
MODEL CHECKING FOR REAL-TIME TEMPORAL,
COOPERATION AND EPISTEMIC PROPERTIES *

Zining Cao
Department of Computer Science and Engineering
Nanjing University of Aero. & Astro., Nanjing 210016, China
caozn@nuaa.edu.cn

Abstract In this paper, we introduce a real-time temporal knowledge logic, called RTKL,
which is a combination of real-time temporal logic and knowledge logic. It
is showed that temporal modalities such as "always in an interval", "until in
an interval", and knowledge modalities such as "knowledge in an interval" and
"common knowledge in an interval" can be expressed in such a logic. The model
checking algorithm is given. Furthermore, we add cooperation modalities to
RTKL and get a new logic RATKL, which can express not only real-time temporal
and epistemic properties but also cooperation properties. The model checking
algorithm for RATKL is also given.

Keywords: Real-time temporal logic, knowledge logic, cooperation, model checking

1. Introduction
The field of multi-agent systems has recently become interested in the prob­

lem of verifying complex systems. In MAS, modal logics representing concepts
such as knowledge, belief, and intention. Since these modalities are given in­
terpretations that are different from the ones of the standard temporal operators,
it is not straightforward to apply existing model checking tools developed for
LTL\CTL temporal logic to the specification oiMAS. The recent developments
of model checking MAS can broadly be divided into streams: in the first cat­
egory standard predicates are used to interpret the various intensional notions
and these are paired with standard model checking techniques based on tem­
poral logic. Following this line is [12] and related papers. In the other category
we can place techniques that make a genuine attempt at extending the model
checking techniques by adding other operators. Works along these lines include
[3, 10] and so on.

*This work was supported by the National Science Foundation of China under Grant 60473036.

Please use the following format when citing this chapter:

Cao, Z., 2006, in IFIP International Federation for Information Processing, Volume 228, Intelligent Information

Processing IE, eds. Z. Shi, Shimohara K., Feng D., (Boston: Springer), pp. 63-72.

64 IIP 2006

Real-time is sometimes an important feature of software system. To de­
scribe the property of real-time MASs, one should express not only real-time
temporal temporal but also epistemic property. In this paper, we present a real­
time temporal knowledge logic RTKL, which is an extension of knowledge
by adding real-time temporal modalities. Although its syntax is very simple,
we can express the property such as "always in an interval", "until in an in­
terval", "knowledge in an interval", "common Icnowledge in an interval" and
etc. We also studied the model checking algorithm for RTKL. To express the
cooperation property, we extend RTKL to RATKL and give its model checking
algorithm.

The rest of the paper is organized as follows: In Section 2, we present a
real-time temporal knowledge logic RTKL, give its syntax, semantics. Further­
more, we give the model checking algorithm. In Section 3, we add cooper­
ation modalities to RTKL, and get a new logic RATKL. The model checking
algorithm for RATKL is also given. The paper is concluded in Section 4.

2. Real-Time Temporal Epistemic Logic RTKL
In this section, we introduce a real-time temporal knowledge logic RTKL,

which can express the epistemic property and real-time behaviour in MAS.

Syntax of RTKL

The well form formulas of RTKL are defined as follows.
Definition 1 The set of formulas in RTKL, called L^'^^^, is given by the

following rules:
(1) Uip eatomic formulas set E, then ip G L^-^^^ .̂
(2) If c/? Gproposition variables set V, then (/? e j^RTKL^
(3) If <p G L«^^<^ then -^^ e L^^^<^.
(4) If V?, -0 e L^^^'^, then (̂ A V̂ G L^'^^^.
(5) If </?, ^ G L^'^'^^, then Qip, {]ip, fU'ip G L^'^'^^. Intuitively, Q means

next, [] means always and U means until.
(6) If ^, 0 G L^^'<^, then [jj,,,]^, v [̂/[,,,]'0 G L«^^^. Intuitively, [][.,,]^

means that (p holds in the interval [i, j]. (pU^i^j^ijj means there is /c G [i,j], such
that V̂ holds at time k and (p holds in the interval [0, fc].

(7) If (/9 G L^^^^'^, then KaP, Erp, CrV> G L^"^^^ ,̂ where a G Agent,
r C E. Intuitively, Ka^ means that agent a knows if. Er^p means that every
agent in T knows (p. Cr<y3 means that 99 is a common knowledge by every agent
in r .

Using RTKL, we can express various of real-time knowledge properties. For
example, Ka{]iij]p means that agent a knows ip always holds in the inter­
val [i,j]. [j^ij^Ka'p means that in the interval [i,j], agent a always knows

Intelligent Information Processing III 65

if holds. {}Cr^ means eventually, if is the common knowledge of group F,

where QIIJ = ~^[]^4'-

Semantics of iJTXZ

We will describe the semantics of RTKL, that is, a formal model that we can
use to determine whether a given fomiula is true or false.

Definition 2 (Models) Given a set of agents A = {1, •••,n}, a temporal
epistemic model (or simply a model) is a tuple S — (Q,r , ~ i , . . . ,~„, V),
where

Q is the set of the global states for the system (henceforth called simply
states);

T C Q X Q isa total binaiy (successor) relation on G;
~aC Q X Q (a € A) is an epistemic accessibility relation for each agent

a € A defined by s ~a s' iff ^^(A') = la{s'), where the flmction la- Q —> La
returns the local state of agent a from a global state s; obviously ~o is an
equivalence relation;

V : Q —f 2^^^ is a valuation function for a set of prepositional variables
PVK such that true e V{s) for all s e Q. V assigns to each state a set of
propositional variables that are assumed to be true at that state.

We can now turn to the definition of semantics of RTKL.
Computations. A computation in M is a possibly infinite sequence of states

K = (so,.Si,...) such that (s,. Sj+i) e T for each •* G N. Specifically, we
assume that (s,;, s,;+i) € T iff Sj+i = t{si, acti), i.e., ,s,:+i is the result of ap­
plying the transition function t to the global state s,;, and an action acti. In the
following we abstract from the transition function, the actions, and the proto­
cols, and simply use T, but it should be clear that this is uniquely determined
by the interpreted system under consideration. Indeed, these are given explic­
itly in the example in the last section of this paper. In interpreted systems
terminology a computation is a part of a ran; note that we do not require so
to be an initial state. For a computation IT = (SQ, si,...), let 7r[fc] = Sk, and
T'k = (so, •••) Sfc), for each k e N.By Tl{s) we denote the set of all the infinite
computations starting at s in M.

Definition 3 Semantics of RTKL
Mis = {q\p€ 7r{q)};
{b^]]s = Q- M]s;
[[if A ip]}s = M]s n [[i>]]s;
[[0'P]]s = {Q I for all computations IT € n(g), we have 7r[l] G [[y'jjs.};
[[[]{/3]]5 = {q I for all computations n e Il{q) and all positions m > 0, we

havcTrH € [M]s.};

66 IIP 2006

[[9?l7i/̂]]5 = {q I for all computations TT e n(g) , there exists a position
m > 0, such that 7r[rrt] G [[V]̂]s and for all positions 0 < fc < m, we have

m e Mh.y,
l[{]li,j]^]]s ~ {q I for all computations TT G Il{q) and all positions i < rn <

j , wehavcTrH G [['/']]s-};
[[v^[ij]'^]]s = {Q I for all computations TT G n(g) , there exists a position

i < m < j , such that 7r[m] G [[4>]]s and for all positions 0 < A; < rn, we have
m € [M]s.};

[(î a.95]]5 = {q I for all r G {[tf]]s and r G~a (<?) with ~a (g) = {q' \
iq,q')^-a}}

{[Erf]]s = {q I for all r G {[(p]]s and r G--f (g) with - f (g) = {g' |
(g,g') G ~ f } } , here ~ f = (U„6r ~a)-

[[C'rV'lls = {<? I for all r G [[^p]]s and r G~p (g) with ~ ^ (g) = {g' |
(g, g') G~p }}, here ~p ' denotes the transitive closure of ~j? .

Formally, given a model S, we say that if is satisfiable in S", and write 5, g |=
(/p, if g G [[</?]]s for some q in Q.

Model Checking for RTKL

In this section we give a model checking algorithm for RTKL. The mode!
checking problem for RTKL asks, given a model S and a RTKL formula ip, for
the set of states in Q that satisfy ip. In the following, we denote the desired set
of states by Eval{(p).

For each p' in Sub{ip) do
case ip' = p : Eval{ip') := Reg{'p)
case p>' =• ^9 : Eval{ip') := Eval{tr-ue) — Eval{B)
case V?' = 6*1 A 02 : Eval{p') := Eval{di) n Eval(92)
case <̂ ' = O ^ : Eva.l{p') := PTe{Eval{e))
case t '̂ = [](? :

Eval(p') := Eval{tnie)
pi := Eval{e)
repeat

Eval{(p') := £;'ya/(99')npi
pi := Pre(Eval{p')) D Eval{e)

until pi = Eval{ip')
case cp' = 0iU92 :

Eval{ip') := Eval{false)
pi ~ Eval{9i)
P2 := ^t;a/(02)
repeat

Eval{p') := Eval{<p') U p2
P2 := Pre{Eval{p')) n pi

Intelligent Information Processing III 67

until pi = Eval{ip')
case If' = ^\ij]6 '•

k:=j '
Eval{Lp') := Eval{true)
while k y^ 0 do

k:=k-l
ifk > i then Eval{(p') := Pre{Eval{ip')) D Eval{0)
else Eval{f') := Pre{Eval{<f'))

end while
caset^' = 6iUipq]02 :

k := J
Eval{(p') := Eval{false)
while A; 7̂ 0 do

k ~ k - l
Eval{ip') := Pre{EvaliLp') U Eval{e2)) fl Eval{Bi)

end while
case (/?' = KaO : Eval{ip') := {g | Irng{q, ~o) C Eval{6)}
case 99' = E'rfi' : Eval{ip') := r\a(^TEval{Ka9)
case 93' = CV^ :

Eval{'p') := Eval{true)
repeat

p ;= Eval{ip')
Evaiy') •- r\aeT{{q\Irng{q,^a) Q Eval{e)} n p)

until p = Eval{<fi')
end case

return £;t!a?((/?)
The algoritlim uses the following primitive operations:
(1) The flmction Sub, when given a formula </?, returns a queue of syntactic

subformulas of 93 such that if ifi is a subformula of ip and (/?2 is a subformula
of ipi, then ip2 precedes ipi in the queue Sub{ip).

(2) The function Reg, when given a proposition p E U, returns the set of
states in Q that satisfy p.

(3) The function Pre, when given a set p C Q of states, returns the set of
states q such that from q the next state to lie in p. Formally, Pre{p) contains
state q &Q such that {q,s) eTt where s € p.

(4) The function Img : Q x 2*5̂ *5 ^ Q^ which takes as input a state q and
a binary relation R C Q x Q, and returns the set of states that are accessible
from q via R. That is, Irng{q, R) = {q' \ qRq'}-

(5) Union, intersection, difference, and inclusion test for state sets. Note
also that we write Eval{true) for the set Q of all states, and write Eval{ false)
for the eiTipty set of states.

68 IIP 2006

Partial correctness of the algorithm can be proved induction on the structure
of the input formula ip. Termination is guaranteed since the state space Q is
finite. The cases where </?' = KaO, (p' = Ej^O and ip' = CrO simply involve
the computation of the Img function at most \Q\^ times, each computation
requiring time at most 0{\Q\^). Furthermore, real-time CTL model checking
algorithm can be done in polynomial time. Hence the above algorithm for
RTKL requires at most polynomial time.

Proposition 1 The algorithm given in the above terminates and is correct,
i.e., it returns the set of states in which the input formula is satisfied. Further­
more, the algorithm costs at most polynomial time on \Q\.

3. Adding Cooperation Modalities to RTKL

To express the cooperation property in open systems, Alur and Henzinger
introduced alternating-time temporal logic ATL in [2], which is a generalisa­
tion of CTL. The mam difference between ATL and CTL is that in ATL,
path quantifies are replaced by cooperation modalities. For example, the ATL
formula ((F)) Q '^^ where F is a group of agents, expresses that the group F
can cooperate to achieve a next state that ip holds. Thus, we can express some
properties such as "agents 1 and 2 can ensure that the system never enters a
fail state". An ATL model checking systems called MOCHA was developed
[1]. In MAS, agents are intelligent, so it is not only necessary to represent
the temporal properties but also necessary to express the mental properties.
For example, one may need to express statements such as "if it is common
knowledge in group of agents F that (̂ , then F can cooperate to ensure (/'". To
represent and verify such properties, a temporal epistemic logic AT EL was
presented in [10]. This logic extended ATL with knowledge modalities such
as "every knows" and common knowledge. In this section, we extend RTKL
by adding cooperation modalities and get a new logic RATKL, which can ex­
press real-time temporal, cooperation and knowledge properties. Furthermore,
a model checking algorithm for RATKL was given.

Syntax aiRATKL

Definition 4 The set of formulas in RATKL, called L^'^^^^, is given by the
following rules;

(1) li<p Gatomic formulas set Ft, then ip G L^^'^^^.
(2) If (/? Gproposition variables set V, then <fi e L^''^'^^'"^.
(3) If (̂ G L^^T^^, then -^p G L^^^^^^.
(4) lip, i> G L '̂̂ 4TA-L^ jĵ gĵ ^ /^ .^1, g ^RATKL^

(5) If v., i> e L^^^'<^, F C E, then ((F)) Q V, m)[]v, ((r»</pf/'0 G
£BATKL

(6)If<^,^ G L^-4"^^,F C E, then ((F))Oi.jiV', ((r))</̂ C/(,,,-]Z^ G L^-^^^^.

Intelligent Information Processing III 69

(7) If ¥5 G L^ATKL^ tjjgjj j ^ ^ ^ ^ £;^^^ (j^^ g j^RATKL^ ^jjgj.g p g S .

Semantics of iL47XZ

Definition 5 A model S of RATKL is a concurrent game structure 5 =
(S, (5, n , TV, e, d, (5, ^a here a G S), where

(1) E is a finite set of agents, in the following, without loss of generality, we
usually assume S = {l,...,fc}.

(2) (5 is a finite, nonempty set, whose elements are called possible worlds
or states.

(3) n is a finite set of propositions.
(4) TT is a map; Q —> 2^, where 11 is a set of atomic formulas.
(5) e is an environment: V -~> 2^, where V is a set of proposition variables.
(6) For each player a G S = {!,..., A;} and each state q £ Q, a natural

number da{q) > 1 of moves available at state q to player a. We identify the
moves of player a at state q with the numbers 1, ...,da{q). For each state q € Q,
a move vector at g is a tuple (ji, .--^jk) such that 1 < j„ < da{q) for each
player a. Given a state g G Q, we write D{q) for the set {1, ...,di{q)} x ... x
{1,..., dfe(g)} of move vectors. The ftmction D is called move fimction.

(7) For each state q € Q and each move vector {ji,.-.,jk) <£ D{q), a. state
(5(9, j i , •••, jfc) that results from state q if every player a G S = {l,...,fc}
choose move ja- The function is called transition function.

(8) ~Q, is an accessible relation on Q, which is an equivalence relation.
The definition of computation of a concurrent game structure is similar to

the case of Kripke structure. In order to give the semantics of RATKL, we need
to define strategies of a concurrent game structure.

Strategies and their outcomes. Intuitively, a strategy is an abstract model
of an agent's decision-making process; a strategy may be thought of as a kind
of plan for an agent. By following a strategy, an agent can bring about certain
states of affairs. Formally, a strategy fa for an agent a G S is a total fimc­
tion fa that maps every nonempty finite state sequence A G Q'^ to a natural
number such that if the last state of A is q, then /a(A) < da{q). Thus, the
strategy fa determines for every finite prefix A of a computation a move /a(A)
for player a. Given a set F C E of agents, and an indexed set of strategies
Fv = {fa I o, G F}, one for each agent a G F, we define out{q,Fr) to be
the set of possible outcomes that may occur if every agent a G F follows the
corresponding strategy /„,, starting when the system is in state q G Q. That is,
the set out{q,Fr) will contain all possible q-computations that the agents F
can "enforce" by cooperating and following the strategies in Fp. Note that the
"grand coalition" of all agents in the system can cooperate to uniquely deter­
mine the future state of the system, and so out{q, F^) is a singleton. Similarly,
the set out{q, Fi/,) is the set of all possible g-computations of the system.

70 IIP 2006

We can now turn to the definition of semantics of RATKL. We omit the
definition of [[p]]s, [[-'<^]]s, [b A VJ]]S, [[Ka<p]]s, {[Erv]]s, [[CrfUs since
they are given in Definition 3.

Definition 6 Semantics of RATKL
[[((r)) O ^]]s = {q I there exists a set Fp of strategies, one for each player

in r , such that for all computations A G out{q, Fp), we have A[l] e [[<p]]s-}
[[((r))[]'^]]s' = {Q I there exists a set Fj- of strategies, one for each player

in r , such that for all computations A e out{q, Fp) and all positions i > 0, we
have A[z] G [[^}]s.}

[[{{r))(pUil!]]s = {q I there exists a set Fp of strategies, one for each player
in r , such that for all computations A G out{q,Fr), there exists a position
i > 0, such that X[i] G [[V-']]s and for all positions 0 < j < z, we have
m e [Ms-}

[[((r))[][j j](/j]].g = {q I there exists a set Fp of strategies, one for each
player in F, such that for all computations A G out{q, Fp) and all positions
i < m. < j , we have X[rn] G [[scJls-}

[[{{T))<fiUi^ijj'4']]s = [q I tliere exists a set Fp of strategies, one for each
player in F, such that for all computations A G out{q, Fp), there exists a posi­
tion i < rri < j , such that A[m] G [[%IJ]]S and for all positions 0 < fc < rn, we
have X[k] G M]s-}

Intuitively, ((F)) Q ip means that group F can cooperate to ensure tp at
next step; ((r))[]!^ means that group F can cooperate to ensure ip always
holds; {{r))ipU'ip means that group F can cooperate to ensure ip until'(/; holds;
((F))[][jj](/? means that group F can cooperate to ensure 99 always holds in
the interval of {i,j]; ((F))< [̂/[,:j]'i/) means that group F can cooperate to en­
sure ip until ij; holds in the interval of [i, j]. For example, a RATKL formula
((ri)) O V A ((F2))[][.(j]</' holds at a state exactly when the coalition Fi has
a strategy to ensure that proposition ip holds at the immediate successor state,
and coalition F2 has a strategy to ensure that proposition (/' holds at the current
and all future states between time i and j .

Model Checking for RATKL

In the following, we give a model checking algorithm for RATKL. We denote
the desired set of states by Eval{ip). The case of p, ^(/3, (p Aip, Ka^p, Ertps,
C'r^p can be computed similarly in the algorithm for RTKL, so we do not give
the procedure for these modalities. The main difference between RTKL and
RATKL is that temporal modalities are replaced by alternating-time temporal
modalities, so the model checking algorithm for RATKL is similar to the al­
gorithm for RTKL except that the ftmction Pre{p) is replaced by the function
CoPre{T,p).

For each </?' in Sub{ip) do

Intelligent Information Processing III 71

case (p' = ((r)) O Q •• Eval{ip') := CoPre{V, Eval{e))
casey?' = ((r))[]6i:

Eval{ip') := Eval{true)
pi := Eval{0)
repeat

Eval{ip') := Eval{ip') D pi
pi := CoPre{r,Eval{(p')) D Eval{e)

until p\ — Eval{(p')

casev3' = {{r))eiue2 ••
Eval{(fi') := Eval{false)
pi := EvaliOi)
P2 := Eval{d2)
repeat

Eval{(p') := Eval{ip') U p2
P2 ••= CoPre{r, Eval{ip')) D pi

until pi = Eval{ip')
case^ ' = ((r))0 [y]^ ;

Eval{ip') :•= Eval{true)
while fe 7̂ 0 do

/c- := A; - 1
if A,' > I then E'ua?((/j') := CoPre{r, Eval{ip')) 0 Eval{9)
else Eval{(p') ~ CoPre{r,Eval{ip'))

end while
casev9'=((r))0i?7[p,,]f?2-.

fc : = J
Eval{<p') := Eval{false)
while fc 7̂ 0 do

fe : = A; - 1
Eval{ip') •= CoPre{T, Eval{<p') U Eval{92)) D Eval{Bi)

end while
end case
return Eval{ip)
The algorithm uses the function CoPre. When given a set F C E of players

and a set /9 C Q of states, the function CoPre returns the set of states q such
that from g, the players in F can cooperate and enforce the next state to lie in
p. Fonnally, CoPre(F , p) contains state q G Q if for every player a € F, there
exists a move ja G {1, ...,da{q)} such that for all players 6 G S - F and moves
jb e {l,...,d6(g)},wehave(5(g,ji,...,jfc) e p.

Similar to the case of RTKL, we have the following proposition:
Proposition 2 The algorithm given in the above terminates and is correct.

Furthermore, it costs at most polynomial time on \Q\.

72 IIP 2006

4. Conclusions
Recently, there has been growing interest in the logics for representing and

reasoning temporal and epistemic properties in multi-agent systems [3, 6, 9-
12]. In this paper, we present a real-time temporal knowledge logic RTKL,
which is a succinct and powerful language for expressing complex properties.
In [8], Halpern and Moses also presented and study some real-time knowledge
modalities such as e-common knowledge CQ, ()-common knowledge CQ and
timestamped common knowledge Cj.. It is easy to see that all these modalities

can be expressed in RTKL, for example, CQ ^ QCQ and C j <^ [][r,r]C'G-
Moreover, the approach to model checking RTKL is studied. We further extend
RTKL by adding cooperation modalities. The logic RATKL can express not
only real-time and knowledge properties, but also cooperation properties. The
model checking algorithm for RATKL is given. It is also hopeful to apply such
RTKL and RATKL logics and these model checking algorithms to verify the
correctness of real-time protocol systems.

References
[1] R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan, F. Y. C. Mang, S. Qadeer, S, K.

Rajamni, and S. Tasiran, MOCHA user manual, University of Bertceley Report, 2000.

[2] R. Alur and T. A. Henzinger. Alternating-time temporal logic. In Journal of the ACM,
49(5): 672-713.

[3] M. Bourahla and M. Benmohamed. Model Checking Multi-Agent Systems. In Informat-
ica29: 189-197,2005.

[4] E. M. Clarke, J. O. Grumberg, and D. A. Peled. Model checking. The MIT Press, 1999.

[5] H. van Ditmarsch, W van der Hoek, and B. P. Kooi. Dynamic Epistemic Logic with
Assignment, in AAMAS05, ACM Inc, New York, vol. 1, 141-148, 2005.

[6] N. de C. Fen-eira, M. Fisher, W. van der Hoek: Logical Implementation of Uncertain
Agents. Proc. EPIA-05, LNAI 3808. pp536-547.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Common knowledge revisited, Annals
of Pure and Applied Logic 96: 89-105, 1999.

[8] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed envi­
ronment. J ACM, 1990, 37(3): 549-587.

[9] W. van der Hoek and M. Wooldridge. Model Checking Knowledge, and Time. In Pro­
ceedings of SPIN 2002, LNCS 2318,95-111, 2002.

[10] W. van der Hoek and M. Wooldridge. Cooperation, Knowledge, and Time: Alternating-
time Temporal Epistemic Logic and its Applications. Studia Logica, 75: 125-157, 2003.

[1 i] M. Kacprzak, A, Lomuscio and W. Penczek. Verification of multiagent systems via un­
bounded model checking. In Proceedings of the 3rd International Conference on Au­
tonomous Agents and Multiagent Systems (AAMAS-04), 2004.

[12] M. Wooldridge, M. Fisher, M. Huget, andS. Parsons. Model checking multiagent systems
with mable. In Proceedings of the First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-02), 2002.

