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Abstract As a distributed process calculus with localities and mobility of computational 
entities, Seal calculus is playing an important role in expressing key features 
such as security and mobility of Internet programming directly. However, little 
implementation technique proposed for the calculus, partly due to the complica
tion of inobile computation, which fusions three important techniques: concur
rency, distribution and mobility at the same time. The abstract machine PSN for 
a distributed implementation of the Seal calculus is presented. In PSN the log
ical structure of a seal system and its physical distribution are separated which 
induces a more simple and clear implementation. Moreover, an operational se
mantics description of the Seal calculus based on PSN is given. 
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1. Introduction 

The Seal calculus[l,2] is a mobile process calculus aims to model program
ming large scale distributed systems over open networks, with the goal of be
ing able to express the essential properties of Internet programs. Seal can be 
seen as a framework for exploring the design space of security and mobility 
features[3,4]. However, at present the research on Seal calculus is still at the 
stage of perfecting its theory, less work has been done on its application and 
implementation, only one implementation is mentioned in [5]. Moreover, the 
existed formal semantics of the Seal all base on the reduction semantics, which 
is easy to understand but difficult to implement. The problems of implementa-
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tion have been a restraint to the development of programming languages based 
on Seal and to experimentation of Seals on concrete examples. In our opinion, 
implementation is one of the aspects of Seal that most need investigations. 

One of the difficulties of a distributed implementation of a hierachical lan
guage such as Mobile Ambient[6] and Seal is that each movement operation 
involves ambients(or seals) on different hierachical levels. In [7,8] locks are 
used to achieve a synchronization among all ambients(or seals) affected by a 
movement. In a distributed setting, however, this lock-based policy can be 
expensive. Many programming languages and abstract calculi use abstract ma
chine to describe their semantics. Abstract machine as an intermediate stage 
increases portabihty and maintainability of compilers[9,10], [11] present a dis
tributed abstract machine of SA(Safe Ambients Calculus), the main idea is to 
mode each seal as a network node, communication between these nodes base 
on asychcronous message transimission, which simulates the communication 
and mobility of seals. The contribution in [11] motivates our work. However, 
The Seal calculus differs from Ambients in two important ways. First, Ambi
ents use subjective mobility(an agent moves itself) in Seal mobility is objec-
tive(an agent is moved by its context). Second, in Seal both communication 
and mobility between seals base on channels, which are named computational 
stnictures used to synchronize processes, in Ambients communication is local 
and mobility bases on capabilities. So neither the definition nor the implemen
tation of the abstract machine of Seal will be defferent from the Ambients'. In 
[12], we give a simple distributed implementation of the Seal Calculus, which 
is the basis of this paper. 

The paper is organized as follows. Section 2 introduces the formal syntax 
and relevant properties of the abstract machine PSN. Section 3 presents the 
operational semantics of Seal based on the states transition, finally, a transition 
example is proposed to verify the correctness of the semantics. The last section, 
concludes the paper with a discussion of future work. 

2. Abstract IMachine 

We call the abstract machine defined in this paper PSN(Pervasive Seal Net
work), which separates between the logical and the physical distribution of the 
seals. The logical distribution is given by the tree staicture of the seal syn-
tax(a seal can contain other seals). The physical distribution is given by the 
association of a location with each seal. 

In PSN, a seal named s is represented as a located seal (ft ; s{P],f,ss), 
where h is the location, or site, at which the seal runs, / is the location of the 
parent of the seal, and P is the proceses local to the seal and ss is the location 
set of the subseals. While the same name may be assigned to several seals, a 
location univocally identifies a seal; it can be thought of as its physical address. 
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A tree of seals is rendered, in PSN, by the parallel composition of the seals 
in the tree. In this sense, the physical and the logical topology are separated: 
the space of the physical locations is flat, and each location hosts at most one 
seal, each seal resides at a distinct physical location(this gives us the physical 
distribution), but each seal knows the location at which its parent and its sons 
reside(this gives us the logical topology). For instance, an Seal term si[Pi || 
-P2 II S2[Qi] II S3[Q2]], where Pi and F2 are the local processes of si , and 
Qi{i = 1,2) is a local process of m.((i.e., -nii has no subseals), becomes in 
PSN; 

h : si[Pi|F2],root, {A;i,^-2}) || {h • S2{Qi],h,{}) II (̂ '2 : S3[Q2],h,{}) 
where h, ki, ^2 are different location names, root is a special name indicating 
the outermost location, and i| is the parallel composition of located seals. Since 
seals may mn at different physical sites, they communicate with each other by 
means of asynchronous messages. 

We use m, n,... to range over names, h,k,... to range over locations, 
p, g , . . . to range over both names and locations. The syntax of PSN is shown 
as follows: A term of PSN, a net, is the parallel composition of agents and 

Net A ::= 0 
Agent Age'n 
Process P : 
Action M :: 

M l 
t :: = 
= 0 
= x 

llĥ  
ih 
Pi 

n 1 
Message MagBody 

2ivp)A 1 Agen 
n[P],k,SS) 

, 1 h{MsgBody) 

\ Pi 1 {m)P 1 M.p 1 M\P 
x"{y)\x'>{Xy)\x'>{:ff)\x 
:= write{c, x) 

•moveAck | 
Ok'write 

m.ove{h) | 

II wait.P 1 {MsgBody} 
" (y) 
send{c,'i],n) j 

Dkmove{h) 

messages, with some names possibly restricted. An agent is a located seal. 
Located seal is the basic unit of PSN, and represent seals of Seal with their 
local processes. Messages include two kinds. One kind is the messages that 
the requestor sends to the receiver, to ask for services; Another kind is the 
acloiowledagement messages that the services provider sends back to the re
questor to notify the completion of services and to execute the next operation. 
The syntax of the processes inside located seals is similar to that of processes 
in Seal. The only additions are: the prefix wait.P, which appears in a seal when 
this has sent a request but has not received an answer yet; and the requests, 
which represent messages received from the requestors and not yet served. We 
use A to range over nets. 

For example, for the following Seal program: 
si[c'^^{y).y'^{x).0 || s:i{c^Cl).0] \\ S2[ciHz).0]] 

the PSN is: 
{{r.rn[0],rp,{h}), 
{£1 : si[rcormn{c, y, son{s2)).rcornm{y, x, son(6'2)).0], r, {£2, h}) , 
{£2 •• S2{scormn{ci,z, fath).0], ^1, {}), 
( 4 : S3[6'comm(c, ci, fath).0], 4 , {})} 
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3. Operational Semantics 

Operational Semantics Based On Transitions 

Our operational semantics is based on a transition system. In this kind of 
formalism ttie semantics of a program is given in terms of the transitions which 
can make from one configuration to another. The execution of a program is 
then modeled by a sequence of configurations with transitions, starting from a 
suitable initial configuration. The transitions are given by a transition relation 
i-^C Conf X Conf (where Conf is the set of configurations). 

In transition systems, a configuration usually consists of something like the 
statement that is to be executed, plus some extra state information. The con
figuration that we shall use will have a rather complex structure. Formally we 
define the set of Conf by; 

ConfKk : Si[di], /,, 55,)}, iel...n 
Where Ij, denotes the location of the seal, s, denotes the name of the seal, ck 

denotes the actionlist of seal s,;, fi denotes the location of the parent seal and 
SSi denotes the location set of the subseals. 

According to the above definition of configurationcnthe initial configuration 
is the final transformation result of Seal source program P to PSN, i.e, 
conf = PSN{P) = {{h: si[di], / i , 55i) , . . . , ( / „ : s„[d„], /„, SSn)} 
the terminal configuration is the state that all the parallel process' action queues 
become empty, i.e., 

conf = {(̂ 1 : si[0], ,h,SSi),..., {/., : s„[0], /„, SS^)} 
Now, having an intuitive understanding of the meaning of the programming 

constructs, it is rather easy to give the corresponding transition rales. 
Throughout this section, whenever we write {a)t>p, we require that (a) ^ p. 

(1) local communication 
(Tl) {h : n[scomm{c, y, loc).cli t> rcomm{c, x, loc).cl'2 i> cl], f, SS) o p' 

^ {h : n[cl[ t> cl'^iy/x} o cl], / , SS) o p' 
(2) local son to parent communication 
(T2) (/i : ni[scomm{c, x, fath).cl'i t> di, fi, 55i) t> p' 

(-+ (/i : ni{wait.cl'i > cli > fath{write{c, x)}], / i , 55i) o p' 
{if fath = fO 

(T3) (/2 : n2[rc.omm{c, y, son{ni)).cl2 > {write{c, x),li}], /2, 552) i> P 
(-> {h : n2[cl'2{x/y} i> ch t> k{Okwrite}], /2, 552) ^ p' 

(ifh e 552) 
(T4) {li : ni[wait.cl{ o cli i> {Okwrite, fath]], / i , 55i) !> p' 

^{h:ni[cl[>ch]JuSSi)t>p' (if fath = fi) 
(3) parent to son communication 
(T5) {h : ni[scomm{c, x, son{n2))-cl'i t> cli], / i , 55i) i> p' 

t-> (li : ni[7vait.cl[ t> cli •> h{write{c, x)]], / i , SSi) t> p' 
(if 2̂ = Loc{n2) and n2 G 55i) 
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(T6) (̂ 2 : n2[rcomm{c, y., fath).d'2 t> ch t> {write{c, y),h}], fa, SS2) > p' 
,-. (̂ 2 : ri2[d'2{x/y} ^ ch > h{0kwrite}].j2, SS2) > p' (if/2 = H) 
For space limitation, we omit the transition rules of process movement, 

which include local movement, parent to son movement and son to parent 
movement. These rules are similar to the above communication transition 
rules. 

An Execution Sample of PSN 
For the sample presented in section 3, we apply the transition rules in sub

section 4.1, we get the following transition steps: 
SI: Suppose p = pi i> P2 0 P3, there 

Pi = {(̂ 1 : Si[rcomjn{c.y,son{s3)).rco'nrn{y,x,son{s2))-0],r, 
{h,k})}, 

P2 = {(̂ 2 •• S2[scomrri{ci, z, fath).0],li, {})}, 
p-i = {(̂ 3 : sz[scomrn{c,ci,fcdh).%li,{})),then 

S2: After transition T2, p becomes 
Pi^ {{h '• S2[wait.{}\>li{write{c,z)]]J.i,{})}t> {{l-i : s^[wait.Q 
^li{write{c,ci)}\Au{])} 

S3: Using T3 transition, becomes 
{{li : Si[rcorrirn{ci,x, son(s2)).01> l:i{Okwrite} 0 {write{ci,z),l2}]; 
r,{l2,k})}t>{{l2-S2[wait.0}]Ji,{})}>{{k:s'i{wait.0}lli,{})} 

S4: Using T4 transition, becomes 
{{ll : si[rcomm{ci, X, son{s2)).0 > {turite{ci,z),l2}],r, {^2^3})} 
^{{k : S2[wait.(}}],k, {})} O {(̂ 3 : ss[0}]Ju {})} 

S5; Using T3, T4 transition continously, we get 
{{h : si[0],r,{h,km> {{h •• S2[0llu{})}> {{h •• S3{0],li,{})} 

4. Conclusion and future work 

We have presented an abstract machine for the Seal calculus, and discussed 
briefly its operational semantics based on transition system. The main orig
inality of our abstract machine lies in the fact that an operational semantics 
based on transition system is given not a reduction one, this work facilitates 
the implementation and constitutes the first step in a potential series of more 
and more refined abstract machies, getting us closer to a provably correct im
plementation of the Seal calculus. 

Finally let us point out some directions in which further work could be done. 
First, it would certainly be worthwhile to see whether for this kind of language 
also a denotational semantics can be developed, and possibly proved equivalent 
to the current operational semantics. Maybe the representation used here for 
parallel processes could be adapted to denotational semantics in such a way 
that a clear description is possible. Also this kind of operational semantics 



580 IIP 2006 

could be a good basis to explore the possibility of automatic implementation 
of mobile computation languages by means of a interpreter. 
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