game structure 5 = 
(S, (5, n , TV, e, d, (5, ^a here a G S), where 

(1) E is a finite set of agents, in the following, without loss of generality, we 
usually assume S = {l,...,fc}. 

(2) (5 is a finite, nonempty set, whose elements are called possible worlds 
or states. 

(3) n is a finite set of propositions. 
(4) TT is a map; Q —> 2^, where 11 is a set of atomic formulas. 
(5) e is an environment: V -~> 2^, where V is a set of proposition variables. 
(6) For each player a G S = {!,..., A;} and each state q £ Q, a natural 

number da{q) > 1 of moves available at state q to player a. We identify the 
moves of player a at state q with the numbers 1, ...,da{q). For each state q € Q, 
a move vector at g is a tuple (ji, .--^jk) such that 1 < j„ < da{q) for each 
player a. Given a state g G Q, we write D{q) for the set {1, ...,di{q)} x ... x 
{1,..., dfe(g)} of move vectors. The ftmction D is called move fimction. 

(7) For each state q € Q and each move vector {ji,.-.,jk) <£ D{q), a. state 
(5(9, j i , •••, jfc) that results from state q if every player a G S = {l,...,fc} 
choose move ja- The function is called transition function. 

(8) ~Q, is an accessible relation on Q, which is an equivalence relation. 
The definition of computation of a concurrent game structure is similar to 

the case of Kripke structure. In order to give the semantics of RATKL, we need 
to define strategies of a concurrent game structure. 

Strategies and their outcomes. Intuitively, a strategy is an abstract model 
of an agent's decision-making process; a strategy may be thought of as a kind 
of plan for an agent. By following a strategy, an agent can bring about certain 
states of affairs. Formally, a strategy fa for an agent a G S is a total fimc­
tion fa that maps every nonempty finite state sequence A G Q'^ to a natural 
number such that if the last state of A is q, then /a(A) < da{q). Thus, the 
strategy fa determines for every finite prefix A of a computation a move /a(A) 
for player a. Given a set F C E of agents, and an indexed set of strategies 
Fv = {fa I o, G F}, one for each agent a G F, we define out{q,Fr) to be 
the set of possible outcomes that may occur if every agent a G F follows the 
corresponding strategy /„,, starting when the system is in state q G Q. That is, 
the set out{q,Fr) will contain all possible q-computations that the agents F 
can "enforce" by cooperating and following the strategies in Fp. Note that the 
"grand coalition" of all agents in the system can cooperate to uniquely deter­
mine the future state of the system, and so out{q, F^) is a singleton. Similarly, 
the set out{q, Fi/,) is the set of all possible g-computations of the system. 
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We can now turn to the definition of semantics of RATKL. We omit the 
definition of [[p]]s, [[-'<^]]s, [b A VJ]]S, [[Ka<p]]s, {[Erv]]s, [[CrfUs since 
they are given in Definition 3. 

Definition 6 Semantics of RATKL 
[[((r)) O ^]]s = {q I there exists a set Fp of strategies, one for each player 

in r , such that for all computations A G out{q, Fp), we have A[l] e [[<p]]s-} 
[[((r))[]'^]]s' = {Q I there exists a set Fj- of strategies, one for each player 

in r , such that for all computations A e out{q, Fp) and all positions i > 0, we 
have A[z] G [[^}]s.} 

[[{{r))(pUil!]]s = {q I there exists a set Fp of strategies, one for each player 
in r , such that for all computations A G out{q,Fr), there exists a position 
i > 0, such that X[i] G [[V-']]s and for all positions 0 < j < z, we have 
m e [Ms-} 

[[((r))[][j j](/j]].g = {q I there exists a set Fp of strategies, one for each 
player in F, such that for all computations A G out{q, Fp) and all positions 
i < m. < j , we have X[rn] G [[scJls-} 

[[{{T))<fiUi^ijj'4']]s = [q I tliere exists a set Fp of strategies, one for each 
player in F, such that for all computations A G out{q, Fp), there exists a posi­
tion i < rri < j , such that A[m] G [[%IJ]]S and for all positions 0 < fc < rn, we 
have X[k] G M]s-} 

Intuitively, ((F)) Q ip means that group F can cooperate to ensure tp at 
next step; ((r))[]!^ means that group F can cooperate to ensure ip always 
holds; {{r))ipU'ip means that group F can cooperate to ensure ip until'(/; holds; 
((F))[][jj](/? means that group F can cooperate to ensure 99 always holds in 
the interval of {i,j]; ((F))< [̂/[,:j]'i/) means that group F can cooperate to en­
sure ip until ij; holds in the interval of [i, j]. For example, a RATKL formula 
((ri)) O V A ((F2))[][.(j]</' holds at a state exactly when the coalition Fi has 
a strategy to ensure that proposition ip holds at the immediate successor state, 
and coalition F2 has a strategy to ensure that proposition (/' holds at the current 
and all future states between time i and j . 

Model Checking for RATKL 

In the following, we give a model checking algorithm for RATKL. We denote 
the desired set of states by Eval{ip). The case of p, ^(/3, (p Aip, Ka^p, Ertps, 
C'r^p can be computed similarly in the algorithm for RTKL, so we do not give 
the procedure for these modalities. The main difference between RTKL and 
RATKL is that temporal modalities are replaced by alternating-time temporal 
modalities, so the model checking algorithm for RATKL is similar to the al­
gorithm for RTKL except that the ftmction Pre{p) is replaced by the function 
CoPre{T,p). 

For each </?' in Sub{ip) do 
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case (p' = ((r)) O Q •• Eval{ip') := CoPre{V, Eval{e)) 
casey?' = ((r))[]6i: 

Eval{ip') := Eval{true) 
pi := Eval{0) 
repeat 

Eval{ip') := Eval{ip') D pi 
pi := CoPre{r,Eval{(p')) D Eval{e) 

until p\ — Eval{(p') 

casev3' = {{r))eiue2 •• 
Eval{(fi') := Eval{false) 
pi := EvaliOi) 
P2 := Eval{d2) 
repeat 

Eval{(p') := Eval{ip') U p2 
P2 ••= CoPre{r, Eval{ip')) D pi 

until pi = Eval{ip') 
case^ ' = ( ( r ) )0 [y ]^ ; 

Eval{ip') :•= Eval{true) 
while fe 7̂  0 do 

/c- := A; - 1 
if A,' > I then E'ua?((/j') := CoPre{r, Eval{ip')) 0 Eval{9) 
else Eval{(p') ~ CoPre{r,Eval{ip')) 

end while 
casev9'=((r))0i?7[p,,]f?2-. 

fc : = J 
Eval{<p') := Eval{false) 
while fc 7̂  0 do 

fe : = A; - 1 
Eval{ip') •= CoPre{T, Eval{<p') U Eval{92)) D Eval{Bi) 

end while 
end case 
return Eval{ip) 
The algorithm uses the function CoPre. When given a set F C E of players 

and a set /9 C Q of states, the function CoPre returns the set of states q such 
that from g, the players in F can cooperate and enforce the next state to lie in 
p. Fonnally, CoPre(F , p) contains state q G Q if for every player a € F, there 
exists a move ja G {1, ...,da{q)} such that for all players 6 G S - F and moves 
jb e {l,...,d6(g)},wehave(5(g,ji,...,jfc) e p. 

Similar to the case of RTKL, we have the following proposition: 
Proposition 2 The algorithm given in the above terminates and is correct. 

Furthermore, it costs at most polynomial time on \Q\. 
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4. Conclusions 
Recently, there has been growing interest in the logics for representing and 

reasoning temporal and epistemic properties in multi-agent systems [3, 6, 9-
12]. In this paper, we present a real-time temporal knowledge logic RTKL, 
which is a succinct and powerful language for expressing complex properties. 
In [8], Halpern and Moses also presented and study some real-time knowledge 
modalities such as e-common knowledge CQ, ()-common knowledge CQ and 
timestamped common knowledge Cj.. It is easy to see that all these modalities 

can be expressed in RTKL, for example, CQ ^ QCQ and C j <^ [][r,r]C'G-
Moreover, the approach to model checking RTKL is studied. We further extend 
RTKL by adding cooperation modalities. The logic RATKL can express not 
only real-time and knowledge properties, but also cooperation properties. The 
model checking algorithm for RATKL is given. It is also hopeful to apply such 
RTKL and RATKL logics and these model checking algorithms to verify the 
correctness of real-time protocol systems. 
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