
C

Cache Manager

▶Buffer Manager
Cache Performance

▶ Performance Analysis of Transaction Processing

Systems
Cache-Aware Query Processing

▶Cache-Conscious Query Processing
Cache-Conscious Query Processing

KENNETH A. ROSS

Columbia University, New York, NY, USA

Synonyms
Cache-aware query processing; Cache-sensitive query

processing

Definition
Query processing algorithms are designed to efficiently

exploit the available cache units in the memory hierar-

chy. Cache-conscious algorithms typically employ

knowledge of architectural parameters such as cache

size and latency. This knowledge can be used to ensure

that the algorithms have good temporal and/or spatial

locality on the target platform.

Historical Background
Between 1980 and 2005, processing speeds improved

by roughly four orders of magnitude, while memory

speeds improved by less than a single order of magni-

tude. As a result, it is common (at the time of writing)
2009 Springer ScienceþBusiness Media, LLC
for data accesses to RAM to require several hundred

CPU cycles to resolve. Many database workloads have

shifted from being I/O bound to being memory/CPU-

bound as the amount of memory per machine has

been increasing. For such workloads, improving the

locality of data-intensive operations can have a direct

impact on the system’s overall performance.

Foundations
A cache is a hardware unit that speeds up access to

data. Several cache units may be present at various

levels of the memory hierarchy, depending on the

processor architecture. For example, a processor may

have a small but fast Level-1 (L1) cache for data, and

another L1 cache for instructions. The same processor

may have a larger but slower L2 cache storing both data

and instructions. Some processors may even have an

L3 cache. On multicore processors, the lower level

caches may be shared among groups of cores.

Some initial analysis would typically be performed

to determine the performance characteristics of a

workload. For example, Ailamaki et al. [1] used hard-

ware performance counters to demonstrate that several

commercial systems were, at that time, suffering many

L2 data cache misses and L1 instruction cache misses.

Based on such observations, one can determine that

the L2 data cache and L1 instruction cache are targets

for performance tuning.

If the operating system does not provide direct

access to system parameters such as the cache size, a

database system can run a calibration test to estimate

the relevant parameters [13].

To get good cache performance, algorithm

designers typically utilize one or more of the following

general approaches:

� Improve spatial locality, so that data items that

are often accessed together are in the same cache

lines.

� Improve temporal locality for data, so that after

an initial cache miss, subsequent data item accesses

occur while the item is still cache-resident.

302C Cache-Conscious Query Processing
� Improve temporal locality for instructions, so that

code that needs to be applied to many data items

is executed many times while the instructions re-

side in the cache.

� Hide the latency. Latency can be hidden in several

ways. If the data access pattern is predictable, pre-

fetching data elements into the cache can overlap

the memory latency with other work. On architec-

tures that support multiple simultaneous outstand-

ing memory requests, cache miss latencies can be

overlapped with one another.

� Sample the data to predict the cache behavior, and

choose an algorithm accordingly.

Examples of each of these approaches are given below.
Spatial Locality

In many query-processing contexts, only a few columns

for a table are needed. In such cases, it pays to organize the

table column-wise, so that column values from consecu-

tive records are contiguous. Cache lines then contain

many useful data elements. A row-wise organization

would require more cache-line accesses, since each cache

line would contain some data from unneeded columns.

Examples of systems with column-wise storage are Sybase

IQ [12], MonetDB [3], and C-Store [19]. The PAX stor-

agemodel [6] allows for column-wise storage within each

disk page. Themain advantage of such an approach is that

existing page-oriented database systems can improve

cache behavior with limited changes to the whole system.

Chilimbi et al. [7] advocate placing multiple levels

of a binary tree within a cache line, to reduce the

number of cache misses per traversal. Chilimbi et al.

also use cache coloring to place frequently accessed

items in certain ranges of physical memory. The idea

is to reduce the number of conflict misses by making

sure that the low order bits of the addresses of certain

items cannot be the same.

To reduce the number of cache lines needed to search

for an item in an index, Rao andRoss proposedCSS-trees

[16] andCSB+-trees [17]. CSS-trees eliminate pointers; a

node contains only keys. Nodes are of fixed size, typically

one cache line, aligned to the cache line boundaries.

Nodes are stored in an array in such a way that the

children of a node can be determined using simple arith-

metic operations, making pointers unnecessary. CSB+-

trees extend this idea, allowing just one pointer per

node and requiring that all sibling nodes be contiguous.

CSB+-trees have better update performance than CSS-

trees, while retaining almost all of the cache-efficiency.
The diagram below shows a CSB+-Tree of Order 1. Note

that each node has only one child pointer and that each

node’s children are allocated contiguously.

Several other ways to compress B+-tree nodes for

cache performance, such as key compression and key-

prefix truncation, are discussed in [11].

Temporal Locality

Blocking is a general technique for ensuring temporal

locality. Data is processed in cache-sized units, so that

all data within the block stays cache-resident. The

blocks are then combined in a later phase. Alpha-Sort

[14] is an example of such a method: cache-sized units

of input data are read and quick-sorted into runs.

These runs are merged in a later phase. Padmanabhan

et al. [15] modified a commercial database system to

pass data between certain operators in blocks, and

demonstrated improved cache behavior.

Buffering is a related strategy to improve temporal

locality. Zhou and Ross [20] propose buffering to

speed up bulk B-tree index lookups. By sending pro-

bes only one level at a time through the tree, in batches,

one can amortize the cost of reading an index node

over many probes. The savings in data cache misses

usually outweigh the extra cost of reading and writing

to intermediate buffers. Zhou and Ross also examine

the code size of database operators, and propose to

buffer data to ensure that the footprint of the active

code is smaller than the size of the L1 instruction cache

[21]. Again, the savings in instruction cache misses

usually outweigh the cost of buffering.

Partitioning the data into cache-sized units for later

processing is the dual of blocking. Examples include

the partitioned hash join [18] and radix-join [3].

When multiple processors, or multiple threads

within a single processor access a shared cache, cache

interference can result. Even if each individual thread

is cache-conscious, the total cache resources may be

Cache-Conscious Query Processing C 303

C

insufficient for all threads, and cache thrashing may

result. To counter this interference, one could design

cooperative threads that work together on a common

task using common cache-conscious data structures.

Multithreaded join operators [10,22] and aggregation

operators [8] have been proposed.

Many divide-and-conquer style algorithms gener-

ate temporal locality at recursively smaller granulari-

ties. Such algorithms have been termed cache oblivious

because they can achieve locality at multiple levels of

the memory hierarchy without explicit knowledge of

the cache parameters [9].

Prefetching

Prefetching involves reading data into the cache ahead of

when it is to be used. When access patterns can be

predicted in advance, and when memory bandwidth is

not saturated, prefetching can effectively hide the mem-

ory latency. Some hardware platforms automatically rec-

ognize certain access patterns, such as regular fixed-stride

access to memory. The hardware then automatically

prefetches ahead in the access sequence. For access pat-

terns that are not so easily recognized, or for hardware

platforms that do not support hardware prefetching, one

can explicitly prefetch memory locations using software.

Chen et al. [6] show how to prefetch parts of a B+-

tree node or CSB+-tree node to get a bigger effective

node size. For example, if the memory system can

support n outstanding memory requests, then a node

consisting of n cache lines could be retrieved in only

slightly more time than a single cache line. Since wider

nodes result in shallower trees, the optimal node size

might be several cache lines wide.

Chen et al. [4] use prefetching to speed up hash joins.

The internal steps for processing records are divided into

stages. A memory access is typically required between

stages. Stages for multiple records are scheduled so that

while data for a forthcoming operation is being pre-

fetched, usefulwork is being performed on other records.

Zhou et al. [22] define the notion of a work-ahead

set, a data structure that describes a memory location

and a computation stage for some data-intensive oper-

ation. One thread of a two-threaded system is devoted

purely to prefetching the data into the cache, while the

other thread does the algorithmic work.

Sampling

Inspector joins sample the data during an initial parti-

tioning phase [5]. This information is used to acceler-

ate a cache-optimized join algorithm for processing

the partitions. Cieslewicz et al. [8] sample a stream
of tuples for aggregation to estimate (among other

things) the locality of reference of group-by values.

Based on that information, an appropriate aggregation

algorithm is chosen for the remainder of the stream.

Key Applications
Data intensive operators such as sorts, joins, aggre-

gates, and index lookups, form the ‘‘assembly lan-

guage’’ into which complex queries are compiled. By

making these operators as efficient as possible on mod-

ern hardware, all database system users can effectively

exploit the available resources.

Future Directions
Future processors are likely to scale by placing many

cores on a chip, with only a modest increase in clock

frequency. As a result, the amount of cache memory

per processor may actually decrease over time, making

cache optimization even more critical. For chips with

shared caches, interference between cores will be a

significant performance hazard. While locality is good

for cache behavior, it can be bad for concurrency due

to hot-spots of contention [8]. Cache performance will

need to be considered together with parallelism to find

appropriate performance trade-offs.

Cross-references
▶Architecture-Conscious Database System

▶Cache-Conscious Transaction Processing

Recommended Reading
1. Ailamaki A., Dewitt D.J., Hill M.D., andWood D.A. DBMSs on a

modern processor: where does time go? In Proc. 25th Int. Conf.

on Very Large Data Bases, 1999, pp. 266–277.

2. Ailamaki A., DeWitt D.J., Hill M.D., and Skounakis M. Weaving

relations for cache performance. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001, pp. 169–180.

3. Boncz P.A., Manegold S., and Kersten M.L. Database architec-

ture optimized for the new bottleneck: memory access. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 54–65.

4. Chen S., Ailamaki A., Gibbons P.B., and Mowry T.C. Improving

hash join performance through prefetching. In Proc. 20th Int.

Conf. on Data Engineering, 2004, pp. 116–127.

5. Chen S. et al. Inspector joins. In Proc. 31st Int. Conf. on Very

Large Data Bases, 2005, pp. 817–828.

6. Chen S., Gibbons P.B., and Mowry T.C. Improving index per-

formance through prefetching. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2001, pp. 235–246.

7. Chilimbi T.M., Hill M.D., and Larus J.R. Cache-conscious struc-

ture layout. In Proc. ACM SIGPLAN Conf. on Programming

Language Design and Implementation, 1999, pp. 1–12.

8. Cieslewicz J. and Ross K.A. Adaptive aggregation on chip multi-

processors. In Proc. 33rd Int. Conf. on Very Large Data Bases,

2007, pp. 339–350.

304C Cache-Sensitive Query Processing
9. Frigo M., Leiserson C.E., Prokop H., and Ramachandran S.

Cache-oblivious algorithms. In Proc. 40th Annual Symp. on

Foundations of Computer Science, 1999, pp. 285–298.

10. Garcia P. and Korth H. Database hash-join algorithms on multi-

threaded computer architectures. In Proc. 3rd Conf. on Com-

puting Frontiers, 2006, pp. 241–251.

11. Graefe G. and Larson P. B-tree indexes and CPU caches. In Proc.

17th Int. Conf. on Data Engineering, 2001, pp. 349–358.

12. MacNicol R. and French B. Sybase IQ multiplex – designed

for analytics. In Proc. 30th Int. Conf. on Very Large Data

Bases, 2004, pp. 1227–1230.

13. Manegold S., Boncz P.A., and Kersten M.L. What happens during a

join? dissecting CPU and memory optimization Effects. In Proc.

26th Int. Conf. on Very Large Data Bases, 2000, pp. 339–350.

14. Nyberg C., Barclay T., Cvetanovic Z., Gray J., and Lomet D.B.

AlphaSort: a cache-sensitive parallel external sort. VLDB J., 4

(4):603–627, 1995.

15. Padmanabhan S., Malkemus T., Agarwal R., and Jhingran A.

Block oriented processing of relational database operations in

modern computer architectures. In Proc. 17th Int. Conf. on

Data Engineering, 2001, pp. 567–574.

16. Rao J. and Ross K.A. Cache conscious indexing for decision-

support in main memory. In Proc. 25th Int. Conf. on Very Large

Data Bases, 1999, pp. 78–89.

17. Rao J. and Ross K.A. Making B+ trees cache conscious in main

memory. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000, pp. 475–486.

18. Shatdal A., Kant C., and Naughton J.F. Cache conscious

algorithms for relational query processing. In Proc. 20th Int.

Conf. on Very Large Data Bases, 1994, pp. 510–521.

19. Stonebraker M., Abadi D.J., Batkin A., Chen X., Cherniack M.,

Ferreira M., Lau E., Lin A., Madden S., O’Neil E.J., O’Neil P.E.,

Rasin A., Tran N., and Zdonik S.B. C-Store: a column-oriented

DBMS. In Proc. 31th Int. Conf. on Very Large Data Bases, 2005,

pp. 553–654.

20. Zhou J. and Ross K.A. Buffering accesses to memory-resident

index structures. In Proc. 29th Int. Conf. on Very Large Data

Bases, 2003, pp. 405–416.

21. Zhou J. and Ross K.A. Buffering database operations for

enhanced instruction cache performance. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2004, pp. 191–202.

22. Zhou J., Cieslewicz J., Ross K., and Shah M. Improving database

performance on simultaneous multithreading processors. In

Proc. 31st Int. Conf. on Very Large Data Bases, 2005, pp. 49–60.
Cache-Sensitive Query Processing

▶Cache-Conscious Query Processing
Calculus Expression

▶Comprehensions
Calendar

CHRISTIAN S. JENSEN
1, RICHARD SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
A calendar provides a human interpretation of time.

As such, calendars ascribe meaning to temporal values

such that the particular meaning or interpretation

provided is relevant to its users. In particular, calendars

determine the mapping between human-meaningful

time values and an underlying time line.

Key Points
Calendars are most often cyclic, allowing human-

meaningful time values to be expressed succinctly.

For example, dates in the common Gregorian calendar

may be expressed in the form <month, day, year>

where the month and day fields cycle as time passes.

The concept of calendar defined here subsumes

commonly used calendars such as the Gregorian cal-

endar, the Hebrew calendar, and the Lunar calendar,

though the given definition is much more general. This

usage is consistent with the conventional English

meaning of the word.

Dershowitz and Reingold’s book presents complete

algorithms for fourteen prominent calendars: the pres-

ent civil calendar (Gregorian), the recent ISO commer-

cial calendar, the old civil calendar (Julian), the Coptic

an Ethiopic calendars, the Islamic (Muslim) calendar,

the modern Persian (solar) calendar, the Bahá’ı́ calendar,

the Hebrew (Jewish) calendar, the Mayan calendars, the

French Revolutionary calendar, the Chinese calendar,

and both the old (mean) and new (true) Hindu (Indian)

calendars. One could also envision more specific calen-

dars, such as an academic calendar particular to a school,

or a fiscal calendar particular to a company.

Cross-references
▶Calendric System

▶ SQL

▶Temporal Database

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and

Wang X.S. A Glossary of Time Granularity Concepts. In

Temporal Databases: Research and Practice, O. Etzion, S.

Jajodia, S. Sripada (eds.). LNCS, vol. 1399, Springer, Berlin,

pp. 406–413, 1998.

Cardinal Direction Relationships C 305

C

2. Dershowitz N. and Reingold E.M. Calendrical Calculations,

Cambridge, 1977.

3. Jensen C.S. and Dyreson C.E. (eds.). Böhlen M., Clifford J.,

Elmasri R., Gadia S.K., Grandi F., Hayes P., Jajodia S.,

Käfer W., Kline N., Lorentzos N., Mitsopoulos Y., Montanari

A., Nonen D., Peressi E., Pernici B., Roddick J.F., Sarda N.L.,

Scalas M.R., Segev A., Snodgrass R.T., Soo M.D., Tansel A.,

Tiberio R. and Wiederhold G. A Consensus Glossary of Tempo-

ral Database Concepts – February 1998 Version. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS, vol. 1399, Springer, Berlin, 1998, pp. 367–405.

4. Urgun B., Dyreson C.E., Snodgrass R.T., Miller J.K., Kline N.,

Soo M.D., and Jensen C.S. Integrating Multiple Calendars using

tZaman. Software Pract. Exper., 37(3):267–308, 2007.
Calendric System

CURTIS E. DYRESON
1, CHRISTIAN S. JENSEN

2,

RICHARD SNODGRASS
3

1Utah State University, Logan, UT, USA
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Definition
A calendric system is a collection of calendars. The

calendars in a calendric system are defined over

contiguous and non-overlapping intervals of an under-

lying time-line. Calendric systems define the human

interpretation of time for a particular locale as differ-

ent calendars may be employed during different

intervals.

Key Points
A calendric system is the abstraction of time available at

the conceptual and logical (query language) levels. As

an example, a Russian calendric system could be con-

structed by considering the sequence of six different

calendars used in that region of the world. In prehistor-

ic epochs, the Geologic calendar and Carbon-14 dating

(another form of calendar) are used to measure time.

Later, during the Roman empire, the lunar calendar

developed by the Roman republic was used. Pope

Julius, in the first century B.C., introduced a solar calen-

dar, the Julian calendar. This calendar was in use until

the 1917 Bolshevik revolution when the Gregorian

calendar, first introduced by Pope Gregory XIII in

1572, was adopted. In 1929, the Soviets introduced

a continuous schedule work week based on 4 days of

work followed by 1 day of rest, in an attempt to break

tradition with the 7-day week. This new calendar, the

Communist calendar, had the failing that only eighty
percent of the work force was active on any day, and

it was abandoned after only 2 years in favor of the

Gregorian calendar, which is still in use today.

The term ‘‘calendric system’’ has been used to de-

scribe the calculation of events within a single calendar.

However, the given definition generalizes that usage to

multiple calendars in a very natural way.

Cross-references
▶Calendar

▶Temporal Database

▶Time Interval

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). Böhlen M., Clifford J.,

Elmasri R., Gadia S.K., Grandi F., Hayes P., Jajodia S., Käfer W.,

Kline N., Lorentzos N., Mitsopoulos Y., Montanari A., Nonen D.,

Peressi E., Pernici B., Roddick J.F., Sarda N.L., Scalas M.R.,

Segev A., Snodgrass R.T., Soo M.D., Tansel A., Tiberio R. and

Wiederhold G., A Consensus Glossary of Temporal Database

Concepts – February 1998 Version. In Temporal Databases:

Research and Practice, O. Etzion, S. Jajodia, S. Sripada (eds.).

LNCS, vol. 1399, Springer, Berlin, 1998, pp. 367–405.
Camera Break Detection

▶Video Shot Detection
Capsule

▶ Snippet
Cardinal Direction Relationships

SPIROS SKIADOPOULOS

University of Peloponnese, Tripoli, Greece

Synonyms
Orientation relationships; Directional relationships

Definition
Cardinal direction relationships are qualitative spatial

relations that describe how an object is placed relative

to other objects utilizing a co-ordinate system. This

knowledge is expressed using symbolic (qualitative)

and not numerical (quantitative) methods. For in-

stance, north and southeast are cardinal direction rela-

tionships. Such relationships are used to describe and

306C Cardinal Direction Relationships
constrain the relative positions of objects and can be

used to pose queries such as ‘‘Find all objects a, b and c

such that a is north of b and b is southeast of c’’.

Historical Background
Qualitative spatial relationships (QSR) approach com-

mon sense knowledge and reasoning about space using

symbolic rather than numerical methods [5]. QSR has

found applications in many diverse scientific areas

such as geographic information systems, artificial in-

telligence, databases, and multimedia. Most re-

searchers in QSR have concentrated on the three

main aspects of space, namely topology, distance and

direction. The uttermost aim in these lines of research

is to define new and more expressive categories of

spatial operators, as well as to build efficient algo-

rithms for the automatic processing of queries involv-

ing these operators.

Foundations
Several models capturing cardinal direction relation-

ships have been proposed in the literature. Typically, a

cardinal direction relationship is a binary relation that

describes how a primary object a is placed relative to a

reference object b utilizing a co-ordinate system (e.g.,

object a is north of object b). Early models for cardinal

direction relationships approximate an extended spa-

tial object by a representative point [3,6], e.g., objects

in Fig. 1 are approximated by their centroid. Typically,

such models partition the space around the reference

object b into a number of mutually exclusive areas. For

instance, the projection model partitions the space

using lines parallel to the axes (Fig. 1a) while the cone

model partitions the space using lines with an origin

angle f (Fig. 1b). Depending on the adopted model,

the relation between two objects may change. For

instance, consider Fig. 1c. According to the projection

model, a is northeast of b while according to the

cone model, a is north of b. Point based approxima-

tions may be crude [4], thus, later models more finely
Cardinal Direction Relationships. Figure 1. Projection-base
approximate an object using a representative area

(most commonly the minimum bounding box (The

minimum bounding box of an object a is the smallest

rectangle, aligned with the axis, that encloses a.)) and

express directions on these approximations [7,9]. Un-

fortunately, even with finer approximations, models

that approximate both the primary and the reference

object may give misleading directional relations when

objects are overlapping, intertwined, or horseshoe-

shaped [4].

Recently, more precise models for cardinal direc-

tion relationships have been proposed. Such models

define directions on the exact shape of the primary

object and only approximate the reference object

(using its minimum bounding box). The projection-

based directional relations (PDR) model is the first

model of this category [4,11,12]. The PDR model

partitions the plane around the reference object into

nine areas similarly to the projection model (Fig. 2a).

These areas correspond to the minimum bounding

box (B) and the eight cardinal directions. Intuitively,

the cardinal direction relationship is characterized by

the names of the reference areas occupied by the primary

object. For instance, in Fig. 2b, object a is partly NE and

partly E of object b. This is denoted by a NE:E b.

Similarly in Fig. 2c, a B:S:SW:W:NW:N:E:SE b holds.

In total, the PDR model identifies 511 (= 29 � 1)

relationships.

Clearly, the PDR model offers a more precise and

expressive model than previous approaches that approx-

imate objects using points or rectangles [4]. The PDR
model adopts a projection-based partition using lines

parallel to the axes (Fig. 2a). Typically, most people

find it more natural to organize the surrounding space

using lines with an origin angle similarly to the cone

model (Fig. 3a). This partition of space is adopted by

the cone-based directional relations (CDR) model. Sim-

ilarly to the PDRmodel, the CDRmodel uses the exact

shape of the primary object and only approximates the

reference object using its minimum bounding box
d and cone-based point models.

Cardinal Direction Relationships C 307

C

[14]. But, for the CDR model the space around the

reference object is partitioned into five areas (Fig. 3a).

The cardinal direction relationship is formed by the

areas that the primary object falls in. For instance, in

Fig. 3b, a is south of b. This is denoted by a S b.

Similarly in Fig. 3c, a B:W:N b holds. In total, the

CDR model identifies 31 (= 25 � 1) relationships.

In another line of research, cardinal direction rela-

tionships are modeled as ternary relationships [2].

Given three objects a, b and c, the ternary model

expresses the direction relation of the primary object

a with respect to a reference frame constructed by

objects b and c. Specifically, the convex-hull, the inter-

nal and the external tangents of objects b and c divide

the space into five areas as in Fig. 4a. These areas corre-

spond to the following directions: right-side (RS), before

(BF), left-side (LS), after (AF) and between (BT).

Similarly to PDR and CDR, the name of the areas that
Cardinal Direction Relationships. Figure 3. Extending the c

Cardinal Direction Relationships. Figure 4. Ternary cardina

Cardinal Direction Relationships. Figure 2. Extending the p
a falls into, determines the relation. For instance, in Fig.

4b, a is before and to the left-side of b and c. This is

denoted by LS:BF(a,b,c). Notice that, if the order of the

reference objects changes, the relationship also changes.

For instance, in Fig. 4b, RS:AF(a,c,b) also holds.

For all the above models of cardinal direction rela-

tionships, research has focused on four interesting

operators: (i) efficiently determining the relationships

that hold between a set of objects, (ii) calculating the

inverse of a relationship, (iii) computing the composi-

tion of two relationships and (iv) checking the consis-

tency of a set of relationships. These operators are used

as mechanisms that compute and infer cardinal direc-

tion relations. Such mechanisms are important as they

are in the heart of any system that retrieves collections

of objects similarly related to each other using spatial

relations. Table 1 summarizes current research on the

aforementioned problems.
one model.

l direction relationships.

rojection model.

Cardinal Direction Relationships. Table 1. Operations for cardinal direction relationships

Model Computation Inverse Composition Consistency

Point approximations [10] [6] [6] [6]

Rectangle approximations [9] [9] [9] [9]

PDR [13] [1] [11] [8, 12]

CDR Open problem [14] [14] Open problem

Ternary [2] [2] Open problem Open problem

308C Cartesian Product
Key Applications
Cardinal direction relationships intuitively describe

the relative position of objects and can be used to

constrain and query spatial configurations. This infor-

mation is very useful in several applications like geo-

graphic information systems, spatial databases, spatial

arrangement and planning, etc.
Future Directions
There are several open and important problems

concerning cardinal direction relations. For the models

discussed in the previous section, as presented in Table 1,

there are four operators that have not been studied

(two for the CDR and two for the ternary model).

Another open issue is the integration of cardinal direc-

tion relationships with existing spatial query answer-

ing algorithms and data indexing structures (like the

R-tree). Finally, with respect to the modeling aspect,

even the most expressive cardinal direction relation-

ships models define directions by approximating the

reference objects. Currently, there is not a simple and

easy to use model that defines cardinal direction rela-

tionships on the exact shape of the involved objects.
Cross-references
▶Geographic Information System

▶ Spatial Operations and Map Operations

▶Topological Relationships
Recommended Reading
1. Cicerone S. and Di Felice P. Cardinal directions between spatial

objects: the pairwise-consistency problem. Inf. Sci., 164

(1–4):165–188, 2004.

2. Clementini E. and Billen R. Modeling and computing ternary

projective relations between regions. IEEE Trans. Knowl. Data

Eng., 18(6):799–814, 2006.

3. Freksa C. Using orientation information for qualitative spatial

reasoning. In Proceedings of COSIT’92, LNCS, vol. 639, 1992,

pp. 162–178.
4. Goyal R. Similarity Assessment for Cardinal Directions Between

Extended Spatial Objects. PhD Thesis, Department of Spatial

Information Science and Engineering, University of Maine,

April 2000.

5. Hernández D. Qualitative Representation of Spatial Knowledge,

LNCS, vol. 804. Springer, Berlin, 1994.

6. Ligozat G. Reasoning about cardinal directions. J. Visual Lang.

Comput., 9:23–44, 1998.

7. Mukerjee A. and Joe G. A qualitative model for space. In Proc.

7th National Conf. on AI, 1990, pp. 721–727.

8. Navarrete I., Morales A., and Sciavicco G. Consistency checking

of basic cardinal constraints over connected regions. In Proc.

20th Int. Joint Conf. on AI, 2007, pp. 495–500.

9. Papadias D. Relation-based representation of spatial knowledge.

PhD Thesis, Department of Electrical and Computer Engineer-

ing, National Technical University of Athens, 1994.

10. Peuquet D.J. and Ci-Xiang Z. An algorithm to determine the

directional relationship between arbitrarily-shaped polygons in

the plane. Pattern Recognit, 20(1):65–74, 1987.

11. Skiadopoulos S. and Koubarakis M. Composing cardinal direc-

tion relations. Artif. Intell., 152(2):143–171, 2004.

12. Skiadopoulos S. and Koubarakis M. On the consistency of car-

dinal directions constraints. Artif. Intell., 163(1):91–135, 2005.

13. Skiadopoulos S., Giannoukos C., Sarkas N., Vassiliadis P.,

Sellis T., and Koubarakis M. Computing and managing cardi-

nal direction relations. IEEE Trans. Knowl. Data Eng., 17

(12):1610–1623, 2005.

14. Skiadopoulos S., Sarkas N., Sellis T., and Koubarakis M. A family

of directional relation models for extended objects. IEEE Trans.

Knowl. Data Eng., 19(8):1116–1130, 2007.
Cartesian Product

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Synonyms
Cross product

Definition
Given two relation instances R1, over set of attributes

U1, and R2, over set of attributes U2 – with U1 and U2

disjoint – the cartesian product R1 � R2 returns a new

Cataloging in Digital Libraries C 309

C

relation, over set of attributes U1 [U2, consisting of

tuples {tjt(U1) 2 R1 and t(U2) 2 R2}. Here t(U) denotes

the restriction of the tuple t to attributes in the set U.

Key Points
The cartesian product is an operator of the relational

algebra which extends to relations the usual notion of

cartesian product of sets.

Since the sets of attributes of the input relations are

disjoint, in R1 � R2 each tuple of R1 is combined with

each tuple of R2; moreover the arity of the output

relation is the sum of the arities of R1 and R2.

As an example, consider a relation Students over

attributes (student-number, student-name), containing

tuples {(1001, Black), (1002, White)}, and a relation

Courses over attributes (course-number, course-name),

containing tuples {(EH1, Databases), (GH5, Logic)}.

Then Students � Courses is a relation over attributes

(student-number, student-name, course-number, course-

name) containing tuples (1001, Black, EH1,Databases),

(1001, Black, GH5, Logic), (1002, White, EH1, Data-

bases), (1002, White, GH5, Logic).

The cartesian product can also be viewed as a

special case of natural join, arising when the set of

attributes of the operands are disjoint. However, rela-

tions over non-disjoint sets of attributes can also be

combined by the cartesian product, provided that the

renaming operator is used to rename common attri-

butes in one of the two relations.

In the presence of attribute names, the cartesian

product is commutative. In the case that relation

schemas do not come with attribute names, but are

specified by a relation name and arity, the cartesian

product R1 � R2 returns the concatenation t1t2 of all

pairs of tuples such that t1 2 R1 and t2 2 R2. Moreover

the output schema is specified by the sum of the arities

of the input schemas. In this case the cartesian product

is a non-commutative operator.

Cross-references
▶ Join

▶Relation

▶Relational Algebra

▶Renaming
Cartography

▶Visual Interfaces for Geographic Data
CAS

▶ Storage Security
CAS Query

▶Content-and-Structure Query
Case Handling

▶Business Process Management
Case Management

▶Workflow Management
Case Report Forms

▶Clinical Data Acquisition, Storage and Management
Cataloging

▶Cataloging in Digital Libraries
Cataloging in Digital Libraries

MARY LYNETTE LARSGAARD

University of California-Santa Barbara, Santa Barbara,

CA, USA

Synonyms
Cataloging; Classification

Definition
Cataloging is using standard rules to create a mainly

text surrogate that describes an object sufficiently in

detail so that the object is uniquely differentiated from

all other objects. Without looking at the object, a user

may know enough about the object to know if it suits

310C Cataloging in Digital Libraries
the user’s needs. It is generally considered to include

bibliographic description, and the application of sub-

jects, both as words and as classification.

Historical Background
Devising and using methods of arranging and describ-

ing information – respectively termed, within the stan-

dard library world, classification and cataloging – have

been primary concerns of libraries ever since libraries

began, in the ancient world of the Greeks and the

Romans. A collection of information without classifica-

tion and cataloging is not a library. The whole point of

classification and cataloging is to make access quick and

easy for users; it was discovered very early that putting

like objects together (classification) and creating text or

relatively speaking much smaller surrogates to describe

an information object (cataloging) made finding infor-

mation much quicker for the user.

Experiments in using digital records in libraries

started in approximately the late 1960s. But it was

only in the mid-1970s, with the success of what is

called ‘‘shared cataloging’’ – many libraries using a

catalog record contributed as ‘‘original cataloging’’ by

the first library to catalog the item – that using digital

systems for cataloging came into its own. This sharing

of bibliographic records in online form began with

OCLC, initially as a consortium of college libraries in

Ohio (starting in 1967), but growing rapidly to become

the most successful such library utility, currently with

about 60,000 participating libraries in 112 countries and

territories (http://www.oclc.org). The development of

integrated library systems (ILS) or library management

systems (LMS) – software, or a combination of software

and hardware, that permits a library to performmultiple

functions, such as acquisitions/ordering, cataloging and

classification, circulation, preservation, and reference,

using digital files in large databases with many tables –

has continued to the present in the ‘‘Library of Congress

Authorities’’ online authority system, http://authorities.

loc.gov).

The inception and speedy growth of the

World Wide Web (Web) since the mid-1990s has

spread this interest in arrangement and description

of, and access to, information objects to non-library

communities, and within the library world to how

specifically to arrange and describe digital objects

made available over the Web in digital libraries.

There have been many standards for the description

of information objects. They are most often inten-

ded either to apply at least in theory to all materials
(e.g., Anglo-American Cataloging Rules, hereafter

referred to as AACR; Dublin Core, which began in

1995, http://www.dublincore.org/documents/dces/) or

to apply to the description of a specific body of infor-

mation (e.g., for digital geospatial data, ‘‘Content Stan-

dard for Digital Geospatial Metadata’’; 2nd edition,

1998, http://www.fgdc.gov/standards/projects/FGDC-

standards-projects/metadata/base-metadata/v2_0698.

pdf and ISO Standard 19115, ‘‘Geographic Informa-

tion, metadata; Information géographique, métadon-

nées,’’ 2003).

Foundations

Classification

Classification and cataloging complement each other.

Classification is a form of subject cataloging, which is

where the major overlap between the two occurs. Classi-

fication tends to be hierarchical, breaking a given

world of information or knowledge into broad divisions

(e.g., Law) and then breaking that into smaller divisions

(e.g., education for law; law of various countries; etc.).

Classification is most often placing like items about

like subjects (e.g., works by Shakespeare) and like genres

or formats (e.g., maps) together. It also provides a physi-

cal locationwithin a library for each object, be it digital or

hardcopy. The most prominent systems used are the

Dewey Decimal Classification (often used by public

libraries and smaller libraries generally), and the Library

of Congress Classification (most often used by university

and other research libraries in the United States). There

are many more systems, such as the Bliss Classification

and the Colon Classification, and special and research

libraries (such as theNewYork Public Library) devise and

maintain their own systems. Devising a classification

system is easy, but maintaining it is very difficult and

time-consuming. Often a library maintaining a classifi-

cation system unique to itself will find that it is far less

work to convert to a rigorously maintained system that

is used by many libraries than it is to maintain a unique

system not used by any other collections.

Classification of digital objects at first glance seems

unnecessary. Why not just assign an arbitrary number

(e.g., a unique identifier that database software assigns

to each separate catalog record) and be done with it?

Libraries of digital objects have found that, for several

reasons, it is very practical to assign classification to

digital objects just as one would to hard-copy objects.

The main one is that very often one needs to move

around, or to perform the same operation (e.g., create

http://www.oclc.org
http://authorities.loc.gov
http://authorities.loc.gov
http://www.dublincore.org/documents/dces/
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/base-metadata/v2_0698.pdf
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/base-metadata/v2_0698.pdf
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/base-metadata/v2_0698.pdf

Cataloging in Digital Libraries C 311

C

distribution forms) on large numbers of digital objects

in groups of items that are, e.g., the same file type. For

example, the Alexandria Digital Library (ADL), a col-

lection of digital geospatial data, with a catalog that

includes catalog records both for digital and hard-copy

geospatial data (http://webclient.alexandria.ucsb.edu),

always gives a digital geospatial data object (e.g., a scan

of a paper map; a born-digital object) the same classi-

fication number as the hardcopy geospatial data equiv-

alent (e.g., the paper map that has been scanned).

Classification of digital objects allows one file to be

accessible from multiple classification numbers, an

action that few libraries of hardcopy items have ever

been able to afford. For example, a digital map of

California and Nevada may have two classification

numbers (either pointing toward one file, or storing

the same file two separate places), one for California

and one for Nevada. Few libraries of hardcopy items

have financial resources available to buy multiple cop-

ies of an item and store a copy at each applicable

classification number.

Cataloging

A catalog record (whether in hardcopy or in digital

form) provides information on the thematic and phys-

ical nature of an item (whether hard-copy or digital)

being cataloged. Libraries first used hard-copy cata-

logs, generally book-format catalogs, then cards, and

then beginning in the late 1960s the use of databases as

catalogs. This started with in 1969 the Library of Con-

gress’ MARC, MAchine-Readable Catalog format for

the transmission of catalog-card information in digital

form (http://www.loc.gov/marc/). While MARC may

be used as the machine format for bibliographic

records formulated using any set of cataloging rules,

it is most often used for records based on the catalo-

ging rules of the Anglo-American library community,

AACR (Anglo-American Cataloging Rules) in its vari-

ous editions, first issued in 1967. AACR itself is based

on the International Standard Bibliographic Descrip-

tions (ISBDs) as far as content of fields, and field order,

are concerned.

The purpose of ISBDs is to standardize the form

and content – including in what order information

appears – for the bibliographic description of an

object. ISBDs specifically do not include rules for fields

for subject cataloging, added entries for additional

authors, or classification. The idea of ISBDs arose at a

conference of the International Meeting of Catalog-

ing Experts held in 1969, with the first ISBD (for
monographic publications) being issued in 1971.

ISBDs were issued for numerous categories of publicati-

ons (e.g., computer files; cartographic materials; serials;

etc.; for full list, see http://www.ifla.org/VI/3/nd1/isbd-

list.htm). In 2002, work began on a single consolidated

ISBD, to supersede all existing ISBDs. The consolidated

edition (available online at http://www.ifla.org/VII/s13/

pubs/cat-isbd.htm) was published in 2007 (Internation-

al standard bibliographic description (ISBD), 2007).

The same organization that issues ISBDS – the

International Federation of Library Associations

(IFLA) – has been a prime agent in the move toward

an international cataloging standard. In the early

1990s, IFLA’s Study Group on the Functional Require-

ments for Bibliographic Records (FRBR) began work

on its report to recommend basic functionalities of a

catalog and bibliographic-record data requirements.

The Group’s final report was issued in 1998 (Function-

al Requirements for Bibliographic Records (FRBR)).

While FRBR put forward several ideas, the one that

most engaged the interest and discussion of the library

community was the importance of incorporating into

the bibliographic description the concept of the rela-

tionship between the work, the expression, the mani-

festation, and the item (called Group 1 Entities).

A work is a distinct intellectual or artistic creation but

a concept rather than an actual physical object. An

expression is the intellectual or artistic realization of a

work but still not generally an actual physical object.

The manifestation is all copies of a published object

(e.g., all copies of a printed map; all copies of a DVD of

a specific piece of music), and the item is one copy of a

manifestation. For example, all digital versions of one

given map (one could be raster and the other could be

vector; there could be more than one level of resolution

of raster and of vector images), and all hard-copy ver-

sions of the same map (e.g., paper; microfiche; micro-

film) are two expressions’ the basic map itself is the

work and the 1973 edition of all copies of the papermap

is a specific manifestation, with each one of those

printed maps being an item.
Key Applications
Key applications of classification and cataloging:

Classification: Arrangement of digital objects in digital

libraries. See previous section

Cataloging: Creation of metadata for digital objects in

digital libraries

http://webclient.alexandria.ucsb.edu
http://www.loc.gov/marc/
http://www.ifla.org/VI/3/nd1/isbdlist.htm
http://www.ifla.org/VI/3/nd1/isbdlist.htm
http://www.ifla.org/VII/s13/pubs/cat-isbd.htm
http://www.ifla.org/VII/s13/pubs/cat-isbd.htm

312C Cataloging in Digital Libraries
While full-text searching is extremely useful and a

major step forward in the history of information retriev-

al, it does have the following main problems: it may give

the user very large numbers of hits; it is not as efficient

as searching well-constructed text surrogates; and it

does not work for what are primarily non-text materials

(e.g., music; maps; etc.). The reason for creating meta-

data records for digital objects is the same as that for

performing standard cataloging – constructing a surro-

gate for the item so that users may quickly and efficiently

find resources that suit the users’ needs. Metadata is

constructed by non-library entities (e.g., federal govern-

ment agencies) and by libraries. Metadata records in-

clude but are not limited to the information contained

in what the standard library cataloging world terms

‘‘bibliographic records.’’

Metadata records tend to be considerably longer

than catalog records, because they contain far more

and generally more detailed technical information than

a catalog record would. The latter is muchmore likely to

simply include a URL that points to an online version of

that technical information, quite possibly to a metadata

record. The reasons for this are that metadata records

tend to be constructed for very focused, often technically

skilled audiences, and a geographic digital dataset (such

as a geographic information system, more commonly

known as a GIS) is often quite large and complicated,

with many layers of information, and therefore is by

no means as easily browsed – in order to determine

its suitability for use – as is a hard-copy map. For

example, the catalog record for Digital Orthophoto

Quarter Quadrangles (DOQQs; mosaics of rectified aeri-

al photographs) is relatively brief – about one standard

printed page –when comparedwith themetadata record

for DOQQs, which is seven pages. For example, see

http://fisher.lib.virginia.edu/collections/gis/doq/helps/

doqq_meta.html (Fig. 1).

A library generating metadata records has two

major options: load the records into the library’s

ILS (integrated library system) online catalog; or

create what is in effect another ILS, or at the very least

an online catalog for the metadata records. The first

technique generally requires that the records be in

MARC format, since the alternative is that the online-

catalog software must be capable of searching over

multiple catalog-record databases in different formats.

For the second technique, the following is required:

software (UNIX; a database manager; a user interface;

and middleware to connect inquiries on the user inter-

face with the data and return results); hardware;
computer technical staff/programmers (for a digital

library of any size, a minimum of three computer

programmers to deal with adding new data and meta-

data and maintaining and improving the system, in-

cluding the interface, plus one more programmer

to deal with the operating system, disk storage, and

manipulation and maintenance of the directories of

digital material).

An example of this is the ADL (Alexandria Digital

Library) Catalog, http://webclient.alexandria.ucsb.edu.

The ADL webpage (http://www.alexandria.ucsb.edu)

provides an outline as to what kind and how much

work is required to start up, develop, and maintain

such a library; software is free for download, and

general instructions are given as to what work should

be done in order to get the software working.

As previously indicated, there are numerous meta-

data standards. The following are major standards that

digital libraries creating metadata records will probably

need to deal with, at least in the United States: Dublin

Core; XML; METS; and MODS.

Dublin Core

Dublin Core (DC) (http://dublincore.org/) is extremely

heavily used by libraries cataloging digital content. Its

adaptability to any form or type of digital data and its

brevity (15 fields, what libraries term minimal-level cat-

aloging) with no fields required and all fields repeatable,

makes it very flexible. While DC may be used either as

‘‘qualified’’ (each of the 15 elements may be qualified in

some way tomake the information clear, e.g., for Cover-

age, one might state that the geographic area is given in

decimal degrees), the experience in libraries over the

nearly 15 years since DC was made available for use is

that it is strongly advised only qualifiedDCbe used. This

is because unqualified DC results in metadata records

that are so unstructured as to be nearly useless [12]. For

digital libraries needing keep at least one foot solidly in

the traditional library world, there is a DC-to-MARC2

crosswalk at http://www.loc.gov/marc/dccross.html, and

also one the other direction.

XML

XML has achieved primacy as the format of choice

for metadata for digital libraries and is of consider-

able importance to the standard library world, as

evidenced by the Library of Congress having

MARC21 in XML available over the Web at http://www.

loc.gov/standards/marcxml/Sandburg/sandburg.xml.

It was announced in April 2005 that the ISO

http://fisher.lib.virginia.edu/collections/gis/doq/helps/doqq_meta.html
http://fisher.lib.virginia.edu/collections/gis/doq/helps/doqq_meta.html
http://webclient.alexandria.ucsb.edu
http://www.alexandria.ucsb.edu
http://dublincore.org/
http://www.loc.gov/marc/dccross.html
http://www.loc.gov/standards/marcxml/Sandburg/sandburg.xml
http://www.loc.gov/standards/marcxml/Sandburg/sandburg.xml

Cataloging in Digital Libraries. Figure 1. Record from a library online catalog.

Cataloging in Digital Libraries C 313

C

committee for Technical Interoperability – Informa-

tion and Documentation was to vote on a proposal

for a New Work Item concerning an XML schema to

wrap MARC records. ISO 2709 had been used for

many years and has worked well, but the library

community needed a standard exclusively for MARC

records (of which there are over 100 million worldw

ide) in XML. The standard is to be published as ISO
25577 with the short name of MarcXchange; the

temporary Webpage for the standard is http://www.

bs.dk/marcxchange/.
METS and MODS

METS (Metadata Encoding and Transmission Standard)

is a standard for encoding descriptive, administrative,

http://www.bs.dk/marcxchange/
http://www.bs.dk/marcxchange/

314C Cataloging in Digital Libraries
and structural metadata of objects in a digital library

(http://www.loc.gov/standards/mets/).

The ‘‘Metadata Object Description Schema’’

(MODS) is intended both to carry metadata from

existing MARC21 records, and to be used to create

new catalog records. It has a subset of MARC fields,

and – unlike MARC21. It uses language-based tags

rather than numeric tags. It occasionally regroups ele-

ments from the MARC21 bibliographic format (http://

www.loc.gov/standards/mods/). METS and MODS are

both expressed using XML, and are maintained by the

Library of Congress’s Network Development and

MARC Standards Office.

Conclusion

Organizations creating metadata records and arran-

ging digital files are best advised to follow well-

maintained national or international standards. In no

case should organizations just starting out on this work

create their own standards. Instead, use of sturdy stan-

dards – some of which have an extensions feature, to

enable customization of the records to the library

users’ needs – is recommended.

Creating metadata records is relatively easy com-

pared with the difficult and expensive work of setting

up what is in effect an ILS online catalog. Libraries need

to consider this very carefully. If the library cannot

sustain the programming effort required to develop

and then to maintain and add to the catalog, then the

library should not begin the project. If anything, digital

libraries and their catalogs are, at the moment, at least

as expensive and time-consuming to develop and

maintain as are hard-copy libraries.

Cross-references
▶Annotation

▶Audio Metadata

▶Biomedical Data/Content Acquisitions

▶Biomedical Metadata Management and Resource

Discovery

▶Browsing in Digital Libraries

▶Classification by Association Rule Analysis

▶Classification on Streams

▶Clinical Data/Content Acquisition

▶Cross-Modal Information Retrieval

▶Curation

▶Data Warehouse Metadata

▶Digital Libraries

▶Discovery
▶Dublin Core (DC)

▶ Field Based Information Retrieval Models

▶Geographic Information Retrieval

▶ Image Metadata

▶ Indexing Historical Spatio-Temporal Data

▶ Information Retrieval

▶ Information Retrieval Model

▶ ISO/IEC 11179

▶Knowledge Discovery Metamodel

▶Metadata

▶Metadata Interchange Specification(MDIS)

▶Metadata Registry

▶Metadata Repository

▶Metasearch Engines

▶METS

▶Multimedia Metadata

▶Ontologies

▶Ontology

▶ Schema Mapping

▶ Searching Digital Libraries

▶Text Indexing and Retrieval

▶XML

▶XML Metadata Interchange

Recommended Reading
1. Anglo-American Cataloging Rules, American Library Associa-

tion, Chicago, 2005.

2. Borgman C.L. From Gutenberg to the Global Information

Infrastructure: Access to Information in the Networked World.

MIT Press, Cambridge, MA, 2000.

3. Chan L.M. Cataloging and Classification: An Introduction.

Scarecrow Press, Blue Ridge Summit, PA, 2007.

4. IFLA Study Group. Functional Requirements for Bibliographic

Records (FRBR). K.G. Saur, Munchen, 1998, (UBCIM publica-

tions, new series; vol. 19). Available online at: http://www.ifla.

org/VII/s13/frbr/frbr.htm.

5. IFLA Study Group. International Standard Bibliographic

Description (ISBD), (Preliminary consolidated edn.). K.G.

Saur, München, 2007 (IFLA series on bibliographic control;

vol. 31).

6. Kochtanek T.R. Library Information Systems, From Library

Automation to Distributed Information Access Solutions.

Libraries Unlimited, Westport, CT, 2002.

7. Libraries. Encyclopedia Britannica, Micropedia 7:333–334;

Macropedia 22:947–963. Encyclopedia Britannica, Chicago,

2002. Available online at: http://search.eb.com/.

8. Library of Congress. 1969?MARC21Concise Bibliographic, Library

of Congress, Washington, DC. Available online at http://www.loc.

gov/marc/.

9. Linton J. Beyond Schemas, Planning Your XMLModel. O’Reilly,

Sebastopol, CA, 2007.

10. Reitz J.M. Dictionary for Library and Information Science.

Libraries Unlimited, Westport, CT, 2004.

http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/
http://www.ifla.org/VII/s13/frbr/frbr.htm.
http://www.ifla.org/VII/s13/frbr/frbr.htm.
http://search.eb.com/
http://www.loc.gov/marc/
http://www.loc.gov/marc/

Certain (and Possible) Answers C 315

C

11. Svenonius E. The Intellectual Foundation of Information Orga-

nization. MIT Press, Cambridge, MA, 2000.

12. Tennant R. Bitter Harvest: Problems and Suggested Solutions

for OAI-PMH Data and Service Providers. California Digital

Library, Oakland, CA, 2004. Available online at:http://www.

cdlib.org/inside/projects/harvesting/bitter_harvest.html.
CDA

▶Clinical Document Architecture
CDA R1

▶Clinical Document Architecture
CDA R2

▶Clinical Document Architecture
CDP

▶Continuous Data Protection
CDs

▶ Storage Devices
CDS

▶Clinical Decision Support
Cell Complex

▶ Simplicial Complex
Certain (and Possible) Answers

GÖSTA GRAHNE

Concordia University, Montreal, QC, Canada

Synonyms
True answer (Maybe answer); Validity (Satisfiability)
Definition
Let T be a finite theory expressed in a language L, and

f an L-sentence. Then T finitely entails f, in notation

T ⊨ f, if all finite models of T also are models of f. A
theory T is said to be complete in the finite if for each

L-sentence f either T ⊨ f or T ⊨ :f. In particular, if

T is incomplete (not complete in the finite), then there

is an L-sentence f, such that T ⊭ f and T ⊭ :f. It
follows from classical logic that a first order theory is

complete in the finite if and only if all its finite models

are isomorphic. Consider now a theory

T 1 ¼
Rða; bÞ ^ Rða; cÞ;
8x; y : Rðx; yÞ ! ðx; yÞ ¼ ða; bÞ _ ða; cÞ;
a 6¼ b; a 6¼ c; b 6¼ c:

8><
>:

where a, b, and c are constants. This theory is complete,

and clearly for instance T ⊨ R(a, b), T ⊨ R(a, c), and

T ⊭ R(d, c), for all constants d different from a and b.

Consider then the theory

T 2 ¼
Rða; bÞ _ Rða; cÞ;
8x; y : Rðx; yÞ ! ðx; yÞ ¼ ða; bÞ _ ða; cÞ;
a 6¼ b; a 6¼ c; b 6¼ c:

8><
>:

This theory is incomplete, since for instanceT2 ⊭ R(a, b),

and T2 ⊭ :R(a, b). If ‘‘finitely entails’’ is equated with

‘‘certainly holds,’’ it is possible to say that R(a, b) and

R(a, c) certainly hold in T1. Dually, it is possible to say

that R(a, b) possibly holds in T2, since T2 ⊭ :R(a, b),
and similarly that R(a, c) possibly holds in T2.
Key Points
An incomplete database is similar to a logical theory: it

is defined using a finite specification, usually a table T

(relation with nulls and conditions) of some sort, and a

function Rep that associates a set of complete (ordi-

nary, finite) databases Rep(T) with T. Then each in-

stance I 2 Rep(T) represents one isomorphism class

(isomorphism up to renaming of the constants) of the

finite models of the table T regarded as a logical theory.

Depending on the interpretation of facts missing from

T, either the closed world assumption is made [9],

which postulates or axiomatizes (as in the middle

‘‘row’’ in T1 and T2) that any facts not deducible

from T are false, or the open world assumption (omit

the middle rows), in which there are certain and possi-

ble facts, but no false ones. There is actually a spectrum

http://www.cdlib.org/inside/projects/harvesting/bitter_harvest.html
http://www.cdlib.org/inside/projects/harvesting/bitter_harvest.html

316C Certain (and Possible) Answers
of closed world assumptions, ranging up to semantics

best axiomatized in third order logic [4].

Having settled on a representationT, and an interpre-

tation Rep, the certain answer to a queryQ on an incom-

plete database T, is now defined as
T

I2Rep(T)Q(I),
sometimes also denoted

T
Q(Rep(T)). In database

parlance the certain answer consists of those facts that

are true in every possible database instance I that T

represents. Likewise, the possible answer to a query

Q on an incomplete database T, consists of those

facts which are true in some possible database, i.e.,S
I2Rep(T)Q(I). Needless to say, the possible answerS
Q(Rep(T)) is interesting only under a closed world

assumption, since otherwise every fact is possible.

These definitions are clear and crisp, but unfortu-

nately it doesn’t mean that they always have tractable

computational properties. Consider the membership

problem for the set

CERTðQÞ ¼ fðt ;TÞ : t 2
\

QðRepðTÞÞg:

If T actually is a complete instance I, it is well known

that CERT(Q) has polynomial time complexity, for any

first order (relational algebra) or datalog query Q.

Likewise, the set

POSSðQÞ ¼ fðt ;TÞ : t 2
[

QðRepðTÞÞ:

has PTIME complexity for first order and datalog

queries Q, and tables T that actually are complete

databases.

A table Twith unmarked nulls is a classical instance

containing existentially quantified variables (nulls),

such that each existential quantifier has only one vari-

able in its scope. This means that each occurrence of a

null can be independently substituted by a constant for

obtaining one possible database in Rep(T).

If only simple incomplete databases with un-

marked nulls are allowed, only existential first order

queries Q need to be admitted, or alternatively alge-

braic expressions with operators from {p, s, [, ⋈},

in order for CERT(Q) to become coNP-complete, and

POSS(Q) to become NP-complete [2]. The use of

inequalities 6¼ or disjunctions ∨ in Q is essential. If

the use of inequalities and disjunctions is denied, CERT

(Q) and POSS(Q) remain in PTIME. If one admits

arbitrary first order or full relational queries Q, along

with an open world assumption, CERT(Q) and POSS(Q)

become undecidable. This follows from validity and

satisfiability of a variant of first order logic known to
be undecidable [3]. (Note that under the open world

assumption POSS(Q) equals all possible databases, as-

suming POSS(Q) 6¼ ;. The problem then becomes to

decide whether POSS(Q) is non-empty or not.)

On the other hand, if the representation mecha-

nism allowed for T is more powerful that the simple

incomplete databases above, CERT(Q) and POSS(Q)

again become coNP and NP complete, respectively,

already with Q being the identity query. For this, the

conditional tables of [6] are needed. As observed in [5],

conditional tables can be obtained as a closure of

simple incomplete databases by requiring that the

exact result {q(I) : I 2 Rep(T)} of any relational algebra

query on a any table T is representable by conditional

table. In other words, for each T conditional table and

Q relational algebra query, there exists a conditional

table U, such that Rep(U) = Q(Rep(T)).

Another way of representing incomplete data-

bases, is to consider an information integration scenar-

io, where the basic facts are stored in views of a

virtual global schema. For instance, in the integration

scenario

T 3 ¼
V ðaÞ;
8x; y : Rðx; yÞ ! V ðxÞ;
8x : V ðxÞ ! x ¼ a;
8x; y : Rðx; yÞ ! x ¼ a

8>><
>>:

gives (closed world) Rep(T3) = {I : VI = p1(R
I) ={(a)}}.

(RI means the value (interpretation) of predicate sym-

bol R in instance/model I. The meaning of VI is simi-

lar.) Open world (omit in T3 the third and fourth rows)

Rep(T3) would be defined as {I : VI � {(a)}, p1(R
I) �

{(a)}. If T is allowed to use conjunctive queries (such as

the second row of T3) to express the views V in terms of

the global relations R, then CERT(Q) is in PTIME for

existential first order and datalog queries under the

open world assumption, and coNP complete under

the closed world assumption [1]. The latter is due to

the negation implicit in the closed world assumption.

If one allows inequalities 6¼ in the query, CERT(Q) is

coNP complete also under the open world assumption.

Undecidability of CERT(Q) is achieved by allowing ne-

gation in the query or the view definitions, or, under

the open world assumption by allowing view defini-

tions in (recursive) datalog.

Finally, one can see the data exchange problem [7,8]

as a variation of the integration problem. The data

exchange problem consists of importing the data

from a source database Rs to a target database Rt,

Change Detection on Streams C 317

C

using data dependencies (implicational sentences)

to express the translation. For example, a (closed

world) exchange scenario could be

T 4 ¼ RsðaÞ; 8x : ½RsðxÞ $ 9y : Rtðx; yÞ�:f
The base facts are in a source database Rs, and the user

query is expressed against the target database Rt. As T4

obviously is incomplete, the certain answer of Q on T4

is defined as \Q(Rep(T4), and the possible answer as

[Q(Rep(T4). It is perhaps no big surprise that essen-

tially the same complexity landscape for CERT(Q) and

POSS(Q) as in the previous table- and integration-

scenarios emerges: the boundaries between undecid-

ability, intractability, and polynomial time depend on

similar restrictions on the use of negation, of inequal-

ities or unions in the exchange mappings, and on the

open or closed world assumptions.
Cross-references
▶Conditional Tables

▶ Incomplete Information

▶Naive Tables

▶Null Values
Recommended Reading
1. Abiteboul S. and Duschka O.M. Complexity of answering

queries using materialized views. In Proc. 17th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1998, pp. 254–263.

2. Abiteboul S., Kanellakis P.C., and Grahne G. On the representa-

tion and querying of sets of possible worlds. Theor. Comput.

Sci., 78(1):158–187, 1991.

3. Di Paola R.A. The recursive unsolvability of the decision prob-

lem for the class of definite formulas. J. ACM, 16(2):324–327,

1969.

4. Eiter T., Gottlob G., Gurevich Y. Curb your theory! a circum-

spective approach for inclusive interpretation of disjunctive

information. In Proc. 13th Int. Joint Conf. on AI, 1993,

pp. 634–639.

5. Green T.J. and Tannen V. Models for incomplete and pro-

babilistic information. In Proc. EDBT 2006 workshops LNCS

Vol. 4251, 2006.

6. Imielinski T. and Lipski W. Incomplete information in relational

databases. J. ACM, 31(4):761–791, 1984.

7. Kolaitis P.G. Schema mappings, data exchange, and metadata

management. In Proc. 24th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2005, pp. 61–75.

8. Libkin L. Data exchange and incomplete information. In Proc.

25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2006, pp. 60–69.

9. Reiter R. On closed world data bases. In Logic and Data Bases,

1977, pp. 55–76.
Chandra and Harel Complete Query
Languages

▶Complete query languages
Change Detection and Explanation
on Streams

▶Change Detection on Streams
Change Detection on Streams

DANIEL KIFER

Yahoo! Research, Santa Clara, CA, USA

Synonyms
Change detection and explanation on streams

Definition
A data stream is a (potentially infinite) sequence of

data items x1,x2,.... As opposed to traditional data

analysis, it is not assumed that the data items are

generated independently from the same probability

distribution. Thus change detection is an important

part of data stream mining. It consists of two tasks:

determining when there is a change in the character-

istics of the data stream (preferably as quickly as possi-

ble) and explaining what is the nature of the change.

The nature of the data stream model means that it

may be infeasible to store all of the data or to make

several passes over it. For this reason, change detection

algorithms should satisfy the following desiderata: the

memory requirements should be constant or increase

logarithmically, and the algorithm should require only

one pass over the data.

Historical Background
There has been a lot of work on detecting change in

time series data after all of the data has been collected.

Change point analysis [5] is a statistical field devoted

to detecting the point in time where the distribution of

the data has changed. The description of the change is

often concerned with how the parameters of the dis-

tributions (such as the mean) have changed. Scan

statistics [11] can be used to detect and describe

changes (not just along the time dimension) by

318C Change Detection on Streams
identifying regions where the probability mass has

changed the most. For examples of offline analysis of

change in terms of data mining models see [6] for

itemset mining, [10] for itemset mining and decision

trees, and [14] for burst detection. Offline algorithms

for describing change include [1] for hierarchical nu-

merical data and [7,8] for semi-structured data.

The offline methods are useful for data analysis,

but as data acquisition becomes easier and easier, the

data stream model becomes more and more relevant.

The assumptions behind this model are that there is

so much data that it cannot all be stored on disk

(let alone kept in memory) and that the data arrives at

such a rate that expensive online computations are

impractical. Often results are expected in real-time –

for example, notification of change should occur as

soon as possible. The data stream model is discussed in

detail in [2].

In the data streammodel, one can predefine a certain

set of stochastic processes. One of these processes is

initially active and the goal is to determine when a

different process in that set becomes active [3]. The

description of the change is then the identity of the

new process. Alternative approaches [9,13] avoid

making distributional assumptions by using ideas from

nonparametric statistics. In these approaches the main

idea is to divide the domain of the data into (possibly

overlapping) regions, estimate the probability of the

regions, and then determine whether the changes in

probability in any of the regions are statistically signifi-

cant. Alternate approaches for handling change include

testing if the data are exchangeable (i.e., any permutation

of the data is equally likely) [15] and developing data

mining algorithms (such as decision tree construction)

that adapt to change [12].

Foundations
Let x1,x2,..., be a potentially infinite sequence of data

points. To detect changes in the data stream, one first

has to determine a plausible framework that describes

how the data can be generated. In the simplest case,

data are generated from one of two probability distri-

butions S1 and S2 (for example a Gaussian with mean

0 and variance 1, and a Gaussian with mean 10 and

variance 1). Initially, the data points are generated

independently from S1 and after some time the data

are generated independently from S2. The celebrated

CUSUM algorithm by Page [4] can be used to detect

that a change from S1 to S2 occurred by comparing the
likelihoods that parts of the data were generated by S1
or S2. Suppose S1 has density f1 and S2 has density f2,

and let d > 0 be a threshold.

A user of the change-detection system is interested

in the first time k where.
Pnow
i¼k

log f2 xið Þ=f1 xið ÞÞ > dð .

When this happens, the system signals that a change

has occurred and can return k as a plausible estimate of

the change point. This test can be done in an online

fashion by defining T0 = 0 and Tk = max(Tk�1 + log

(f2(xk) ∕ f1(xk)),0) and signaling a change if Tnow > d.
Typically S1 is chosen based on an initial sample of the

data stream and S2 is then chosen to represent the

smallest change whose detection is desired. For exam-

ple, suppose that S1 is chosen to be a Gaussian with

mean 0 and variance 1, and suppose that for the

current application it is desirable to detect any change

in mean greater than 10. Then a natural choice for S2 is

a Gaussian with mean 10 and variance 1.

This framework has been generalized by Bansal

and Papantoni-Kazakos [3] to the case where S1 and

S2 are stochastic processes that need not generate each

point independently. Additional generalizations of

the CUSUM algorithm, including the case of multiple

data generating distributions, are discussed in [4].

The framework of the CUSUM algorithm is an

example of a parametric framework: the set of possible

data-generating distributions has been prespecified and

elements in that set can be identified using a small

number of parameters. Parametric approaches are

powerful in cases where they can accurately model the

data. In cases where the data is not well modeled by a

parametric framework, performancemay deteriorate in

terms of more false change reports and/or fewer detec-

tion of changes.

Kifer, Ben-David, and Gehrke [13] showed how

to avoid problems with parametric approaches by

using a nonparametric framework. In this framework

the data points x1,x2,..., are k-dimensional vectors of

real numbers. Point x1 is generated by some (arbitrary)

probability distribution F1, x2 is generated by F2 (inde-

pendently of x1), x3 is generated by probability

distribution F3 (independently of x1 and x2), etc.

A change is defined as a change in the data-generating

distribution; if the first change occurs at time n1
then F1 ¼ F2 ¼ ::: ¼ Fn1�1 6¼ Fn1 ; if the second change

occurs at time n2 then Fn1 ¼ Fn1þ1 ¼ ::: ¼ Fn2�1 6¼ Fn2 ,

etc. This framework for detecting change consists of

three parts: a collection of regions of interests, a meth-

od for estimating probabilities, and a statistical test.

Change Detection on Streams C 319

C

Regions of Interest

A collection of regions of interest serves two purposes:

to restrict attention to changes that are considered

meaningful, and to provide a means for describing

the change.

Ideally a change is said to have occurred whenever

the data-generating distribution changes. However,

for many practical applications not all changes are

meaningful. For example, consider the case where F1
is a probability distribution that assigns probability 1

to the set of real numbers between 0 and 1 whose

seventeenth significant digit is odd and furthermore

suppose that F1 is uniform over this set. From time 1

up to n � 1 the data are generated independently from

the distribution F1. At time n a change occurs and

from that point the data are generated independently

from the distribution Fn defined as follows: Fn assigns

probability 1 to the set of real numbers between 0 and 1

whose seventeenth significant digit is even and is

uniform over this set. Letting f1 be the probability

density function for F1 and fn be the probability density

function for Fn it can be seen that f1 and fn are very

different according to some common similarity mea-

sures. Indeed, the L1 distance between f1 and fn (i.e.,R 1
0
f1 xð Þ � fn xð Þj j dx), is as large as possible. However,

in many applications it is of no practical consequence

whether the true distribution is F1 or Fn. This is

because one may be interested only in questions such

as ‘‘what is the probability that the next point is larger

than 0.75’’ or ‘‘what is the probability that the next

point is within the safety range of 0.14–0.95.’’ For these

types of questions one would only be interested in

the probabilities of various intervals, so instead of

receiving notification of arbitrary types of change,

one would be happy to know only when some interval

has become more or less probable. In this case, the

intervals are said to be the regions of interest. In general,

if the domain of each data element is D then the set

of regions of interest is a collection of subsets of D.
Note that regions of interest can be overlapping, as

in the case of intervals, or they can form a partition

of the domain. Dasu et al. [9] also proposed to

partition the domain based on an initial sample of

the data.

Once the regions of interest have been specified, the

goal is to report a change whenever the system detects

that the probability of a region has changed. The re-

gion (or regions) with the largest change in probability

are then given as the description of the change.
Estimating Probabilities

Since the true distributions Fi are unknown, it is neces-

sary to estimate them. A window of size m is a set of m

consecutive data points. The initial distribution is esti-

mated using a window that contains the first m data

points and the most recent distribution is estimated

using a window containing the most recent m data

points (in practice, several change detection algorithms

can be run in parallel, each using a different value

of m). In each window Wi, the probability of a partic-

ular region of interest R can be estimated by
jWi\Rj
jWi j , the

fraction of points in the window that occur in the

region. Alternatively, if the regions of interest form a

partition of the domain into k regions, then a Bayesian-

style correction
jWi\Rjþa
jWi jþak can also be used [9].

Statistical Testing

In this setting, a statistic f is a function that assigns a

number to a pair of windows (W1,W2). The larger this

number is, the more likely it is that the points in one

window were generated from one distribution and the

points in the other window were generated from a

different distribution. A statistical test is a statistic f

and a real number t that serves as a threshold; when

f(W1,W2) � t then one can conclude that the points in

W1 were generated from a different distribution than

the points in W2.

For each i � 1 let Wi be the window that contains

the points xi,...,xi+m�1, so that W1 is the set of the first

m data points. To use a statistical test f with threshold

t, one computes the values f (W1,Wm), f (W1,Wm+2),

f (W1,Wm+3),..., and signals a change the first time i

such that f (W1,Wi) � t. At this time, the current

window Wi is considered to be a set of m points

generated from the new distribution. The distribution

may change again in the future, so one proceeds by

computing the values of f(Wi,Wi+m), f(Wi,Wi+m+1),

f(Wi+m+2), etc., until another change is detected.

Note that in order for it to be useful, a statistic

should be easy to compute since a new value must

be computed every time a new data point arrives.

The value of the threshold t should also be carefully

chosen to avoid incorrect detections of change. A false

positive is said to have occurred if the algorithm reports

a change when the underlying distribution has not

changed. Since a stream is a potentially unbounded

source of data, false positives will occur and so instead

of bounding the probability of a false positive, the goal

is to choose a value of t that bounds the expected rate of

320C Change Detection on Streams
false positives. Several statistics for detecting change

and a method for choosing t are presented next.

Let A be the collection of regions of interest. LetW

and W 0 be two windows and let P and P 0 be the

corresponding probability estimates: for any A 2 A, P
(A) is the estimated probability of region A based on

window W and P 0(A) is the estimated probability of A

based on window W 0. The following statistics can be

used in the change detection framework [13]:

dAðW ;W 0Þ ¼ sup
A2A
jPðAÞ � P0ðAÞj

fAðW ;W 0Þ ¼ sup
A2A

jPðAÞ � P0ðAÞjffi
min

PðAÞþP0ðAÞ
2

; 1� PðAÞþP0ðAÞ
2

n or

XAðW ;W 0Þ ¼ sup
A2A

jPðAÞ � P0ðAÞjffi
PðAÞþP0ðAÞ

2
1� PðAÞþP0ðAÞ

2

� �r

Note that when A is the set of intervals of the form

(�1, b) then dA is also known as the Kolmogorov-

Smirnov statistic. For any one of these statistics, the

region A 2 A which maximizes the statistic is the

region where the change in observed probability is

the most statistically significant; this region (or the ‘

most significant regions, depending on user prefer-

ences) and its change in probability is therefore the

description of the change.

To use these statistics, one must determine the value

of the threshold t and the corresponding expected rate

of false positives. To do this one can take advantage of

the fact that for one-dimensional data, the worst-case

behavior of the dA, fA, and XA statistics occur when

the data are generated by continuous distributions

and that the statistics behave in the same way for

all continuous distributions [13]. This means that

one can perform an offline computationally-intensive

simulation to determine t and then use this value for

any one-dimensional stream afterwards.

To perform the simulation, a user must specify a

test statistic f and four parameters: a window size m, a

real number p between 0 and 1
2
, a large integer q > =

2m (e.g., 1 million), and the number of repetitions B.

For each repetition i, generate q points independen-

tly from any continuous distribution (e.g., from a

Gaussian distribution with mean 0 and variance 1).

Compute the value ti � maxm	j	q�m+1f (W1,Wj) (this

represents the largest value of the statistic f that would

have encountered if this were the real data). After B
repetitions, choose a value for the threshold t such that
t is greater than (1 � p)B of the values t1,...,tB. This
value of t guarantees that the probability of a false

positive in the first q points is approximately p.

To compute the expected rate of false positives

corresponding to t, one first notes that false reports

of change should occur in pairs for the following

reason. Once a false positive has occurred, one has a

window with points that are considered anomalous

(since they caused a change to be reported); as new

data points arrive, one compares the m most recent

points (which are still generated from the original

distribution) with this anomalous window using the

chosen test statistic and therefore a second report

of change should soon occur. Thus one can upper

bound the expected number H of false positives in

the first q points using the following probability distri-

bution: P(H = 2) = p, P(H = 4) = p2, etc., and

PðH ¼ 0Þ ¼ 1�2p
1�p . The expected value is 2p

ð1�pÞ2 and

one can use this as an upper bound on the number of

false positives in the first q points. One can approxi-

mate the expected number of errors in the next q

points also by 2p

ð1�pÞ2 so that the expected rate of false

positives is approximated by 2p

qð1�pÞ2 .
When the regions of interest form a partition of

the domain into k regions, other statistics, such as the

KL-distance can be used [9]:

KLAðW ;W 0Þ ¼
X
A2A

PðAÞ log PðAÞ
P0ðAÞ

where the probabilities P(A) and P 0(A) are estimated

using the Bayesian correction (i.e., PðAÞ ¼ jW\AjþajW jþak).

Dasu et al. propose using the KL-distance with the

following scheme (which uses a user-defined parame-

ter g): initially collect m data points for the window

W1 and use these points to create the regions of inte-

rest which partition the (possibly high-dimensional)

domain; then compute KLAðW 1;WmÞ;KLAðW 1;

Wmþ1Þ;KLAðW 1;Wmþ2Þ, etc., and report a change

whenever ng consecutive values of the statistic exceed

a threshold t. The value of t depends on the points

in W1 and must be recomputed every time a change is

detected. As before, t is estimated via simulation.

To determine the value of t, choose a parameter

p (0 < p < 1∕2) and number of repetitions B. For each

repetition i, use the probability distribution P esti-

mated from W1 to generate two windows V1 and V2

of m points each. Define ti to be KLAðV 1;V 2Þ. After B

Channel-Based Publish/Subscribe C 321

C

repetitions, choose t so that it is greater than (1 � p)B

of the t1,...,tB.

Key Applications
Data mining, network monitoring.

Future Directions
Key open problems include efficiently detecting

change in high-dimensional spaces (see also [9]) and

detecting change in streams where data points are not

generated independently.

Cross-references
▶ Stream Data Management

▶ Stream Mining
Recommended Reading
1. Agarwal D., Barman D., Gunopulos D., Korn F., Srivastava D.,

and Young N. Efficient and effective explanation of change

in hierarchical summaries. In Proc. 13th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2007,

pp. 6–15.

2. Babcock B., Babu S., Datar M., Motwani R., and Wisdom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 1–16.

3. Bansal R.K. and Papantoni-Kazakos P. An algorithm for

detecting a change in a stochastic process. IEEE Trans. Inf.

Theor., 32(2):227–235, 1986.

4. Basseville M. and Nikiforov I.V. Detection of Abrupt

Changes: Theory and Application. Prentice-Hall, Englewood

Cliffs, NJ, 1993.

5. Carlstein E., Müller H.-G., and Siegmund D. (eds.) Change-

point problems. Institute of Mathematical Statistics, Hayward,

CA, USA, 1994.

6. Chahrabarti S., Sarawagi S., and Dom B. Mining surprising

patterns using temporal description length. In Proc. 24th Int.

Conf. on Very Large Data Bases, 1998, pp. 606–617.

7. Chawathe S.S., Abiteboul S., and Widom J. Representing

and querying changes in semi-structured data. In Proc. 14th

Int. Conf. on Data Engineering, 1998, pp. 4–13.

8. Chawathe S.S. and Garcia-Molina H. Meaningful change

detection in structured data. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1997, pp. 26–37.

9. Dasu T., Krishnan S., Venkatasubramanian S., and Yi K.

An information-theoretic approach to detecting changes in

multi-dimensional data streams. In Proc. 38th Symp. on the

Interface of Statistics, Computing Science, and Applications,

2006.

10. Ganti V., Gehrke J., and Ramakrishnan R. Mining data streams

under block evolution. SIGKDD Explorations, 3(2):1–10, 2002.

11. Glaz J. and Balakrishnan N. (eds.) Scan Statistics and Applica-

tions. Birkhäuser, Boston, USA, 1999.
12. Hulten G., Spencer L., and Domingos P. Mining time-changing

data streams. In Proc. 7th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2001, pp. 97–106.

13. Kifer D., Ben-David S., and Gehrke J. Detecting change in data

streams. In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 180–191.

14. Kleinberg J.M. Bursty and hierarchical structure in streams.

In Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2002, pp. 91–101.

15. Vovk V., Nouretdinov I., and Gammerman A. Testing exchange-

ability on-line. In Proc. 20th Int. Conf. on Machine Learning,

2003, pp. 768–775.
Channel-Based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Synonyms
Event channel; Event service

Definition
Channel-based publish/subscribe is a communication

abstraction that supports data dissemination among

many sources and many sinks. It is an instance of the

more general publish/subscribe concept. The commu-

nication channel mediates between publishing data

sources and subscribing data sinks and decouples

their interaction.

Key Points
Publishing data sources submit messages to the channel

and subscribing data sinks listen to the channel. All

messages published to the channel are received by all

subscribers listening on the channel. The channel broad-

casts a publication message to all listening subscribers.

The channel decouples the interaction among pub-

lishing data sources and subscribing data sinks. The

same decoupling characteristics as discussed under the

general publish/subscribe concept apply here as well.

Realizations of this model found in practice vary in

the exact decoupling offered. To properly qualify as

publish/subscribe, at least the anonymous communi-

cation style must exist. That is publishing clients must

not be aware of who the subscribing clients are and how

many subscribing clients exist, and vice versa. Thus,

channel-based publish/subscribe enables the decoupled

interaction of n sources with m sinks for n, m � 1.

322C Channel-Based Publish/Subscribe
Channel-based publish/subscribe systems often

allow the application developer to create multiple log-

ical channels, where each channel can be configured to

offer different qualities-of-service to an application.

Furthermore, a channel can be dedicated to the dissemi-

nation of messages pertaining to a specific subject or

type. The channel-based publish/subscribe model does

not support message filtering, except through the use of

various channels to partition the publication space. It is

the clients’ responsibility to select the right channel for

the dissemination of messages, which are sent to all

listeners on the channel. This enables a limited form of

filtering by constraining messages to be disseminated on

one channel to a given message type. Finally, channel-

based publish/subscribe is often coupled with client-side

filtering, where messages are still broadcast throughout

the channel, but filtered upon arrival at the data sink

before passing to the application. More fine-grained

filtering functionalities are provided by the other pub-

lish/subscribe models, such as the topic-based model

and the content-based model.

In channel-based publish/subscribe, the publica-

tion data model is defined by the type of message the

channel-based communication abstraction supports.

This is often closely tied to the programming language

or the library that implements the model.

Similarly, the subscription language model is

defined by the programming language or library that

allows the application developer to select channels

to listen to, unless special provisions for subscriber-

side filtering are offered. If supported, subscriber-side

filtering can be arbitrarily complex, even selecting

messages based on their content, as offered by the

content-based publish/subscribe model.

Matching in the sense of evaluating a publication

message against a set of subscriptions, as is common in

the other publish/subscribe instantiations, does not

occur in channel-based publish/subscribe.

Channel-based publish/subscribe systems are often

coupled with different client interaction styles. These

are the push-style and the pull-style. In the push-style,

data sources initiate the transfer of messages to the

channel, which delivers the messages to all listening

data sinks. In the pull-style, data sinks initiate the

message transfer by requesting messages from the

channel, which requests any available messages from

all connected data sources. Both interaction styles can

also be combined. That is on one channel some clients

can connect to the channel through the push-style,

while others connect via the pull-style.
Channel-based publish/subscribe systems are dis-

tinguished by the qualities-of-service the channel offers

to its clients, such as various degrees of reliability,

persistence, real-time constraints, and message delivery

guarantees. Channel-based publish/subscribe relates

to topic-based publish/subscribe in that publishing a

message to a channel is similar to associating a message

with a topic, which could be the name or identity of the

channel. However, in topic-based publish/subscribe

this association is reflected in the message itself, while

in channel-based publish/subscribe the association is

indirect, reflected by selecting a channel, not part of

the message. Also, topics can go far beyond channel

identities, as discussed under the topic-based publish/

subscribe concept. Examples that follow the channel-

based publish/subscribe model are the CORBA Event

Service [2], IP multicast [?], Usenet newsgroups [?],

mailing lists, and group communication [?]. Elements

of channel-based publish/subscribe can also be found in

the Java Messaging Service [1], the OMG Data Dissemi-

nation Service [3], and other messaging middleware.

However, these approaches are not directly following

the channel-based model as described above; rather

these approaches are enriched with elements of message

queuing, topic-based publish/subscribe, and content-

based publish/subscribe.

There are many applications of channel-based

publish/subscribe. Examples include change notifica-

tion, update propagation, information dissemination,

newsgroups, email lists, and system management.

Channel-based publish/subscribe serves well, if one

or more entities have to communicate date to an

anonymous group of receivers that may change over

time, without the need of filtering messages within

the channel.

In the literature the term channel-based publish/

subscribe is not used uniformly. Abstractions that

exhibit the above described functionality are also

often referred to as event services, event channels,

and simply channels. Messages disseminated to listen-

ers are also often referred to as events. Publishing data

sources are often referred to as publishers, producers

or suppliers, and subscribing data sinks are often

referred to as subscribers, consumers or listeners.
Cross-references
▶Content-Based Publish/Subscribe

▶ Publish/Subscribe

▶Topic-Based Publish/Subscribe

Chase C 323

C

Recommended Reading
1. Hapner M., Burridge R., and Sharma R. Java Message Service.

Sun Microsystems, version 1.0.2 edition, Nov 9, 1999.

2. OMG. Event Service Specification, version 1.2, formal/04–10–02

edition, October 2004.

3. OMG. Data Distribution Service for Real-time Systems, version

1.2, formal/07–01–01 edition, January 2007.
Chart

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Chart; Map; Diagram; Information graphic; Graph

Definition
A chart is an instrument to consolidate and display

information.

The term is applied to virtually any graphic that

displays information, be it a map used for navigation, a

plan for military operations, a musical arrangement,

barometric pressure, genealogical data, and even lists

of tunes that are most popular at a given time.

Definitions of specialized charts typically include

the graphical method on which the chart is based (e.g.,

bar chart) and or its application area (e.g., CPM chart)

but it does not specify design principles. Tufte [2]

introduces the notion of ‘‘chartjunk’’ and defines it to

be that part of the chart which functions only as

decoration, all of which is considered to redundant

data ink.

Sometimes charts are reduced to refer to maps and

diagrams, excluding graphs and tables.

Key Points
Because charts are used for different purposes there exist

almost as many different types of charts as there are

applications. Some maps, however, are more general in

their use and therefore assigned to one of the following

four categories: Graphs, Maps, Diagrams, and Tables.

Each of these categories is broken down further into

subcategories. In the category Diagrams, one therefore

finds pie charts as well as flow charts or organization

charts. A detailed categorization can be found in [1].

Charts are not only used to visualize data. They

serve as a useful tool for many tasks where information

is the main ingredient such as planning, presentation,

analysis, monitoring.
Cross-references
▶Data Visualization

▶Diagram

▶Graph

▶Map

▶Table

▶Thematic Map

Recommended Reading
1. Harris R.L. Information Graphics: A Comprehensive

Illustrated Reference, Oxford University Press, New York/

Oxford, 1999.

2. Tufte E.R. The Visual Display of Quantitative Information.

Graphics Press, Cheshire, CT, 1983.
Chase

ALIN DEUTSCH
1, ALAN NASH

2

1University of California-San Diego, La Jolla, CA, USA
2Aleph One LLC, La Jolla, CA, USA

Definition
The chase is a procedure that takes as input a set S
of constraints and an instance I. The chase does not

always terminate, but if it does it produces as output

an instance U with the following properties:

1. U ⊨ S; that is, U satisfies S.
2. I ! U; that is, there is a homomorphism from I

to U.

3. For every instance J (finite or infinite), if J ⊨ S and

I! J, then U! J.

In [7], an instance that satisfies (1) and (2) above is

called a model of S and I and an instance that satisfies

(3) above is called strongly universal.

In summary, the chase is a procedure which –

whenever it terminates – yields a strongly-universal

model.

Comments

1. The set S of constraints is usually a set of

tuple-generating dependencies (tgds) and equality-

generating dependencies (egds) [5], or, equivalently,

embedded dependencies [5,10]. However, the chase

has been extended to wider classes of constraints and

to universality under functions other than homo-

morphisms [6,7,9]. In this case, the chase often pro-

duces a strongly-universal model set (see below),

instead of a single model.

324C Chase
2. It was noted in [7] that in database applications,

weak universality (condition 3 above restricted to

finite instances) would suffice. Nevertheless, the

chase gives strong universality.
Historical Background
The term ‘‘chase’’ was coined in [14], where it was

used to test the logical implication of dependencies

(i.e., whether all databases satisfying a set S of depen-

dencies must also satisfy a given dependency s). The
implication problem was one of the key concerns of

dependency theory, with applications to automatic

schema design. The chase was defined in [14] for the

classes of functional, join and multivalued dependen-

cies. Related chase formulations for various kinds of

dependencies were introduced in [15,17]. The work [5]

unified the treatment of the implication problem

for various dependency classes by introducing and

defining the chase for tuple-generating and equality-

generating dependencies (sufficiently expressive to

capture all prior dependencies).

Ancestors of the chase (introduced as unnamed

algorithms) appear in [2–4]. [4] introduces tableaux,

a pattern-based representation for relational queries,

and shows how to check the equivalence of tableau

queries in the presence of functional dependencies,

with applications to query optimization. To this end,

the tableaux are modified using an algorithm that

coincides with the chase with functional dependencies.

The same algorithm is used in [3] for minimization

of tableaux under functional dependencies. This algo-

rithm is extended in [2] to include also multivalued

dependencies, for the purpose of checking whether

the join of several relations is lossless (i.e., the origi-

nal relations can be retrieved as projections of the

join result).

The chase was extended to include disjunction and

inequality in [9], and to arbitrary 8∃-sentences in [6].

Independently, [13] extended the chase to a parti-

cular case of disjunctive dependencies incorporating

disjunctions of equalities between variables and con-

stants (see also [12]). There are also extensions of

the chase to deal with more complex data models

beyond relational. The chase (and the language of

embedded dependencies) is extended in [16] to work

over complex values and dictionaries. For an excel-

lent survey of the history of the chase prior to 1995,

consult [1].
Foundations
A tuple-generating dependency (tgd) is a constraint s
of the form

8�x; �y ðað�x; �yÞ ! 9�zbð�x;�zÞÞ
where a and b are conjunctions of relational atoms.

Furthermore, every variable in �x appears in both a
and b. The 8�x; �y prefix of universal quantifiers is usu-

ally omitted. If �z is empty, then s is full.

An equality-generating dependency (egd) is a con-

straint f of the form

8x1; x2; �y ðaðx1; x2; �yÞ ! x1 ¼ x2Þ
where a is a conjunction of relational atoms.

The chase is used on instances whose active

domain consists of constants and labeled nulls. A

homomorphism from A to B is denoted A ! B. It

is a mapping h on the constants and nulls in A that

(i) preserves constants (i.e., h(c) = c for every constant

c) and preserves relationships (i.e., for every tuple

R(x1,...,xn) 2 A, that is R(h(x1),...,h(xn)) 2 B). Two

instances A and B are homomorphically equivalent if

A! B and B! A.

The chase is a natural procedure for building strong

universal models. Indeed, it turns out that checking

for strong universality is undecidable as shown in [7]).

In contrast, checking whether an instance is a model

can be done efficiently. Therefore, it is natural to define

any procedure for constructing strong universal mod-

els by steps which always preserve strong universality

while attempting to obtain a model and then to

check whether a model was indeed obtained. This is

precisely what the chase does.

A tgd s 2 S fails (or applies) on instance A and

tuple �a if there is tuple �b in A such that the premise a
of s satisfies A ⊨ a(�a, �b), yet there is no tuple �c in A

such that the conclusion b of s satisfies A ⊨ b(�a, �c).
Assume that the instance A0 is obtained by adding to A

the tuples in b(�a, �n) where �n is a tuple of new

nulls. Then A0 is the result of firing s on A, �a. Notice

that A
 A0 and that s does not fail on A0, �a. It is easy to
verify that if A is strongly universal for S and I, then

so is A0 (towards this, it is essential that all the nulls

in �n be new and distinct).

An egd s 2 S fails (or applies) on instance A

and values a1, a2 if there is tuple �b in A such that

the premise a of s satisfies A ⊨ a(a1, a2, �b), yet a1 6¼
a2. If a2 is a null a2 is replaced everywhere in Awith a1

Chase C 325

C

to obtain A0, then say that A0 is the result of firing s on

A, a1, a2. Notice that A! A0 and that s does not fail on

A0, a1, a1. It is easy to verify that ifA is strongly universal

for S and I, then so is A0. If a2 is a constant, but a1 is

null, then it is possible to replace a1 everywhere in A

with a2 instead. However, if both a1 and a2 are con-

stants, then it is not possible to satisfy s and preserve

strong universality and the chase fails.

The standard chase procedure proceeds as follows.

1. Set A0 = I.

2. Repeat the following:

a. If An is a model of S and I, stop and return An.

b. Otherwise, there must be either
i. a tgd s and �a such that s fails on A, �a, or

ii. an egd s0 and a1, a2 such that s0 fails on A,

a1, a2.

Obtain An+1 by picking one such s and �a and

firing s on An, �a, or by picking one such s0 and a1,

a2 and firing s0 on A, a1, a2. (This is one chase step

of the standard chase.)
:

Notice that, at every chase step, there may be a

choice of s and �a, respectively s0 and a1, a2. How

these choices are picked is often left unspecified and

in that case the standard chase is non-deterministic.

The chase terminates if An is a model of S and I for

some n.

The chase of instance I with tgds S produces a

sequence of instances I = A0
 A1
 A2
 ... such

that every Ai is strongly universal for S and I. The chase

with tgds and egds produces a sequence I = A0! A1!
A2 ! ... such that every Ai is strongly universal for

S and I. In the presence of egds, it is no longer the case

that Ai
 Aj for i 	 j and there is the additional

complication that a chase step may fail. The chase for

tgds and egds is described in more detail in [1].

Example 1 Consider the schema consisting of two

relations:

1. employee Emp(ss#, name, dept#), with social secu-

rity, name, and dept. number, and

2. department Dept(dept#, name, location, mgr#),

with dept. number, name, location, and its man-

ager’s social security number.

Assume that S consists of the constraints

s1: dept# is a foreign key in Emp,

s2: mgr# is a foreign key in Dept, and

s3: every manager manages his own department.
(This omits the constraints that say that ss# is a key for

Emp and that dept# is a key for Dept to keep the

example simple.) These constraints can be written as

follows (where s1 and s2 are tgds and s3 is an egd):

s1: Dept(d, e, ‘, m)!∃n, d0Emp(m, n, d0),
s2: Emp(s, n, d)!∃e, ‘, mDept(d, e, ‘, m), and

s3: Dept(d, e, ‘, m), Emp(m, n, d0)! d = d0.

Consider the initial instance

I0 ¼ Deptð1; }HR}; }somewhere}; 333� 33� 3333Þ
containing a single tuple. Then in the first step of the

chase, s1 fires, giving

I1 ¼ fDeptð1;}HR};}somewhere}; 33Þ;
Empð33; a; bÞg

where a and b are labeled nulls. In the second step,

both s2 and s3 apply. If s3 fires, then b is set to 1 and

yields

I2 ¼ fDeptð1; }HR}; }somewhere}; 33Þ; Empð33; a; 1Þg
Since I2 satisfies S, the chase terminates. However, if

instead at the second step s2 fires, then it gives

I 02 ¼ fDeptð1; }HR}; }somewhere}; 33Þ;
Empð33; a; bÞ; Deptðb; g; d; Eg

where g, d, and e are new nulls. In this case, it is

possible to continue firing s1, s2, and s3 in such a

way as to obtain a chase that does not terminate,

perpetually introducing new nulls.

If the standard chase (or any other chase listed

below) terminates, it yields a strongly-universal

model of S and I and it is straightforward to verify

that all such models are homomorphically equivalent.

Therefore the result of the standard chase is unique up

to homomorphic equivalence. However, the choice of

what constraint to fire and on what tuple may affect

whether the chase terminates or not.

There are several variations of the chase, which shall

be called here the standard chase, the parallel chase,

and the core chase. The standard chase was described

above. In the parallel chase, at every chase step s is fired

on An, �a for all pairs (s, �a) such that s fails on A, �a.

One writes IS for the result of the chase on S and I,

if the chase terminates. In that case, one says that

IS is defined. In general, it holds that if A ! B, then

AS! BS, whenever the latter are defined.

326C Chase
It was shown in [7] that the standard chase is

incomplete, in the following sense: it may be that S
and I have a strongly-universal model, yet the standard

chase does not terminate. The parallel chase is also

incomplete in this sense. In contrast, the core chase

introduced in [7] is complete: if a strongly universal-

model exists, the core chase terminates and yields such

a model. A chase step of the core chase consists of one

chase step of the parallel chase, followed by computing

the core of the resulting instance.

Any of the above mentioned variations of the chase

can be applied to sets of constraints which consist of

1. tgds only

2. tgds and egds

3. tgds and egds with disjunctions

4. tgds and egds with disjunctions and negation which

are equivalent to general 8∃ sentences

The chase with tgds and egds has been described above.

The chase has been extended to handle disjunction and

negation. In this case, it gives not a single model, but a

set S of models which is strongly universal, in the sense

that for any model J (finite or infinite) of S and I, there

is a model A 2 S such that A! J. Such a set arises from

a single initial model by branching due to disjunction.

For example, consider the set S with the single dis-

junctive tgd

s : RðxÞ ! SðxÞ _ TðxÞ
and the instance I containing the single fact R(1).

Clearly every model of S and I, must contain either

S(1) or T(1). It is easy to verify that the set S = {I1, I2}

where I1 = {R(1), S(1)} and I2 = {R(1), T(1)} is strongly

universal for I and S, but no proper subset of S is. The

disjunctive chase with S on I consists of a single step,

which produces not a single model, but the set S of

models. Intuitively, whenever a disjunctive tgd fires

on a set W of models, it produces, for every instance

A 2W, one instance for every disjunct in its conclusion.

For details, to see how negation is handled, and to see

how universality for functions other than homo-

morphisms is achieved, see [6,7].

It was shown in [7] that it is undecidable whether

the standard, parallel, or core chase with a set of tgds

terminates. A widely-applicable, efficiently-checkable

condition on a set S of tgds, which is sufficient to

guarantee that the chase with S on any instance I

terminates, was introduced in [9,11]. A set of tgds

satisfying this condition is called weakly acyclic in
[11] and is said to have stratified witnesses in [9].

A more widely-applicable condition, also sufficient

for chase termination, was introduced in [7], where a

set of tgds satisfying this condition is called stratified.
Key Applications
The chase has been used in many applications,

including

� Checking containment of queries under constraints

(which in turn is used in such query rewriting tasks

as minimization, rewriting using views, and seman-

tic optimization)

� Rewriting queries using views

� Checking implication of constraints

� Computing solutions to data exchange problems

� Computing certain answers in data integration

settings

To check whether a query P is contained in a query Q

under constraints S, written P vSQ, it is sufficient to

(1) treat P as if it was an instance in which the free

variables are constants and the bound variables are

nulls (this is known as the ‘‘frozen instance’’ or ‘‘ca-

nonical database’’ [1] corresponding to P) (2) chase it

with S, and if this chase terminates to yield PS (3)

check whether the result of this chase is contained inQ,

written P S v Q. In symbols, if the chase described

above terminates, then

PvSQ iff PS v Q:

That is, the chase reduces the problem of query con-

tainment under constraints to one of query contain-

ment without constraints.

To check whether a set S of tgds implies a tgd s of

the form

8�x; �yðað�x; �yÞ ! 9�zbð�x;�zÞÞ
which is logically equivalent to

8�x 9�yað�x; �yÞð|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Qað�xÞ

! 9�zbð�x;�zÞ|fflfflfflfflffl{zfflfflfflfflffl}
Qbð�xÞ

Þ;

it suffices to check whether the queryQa in the premise

of s is contained under the constraints S in the query

Qb in the conclusion of s. That is, if Qa
S is defined,

then

S � s iffQa vS Qb iff Q
S
a v Qb:

Checksum and Cyclic Redundancy Check Mechanism C 327

C

The chase was also employed to find equivalent

rewritings of conjunctive queries using conjunctive

query views, in the presence of constraints. Given a

set V of conjunctive query views and a conjunctive

query Q, one can construct, using the chase, a query

R expressed in terms of V, such that Q has some

equivalent rewriting using V if and only if R is itself

such a rewriting. Moreover, every minimal rewriting of

Q is guaranteed to be a sub-query of R. The algorithm

for constructing R and exploring all its sub-queries is

called the Chase&Backchase (CB) [8], and it is sound

and complete for finding all minimal rewritings under

a set S of embedded dependencies, provided the chase

with S terminates [9]. The CB algorithm constructs R

by simply (i) constructing a set SV of tgds extracted

from the view definitions, and (ii) chasing Q with

S [SV and restricting the resulting query to only the

atoms using views in V.
In [11] is was shown that the certain answers to a

union Q of conjunctive queries on a ground instance I

under a set S of source-to-target tgds and target tgds

and egds can be obtained by computing Q(U) – where

U is a universal solution for I under S – then discarding

any tuples with nulls. Universal solutions, which are

the preferred solutions to materialize in data exchange,

are closely related to strongly-universal models [7] and

it was shown in [11] that they can be obtained using

the chase.
Cross-references
▶Data Exchange

▶Data Integration

▶Database Dependencies

▶ Equality-Generating Dependencies

▶Query Containment

▶Query Optimization

▶Query Rewriting

▶Query Rewriting Using Views

▶Tuple-Generating Dependencies
Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison Wesley, Reading, MA, 1995.

2. Aho A.V., Beeri C., and Ullman J.D. The theory of joins

in relational databases. ACM Trans. Database Syst.,

4(3):297–314, 1979.

3. Aho A.V., Sagiv Y., and Ullman J.D. Efficient optimization

of a class of relational expressions. ACM Trans. Database Syst.

4(4):435–454, 1979.
4. Aho A.V., Sagiv Y., and Ullman J.D. Equivalence of relational

expressions. SIAM J. Comput., 8(2):218–246, 1979.

5. Beeri C. and Vardi M.Y. A proof procedure for data dependen-

cies. J. ACM, 31(4):718–741, 1984.

6. Deutsch A., Ludaescher B., and Nash A. Rewriting queries

using views with access patterns under integrity constraints.

In Proc. 10th Int. Conf. on Database Theory, 2005, pp. 352–367.

7. Deutsch A., Nash A., and Remmel J. The chase revisited. In Proc.

27th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2008, pp. 149–158.

8. Deutsch A., Popa L., and Tannen V. Physical Data Independence,

Constraints, and Optimization with Universal Plans. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 459–470.

9. Deutsch A. and Tannen V. XML queries and constraints,

containment and reformulation. Theor. Comput. Sci. 336(1):

57–87, 2005, preliminary version in ICDT 2003.

10. Fagin R. Horn clauses and database dependencies. J. ACM,

29(4):952–985, 1982.

11. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data Exchange:

Semantics and Query Answering. Theor. Comput. Sci., 336

(1):89–124, 2005, preliminary version in PODS 2005.

12. Fuxman A., Kolaitis P.G., Miller R.J., and Tan W.C. Peer

Data Exchange. ACM Trans. Database Syst., 31(4):1454–1498,

2006, preliminary version in PODS 2005.

13. Grahne G. and Mendelzon A.O. Tableau Techniques for

Querying Information Sources through Global Schemas.

In Proc. 7th Int. Conf. on Database Theory, 1999, pp. 332–347.

14. Maier D., Mendelzon A.O., and Sagiv Y. Testing

implications of data dependencies. ACM Trans. Database Syst.,

4(4):455–469, 1979.

15. Maier D., Sagiv Y., and Yannakakis M. On the complexity

of testing implication of functional and join dependencies.

J. ACM, 28(4):680–695, 1981.

16. Popa L. and Tannen V. An Equational Chase for Path-

Conjunctive Queries, Constraints, and Views. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 39–57.

17. Vardi M. Inferring multivalued dependencies from functional

and join dependencies. Acta Informatica, 19:305–324, 1983.
Checkpoint

▶ Logging and Recovery
Checksum and Cyclic Redundancy
Check Mechanism

KENICHI WADA

Hitachi, Ltd, Tokyo, Japan

Synonyms
Cyclic Redundancy Check (CRC)

328C Choreography
Definition
Checksum and CRC are schemes for detecting the

errors of data which occur during transmission or

storage. The data computed and appended to original

data in order to detect errors are also referred as

checksum and CRC.

A checksum consists of a fixed number of bits

computed as a function of the data to be protected,

and is appended to the data. To detect errors, the

function is recomputed, and the result is compared

to that appended to the data. Simple implementation

of checksum is to divide the data into same length

bits chunk and to make exclusive-or of all chunks.

Cyclic redundancy check mechanism exploits mathe-

matical properties of cyclic codes. Specifically, CRC

uses polynomial devisor circuits with a given generator

polynomial so as to obtain the remainder polynomial.

The remainder is similarly appended to the original

data for transmission and storage, and then utilized

for error detection. CRC can be used as a kind of

checksum.
Key Points
CRC is usually expressed by the use of binary polyno-

mials due to mathematical convenience. When original

data M(x) is given, basic CRC mechanism calculates

redundancy data R(x) by using a pre-defined generator

polynomial G(x). That is, supposing the degree of G

(x) is m, a polynomial M(x) * xm is divided by G(x)

and the remainder is used for R(x) such that a con-

catenated polynomial T(x) = M(x) * xm + R(x) is

divisible by G(x). The obtained T(x) is used for trans-

mission or storage. For error detection, CRC mecha-

nism similarly checks the divisibility of T(x) by G(x).

These encoding and detection processes can be imple-

mented by using multi-level shift register circuits.

Given below is an example of CRC calculation.

Assume that a generator polynomial and original

data are given as follows.

GðxÞ ¼ x3 þ x þ 1 ðbinary expression: 1011Þ

MðxÞ ¼ x4 þ 1 ð10001Þ

In this case, a remainder polynomial R(x) can be

obtained by dividing M(x) * x3 by G(x).

RðxÞ ¼ x ð010Þ
Therefore, the resulting data T(x) can be obtained

as follows.

TðxÞ ¼ x7 þ x3 þ x ð10001010Þ

Theoretically, CRC is capable of detecting m-bit

long or shorter bust errors. This property is suitable

for communication infrastructure and storage infra-

structure, which often introduce burst errors rather

than random errors.

Cross-references
▶Disk

Recommended Reading
1. Houghton A. Error Coding for Engineers. Kluwer Academic

Publishers, Dordrecht, 2001.

2. Sweeney P. Error Control Coding from Theory to Practice.

Wiley, NY, 2002.
Choreography

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven, The

Netherlands

Definition
In a service oriented architecture (SOA) services are

interacting by exchanging messages, i.e., by combining

services more complex services are created. Choreog-

raphy is concerned with the composition of such ser-

vices seen from a global viewpoint focusing on the

common and complementary observable behavior.

Choreography is particulary relevant in a setting

where there is not a single coordinator.

Key Points
The terms orchestration and choreography describe

two aspects of integrating services to create business

processes [1,3]. The two terms overlap somewhat and

the distinction is subject to discussion. Orchestration

and choreography can be seen as different ‘‘perspec-

tives.’’ Choreography is concerned with the exchange

of messages between those services. Orchestration is

concerned with the interactions of a single service with

its environment.

Figure 1 illustrates the notion of choreography. The

dashed area shows the focal point of choreography,

Choreography. Figure 1. Choreography.

CIFS C 329

C

i.e., the aim is to establish a ‘‘contract’’ containing a

‘‘global’’ definition of the constraints under which mes-

sages are exchanged. Unlike orchestration, the view-

point is not limited to a single service. The Web

Services Choreography Description Language (WS-

CDL, cf. [2]) and the Web Service Choreography Inter-

face (WSCI) are two languages aiming at choreography.

Since the focus is on agreement rather than enactment,

choreography is quite different from traditional work-

flow languages. The goal is not to control and enact but

to coordinate autonomous parties. Some characterize

choreography as ‘‘Dancers dance following a global sce-

nario without a single point of control’’ to emphasize

this distinction.

Cross-references
▶BPEL

▶Business Process Management

▶Orchestration

▶Web Services

▶Workflow Management

Recommended Reading
1. Dumas M., van der Aalst W.M.P., and ter Hofstede A.H.M.

Process-Aware Information Systems: Bridging People and Soft-

ware through Process Technology. Wiley, New York, 2005.

2. Kavantzas N., Burdett D., Ritzinger G., Fletcher T., and Lafon Y.

Web Services Choreography Description Language Version 1.0

(W3C Candidate Recommendation). http://www.w3.org/TR/

2005/CR-ws-cdl-10-20051109/, 2005.

3. Weske M. Business Process Management: Concepts, Languages,

Architectures. Springer, Berlin, 2007.
Chronicle Recognition

▶ Event Detection
Chronon

CURTIS DYRESON

Utah State University, Logan, UT, USA

Synonyms
Instant; Moment; Time quantum; Time unit

Definition
A chronon is the smallest, discrete, non-decomposable

unit of time in a temporal data model. In a one-

dimensional model, a chronon is a time interval or

period, while in an n-dimensional model it is a non-

decomposable region in n-dimensional time. Impor-

tant special types of chronons include valid-time,

transaction-time, and bitemporal chronons.

Key Points
Data models often represent a time line by a sequence

of non-decomposable, consecutive time periods of

identical duration. These periods are termed chronons.

A data model will typically leave the size of each par-

ticular chronon unspecified. The size (e.g., one micro-

second) will be fixed later by an individual application

or by a database management system, within the

restrictions posed by the implementation of the data

model. The number of chronons is finite in a bounded

model (i.e., a model with a minimum and maximum

chronon), or countably infinite otherwise. Consecutive

chronons may be grouped into larger intervals or seg-

ments, termed granules; a chronon is a granule at the

lowest possible granularity.

Cross-references
▶Temporal Granularity

▶Time Domain

▶Time Instant

▶Time Interval

Recommended Reading
1. Dyreson C.E. and Snodgrass R.T. The base-line clock. In The

TSQLZ temporal query language, Kluwer, pp. 73–92, 1987.

2. Dyreson C.E. and Snodgrass R.T. Timestamp Semantics and

Representation. Inf. Syst., 18(3):143–166, 1993.
CIFS

▶ Storage Protocols

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/,2005.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/,2005.

330C Cipher
Cipher

▶Data Encryption
Citation

PRASENJIT MITRA

The Pennsylvania State University, University Park,

PA, USA

Synonyms
Reference; Bibliography

Definition
A citation is a reference from one article to another

article. A citation is a record that consists of the names

of the authors, the title of the referred article, the time

and place of publication, as well as various other fields.

The fields in the citation should collectively specify

unambiguously where the full text of the referred arti-

cle could be obtained. Typically, all citations are pre-

sented at the end of the referring article. However,

articles in certain domains list the citations as foot-

notes in the pages where the reference occurs. Citations

can range from references to be to single articles or to

entire books.

Key Points
Often, authors have to refer to knowledge that is deri-

ved from another work. For example, when quoting

text from another article or book, the author must

specify from which article or book the quotation is

obtained. Authors need to refer to other works in order

to point out preliminary information on the shoulders

of which the current treatise stands, to refer to related

work and contrast the currentworkwith previousworks,

etc. A citation is used for primarily two purposes:

(i) to provide a reference to an article or book such

that the reader can retrieve the article or book easily

and read the article to gain additional knowledge, and

(ii) to provide credit (or discredit for ‘‘negative’’ cita-

tions) to the authors of the works that are being cited.

There are various widely used formats for citations.

Citation formats vary by discipline; typically a discipline

adheres to one (or a few) ‘‘style-guide’’ that indicates

what fields should be mentioned in a citation and

how the fields should be formatted and presented. Re-

cently, with the proliferation of electronic documents
published over the World-Wide-Web, citations to

Uniform Resource Locators (URLs) of websites are in-

creasingly common. Unlike printed articles and books,

websites are dynamic and can change frequently. There-

fore, in order to specify precisely which version of the

webpage was being referred, apart from the publication

date, authors usually provide the date on which the

website was accessed.

Citations analysis has been performed to identify

the impact of published articles. Because different

authors use different formats, automatic analysis of

citations requires citation matching. Citation matching

helps identify which different citations formatted dif-

ferently refer to the same article or book. The term

bibliometrics is used to refer to metrics designed based

on citation analysis. Citation indexing for academic

journals was popularized by Eugene Garfield [1,2].

A citation index contains the information about

which document cites which. The term co-citation

refers to the frequency with which two documents are

cited together [3]. Today, Google Scholar (http://schol-

ar.google.com) provides a readily-available collection

of indexed citations on the web.

Cross-references
▶Digital Library

Recommended Reading
1. Garfield E. Citation Indexing: Its Theory and Application in

Science, Technology, and Humanities. Wiley, New York, NY,

USA, 1979.

2. Garfield E. Citation analysis as a tool in journal evaluation:

journals can be ranked by frequency and impact of citations

for science policy studies. Science, 178(4060):471–479, 1972.

3. Small H. Co-citation in the scientific literature: a new measure of

the relationship between two documents. J. Am. Soc. Inf. Sci.,

Wiley Periodicals, 24(4):265–269, 1973.
CLARA (Clustering LARge
Applications)

▶K-Means and K-Medoids
CLARANS (Clustering Large
Applications Based Upon
Randomized Search)

▶K-Means and K-Medoids

http://scholar.google.com
http://scholar.google.com

Classification C 331

C

Classification

IAN H. WITTEN

University of Waikato, Hamilton, New Zealand

Synonyms
Classification learning; Supervised learning; Learning

with a teacher, Concept learning; Statistical decision

techniques

Definition
In Classification learning, an algorithm is presented

with a set of classified examples or ‘‘instances’’ from

which it is expected to infer a way of classifying unseen

instances into one of several ‘‘classes’’. Instances have a

set of features or ‘‘attributes’’ whose values define that

particular instance. Numeric prediction, or ‘‘regres-

sion,’’ is a variant of classification learning in which

the class attribute is numeric rather than categorical.

Classification learning is sometimes called supervised

because the method operates under supervision by

being provided with the actual outcome for each of

the training instances. This contrasts with clustering

where the classes are not given, and with association

learning which seeks any association – not just one that

predicts the class.

Historical Background
Classification learning grew out of two strands of work

that began in the 1950s and were actively pursued

throughout the 1960s: statistical decision techniques

and the Perceptron model of neural networks. In 1955,

statisticians Bush and Mosteller published a seminal

book Stochastic Models for Learning which modeled in

mathematical terms the psychologist B. F. Skinner’s

experimental analyses of animal behavior using re-

inforcement learning [2]. The ‘‘perceptron’’ was a

one-level linear classification scheme developed by

Rosenblatt around 1957 and published in his book

Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms [10]. In a response published in

1969, Minsky and Papert argued that perceptrons were

simplistic in terms of their representational capability

and had been greatly over-hyped as potentially univer-

sal learning machines [6]. This scathing response by

widely-respected artificial intelligence pioneers damp-

ened research in neural nets and machine learning

in general. Meanwhile, in 1957 others were investigat-

ing the application of Bayesian decision schemes
to pattern recognition; the general conclusion was

that full Bayesian models were prohibitively expensive.

In 1960 Maron investigated in the context of infor-

mation retrieval what has since become known as

the ‘‘naı̈ve Bayes’’ approach, which assumes independ-

ence between attributes notwithstanding overwhelm-

ing evidence to the contrary [5]. Other early machine

learning work was buried in cybernetics, the study of

feedback and derived concepts such as communication

and control in living and artificial organisms. Through-

out the 1960s classification learning applied to pattern

recognition was the central thread of the embryo field

of machine learning, as underlined by the subtitle of

Nilsson’s 1965 landmark book Learning Machines –

Foundations of Trainable Pattern-Classifying Systems [7].

Symbolic learning techniques began to recover from

the doldrums in the late 1970s, with influential and

almost simultaneous publications by Breiman et al. on

classification and regression trees (the CARTsystem) [1]

and Quinlan on decision tree induction (the ID3 and

later C4.5 systems) [8,9]. Whereas Breiman was a stat-

istician, Quinlan was an experimental computer scien-

tist who first used decision trees not to generalize but to

condense large collections of chess end-games. Their

work proceeded independently, and the similarities

remained unnoticed until years later. CART (by default)

producesmultivariate trees whose tests can involvemore

than one attribute: these are more accurate and smaller

than the univariate trees produced by Quinlan’s systems,

but take longer to generate.

The first workshop devoted to machine learning

was held in 1980 at Carnegie-Mellon University. Fur-

ther workshops followed in 1983 and 1985. These

invitation-only events became an open conference in

1988. Meanwhile the journal Machine Learning was

established in 1986. By the 1990s the subject had be-

come the poster child of artificial intelligence – a suc-

cessful, burgeoning, practical technology that eschewed

the classical topics of general knowledge representation,

logical deduction, theorem proving, search techniques,

computational linguistics, expert systems and philo-

sophical foundations that still characterize the field

today. Classification learning, which forms the core of

machine learning, outgrew its behaviorist and neurolog-

ical roots andmoved into the practical realm of database

systems.

Early work focused on the process of learning –

learning curves, the possibility of sustained learning, and

the like – rather than the results of learning. However,

332C Classification
with the new emphasis on applications, objective tech-

niques of empirical testing began to supplant the sce-

nario-based style of evaluation that characterized the

early days. A major breakthrough came during the

1980s, when researchers finally realized that evaluating

a learning system on its training data gave misleading

results, and instead put the subject on a secure statisti-

cal footing.

Foundations
One of the most instructive lessons learned since the

renaissance of classification in the 1980s is that simple

schemes often work very well. Today, practitioners

strongly recommend the adoption of a ‘‘simplicity-

first’’ methodology when analyzing practical datasets.

There are many different kinds of simple structure that

datasets can exhibit. One dataset might have a single

attribute that does all the work, the others being irrele-

vant or redundant. Alternatively, the attributes might

contribute independently and equally to the final

outcome. Underlying a third dataset might be a simple

contingent structure involving just a few attributes.

In a fourth, a few independent rules may govern the

assignment of instances to classes. In a fifth, classifica-

tions appropriate to particular regions of instance

space might depend on the distance between the

instances themselves. A sixth might exhibit depen-

dence among numeric attributes, determined by a

sum of attribute values with appropriately chosen

weights. This sum might represent the final output

for numeric prediction, or be compared to a fixed

threshold in a binary decision setting. Each of these

examples leads to a different style of method suited to

discovering that kind of structure.

Rules Based on a Single Attribute

Even when instances have several attributes, the classi-

fication decision may rest on the value of just one of

them. Such a structure constitutes a set of rules that all

test the same attribute (or, equivalently, a one-level

decision tree). It can be found by evaluating the suc-

cess, in terms of the total number of errors on the

training data, of testing each attribute in turn, predict-

ing the most prevalent class for each value of that

attribute. If an attribute has many possible values –

and particularly if it has numeric values – this may

‘‘overfit’’ the training data by generating a rule that has

almost as many branches as there are instances. Minor

modifications to the scheme overcome this problem.
A startling discovery published in 1993 was that

‘‘very simple classification rules perform well on most

commonly used datasets’’ [3]. In an empirical investiga-

tion of the accuracy of rules that classify instances on

the basis of a single attribute, on most standard datasets

the resulting rule was found to be as accurate as the

structures induced by the majority of machine learning

systems – which are far more complicated. The moral? –

always compare new methods with simple baseline

schemes.
Statistical Modeling (see entry Bayesian Classification)

Another simple technique is to use all attributes and

allow them to make contributions to the decision that

are equally important and independent of one another,

given the class. Although grossly unrealistic – what

makes real-life datasets interesting is that the attributes

are certainly not equally important or independent –

it leads to a statistically-based scheme that works sur-

prisingly well in practice. Employed in information

retrieval as early as 1960 [5], the idea was rediscovered,

dubbed ‘‘naı̈ve Bayes,’’ and introduced into machine

learning 30 years later [4]. Despite the disparaging

moniker it works well on many actual datasets. Over-

reliance on the independence of attributes can be

countered by applying attribute selection techniques.
Divide and Conquer Technique (see entry Decision

Tree Classification)

The process of constructing a decision tree can be

expressed recursively. First, select an attribute to use

at the root, and make a branch for each possible value.

This splits the instance set into subsets, one for every

value of the attribute. Now repeat the process recursively

for each branch, using only those instances that actually

reach the branch. If all instances at a node have the same

classification, stop developing that part of the tree. This

method of ‘‘top-down induction of decision trees’’ was

explored and popularized by Quinlan [8,9]. The nub of

the problem is to select an appropriate attribute at each

stage. Ofmany heuristics that have been investigated, the

dominant one is to measure the expected amount of

information gained by knowing that attribute’s actual

value. Having generated the tree, it is selectively pruned

back from the leaves to avoid over-fitting. A series of

improvements include ways of dealing with numeric

attributes,missing values, and noisy data; and generating

rules from trees.

Classification C 333

C

Covering Algorithms (see entry Rule-Based

Classification)

Classification rules can be produced by taking each

class in turn and seeking a rule that covers all its

instances, at the same time excluding instances not in

the class. This bottom-up approach is called covering

because at each stage a rule is identified that ‘‘covers’’

some of the instances. Although trees can always be

converted into an equivalent rule set, and vice versa,

the perspicuity of the representation often differs.

Rules can be symmetric whereas trees must select one

attribute to split on first, which can produce trees that

are much larger than an equivalent set of rules. In

the multiclass case a decision tree split takes account

of all classes and maximizes the information gained,

whereas many rule generation methods concentrate

on one class at a time, disregarding what happens to

the others.

Instance-Based Learning (see entry Nearest Neighbor

Classification)

Another approach is to store training instances verba-

tim and, given an unknown test instance, use a distance

function to determine the closest training instance and

predict its class for the test instance. Suitable distance

functions are the Euclidean or Manhattan (city-block)

metric; attributes should be normalized to lie between

0 and 1 to compensate for scaling effects. For nominal

attributes that assume symbolic rather than numeric

values, the distance between two values is 1 if they are

not the same and 0 otherwise. In the k-nearest neigh-

bor strategy, some fixed number of nearest neighbors –

say five – are located and used together to determine

the class of the test instance by majority vote. Another

way of proofing the database against noise is to selec-

tively and judiciously choose the exemplars that are

added. Nearest-neighbor classification was notoriously

slow until advanced data structures like kD-trees were

applied in the early 1990s.

Linear Models (see entry Linear Regression)

When the outcome and all attributes are numeric,

linear regression can be used. This expresses the class

as a linear combination of the attributes, with weights

that are calculated from the training data. Linear re-

gression has been popular in statistical applications for

decades. If the data exhibits a nonlinear dependency,

the best-fitting straight line will be found, where ‘‘best’’

is interpreted in the least-mean-squared-difference
sense. Although this line may fit poorly, linear models

can serve as building blocks for more complex learning

schemes.

Linear Classification (see entry Neural Networks,

Support Vector Machine)

The idea of linear classification is to find a hyperplane in

instance space that separates two classes. (In the multi-

class case, a binary decision can be learned for each

pair of classes.) If the linear sum exceeds zero the first

class is predicted; otherwise the second is predicted. If

the data is linearly separable – that is, it can be separated

perfectly using a hyperplane – the perceptron learn-

ing rule espoused by Rosenblatt is guaranteed to find

a separating hyperplane [10]. This rule adjusts the

weight vector whenever the prediction for a particular

instance is erroneous: if the first class is predicted the

instance (expressed as a vector) is added to the weight

vector (making it more likely that the result will be

positive next time around); otherwise the instance is

subtracted.

There have been many powerful extensions of this

basic idea. Support vector machines use linear deci-

sions to implement nonlinear class boundaries by

transforming the input using a nonlinear mapping.

Multilayer perceptrons connect many linear models

in a hierarchical arrangement that can represent non-

linear decision boundaries, and use a technique called

‘‘back-propagation’’ to distribute the effect of errors

through this hierarchy during training.

Missing Values

Most datasets encountered in practice contain missing

values. Sometimes different kinds are distinguished (e.g.,

unknown vs. unrecorded vs. irrelevant values). They

may occur for a variety of reasons. There may be some

significance in the fact that a certain instance has an

attribute value missing – perhaps a decision was taken

not to perform some test – and that might convey infor-

mation about the instance other than the mere absence

of the value. If this is the case, not tested should be

recorded as another possible value for this attribute.

Only someone familiar with the data can make an

informed judgment as to whether a particular value

being missing has some significance or should simply

be coded as an ordinary missing value. For example,

researchers analyzing medical databases have noticed

that cases may, in some circumstances, be diagnosable

strictly from the tests that a doctor decides to make,

334C Classification
regardless of the outcome of the tests. Then a record of

which values are ‘‘missing’’ is all that is needed for a

complete diagnosis – the actual measurements can be

ignored entirely!

Meta-Learning

Decisions can often be improved by combining the

output of several different models. Over the past decade

or so the techniques of bagging, boosting, and stacking

have been developed that learn an ensemble of models

and deploy them together. Their performance is often

astonishingly good. Researchers have struggled to under-

stand why, and during that struggle new methods have

emerged that are sometimes even better. For example,

whereas human committees rarely benefit from noisy

distractions, shaking up bagging by adding random var-

iants of classifiers can improve performance. Boosting –

perhaps the most powerful of the three methods – is

related to the established statistical technique of additive

models, and this realization has led to improved

procedures.

Combined models share the disadvantage of being

rather hard to analyze: they can comprise dozens or

even hundreds of individual learners and it is not easy

to understand in intuitive terms what factors are con-

tributing to the improved decisions. In the last few years

methods have been developed that combine the perfor-

mance benefits of committees with comprehensible

models. Some produce standard decision tree models;

others introduce new variants of trees that provide

optional paths.

Evaluation

For classification problems, performance is naturally

measured in terms of the error rate. The classifier pre-

dicts the class of each test instance: if it is correct, that

is counted as a success; if not, it is an error. The error

rate is the proportion of errors made over a whole set

of instances, and reflects the overall performance of the

classifier. Performance on the training set is definitely

not a good indicator of expected performance on an

independent test set. A classifier is overfitted to a data-

set if its structure reflects that particular set to an

excessive degree. For example, the classifier might be

generated by rote learning without any generalization

whatsoever. An overfitted classifier usually exhibits

performance on the training set which is excellent but

far from representative of performance on other data-

sets from the same source.
In practice, one must predict performance bounds

based on experiments with whatever data is available.

Labeled data is required for both training and testing,

and is often hard to obtain. A single data set can be

partitioned for training and testing in various different

ways. In a popular statistical technique called cross-

validation the experimenter first decides on a fixed

number of ‘‘folds,’’ or partitions of the data – say three.

The data is split into three approximately equal portions,

and each in turn is used for testing while the remainder

serves for training. The procedure is repeated three times

so that in the end every instance has been used exactly

once for testing. This is called threefold cross-validation.

‘‘Stratification’’ is the idea of ensuring that all classes

are represented in all folds in approximately the right

proportions. Stratified tenfold cross-validation has

become a common standard for estimating the error

rate of a classification learning scheme. Alternatives

include leave-one-out cross-validation, which is effec-

tively n-fold cross-validation where n is the size of the

data set; and the bootstrap, which takes a carefully-

judged number of random samples from the data with

replacement and uses these for training, combining the

error rate on the training data (an optimistic estimate)

with that on the test data (a pessimistic estimate, since

the classifier has only been trained on a subset of the full

data) to get an overall estimate.

Key Applications
Classification learning is one of the flagship triumphs

of research in artificial intelligence. It has been used for

problems that range from selecting promising embryos

to implant in a human womb during in vitro fertiliza-

tion to the selection of which cows in a herd to sell off

to an abattoir. Fielded applications are legion. They

include decisions involving judgment, such as whether

a credit company should make a loan to a particular

person; screening images, such as the detection of oil

slicks from satellite images; load forecasting, such as

combining historical load information with current

weather conditions and other events to predict hourly

demand for electricity; diagnosis, such as fault finding

and preventative maintenance of electromechanical

devices; marketing and sales, such as detecting custo-

mers who are likely to switch to a competitor.

URL to Code
The Weka machine learning workbench is a popular

tool for experimental investigation and comparison

Classification by Association Rule Analysis C 335
of classification learning techniques, as well as other

machine learning methods. It is described in [11] and

available for download from http://www.cs.waikato.ac.

nz/ml/weka.
C

Cross-references
▶Abstraction

▶Association Rules

▶Bagging

▶Bayesian Classification

▶Boosting

▶Bootstrap

▶Cataloging in Digital Libraries

▶Classification by Association Rule Analysis

▶Clustering Overview and Applications

▶Cross-Validation

▶Data Mining

▶Decision Rule Mining in Rough Set Theory

▶Decision Tree Classification

▶ Fuzzy Set Approach

▶Genetic Algorithms

▶ Linear Regression

▶ Log-Linear Regression

▶Nearest Neighbor Classification

▶Neural Networks

▶Receiver Operating Characteristic

▶Rule-Based classification

▶ Support Vector Machine
Recommended Reading
1. Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classifi-

cation and Regression Trees. Wadsworth, Pacific Grove, CA,

1984.

2. Bush R.R. and Mosteller F. Stochastic Models for Learning.

Wiley, New York, 1955.

3. Holte R.C. Very simple classification rules perform well on most

commonly used datasets. Mach. Learn., 11:63–91, 1993.

4. Kononebko I. ID3, sequential Bayes, naı̈ve Bayes and Bayesian

neural networks. In Proc. 4th European Working Session on

Learning, 1989, pp. 91–98.

5. Maron M.E. and Kuhns J.L. On relevance, probabilistic indexing

and information retrieval. J. ACM, 7(3):216–244, 1960.

6. Minsky M.L. and Papert S. Perceptrons. Cambridge, MIT Press,

1969.

7. Nilsson N.J. Learning Machines. McGraw-Hill, New York,

1965.

8. Quinlan J.R. Induction of decision trees. Mach. Learn.,

1(1):81–106, 1986.

9. Quinlan J.R. C4.5: Programs for Machine Learning. Morgan

Kaufmann, San Francisco, CA, 1993.
10. Rosenblatt F. Principles of Neurodynamics. Spartan, Washington,

DC, 1961.

11. Witten I.H. and Frank E. Data Mining: Practical Machine

Learning Tools and Techniques (2nd edn.). Morgan Kaufmann,

San Francisco, CA, 2003.
Classification by Association Rule
Analysis

BING LIU

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Associative classification

Definition
Given a training dataset D, build a classifier (or a

classification model) from D using an association rule

mining algorithm. The model can be used to classify

future or test cases.

Historical Background
In the previous section, it was shown that a list of

rules can be induced or mined from the data for classi-

fication. A decision tree may also be converted to a set

of rules. It is thus only natural to expect that association

rules [1] be used for classification as well. Yes, indeed!

Since the first classification system (called CBA) that

used association rules was reported in [10], many tech-

niques and systems have been proposed by researchers

[2–4,6–8,13,15,16]. CBA is based on class association

rules (CAR), which are a special type of association

rules with only a class label on the right-hand-side of

each rule. Thus, syntactically or semantically there is no

difference between a rule generated by a class associa-

tion rule miner and a rule generated by a rule induction

system (or a decision tree system for that matter).

However, class association rule mining inherits the

completeness property of association rule mining [1].

That is, all rules that satisfy the user-specified mini-

mum support and minimum conference are generated.

Other classification algorithms only generate a small

subset of rules existing in data for classification [9,10].

Most existing classification systems based on asso-

ciation rules (also called associative classifiers) employ

CARs directly for classification, although their ways

of using CARs can be quite different [3,7,8,10,15,16].

http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka

336C Classification by Association Rule Analysis
To deal with unbalanced class distributions, the multi-

ple minimum class supports approach is proposed

in [9,11], which gives each class a different minimum

support based on its relative frequency in the data.

In [2,4,6,13], the authors also proposed to use rules

as features or attributes to augment the original data

or even to replace the original data. That is, in these

techniques, CARs are not directly used for classifica-

tion, but are used only to expand or to replace the

original data. Any classification technique can be used

subsequently to build the final classifier based on

the expanded data, e.g., naı̈ve Bayesian and SVM.

Since the number of class association rules can be

huge, closed rule sets have been proposed for classifi-

cation in [3]. This approach helps solve the problem

that in many data sets the complete sets of CARs

cannot be generated due to combinatorial explosion.

The closed rule set is a smaller, lossless and concise

representation of all rules. Thus, long rules (rules with

many conditions) may be used in classification,

which otherwise may not be generated but can be

crucial for accurate classification. Finally, normal asso-

ciation rules may be used for prediction or classifica-

tion as well.

This section thus introduces the following three

approaches to using association rules for classification:

1. Using class association rules for classification

2. Using class association rules as features or attributes

3. Using normal association rules for classification

The first two approaches can be applied to tabular data

or transactional data. The last approach is usually

employed for transactional data only. Transactional

data sets are difficult to handle by traditional classifi-

cation techniques, but are very natural for association

rules. Below, the three approaches are described in

turn. Note that various sequential rules can be used

for classification in similar ways as well if sequential

data sets are involved [6].

Foundations

Classification Using Class Association Rules

As mentioned above, a class association rule (CAR) is

an association rule with only a class label on the right-

hand side of the rule. Any association rule mining

algorithm can be adapted for mining CARs. For exam-

ple, the Apriori algorithm [1] for association rule

mining was adapted to mine CARs in [10].
There is basically no difference between rules gen-

erated from a decision tree (or a rule induction system)

and CARs if only categorical (or discrete) attributes

(more on this later) are considered. The differences are

in the mining processes and the final rule sets. CAR

mining finds all rules in data that satisfy the user-

specified minimum support (minsup) and minimum

confidence (minconf) constraints. A decision tree or a

rule induction system finds only a subset of the rules

(expressed as a tree or a list of rules) for classification.

In many cases, rules that are not in the decision tree

(or the rule list) may be able to perform the classifica-

tion more accurately. Empirical comparisons reported

by several researchers have shown that classification

using CARs can perform more accurately on many

data sets than decision trees and rule induction systems

[7,8,10,15,16].

The complete set of rules from CAR mining is

also beneficial from the rule usage point of view. In

many applications, the user wants to act on some

interesting rules. For example, in an application for

finding causes of product problems in a manufacturing

company, more rules are preferred to fewer rules be-

cause with more rules, the user is more likely to

find rules that indicate causes of problems. Such

rules may not be found by a decision tree or a rule

induction system. A deployed data mining system

based on CARs is reported in [12] for finding action-

able knowledge from manufacturing and engineering

data sets.

One should, however, also bear in mind of the

following differences between CAR mining and deci-

sion tree construction (or rule induction):

1. Decision tree learning and rule induction do not

use the minsup or minconf constraint. Thus, some

rules that they find can have very low supports,

which, of course, are likely to be pruned because

the chance that they overfit the training data is

high. Although a low minsup for CAR mining can

be used, it may cause combinatorial explosion.

In practice, in addition to minsup and minconf, a

limit on the total number of rules to be generated

may be used to further control the CAR generation

process. When the number of generated rules

reaches the limit, the algorithm stops. However,

with this limit, long rules (with many conditions)

may not be generated. Recall that the Apriori algo-

rithm works in a level-wise fashion, i.e., short

Classification by Association Rule Analysis C 337

C

rules are generated before long rules. In some

applications, this may not be an issue as short

rules are often preferred and are sufficient for clas-

sification or for action. Long rules normally have

very low supports and tend to overfit the data.

However, in some other applications, long rules

can be useful.

2. CAR mining does not use continuous (numeric)

attributes, while decision trees deal with continu-

ous attributes naturally. Rule induction can use

continuous attributes as well. There is still no satis-

factory method to deal with such attributes

directly in association rule mining. Fortunately,

many attribute discretization algorithms exist

that can automatically discretize the value range

of a continuous attribute into suitable intervals

[e.g., [5]], which are then considered as discrete

values.

Mining Class Association Rules for Classification There

are many techniques that use CARs to build classifiers.

Before describing them, it is useful to first discuss some

issues related to CAR mining for classification.

Rule pruning: CAR rules are highly redundant, and

many of them are not statistically significant (which

can cause overfitting). Rule pruning is thus needed.

The idea of pruning CARs is basically the same as tree

pruning in decision tree building or rule pruning in

rule induction. Thus, it will not be discussed further

(see [8,10] for some of the pruning methods).

Multiple minimum class supports: A single minsup

may be inadequate for mining CARs because many

practical classification data sets have uneven class dis-

tributions, i.e., some classes cover a large proportion of

the data, while others cover only a very small propor-

tion (which are called rare or infrequent classes).

For example, there is a data set with two classes, Y

and N. 99% of the data belong to the Y class, and

only 1% of the data belong to theN class. If the minsup

is set to 1.5%, no rule for classN will be found. To solve

the problem, the minsup needs to be lowered. Suppose

the minsup is set to 0.2%. Then, a huge number of

overfitting rules for class Y may be found because

minsup = 0.2% is too low for class Y.

Multiple minimum class supports can be applied to

deal with the problem. A different minimum class sup-

port minsupi for each class ci can be assigned, i.e., all the

rules of class ci must satisfy minsupi. Alternatively, one

single total minsup can be provided, denoted by
t_minsup, which is then distributed to each class

according to the class distribution:

minsupi ¼ t minsup � sup cið Þ
where sup(ci) is the support of class ci in the training

data. The formula gives frequent classes higher mins-

ups and infrequent classes lower minsups. There is also

a general algorithm for mining normal association

rules using multiple minimum supports in [9,11].

Parameter selection: The parameters used in CAR

mining are the minimum supports and the minimum

confidences. Note that a different minimum confi-

dence may also be used for each class. However, mini-

mum confidences do not affect the classification much

because classifiers tend to use high confidence rules.

One minimum confidence is sufficient as long as it

is not set too high. To determine the best minsupi
for each class ci, a range of values can be tried to

build classifiers and then use a validation set to select

the final value. Cross-validation may be used as well.

Classifier Building After all CAR rules are found, a

classifier is built using the rules. There are many exist-

ing approaches, which can be grouped into three

categories.

Use the strongest rule: This is perhaps the simplest

strategy. It simply uses CARs directly for classification.

For each test instance, it finds the strongest rule that

covers the instance. A rule covers an instance if the

instance satisfies the conditions of the rule. The

class of the strongest rule is then assigned as the class

of the test instance. The strength of a rule can be

measured in various ways, e.g., based on confidence,

w2 test, or a combination of both support and confi-

dence values.

Select a subset of the rules to build a classifier: The

representative method of this category is the one used

in the CBA system [10]. The method is similar to the

sequential covering method, but applied to class asso-

ciation rules with additional enhancements as dis-

cussed above.

Let the set of all discovered CARs be S. Let the

training data set be D. The basic idea is to select a

subset L (
 S) of high confidence rules to cover D.

The set of selected rules, including a default class, is

then used as the classifier. The selection of rules

is based on a total order defined on the rules in S.

Definition: Given two rules, ri and rj, ri �rj(called ri
precedes rj, or ri has a higher precedence than rj) if

338C Classification by Association Rule Analysis
1. The confidence of riis greater than that of rj, or

2. Their confidences are the same, but the support of riis

greater than that of rj, or

3. Both the confidences and supports of riand rj are the

same, but ri is generated earlier than rj.
Cla
A CBA classifier L is of the form:

L = < r1, r2,...,rk, default-class>
where ri 2 S, ra � rb if b > a. In classifying a test

case, the first rule that satisfies the case classifies it.

If no rule applies to the case, it takes the default class

(default-class). A simplified version of the algorithm

for building such a classifier is given in Fig. 1. The

classifier is the RuleList.

This algorithm can be easily implemented by

making one pass through the training data for every

rule. However, this is extremely inefficient for large

data sets. An efficient algorithm that makes at most

two passes over the data is given in [10].

Combine multiple rules: Like the first approach,

this approach does not have an additional step to

build a classifier. At the classification time, for each

test instance, the system first finds the subset of

rules that covers the instance. If all the rules in the

subset have the same class, the class is assigned to

the test instance. If the rules have different classes, the

system divides the rules into groups according to their

classes, i.e., all rules of the same class are in the same

group. The system then compares the aggregated

effects of the rule groups and finds the strongest

group. The class label of the strongest group is assigned

to the test instance. To measure the strength of a

rule group, there again can be many possible techni-

ques. For example, the CMAR system uses a weighted

w2 measure [8].

Class Association Rules as Features

In the above two approaches, rules are directly used for

classification. In this approach, rules are used as
ssification by Association Rule Analysis. Figure 1. A sim
features to augment the original data or simply form

a new data set, which is then fed to a traditional

classification algorithm, e.g., decision trees or the

naı̈ve Bayesian algorithm.

To use CARs as features, only the conditional

part of each rule is needed, and it is often treated

as a Boolean feature/attribute. If a data instance in

the original data contains the conditional part, the

value of the feature/attribute is set to 1, and 0 other-

wise. Several applications of this method have been

reported [2,4,6,13]. The reason that this approach

is helpful is that CARs capture multi-attribute or

multi-item correlations with class labels. Many classi-

fication algorithms do not find such correlations (e.g.,

the naı̈ve Bayesian method), but they can be quite

useful.

Classification Using Normal Association Rules

Not only can class association rules be used for classifi-

cation, but also normal association rules. For example,

association rules are commonly used in e-commerce

Web sites for product recommendations, whichwork as

follows: When a customer purchases some products,

the system recommends him/her some other related

products based on what he/she has already purchased.

Recommendation is essentially a prediction prob-

lem. It predicts what a customer is likely to buy. Associa-

tion rules are naturally applicable to such applications.

The classification process is as follows:

1. The system first uses previous purchase transac-

tions (the same as market basket transactions) to

mine association rules. In this case, there are no

fixed classes. Any item can appear on the left-hand

side or the right-hand side of a rule. For recom-

mendation purposes, usually only one item appears

on the right-hand side of a rule.

2. At the prediction (e.g., recommendation) time,

given a transaction (e.g., a set of items already
ple classifier building algorithm.

Classification by Association Rule Analysis C 339

C

purchased by a customer), all the rules that cover

the transaction are selected. The strongest rule is

chosen and the item on the right-hand side of the

rule (i.e., the consequent) is the predicted item and

is recommended to the user. If multiple rules are

very strong, multiple items can be recommended.

This method is basically the same as the ‘‘use the

strongest rule’’ method described earlier. Again, the

rule strength can be measured in various ways, e.g.,

confidence, w2 test, or a combination of both sup-

port and confidence. Clearly, the other two classi-

fication methods discussed earlier can be applied here

as well.

The key advantage of using association rules for

recommendation is that they can predict any item

since any item can be the class item on the right-

hand side. Traditional classification algorithms only

work with a single fixed class attribute, and are not

easily applicable to recommendations.

Finally, it should be noted that multiple minimum

supports in rule mining [11] can be of significant help.

Otherwise, rare items will never be recommended,

which is called the coverage problem [14]. It is shown

in [14] that using multiple minimum supports can

dramatically increase the coverage.

Key Applications
The applications of associative classifiers are very wide.

Three main scenarios are briefly described below.

1. Since classification using class association rules is a

supervised learning technique, it can be (and has

been) used as a classification algorithm just like

any other classification algorithm from machine

learning, e.g., decision trees, naı̈ve Bayesian classi-

fiers, SVM, and rule induction. In many cases, an

associative classifier performs better than these

classic machine learning techniques.

2. Apart from classification, individual class associa-

tion rules themselves are very useful in practice due

to the completeness property. In many practical

applications (especially diagnostic data mining

applications), the user wants to find interesting

rules that are actionable. As discussed earlier, tradi-

tional classification algorithms (e.g., rule induction

or any other technique) are not suitable for such

applications because they only find a small subset

of rules that exist in data. Many interesting or

actionable rules are not discovered. A deployed
data mining system, called Opportunity Map, for

Motorola Corporation was based on class associa-

tion rules [12]. When this entry was written, the

system had been in use in Motorola for more than

2 years and further improvements were still being

made. Although the system was originally designed

for finding rules that indicate causes of phone call

failures, it had been used in a variety of other

applications in Motorola.

3. Using normal association rules for classification

or prediction is also very common, especially

for the transaction type of data. For such kind of

data, as described above, traditional classification

techniques are not easily applicable because they

can only predict some fixed class items (or labels).

Cross-references
▶Association Rule Mining on Streams

▶Decision Trees

▶Rule Induction

Recommended Reading
1. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

2. Antonie M.L. and Zaiane O. Text document categorization by

term association. In Proc. 2002 IEEE Int. Conf. on Data Mining,

2002, pp. 19–26.

3. Baralis E. and Chiusano S. Essential classification rule sets. ACM

Trans. Database Syst, 29(4):635–674, 2004.

4. Cheng H., Yan X., Han J., and Hsu C.-W. Discriminative frequent

pattern analysis for effective classification. In Proc. 23rd Int. Conf.

on Data Engineering, 2007, pp. 706–715.

5. Dougherty J., Kohavi R., and Sahami M. Supervised and unsu-

pervised discretization of continuous features. In Proc. 12th Int.

Conf. on Machine Learning, 1995, pp. 194–202.

6. Jindal N. and Liu B. Identifying comparative sentences in text

documents. In Proc. 32nd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2006,

pp. 244–251.

7. Li J., Dong G., and Ramamohanarao K. Making use of the most

expressive jumping emerging patterns for classification. In

Advances in Knowledge Discovery and Data Mining, 4th

Pacific-Asia Conf., 2000, pp. 220–232.

8. Li W., Han J., and Pei J. CMAR: Accurate and efficient classifica-

tion based on multiple class-association rules. In Proc. 2001

IEEE Int. Conf. on Data Mining, 2001, pp. 369–376.

9. Liu B. Web data mining: exploring hyperlinks, contents and

usage data. Springer, Berlin, 2007.

10. Liu B., Hsu W., and Ma Y. Integrating classification and associa-

tion rule mining. In Proc. 4th Int. Conf. on Knowledge Discov-

ery and Data Mining, 1998, pp. 80–86.

11. Liu B., Hsu W., and Ma Y. Mining association rules with

multiple minimum supports. In Proc. 5th ACM SIGKDD

340C Classification Learning
Int. Conf. on Knowledge Discovery and Data Mining, 1999, pp.

337–341.

12. Liu B., Zhao K., Benkler J., and Xiao W. Rule interestingness

analysis using OLAP operations. In Proc. 12th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2006, pp.

297–306.

13. Meretakis D. and Wüthrich B. Extending naı̈ve bayes classifiers

using long itemsets. In Proc. 5th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 1999, pp. 165–174.

14. Mobasher B., Dai H., Luo T., and Nakagawa N. Effective perso-

nalization based on association rule discovery from web usage

data. In Proc. 3rd ACM Workshop on Web Information and

Data Management, 2001, pp. 9–15.

15. Wang K., Zhou S., and He Y. Growing decision trees on support-

less association rules. In Proc. 6th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2000, pp. 265–269.

16. Yin X. and Han J. CPAR: classification based on predictive

association rules. In Proc. SIAM International Conference on

Data Mining, 2003.
Classification Learning

▶Classification
Classification in Streams

CHARU C. AGGARWAL

IBM T. J. Watson Research Center, Yorktown Heights,

NY, USA

Synonyms
Learning in streams; Knowledge discovery in streams

Definition
The classification problem is a well defined problem in

the data mining domain, in which a training data set is

supplied, which contains several feature attributes, and

a special attribute known as the class attribute. The

class attribute is specified in the training data, which is

used to model the relationship between the feature

attributes and the class attribute. This model is used

in order to predict the unknown class label value for

the test instance.

A data stream is defined as a large volume of con-

tinuously incoming data. The classification problem

has traditionally been defined on a static training or

test data set, but in the stream scenario, either the

training or test data may be in the form of a stream.
Historical Background
The problem of classification has been studied so widely

in the classification literature, that a single source for

the problem cannot be identified. Most likely, the

problem was frequently encountered in practical com-

mercial scenarios as a statistical problem, long before the

field of machine learning was defined. With advances

in hardware technology, data streams becamemore com-

mon, and most data mining problems such as clustering

and association rule mining were applied to the data

stream domain. Domingos and Hulten [2] were the first

to model the problem in the context of data streams.

Foundations
There are numerous techniques available for classifica-

tion in the classical literature [3]. However, most of

these techniques cannot be used directly for the stream

scenario. This is because the stream scenario creates a

number of special constraints which are as follows:

� The data stream typically contains a large volume

of continuously incoming data. Therefore the tech-

niques for training or testing need to be very effi-

cient. Furthermore, a data point may be examined

only once over the course of the entire computa-

tion. This imposes hard constraints on the nature

of the algorithms which may be used for stream

classification. This constraint is generally true of

almost all data mining algorithms.

� Often the patterns in the underlying data may evolve

continuously over time. As a result, the model may

soon become stale for data mining purposes. It is

therefore important to keep the models current even

when the patterns in the underlying data may

change. This issue is known as concept drift.

� Many stream classification methods have consider-

able memory requirements in order to improve

computational efficiency. The stream case is partic-

ularly resource constrained, since the memory may

sometimes be limited, while the computational

efficiency requirements continue to be very high.

� In many cases, the rate of incoming data cannot be

controlled easily. Therefore, the classification pro-

cess needs to be nimble enough in order to provide

effective tradeoffs between accuracy and efficiency.

Most of the known classification methods can be made

to work in the data stream scenario with a few mod-

ifications. These modifications are generally designed

to deal with either the one-pass constraint, or the

Classification in Streams C 341

C

stream evolution scenario. The different types of clas-

sifiers which can be modified for the data stream

scenario are as follows:

� Nearest Neighbor Classifiers: In these techniques,

the class label of the nearest neighbor to the target

record is used in order to perform the classification.

Since the nearest neighbor cannot be defined easily

over the entire stream, a stream sample is used in

order to perform the classification. This stream sam-

ple can be dynamically maintained with the one-pass

constraint with the use of a technique called reservoir

sampling. In order to deal with issues of stream

evolution, one can used biased reservoir sampling.

In biased sampling, a time decay function is used in

order to maintain a sample which is biased towards

more recent data points.

� Decision Tree Classifiers: In this techniques, decision

trees need to be built in one pass of the stream.

A method known as Very Fast Decision Trees

(VFDT)was proposed in [2] which uses probabilistic

split methods in order to create decision trees with

predictable accuracy. In particular, the Hoeffding

inequality is used in order to ensure that the gener-

ated tree produces the same tree as a conventional

learner. Several other techniques were proposed by

the same authors subsequently, which deal with the

time-changing aspect of the data streams.

� Cluster-based Classifiers: An on-demand stream

classification model was proposed which uses clus-

tering techniques in order to build the optimal

model for a classifier on demand. In this technique,

a micro-clustering technique is used in order to

compress the underlying data into clusters. The

data belonging to different classes are compressed

into different clusters. For a given test example, the

class of the closest cluster is used in order to predict

the class label. One key aspect of this classifier is

that it assumes that both the training and the test

data are in the form of a stream. The technique

calculates the optimal horizon for using the cluster

statistics.

� Ensemble Classifiers: In this case, a combination of

different models is used in order to deal with the

issue of concept drift. This is because different

kinds of models work better with different kinds

of data patterns. Therefore, an optimal model is

picked depending upon the current data pattern.

The idea is that different classifiers are more
effective for different kinds of data patterns. There-

fore, by making an optimal choice of the classifier

from the ensemble, it is possible to improve the

classification accuracy significantly.

� Bayes Classifiers: The naive Bayes classifier com-

putes the Bayes a-posteriori probabilities of a test

instance belonging to a particular class using the

inter-attribute independence assumption. The key

in adapting such classifiers is to be able to effective-

ly maintain the statistics used to compute condi-

tional probabilities in one pass. In the case of an

evolving data stream, the statistics need to be main-

tained over particular user-specific horizons.

A number of other methods for stream classification

also exist which cannot be discussed within the scope

of this entry. A detailed survey on classification meth-

ods may be found in [3].

Key Applications
Stream classification finds application to numerous

data domains such as network intrusion detection,

target marketing and credit card fraud detection.

In many of these cases, the incoming data clearly has

very large volume. For example, typical intrusion sce-

narios have a large volume of incoming data. Similarly,

in the case of target-marketing, super-store transac-

tions may have very large volumes of incoming data.

Many of the traditional classification applications

are still used in the batch mode, since the stream tech-

nology is still in its infancy, and it is sometimes simpler

to collect a sample of the data set and run a batch

process on it. Most of the traditional problems for the

classification domain will eventually be transformed to

the data stream scenario. This is because more and

more data domains are being converted to the stream

scenario with advances in hardware technology.

Cross-references
▶Association Rule Mining on Streams

▶Clustering on Streams

▶Data Stream

Recommended Reading
1. Aggarwal C.C. (ed.). Data Streams: Models and Algorithms.

Springer, Berlin Heidelberg, New York, 2007.

2. Domingos P. and Hulten G. Mining high speed data streams.

In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2000, pp. 71–80.

3. James M. Classification Algorithms. Wiley, New York, 1985.

342C Classification Tree
Classification Tree

▶Decision Tree Classification
Classification Trees

▶Decision Trees
Classifier Combination

▶ Ensemble
Client-Server DBMS. Figure 1. Client-server reference

architecture.
Client-Server DBMS

M. TAMER ÖZSU

University of Waterloo, Waterloo, ON, Canada

Definition
Client-server DBMS (database management system)

refers to an architectural paradigm that separates

database functionality between client machines and

servers.

Historical Background
The original idea, which is to offload the database

management functions to a special server, dates back

to the early 1970s [1]. At the time, the computer on

which the database system was run was called the

database machine, database computer, or backend com-

puter, while the computer that ran the applications

was called the host computer. More recent terms for

these are the database server and application server,

respectively.

The client-server architecture, as it appears today, has

become a popular architecture around the beginning

of 1990s [2]. Prior to that, the distribution of database

functionality assumed that there was no functional

difference between the client machines and servers (i.e.,

an earlier form of today’s peer-to-peer architecture).
Client-server architectures are believed to be easier to

manage than peer-to-peer systems, which has increased

their popularity.
Foundations
Client-server DBMS architecture involves a number of

database client machines accessing one or more data-

base server machines. The general idea is very simple

and elegant: distinguish the functionality that needs to

be provided and divide these functions into two clas-

ses: server functions and client functions. This pro-

vides a two-level architecture that makes it easier to

manage the complexity of modern DBMSs and the

complexity of distribution.

In client-server DBMSs, the database management

functionality is shared between the clients and the

server(s) (Fig. 1). The server is responsible for the

bulk of the data management tasks as it handles

the storage, query optimization, and transaction man-

agement (locking and recovery). The client, in addition

Client-Server DBMS. Figure 2. Database server

approach.

Client-Server DBMS C 343

C

to the application and the user interface, has a DBMS

clientmodule that is responsible for managing the data

that are cached to the client, and (sometimes) manag-

ing the transaction locks that may have been cached

as well. It is also possible to place consistency checking

of user queries at the client side, but this is not com-

mon since it requires the replication of the system

catalog at the client machines. The communication

between the clients and the server(s) is at the level of

SQL statements: the clients pass SQL queries to the

server without trying to understand or optimize

them; the server executes these queries and returns

the result relation to the client. The communication

between clients and servers are typically over a com-

puter network.

In themodel discussed above, there is only one server

which is accessed by multiple clients. This is referred to

as multiple client-single server architecture [3]. There

are a number of advantages of this model. As indicated

above, they are simple; the simplicity is primarily

due to the fact that data management responsibility

is delegated to one server. Therefore, from a data

management perspective, this architecture is similar

to centralized databases although there are some (im-

portant) differences from centralized systems in the

way transactions are executed and caches are managed.

A second advantage is that they provide predictable

performance. This is due to the movement of non-

database functions to the clients, allowing the server

to focus entirely on data management. This, however,

is also the cause of the major disadvantage of client-

server systems. Since the data management functional-

ity is centralized at one server, the server becomes a

bottleneck and these systems cannot scale very well.

The disadvantage of the simple client-server sys-

tems are partially alleviated by a more sophisticated

architecture where there are multiple servers in the

system (the so-called multiple client-multiple server

approach). In this case, two alternative management

strategies are possible: either each client manages its

own connection to the appropriate server or each client

knows of only its ‘‘home server’’, which then commu-

nicates with other servers as required. The former

approach simplifies server code, but loads the client

machines with additional responsibilities, leading to

what has been called ‘‘heavy client’’ systems. The latter

approach, on the other hand, concentrates the data

management functionality at the servers. Thus, the
transparency of data access is provided at the server

interface, leading to ‘‘light clients.’’

The integration of workstations in a distributed

environment enables an extension of the client-server

architecture and provides for a more efficient function

distribution. Application programs run onworkstations,

called application servers, while database functions

are handled by dedicated computers, called database

servers. The clients run the user interface. This leads to

the present trend in three-tier distributed system archi-

tecture, where sites are organized as specialized servers

rather than as general-purpose computers (Fig. 2).

The application server approach (indeed, a n-tier

distributed approach) can be extended by the introduc-

tion of multiple database servers and multiple applica-

tion servers, as can be done in client-server architectures.

In this case, it is common for each application server to

be dedicated to one or a few applications, while database

servers operate in the multiple server fashion discussed

above.

Key Applications
Many of the current database applications employ either

a two-layer client-server architecture of the three-layer

application-server approach.

344C Clinical Classifications
Cross-references
▶DBMS Architecture

Recommended Reading
1. Canaday R.H., Harrisson R.D., Ivie E.L., Rydery J.L., and

Wehr L.A. A back-end computer for data base management.

Commun. ACM, 17(10):575–582, 1974.

2. Orfali R., Harkey D., and Edwards J. Essential Client/Server

Survival Guide, Wiley, New York, 1994.

3. Özsu M.T. and Valduriez P. Principles of Distributed

Database Systems, 2nd edn., Prentice-Hall, Englewood Cliffs,

NJ, 1999.
Clinical Classifications

▶Clinical Ontologies
Clinical Content Database

▶Clinical Knowledge Repository
Clinical Content Registry

▶Clinical Knowledge Repository
Clinical Content Repository

▶Clinical Knowledge Repository
Clinical Data Acquisition, Storage
and Management

CHIMEZIE OGBUJI

Cleveland Clinic Foundation, Cleveland, OH, USA

Synonyms
Electronic data capture; Case report forms; Clinical

data management systems
Definition
The management of clinical data for supporting

patient care and for supporting retrospective clinical

research requires a means to acquire the clinical data

and a repository that stores the data and provides

the functions necessary for managing them over their

lifetime. Typically, patient data are collected ‘‘at the

point of care’’ (i.e., onsite where health care is being

provided) and entered into a patient record system [2].

Data entry is typically the first line of precaution

for maintaining a certain amount of quality on the

data collected. Subsequently, a representative from

an externally sponsoring organization or authorized

personnel from within the health care institution

then extracts a select set of medical record data into

a Clinical Data Management System (CDMS). The

entries in such systems are often referred to as second-

ary patient records since they are derived from a pri-

mary patient record and are used by personnel who are

not involved in direct patient care [2]. These systems

are also often referred to as patient registries.

The study committee of the Institute of Medicine

(IOM) defined [2] a computer-based patient record

(CPR) as

" an electronic patient record that resides in a system

specifically designed to support users by providing

accessibility to complete and accurate data, alerts,

reminders, clinical decision support systems, links to

medical knowledge, and other aids.

Such systems are also often referred to as Electronic

Health Records (EHRs). The committee also defined

a primary patient record as one used by health care

professionals while providing patient care services

to review patient data or document their own obser-

vations, actions, or instructions [2]. Finally, the com-

mittee emphasized the distinction between clinical

data and the systems that capture and process this

data by defining a patient record system as

" the set of components that form the mechanism by

which patient records are created, used, stored, and

retrieved.

A CDMS is the repository for the management of the

data used for clinical studies or trials. One of the core

services provided by a CDMS is to facilitate the identi-

fication (and correction) of errors due to human entry

as well as errors that existed in the source from which

Clinical Data Acquisition, Storage and Management C 345

C

the data was gathered. Data completeness implies that

CDMS will accommodate an expected range and com-

plexity for the data in the system [2]. In addition, the

CDMS can employ the use and enforcement of one or

more vocabulary standards.

Finally, a CDMS will also provide services for

querying the data as well as generate reports from the

data. The generated reports and results of such queries

are typically transmitted to a centralized authority

or normalized for use by statistical analysis tools.
Historical Background
Virtually every person in the United States who has

received health care in the United States since 1918

has a patient record [2]. Most of these records consist

of structured paper forms with sections that con-

sist solely of narrative text. However, conventional

patient records can also appear in other forms such

as scanned media, microfilm, optical disk, etc.

They are created and used most frequently in health

care provider settings. However, their use also extends

to other facilities such as correctional institutions,

the armed forces, occupational health programs, and

universities [2].

The process of recording patient care information

has primarily consisted of entry into a paper patient

record. For the purpose of a clinical trial or study,

data are manually transcribed into a paper Case

Report Form (CRF). CRFs are typically in the form

of a questionnaire formulated to collect informa-

tion specific to a particular clinical trial. The ICH

Guidelines for Good Clinical Practice define [4] the

CRF as:

" A printed, optical, or electronic document designed to

record all of the protocol required information to be

reported to the sponsor on each trial subject.

CRFs are then collected by a representative from the

sponsoring organization and manually entered into a

CDMS. This secondary transcription is often called

double data entry. In some cases, Optical Character

Recognition (OCR) is used to semi-automate the

transcription from a CRF into a CDMS [1].

Traditionally, clinical data management systems

consist of infrastructure built on top of relational

database management systems. Depending on the

nature of the requirements for the creation of analysis
data sets for biostatisticians, accuracy of the data,

and speed of data entry, a wide spectrum of database

management or spreadsheet systems are used as the

underlying medium of storage for the CDMS.

Good database design and proper application

of relational model theory for normalizing the data

is typically used to ensure data accuracy. Traditional

relational query languages such as SQL are used to

identify and extract relevant variables for subsequent

analysis or reporting purposes.
Foundations

Electronic Data Capture

There is a slow, but steady move by pharmaceutical

companies towards the adoption of an electronic

means of capturing patient record information directly

from the source and at the point of care into an

electronic system that submits the data relevant to

the trial to the sponsor or to other consumers of

electronic patient record data. This new shift of em-

phasis from paper to a direct electronic system is often

referred to (in the health care industry) as Electronic

Data Capture (EDC) [3].
Infrastructure and Standards for Data Exchange

Once patient record data are collected and stored in

an electronic information system, the increasing need

to transfer the machine-readable data to external

systems emphasizes the importance of standardized

formats for communication between these disparate

systems [2]. Efforts to standardize a common for-

mat for communication between health care systems

and other external consumers of health care data

have settled on the adoption of Extensible Markup

Language (XML) as the primary data format for the

transmission of Health Level 7 (HL7) messages.

HL7 is an organization with a mission to develop

standards that improve the delivery of care, optimize

the management of workflow, reduce ambiguity in

clinical terminology and facilitate efficient transfer of

knowledge between the major stakeholders.
Document Models and Management Systems

As its name implies, XML is a markup language for

describing structured data (or documents) in a manner

346C Clinical Data Acquisition, Storage and Management
that is both human- and machine-readable. It can be

extended to support users who wish to define their

own vocabularies. It is meant to be highly reusable

across different information systems for a variety

of purposes. It is recommended by the World Wide

Web Consortium (W3C) and is a free and open

standard.

XML is at the core of an entire suite of technologies

produced by the W3C that includes languages for

querying XML documents as well as describing their

structure for the purpose of validating their content.

This suite of technologies is meant to serve as infra-

structure for a contemporary set of information

systems each known more broadly as a Document

Management System (DMS).
Common Components of Information Systems

Like most information systems, document manage-

ment systems are comprised of a particular data

model (XML in this case), one or more query lan-

guages, and a formal processing model for systems

that wish to support queries written in language

against the underlying data. Document management

systems (and information systems in general) typically

also offer security services that ensure limited access to

the data. This is particularly important for clinical data

management systems.

With respect to the kind of services they provide for

the systems that are built on top of them (such as

clinical data management systems), document man-

agement systems are very much like relational database

management systems. However, whereas relational

database management systems have an underlying

relational model that is tabular and rigid, document

management systems have a data model that is hierar-

chical with data elements that can be extended to

support new terminology over the life of the data.
Text-Oriented Information Systems

Most modern computer-based patient record systems

mainly adopt information systems with hierarchical,

relational, or text-oriented data models. Text-based

information systems typically store their content pri-

marily as narrative text and often employ natural

language processing for extracting structured data for

transcription into a clinical data management system.

Querying such systems usually involves keyword-based

searches that use text indexes that are used to associate
words with the sections of narrative in which they can

be found.
Key Applications
Electronic data capture and clinical data management

systems constitute the majority of the infrastructure

necessary in the overall process of clinical research from

the point of interaction with primary patient records all

the way to the analysis of the curated clinical research

data. The sections below describe the major areas where

their application makes a significant difference.
Electronic Data Collection Options

There are a variety of ways in which data can be

acquired electronically for transcription into a clinical

data management system. The most desired means is

one where the data are directly retrieved electronically

from an existing source such as the primary patient

record. This method is often referred to as single entry

[1]. It requires that the primary patient record adopt

or align with a set of consistent format standards such

that they can facilitate the support of primary care

as well as reuse for the purpose of (unanticipated)

clinical research. Unfortunately the lack of adoption

of computer-based patient records remains a primary

impediment to this more direct means of acquiring

clinical data [2,3].

Alternatively, clinical data can be transcribed from

a primary patient record into a secondary patient

record using some form of an electronic user interface

on a particular device. Typically, such user interfaces

are either web browser-based (i.e., they are built on top

of an existing web browser such as Internet Explorer or

Firefox) or they are written as independent applica-

tions that are launched separately. The latter approach

is often referred to as a thick-client system [6].
Patient Registries

The set of functions associated with a secondary

computer-based patient record system is often adopted

from the underlying information system. Modern doc-

ument and relational database management systems

are equipped with a wide spectrum of capabilities

each of which is directly relevant to the needs of

users of these systems. This includes: content organi-

zation, archival, creation of documents, security, query

services, disaster recovery, and support for web-based

user interfaces.

Clinical Data Acquisition, Storage and Management C 347

C

Clinical Workflow Management

Equally important to the clinical data is the manage-

ment of the pattern of activity, responsibilities, and

resources associated with a particular clinical study

or trial. These patterns are often referred to as work-

flow. Orchestrating the overall process can also have a

significant impact on the success of a clinical study.

Clinical data management systems sometimes have off-

the-shelf capabilities for managing workflow. These

usually support some amount of automation of the

workflow process. Document management systems

that include capabilities for building customized appli-

cation are well-suited for supporting workflows that

are either specific to a particular study protocol or

capable of supporting multiple (or arbitrary) protocols.

Quality Management, Report Generation, and Analysis

Finally, document management and relational data-

base management systems include capabilities for

monitoring error in the data collected. This is often

supported through the application of a set of common

constraints that are relevant to the research protocol.

Typically, these systems have an automated mechanism

for indicating when the underlying data does not

adhere to the constraints specified.

In addition, document management and relational

database management systems include services for

generating reports and extracting variables for statisti-

cal analysis.

Future Directions
Modern information management systems are adopt-

ing standards for representation formats that push

the envelope of machine-readability. In particular, the

W3C has recently been developing a suite of technol-

ogies that build on the standards associated with the

World Wide Web and introduce a formal model for

capturing knowledge in a manner that emphasizes

the meaning of terms rather than their structure.

Such approaches to modeling information are often

referred to as knowledge representation or conceptual

models. This particular collection of standards is com-

monly referred to as semantic web technologies [5].

Semantic web technologies are built on a graph-

based data model known as the Resource Description

Framework (RDF) as well as a language for describing

conceptual models for RDF data known as Ontology

Web Language (OWL). RDF leverages a highly-

distributable addressing and naming mechanism
known as Uniform Resource Identifiers (URIs) that is

the foundation of the current web infrastructure.

Semantic web technologies also include a formal

mechanism for rendering or transforming XML docu-

ment dialects into RDF known as Gleaning Resources

Descriptions from Dialects of Languages (GRDDL). Fi-

nally a common query language has been defined for

accessing data expressed in RDF known as SPARQL.

The Institute of Medicine has indicated [2] that the

flexibility of computer-based patient records is primar-

ily due to their adoption of a data dictionary that

can be expanded to accommodate new elements. In

addition, the IOM has identified [2] the following

as crucial to the evolution of content and standard

formats in computer-based patient record systems:

� The content of CPRs must be defined and contain a

uniform core set of data elements.

� Data elements must be named consistently via the

enforcement of some form of vocabulary control.

� Format standards for data exchange must be devel-

oped and used.

In addition, the IOM’s study committee identified the

ability for CPRs to be linked with other clinical records

as a critical attribute of a comprehensive computer-

based patient record. The combination of these obser-

vations is a strong indication that in the future, clinical

data management systems will be built on informa-

tion management systems that adopt semantic web

technologies in order to better meet the growing

needs of the management of clinical research data.

Finally, a new generation of technologies for build-

ing declarative web applications will lower the techno-

logical barrier associated with the kind of user interfaces

necessary for the adoption of electronic data capture

methods at health care institutions. In particular, an

XML-based technology known as XForms is well posi-

tioned to have a significant impact on the front end

of the clinical data pipeline (data collection).

XForm applications are web form-based, indepen-

dent of the device on which they are deployed and use

XML as the data model of the underlying content. This

approach has strong correspondence with the current

direction of clinical data exchange standards with the

adoption of XML as the format for communication

between health care systems.

In the near future, lightweight devices (such as Tab-

let PCs) will connect to remote, distributed computer-

based patient record systems over a secure web-based

348C Clinical Data and Information Models
network protocol. Electronic data capture will be imple-

mented by XForm applications that run in a browser

and compose XML documents that represent sections of

a computer-based patient record. These documents will

adhere to a standard document format for the exchange

of medical records such as the HL7 Clinical Document

Architecture (CDA). The HL7 CDA is an XML-based

document markup standard that specifies the structure

and semantics of clinical documents for the purpose

of exchange.

These documents will be securely transmitted direc-

tly into a primary computer-based patient record which

employs XML as its core data model and uses GRDDL

to also store an RDF representation of the document

that conforms to a formal, standard ontology (expressed

in OWL) that describes the meaning of the terms.

This ontology provides a certain degree of logical con-

sistency that facilitates ad hoc analysis through the use

of logical inference.

Patients that meet the criteria for a particular

research protocol will be identified by a SPARQL

query that is dispatched against the patient record

system, which uses terminology easily understood by

the investigators themselves (rather than an intermedi-

ary database administrator). These patient records will

then be transmitted directly into a clinical data man-

agement system (or patient registry) that will include

the facilities for managing the workflow associated

with the relevant research protocol. These facilities

will be implemented as web applications built on the

same underlying information management systems as

those used by the primary computer-based patient

records.

Cross-references
▶Clinical Content Management

▶Clinical Data Quality and Validation

▶Data warehousing and Quality Management for

Clinical Practice

▶ Electronic Health Record

▶ Life Cycles and Provenance

▶Versioning

Recommended Reading
1. Anisfeld M.H. and Prokscha S. Practical Guide to Clinical Data

Management. CRC Press, Boca Raton, FL, 1999.

2. Committee on Improving the Patient Record, Institute of

Medicine. The computer-based patient record: an essential

technology for health care (revised edition). National Academies

Press, 1997.
3. Lori A. and Nesbitt. Clinical Research: What It Is and How It

Works. Jones and Bartlett Publishers, Sudbury, MA, 2003.

4. Rondel R.K., Varley S.A., and Webb C.F. Clinical Data Manage-

ment. Wiley, Chichester, 2000.

5. Ruttenberg A., Clark T., Bug W., Samwald M., Bodenreider O.,

Chen H., Doherty D., Forsberg K., Gao Y., Kashyap V., Kinoshita

J., Luciano J., Marshall M.S., Ogbuji C., Rees J., Stephens S.,

Wong G.T., Elizabeth Wu, Davide Zaccagnini, Tonya Hongser-

meier, Neumann E., Herman I., and Cheung K.-H. Advancing

translational research with the Semantic Web. BMC Bioinfor-

matics, 8(Suppl. 3), 2007.

6. Wilson D., Pace M.D., Elizabeth W., and Staton, M. S. T. C.

Electronic Data Collection Options for Practice-Based Research

Networks. Ann. Fam. Med., 3:S2–S4, 2005.
Clinical Data and Information
Models

CHINTAN PATEL, CHUNHUA WENG

Columbia University, New York, NY, USA

Definition
A formal representation of the clinical data using

entities, types, relationships and attributes. The abs-

traction of clinical data into an information model

enables reusability and extensibility of the database to

satisfy different application needs and accommodate

changes in the underlying data.

Key Points
The clinical domain is a data rich environment with

multitude of different data entities ranging from several

thousands of laboratory tests, procedures or medica-

tions that change often with new ones getting added

almost every day. Furthermore these data are generated

from different information systems or devices (often

from different vendors) in the hospital. Integrating

such wide variety of data streams into a common infor-

mation model is a challenging task.

Most healthcare databases use generic information

models [3,4] such as event-component models with an

Entity-Attribute-Value [5] (EAV) schema to represent

the data (see Fig. 1). The advantage of using a generic

information model is to accommodate the data het-

erogeneity and extensibility. Generally, an external ter-

minology or vocabulary is used in conjunction with a

generic information model to represent the clinical

domain (laboratory tests, medications and so on)

and the healthcare activities, for example, LOINC is a

Clinical Data and Information Models. Figure 1. The event component information model.

Clinical Data Quality and Validation C 349

C

standard vocabulary for representing laboratory data

or SNOMED CT for healthcare activities.

Various information models have been proposed

towards standardizing the representation of clinical

data. The goal of standardizing the information model

is to facilitate exchange, sharing and reuse of clinical

data by different systems locally as well as nationally.

Following are some current standardized models:

HL7 Reference Information Model: The HL7

standards organization [2] has developed a Reference

Information Model (RIM) to share consistent meaning

of healthcare data beyond local context. The RIM

specifies a set of abstract bases classes Entity, Role, Partic-

ipation and Act, which contain specific classes/attributes

such as Person, Organization, Patient, Provider, Intent,

Observation and so on. This model is used to create

concrete concepts by combining the RIM types, for ex-

ample, elevated blood pressure would be represented

in RIM as class = Observation with code = Finding

of increased blood pressure (SNOMED#241842005),

mood = Event, interpretation code = abnormal

(HL7#A), target site = heart (LOINC#LP7289). Note

that standardized terminology codes (SNOMED CT

and LOINC) are used to represent specific findings and

modifiers. An implementation ofHL7 RIM basedmodel

over a relational database schema is described here [1].

openEHR Reference Model: The openEHR specifica-

tion [6] (developed largely by the institutions in EU and

Australia) provides informationmodels for the electron-

ic health record (EHR), demographics, data structures,

integration and so on. The openEHR EHRmodel repre-

sents various facets of EHR such as clinician/patient

interaction, audit-trailing, technology/data format inde-

pendence and supporting secondary uses. The openEHR

project uses the notion of archetypes that enable domain

experts to formally model a domain concept (or an

aggregation of concepts), corresponding constraints and

other compositions, for example, an archetype on blood

pressure measurement consists of systolic, diastolic mea-

surements and units with other clinically relevant infor-

mation such as history.
Recommended Reading
1. Eggebraaten T.J., Tenner J.W., and Dubbels J.C. A health-care

data model based on the HL7 reference information model.

IBM Syst. J., 46(1):5–18, 2007.

2. HL7 Reference Information Model. Available at: http://www.hl7.

org/ (Accessed April 18, 2008).

3. Huff S., Rocha R., Bray B., Warner H., and Haug P. An

event model of medical information representation. J. Am.

Med. Inform. Assoc., 2(2):116–134, 1995.

4. Johnson S. Generic data modeling for clinical repositories.

J. Am. Med. Inform Assoc., 3(5):328–367, 1996.

5. Nadkarni P., Marenco L., Chen R., Skoufos E., Shepherd G.,

and Miller P. Organization of heterogeneous scientific data

using the EAV/CR representation. J. Am. Med. Inform. Assoc.,

6(6):478–571, 1999.

6. openEHR Reference Information Model. Available at: http://

www.openehr.org/ (Accessed April 18, 2008).
Clinical Data Management Systems

▶Clinical Data Acquisition, Storage and Management
Clinical Data Quality and Validation

CHINTAN PATEL, CHUNHUA WENG

Columbia University, New York, NY, USA

Definition
Clinical data quality is defined as the accuracy and

completeness of the clinical data for the purposes

of clinical care, health services and other secondary

uses such as decision support and clinical research.

The quality of clinical data can be achieved by the

standardization, inspection and evaluation of the data

generating processes and tools [2].

Key Points
The term data quality can potentially have different

meanings or interpretation based on the domain or the

application using the data [1]. Even within the context

http://www.hl7.org/
http://www.hl7.org/
http://www.openehr.org/
http://www.openehr.org/

350C Clinical Decision Support
of clinical databases, there exists a multitude of different

data types (administrative data, procedure data, labora-

tory data and so on) thatmay beused for several different

applications such as clinical report generation, billing

or research. The major components of clinical data

quality can be broadly characterized as follows:

Accuracy

Clinical data are often generated by automated systems

(such as lab equipment) or manually entered by clin-

icians (notes). These data generating processes are

prone to errors that result in incorrect data being

stored in the database. The severity of errors can vary

significantly, for example, a minor misspelling in pat-

ient history note versus a prescription error in drug

dosage order can lead to drastically different outcomes

in terms of patient care. The accuracy of clinical data is

defined as the proportion of correct data (truly repre-

senting the actual patient condition or measurement)

in the clinical database. The accuracy of clinical data

depends on the enforcement of well-defined data entry

standards and protocols.

Completeness

It is defined as the availability of data elements in

a clinical database that are necessary to accomplish a

given task, for example, a clinical trial recruitment

application with detailed eligibility criteria would

require information from the clinical notes in addition

to coded problem list data. The completeness of

a patient record is critical for a clinician to choose a

most appropriate treatment plan for the patient.

The availability of complete patient information is

critical during an emergency condition. In the case

of unavailability of data elements, some applications

tend to substitute data sources, which can lead to

sub-optimal results. Consider for example, a clini-

cal decision support application reusing coarse ICD

(International Classification of Disease) classification

to generate decisions.

Reliability

The notion of ‘‘repeatability’’ – to determine whether

the clinical data generation processes produce consis-

tent data at different times or settings. Hospitals are

a chaotic environment with multiple care providers

taking care of a single patient. It becomes critical

to develop data entry protocols to ensure consistent

representation of patient information in the clinical
database. Often to eliminate the variations across

different users the data entry software systems such as

the EMR (electronic medical record) contain various

checks to ensure the correctness and completeness

of the data elements [3]. The coding of clinical data

using terminologies such as ICD has to be done in a

consistent fashion to facilitate applications that require

data integration or comparative analysis.

Maintaining quality in clinical databases is a con-

tinuous process requiring strong commitment from

different stakeholders involved. The amount of elec-

tronic biomedical data generated is growing at an

exponential rate. Developing high quality clinical data-

bases can have significant implications for the appli-

cations reusing the data.

Cross-references
▶Quality and Trust of Information Content and

Credentialing

Recommended Reading
1. Arts D., De Keizer N., and Scheffer G. Defining and improving

data quality in medical registries: a literature review, case study,

and generic framework. J. Am. Med. Inform. Assoc., 9(6):

600–611, 2002.

2. Black N. High-quality clinical databases: breaking down

barriers. Lancet, 353(9160):1205–1211, 2006.

3. Hogan W. and Wagner M. Accuracy of data in computer-

based patient records. J. Am. Med. Inform. Assoc., 4(5):

342–397, 1997.
Clinical Decision Support

ADAM WRIGHT

Partners HealthCare, Boston, MA, USA

Synonyms
CDS; Decision support

Definition
Clinical Decision Support systems are computer sys-

tems which assist humans in making optimal clinical

decisions. While clinical decision support systems are

most often designed for clinicians, they can also be

developed to assist patients or caregivers. Common

examples of clinical decision support systems include

drug-drug interaction checks, dose range checking for

medication and preventive care reminders.

Clinical Decision Support C 351

C

Historical Background
The first clinical decision support systemwas described

in 1959 by Robert Ledley and Lee Lusted [6] in their

paper ‘‘Reasoning foundations of medical diagnosis;

symbolic logic, probability, and value theory aid our

understanding of how physicians reason.’’ Ledley and

Lusted described an analog computer used to sort

cards containing a diagnosis and a series of punches

which represented symptoms. By selecting the cards

which matched the symptoms present in a given case a

clinician could develop a possible set of diagnosis.

In 1961, Homer Warner [15] described a clinical

decision support system for diagnosing congenital

heart defects. The system was developed around a

contingency table that mapped clinical symptoms to

forms of congenital heart disease. A physician would

input the patient’s symptoms and findings from the

clinical exam and other studies into the system, which

would then proceed to suggest the most probable

diagnoses based on the contingency table.

In the 1970s, Edward Shortliffe developed the well-

known MYCIN system for antibiotic therapy. MYCIN

was an expert system with a large knowledge base of

clinical rules [12]. Users of MYCIN would input

known facts about their patient, and MYCIN would

apply them to the rule base using backward chaining to

yield a probable causative agent for infections as well as

suggestions for antibiotic therapy.

While the systems described so far all focused on a

specific area of medicine, the INTERNIST-I system,

developed by Randy Miller, Harry Pople and Jack

Myers [8] targeted the broad domain of diagnosis in

internal medicine. The INTERNIST-I knowledge base

consisted of a large set of mappings between symptoms

and diagnoses. These links were scored along three

axes: evoking strength (the likelihood that a patient

has a diagnosis given a particular symptom), frequency

(how often a symptom is present given a particular

diagnosis) and import (how critical it is that a particu-

lar diagnosis be considered given that it is possible or

probable based on a set of symptoms). Octo Barnett’s

DXplain system for diagnostic decision support was

developed around the same time as INTERNIST-I.

The earliest decision support systems were stan-

dalone, but the second wave in clinical decision

support, beginning in the 1970s, was the integration

of decision support systems into broader clinical infor-

mation systems. The first two examples of this integra-

tion were the Health Evaluation through Logical
Processing (HELP) system at the University of Utah

and LDS Hospital, and the Regenstrief Medical

Records System (RMRS) developed at the Regenstrief

Institute in Indianapolis. The HELP system, which

was used for many facets of patient care, had support

for the development of a variety of kinds of decision

support, and was especially well known for its Bayesian

reasoning modules. The RMRS was developed,

from the ground up, with a large knowledge base of

clinical care rules. Both HELP and RMRS are in active

use today.

Most current commercially available clinical infor-

mation systems have some support for clinical decision

support, and efforts to standardize representation and

enable the sharing of decision support content are

ongoing.

Foundations
Development of clinical decision support systems

entails a variety of issues. The first step in develop-

ing any clinical information system is to identify an

important clinical target, and then consider interven-

tions. The most critical database systems related issues

are knowledge representation, storage and standards.

Issues of Knowledge Representation

Once a desired clinical decision support target has

been identified and relevant medical knowledge has

been collected, the knowledge must somehow be repre-

sented. Knowledge in clinical decision support systems

has been represented in a variety of ways, the most

common being if-then rules, expert systems, probabi-

listic and Bayesian systems and reference content.

Perhaps the simplest form of knowledge is if-then

rules. Much of clinical decision support content can

be represented this way (for example ‘‘if the acetamin-

ophen dose is 10 g per day, alert the user that this is too

high’’ or ‘‘if the patient is over 50 years of age and has

not had a sigmoidoscopy, recommend one’’). These

rules are frequently designed to be chained together,

although generally in a fixed and predetermined pattern.

More complex than simple if-then rules are expert

systems. These systems are composed of large knowl-

edge bases which contain many intermediate states and

assertions. Like if-then rules, these rules are composed

of an antecedent, a consequent and an implication.

However, expert systems are generally designed to elicit

emergent behavior from extensive chaining including,

in many cases, goal-directed backward chaining.

352C Clinical Decision Support
Probabilistic and Bayesian systems share much in

common with if-then rules. However, instead of mod-

eling knowledge and clinical states as deterministic

values, they use probabilities. By combining these

probabilities with knowledge provided by the user,

these systems can estimate the likelihood of various

diagnostic possibilities, or the relative utility of dif-

ferent therapeutic modalities. It is important to note

that many expert systems employ probabilistic or

Bayesian reasoning.

A simpler form of knowledge representation is

reference knowledge designed to be read by a human.

This form of decision support provides information to

the user but expects him or her to formulate a plan of

action on his or her own. In many cases knowledge,

such as clinical guidelines, can be equivalently modeled

as rules or as reference content. Reference content is

simpler to construct, but it sometimes can not be as

proactive as rule-based content.

Storage of Clinical Knowledge in Database Systems

A key challenge for developers of database systems

for clinical decision support is selecting the optimal

strategy for storing clinical knowledge in a database.

This selection has many tradeoffs among performance,

space, maintainability and human readability.

Rule based decision support content is often stored

as compiled or interpreted code and, when properly

integrated into clinical information support systems,

can be very efficient. However, many systems instead

choose to store rules in some intermediate form, often

indexed according to their trigger (a clinical event,

such as a new prescription, which causes decision

support rules to fire). A chained hash table with

these triggers as its keys and decision support rules to

invoke as values can be a particularly efficient

representation.

In cases of particularly high transaction volume,

where performance is important and the number of

rules to evaluate is large, more sophisticated storage

and processing mechanisms can be used. One of the

most effective in terms of performance (although not

necessarily in terms of space) is Charles Fogarty’s Rete

algorithm. The Rete algorithm is an efficient network-

based method for pattern matching in rule-based

systems.

Because it is not rule based, reference knowledge

requires a different set of storage and retrieval strate-

gies, based largely on the principles of information
retrieval. In general, these strategies employ one or

some combination of full-text search and metadata

queries.

Standards for Sharing Clinical Decision Support

Content between Database Systems

In addition to the aforementioned issues of internal

representation of clinical knowledge, there are also

issues relating to the sharing of clinical decision sup-

port content between systems. Several standards for

sharing such content have been proposed, beginning

with Arden Syntax, a standard for event-driven rule-

based decision support content. Other standards, such

as Guideline Interchange Format (GLIF) and the related

expression language GELLO exist to represent more

complex forms of clinical knowledge. While construc-

tion of standards for representing clinical knowledge

may seem straightforward, issues relating to termino-

logy and a reference model for patient information have

proven formidable.

An alternate approach to strict structured knowl-

edge representation formalisms for sharing clinical

decision support content is the use of services. Sev-

eral recent efforts, including SEBASTIAN and SANDS

have defined a set of interfaces and, in the case of

SANDS, patient data models to help overcome prior

difficulties in sharing decision support content.

Key Applications
Applications of clinical decision support can be cate-

gorized along a variety of axes, including intervention

type (alert, reminder, reference information, etc.), clin-

ical purpose (diagnosis, therapy, prevention), disease

target (diabetes, hypertension, cancer, etc.) and user

(physician, nurse, patient, etc.).

Several clinical decision support systems have been

described in the historical background section. Addi-

tional significant systems include:

� Morris Collen’s system for ‘‘Automated Multiphasic

Screening And Diagnosis.’’

� Howard Bleich’s system for diagnosis and treat-

ment of acid-base disorders.

� A system for the diagnosis and management of ab-

dominal complaints developed by F.T. de Dombal.

� The ATTENDING system developed by PerryMiller

and designed to critique and suggest improvements

to anesthesia plans.

� A system for ventilator management by Dean Sittig.

Clinical Document Architecture C 353

C

� A blood product ordering critiquing system by

Reed Gardner.

� An antibiotic advising system by Scott Evans.

Experimental Results
There is a long experimental tradition in the field of

clinical decision support, and many systems have

shown strong results, even for the earliest systems.

Warner’s system for congenital heart defects was com-

pared favorably to experienced cardiologists, MYCIN

proposed clinically appropriate antibiotic therapy 75%

of the time (and got better as more rules were added)

and INTERNIST performed about as well as average

doctors at diagnosis.

Just as significant is the effect that such systems

have on physician practice. In a landmark paper,

Clem McDonald described the results of an experi-

mental trial performed within the RMRS system. In

the trial, half of the physician users of RMRS received

patient care suggestions based on the knowledge base

of rules, while half did not. Physicians who received the

suggestions carried them out 51% of the time, while

physicians who did not receive suggestions performed

the actions that would have been suggested only 22%

of the time. When the reminder system was turned off,

physician performance returned almost immediately

to baseline.

There have been several significant systematic

reviews of clinical decision support systems. A 2005

review by Amit Garg [2] found that decision support

systems were associated with improved provider per-

formance in 64% of the controlled trials reviewed.

Another systematic review by Ken Kawamoto found

that decision support systems improved performance

in 68% of trials, and that systems designed to the

highest criteria improved performance in 94% of trials.

Cross-references
▶Clinical Data and Information Models

▶Clinical Prediction Rule

Recommended Reading
1. Bates D.W., Kuperman G.J., and Wang S., et al. Ten command-

ments for effective clinical decision support: making the practice

of evidence-based medicine a reality. J. Am. Med. Inform.

Assoc., 10(6):523–530, 2003.

2. Garg A.X., Adhikari N.K., and McDonald H., et al. Effects of

computerized clinical decision support systems on practitioner

performance and patient outcomes: a systematic review. Jama,

293(10):1223–1238, 2005.
3. Kawamoto K., Houlihan C.A., Balas E.A., and Lobach D.F.

Improving clinical practice using clinical decision support

systems: a systematic review of trials to identify features critical

to success. BMJ, 330(7494):765, 2005.

4. Kawamoto K. and Lobach D.F. Design, implementation, use, and

preliminary evaluation of SEBASTIAN, a standards-based web

service for clinical decision support. In Proc. AMIA Symposium,

2005, pp. 380–384.

5. Kuperman G.J., Gardner R.M., and Pryor T.A. HELP:

A Dynamic Hospital Information System. Springer, New York,

1991.

6. Ledley R.S. and Lusted L.B. Reasoning foundations of medical

diagnosis; symbolic logic, probability, and value theory aid

our understanding of how physicians reason. Science,

130(3366):9–21, 1959.

7. McDonald C.J. Protocol-based computer reminders, the quality

of care and the non-perfectability of man. N. Engl. J. Med.,

295(24):1351–1355, 1976.

8. Miller R.A., Pople H.E. Myers J.D. Internist-1, an experimental

computer-based diagnostic consultant for general internal med-

icine. N. Engl. J. Med., 307(8):468–476, 1982.

9. Osheroff J.A., Pifer E.A., Sittig D.F., Jenders R.A., and Teich J.M.

Improving Outcomes with Clinical Decision Support: an

Implementers’ Guide. HIMSS, Chicago, 2005.

10. Osheroff J.A., Teich J.M., Middleton B., Steen E.B., Wright A.,

and Detmer D.E. A roadmap for national action on clinical deci-

sion support. J. Am. Med. Inform. Assoc., 14(2):141–145, 2007.

11. Sittig D.F., Wright A., and Osheroff J.A., et al. Grand challenges

in clinical decision support. J. Biomed. Inform., 41(2):

387–392, 2007.

12. Shortliffe E.H., Davis R., Axline S.G., Buchanan B.G., Green C.C.,

and Cohen SN. Computer-based consultations in clinical

therapeutics: explanation and rule acquisition capabilities

of the MYCIN system. Comput. Biomed. Res., 8(4):303–320,

1975.

13. Wright A., Goldberg H., Hongsermeier T., and Middleton B.

A description and functional taxonomy of rule-based decision

support content at a large integrated delivery network. J. Am.

Med. Inform. Assoc., 14(4):489–496, 2007.

14. Wright A., Sittig D.F., SANDS: A service-oriented architecture

for clinical decision support in a National Health Informa-

tion Network. J. Biomed. Inform. (2008), doi:10.1016/j.

jbi.2008.03.001.

15. Warner H.R., Toronto A.F., Veasey L.G., and Stephenson R.

A mathematical approach to medical diagnosis. Application to

congenital heart disease. Jama, 177:177–183, 1961.
Clinical Document Architecture

AMNON SHABO (SHVO)

IBM Research Lab-Haifa, Haifa, Israel

Synonyms
CDA; CDA R1; CDA R2

354C Clinical Document Architecture
Definition
The Clinical Document Architecture (CDA) is a

document markup standard that specifies the structure

and semantics of clinical documents for the purpose

of exchange and share of patient data. The standard

is developed by Health Level Seven (HL7) – a Stan-

dards Development Organization [2] focused on

the area of healthcare. At the time of writing this

entry, two releases of CDA were approved: CDA R1

was approved in 2000 and CDA R2 in 2005. Both

releases are part of the HL7 new generation of stan-

dards (V3), all derived from a core reference informa-

tion model (RIM) that assures semantic consistency

across the various standards such as laboratory,

medications, care provision and so forth. The RIM is

based on common data types and vocabularies, and

together these components constitute the HL7 V3

Foundation that is an inherent part of the CDA stan-

dard specification.

Key Points
Clinical documents such as discharge summaries,

operative notes and referral letters are ubiquitous

in healthcare and currently exist mostly in paper. The

computerized clinical document is similar in purpose

to its paper counterpart and the clinician’s narratives

are a key component of both versions. Narratives are

compositions based on the natural language of the

writer, while computerized structuring of a document

is limited to some computer language. The design of

the CDA standard strives to bridge the gap between

these ‘‘languages’’ especially when it comes to the mix-

ture of structured and unstructured data intertwined

to describe the same phenomena, while addressing

two important goals: human readability and machine-

processability. The drive to structure medical narratives

is also challenging the thin line between art and crafts-

manship in the medical practice [3].

The basic structure of a CDA document consists of a

header and a body. The header represents an extensive

set of metadata about the document such as time

stamps, the type of document, encounter details and

of course the identification of the patient and those who

participated in the documented encounter or service.

While the header is a structured part of the document

and is similar in the two releases of CDA, the body

consists of clinical data organized in sections and
only in CDA R2 it enables the formal representation of

structured data along with narratives [1]. Data is

structured in clinical statements based on entries

such as observations, medication administrations, or

adverse events where several entries are associated into

a compound clinical statement. Nevertheless, only the

narrative parts of the CDA body are mandatory, which

makes CDA easy to adopt if structured data is not yet

available. It is even possible to simply wrap a non-XML

document with the CDA header or create a document

with a structured header and sections containing only

narrative content. The purpose of this design is to en-

courage widespread adoption, while providing an infor-

mation infrastructure to incrementally move toward

structured documents, serving the goal of semantic

interoperability between disparate health information

systems.

Beside text, CDA can also accommodate images,

sounds, and other multimedia content. It can be trans-

ferred within a message and can be understood inde-

pendently, outside the relaying message and its sending

and receiving systems. CDA documents are encoded in

Extensible Markup Language (XML), and they derive

their machine processable meaning from the RIM,

coupled with specific vocabularies.

A CDA document is a collection of information

that is intended to be legally authenticated and has

to be maintained by an organization entrusted with

its care (stewardship). Inherent in the HL7 CDA stan-

dard are mechanisms for dealing with the authen-

tication and versioning of documents so that it can

be used in medical records enterprise repositories as

well as in cross-institutional sharing of personal health

information to facilitate continuity of care.

Cross-references
▶ Electronic Health Record

Recommended Reading
1. Dolin R.H., Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV,

Shabo A. HL7 Clinical Document Architecture, Release 2. J. Am.

Med. Inform. Assoc., 13(1):30–39, 2006.

2. Health Level Seven (HL7) – http://www.hl7.org.

3. Shabo A. Synopsis of the Patient Records Section: Struc-

turing the Medical Narrative in Patient Records – A Further

Step towards a Multi-Accessible EHR. The IMIA 2004

Yearbook of Medical Informatics: Towards Clinical Bioinfor-

matics, 2004.

http://www.hl7.org.

Clinical Event C 355

C

Clinical Event

DAN RUSSLER

Oracle Health Sciences, Redwood Shores, CA, USA

Definition

Vernacular Definition

1. In event planning circles, a ‘‘clinical event’’ is

an event, e.g., meeting or party, attended by clinic-

ians as opposed to administrative or financial

personnel.

Technical Definitions

1. A state transition, normally a ‘‘create’’ or ‘‘update’’

state transition, targeting a record in an electronic

medical record system or one of the systems asso-

ciated with an electronic medical record system.

2. A report generated within a clinical trial that is sub-

sequently evaluated for the presence of an adverse

event by a clinical trial Clinical Event Committee.

Words often confused by use of the term ‘‘Clinical

Event’’ include: Clinical Event (multiple definitions);

Adverse Event; Clinical Act; Patient Event, Information

Event.

The primary technical definition of ‘‘clinical event’’

includes the kind of ‘‘events’’ that are monitored by a

‘‘clinical event monitor’’[1–3] used in synchronous or

asynchronous decision support functions. Examples

of these events include clinical orders, electronic med-

ical record entries, admission, transfer and discharge

notifications, lab results, and patient safety reports.

These events trigger state transitions in an electronic

medical record system or related system.

Typically, once the clinical event monitoring sys-

tem, such as an HL7 Arden Syntax-based system,

discovers a state transition, in the electronic medical

record system, a decision support rule is applied to the

clinical event and related data in order to determine

whether a notification of a person or another system is

required.

Key Points
‘‘Event’’ or ‘‘Action’’ analysis traces its roots to the

work of Aristotle on propositions. Propositions usually

follow the form of Subject-Predicate and, upon analy-

sis, may be found to be ‘‘true’’ or ‘‘false.’’ The classic
example of a proposition is ‘‘Socrates is a man.’’

‘‘Socrates’’ is the ‘‘Subject’’ and ‘‘is a man’’ is the

‘‘Predicate.’’ An analogous proposition in healthcare

is ‘‘Peter has a potassium level of 5.5 mg/dl.’’ Clinical

Events are propositions in healthcare that may be

evaluated themselves by clinicians as ‘‘true’’ or ‘‘false’’

or may be applied in rules that evaluate to true or false.

For example, the creation of a record asserting that

‘‘Peter has a potassium level of 5.5 mg/dl’’ might trigger

a clinical event monitoring system to implement the

rule: ‘‘If potassium level record created, then evaluate if

(‘‘record value’’ >5.0); if ‘‘true,’’ then notify Dr. X.’’

‘‘Event-driven programming’’ as opposed to ‘‘pro-

cedural programming’’ utilizes the same kinds of pred-

icate logic in evaluating state transitions or triggers to

state transitions in a modern computer-programming

environment. Consequently, Clinical Events drive pro-

gramming logic in many modern systems.

The HL7 Reference Information Model (RIM)

describes clinical events; the term ‘‘Act’’ in the RIM

identifies objects that are instantiated in XML com-

munications between systems or in records within the

electronic healthcare systems themselves. These ‘‘Acts’’

correspond to ‘‘clinical events’’ used for monitoring

systems in healthcare. However, in the RIM, ‘‘Event’’

is defined narrowly as an instance of an Act that has

been completed or is in the process of being com-

pleted. Clinical event monitoring systems may also

evaluate HL7 ‘‘Orders or Requests’’ or other kinds

of ‘‘Act’’ instances as events of interest (www.hl7.org).
Cross-references
▶Clinical Observation

▶Clinical Order

▶ Interface Engines in Healthcare

▶ Event Driven Architecture

▶HL7 Reference Information Model

▶ Predicate Logic

▶ Propositions
Recommended Reading
1. Glaser J., et al. Impact of information events on medical care.

HIMSS, 1996.

2. Hripisak G., et al. Design of a clinical event monitor. Comp.

Biomed. Res., 29:194–221, 1996.

3. McDonald C. Action-oriented Decisions in Ambulatory

Medicine. Yearbook Medical Publishers, Chicago, IL, 1981.

http://www.hl7.org

356C Clinical Genetics
Clinical Genetics

▶ Implications of Genomics for Clinical Informatics
Clinical Genomics

▶ Implications of Genomics for Clinical Informatics
Clinical Judgment

▶Clinical Observation
Clinical Knowledge Base

▶Clinical Knowledge Repository
Clinical Knowledge Directory

▶Clinical Knowledge Repository
Clinical Knowledge Management
Repository

▶Clinical Knowledge Repository
Clinical Knowledge Repository

ROBERTO A. ROCHA

Partners Healthcare System, Inc., Boston, MA, USA

Synonyms
Clinical knowledge base; Clinical content repository;

Clinical content database; Clinical knowledge manage-

ment repository; Clinical content registry; Clinical

knowledge directory

Definition
A clinical knowledge repository (CKR) is a multipur-

pose storehouse for clinical knowledge assets. ‘‘Clinical
knowledge asset’’ is a generic term that describes any

type of human or machine-readable electronic content

used for computerized clinical decision support. A CKR

is normally implemented as an enterprise resource

that centralizes a large quantity and wide variety of

clinical knowledge assets. A CKR provides integrated

support to all asset lifecycle phases such as authoring,

review, activation, revision, and eventual inactivat-

ion. A CKR routinely provides services to search,

retrieve, transform, merge, upload, and download clini-

cal knowledge assets. From a content curation perspec-

tive, a CKR has to ensure proper asset provenance,

integrity, and versioning, along with effective access

and utilization constraints compatible with collaborative

development and deployment activities. A CKR can be

considered a specialized content management system,

designed specifically to support clinical information sys-

tems. Within the context of clinical decision support

systems, a CKR can be considered a special kind of

knowledge base – one specially designed to manage

multiple types of human and machine-readable clinical

knowledge assets.

Key Points
In recent years, multiple initiatives have attempted to

better organize, filter, and apply the ever-growing bio-

medical knowledge. Among these initiatives, one of the

most promising is the utilization of computerized

clinical decision support systems. Computerized clini-

cal decision support can be defined as computer sys-

tems that provide the correct amount of relevant

knowledge at the appropriate time and context, con-

tributing to improved clinical care and outcomes.

A wide variety of knowledge-driven tools and methods

have resulted in multiple modalities of clinical deci-

sion support, including information selection and

retrieval, information aggregation and presentation,

data entry assistance, event monitors, care workflow

assistance, and descriptive or predictive modeling.

A CKR provides an integrated storage platform that

enables the creation and maintenance of multiple types

of knowledge assets. A CKR ensures that different

modalities of decision support can be combined to

properly support the activities of clinical workers.

Core requirements guiding the implementation of a

CKR include clinical knowledge asset provenance

(metadata), versioning, and integrity. Other essential

requirements include the proper representation of

access and utilization constraints, taking into account

Clinical Knowledge Repository C 357

C

the collaborative nature of asset development pro-

cesses and deployment environments. Another funda-

mental requirement is to aptly represent multiple types

of knowledge assets, where each type might require

specialized storage and handling. The CKR core

requirements are generally similar to those specified

for other types of repositories used for storage and

management of machine-readable assets.

Historical Background
Biomedical knowledge has always been in constant

expansion, but unprecedented growth is being observed

during the last decade. Over 30% of the 16.8 million

citations accumulated by MEDLINE until December of

2007 were created in the last 10 years, with an average

of over 525,000 new citations per year [5]. The number

of articles published each year is commonly used as an

indicator of how much new knowledge the scientific

community is creating. However, from a clinical per-

spective, particularly for those involved with direct

patient care, the vast amount of new knowledge repre-

sents an ever-growing gap between what is known and

what is routinely practiced. Multiple initiatives in recent

years have attempted to better organize, filter, and apply

the knowledge being generated. Among these various

initiatives, one of the most promising is the utilization

of computerized clinical decision support systems [6].

In fact, some authors avow that clinical care currently

mandates a degree of individualization that is inconceiv-

able without computerized decision support [1].

Computerized clinical decision support can be

defined as computer systems that provide the correct

amount of relevant knowledge at the appropriate time

and context, ultimately contributing to improved clini-

cal care and outcomes [3]. Computerized clinical deci-

sion support has been an active area of informatics

research and development for the last three decades

[2]. Awide variety of knowledge-driven tools and meth-

ods have resulted in multiple modalities of clinical deci-

sion support, including information selection and

retrieval (e.g., infobuttons, crawlers), information aggre-

gation and presentation (e.g., summaries, reports, dash-

boards), data entry assistance (e.g., forcing functions,

calculations, evidence-based templates for ordering and

documentation), event monitors (e.g., alerts, reminders,

alarms), care workflow assistance (e.g., protocols, care

pathways, practice guidelines), and descriptive or pre-

dictive modeling (e.g., diagnosis, prognosis, treatment

planning, treatment outcomes). Each modality requires
specific types of knowledge assets, ranging from produc-

tion rules to mathematical formulas, and from auto-

mated workflows to machine learning models. A CKR

provides an integrated storage platform that enables the

creation and maintenance of multiple types of assets

using knowledge management best practices [4].

The systematic application of knowledge manage-

ment processes and best practices to the biomedi-

cal domain is a relatively recent endeavor [2].

Consequently, a CKR should be seen as a new and

evolving concept that is only now being recognized as

a fundamental component for the acquisition, storage,

and maintenance of clinical knowledge assets. Most

clinical decision support systems currently in use still

rely on traditional knowledge bases that handle a single

type of knowledge asset and do not provide direct

support for a complete lifecycle management process.

Another relatively recent principle is the recognition

that different modalities of decision support have to be

combined and subsequently integrated with informa-

tion systems to properly support the activities of clini-

cal workers. The premise of integrating multiple

modalities of clinical decision support reinforces the

need for knowledge management processes supported

by a CKR.

Foundations
Core requirements guiding the implementation of a

CKR include clinical knowledge asset provenance

(metadata), versioning, and integrity. Requirements

associated with proper access and utilization con-

straints are also essential, particularly considering the

collaborative nature of most asset development pro-

cesses and deployment environments. Another funda-

mental requirement is to aptly represent multiple

types of knowledge assets, where each type might re-

quire specialized storage and handling. The CKR

core requirements are generally similar to those speci-

fied for other types of repositories used for storage

and management of machine-readable assets (e.g.,

‘‘ebXML Registry’’ (http://www.oasis-open.org/com-

mittees/tc_home.php?wg_abbrev = regrep)).

Requirements associated with asset provenance can

be implemented using a rich set of metadata properties

that describe the origin, purpose, evolution, and status

of each clinical knowledge asset. The metadata proper-

ties should reflect the information that needs to be

captured during each phase of the knowledge asset

lifecycle process, taking into account multiple iterative

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev = regrep
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev = regrep

358C Clinical Knowledge Repository
authoring and review cycles, followed by a possibly

long period of clinical use that might require multiple

periodic revisions (updates). Despite the diversity of

asset types, each with a potentially distinct lifecycle

process, a portion of the metadata properties should

be consistently implemented, enabling basic searching

and retrieval services across asset types. Ideally, the

shared metadata should be based on metadata stan-

dards (e.g., ‘‘Dublin Core Metadata Element Set’’

(http://dublincore.org/documents/dces/)). The adop-

tion of standard metadata properties also simplifies

the integration of external collections of clinical

knowledge assets in a CKR. In addition to a shared

set of properties, a CKR should also accommodate

extended sets of properties specific for each clinical

knowledge asset type and its respective lifecycle pro-

cess. Discrete namespaces are commonly used to rep-

resent type-specific extended metadata properties.

Asset version and status, along with detailed change

tracking, are vital requirements for a CKR. Different

versioning strategies can be used, but as a general

rule there should be only one clinically active version

of any given knowledge asset. This general rule is easily

observed if the type and purpose of the clinical knowl-

edge asset remains the same throughout its lifecycle.

However, a competing goal is created with the very

desirable evolution of human-readable assets to

become machine-readable. Such evolution invariably

requires the creation of new knowledge assets of differ-

ent types and potentially narrower purposes. In order

to support this ‘‘natural’’ evolution, a CKR should

implement the concept of asset generations, while pre-

serving the change history that links one generation to

the next. Also within a clinical setting, it is not uncom-

mon to have to ensure that knowledge assets comply

with, or directly implement, different norms and reg-

ulations. As a result, the change history of a clinical

knowledge asset should identify the standardization

and compliance aspects considered, enabling subseq-

uent auditing and/or eventual certification.

Ensuring the integrity of clinical knowledge assets

is yet another vital requirement for a CKR. Proper

integrity guarantees that each asset is unique within a

specific type and purpose, and that all its required

properties are accurately defined. Integrity require-

ments also take into account the definition and preser-

vation of dependencies between clinical knowledge

assets. These dependencies can be manifested as simple

hyperlinks, or as integral content defined as another
independent asset. Creating clinical knowledge assets

from separate components or modules (i.e., modular-

ity) is a very desirable feature in a CKR – one that

ultimately contributes to the overall maintainability

of the various asset collections. However, modularity

introduces important integrity challenges, particularly

when a new knowledge asset is being activated for

clinical use. Activation for clinical use requires a close

examination of all separate components, sometimes

triggering unplanned revisions of components already

in routine use. Another important integrity require-

ment is the ability to validate the structure and the

content of a clinical knowledge asset against predefined

templates (schemas) and dictionaries (ontologies).

Asset content validation is essential for optimal inte-

gration with clinical information systems. Ideally,

within a given healthcare organization all clinical

information systems and the CKR should utilize the

same standardized ontologies.

Contextual characteristics of the care delivery pro-

cess establish the requirements associated with proper

access, utilization, and presentation of the clinical

knowledge assets. The care delivery context is a multi-

dimensional constraint that includes characteristics of

the patient (e.g., gender, age group, language, clinical

condition), the clinical worker (e.g., discipline, specia-

lty, role), the clinical setting (e.g., inpatient, outpatient,

ICU, Emergency Department), and the information

system being used (e.g., order entry, documentation,

monitoring), among others. The care delivery context

normally applies to the entire clinical knowledge asset,

directly influencing search, retrieval, and presentation

services. The care delivery context can also be used

to constrain specific portions of a knowledge asset,

including links to other embedded assets, making

them accessible only if the constraints are satisfied.

An important integrity challenge created by the sys-

tematic use of the care delivery context is the need for

reconciling conflicts caused by incompatible asset con-

straints, particularly when different teams maintain

the assets being combined. In this scenario, compet-

ing requirements are frequently present, namely the

intention to maximize modularity and reusability

versus the need to maximize clinical specificity and

ease or use.

The accurate selection, retrieval, and presentation

of unstructured assets is generally perceived as a simple

but very useful modality of clinical decision support,

particularly if the information presented to the clinical

http://dublincore.org/documents/dces/

Clinical Observation C 359

C

worker is concise and appropriate to the care being

delivered. However, the appropriateness of the infor-

mation is largely defined by the constraints imposed by

the aforementioned care delivery context. Moreover,

the extent of indexing (‘‘retrievability’’) of most collec-

tions of unstructured clinical knowledge assets is not

sufficient to fully recognize detailed care delivery con-

text expressions. Ultimately, the care delivery context

provides an extensible mechanism for defining the

appropriateness of a given clinical knowledge asset in

response to a wide variety of CKR service requests.

The requirements just described are totally or par-

tially implemented as part of general-purpose (enter-

prise) content management systems. However, content

management systems have been traditionally con-

structed for managing primarily human-readable

electronic content. Human-readable content, more

properly characterized as unstructured knowledge

assets, include narrative text, diagrams, and multime-

dia objects. When combined, these unstructured assets

likely represent the largest portion of the inventory of

clinical knowledge assets of any healthcare institution.

As a result, in recent years different healthcare organi-

zations have deployed CKRs using enterprise content

management systems, despite their inability to manage

machine-readable content.

Key Applications
Computerized Clinical Decision Support, Clinical

Knowledge Engineering, Clinical Information Systems.

Cross-references
▶Biomedical Data/Content Acquisition, Curation

▶Clinical Data Acquisition, Storage and Management

▶Clinical Decision Support

▶Dublin Core

▶ Evidence Based Medicine

▶ Executable Knowledge

▶Metadata

▶Reference Knowledge

Recommended Reading
1. Bates D.W. and Gawande A.A. Improving safety with informa-

tion technology. N. Engl. J. Med. 348(25):2526–2534, 2003.

2. Greenes R.A (ed.). Clinical Decision Support: The road ahead.

Academic Press, Boston, 2007, pp. 544.

3. Osheroff J.A., Teich J.M., Middleton B., Steen E.B., Wright A.,

and Detmer D.E. A roadmap for national action on clinical

decision support. J. Am. Med. Inform. Assoc., 14(2):141–145,

2007.
4. Rocha R.A., Bradshaw R.L., Hulse N.C., and Rocha B.H.S.C.

The clinical knowledge management infrastructure of Inter-

mountain Healthcare. In: Clinical Decision Support: The road

ahead, RA.Greenes (ed.). Academic Press, Boston, 2007, pp.

469–502.

5. Statistical Reports on MEDLINE1/PubMed1 Baseline Data,

National Library of Medicine, Department of Health and

Human Services [Online]. Available at: http://www.nlm.nih.

gov/bsd/licensee/baselinestats.html. Accessed 8 Feb 2008.

6. Wyatt J.C. Decision support systems. J. R. Soc. Med., 93(12):

629–633, 2000.
Clinical Nomenclatures

▶Clinical Ontologies
Clinical Observation

DAN RUSSLER

Oracle Health Sciences, Redwood Shores, CA, USA

Synonyms
Clinical result; Clinical judgment; Clinical test; Finding

of observation

Definition
1. The act of measuring, questioning, evaluating, or

otherwise observing a patient or a specimen from a

patient in healthcare; the act of making a clinical

judgment.

2. The result, answer, judgment, or knowledge gained

from the act of observing a patient or a specimen

from a patient in healthcare.

These two definitions of ‘‘observation’’ have caused

confusion in clinical communications, especially when

applying the term to the rigor of standardized terminol-

ogies. When developing a list of observations, the termi-

nologists have differed on whether the list of terms

should refer to the ‘‘act of observing’’ or the ‘‘result of

the observation.’’

Logical Observation Identifiers Names and Codes

(LOINC) (www.loinc.org) focus on observation as

the ‘‘act of observing.’’ Systematized Nomenclature of

Medicine (SNOMED) (www.ihtsdo.org) asserts that

‘‘General finding of observation of patient’’ is a syno-

nym for ‘‘General observation of patient.’’ Of note is

the analysis in HL7 that identifies many shared

http://www.nlm.nih.gov/bsd/licensee/baselinestats.html
http://www.nlm.nih.gov/bsd/licensee/baselinestats.html
http://www.loinc.org
http://www.ihtsdo.org

360C Clinical Ontologies
attributes between descriptions of the act of obser-

ving and the result obtained. As a consequence, in

HL7 Reference Information Model (RIM), both the

act of observing and the result of the observation

are contained in the same Observation Class (www.

hl7.org).

Key Points
The topic of clinical observation has been central to

the study of medicine since medicine began. Early phy-

sicians focused on the use of all five senses in order to

make judgments about the current condition of the

patient, i.e., diagnosis, or to make judgments about

the future of patients, i.e., prognosis. Physical exam

included sight, touch, listening, and smell. Physicians

diagnosed diabetes by tasting the urine for sweetness.

As more tests on bodily fluids and tissues were

discovered and used, the opportunity for better diag-

nosis and prognosis increased. Philosophy of science

through the centuries often included the study of

clinical observation in addition to the study of other

observations in nature.

During the last century, the study of rigorous test-

ing techniques that improve the reproducibility and

interpretation of results has included the development

of extensive nomenclatures for naming the acts of

observation and observation results, e.g., LOINC and

SNOMED. These terminologies were developed in

part to support the safe application of expert system

rules to information recorded in the electronic health

care record.

The development of the HL7 Reference Informa-

tion Model (RIM) was based on analysis of the ‘‘act of

observing’’ and the ‘‘result of the act of observing’’ [1].

Today, new Entity attributes proposed for the HL7 RIM

are evaluated for inclusion based partly on whether the

information is best communicated in a new attribute

for an HL7 Entity or best communicated in an HL7

Observation Act.

Improved standardization of clinical observation

techniques, both in the practice of bedside care and the

recording of clinical observations in electronic health-

care systems is thought to be essential to the continuing

improvement of healthcare and patient safety.

Cross-references
▶Clinical Event

▶Clinical Order

▶ Interface Engines in Healthcare
Recommended Reading
1. Russler D., et al. Influences of the unified service action

model on the HL7 reference information model. In

JAMIA Symposium Supplement, Proceedings SCAMC, 1999,

pp. 930–934.
Clinical Ontologies

YVES A. LUSSIER, JAMES L. CHEN

University of Chicago, Chicago, IL, USA

Synonyms
Clinical terminologies; Clinical nomenclatures; Clini-

cal classifications

Definition
An ontology is a formal representation of a set of hete-

rogeneous concepts. However, in the life sciences, the

term clinical ontology has also beenmore broadly defined

as also comprising all forms of classified terminologies,

including classifications and nomenclatures. Clinical on-

tologies provide not only a controlled vocabulary but

also relationships among concepts allowing computer

reasoning such that different parties, like physicians and

insurers, can efficiently answer complex queries.

Historical Background
As the life sciences integrates increasingly sophisticated

systems of patient management, different means of

data representation have had to keep pace to support

user systems. Simultaneously, the explosion of genetic

information from breakthroughs from the Human

Genome Project and gene chip technology have further

expedited the need for robust, scalable platforms for

handling heterogeneous data. Multiple solutions have

been developed by the scientific community to answer

these challenges at all different levels of biology.

This growing field of ‘‘systems medicine’’ starts

humbly at the question – how can one best capture

and represent complex data in a means that can be

understood globally without ambiguity? In other

words, does the data captured have the same semantic

validity after retrieval as it did prior? These knowledge-

bases are in of themselves organic. They need to be

able to expand, shrink, and rearrange themselves

based on user or system needs. This entry will touch

upon existing clinical ontologies used in a variety of

applications.

http://www.hl7.org
http://www.hl7.org

Clinical Ontologies C 361

C

Foundations
The complexity of biological data cannot be understated.

Issues generally fall into challenges with (i) definition, (ii)

context, (iii) composition, and (iv) scale. One cannot

even take for granted that the term ‘‘genome’’ is well-

understood. Mahner found five different character-

izations for the term ‘‘genome’’ [8]. Ontologies then

provide a means of providing representational consisten-

cy through their structure and equally important provide

the ability to connect these terms together in a semanti-

cally informative and computationally elegant manner

[9]. This has led to their ubiquity in the life sciences.

Formal ontologies are designated using frames or de-

scription logics [5]. However, few life science knowledge-

bases are represented completely in this manner due to

difficulties with achieving consensus on definitions re-

garding the terms and the effort required to give context

to the terms. Thus, this article defines well-organized

nomenclatures and terminologies as clinical ontologies

– regardless if their terms adhere to strict formalism.

Looking at elevations in gene expression, it matters

what organism and under what experimental condi-

tions the experiment was conducted. Clinical context

changes the meaning of terms. The term ‘‘cortex’’ can

either indicate a part of the kidney or that of the brain.

Generalized or ‘‘essential hypertension’’ can be what is

known colloquially as ‘‘high blood pressure’’ or loca-

lized to the lungs as ‘‘pulmonary hypertension.’’ One

can have pulmonary hypertension but not essential

hypertension. This leads to the next representational

challenge – that of composition. Should hypertension

be represented implicitly as ‘‘essential hypertension’’

and as ‘‘pulmonary hypertension’’? Or should it be

stored explicitly as ‘‘hypertension’’ with a location

attribute? These representational decisions are driven

by the queries that may be asked. The difficulty arises
Clinical Ontologies. Table 1. Properties of clinical ontologie

Ontology

Architect

Concept
oriented

Formal semantic
definition

Co
perm

ICD-9 þ
LOINC
CPT
SNOMED þ þ
UMLS þ
M = Monohierarchy/tree, P = Polyhierarchy, DAG = Directed Acyclic G
in anticipating the queries and in post-processing

of the query to split the terminological components

of the overall concept. Finally, the knowledge model

needs to be able to scale upward. The same decision

logic that was relevant when the knowledgebase con-

tained 100 concepts needs to still be relevant at

1,000,000 concepts.

Properties of Clinical Ontologies

Ontologies vary widely in their degree of formalism

and design. With this comes differing computability.

In 1998, Cimino proposed desirable properties for

purposes of clinical computation [3,4]. Table 1 sum-

marizes the overall properties of the commonly used

clinical ontologies.

1. Concept-oriented: a single concept is the preferred

unit

2. Formal semantic definition: well-defined terms

3. Nonredundancy: each concept needs to be unique

4. Nonambiguity: different concepts should not over-

lap or be conflated

5. Relationships: the structure of connections between

concepts differentiate ontologies:

– Monohierarchy (tree): each concept only has one

parent concept

– Polyhierarchy: each concept may multiply inherit

from multiple parents

– Directed Acycle Graph (DAG): there are no cycles

in the graph – in other words, children concepts

may not point to parent terms

Key Applications
This section reviews different, well-used life science

ontologies used to annotate datasets. First, this discus-

sion summarizes a select number of archetypal clinical
s

ure

Relationship
ncept
anence Nonredundancy Uniqueness

 þ þ M

þ þ P

 M

þ þ þ DAG

þ þ þ CG

raph, CG = cyclic graph

Clinical Ontologies. Table 2. Coverage of classification, nomenclatures and ontologies

Ontology

Content Number of concepts (order of
magnitude)Diseases Anatomy Morphology Labs Procedures Drugs

ICD-9 X 104

LOINC X 105

CPT X 104

SNOMED X X X X X X 105

UMLS X X X X X X 106

362C Clinical Ontologies
ontologies that comprise one or several types of clinical

entities such as diseases, clinical findings, procedures,

laboratory measurements, and medications. Table 2

below summarizes the content coverage of each of

archetypal health ontologies.

Prototypical Clinical Ontologies

a. The Systematized Nomenclature of Medicine (SNOMED

CT) SNOMED CT is the most extensive set of pub-

lically available collection of clinical concepts. It is

organized as a directed acyclic graph (DAG) and

contains class/subclass relationships and partonomy

relationships. It is maintained by the College of Amer-

ican Pathologists and is available in the United States

through a license from the National Library of Medicine

in perpetuity. SNOMEDCT is one of the designated data

standards for use in U.S. Federal Government systems

for the electronic exchange of clinical health informa-

tion. SNOMED CT is now owned by the International

Healthcare Terminology Standards Development Orga-

nization [6].

b. International Statistical Classification of Diseases

(ICD-9, ICD-10, ICD-CM) ICD-9 and ICD 10 are

detailed ontologies of disease and symptomatology

used ubiquitiously for reimbursement systems (i.e.,

Medicare/Medicaid) and automated decision support

in medicine. ICD-10 is used worldwide for morbidity

and mortality statistics. Owned by the World Health

Organization (WHO), licenses are available generally

free for research. ICD-9 CM is a subtype of ICD-9 with

clinical modifiers for billing purposes [11].

c. Medical Subject Headings (MeSH) MeSH grew out

of an effort by the NLM for indexing life science

journal articles and books. {Nelson S.J., 2001 #6}.

The extensive controlled vocabulary MeSH serves as
the backbone of the MEDLINE/PubMed article data-

base. MeSH can be browsed and downloaded free of

charge on the Internet [10].

d. International Classification of Primary Care (ICPC-2,

ICPC-2-E) ICPC is a primary care encounter classifica-

tion system [12]. It has a biaxial structure of 17 clinical

systems and 7 types of data. It allows for the classifica-

tion of the patient’s reason for encounter (RFE), the

problems/diagnosis managed, primary care interven-

tions, and the ordering of the data. of the primary care

session in an episode of care structure. ICPC-2-E refers

to a revised electronic version.

e. Diagnostic and Statistical Manual of Mental Disorders

(DSM-IV, DSM-V) The DSM is edited and published by

the American Psychiatric Association provides cate-

gories of and diagnosis criteria for mental disorders

[2]. It is used extensively by clinicians, policy makers

and insurers. The original version of the DSM was

published in 1962. DSM-V is due for publication in

May 2012. The diagnosis codes are developed to be

compatible with ICD-9.

f. Logical Observation Identifiers Names and Codes

(LOINC) LOINC is a database protocol aimed at stan-

dardizing laboratory and clinical codes. The Regen-

strief Institute, Inc, maintains the LOINC database

and supporting documentation. LOINC is endorsed

by the American Clinical Laboratory Association and

College of American Pathologist and is one of the

accepted standards by the US Federal Government for

information exchange [7].

g. Current Procedural Terminology (CPT) The CPT

code set is owned and maintained by the American

Medical Association through the CPT Editorial

Panel [1]. The CPT code set is used extensively to

Clinical Order C 363
communicate medical and diagnostic services that

were rendered among physicians and payers. The cur-

rent version is the CPT 2008.
C
Cross-references
▶Anchor text

▶Annotation

▶Archiving Experimental Data

▶Biomedical Data/Content Acquisition, Curation

▶Classification

▶Clinical Data Acquisition, Storage and Management

▶Clinical Data and Information Models

▶Clinical Decision Support

▶Data Integration Architectures and Methodology for

the Life Sciences

▶Data Types in Scientific Data Management

▶Data Warehousing for Clinical Research

▶Digital Curation

▶ Electronic Health Record

▶ Fully-Automatic Web Data Extraction

▶ Information Integration Techniques for Scientific

Data

▶ Integration of Rules and Ontologies

▶ Logical Models of Information Retrieval

▶Ontologies

▶Ontologies and Life Science Data Management

▶Ontology

▶Ontology Elicitation

▶Ontology Engineering

▶Ontology Visual Querying

▶OWL: Web Ontology Language

▶Query Processing Techniques for Ontological Infor-

mation

▶ Semantic Data Integration for Life Science Entities

▶ Semantic Web

▶ Storage Management

▶Taxonomy: Biomedical Health Informatics

▶Web Information Extraction
Recommended reading
1. American Medical Association [cited; Available at: http://www.

cptnetwork.com].

2. American Psychiatric Association [cited; Available at: http://

www.psych.org/MainMenu/Research/DSMIV.aspx].

3. Cimino J.J. Desiderata for controlled medical vocabularies in

the twenty-first century. Methods Inf. Med., 37(4–5):394–403,

1998.

4. Cimino J.J. In defense of the Desiderata. [comment]. J. Biomed.

Inform., 39(3):299–306, 2006.
5. Gruber T.R. Toward principles for the design of ontologies used

for knowledge sharing. Int. J. Hum. Comput. Stud., 43(4–5):

907–928, 1995.

6. I.H.T.S.D. [cited; Available from: http://www.ihtsdo.org/our-

standards/snomed-ct].

7. Khan A.N. et al. Standardizing laboratory data by

mapping to LOINC. J Am Med Inform Assoc, 13(3):353–355,

2006.

8. Mahner M. and Kary M. What exactly are genomes, genotypes

and phenotypes? And what about phenomes? J. Theor. Biol.,

186(1):55–63, 1997.

9. Musen M.A. et al. PROTEGE-II: computer support for develop-

ment of intelligent systems from libraries of components. Med-

info, 8 (Pt 1):766–770, 1995.

10. Nelson S.J., Johnston D., and Humphreys. B.L Relationships in

medicical subject headings. In Relationships in the Organization

of Knowledge, A.B. Carol, G. Rebecca (eds.). Kluwer, Dordecht,

2001, pp. 171–184.

11. World Health Organization [cited; Available at: http://www.who.

int/classifications/icd/en/].

12. World Organization of National Colleges, Academies, and Aca-

demic Associations of General Practitioners/Family Physicians,

ICPC. International Classification of Primary Care. Oxford

University Press, Oxford, 1987.
Clinical Order

DAN RUSSLER

Oracle Health Sciences, Redwood Shores, CA, USA

Synonyms
Order item; Service order; Service request; Service

item; Procedure order; Procedure request

Definition
The act of requesting that a service be performed for

a patient.

Clinical orders in healthcare share many char-

acteristics with purchase orders in other industries.

Both clinical orders and purchase orders establish

a customer-provider relationship between the person

placing the request for a service to be provided and the

person or organization filling the request. In both

cases, the clinical order and purchase order are fol-

lowed by either a promise or intent to fill the request, a

decline to fill the request, or a counter-proposal

to provide an alternate service. In both scenarios,

an authorization step such as an insurance company

authorization or a credit company authorization may

be required. Therefore, the dynamic flow of commu-

nications between a placer and filler in a clinical order

http://www.cptnetwork.com
http://www.cptnetwork.com
http://www.psych.org/MainMenu/Research/DSMIV.aspx
http://www.psych.org/MainMenu/Research/DSMIV.aspx
http://www.ihtsdo.org/our-standards/snomed-ct
http://www.ihtsdo.org/our-standards/snomed-ct
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/

364C Clinical Research Chart
management system and a purchase order manage-

ment system are very similar.

Both clinical order and purchase order manage-

ment systems maintain a catalog of items that may be

requested. These items in both kinds of systems may

represent physical items from supply or services from a

service provider. Each of these items in both kinds

of systems is associated with an internally unique

identifier, a text description, and often a code. Dates,

status codes, delivery locations, and other attributes of

a clinical order and purchase order are also similar.

Therefore, in addition to similarities in the dynamic

flow of order communications, the structure of the

content in clinical orders and purchase orders is similar.

Logical Observation Identifiers Names and Codes

(LOINC) (www.loinc.org) describe many of the

requested services in healthcare, especially in labora-

tory systems. Other procedural terminologies exist

for healthcare, either independently in terminologies

like LOINC or included in more comprehensive ter-

minologies such as Systematized Nomenclature of

Medicine (SNOMED) (www.ihtsdo.org).

Key Points
Clinical orders exist in the context of a larger clinical

management, process. The order management business

process of an organization, that includes defining a

catalog of services to be provided and then allowing

people to select from the catalog of services, is common

in many industries. However, the decision support

opportunities for helping providers select the optimum

set of services for a patient are often more complex in

healthcare than occurs in other industries. The out-

comes of this selection process are studied in clinical

research, clinical trials on medications and devices, and

in organizational quality improvement initiatives. Fi-

nally, the outcomes of the service selection process are

used to improve the clinical decision support processes

utilized by providers selecting services for patients. This

business process in healthcare as well as in many other

industries describes a circular feedback loop defined by

the offering of services, the selection of services, the

delivery of services, the outcome of services, and finally,

the modification of service selection opportunities and

decision support.

In the HL7 Reference Information Model

(RIM), ‘‘ACT’’ classes sub-typed with the moodCode

attribute support the healthcare improvement process
(www.hl7.org). These objects with process ‘‘moods’’

support the sequence of objects created during the exe-

cution of a process defined in Business Process Execu-

tion Language (BPEL) in a service oriented architecture

that begins with an ‘‘order’’, evolves into an ‘‘appoint-

ment’’, which then is completed as an ‘‘event’’. The reason

the term ‘‘mood’’ is used is that the values of the mood-

code attribute are analogous to the models of verbs in

many languages, e.g., the ‘‘Definition mood’’ used to

define service catalogs corresponds to the ‘‘infinitive’’

verbal mood, i.e., a possible action; the ‘‘Request or

Order mood’’ corresponds to the ‘‘imperative’’ verbal

mood; the ‘‘Event mood’’ corresponds to the ‘‘indica-

tive’’ verbal mood; and the ‘‘Goal mood,’’ which

describes the desired outcome of the selected service,

corresponds to the ‘‘subjunctive’’ verbal mood.

Cross-references
▶Clinical Event

▶Clinical Observation

▶ Interface Engines in Healthcare
Clinical Research Chart

▶Data Warehousing for Clinical Research
Clinical Result

▶Clinical Observation
Clinical Terminologies

▶Clinical Ontologies
Clinical Test

▶Clinical Observation
Clock

▶ Physical Clock

▶Time-Line Clock

http://www.loinc.org
http://www.ihtsdo.org
http://www.hl7.org

Closed Itemset Mining and Non-redundant Association Rule Mining C 365

C

Closed Itemset Mining and
Non-redundant Association Rule
Mining

MOHAMMED J. ZAKI

Rensselaer Polytechnic Institute, Troy, NY, USA

Synonyms
Frequent concepts; Rule bases
Definition
Let I be a set of binary-valued attributes, called items.

A set X
 I is called an itemset. A transaction database

D is a multiset of itemsets, where each itemset, called a

transaction, has a unique identifier, called a tid. The

support of an itemset X in a dataset D, denoted sup(X),

is the fraction of transactions in D where X appears

as a subset. X is said to be a frequent itemset in D if

sup(X) � minsup, where minsup is a user defined

minimum support threshold. An (frequent) itemset

is called closed if it has no (frequent) superset having

the same support.

An association rule is an expression A) B,

where A and B are itemsets, and A \ B = ;. The support
of the rule is the joint probability of a transaction

containing both A and B, given as sup(A) B) =

P(A ∧ B) = sup(A [B). The confidence of a rule

is the conditional probability that a transaction

contains B, given that it contains A, given as:

conf ðA) BÞ ¼ PðBjAÞ ¼ PðA^BÞ
PðAÞ ¼ supðA[BÞ

supðAÞ . A rule is

frequent if the itemset A [B is frequent. A rule

is confident if conf � minconf, where minconf is a

user-specified minimum threshold. The aim of non-

redundant association rule mining is to generate a rule

basis, a small, non-redundant set of rules, from which

all other association rules can be derived.
Historical Background
The notion of closed itemsets has its origins in the

elegant mathematical framework of Formal Concept

Analysis (FCA) [3], where they are called concepts. The

task of mining frequent closed itemsets was independent-

ly proposed in [7,11]. Approaches for non-redundant

association rule mining were also independently pro-

posed in [1,9]. These approaches rely heavily on the

seminal work on rule bases in [5,6]. Efficient algorithms

for mining frequent closed itemsets include CHARM
[10], CLOSET [8] and several new approaches described

in the Frequent Itemset Mining Implementations work-

shops [4].

Foundations
Let I = {i1,i2,...,im} be the set of items, and let T = {t1,

t2,...,tn} be the set of tids, the transaction identifiers.

Just as a subset of items is called an itemset, a subset of

tids is called a tidset. Let t : 2I ! 2T be a function,

defined as follows:

tðXÞ ¼ ft 2 T j X
 iðtÞg
That is, t(X) is the set of transactions that contain all

the items in the itemset X. Let i : 2T! 2I be a function,

defined as follows:

iðY Þ ¼ fi 2 I j 8t 2 Y ; t contains xg
That is, i(T) is the set of items that are contained in

all the tids in the tidset Y . Formally, an itemset X is

closed if i ∘ t(X) = X, i.e., if X is a fixed-point of the

closure operator c = i ∘ t. From the properties of

the closure operator, one can derive that X is the

maximal itemset that is contained in all the transac-

tions t(X), which gives the simple definition of a closed

itemset, namely, a closed itemset is one that has no

superset that has the same support.

Based on the discussion above, three main families

of itemsets can be distinguished. Let F denote the set

of all frequent itemsets, given as

F ¼ fX j X
 I and supðXÞ � minsupg
Let C denote the set of all closed frequent itemsets,

given as

C ¼ fX jX 2 F and 6 9Y � X with supðXÞ ¼ supðYÞg
Finally, letM denote the set of all maximal frequent

itemsets, given as

M¼ fX jX 2 F and 6 9Y � X; such that Y 2 Fg
The following relationship holds between these sets:

M
 C
 F , which is illustrated in Fig. 1, based on

the example dataset shown in Table 1 and using mini-

mum support minsup = 3. The equivalence classes of

itemsets that have the same tidsets have been shown

clearly; the largest itemset in each equivalence class is a

closed itemset. The figure also shows that the maximal

itemsets are a subset of the closed itemsets.

Closed Itemset Mining and Non-redundant Association Rule Mining. Figure 1. Frequent, closed frequent and maximal

frequent itemsets.

Closed Itemset Mining and Non-redundant Association

Rule Mining. Table 1. Example transaction dataset

i(t)

1 ACTW

2 CDW

3 ACTW

4 ACDW

5 ACDTW

6 CDT

366C Closed Itemset Mining and Non-redundant Association Rule Mining
Mining Closed Frequent Itemsets

CHARM [8] is an efficient algorithm for mining closed

itemsets. Define two itemsets X,Yof length k as belong-

ing to the same prefix equivalence class, [P], if they

share the k � 1 length prefix P, i.e., X = Px

and Y = Py, where x,y 2 I. More formally, [P] = {Pxi j
xi 2 I}, is the class of all itemsets sharing P as a

common prefix. In CHARM there is no distinct candi-

date generation and support counting phase. Rather,

counting is simultaneous with candidate generation.

For a given prefix class, one performs intersections of

the tidsets ofall pairs of itemsets in the class, and checks

if the resulting tidsets have cardinality at least minsup.

Each resulting frequent itemset generates a new class

which will be expanded in the next step. That is, for a

given class of itemsets with prefix P, [P] = {Px1,Px2,...,

Pxn}, one performs the intersection of Pxi with all Pxj
with j > i to obtain a new class [Pxi] = [P 0] with
elements P 0xj provided the itemset Pxixj is frequent.

The computation progresses recursively until no more

frequent itemsets are produced. The initial invocation

is with the class of frequent single items (the class [;]).
All tidset intersections for pairs of class elements are

computed. However in addition to checking for fre-

quency, CHARM eliminates branches that cannot lead

to closed sets, and grows closed itemsets using subset

relationships among tidsets. There are four cases: if

t(Xi) � t(Xj) or if t(Xi) = t(Xj), then replace every

occurrence of Xi with Xi [Xj, since whenever Xi occurs

Xj also occurs, which implies that c(Xi)
 c(Xi [Xj). If

t(Xi) � t(Xj) then replace Xj for the same reason.

Finally, further recursion is required if t(Xi) 6¼ t(Xj).

These four properties allow CHARM to efficiently

prune the search tree (for additional details see [10]).

Figure 2 shows how CHARMworks on the example

database shown in Table 1. First, CHARM sorts the

items in increasing order of support, and initializes

the root class as [;] = {D � 2456, T � 1356, A �
1345, W � 12345, C � 123456}. The notation D �
2456 stands for the itemset D and its tidset t(D) =

{2,4,5,6}. CHARM first processes the node D � 2456;

it will be combined with the sibling elements. DT and

DA are not frequent and are thus pruned. Looking at

W, since t(D) 6¼ t(W),W is inserted in the new equiva-

lence class [D]. For C, since t(D)�t(C), all occurrences
of D are replaced with DC, which means that [D] is

also changed to [DC], and the element DW to DWC. A

recursive call with class [DC] is then made and since

Closed Itemset Mining and Non-redundant Association Rule Mining. Figure 2. CHARM: mining closed frequent

itemsets.

Closed Itemset Mining and Non-redundant Association Rule Mining C 367

C

there is only a single itemsetDWC, it is added to the set

of closed itemsets C. When the call returns to D (i.e.,

DC) all elements in the class have been processed, so

DC itself is added to C.
When processing T, t(T) 6¼ t(A), and thus CHARM

inserts A in the new class [T]. Next it finds that t(T) 6¼
t(W) and updates [T] = {A,W}. When it finds t(T)

�t(C) it updates all occurrences of Twith TC. The class
[T] becomes [TC] = {A,W}. CHARM then makes a

recursive call to process [TC]. When combining TAC

with TWC it finds t(TAC) = t(TWC), and thus replaces

TAC with TACW, deleting TWC at the same time. Since

TACW cannot be extended further, it is inserted in C.
Finally, when it is done processing the branch TC, it

too is added to C. Since t(A) �t(W) �t(C) no new

recursion is made; the final set of closed itemsets C
consists of the uncrossed itemsets shown in Fig. 2.

Non-redundant Association Rules

Given the set of closed frequent itemsets C, one can

generate all non-redundant association rules. There are

two main classes of rules: (i) those that have 100%

confidence, and (ii) those that have less than 100%

confidence [9]. Let X1 and X2 be closed frequent item-

sets. The 100% confidence rules are equivalent to those

directed from X1 to X2, where X2
 X1, i.e., from a

superset to a subset (not necessarily proper subset).

For example, the rule C) W is equivalent to the rule

between the closed itemsets c(W))c(C) � CW) C.

Its support is sup(CW) = 5∕6, and its confidence is
supðCW Þ
supðW Þ ¼ 5=5 ¼ 1, i.e., 100%. The less than 100% con-

fidence rules are equivalent to those from X1 to X2
where X1 � X2, i.e., from a subset to a proper super-

set. For example, the rule W) T is equivalent to

the rule c(W))c(W [T)� CW)ACTW. Its support

is sup(TW) = 3∕6 = 0.5, and its confidence is
supðTW Þ
supðW Þ ¼ 3=5 ¼ 0:6 or 60%. More details on how to

generate these non-redundant rules appears in [9].

Key Applications
Closed itemsets provide a loss-less representation of the

set of all frequent itemsets; they allow one to determine

not only the frequent sets but also their exact support. At

the same time they can be orders of magnitude fewer.

Likewise, the non-redundant rules provide amuch smal-

ler, and manageable, set of rules, from which all other

rules can be derived. There are numerous applications of

thesemethods, such asmarket basket analysis, web usage

mining, gene expression pattern mining, and so on.

Future Directions
Closed itemset mining has inspired a lot of subsequent

research in mining compressed representations or

summaries of the set of frequent patterns; see [2] for

a survey of these approaches. Mining compressed pat-

tern bases remains an active area of study.

Experimental Results
A number of algorithms have been proposed to mine

frequent closed itemsets, and to extract non-redundant

rule bases. The Frequent Itemset Mining Implementa-

tions (FIMI) Repository contains links to many of

the latest implementations for mining closed item-

sets. A report on the comparison of these methods

368C Closest Pairs
also appears in [4]. Other implementations can be

obtained from individual author’s websites.
Data Sets
The FIMI repository has a number of real and syn-

thetic datasets used in various studies on closed itemset

mining.
Url to Code
The main FIMI website is at http://fimi.cs.helsinki.fi/,

which is also mirrored at: http://www.cs.rpi.edu/~zaki/

FIMI/
Cross-references
▶Association Rule Mining on Streams

▶Data Mining
Recommended Reading
1. Bastide Y., Pasquier N., Taouil R., Stumme G., and Lakhal L.

Mining minimal non-redundant association rules using fre-

quent closed itemsets. In Proc. 1st Int. Conf. Computational

Logic, 2000, pp. 972–986.

2. Calders T., Rigotti C., and Boulicaut J.-F. A Survey on

Condensed Representation for Frequent Sets. In Constraint-

based Mining and Inductive Databases, LNCS, Vol. 3848, J-F.

Boulicaut, L. De Raedt, and H. Mannila (eds.). Springer, 2005,

pp. 64–80.

3. Ganter B. and Wille R. Formal Concept Analysis: Mathematical

Foundations. Springer, Berlin Heidelberg New York, 1999.

4. Goethals B. and Zaki M.J. Advances in frequent itemset mining

implementations: report on FIMI’03. SIGKDD Explor., 6(1):

109–117, June 2003.

5. Guigues J.L. and Duquenne V. Familles minimales d’implica-

tions informatives resultant d’un tableau de donnees binaires.

Math. Sci. hum., 24(95):5–18, 1986.

6. Luxenburger M. Implications partielles dans un contexte. Math.

Inf. Sci. hum., 29(113):35–55, 1991.

7. Pasquier N., Bastide Y., Taouil R., and Lakhal L. Discovering

frequent closed itemsets for association rules. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 398–416.

8. Pei J., Han J., and Mao R. Closet: An efficient algorithm for

mining frequent closed itemsets. In Proc. ACM SIGMODWork-

shop on Research Issues in Data Mining and Knowledge Discov-

ery, 2000, pp. 21–30.

9. Zaki M.J. Generating non-redundant association rules. In Proc.

6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2000, pp. 34–43.

10. Zaki M.J. and Hsiao C.-J. CHARM: An efficient algorithm for

closed itemset mining. In Proc. SIAM International Conference

on Data Mining, 2002, pp. 457–473.

11. Zaki M.J. and OgiharaM. Theoretical foundations of association

rules. In Proc. ACM SIGMODWorkshop on Research Issues in

Data Mining and Knowledge Discovery, 1998.
Closest Pairs

▶Closest-Pair Query

Closest-Pair Query

ANTONIO CORRAL
1, MICHAEL VASSILAKOPOULOS

2

1University of Almeria, Almeria, Spain
2University of Central Greece, Lamia, Greece

Synonyms
Closest pairs; k-Closest pair query; k-Distance join;

Incremental k-distance join; k-Closest pair join

Definition
Given two sets P and Q of objects, a closest pair (CP)

query discovers the pair of objects (p, q) with a dis-

tance that is the smallest among all object pairs in the

Cartesian product P�Q. Similarly, a k closest pair

query (k-CPQ) retrieves k pairs of objects from P and

Q with the minimum distances among all the object

pairs. In spatial databases, the distance is usually de-

fined according to the Euclidean metric, and the set of

objects P and Q are disk-resident. Query algorithms

aim at minimizing the processing cost and the number

of I/O operations, by using several optimization tech-

niques for pruning the search space.

Historical Background
The closest pair query, has been widely studied in

computational geometry. More recently, this prob-

lem has been approached in the context of spatial

databases [4,8,12,14]. In spatial databases, existing

algorithms assume that P and Q are indexed by a

spatial access method (usually an R-tree [1]) and uti-

lize some pruning bounds and heuristics to restrict the

search space.

[8] was the first to address this issue, and proposed

the following distance-based algorithms: incremental

distance join, k distance join and k distance semijoin

between two R-tree indices. The incremental proces-

sing reports one-by-one the desired elements of the

result in ascending order of distance (k is unknown in

advance and the user can stop when he/she is satisfied

by the result). The algorithms follow the Best-First

(BF) traversal policy, which keeps a heap with the

entries of the nodes visited so far (it maintains a

priority queue which contains pairs of index entries

http://fimi.cs.helsinki.fi/
http://www.cs.rpi.edu/~zaki/FIMI/
http://www.cs.rpi.edu/~zaki/FIMI/

Closest-Pair Query C 369

C

and objects, and pop out the closest pair and process

it). BF is near-optimal for CP queries; i.e., it only visits

the pairs of nodes necessary for obtaining the result

with a high probability. In [12] several modifications

to the algorithms of [8] had been proposed in order to

improve performance. Mainly, a method was proposed

for selecting the sweep axis and direction for the plane

sweep technique in bidirectional node expansion

which minimizes the computational overhead of [8].

Later, an improved version of BF and several algo-

rithms that follow Depth-First (DF) traversal ordering

from the non-incremental point of view (which assumes

that k is known in advance and reports the k elements of

the result all together at the end of the algorithm) was

proposed in [4]. In general, a DF algorithm visit the

roots of the two R-trees and recursively follows the pair

of entries < EP, EQ >, EP 2 RP and EQ 2 RQ, whose

MINMINDIST is the minimum distance among all

pairs. At the opposite of BF, DF is sub-optimal, i.e., it

accesses more nodes than necessary. The main disad-

vantage of BF with respect to DF is that it may suffer

from buffer thrashing if the available memory is not

enough for the heap (it is space-consuming), when a

great quantity of elements of the result is required. In

this case, part of the heap must be migrated to disk,

incurring frequent I/O accesses. The implementation

of DF is by recursion, which is available in most of the

programming languages, and linear-space consuming

with respect to the height of the R-trees. Moreover, BF

is not favored by page replacement policies (e.g., LRU),

as it does not exhibit locality between I/O accesses.

Another interesting contribution to the CP query was

proposed by [14], in which a new structure called the

b-Rdnn tree was presented, along with a better solution

to the k-CP query when there is high overlap between

the two datasets. The main idea is to find k objects from

each dataset which are the closest to the other dataset.

There are a lot of papers related to k-CP query, like

buffer query [3], iceberg distance join query [13],multi-

way distance join query [6], k-nearest neighbor join [2],

closest pair query with spatial constraints [11], etc. For

example, a buffer query [3] involves two spatial datasets

and a distance threshold r; the answer to this query is a
set of pairs of spatial objects, one from each input

dataset, that are within distance r of each other.

Foundations
In spatial databases, existing algorithms assume that

sets of spatial objects are indexed by a spatial access
method (usually an R-tree [1]) and utilize some prun-

ing bounds to restrict the search space. An R-tree is a

hierarchical, height balanced multidimensional data

structure, designed to be used in secondary storage

based on B-trees. The R-trees are considered as excel-

lent choices for indexing various kinds of spatial data

(points, rectangles, line-segments, polygons, etc.).

They are used for the dynamic organization of a set

of spatial objects approximated by their Minimum

Bounding Rectangles (MBRs). These MBRs are char-

acterized by min and max points of rectangles with

faces parallel to the coordinate axis. Using the MBR

instead of the exact geometrical representation of the

object, its representational complexity is reduced to

two points where the most important features of the

spatial object (position and extension) are maintained.

The R-trees belong to the category of data-driven

access methods, since their structure adapts itself

to the MBRs distribution in the space (i.e., the parti-

tioning adapts to the object distribution in the embed-

ding space). Figure 1a shows two points sets P and

Q (and the node extents), where the closest pair is

(p8, q8), and Fig. 1b is the R-tree for the point set

P = {p1, p2,...,p12} with a capacity of three entries per

node (branching factor or fan-out).

Assuming that the spatial datasets are indexed on any

spatial tree-like structure belonging to the R-tree family,

then the main objective while answering these types

of spatial queries is to reduce the search space. In [5],

three MBR-based distance functions to be used in algo-

rithms for CP queries were formally defined, as an ex-

tension of the work presented in [4]. These metrics are

MINMINDIST, MINMAXDIST and MAXMAXDIST.

MINMINDIST (M1, M2) between two MBRs is the

minimum possible distance between any point in

the first MBR and any point in the second MBR.

Maxmaxdist between two MBRs (M1, M2) is the maxi-

mum possible distance between any point in the

first MBR and any point in the second MBR. Finally,

MINMAXDIST between two MBRs (M1, M2) is the

minimum of the maximum distance values of all

the pairs of orthogonal faces to each dimension. For-

mally, they are defined as follows:

Given twoMBRs M1 = (a, b) andM2 = (c, d), in the

d-dimensional Euclidean space,

M1 = (a, b), where a = (a1, a2,...,ad) and b = (b1,

b2,...,bd) such that ai 	 bi 1 	 i 	 d

M2 = (c, d), where c = (c1, c2,...,cd) and d = (d1,

d2,...,dd) such that ai 	 bi 1 	 i 	 d

Closest-Pair Query. Figure 1. Example of an R-tree and a point CP query.

Closest-Pair Query. Figure 2. MBR-based distance

functions in 2-dimensional Euclidean space.

370C Closest-Pair Query
the MBR-based distance functions are defined as

follows:

MINMINDISTðM1;M2Þ ¼ffi
Xd
i¼1

ðci � biÞ2; ci > bi

ðai � diÞ2; ai > di

0; otherwise

8><
>:

vuuuut
MAXMAXDISTðM1;M2Þ ¼ffi

Xd
i¼1

ðdi � aiÞ2; ci > bi

ðbi � ciÞ2; ai > di

max ðdi � aiÞ2; ðbi � ciÞ2
� �

; otherwise

8><
>: :

vuuuut

MINMAXDIST M1;M2ð Þ ¼
ffi
min
1	j	d

x2j þ
Xd

i¼1;i 6¼j
y2i

()vuut
where

xj ¼ min aj � cj
�� ��; aj � dj

�� ��; bj � cj
�� ��; bj � dj

�� ��� �
and

yi ¼ max ai � dij j; bi � cij jf g

To illustrate the distance functionsMINMINDIST,MIN-

MAXDIST and MAXMAXDIST which are the basis of

query algorithms for CPQ, in Fig. 2, two MBRs and

their MBR-based distance functions and their relation

with the distance (dist) between two points (pi, qj) are

depicted in 2-dimensional Euclidean space.

According to [5], MINMINDIST(M1,M2) is

monotonically non-decreasing with the R-tree heights.

MINMINDIST(M1,M2) and MAXMAXDIST(M1, M2)

serve respectively as lower and upper bounding func-

tions of the Euclidean distance from the k closest pairs

of spatial objects within the MBRs M1, and M2. In the
same sense, MINMAXDIST(M1, M2) serves as an

upper bounding function of the Euclidean distance

from the closest pair of spatial objects enclosed by the

MBRs M1 andM2. As long as the distance functions are

consistent, the branch-bound algorithms based on

them will work correctly [5].

Moreover, the general pruning mechanism for

k-CP queries over R-tree nodes using branch-and-

bound algorithms is the following: if MINMINDIST

(M1, M2) > z, then the pair of MBRs (M1, M2) will be

discarded, where z is the distance value of the k-th

closest pair that has been found so far (during the

processing of the algorithm), or the distance value of

the k-th largest MAXMAXDIST found so far (z is also

called as the pruning distance).

Branch-and-bound algorithms can be designed fol-

lowing DF or BF traversal ordering (Breadth-First tra-

versal order (level-by-level) can also be implemented,

but the processing of each level must follow a BF order)

to report k closest pairs in non-incremental way (for

incremental processing the ordering of traversal must

be BF [8]).

Closest-Pair Query C 371

C

As an example, Fig. 3 shows the BF k-CPQ algo-

rithm for two R-trees, for the non-incremental proces-

sing version. This algorithm needs to keep a minimum

binary heap (H) with the references to pairs of internal

nodes (characterized by their MBRs) accessed so far

from the two different R-trees and their minimum

distance (<MINMINDIST, AddrMPi, AddrMQj>). It

visits the pair of MBRs (nodes) with the minimum

MINMINDIST in H, until it becomes empty or the

MINMINDIST value of the pair of MBRs located in

the root of H is larger than the distance value of the

k-th closest pair that has been found so far (z). To keep

track of z, an additional data structure that stores the k

closest pairs discovered during the processing of the

algorithm is needed. This data structure is organized as

a maximum binary heap (k-heap) and holds pairs of

objects according to their minimum distance (the pair

with the largest distance resides in the root). In the

implementation of k-CPQ algorithm, the following

cases must be considered: (i) initially the k-heap is
Closest-Pair Query. Figure 3. Best-First k-CPQ Algorithm usi
empty (z is initialized to 1), (ii) the pairs of objects

reached at the leaf level are inserted in the k-heap until it

gets full (z keeps the value of1), (iii) if the distance of a

new pair of objects discovered at the leaf level is smaller

than the distance of the pair residing in the k-heap root,

then the root is extracted and the new pair is inserted in

the k-heap, updating this data structure and z (distance

of the pair of objects residing in the k-heap root).

Several optimizations had been proposed in order

to improve performance, mainly with respect to the

CPU cost. For instance, a method for selecting the

sweep axis and direction for the plane sweep technique

has been proposed [12]. But the most important opti-

mization is the use of the plane-sweep technique for

k-CPQ [5,12], which is a common technique for com-

puting intersections. The basic idea is to move a sweep-

line perpendicular to one of the dimensions, so-called

the sweeping dimension, from left to right. This tech-

nique is applied for restricting all possible combina-

tions of pairs of MBRs from two R-tree nodes from RP
ng R–trees.

372C Closest-Pair Query
and RQ. If this technique is not used, then a set with

all possible combinations of pairs of MBRs from two

R-tree nodes must be created. In general, the technique

consists in sorting the MBRs of the two current R-tree

nodes, based on the coordinates of one of the lower left

corners of the MBRs in increasing order. Each MBR

encountered during a plane sweep is selected as a pivot,

and it is paired up with the non-processed MBRs in

the other R-tree node from left to right. The pairs of

MBRs with MINMINDISTon the sweeping dimension

that are less than or equal to z (pruning distance) are

selected for processing. After all possible pairs of

MBRs that contain the pivot have been found, the

pivot is updated with the MBR of the next smallest

value of a lower left corner of MBRs on the sweeping

dimension, and the process is repeated. In summary,

the application of this technique can be viewed as

a sliding window on the sweeping dimension with a

width of z starting in the lower end of the pivot MBR,

where all possible pairs of MBRs that can be formed

using the MBR of the pivot and the other MBRs from

the remainder entries of the other R-tree node that fall

into the current sliding window are chosen. For exam-

ple, in Fig. 4, a set of MBRs from two R-tree nodes

({MP1, MP2, MP3, MP4, MP5, MP6} and {MQ1, MQ2,

MQ3, MQ4, MQ5, MQ6, MQ7}) is shown. Without

plane-sweep, 6*7 = 42 pairs of MBRs must be gener-

ated. If the plane-sweep technique is applied over the

X axis (sweeping dimension) and taking into account

the distance value of z (pruning distance), this number

of possible pairs will reduced considerably (the num-

ber of selected pairs of MBRs using the plane sweep

technique is only 29).
Closest-Pair Query. Figure 4. Using plane-sweep technique
Key Applications

Geographical Information Systems

Closest pair is a common distance-based query in

the spatial database context, and it has only recently

received special attention. Efficient algorithms are

important for dealing with the large amount of spatial

data in several GIS applications. For example, k-CPQ can

discover the K closest pairs of cities and cultural land-

marks providing an increase order based on its distances.

Data Analysis

Closest pair queries have been considered as a core

module of clustering. For example, a proposed cluster-

ing algorithm [10] owes its efficiency to the use of

closest pair query, as opposed to previous quadratic-

cost approaches.

Decision Making

A number of decision support tasks can be modeled

as closest pairs query. For instance, find the top

k factory-house pairs ordered by the closeness to one

another. This gives us a measure of the effect of indi-

vidual factory on individual household, and can give

workers a priority to which factory to address first.

Future Directions
k-closest pair query is a useful type of query in many

practical applications involving spatial data, and the

traditional technique to handle this spatial query gen-

erally assumes that the objects are static. Objects repre-

sented as a function of time have been studied in other

domains, as in spatial semijoin [9]. For this reason,
over MBRs from two R-tree nodes.

Cloud Computing C 373

C

closest pair query in spatio-temporal databases could

be an interesting line of research.

Another interesting problem to study is the moni-

toring of k-closest pairs over moving objects. It aims at

maintaining closest pairs results while the underlying

objects change the positions [15]. For example, return

k pairs of taxi stands and taxies that have the smallest

distances.

Other interesting topics to consider (from the

static point of view) are to study k-CPQ between

different spatial data structures (Linear Region Quad-

trees for raster and R-trees for vector data), and

to investigate k-CPQ in non-Euclidean spaces (e.g.,

road networks).
Experimental Results
In general, for every presented method, there is an

accompanying experimental evaluation in the corres-

ponding reference. [4,5,8] compare BF and DF travers-

al order for conventional k-CPQ (from the incremental

and non-incremental point of view). In [7], a cost

model for k-CPQ using R-trees was proposed, evaluat-

ing their accuracy. Moreover, experimental results on

k-closest pair queries to support the fact that b-Rdnn

tree is a better alternative with respect to the R*-trees,

when there is high overlap between the two datasets,

were presented in [14].
Data Sets
A large collection of real datasets, commonly used

for experiments, can be found at: http://www.

rtreeportal.org/
URL to Code
R-tree portal (see above) contains the code for most

common spatial access methods (mainly R-tree and

variations), as well as data generators and several useful

links for researchers and practitioners in spatial

databases.

The sources in C + + of k-CPQ are in: http://www.

ual.es/�acorral/DescripcionTesis.htm

Cross-references
▶Multi-Step Query Processing

▶Nearest Neighbor Query

▶R-Tree (and family)

▶ Spatial Indexing Techniques

▶ Spatial Join
Recommended Reading
1. Beckmann N., Kriegel H.P., Schneider R., and Seeger B. The

R*-tree: an efficient and robust access method for points and

rectangles. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1990, pp. 322–331.

2. Böhm C. and Krebs F. The k-nearest neighbour join: Turbo

charging the KDD process. Knowl. Inform. Syst., 6(6):728–749,

2004.

3. Chan E.P.F. Buffer queries. IEEE Trans. Knowl. Data Eng.,

15(4):895–910, 2003.

4. Corral A., Manolopoulos Y., Theodoridis Y., and Vassilakopou-

los M. Closest pair queries in spatial databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 189–200.

5. Corral A., Manolopoulos Y., Theodoridis Y., and

Vassilakopoulos M. Algorithms for processing K-closest-pair

queries in spatial databases. Data Knowl. Eng., 49(1):67–104,

2004.

6. Corral A., Manolopoulos Y., Theodoridis Y., and

Vassilakopoulos M. Multi-way distance join queries in spatial

databases. GeoInformatica, 8(4):373–402, 2004.

7. Corral A., Manolopoulos Y., Theodoridis Y., and

Vassilakopoulos M. Cost models for distance joins queries

using R-trees. Data Knowl. Eng., 57(1):1–36, 2006.

8. Hjaltason G.R. and Samet H. Incremental distance join algo-

rithms for spatial databases. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1998, pp. 237–248.

9. Iwerks G.S., Samet H., and Smith K. Maintenance of spatial

semijoin queries on moving points. In Proc. 30th Int. Conf. on

Very Large Data Bases, 2004, pp. 828–839.

10. Nanopoulos A., Theodoridis Y., and Manolopoulos Y. C2P:

clustering based on closest pairs. In Proc. 27th Int. Conf. on

Very Large Data Bases, 2001, pp. 331–340.

11. Papadopoulos A.N., Nanopoulos A., and Manolopoulos Y.

Processing distance join queries with constraints. Comput. J.,

49(3):281–296, 2006.

12. Shin H., Moon B., and Lee S. Adaptive multi-stage distance join

processing. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 2000, pp. 343–354.

13. Shou Y., Mamoulis N., Cao H., Papadias D., and Cheung D.W.

Evaluation of iceberg distance joins. In Proc. 8th Int. Symp.

Advances in Spatial and Temporal Databases, 2003, pp. 270–288.

14. Yang C. and Lin K. An index structure for improving

closest pairs and related join queries in spatial databases. In

Proc. Int. Conf. on Database Eng. and Applications, 2002, pp.

140–149.

15. Zhu M., Lee D.L., and Zhang J. k-closest pair query monitoring

over moving objects. In Proc. 3rd Int. Conf. on Mobile Data

Management, 2002, pp. 14–14.
Cloud Computing

▶Replication in Multi-Tier Architectures

▶ Storage Grid

http://www.rtreeportal.org/
http://www.rtreeportal.org/
http://www.ual.es/~acorral/DescripcionTesis.htm
http://www.ual.es/~acorral/DescripcionTesis.htm

374C Cluster and Distance Measure
Cluster and Distance Measure

DIMITRIOS GUNOPULOS
1,2

1Computer Science and Eng. Dept., Univ. of California

Riverside, Riverside, CA 92521, USA
2Dept. of Informatics and Telecommunications,

University of Athens, Athens, Greece

Synonyms
Unsupervised learning; Segmentation

Definition

Clustering

Clustering is the assignment of objects to groups of

similar objects (clusters). The objects are typically

described as vectors of features (also called attributes).

So if one has n attributes, object x is described as a

vector (x1,..,xn). Attributes can be numerical (scalar) or

categorical. The assignment can be hard, where each

object belongs to one cluster, or fuzzy, where an object

can belong to several clusters with a probability. The

clusters can be overlapping, though typically they are

disjoint. Fundamental in the clustering process is the

use of a distance measure.

Distance Measure

In the clustering setting, a distance (or equivalently a

similarity) measure is a function that quantifies the

similarity between two objects.

Key Points
The choice of a distance measure depends on the

nature of the data, and the expected outcome of

the clustering process. The most important consider-

ation is the type of the features of the objects. One

first focuses on distance measures when the features

are all numerical. This includes features with continu-

ous values (real numbers) or discrete values (integers).

In this case, typical choices include:

1. The Lp norm. It is defined as D(x,y)¼P
1	i	n ðX1 � Y1Þp

	
1=p
. Typically p is 2 (the intui-

tiveandthereforewidelyusedEuclideandistance),or

1 (the Manhattan or city block distance), or infinity

(theMaximumdistance).

2. The Mahalanobis distance. It is defined as

Dðx; yÞ ¼ ðx � yÞP �1ðx � yÞTwhich generalizes

the Euclidean and allows the assignment of differ-

ent weights to different features.
3. The angle between two vectors, computed using the

inner product of two vectors x·y.

4. The Hamming distance, which measures the num-

ber of disagreements between two binary vectors.

In different settings different distance measures can be

used. The edit, or Levenshtein, distance, is an exten-

sion of the Hamming distance, and is typically used for

measuring the distance between two strings of charac-

ters. The edit distance is defined as the minimum

number of insertions, deletions or substitutions that

it takes to transform one sting to another.

When two time series are compared, the Dynamic

TimeWarping distancemeasure is often used to quantify

their distance. The length of the Longest Common Sub-

sequence (LCSS) of two time series is also frequently

used to provide a similarity measure between the time

series. LCSS is a similarity measure because the longest

common subsequence becomes longer when two time

series are more similar. To create a distance measure,

LCSS is typically normalized by dividing by the length

of the longest of the two sequences, and then subtracting

the ratio from one.

Finally, when sets of objects are compared, the

Jaccard coefficient is typically used to compute their

distance. The Jaccard coefficient of sets A and B is

defined as JðA;BÞ ¼ jA \ Bj=jA [Bj, that is, the frac-
tion of the common elements over the union of the

two sets.

The majority of the distance measures used in

practice, and indeed most of the ones described

above are metrics. Formally, a distance measure D is

a metric if it obeys the following properties:

For objects A, B, (i) D(A,B)\geq 0, (ii) D(A,B) = 0 if

and only if A = B, and (iii) D(A,B) = D(B,A), and (iv)

for any objects A,B,C, D(A,B) + D(B,C)\geq D(A,C)

(triangle inequality).

Most distance measures can be trivially shown to

observe the first three properties, but do not necessarily

observe the triangle inequality. For example, the con-

strained Dynamic Time Warping distance, a typically

used measure to compute the similarity between time

series which does not allow arbitrary stretching of a time

series, is not a metric because it does not satisfy the

triangle inequality. Experimental results have shown

that the constrained Dynamic Time Warping distance

performs at least as good as the unconstrained one and it

is also faster to compute, thus justifying its use although

it is not a metric. Note however that, if it is so required,

any distance measure can be converted into a metric by

Clustering for Post Hoc Information Retrieval C 375
taking the shortest path between objects A and B in the

complete graph where each object is a node and each

edge is weighted by the distance between the two nodes.
C
Cross-references
▶Clustering Overview and Applications

▶Data Mining
Recommended Reading
1. Everitt B.S., Landau S., Leese M. Cluster Analysis. Wiley, 2001.

2. Jain A.K., Murty M.N., and Flyn P.J. Data Clustering: A Review.

ACM Comput Surv, 31(3):1999.

3. Theodoridis S. and Koutroubas K. Pattern recognition. Academic

Press, 1999.
Cluster Database Replication

▶Replica Control
Cluster Databases

▶ Process Structure of a DBMS
Cluster Replication

▶Replication for Scalability

▶Replication in Multi-Tier Architectures
Cluster Stability

▶Clustering Validity
Cluster Validation

▶Clustering Validity
Clustering

▶Deduplication in Data Cleaning

▶ Physical Database Design for Relational Databases
Clustering for Post Hoc Information
Retrieval

DIETMAR WOLFRAM

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Synonyms
Document clustering

Definition
Clustering is a technique that allows similar objects to be

grouped together based on common attributes. It has

been used in information retrieval for different retrieval

process tasks and objects of interest (e.g., documents,

authors, index terms). Attributes used for clusteringmay

include assigned terms within documents and their

co-occurrences, the documents themselves if the focus

is on index terms, or linkages (e.g., hypertext links of

Web documents, citations or co-citations within docu-

ments, documents accessed). Clustering in IR facilitates

browsing and assessment of retrieved documents for

relevance and may reveal unexpected relationships

among the clustered objects.
Historical Background
A fundamental challenge of information retrieval (IR)

that continues today is how to best match user queries

with documents in a queried collection. Many mathe-

matical models have been developed over the years to

facilitate the matching process. The details of the

matching process are usually hidden from the user,

who is only presented with an outcome. Once a set of

candidate documents has been identified, they are pre-

sented to the user for perusal. Traditional approaches

have relied on ordered linear lists of documents based

on calculated relevance or another sequencing criteri-

on (e.g., date, alphabetical by title or author). The

resulting linear list addresses the assessed relationship

of documents to queries, but not the relationships

of the documents themselves. Clustering techniques

can reduce this limitation by creating groups of

documents (or other objects of interest) to facilitate

more efficient retrieval or perusal and evaluation of

retrieved sets.

The application of clustering techniques to IR

extends back to some of the earliest experimental

IR systems including Gerard Salton’s SMART system,

which relied on document cluster identification within

376C Clustering for Post Hoc Information Retrieval
a vector space as a means of quickly identifying sets of

relevant documents. The rationale for applying cluster-

ing was formalized as the ‘‘cluster hypothesis,’’ proposed

by Jardine and van Rijsbergen [6]. This hypothesis pro-

poses that documents that are relevant to a query are

more similar to each other than to documents that

are not relevant to the query. The manifestation of this

relationship can be represented in different ways by

grouping like documents or, more recently, visualizing

the relationships and resulting proximities in a multi-

dimensional space.

Early applications of clustering emphasized its use

to more efficiently identify groups of related, relevant

documents and to improve search techniques. The

computational burden associated with real-time clus-

ter identification during searches on increasingly larger

data corpora and the resulting lackluster performance

improvements have caused clustering to lose favor as a

primary mechanism for retrieval. However, clustering

methods continue to be studied and used today (see,

for example, [7]). Much of the recent research into

clustering for information retrieval has focused on

other areas that support the retrieval process. For in-

stance, clustering has been used to assist in query

expansion, where additional terms for retrieval may

be identified. Clustering of similar terms can be used

to construct thesauri, which can be used to index

documents [3].

Recent research on clustering has highlighted its

benefits for post hoc retrieval tasks, in particular for

the presentation of search results to better model user

and usage behavior. The focus of applications pre-

sented here is on these post hoc IR tasks, dealing with

effective representation of groups of objects once iden-

tified to support exploratory browsing and to provide

a greater understanding of users and system usage for

future IR system development.
Foundations
Methods used to identify clusters are based on cluster

analysis, a multivariate exploratory statistical tech-

nique. Cluster analysis relies on similarities or differ-

ences in object attributes and their values. The

granularity of the analysis and the validity of the result-

ing groups are dependent on the range of attributes

and values associated with objects of interest. For IR

applications, clusters are based on common occur-

rences and weights of assigned terms for documents,
the use of query terms, or linkages between objects of

interest represented as hypertext linkages or citations/

co-citations.

Clustering techniques can be divided into hierarchi-

cal and non-hierarchical approaches. Non-hierarchical

clustering methods require that a priori assumptions be

made about the nature and number of clusters, but can

be useful if specific cluster parameters are sought. Hier-

archical clustering, which is more commonly used,

begins with many small groups of objects that serve as

initial clusters. Existing groups are clustered into larger

groups until only one cluster remains. Visually, the

structure and relationship of clusters may be represented

as a dendrogram, with different cluster agglomerations

at different levels on the dendrogram representing the

strength of relationship between clusters. Other visuali-

zation techniques may be applied and are covered else-

where. In hierarchical methods, the shorter the

agglomerative distance, the closer the relationship and

the more similar the clusters are. As an exploratory

technique, there is no universally accepted algorithm to

conduct the analysis, but the general steps for conduct-

ing the analysis are similar. First, a similarity measure is

applied to the object attributes, which serves as the basis

for pairwise comparisons. Standard similarity or dis-

tancemeasures applied in IR research such as the Euclid-

ean distance, cosine measure, Jaccard coefficient, and

Dice coefficient can be used. Next, a method for cluster

determination is selected. Common methods include:

single complete linkage, average linkage, nearest neigh-

bor, furthest neighbor, centroid clustering (representing

the average characteristics of objects within a cluster),

and Ward’s method. Each method uses a different algo-

rithm to assess cluster membership andmay be found to

be more appropriate in given circumstances. Outcomes

can vary significantly depending on the method used.

This flexibility underscores one of the challenges for

effectively implementing cluster analysis. With no one

correct or accepted way to conduct the analysis, out-

comes are open to interpretation, but may be viewed as

equally valid. For example, single linkage clustering,

which links pairs of objects that most closely resemble

one another, is comparatively simple to implement and

has been widely used, but can result in lengthy linear

chains of clusters. Parameters may need to be specified

that dictate the minimum size of clusters to avoid situa-

tions where there are large orders of difference in cluster

membership. Another challenge inherent in clustering is

that different clustering algorithms can produce similar

Clustering for Post Hoc Information Retrieval C 377

C

numbers of clusters, but if some clusters contain few

members, this does little to disambiguate the members

within large clusters. The number of clusters that parti-

tion the object set can be variable in hierarchical cluster-

ing. More clusters result in fewer objects per cluster with

greater inter-object similarity, but with potentially more

groups to assess. It is possible to test for an optimal

number of clusters using various measures that calcu-

late how differing numbers of clusters affect cluster

cohesiveness.

Clustering may be implemented in dynamic envir-

onments by referencing routines based on specific clus-

tering algorithms developed by researchers or through

specialty clustering packages. Details on clustering algo-

rithms for information retrieval can be found in

Rasmussen [8]. Standard statistical and mathematical

software packages such as SAS and SPSS also support a

range of clustering algorithms. Special algorithms may

need to be applied to very large datasets to reduce

computational overhead, which can be substantial for

some algorithms.

Key Applications
In addition to early applications of clustering for im-

proving retrieval efficiency, clustering techniques in IR

have included retrieval results presentation, and mod-

eling of IR user and usage characteristics based on

transactions logs. Although largely a topic of research

interest, some applications have found their way into

commercial systems. Clustering of search results has

been applied by several Web-based search services since

the late 1990s, some of which are no longer available.

Most notable of the current generation is Clusty

(clusty.com), which organizes retrieval results from

several search services around topical themes.

The application of clustering to support interactive

browsing has been an active area of investigation in

recent years. Among the earliest demonstrations for

this purpose was the Scatter/Gather method outlined

by Cutting et al. [4], inwhich the authors demonstrated

how clustering of retrieved items can facilitate browsing

for vaguely defined information needs. This approach

was developed to serve as a complement to more fo-

cused techniques for retrieval assessment. In applica-

tion, the method presents users with a set of clusters

that serves as the starting point for browsing. The user

selects the clusters of greatest interest. The contents of

those clusters are then gathered into a single cluster,

which now serves as the corpus for a new round of
clustering, into which the new smaller corpus of items

is scattered. The process continues until the user’s in-

formation need is met or the user abandons the search.

To support real time clustering of datasets, the authors

developed an efficient clustering algorithm, called

buckshot, plus a more accurate algorithm, called frac-

tionation, to permit more detailed clustering in offline

environments where a timely response is less critical.

Another algorithm, called cluster digest, was used to

encapsulate the topicality of a given cluster based on the

highest weighted terms within the cluster. Hearst and

Pedersen [5] evaluated the efficacy of Scatter/Gather on

the top-ranked retrieval outcomes of a large dataset,

and tested the validity of the cluster hypothesis. The

authors compared the number of known relevant items

to those appearing in the generated clusters. A user

study was also conducted, which demonstrated that

participants were able to effectively navigate and inter-

act with the system incorporating Scatter/Gather.

Increasingly, IR systems provide access to hetero-

geneous collections of documents. The question arises

whether the cluster hypothesis, and the benefits of

capitalizing on its attributes, extends to the distributed

IR environment, where additional challenges include the

merger of different representations of documents and

identification of multiple occurrences of documents

across the federated datasets. Crestani and Wu [2] con-

ducted an experimental study to determine whether the

cluster hypothesis holds in a distributed environment.

They simulated a distributed environment by using

different combinations of retrieval environments and

document representation heterogeneity, with the most

sophisticated implementation representing three differ-

ent IR environments with three different collections.

Results of the different collections and systems were

clustered and compared. The authors concluded that

the cluster hypothesis largely holds true in distributed

environments, but fails when brief surrogates of full

text documents are used.

With the growing availability of large IR system

transaction logs, clustering methods have been used

to identify user and usage patterns. By better under-

standing patterns in usage behavior, IR systems may be

able to identify types of behaviors and accommodate

those behaviors through context-sensitive assistance or

through integration of system features that accommo-

date identified behaviors. Chen and Cooper [1] relied

on a rich dataset of user sessions collected from the

University of California MELVYL online public access

378C Clustering Index
catalog system. Based on 47 variables associated with

each user session (e.g., session length in seconds, aver-

age number of items retrieved, average number of

search modifications), their analysis identified six clus-

ters representing different types of user behaviors dur-

ing search sessions. These included help-intensive

searching, knowledgeable usage, and known-item

searching. Similarly, Wen et al. [9] focused on cluster-

ing of user queries in an online encyclopedia environ-

ment to determine whether queries could be effectively

clustered to direct users to appropriate frequently

asked questions topics. IR environments that cater to

a broad range of users are well-known for short query

submissions by users, which make clustering applica-

tions based solely on query term co-occurrence unreli-

able. In addition to the query content, the authors

based their analysis on common retrieved documents

viewed by users. By combining query content with

common document selections, a link was established

between queries that might not share search terms. The

authors demonstrated how the application of their

clustering method, which was reportedly adopted by

the encyclopedia studied, could effectively guide users

to appropriate frequently asked questions.

The previous examples represent only a sample of

clustering applications in an IR context. Additional

recent research developments and applications using

clustering may be found in Wu et al. [10].
Cross-references
▶Data Mining

▶Text Mining

▶Visualization for Information Retrieval
Recommended Reading
1. Chen H.M. and Cooper M.D. Using clustering techniques to

detect usage patterns in a web-based information system. J. Am.

Soc. Inf. Sci. Technol., 52(11):888–904, 2001.

2. Crestani F. and Wu S. Testing the cluster hypothesis in

distributed information retrieval. Inf. Process. Manage.,

42(5):1137–1150, 2006.

3. Crouch C.J. A cluster-based approach to thesaurus construction.

In Proc. 11th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1988, pp. 309–320.

4. Cutting D.R., Karger D.R., Pedersen J.O., and Tukey J.W. Scatter/

Gather: a cluster-based approach to browsing large document

collections. In Proc. 15th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1992,

pp. 318–329.

5.Hearst M.A. and Pedersen J.O. Reexamining the cluster hypoth-

esis: Scatter/Gather on retrieval results. In Proc. 19th Annual Int.
ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 1996, pp. 76–84.

6. Jardine N. and van Rijsbergen C. The use of hierarchic clustering

in information retrieval. Inf. Storage Retr., 7(5):217–240, 1971.

7. Liu X. and Croft W.B. Cluster-based retrieval using language

models. In Proc. 30th Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 2004, pp.

186–193.

8. Rasmussen E. Clustering algorithms. In Information Retrieval

Data Structures & Algorithms, W.B. Frakes, R. Baeza-Yates

(eds.). Prentice Hall, Englewood Cliffs, NJ, 1992, pp. 419–442.

9. Wen J.R., Nie J.Y., and Zhang H.J. Query clustering using user

logs. ACM Trans. Inf. Syst., 20(1):59–81, 2002.

10. Wu W., Xiong H., and Shekhar S. (eds.) Clustering and Infor-

mation Retrieval. Kluwer, Norwell, MA, 2004.
Clustering Index

▶ Primary Index
Clustering on Streams

SURESH VENKATASUBRAMANIAN

University of Utah, Salt Lake City, UT, USA

Definition
An instance of a clustering problem (see clustering)

consists of a collection of points in a distance space,

a measure of the cost of a clustering, and a measure of

the size of a clustering. The goal is to compute a

partitioning of the points into clusters such that the

cost of this clustering is minimized, while the size is

kept under some predefined threshold. Less common-

ly, a threshold for the cost is specified, while the goal is

to minimize the size of the clustering.

A data stream (see data streams) is a sequence of

data presented to an algorithm one item at a time.

A stream algorithm, upon reading an item, must per-

form some action based on this item and the contents

of its working space, which is sublinear in the size of

the data sequence. After this action is performed

(which might include copying the item to its working

space), the item is discarded.

Clustering on streams refers to the problem of

clustering a data set presented as a data stream.

Historical Background
Clustering (see clustering) algorithms typically require

access to the entire data to produce an effective clus-

tering. This is a problem for large data sets, where

Clustering on Streams C 379

C

random access to the data, or repeated access to the

entire data set, is a costly operation. For example, the

well-known k-means heuristic is an iterative procedure

that in each iteration must read the entire data set

twice. One set of approaches to performing clustering

on large data involves sampling: a small subset of data

is extracted from the input and clustered, and then this

clustering is extrapolated to the entire data set.

The data stream paradigm [14] came about in two

ways: first, as a way to model access to large streaming

sources (network traffic, satellite imagery) that by vir-

tue of their sheer volume, cannot be archived for off-

line processing and need to be aggregated, summarized

and then discarded in real time. Second, the streaming

paradigm has shown itself to be the most effective way

of accessing large databases: Google’s Map Reduce [9]

computational framework is one example of the effica-

cy of stream processing.

Designing clustering algorithms for stream data

requires different algorithmic ideas than those use-

ful for traditional clustering algorithms. The online

computational paradigm [4] is a potential solution:

in this paradigm, an algorithm is presented with

items one by one, and using only information learned

up to the current time, must make a prediction or

estimate on the new item being presented. Although

the online computing paradigm captures the sequen-

tial aspect of stream processing, it does not capture the

additional constraint that only a small portion of the

history may be stored. In fact, an online algorithm

is permitted to use the entirety of the history of the

stream, and is usually not limited computationally

in any way. Thus, new ideas are needed to perform

clustering in a stream setting.

Foundations

Preliminaries

Let X be a domain and d be a distance function defined

between pairs of elements in X. Typically, it is assumed

that d is a metric (i.e., it satisfies the triangle inequality

d(x, y) + d(y, z) � d(x, z)8x,y,z 2 X). One of the

more common measures of the cost of a cluster is the

so-called median cost: the cost of a cluster C
 X is

the function

costðCÞ ¼
X
x2C

dðx; c�Þ

where c * 2 X, the cluster center, is the point that

minimizes cost(C). The k-median problem is to find a
collection of k disjoint clusters, the sum of whose costs

is minimized.

An equally important cost function is the mean

cost: the cost of a cluster C
 X is the function

costðCÞ ¼
X
x2C

d2ðx; c� Þ

where c* is defined as before. The k-means problem is

to find a collection of clusters whose total mean cost

is minimized. It is useful to note that the median cost is

more robust to outliers in the data; however, the mean

cost function, especially for points in Euclidean spaces,

yields a very simple definition for c *: it is merely the

centroid of the set of points in the cluster. Other

measures that are often considered are the k-center

cost, where the goal is to minimize the maximum

radius of a cluster, and the diameter cost, where the

goal is to minimize the maximum diameter of a cluster

(note that the diameter measure does not require one

to define a cluster center).

A data stream problem consists of a sequence of

items x1, x2,...,xn, and a function f(x1,...,xn) that one

wishes to compute. The limitation here is that the

algorithm is only permitted to store a sublinear num-

ber of items in memory, because n is typically too large

for all the items to fit in memory. Further, even random

access to the data is prohibitive, and so the algorithm is

limited to accessing the data in sequential order.

Since most standard clustering problems (includ-

ing the ones described above) are NP-hard in general,

one cannot expect solutions that minimize the cost of

a clustering. However, one can often show that an

algorithm comes close to being optimal: formally,

one can show that the cost achieved by an algorithm

is within some multiplicative factor c of the optimal

solution. Such an algorithm is said to be a c-approxi-

mation algorithm. Many of the methods presented

here will provide such guarantees on the quality of

their output. As usual, one should keep in mind

that these guarantees are worst-case, and thus apply

to any possible input the algorithm may encounter.

In practice, these algorithms will often perform far

better than promised.

General Principles

Stream clustering is a relatively new topic within the

larger area of stream algorithms and data analysis.

However, there are some general techniques that have

proven their usefulness both theoretically as well as

practically, and are good starting points for the design

Algorithm 1: Clustering with representations

Initialize cluster centers randomly
While chunk of data remains to be read do

Read a chunk of data (as much as will fit in memory),
and cluster it using the k-means algorithm.
For each cluster, divide the points contained within it
into the core (points that are very close to the center
under various measures), and the periphery.
Replace the set of points in the core by a summary as
described above. Discard all remaining points.
Use the current cluster list as the set of centers for the
next chunk.

380C Clustering on Streams
and analysis of stream clustering methods. This section

reviews these ideas, as well as pointing to examples of

how they have been used in various settings.

Incremental Clustering The simplest way to think

about a clustering algorithm on stream data is to

imagine the stream data arriving in chunks of ele-

ments. Prior to the arrival of the current chunk, the

clustering algorithm has computed a set of clusters for

all the data seen so far. Upon encountering the new

chunk, the algorithm must update the clusters, possi-

bly expanding some and contracting others, merging

some clusters and splitting others. It then requests the

next chunk, discarding the current one. Thus, a core

component of any stream clustering algorithm is a

routine to incrementally update a clustering when

new data arrives. Such an approach was develo-

ped by Charikar et al. [6] for maintaining clusterings

of data in a metric space using a diameter cost func-

tion. Although their scheme was phrased in terms

of incremental clusterings, rather than stream cluster-

ings, their approach generalizes well to streams. They

show that their scheme yields a provable approxima-

tion to the optimal diameter of a k-clustering.

Representations One of the problems with clustering

data streams is choosing a representation for a cluster. At

the very least, any stream clustering algorithm stores the

location of a cluster center, and possibly the number of

items currently associated with this cluster. This repre-

sentation can be viewed as a weighted point, and can be

treated as a single point in further iterations of the

clustering process. However, this representation loses

information about the geometric size and distribution

of a cluster. Thus, another standard representation of a

cluster consists of the center and the number of points

augmented with the sum of squared distances from the

points in the cluster to the center. This last term infor-

mally measures the variation of points within a cluster,

and when viewed in the context of density estimation via

Gaussians, is in fact the sample variance of the cluster.

Clusters reduced in this way can be treated as

weighted points (or weighted balls), and clustering

algorithms should be able to handle such generalized

points. One notable example of the use of such a

representation is the one-pass clustering algorithm of

Bradley et al. [5], which was simplified and improved

by Farnstrom et al. [11]. Built around the well known

k-means algorithm (that iteratively seeks to minimize
the k-means measure described above), this technique

proceeds as follows.
It is important that representations be linear.

Specifically, given two chunks of data c,c 0, and their

representations r,r 0, it should be the case that the

representation of c [c 0 be formed from a linear com-

bination of r and r 0. This relates to the idea of sketching

in stream algorithms, and is important because it

allows the clustering algorithm to work in the (re-

duced) space of representations, rather than in the

original space of data. Representations like the one

described above are linear, and this is a crucial factor

in the effectiveness of these algorithms.

Hierarchical Clustering Viewing a cluster as a weight-

ed point in a new clustering problem quickly leads to

the idea of hierarchical clustering: by thinking of a point

as a single-element cluster, and connecting a cluster

and its elements in a parent-child relationship, a clus-

tering algorithm can represent multiple levels of

merges as a tree of clusters, with the root node being

a single cluster containing all the data, and each leaf

being a single item. Such a tree is called a Hierarchical

Agglomerative Clustering (HAC), since it can be

viewed bottom-up as a series of agglomerations. Build-

ing such a hierarchy yields more general information

about the relationship between clusters, and the ability

to make better judgments about how to merge clusters.

The well-known clustering algorithm BIRCH [15]

makes use of a hierarchy of cluster representations to

cluster a large database in a few passes. In a first pass, a

tree called the CF-tree is constructed, where each in-

ternal node represents a cluster of clusters, and each

leaf represents a cluster of items. This tree is controlled

by two parameters: B, the branching factor, and T, a

diameter threshold that limits the size of leaf clusters.

Clustering on Streams C 381

C

In further passes, more analysis is performed on the

CF-tree to compress clusters further. The tree is built

much in the way a B+-tree is built: new items are

inserted in the deepest cluster possible, and if the

threshold constraint is violated, the cluster is split,

and updates are propagated up the tree.

BIRCH is one of the best-known large-data clus-

tering algorithms, and is generally viewed as a bench-

mark to compare other clustering algorithms against.

However, BIRCH does not provide formal guarantees

on the quality of the clusterings thus produced. The

first algorithm that computes a hierarchical clustering

on a streamwhile providing formal performance guar-

antees is a method for solving the k-median problem

developed by Guha et al. [12,13]. This algorithm is best

described by first presenting it in a non-streaming

context:
Algorithm 2: Small space

Divide the input into l disjoint parts.
Cluster each part into O(k) clusters. Assign each point to
its nearest cluster center.
cluster the O(lk) cluster centers, where each center is
weighted by the number of points assigned to it.
Note that the total space required by this algorithm

is O(‘k + n ∕‘). The value of this algorithm is that it

propagates good clusterings: specifically, if the interme-

diate clusterings are computed by algorithms that yield

constant-factor approximations to the best clustering

(under the k-median cost measure), then the final

output will also be a (larger) constant factor approxi-

mation to the best clustering. Also note that the final

clustering step may itself be replaced by a recursive call

to the algorithm, yielding a hierarchical scheme.

Converting this to a stream algorithm is not too

difficult. Consider each chunk of data as one of the

disjoint parts the input is broken into. Suppose each

part is of sizem, and there exists a clustering procedure

that can cluster these points into 2k centers with rea-

sonable accuracy. The algorithm reads enough data to

obtain m centers (m2∕ 2k points). Thesem ‘‘points’’ can

be viewed as the input to a second level streaming

process, which performs the same operations. In gen-

eral, the ith-level stream process takes m2∕2k points

from the (i � 1)th-level stream process and clusters

them into m points, which are appended to the stream

for the next level.
The guarantees provided by the method rely on

having accurate clustering algorithms for the interme-

diate steps. However, the general paradigm itself is

useful as a heuristic: the authors show that using the

k-means algorithm as the intermediate clustering step

yields reasonable clustering results in practice, even

though the method comes with no formal guarantees.

On Relaxing the Number of Clusters If one wishes to

obtain guarantees on the quality of a clustering, using

at least k clusters is critical; it is easy to design examples

where the cost of a (k � 1)-clustering is much larger

than the cost of a k-clustering. One interesting aspect

of the above scheme is how it uses weaker clustering

algorithms (that output O(k) rather than k clusters)

as intermediate steps on the way to computing a k-

clustering. In fact, this idea has been shown to be useful

in a formal sense: subsequent work by Charikar et al.

[7] showed that if one were to use an extremely weak

clustering algorithm (in fact, one that produces

O(k logn) clusters), then this output can be fed into a

clustering algorithm that produces k clusters, while

maintaining overall quality bounds that are better

than those described above. This idea is useful espe-

cially if one has a fast algorithm that produces a larger

number of clusters, and a more expensive algorithm

that produces k clusters: the expensive algorithm can

be run on the (small) output of the fast algorithm to

produce the desired answer.

Clustering Evolving Data

Stream data is often temporal. Typical data analysis

questions are therefore often limited to ranges of

time (‘‘in the last three days,’’ ‘‘over the past week,’’

‘‘for the period between Jan 1 and Feb 1,’’ and so on).

All of the above methods for clustering streams assume

that the goal is to cluster the entire data stream, and the

only constraint is the space needed to store the data.

Although they are almost always incremental, in that

the stream can be stopped at any time and the resulting

clustering will be accurate for all data seen upto that

point, they cannot correctly output clusterings on win-

dows of data, or allow the influence of past data to

gradually wane over time. Even with non-temporal

data, it may be important to allow the data analysis

to operate on a subset of the data to capture the notion

of concept drift [10], a term that is used to describe a

scenario when natural data characteristics change as

the stream evolves.

382C Clustering on Streams
Sliding Windows A popular model of stream analysis

is the sliding window model, which introduces a new

parameter W. The goal of the stream analysis is to

produce summary statistics (a clustering, variance esti-

mates or other statistics), on the most recent W items

only, while using space that is sublinear in W. This

model can be thought of as represented by a sliding

window of length W with one end (the sliding end)

anchored to the current element being read. The chal-

lenge of dealing with sliding windows is the problem of

deletion. Although not as general as a fully dynamic

data model where arbitrary elements can be inserted

and deleted, the sliding window model introduces with

the problem of updating a cluster representation under

deletions, and requires new ideas.

One such idea is the exponential histogram, first

introduced by Datar et al. [8] to estimate certain sta-

tistical properties of sliding windows on streams, and

used by Babcock et al. [3] to compute an approximate

k-median clustering in the sliding window model. The

idea here is to maintain a set of buckets that together

partition all data in the current window. For each

bucket, relevant summary statistics are maintained.

Intuitively, the smaller the number of items assigned

to a bucket, the more accurate the summary statistics

(in the limit, the trivial histogram has one bucket for

each of the W items in the window). The larger this

number, the fewer the number of buckets needed.

Balancing these two conflicting requirements yields a

scheme where each bucket stores the items between

two timestamps, and the bucket sizes increase expo-

nentially as they store items further in the past. It

requires more detailed analysis to demonstrate that

such a scheme will provide accurate answers to queries

over windows, but the use of such exponentially in-

creasing bucket sizes allows the algorithm to use a few

buckets, while still maintaining a reasonable approxi-

mation to the desired estimate.

Hierarchies of Windows The sliding window model

introduces an extra parameter W whose value must

be justified by external considerations. One way of get-

ting around this problem is to maintain statistics for

multiple values of W (typically an exponentially in-

creasing family). Another approach, used by Aggarwal

et al. [1] is to maintain snapshots (summary represen-

tations of the clusterings) at time steps at different

levels of resolution. For example, a simple two level

snapshot scheme might store the cluster representations
computed after times t, t + 1,...t + W, as well as t, t + 2,

t + 4,...t + 2W (eliminating duplicate summaries as

necessary). Using the linear structure of representa-

tions will allow the algorithm to extract summaries

for time intervals: they show that such a scheme uses

space efficiently while still being able to detect evolu-

tion in data streams at different scales.

Decaying Data For scenarios where such a justifica-

tion might be elusive, another model of evolving data

is the decay model, in which one can think of a data

item’s influence waning (typically exponentially) with

time. In other words, the value of the ith item, instead

of being fixed at xi, is a function of time xi(t) = xi(0)exp

(�c(t � i)). This reduces the problem to the standard

setting of computing statistics over the entire stream,

while using the decay function to decide which items to

remove from the limited local storage when computing

statistics. The use of exponentially decaying data is quite

common in temporal data analysis: one specific example

of its application in the clustering of data streams is the

work on HPStream by Aggarwal et al. [2].

Key Applications
Systems that manage large data sets and perform data

analysis will require stream clustering methods. Many

modern data cleaning systems require such tools, as

well as large scientific databases. Another application

of stream clustering is for network traffic analysis: such

algorithms might be situated at routers, operating on

packet streams.

Experimental Results
Most of the papers cited above are accompanied by

experimental evaluations and comparisons to prior

work. BIRCH, as mentioned before, is a common

benchmarking tool.

Cross-references
▶Data Clustering

▶ Information Retrieval

▶Visualization

Recommended Reading
1. Aggarwal C.C., Han J., Wang J., and Yu P.S. A framework for

clustering evolving data streams. In Proc. 29th Int. Conf. on Very

Large Data Bases, 2003, pp. 81–92.

2. Aggarwal C.C., Han J., Wang J., and Yu P.S. A framework for

projected clustering of high dimensional data streams. In Proc.

30th Int. Conf. on Very Large Data Bases, 2004, pp. 852–863.

Clustering Overview and Applications C 383

C

3. Babcock B., Datar M., Motwani R., and O’Callaghan L. Main-

taining variance and k-medians over data stream windows. In

Proc. 22nd ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2003, pp. 234–243.

4. Borodin A. and El-Yaniv R. Online computation and competitive

analysis. Cambridge University Press, New York, NY, USA, 1998.

5. Bradley P.S., Fayyad U.M., and Reina C. Scaling Clustering

Algorithms to Large Databases. In Proc. 4th Int. Conf. on

Knowledge Discovery and Data Mining, 1998, pp. 9–15.

6. Charikar M., Chekuri C., Feder T., and Motwani R. Incremen-

tal Clustering and Dynamic Information Retrieval. SIAM J.

Comput., 33(6):1417–1440, 2004.

7. Charikar M., O’Callaghan L., and Panigrahy R. Better streaming

algorithms for clustering problems. In Proc. 35th Annual ACM

Symp. on Theory of Computing, 2003, pp. 30–39.

8. Datar M., Gionis A., Indyk P., and Motwani R. Maintaining

stream statistics over sliding windows: (extended abstract). In

Proc. 13th Annual ACM -SIAM Symp. on Discrete Algorithms,

2002, pp. 635–644.

9. Dean J. and Ghemaway S. MapReduce: simplified data proces-

sing on large clusters. In Proc. 6th USENIX Symp. on Operating

System Design and Implementation, 2004, pp. 137–150.

10. Domingos P. and Hulten G. Mining high-speed data streams. In

Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, 2000, pp. 71–80.

11. Farnstrom F., Lewis J., and Elkan C. Scalability for clustering

algorithms revisited. SIGKDD Explor., 2(1):51–57, 2000.

12. Guha S., MeyersonA., MishraN., Motwani R., and O’Callaghan L.

Clustering Data Streams: Theory and practice. IEEE Trans.

Knowl. Data Eng., 15(3):515–528, 2003.

13. Guha S., Mishra N., Motwani R., and O’Callaghan L. Clustering

data streams. In Proc. 41st Annual Symp. on Foundations of

Computer Science, 2000, p. 359.

14. Muthukrishnan S. Data streams: algorithms and applications.

Found. Trend Theor. Comput. Sci., 1(2), 2005.

15. Zhang T., Ramakrishnan R., and Livny M. BIRCH: A New Data

Clustering Algorithm and Its Applications. Data Min. Knowl.

Discov., 1(2):141–182, 1997.
Clustering Overview and
Applications

DIMITRIOS GUNOPULOS
1,2

1Computer Science and Eng. Dept., Univ. of California

Riverside, Riverside, CA 92521, USA
2Dept. of Informatics and Telecommunications,

University of Athens, Athens, Greece

Synonyms
Unsupervised learning

Definition
Clustering is the assignment of objects to groups

of similar objects (clusters). The objects are typically
described as vectors of features (also called attributes).

Attributes can be numerical (scalar) or categorical. The

assignment can be hard, where each object belongs

to one cluster, or fuzzy, where an object can belong

to several clusters with a probability. The clusters can

be overlapping, though typically they are disjoint.

A distance measure is a function that quantifies the

similarity of two objects.

Historical Background
Clustering is one of themost useful tasks in data analysis.

The goal of clustering is to discover groups of similar

objects and to identify interesting patterns in the data.

Typically, the clustering problem is about partitioning a

given data set into groups (clusters) such that the data

points in a cluster are more similar to each other

than points in different clusters [4,8]. For example, con-

sider a retail database where each record contains items

purchased at the same time by a customer. A clustering

procedure could group the customers in such a way

that customers with similar buying patterns are in the

same cluster. Thus, the main concern in the clustering

process is to reveal the organization of patterns into

‘‘sensible’’ groups, which allow one to discover simila-

rities and differences, as well as to derive useful conclu-

sions about them. This idea is applicable to many fields,

such as life sciences, medical sciences and engineering.

Clustering may be found under different names in dif-

ferent contexts, such as unsupervised learning (in pat-

tern recognition), numerical taxonomy (in biology,

ecology), typology (in social sciences) and partition

(in graph theory) [13].

The clustering problem comes up in so many

domains due to the prevalence of large datasets for

which labels are not available. In one or two dimen-

sions, humans can perform clustering very effectively

visually, however in higher dimensions automated

procedures are necessary. The lack of training examples

makes it very difficult to evaluate the results of the

clustering process. In fact, the clustering process may

result in different partitioning of a data set, depending

on the specific algorithm, criterion, or choice of para-

meters used for clustering.

Foundations

The Clustering Process

In the clustering process, there are no predefined clas-

ses and no examples that would show what kind of

384C Clustering Overview and Applications
desirable relations should be valid among the data.

That is the main difference from the task of classifica-

tion: Classification is the procedure of assigning an

object to a predefined set of categories [FSSU96].

Clustering produces initial categories in which values

of a data set are classified during the classification

process. For this reason, clustering is described as

‘‘unsupervised learning’’; in contrast to classification,

which is considered as ‘‘supervised learning.’’ Typi-

cally, the clustering process will include at least the

following steps:

1. Feature selection: Typically, the objects or observa-

tions to be clustered are described using a set of

features. The goal is to appropriately select the fea-

tures on which clustering is to be performed so as to

encode as much information as possible concerning

the task of interest. Thus, a pre-processing step may

be necessary before using the data.

2. Choice of the clustering algorithm. In this step the

user chooses the algorithm that is more appropriate

for the data at hand, and therefore is more likely

to result to a good clustering scheme. In addition, a

similarity (or distance) measure and a clustering

criterion are selected in tandem

– The distance measure is a function that quanti-

fies how ‘‘similar’’ two objects are. In most of

the cases, one has to ensure that all selected

features contribute equally to the computation

of the proximity measure and there are no fea-

tures that dominate others.

– The clustering criterion is typically a cost func-

tion that the clustering algorithmhas to optimize.

The choice of clustering criterion has to take into

account the type of clusters that are expected to

occur.

3. Validation and interpretation of the results. The

correctness of the results of the clustering algo-

rithm is verified using appropriate criteria and

techniques. Since clustering algorithms define clus-

ters that are not known a priori, irrespective of the

clustering methods, the final partition of the data

typically requires some kind of evaluation. In many

cases, the experts in the application area have to

integrate the clustering results with other experi-

mental evidence and analysis in order to draw the

right conclusion.

After the third phase the user may elect to use the

clustering results obtained, or may start the process
from the beginning, perhaps using different clustering

algorithms or parameters.

Clustering Algorithms Taxonomy

With clustering being a useful tool in diverse research

communities, a multitude of clustering methods has

been proposed in the literature. Occasionally similar

techniques have been proposed and used in different

communities. Clustering algorithms can be classified

according to:

1. The type of data input to the algorithm (for exam-

ple, objects described with numerical features or

categorical features) and the choice of similarity

function between two objects.

2. The clustering criterion optimized by the algorithm.

3. The theory and fundamental concepts on which

clustering analysis techniques are based (e.g.,

fuzzy theory, statistics).

A broad classification of clustering algorithms is the

following [8,14]:

1. Partitional clustering algorithms: here the algorithm

attempts to directly decompose the data set into a

set of (typically) disjoint clusters. More specifically,

the algorithm attempts to determine an integer

number of partitions that optimize a certain crite-

rion function.

2. Hierarchical clustering algorithms: here the algo-

rithm proceeds successively by either merging

smaller clusters into larger ones, or by splitting lar-

ger clusters. The result of the algorithm is a tree

of clusters, called dendrogram, which shows how

the clusters are related. By cutting the dendrogram

at a desired level, a clustering of the data items

into disjoint groups is obtained.

3. Density-based clustering : The key idea of this type

of clustering is to group neighbouring objects of a

data set into clusters based on density conditions.

This includes grid-based algorithms that quantise

the space into a finite number of cells and then do

operations in the quantised space.

For each of above categories there is a wealth of sub-

types and different algorithms for finding the clusters.

Thus, according to the type of variables allowed in

the data set additional categorizations include [14]:

(i) Statistical algorithms, which are based on statistical

analysis concepts and use similarity measures to parti-

tion objects and they are limited to numeric data.

Clustering Overview and Applications C 385

C

(ii) Conceptual algorithms that are used to cluster

categorical data. (iii) Fuzzy clustering algorithms,

which use fuzzy techniques to cluster data and allow

objects to be classified into more than one clusters.

Such algorithms lead to clustering schemes that are

compatible with everyday life experience as they han-

dle the uncertainty of real data. (iv) Crisp clustering

techniques, that consider non-overlapping partitions

so that a data point either belongs to a class or not.

Most of the clustering algorithms result in crisp clus-

ters, and thus can be categorized in crisp clustering.

(v) Kohonen net clustering, which is based on the

concepts of neural networks.

In the remaining discussion, partitional clustering

algorithms will be described in more detail; other

techniques will be dealt with separately.

Partitional Algorithms

In general terms, the clustering algorithms are based on a

criterion for assessing the quality of a given partitioning.

More specifically, they take as input some parameters

(e.g., number of clusters, density of clusters) and attempt

to define the best partitioning of a data set for the given

parameters. Thus, they define a partitioning of a data

set based on certain assumptions and not necessarily the

‘‘best’’ one that fits the data set.

In this category, K-Means is a commonly used

algorithm [10]. The aim of K-Means clustering is the

optimisation of an objective function that is described

by the equation:

E ¼
Xc
i¼1

X
x2Ci

dðx;miÞ

In the above equation, mi is the center of cluster Ci,

while d(x, mi) is the Euclidean distance between a

point x andmi. Thus, the criterion function E attempts

to minimize the distance of every point from the center

of the cluster to which the point belongs.

It should be noted that optimizing E is a combinato-

rial problem that is NP-Complete and thus any practical

algorithm to optimize it cannot guarantee optimality.

The K-means algorithm is the first practical and effective

heuristic that was suggested to optimize this criterion,

and owes its popularity to its good performance in

practice. The K-means algorithm begins by initialising

a set of c cluster centers. Then, it assigns each object of

the dataset to the cluster whose center is the nearest, and

re-computes the centers. The process continues until the

centers of the clusters stop changing.
Another algorithm of this category is PAM (Parti-

tioning Around Medoids). The objective of PAM is to

determine a representative object (medoid) for each

cluster, that is, to find the most centrally located objects

within the clusters. The algorithm begins by selecting an

object as medoid for each of c clusters. Then, each of the

non-selected objects is grouped with the medoid to

which it is the most similar. PAM swaps medoids with

other non-selected objects until all objects qualify as

medoid. It is clear that PAM is an expensive algorithm

with respect to finding the medoids, as it compares an

object with the entire dataset [12].

CLARA (Clustering Large Applications), is an imple-

mentation of PAM in a subset of the dataset. It draws

multiple samples of the dataset, applies PAMon samples,

and then outputs the best clustering out of these samples

[12]. CLARANS (Clustering Large Applications based

on Randomized Search), combines the sampling techni-

ques with PAM. The clustering process can be presented

as searching a graph where every node is a potential

solution, that is, a set of k medoids. The clustering

obtained after replacing amedoid is called the neighbour

of the current clustering. CLARANS selects a node

and compares it to a user-defined number of their

neighbours searching for a local minimum. If a better

neighbor is found (i.e., having lower-square error),

CLARANS moves to the neighbour’s node and the pro-

cess starts again; otherwise the current clustering is a

local optimum. If the local optimum is found, CLAR-

ANS starts with a new randomly selected node in search

for a new local optimum.

The algorithms described above result in crisp clus-

ters, meaning that a data point either belongs to a cluster

or not. The clusters are non-overlapping and this kind

of partitioning is further called crisp clustering. The issue

of uncertainty support in the clustering task leads to

the introduction of algorithms that use fuzzy logic con-

cepts in their procedure. A common fuzzy clustering

algorithm is the Fuzzy C-Means (FCM), an extension

of classical C-Means algorithm for fuzzy applications

[2]. FCM attempts to find the most characteristic point

in each cluster, which can be considered as the ‘‘center’’

of the cluster and, then, the grade of membership for

each object in the clusters.

Another approach proposed in the literature to

solve the problems of crisp clustering is based on

probabilistic models. The basis of this type of cluster-

ing algorithms is the EM algorithm, which provides

a quite general approach to learning in presence of

386C Clustering Overview and Applications
unobservable variables [11]. A common algorithm is

the probabilistic variant of K-Means, which is based on

the mixture of Gaussian distributions. This approach

of K-Means uses probability density rather than dis-

tance to associate records with clusters. More spe-

cifically, it regards the centers of clusters as means

of Gaussian distributions. Then, it estimates the prob-

ability that a data point is generated by the jth Gauss-

ian (i.e., belongs to jth cluster). This approach is based

on Gaussian model to extract clusters and assigns the

data points to clusters assuming that they are gener-

ated by normal distribution. Also, this approach is

implemented only in the case of algorithms based on

the EM (Expectation Maximization) algorithm.

Another type of clustering algorithms combine

graphpartitioning andhierarchical clustering algorithms

characteristics. Such algorithms include CHAMELEON

[9], which measures the similarity among clusters based

on a dynamic model contrary to the clustering algo-

rithms discussed above. Moreover in the cluster-

ing process both the inter-connectivity and closeness

between two clusters are taken into account to decide

how to merge the clusters. The merge process based on

the dynamic model facilitates the discovery of natural

and homogeneous clusters. Also it is applicable to all

types of data as long as a similarity function is specified.

Finally, BIRCH [ZRL99] uses a data structure called CF-

Tree forpartitioning the incomingdatapoints inanincre-

mental and dynamic way, thus providing an effective

way to cluster very largedatasets.

Partitional algorithms are applicable mainly to

numerical data sets. However, there are some variants

of K-Means such as K-prototypes, and K-mode [7]

that are based on the K-Means algorithm, but they

aim at clustering categorical data. K-mode discovers

clusters while it adopts new concepts in order to han-

dle categorical data. Thus, the cluster centers are

replaced with ‘‘modes,’’ a new dissimilarity measure

used to deal with categorical objects.

The K-means algorithm and related techniques

tend to produce spherical clusters due to the use of a

symmetric objective function. They require the user to

set only one parameter, the desirable number of clus-

ters K. However, since the objective function gets smal-

ler monotonically as K increases, it is not clear how to

define what is the best number of clusters for a given

dataset. Although several approaches have been pro-

posed to address this shortcoming [14], this is one

of the main disadvantages of partitional algorithms.
Another characteristic of the partitional algorithms is

that they are unable to handle noise and outliers and

they are not suitable to discover clusters with non-

convex shapes. Another characteristic of K-means is

that the algorithm does not display a monotone behav-

ior with respect to K. For example, if a dataset is

clustered into M and 2M clusters, it is intuitive to

expect that the smaller clusters in the second clustering

will be subsets of the larger clusters in the first; however

this is typically not the case.
Key Applications
Cluster analysis is very useful task in exploratory data

analysis and a major tool in a very wide spectrum of

applications in many fields of business and science.

Clustering applications include:

1. Data reduction. Cluster analysis can contribute to

the compression of the information included in the

data. In several cases, the amount of the available

data is very large and its processing becomes very

demanding. Clustering can be used to partition the

data set into a number of ‘‘interesting’’ clusters.

Then, instead of processing the data set as an entity,

the representatives of the defined clusters are adopted

in the process. Thus, data compression is achieved.

2. Hypothesis generation. Cluster analysis is used here

in order to infer some hypotheses concerning the

data. For instance, one may find in a retail database

that there are two significant groups of customers

based on their age and the time of purchases. Then,

one may infer some hypotheses for the data, that it,

‘‘young people go shopping in the evening,’’ ‘‘old

people go shopping in the morning.’’

3. Hypothesis testing. In this case, the cluster analysis is

used for the verification of the validity of a specific

hypothesis. For example, consider the following

hypothesis: ‘‘Young people go shopping in the

evening.’’ One way to verify whether this is true is

to apply cluster analysis to a representative set of

stores. Suppose that each store is represented by its

customer’s details (age, job, etc.) and the time of

transactions. If, after applying cluster analysis, a

cluster that corresponds to ‘‘young people buy in

the evening’’ is formed, then the hypothesis is sup-

ported by cluster analysis.

4. Prediction based on groups. Cluster analysis is

applied to the data set and the resulting clusters are

characterized by the features of the patterns that

Clustering Overview and Applications C 387

C

belong to these clusters. Then, unknown patterns can

be classified into specified clusters based on their

similarity to the clusters’ features. In such cases,

useful knowledge related to this data can be

extracted. Assume, for example, that the cluster anal-

ysis is applied to a data set concerning patients

infected by the same disease. The result is a number

of clusters of patients, according to their reaction to

specific drugs. Then, for a new patient, one identifies

the cluster inwhich he/she can be classified and based

on this decision his/her medication can be made.

5. Business Applications and Market Research. In busi-

ness, clustering may help marketers discover sign-

ificant groups in their customers’ database and

characterize them based on purchasing patterns.

6. Biology and Bioinformatics. In biology, it can be

used to define taxonomies, categorize genes with

similar functionality and gain insights into struc-

tures inherent in populations.

7. Spatial data analysis. Due to the huge amounts of

spatial data that may be obtained from satellite

images, medical equipment, Geographical Infor-

mation Systems (GIS), image database exploration

etc., it is expensive and difficult for the users to

examine spatial data in detail. Clustering may help

to automate the process of analysing and under-

standing spatial data. It is used to identify and

extract interesting characteristics and patterns that

may exist in large spatial databases.

8. Web mining. Clustering is used to discover significant

groups of documents on the Web huge collection

of semi-structured documents. This classification of

Web documents assists in information discovery.

Another application of clustering is discovering

groups in social networks.

In addition, clustering can be used as a pre-processing

step for other algorithms, such as classification, which

would then operate on the detected clusters.

Cross-references
▶Cluster and Distance Measure

▶Clustering for Post Hoc Information Retrieval

▶Clustering on Streams

▶Clustering Validity

▶Clustering with Constraints

▶Data Mining

▶Data Reduction

▶Density-Based Clustering

▶Dimension Reduction Techniques for Clustering
▶Document Clustering

▶ Feature Selection for Clustering

▶Hierarchial Clustering

▶ Semi-Supervised Learning

▶ Spectral Clustering

▶ Subspace Clustering Techniques

▶Text Clustering

▶Visual Clustering

▶Visualizing Clustering Results

Recommended Reading
1. Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Automatic

subspace clustering of high dimensional data for data mining

applications. In Proc. ACM SIGMOD Int. Conf. onManagement

of Data, 1998, pp. 94–105.

2. Bezdeck J.C., Ehrlich R., and Full W. FCM: Fuzzy C-Means

algorithm. Comput. Geosci., 10(2–3):191–203, 1984.

3. Ester M., Kriegel H.-Peter., Sander J., and Xu X. A density-based

algorithm for discovering clusters in large spatial databases with

noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data

Mining, 1996, pp. 226–231.

4. Everitt B.S., Landau S., and Leese M. Cluster Analysis. Hodder

Arnold, London, UK, 2001.

5. Fayyad U.M., Piatesky-Shapiro G., Smuth P., and Uthurusamy R.

Advances in Knowledge Discovery and Data Mining. AAAI

Press, Menlo Park, CA, 1996.

6. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, San Fransisco, CA, 2001.

7. Huang Z. A fast clustering algorithm to cluster very large

categorical data sets in data mining. In Proc. ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge

Discovery, 1997.

8. Jain A.K., Murty M.N., and Flyn P.J. Data clustering: a review.

ACM Comput. Surv., 31(3):264–323, 1999.

9. Karypis G., Han E.-H., and Kumar V. CHAMELEON: a

hierarchical clustering algorithm using dynamic modeling.

IEEE Computer., 32(8):68–75, 1999.

10. MacQueen J.B. Some methods for classification and analysis

of multivariate observations. In Proc. 5th Berkeley Symp.

on Mathematical Statistics and Probability, vol. 1, 1967,

pp. 281–297.

11. Mitchell T. Machine Learning. McGraw-Hill, New York, 1997.

12. Ng R. and Han J. Efficient and effective clustering methods for

spatial data mining. In Proc. 20th Int. Conf. on Very Large Data

Bases, 1994, pp. 144–155.

13. Theodoridis S. and Koutroubas K. Pattern Recognition.

Academic Press, New York, 1999.

14. Vazirgiannis M., Halkidi M., and Gunopulos D. Uncertainty

Handling and Quality Assessment in Data Mining. Springer,

New York, 2003.

15. Wang W., Yang J., and Muntz R. STING: A statistical informa-

tion grid approach to spatial data mining. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 186–195.

16. Zhang T., Ramakrishnman R., and Linvy M. BIRCH: an efficient

method for very large databases. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 103–114.

388C Clustering Validity
Clustering Validity

MICHALIS VAZIRGIANNIS

Athens University of Economics & Business, Athens,

Greece

Synonyms
Cluster validation; Cluster stability; Quality assess-

ment; Stability-based validation of clustering

Definition
A problem one faces in clustering is to decide the

optimal partitioning of the data into clusters. In this

context visualization of the data set is a crucial verifi-

cation of the clustering results. In the case of large

multidimensional data sets (e.g., more than three

dimensions) effective visualization of the data set is

cumbersome. Moreover the perception of clusters

using available visualization tools is a difficult task

for humans that are not accustomed to higher dimen-

sional spaces. The procedure of evaluating the results

of a clustering algorithm is known under the term

cluster validity. Cluster validity consists of a set of

techniques for finding a set of clusters that best fits

natural partitions (of given datasets) without any a

priori class information. The outcome of the clustering

process is validated by a cluster validity index.

Historical Background
Clustering is a major task in the data mining process

for discovering groups and identifying interesting dis-

tributions and patterns in the underlying data. In the

literature a wide variety of algorithms for different

applications and sizes of data sets. The application of

an algorithm to a data set, assuming that the data set

offers a clustering tendency, aims at discovering its

inherent partitions. However, the clustering process is

an unsupervised process, since there are no predefined

classes or examples. Then, the various clustering algo-

rithms are based on some assumptions in order to

define a partitioning of a data set. As a consequence,

they may behave in a different way depending on: i. the

features of the data set (geometry and density distribu-

tion of clusters) and ii. the input parameter values.

One of the most important issues in cluster analysis

is the evaluation of clustering results to find the parti-

tioning that best fits the underlying data. This is

the main subject of cluster validity. If clustering
algorithm parameters are assigned an improper value,

the clustering method results in a partitioning scheme

that is not optimal for the specific data set leading to

wrong decisions. The problems of deciding the num-

ber of clusters better fitting a data set as well as the

evaluation of the clustering results has been subject of

several research efforts. The procedure of evaluating

the results of a clustering algorithm is known under the

term cluster validity. In general terms, there are three

approaches to investigate cluster validity. The first is

based on external criteria. This implies that the results

of a clustering algorithm are evaluated based on a pre-

specified structure, which is imposed on a data set and

reflects one’s intuition about the clustering structure of

the data set. The second approach is based on internal

criteria. The results of a clustering algorithm may be

evaluated in terms of quantities that involve the vectors

of the data set themselves (e.g., proximity matrix). The

third approach of clustering validity is based on rela-

tive criteria. Here the basic idea is the evaluation of a

clustering structure by comparing it to other clustering

schemes, resulting by the same algorithm but with

different parameter values. There are two criteria pro-

posed for clustering evaluation and selection of an

optimal clustering scheme: (i) Compactness, the mem-

bers of each cluster should be as close to each other as

possible. A common measure of compactness is the

variance, which should be minimized. (ii) Separation,

the clusters themselves should be widely spaced.

Foundations
This section discusses methods suitable for the quanti-

tative evaluation of the clustering results, known as

cluster validity methods. However, these methods

give an indication of the quality of the resulting parti-

tioning and thus they can only be considered as a tool

at the disposal of the experts in order to evaluate the

clustering results. The cluster validity approaches

based on external and internal criteria rely on statisti-

cal hypothesis testing. In the following section, an

introduction to the fundamental concepts of hypothe-

sis testing in cluster validity is presented.

In cluster validity the basic idea is to test whether

the points of a data set are randomly structured or not.

This analysis is based on theNull Hypothesis, denoted as

Ho, expressed as a statement of random structure of a

data set X. To test this hypothesis, statistical tests are used,

which lead to a computationally complex procedure.

Clustering Validity C 389

C

Monte Carlo techniques are used as a solution to this

problem.

External Criteria

Based on external criteria, one can work in two differ-

ent ways. First, one can evaluate the resulting cluster-

ing structure C, by comparing it to an independent

partition of the data P built according to one’s intui-

tion about the clustering structure of the data set.

Second, one can compare the proximity matrix P to

the partition P.

Comparison of C with Partition P (Non-hierarchical

Clustering) Let C = {C1...Cm} be a clustering struc-

ture of a data set X and P = {P1...Ps} be a defined

partition of the data. Refer to a pair of points (xv, xu)

from the data set using the following terms:

� SS: if both points belong to the same cluster of the

clustering structure C and to the same group of

partition P.

� SD: if points belong to the same cluster of C and to

different groups of P.

� DS: if points belong to different clusters of C and to

the same group of P.

� DD: if both points belong to different clusters of C

and to different groups of P.

Assuming now that a, b, c and d are the number of SS,

SD,DSandDDpairs respectively, then aþbþ cþd=M

which is the maximum number of all pairs in the data

set (meaning, M = N(N�1)/2 where N is the total

number of points in the data set).

Now define the following indices to measure the

degree of similarity between C and P :

1. Rand Statistic: R = (a þ d)/M

2. Jaccard Coefficient: J = a/(a þ b þ c)
The above two indices range between 0 and 1, and

are maximized when m=s. Another known index is

the:
3. Folkes and Mallows index:

FM ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p ¼
ffi
a

aþ b
� a

aþ c

r
½1�

where m1 = (a + b), m2= (a + c).
For the previous three indices it has been proven

that the higher the values of these indices are the

more similar C and P are. Other indices are:
4. Huberts Gstatistic:

G ¼ ð1=MÞ
XN�1
i¼1

XN
j¼iþ1

Xði; jÞYði; jÞ ½2�
High values of this index indicate a strong similarity

between the matrices X and Y.
5. Normalized G statistic:

G
^
¼
ð1=MÞPN�1

i¼1

PN
j¼iþ1
ðXði; jÞ�mXÞðYði; jÞ�mYÞ

" #
sXsY

½3�

where X(i, j) and Y(i, j) are the (i, j) element of the
matrices X, Y respectively that one wants to com-

pare. Also mx, my, sx, sy are the respective means

and variances of X, Y matrices. This index takes

values between –1 and 1.
All these statistics have right-tailed probability density

functions, under the random hypothesis. In order to

use these indices in statistical tests, one must know

their respective probability density function under

the Null Hypothesis, Ho, which is the hypothesis

of random structure of the data set. Thus, if one

accepts the Null Hypothesis, the data are randomly

distributed. However, the computation of the proba-

bility density function of these indices is computation-

ally expensive. A solution to this problem is to use

Monte Carlo techniques.

After having plotted the approximation of the

probability density function of the defined statistic

index, its value, denoted by q, is compared to the

q(Ci) values, further referred to as qi. The indices R,

J, FM, Gdefined previously are used as the q index

mentioned in the above procedure.

Internal Criteria

Using this approach of cluster validity the goal is to

evaluate the clustering result of an algorithm using

only quantities and features inherited from the data

set. There are two cases in which one applies internal

criteria of cluster validity depending on the clustering

structure: (i) hierarchy of clustering schemes, and (ii)

single clustering scheme.

Validating Hierarchy of Clustering Schemes A matrix

called cophenetic matrix, Pc, can represent the

390C Clustering Validity
hierarchy diagram that is produced by a hierarchical

algorithm. The element Pc(i, j) of cophenetic matrix

represents the proximity level at which the two vectors

xi and xj are found in the same cluster for the first time.

A statistical index can be defined to measure the degree

of similarity between Pc and P (proximity matrix)

matrices. This index is called Cophenetic Correlation

Coefficient and defined as:

CPCC

¼
1=Mð Þ PN�1

i¼1

PN
j¼iþ1

dijcij � mPmCffi
1=Mð ÞPN�1

i¼1

PN
j¼iþ1

d2ij � m2P

" #
1=Mð Þ PN�1

i¼1

PN
j¼iþ1

c2ij � m2C

" #vuut
;

½4�
where M = N�(N�1)/2 and N is the number of points

in a data set. Also, mp and mc are the means of matrices

P and Pc respectively, and are defined in the (Eq. 5):

mP ¼ 1=Mð Þ
XN�1
i¼1

XN
j¼iþ1

P i; jð Þ;

mC ¼ 1=Mð Þ
XN�1
i¼1

XN
j¼iþ1

Pc i; jð Þ
½5�

Moreover, dij, cij are the (i, j) elements of P and

Pc matrices respectively. The CPCC values range in

[–1, 1]. A value of the index close to 1 is an indication

of a significant similarity between the two matrices.

Validating a Single Clustering Scheme The goal here is

to find the degree of match between a given clustering

scheme C, consisting of nc clusters, and the proximity

matrix P. The defined index for this approach is

Hubert’s Gstatistic (or normalized Gstatistic). An

additional matrix for the computation of the index

is used, that is

Y i; jð Þ ¼ 1; if xi and xj belong to different clusters

0; otherwise array: where i; j ¼ 1; 1=4;N:

�

The application of Monte Carlo techniques is also

a means to test the random hypothesis in a given

data set.

Relative Criteria

The major drawback of techniques based on internal or

external criteria is their high computational complexity.

A different validation approach is discussed in this
section. The fundamental idea of the relative criteria is

to choose the best clustering scheme of a set of defined

schemes according to a pre-specified criterion. More

specifically, the problem can be stated as follows:

Let Palg be the set of parameters associated with a

specific clustering algorithm (e.g., the number of clus-

ters nc). Among the clustering schemes Ci, i = 1,...,nc,

is defined by a specific algorithm. For different values

of the parameters in Palg, choose the one that best fits

the data set.

Then, consider the following cases of the problem:

1. Palg does not contain the number of clusters, nc, as a

parameter. In this case, the choice of the optimal

parameter values are described as follows: The al-

gorithm runs for a wide range of its parameters’

values and the largest range for which nc remains

constant is selected (usually nc << N (number of

tuples)). Then the values that correspond to the

middle of this range are chosen as appropriate

values of the Palg parameters. Also, this procedure

identifies the number of clusters that underlie the

data set.

2. Palg contains nc as a parameter. The procedure

of identifying the best clustering scheme is based

on a validity index. Selecting a suitable perfor-

mance index, q, one proceeds with the following

steps:

� clustering runs for all values of nc between ncmin

and ncmax defined a priori by the user.

� For each of nc values, the algorithm runs r times,

using different sets of values for the other para-

meters of the algorithm (e.g., different initial

conditions).

� The best values of the index q obtained by each

nc are plotted as the function of nc.

Based on this plot, the best clustering schemes are

identified. There are two approaches for defining the

best clustering depending on the behavior of q with

respect to nc. Thus, if the validity index does not

exhibit an increasing or decreasing trend as nc
increases, one seeks the max (min) of the plot. On

the other hand, for indices that increase (decrease) as

the number of clusters increase, one searches for the

values of nc at which a significant local change in value

of the index occurs. This change appears as a ‘‘knee’’ in

the plot and it is an indication of the number of

clusters underlying the data set. The absence of a

knee is an indication that the data set possesses no

Clustering Validity C 391

C

clustering structure. Below, some representative rela-

tive validity indices are presented.

The Modified Hubert G Statistic

The definition of the modified Hubert Gstatistic is

given by the equation

G ¼ ð1=MÞ
XN�1
i¼1

XN
j¼iþ1

Pði; jÞ �Qði; jÞ ½6�

where N is the number of objects in a data set, M = N

(N�1)/2, P is the proximity matrix of the data set

and Q is an N � N matrix whose (i, j) element is

equal to the distance between the representative points

(vci, vcj) of the clusters where the objects xi and xj
belong.

Similarly, one can define the normalized Hubert

Gstatistic, given by equation

Ĝ ¼
ð1=MÞ PN�1

i¼1

PN
j¼iþ1
ðPði; jÞ � mPÞðQði; jÞ � mQÞ

" #
sPsQ

:

½7�
where mP, mQ, sP, sQ are the respective means and

variances of P, Q matrices.

If the d(vci, vcj) is close to d(xi, xj) for i, j =1, 2,...,N,

P and Q will be in close agreement and the valuesof

G and Ĝ(normalized G) will be high. Conversely, a

high value of G (Ĝ) indicates the existence of compact

clusters. Thus, in the plot of normalized G versus nc,

one seeks a significant knee that corresponds to a

significant increase of normalized G. The number

of clusters at which the knee occurs is an indication

of the number of clusters that occurs in the data. Note

that for nc = 1 and nc = N, the index is not defined.

Dunn Family of Indices

A cluster validity index for crisp clustering proposed

by Dunn (1974), aims at the identification of ‘‘compact

and well separated clusters’’. The index is defined in the

following equation for a specific number of clusters

Dnc ¼ min
i¼1;::;nc

min
j¼iþ1;:::;nc

d ci; cj
	

max
k¼1;:::;nc

diam ckð Þð Þ

0
@

1
A

8<
:

9=
; ½8�

where d(ci, cj) is the dissimilarity function between two

clusters ci and cj defined as dðci; cjÞ ¼ min
x2Ci ;y2Cj

dðx; yÞ,
and diam(c) is the diameter of a cluster, which may be

considered as a measure of clusters’ dispersion.

The diameter of a cluster C can be defined as follows:

diam Cð Þ ¼ max
x;y2C

d x; yð Þf g ½9�

If the data set contains compact and well-separated

clusters, the distance between the clusters is expected

large and the diameter of the clusters is expected small.

Based on the Dunn’s index definition, one concludes

that large values of the index indicate the presence of

compact and well-separated clusters.

The problems of the Dunn index are: (i) its consid-

erable time complexity, and (ii) its sensitivity to the

presence of noise in data sets, since these are likely to

increase the values of the diameter.

RMSSDT, SPR, RS, CD

This family of validity indices is applicable in the cases

that hierarchical algorithms are used to cluster the data

sets. Hereafter the discussion refers to the definitions

of four validity indices, which have to be used simulta-

neously to determine the number of clusters existing in

the data set. These four indices are applied to each step

of a hierarchical clustering algorithm and they are

known as:

� Root-mean-square standard deviation (RMSSTD) of

the new cluster,

� Semi-partial R-squared (SPR),

� R-squared (RS),

� Distance between two clusters (CD).

Getting into a more detailed description of them, one

can say that:

RMSSTD of a new clustering scheme defined at a level

of a clustering hierarchy is the square root of the variance

of all the variables (attributes used in the clustering pro-

cess). This indexmeasures the homogeneity of the formed

clusters at each step of the hierarchical algorithm. Since

the objective of cluster analysis is to form homogeneous

groups the RMSSTD of a cluster should be as small as

possible. Where the values of RMSSTD are higher than

the ones of the previous step, one has an indication that

the new clustering scheme is worse.

In the following definitions, the term SS is used,

which means Sum of Squares and refers to the equation:

SS ¼
Xn
i¼1
ðXi � XÞ2 ½10�

392C Clustering Validity
Along with this, additional terms will be used,

such as:

1. SSw referring to the sum of squares within group,

2. SSb referring to the sum of squares between

groups,

3. SSt referring to the total sum of squares, of the

whole data set.

In the case cluster join to form a new one, SPR- for the

new cluster – is defined as the difference between SSw
of the new cluster and the sum of the SSw’s values of

clusters joined to obtain the new cluster (loss of homo-

geneity), divided by the SSt for the whole data set. This

index measures the loss of homogeneity after merging

the two clusters of a single algorithm step. If the index

value is zero then the new cluster is obtained by merg-

ing two perfectly homogeneous clusters. If its value is

high then the new cluster is obtained by merging two

heterogeneous clusters.

RS of the new cluster is the ratio of SSb over SSt. SSb
is a measure of difference between groups. Since

SSt = SSb + SSw, the greater the SSb the smaller the

SSw and vice versa. As a result, the greater the differ-

ences between groups, the more homogenous each

group is and vice versa. Thus, RS may be considered

as a measure of dissimilarity between clusters. Further-

more, it measures the degree of homogeneity between

groups. The values of RS range between 0 and 1. Where

the value of RS is zero, there is an indication that no

difference exists among groups. On the other hand,

when RS equals 1 there is an indication of significant

difference among groups.

Key Applications
There is a certain cross disciplinary interest for clustering

validity method and indices. A prominent area where

cluster validity measures apply is the area of biological

data [2,6]. Patterns hidden in gene expression data offer

a tremendous opportunity for an enhanced understand-

ing of functional genomics. However, the large number

of genes and the complexity of biological networks great-

ly increase the challenges of comprehending and inter-

preting the resultingmass of data, which often consists of

millions ofmeasurements. The datamining process aims

to reveal natural structures and identify interesting

patterns in the underlying data. Clustering techniques

constitute a first essential step toward addressing this

challenge. Moreover recent research effort papers in the

area of image segmentation [13,3].
The area is fertile as the clustering issue is a funda-

mental problem and the application domains are still

widening. Challenging relevant research directions [9]

follow:

� Is there a principled way to measure the quality of

a clustering on particular data set?

� Can every clustering task be expressed as an opti-

mization of some explicit, readily computable,

objective cost function?

� Can stability be considered a first principle for

meaningful clustering?

� How should the similarity between different clus-

terings be measured?

� Can one distinguish clusterable data from struc-

tureless data?

� What are the tools that should be imported from

other relevant areas of research?
Cross-references
▶Cluster and Distance Measure

▶Clustering on Streams

▶Clustering with Constraints

▶Density-Based Clustering

▶Document Clustering

▶ Feature Selection for Clustering

▶Hierarchial Clustering

▶ Semi-Supervised Learning

▶ Spectral Clustering

▶ Subspace Clustering Techniques

▶Text Clustering

▶Visual Clustering

▶Visualizing Clustering Results
Recommended Reading
1. Bezdek J.C. and Pal N.R. Some new indexes of cluster validity,

IEEE Trans., Systems, Man, and Cybernetics, Part B. 28

(3):301–315, 1998.

2. Datta S. and Datta S. Comparisons and validation of statistical

clustering techniques for microarray gene expression data. Bio-

informatics, 19(4):459–466, 2003.

3. El-Melegy M.T., Zanaty E.A., Abd-Elhafiez W.M., and

Farag A.A. On cluster validity indexes in fuzzy and hard cluster-

ing algorithms for image segmentation. In Proc. Int. Conf.

Image Processing, 2007, pp. 5–8.

4. Halkidi M., Batistakis Y., and Vazirgiannis M. On clustering

validation techniques. J. Intell. Inf. Syst., 17(2–3):107–145, 2001.

5. Halkidi M., Gunopulos D., Vazirgiannis M., Kumar N., and

Domeniconi C. A clustering framework based on subjective

and objective validity criteria. ACM Trans. Knowl. Discov.

Data, 1(4), 2008.

Clustering with Constraints C 393

C

6. Jiang D., Tang C., and Zhang A. Cluster Analysis for Gene

Expression Data: A Survey. IEEE Trans. Knowl. Data Eng.,

16(11):1370–1386, 2004.

7. Kim M. and Ramakrishna R.S. New indices for cluster

validity assessment. Pattern Recogn. Lett., 26(15):2353–2363,

2005.

8. Maulik U. and Bandyopadhyay S. Performance evaluation of

some clustering algorithms and validity indices. IEEE Trans.

Pattern Anal. Mach. Intell., 24(12):1650–1654, 2002.

9. NIPS 2005 workshop on theoretical foundations of clustering,

Saturday, December 10th, 2005. Available at: (http://www.kyb.

tuebingen.mpg.de/bs/people/ule/clustering_workshop_nips05/

clustering_workshop_nips05.htm_).

10. Pal N.R. and Bezdek J.C. On cluster validity for the fuzzy

c-means model, IEEE Trans. Fuzzy Systems., 3(3):370–379, 1995.

11. Rand W.M. Objective criteria for the evaluation of clustering

methods. J. Am. Stat. Assoc., 66(336):846–850, 1971.

12. Wang J.-S. and Chiang J.-C. A cluster validity measure with a

hybrid parameter search method for the support vector cluster-

ing algorithm. Pattern Recognit., 41(2):506–520, 2008.

13. Zhang J. and Modestino J.W. A model-fitting approach to

cluster validation with application to stochastic model-based

image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,

12(10):1009–1017, 1990.
Clustering with Constraints

IAN DAVIDSON

University of California-Davis, Davis, CA, USA

Synonyms
Semi-supervised clustering

Definition
The area of clustering with constraints makes use of

hints or advice in the form of constraints to aid or

bias the clustering process. The most prevalent form

of advice are conjunctions of pair-wise instance level

constraints of the form must-link (ML) and cannot-

link (CL) which state that pairs of instances should

be in the same or different clusters respectively. Given

a set of points P to cluster and a set of constraints C,

the aim of clustering with constraints is to use the

constraints to improve the clustering results. Con-

straints have so far being used in two main ways:

(i) Writing algorithms that use a standard distance

metric but attempt to satisfy all or as many constraints

as possible and (ii) Using the constraints to learn a

distance function that is then used in the clustering

algorithm.
Historical Background
The idea of using constraints to guide clustering was

first introduced by Wagstaff and Cardie in their semi-

nal paper ICML 2000 [13] with a modified COBWEB-

style algorithm that attempts to satisfy all constraints.

Later [14] they introduced constraints to the k-means

algorithms. Their algorithms (as most algorithms now

do) look at satisfying a conjunction of must-link

and cannot-link constraints. Independently, Cohn,

Caruana and McCallum [3,4] introduced constraints

as a user feedback mechanism to guide the clustering

algorithm to a more useful result.

In 2002 Xing and collaborators [15] (NIPS 2002)

and Klein and collaborators (ICML 2002) [12] ex-

plored making use of constraints by learning a distance

function for non-hierarchical clustering and a distance

matrix for hierarchical clustering respectively.

Basu and collaborators more recently have looked

at key issues such as which are the most informative sets

of constraints [2] and seeding algorithms using con-

straints [1]. Gondek has explored using constraints to

find orthogonal/alternative clusterings of data [3,11].

Davidson and Ravi explored the intractability issues

of clustering under constraints for non-hierarchical

clustering [6], hierarchical clustering [5] and non-

hierarchical clustering with feedback [9].

Foundations
Clustering has many successful applications in a variety

of domains where the objective function of the cluster-

ing algorithm finds a novel and useful clustering. How-

ever, in some application domains the typical objective

functions may lead to well-known or non-actionable

clusterings of the data. This could be overcome by an ad

hoc approach such as manipulating the data. The in-

troduction of constraints into clustering allows a prin-

cipled approach to incorporate user preferences or

domain expertise into the clustering process so as to

guide the algorithm to a desirable solution or away

from an undesirable solution. The typical semi-super-

vised learning situations involves having a label asso-

ciated with a subset of the available instances. However

in many domains, knowledge of the relevant categories

is incomplete and it is easier to obtain pairwise con-

straints either automatically or from domain experts.

Types of Constraints. Must-link and cannot-link

constraints are typically used since they can be easily

generated from small amounts of labeled data (gener-

ate a must-link between two instances if the labels

http://www.kyb.tuebingen.mpg.de/bs/people/ule/clustering_workshop_nips05/clustering_workshop_nips05.htm_
http://www.kyb.tuebingen.mpg.de/bs/people/ule/clustering_workshop_nips05/clustering_workshop_nips05.htm_
http://www.kyb.tuebingen.mpg.de/bs/people/ule/clustering_workshop_nips05/clustering_workshop_nips05.htm_

394C Clustering with Constraints
agree, cannot-link if they disagree) or from domain

experts. They can be used to represent geometric prop-

erties [6,14] by noting that for instance, making the

maximum cluster diameter be a is equivalent to enfor-

cing a conjunction of cannot-link constraints between

all points whose distance is greater than a. Similarly,

clusters can be separated by distance at at least d by

enforcing a conjunction of must-link constraints be-

tween all points whose distance is less than d. Both
types of instance-level constraints have interesting

properties that can be used to effectively generate

many additional constraints. Must-link constraints

are transitive:ML(x,y),ML(y,z)!ML(x,z) and cannot

link constraints have an entailment property:ML(a,b),

ML(x,y), CL(a,x)! CL(a,y), CL(b,x), CL(b,y).

How Constraints Are Used. Constraints have typ-

ically been used in clustering algorithms in two ways.

Constraints can be used to modify the cluster assign-

ment stage of the cluster algorithm [4,14], to enforce

satisfaction of the constraints or as many as possible
Clustering with Constraints. Figure 1. Input instances and c

Clustering with Constraints. Figure 2. A clustering that sati
[2,6]. These approaches typically use a standard dis-

tance or likelihood function. Alternatively, the distance

function of the clustering algorithm can also be trained

either before or after the clustering actually occurs

using the constraints [12,15]. The former are called

constraint-based approaches and the later distance

based approaches.

Constraint-Based Methods. In constraint-based

approaches, the clustering algorithm itself (typically

the assignment step) is modified so that the available

constraints are used to bias the search for an appropri-

ate clustering of the data. Fig. 2 shows how though two

clusterings exist (a horizontal and vertical clustering)

just three constraints can rule out the former.

Constraint-based clustering is typically achieved

using one of the following approaches:

1. Enforcing constraints to be satisfied during the

cluster assignment in the clustering algorithm

[5,13].
onstraints.

sfies all constraints.

Clustering with Constraints C 395

C

2. Modifying the clustering objective function so that

it includes a term for satisfying specified constraints.

Penalties for violating constraints have been explored

in the maximum likelihood framework [2] and dis-

tance framework [6].

3. Initializing clusters and inferring clustering con-

straints based on neighborhoods derived from

labeled examples [1].

Each of the above approaches provides a simple meth-

od of modifying existing partitional and agglomerative

style hierarchical algorithms to incorporate con-

straints. For more recent advances in algorithm design

such as the use of variational techniques for con-

strained clustering see [3].

Distance-Based Methods. In distance-based

approaches, an existing clustering algorithm that uses

a distance measure is employed. However, rather than

use the Euclidean distance metric, the distance
Clustering with Constraints. Figure 3. Input instances and c

Clustering with Constraints. Figure 4. A learnt distance spa
measure is first trained to ‘‘satisfy’’ the given con-

straints. The approach of Xing and collaborators [15]

casts the problem of learning a distance metric from

the constraints so that the points (and surrounding

points) that are part of the must-link (cannot-link)

constraints are close together (far apart). They con-

sider two formulations: firstly learning a generalized

Mahanabolis distance metric which essentially stret-

ches or compresses each axis as appropriate. Figure 4

gives an example where the constraints can be satisfied

by stretching the x-axis and compressing the y-axis and

then applying a clustering algorithm to the new data

space. The second formulation allows a more complex

transformation on the space of points.

Klein and collaborators [12] explore learning a dis-

tance matrix from constraints for agglomerative clus-

tering. Only points that are directly involved in the

constraints are brought closer together or far apart
onstraints.

ce respective of the constraints.

396C CM Sketch
using a multi-step approach of making must-linked

points have a distance of 0 and cannot-linked points

having the greatest distance.

There have been some algorithms that try to both

enforce constraints and learn distance functions from

constraints [2].

Key Applications
Key application areas include images, video, biology,

text, web pages, audio (speaker identification) [3] and

GPS trace information [14].

URL to Code
http://www.constrained-clustering.org

Cross-references
▶Clustering

▶ Semi-Supervised Learning

Recommended Reading
1. Basu S., Banerjee A., and Mooney R. Semi-supervised clustering

by seeding. In Proc. 19th Int. Conf. on Machine Learning, 2002,

pp. 27–34.

2. Basu S., Banerjee A., and Mooney R.J. Active semi-supervision

for pairwise constrained clustering. In Proc. SIAM International

Conference on Data Mining, 2004.

3. Basu S., Davidson I., and Wagstaff K. (eds.). Constrained

Clustering: Advances in Algorithms, Theory and Applications.

Chapman & Hall, CRC Press, 2008.

4. Cohn D., Caruana R., and McCallum A. Semi-Supervised Clus-

tering with User Feedback. Technical Report 2003–1892. Cornell

University, 2003.

5. Davidson I. and Ravi S.S. Agglomerative hierarchical clustering

with constraints: theoretical and empirical results. In Principles

of Data Mining and Knowledge Discovery, 9th European Conf.,

2005, pp. 59–70.

6. Davidson I. and Ravi S.S. Clustering with constraints: feasibility

issues and the k-means algorithm. In Proc. SIAM International

Conference on Data Mining, 2005.

7. Davidson I. and Ravi S.S. Identifying and generating easy sets of

constraints for clustering. In Proc. 15th National Conf. on AI,

2006.

8. Davidson I., Ester M., and Ravi S.S. Efficient incremental

clustering with constraints. In Proc. 13th ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, 2007, pp. 204–

249.

9. Davidson I. and Ravi S.S. Intractability and clustering with

constraints. In Proc. 24th Int. Conf. on Machine Learning,

2007, pp. 201–208.

10. Davidson I. and Ravi S.S. The complexity of non-hierarchical

clustering with instance and cluster level constraints. Data

Mining Know. Discov., 14(1):25–61, 2007.

11. Gondek D. and Hofmann T. Non-redundant data clustering. In

Proc. 2004 IEEE Int. Conf. on Data Mining, 2004, pp. 75–82.
12. Klein D., Kamvar S.D., and Manning C.D. From instance-level

constraints to space-level constraints: making the most of prior

knowledge in data clustering. In Proc. 19th Int. Conf. on

Machine Learning, 2002, pp. 307–314.

13. Wagstaff K. and Cardie C. Clustering with instance-level con-

straints. In Proc. 17th Int. Conf. on Machine Learning, 2000,

pp. 1103–1110.

14. Wagstaff K., Cardie C., Rogers S., and Schroedl S. Constrained

K-means clustering with background knowledge. In Proc. 18th

Int. Conf. on Machine Learning, 2001, pp. 577–584.

15. Xing E., Ng A., Jordan M., and Russell S. Distance metric

learning, with application to clustering with side-information.

Adv. Neural Inf. Process. Syst. 15, 2002.
CM Sketch

▶Count-Min Sketch
CMA

▶Computational Media Aesthetics
CO Query, Content-Only Query

▶Content-Only Query
CO+S Query

▶Content-and-Structure Query
Co-clustering

▶ Subspace Clustering Techniques
CODASYL Data Model

▶Network Data Model
Collaborative Software

▶ Social Applications

http://www.constrained-clustering.org

Column Segmentation C 397
Co-locations

▶ Spatial Data Mining
C

Colored Nets

▶ Petri Nets
Column Segmentation

SUNITA SARAWAGI

IIT Bombay, Mumbai, India

Synonyms
Text segmentation; Record extraction; Information

extraction

Definition
The term column segmentation refers to the segmen-

tation of an unstructured text string into segments

such that each segment is a column of a structured

record.

As an example, consider a text string S=‘‘18100

New Hampshire Ave. Silver Spring, MD 20861’’

representing an unstructured form of an Address re-

cord. Let the columns of this record be House number,

Street name, City name, State, Zip and Country. In

column segmentation, the goal is to segment S and

assign a column label to each segment so as to get an

output of the form:

Historical Background
The column segmentation problem is a special case of a

more general problem of Information Extraction (IE)

that refers to the extraction of structure from unstruc-

tured text. Column segmentation is typically per-

formed on short text strings where most of the

tokens belong to one of a fixed set of columns. In the

more general IE problem, the unstructured text could

be an arbitrary paragraph or an HTML document
where the structured entities of interest form a small

part of the entire string.

There is a long history of work on information

extraction [5]. Most of the early work in the area was

in the context of natural language processing, for exam-

ple for extracting named entities like people names,

organization names, and location names from news arti-

cles. The early systems were based on hand-coded set of

rules and relied heavily on dictionaries of known records.

Later systems were based on statistical methods like

maximum entropy taggers [9], Hidden Markov Models

[11] and Conditional Random Fields (CRFs) [7].

In the database research community, interest in

column segmentation arose in the late nineties as a

step in the process of cleaning text data for data ware-

housing. Many commercial tools were developed pure-

ly for the purposes of cleaning names and addresses.

These were based on hand-coded, rule-based, data-

base driven methods that work only for the region

that they are developed for and do not extend to

other domains. Much manual work has to be done

to rewrite these rules when shifting the domain from

one locality to another. This led to the adoption of

statistical techniques [1,3] which proved to be more

robust to noisy inputs.

Foundations
A formal definition of column segmentation follows.

Let Y ¼{y1,...,ym} denote the set of column types of

the structured record. Given any unstructured text

string x, column segmentation finds segments of x

and labels each with one of the columns in Y . The

input x is typically treated as a sequence of tokens

obtained by splitting x along a set of delimiters.

Let x1,...,xn denote such a sequence of tokens. A seg-

mentation of x is a sequence of segments s1...sp. Each

segment sj consists of a start position tj , an end position

uj , and a label yj 2 Y [{‘‘Other’’’}. The special label

‘‘Other’’ is used to label tokens not belonging to any of

the columns. The segments are assumed to be contigu-

ous, that is, segment sjþ1 begins right after segment sj
ends. Also, the last segment ends at n and the first

segment starts at 1.

As a second example consider a citation String

T=P.P.Wangikar, T.P. Graycar, D.A. Estell,

D.S. Clark, J.S. Dordick (1993) Protein and

Solvent Engineering of Subtilising BPN’

in Nearly Anhydrous Organic Media J.Amer.

Chem. Soc. 115, 12231-12237. and a set of

398C Column Segmentation
columns: Author names, title, year, publication venue,

volume, number. A segmentation of this string is:

In this example, the tokens ‘‘in’’, ‘‘(‘‘ and ‘‘)’’ of the

input have been assigned label ‘‘Other’’.
Challenges

The problem of column segmentation is challenging

because of the presence of various kinds of noise in the

unstructured string.

� The same column might be represented in many

different forms, for example ‘‘Street’’ might be

abbreviated as ‘‘St.’’ or ‘‘st’’.

� The order in which columns appear might be dif-

ferent in different strings: for example, in some

citations authors could be before title, and after

title in others.

� Columns might be missing: some addresses might

contain a country name, others may not.

� Strings from different sources might be formatted

differently: for example, some citations might use a

comma to separate fields whereas others might

have no regular delimiter between fields.

Main Techniques

A column segmentation technique needs to combine

information from multiple different sources of evi-

dence to be able to correctly recognize segmentations

in noisy strings. One source is the characteristic words

in each elements, for example the word ‘‘street’’

appears in road-names. A second source is the limited

partial ordering between its element. Often the first

element is a house number, then a possible building

name and so on and the last few elements are zipcode

and state-name. A third source is the typical number

of words in each element. For example, state names

usually have one or two words whereas road names

are longer. Even within a field, some words are more

likely to appear in the beginning of the field rather

than towards its end. Often, there is a pre-existing

database of known values of columns. Match of a

substring of the text to an existing database column,
can be a valuable clue for segmentation. The format

of the entry, presence of certain regular expression,

capitalization, and punctuation patterns can be use-

ful when word-level matches are absent. A good

column segmentation technique would combine evi-

dence from all of these clues in performing the final

segmentation.

The three main types of column segmentation

techniques are:

Rule-Based Systems

A rule-based technique, as the name suggests, encodes

one or more of the above clues as rules. These are

applied in a specified order and when more than two

rules conflict, another set of rule resolution mechan-

isms are used to decide which one wins.

Here are some examples of rules that can be used to

extract columns from citation records:

Punctuation CapsWord{2–10} Dot!Title

CapsWord Comma Initial Dot Initial Dot!Author

name

Initial Dot CapsWord Comma!Author name

AllCaps Words{1–2} Journal!Journal

For example, the first rule marks as title any substring

of two to ten capitalized words appearing between a

punctuation and a full-stop. The second rule marks as

an author name any substring consisting of a capita-

lized word followed by comma and two initials. This

would identify strings of the form ‘‘Gandhi, M. K.’’ as

author names. Whereas the third rule would mark

strings like ‘‘V. Ganti,’’ as author names. The fourth

rule would mark string like ‘‘ACM computing Journal’’

as journal names.

Such rules could be either hand-coded or learnt

from example datasets [2,6]. Existing rule-based tech-

niques are able to concentrate only on a subset of the

above mentioned clues to limit the complexity of the

learnt rules. They provide high precision segmentation

in uniform settings where the amount of noise is

limited. When the input becomes noisy, rule-based

systems tend to lose on recall.

Hidden Markov Models

Hidden Markov Models (HMMs) provide an intuitive

statistical method for combining many of the above

clues in a unified model. A HMM is a probabilistic

finite state automata where the states represent the

fields to be extracted, directed edges between edges

are attached with probability values indicating

Column Segmentation C 399

C

probability of transitioning from one state to another,

and states are attached with a distribution over the

words that can be generated from the state. A segmen-

tation of a string S is achieved by finding the sequence

of states for which the product of the probability of

generating the words in S and following the transitions

in state sequences is maximized. Such a path can be

found efficiently using a dynamic programming algo-

rithm. The parameters controlling the transition and

word distributions of states are learnt using examples

of correctly segmented strings.

An example, of a Hidden Markov Model trained to

recognize Indian addresses appears in Fig.1. The num-

ber of states is 10 and the edge labels depict the state

transition probabilities. For example, the probability of

an address beginning with House Number is 0.92 and

that of seeing a City after Road is 0.22. The dictionary

and the emission probabilities are not shown for

compactness.

For more details on the use of HMMs in column

segmentation see [1,3,11].

Conditional Models

A limitation of HMMs is that the distribution that con-

trols the generation of words within a state is generative,

and can therefore capture only a limited set of properties

of the words it can generate. For example, it is compli-

cated to account for various orthographic properties of

words, like its capitalization pattern, or the delimiter

following that word. These limitations are removed by

recently proposed formalisms like Conditional Random

Fields (CRFs) that capture the conditional distribution

of column sequence given the sequence of words in a
Column Segmentation. Figure 1. An example of trained HM
string S. This enables the incorporation of any arbi-

trary set of clues derived from a word and the

words in its neighborhood. Also it becomes easy to

incorporate clues derived from the degree of match

of a proposed column with pre-existing values in the

database.

A CRF models the conditional probability distribu-

tion over segmentations s for a given input sequence x

as follows:

Pr sjx;Wð Þ ¼ 1

Z xð Þ exp W:
X
j

f j; x; sð Þ
 !

ð1Þ

where f(j,x,s) is a vector of local feature functions

f1... fN of s at the j th segment and W = (W1,W2,...,

WN) is a weight vector that encodes the importance

of each feature function in f. Z(x) = ∑s0 exp(W �∑ j f(j,

x,s0)) is a normalization factor. The label of a segment

depends on the label of the previous segment and

the properties of the tokens comprising this segment

and the neighboring tokens. Thus a feature for seg-

ment sj = (tj, uj, yj) is a function of the form f (yj, yj�1, x,
tj, uj) that returns a numeric value. Example of such

features are:

f8 yi; yi�1; x; 3; 5ð Þ
¼ x3x4x5 appears in a journal list½ �½ �: yi ¼ journal½ �½ �

f12 yi; yi�1; x; 19; 19ð Þ
¼ x19 is an integer½ �½ �: yi ¼ year½ �½ �: yi�1 ¼ month½ �½ �

The weight vector W is learnt during training via

a variety of methods, such as likelihood maximiza-

tion [7]. During segmentation, the goal is to find a
M for segmenting addresses.

400C Committee-based Learning
s = s1...sp for the input sequence x = x1...xn such that

Pr(sjx, W) (as defined by (1) is maximized.

argmax
s

Pr sjx;Wð Þ¼ argmax
s

W:
X
j

f yi;yj�1;x; tj ;uj
	

The right hand side can be efficiently computed using

dynamic programming. Let L be an upper bound on

segment length. Let si:y denote set of all partial segmen-

tation starting from 1 (the first index of the sequence)

to i, such that the last segment has the label y and

ending position i. Let V (i, y) denote the largest value

of W �∑jf(j, x, s
0) for any s02si:y. The following recur-

sive calculation finds the best segmentation:

V ði;yÞ¼
maxy 0;i0¼i�L:::i�1V ði0; y 0Þ
þW � fðy;y 0;x;i 0 þ1; iÞ if i > 0

0 if i = 0

�1 if i < 0

8><
>:

The best segmentation then corresponds to the path

traced by maxyV (jxj, y).
More details on CRFs can be found in [7] and

the extension of CRFs for segmentation can be found

in [10]. [8] reports an empirical evaluation of CRFs

with HMMs for segmenting paper citations. [4] shows

how to perform efficient segmentation using CRFs in

the presence of a large pre-existing database of known

values.

Key Applications
Column segmentation has many applications,

including,

Cleaning of text fields during warehouse construc-

tion: In operational datasets, text fields like addresses

are often recorded as single strings. When warehousing

such datasets for decision support, it is often useful

to identify structured elements of the address. This

not only allows for richer structured queries, it also

serves as a useful pre-processing step for duplicate

elimination.

Creation of citation databases: A key step in the

creation of citation databases like Citeseer and Google

Scholar, is to resolve for each citation, which paper it

refers to in the database. Citations as extracted from

papers are unstructured text strings. These have to be

segmented into component author names, titles, years,

and publication venue before they can be correctly

resolved to a paper entry in the database.

Extraction of product information from product

descriptions: Comparison shopping websites often need
to parse structured fields representing various attri-

butes of product from unstructured HTML sources.

URL to Code
Java packages for column segmentation using condi-

tional random fields are available via Source Forge at

http://crf.sf.net and as part of the Mallet package at

http://mallet.cs.umass.edu

Cross-references
▶Data Cleaning

Recommended Reading
1. Agichtein E. and Ganti V. Mining reference tables for

automatic text segmentation. In Proc. 10th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2004,

pp. 20–29.

2. Aldelberg B. Nodose: a tool for semi-automatically extracting

structured and semi-structured data from text documents. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1998,

pp. 283–294.

3. Borkar V.R., Deshmukh K., and Sarawagi S. Automatic

text segmentation for extracting structured records. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2001,

pp. 175–186.

4. Chandel A., Nagesh P.C., and Sarawagi S. Efficient batch top-k

search for dictionary-based entity recognition. In Proc. 22nd Int.

Conf. on Data Engineering, 2006.

5. Cunningham H. Information Extraction, Automatic. Encyclo-

pedia of Language and Linguistics, 2nd edn., 2005.

6. Kushmerick N., Weld D.S., and Doorenbos R. Wrapper induc-

tion for information extraction. In Proc. 15th Int. Joint Conf. on

AI., 1997, pp. 729–737.

7. Lafferty J., McCallum A., and Pereira F. Conditional random

fields: Probabilistic models for segmenting and labeling se-

quence data. In Proc. 18th Int. Conf. on Machine Learning,

2001, pp. 282–289.

8. Peng F. and McCallum A. Accurate information extraction from

research papers using conditional random fields. In HLT-

NAACL. 2004, pp. 329–336.

9. Ratnaparkhi A. Learning to parse natural language with maxi-

mum entropy models. Mach. Learn., 34, 1999.

10. Sarawagi S. and Cohen W.W. Semi-markov conditional random

fields for information extraction. In Advances in Neural Inf.

Proc. Syst. 17, 2004.

11. Seymore K., McCallum A., and Rosenfeld R. Learning Hidden

Markov Model structure for information extraction. In Papers

from the AAAI-99 Workshop on Machine Learning for Infor-

mation Extraction. 1999, pp. 37–42.
Committee-based Learning

▶ Ensemble

http://crf.sf.net
http://mallet.cs.umass.edu

Common Warehouse Metamodel C 401
Common Object Request Broker
Architecture

▶CORBA

C

Common Subexpression Elimination

▶Multi-Query Optimization
Common Warehouse Metadata
Interchange (CWMI)

▶Common Warehouse Metamodel (CWMTM)
Common Warehouse Metamodel

LIAM PEYTON

University of Ottawa, Ottawa, ON, Canada

Synonyms
Common Warehouse Metadata Interchange (CWMI);

CWM

Definition
The Common Warehouse Metamodel (CWM™) is

an adopted specification from the OMG (Object Man-

agement Group) standards body. It defines standard

interfaces that can be used to enable easy interchange

of data warehouse and business intelligence metadata

between data warehouse tools, data warehouse plat-

forms and data warehouse metadata repositories in

distributed heterogeneous environments. It supports re-

lational, non-relational, multi-dimensional, and most

other objects found in a data warehousing environment.

It leverages three other standards from OMG:

� UML – Unified Modeling Language

� MOF – Meta Object Facility

� XMI – XML Metadata Interchange

The Object Management Group has been an interna-

tional, open membership, not-for-profit computer in-

dustry consortium since 1989 with over 700 member

organizations.
Historical Background
An initial Request For Proposal (RFP) for a common

warehousemetadata interchange (CWMI) was issued by

the OMG (Object Management Group) in 1998. A joint

submission was received by the OMG in 1999 from

Dimension EDI, Genesis Development Corporation,

Hyperion Solutions, International Business Machines,

NCR, Oracle, UBS AG, and Unisys.

At the time, there was a competing initiative from

the Meta Data Coalition (MDC) which was supported

by Microsoft and others. In 2000, however the two

initiatives merged when the MDC joined OMG [5]. In

2001, version 1.0 of the specification was adopted with

the name: CommonWarehouse Metamodel (CWM™).

The currently adopted version is 1.1 [1] (March, 2003).

The purpose of the Common Warehouse Metamo-

del specification was to make it possible for large

organizations to have a metadata repository with a

single metamodel. In practice this was not possible to

achieve, since every data management and analysis

tool requires different metadata and different metadata

models [3]. Instead, the CWM specification defines

interfaces that facilitate the interchange of data ware-

house metadata between tools. In particular, the OMG

Meta-Object Facility (MOF™) bridges the gap be-

tween dissimilar meta-models by providing a common

basis for meta-models. If two different meta-models

are both MOF-conformant, then models based on

them can reside in the same repository.

However, compliance with the CWM specification

does not guarantee tools from different vendors will

integrate well, even when they are ‘‘CWM-compliant.’’

The OMG addressed some of these issues by releasing

patterns and best practices to correct these problems

in a supplementary specification, the Common Ware-

house Metamodel (CWM™)) Metadata Interchange

Patterns (MIP) Specification. Version 1.0 [2] was re-

leased in March 2004.

Foundations
The Common Warehouse Metamodel enables organi-

zations and tool vendors to define and represent their

metadata, metadata models and the processes which

manipulate them in a common format so that the infor-

mation can be streamed between tools and accessed

programmatically [4].

The basic architecture and key technologies support-

ing the Common Warehouse Metamodel are shown

in Fig. 1, on the next page. Metadata in a variety of

402C Common Warehouse Metamodel
formats, and from a variety of sources (Tools, Reposi-

tories, Databases, Files, etc.) is defined and represented

in UML notation, based on the objects and classes that

are defined in the Common Warehouse Metamodel.

That representation is persisted in an XML notation

that can be streamed to other tools, repositories, data-

bases or files based on the XMI protocol. Finally, MOF is

used to provide a broker facility that supports the ability

to define and manipulate metamodels programmati-

cally using fine grained CORBA interfaces. Using this

architecture, organizations can create a single common

repository which stores all the CWM-modeled descrip-

tions of metadata and metamodels.

An example of a CWMdescription of a table from a

relational database is shown below, along with the

metadata description of the type of one of its columns

(type="22");

<CWMRDB:Table xmi.id="_15" name="MyTableName">

<CWM:Classifier.feature>

<CWMRDB:Column xmi.id="_16" name="myPri-

maryKeyID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_18" name="myFor-

eignKey1ID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_19" name="myFor-

eignKey2ID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_20" name=" myFor-

eignKey3ID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_21" name="descrip-

tion" length="200" type="_22" />

</CWM:Classifier.feature>

<CWM:Namespace.ownedElement>

<CWMRDB:ForeignKey xmi.id="_23" name="un-

named_23" namespace="_15" feature="_19" unique-

Key="_24"/>

</CWM:Namespace.ownedElement>

</CWMRDB:Table>

<CWMRDB:SQLSimpleType

xmi.id="_22"

name="VARCHAR2"

visibility="public"characterMaximumLength="200"

characterOctetLength="1" type

Number="12"/>

The CWM specifications consists of a collection of

metamodels (defined in UML) that capture all the

elements of metadata, metamodels, and their processing

that can be expressed when exchanging information

between tools. These are what is identified in Fig. 1 as

the Common Warehouse Metamodel. It is organized

into five layers of abstraction.
Object Model

The Object Model layer is the base layer of the

Common Warehouse Metamodel. The metamodels

in the Object Model layer define the subset of UML

that is used for creating and describing the CWM.

They are the building blocks used by all the meta-

models in the upper layers. This enables CWM to

leverage UML’s concepts without requiring imple-

mentations to support all full of UML’s capabilities.

� Core
The Core metamodel contains basic classes and

associations used by all other CWM metamodels

like Namespace, Constraint, Attribute, Modeled-

Element etc.

� Behavioral
The Behavioral metamodel describe the beha-

vior of CWM types and how that behavior

is invoked with classes like Event, Parameter,

CallAction etc.

� Relationships
The Relationships metamodel describes two types

of relationships between object within a CWM

information store: generalizations (for parent-

child relationships) and associations (for links

between objects).

� Instance
The Instance metamodel contains classes to sup-

port the inclusion of data instances with the

metadata.

Foundation

The metamodels in the Foundation layer contain

general model elements that represent concepts and

structures shared by other CWM packages. Metamo-

dels in this layer are not necessarily complete, but serve

as a common basis that can be shared with other

metamodels.

� Data Types
The DataTypes metamodel supports definition of

metamodel constructs that modelers can use to

create the specific data types they need with classes

like Enumeration, Union, EnumerationLiteral,

UnionMember, etc.

� Expression
The Expressions metamodel supports the defini-

tion of expression trees.

� Keys and Indexes
This metamodel defines the basic concepts of Index,

IndexedFeature, UniqueKey, and KeyRelationship.

Common Warehouse Metamodel. Figure 1. Common warehouse metamodel architecture.

Common Warehouse Metamodel C 403

C

� Type Mapping
This metamodel is used to support the mapping of

types between different tools or data sources.

� Business Information
The Business Information metamodel supports

business-oriented information about model ele-

ments with classes like ResponsibleParty, Contact,

ResourceLocater etc.

� Software Deployment
The Software Deployment metamodel contains

classes like SoftwareSystem, Component, Site to

record how the software in a datawarehouse is used.

Resource

The metamodels in the resource layer define the type

of data sources and formats that are supported.

� Relational
The Relational metamodel describes relational

data this is accessed through an interface like

ODBC, JDBC or the native interface of a relational

database.
� Record
The Record metamodel describes the concept

of a record and its structure that can be applied

to data records stored in files and databases, or to

programming language structured data types.

� Multi-Dimensional
The Multi-Dimensional metamodel describes a

generic representation of a multidimensional

database using classes like Schema, Dimension,

Member etc.

� XML
The XML metamodel describes the metadata of

XML data with classes like ElementType, Attribute

etc.

Analysis

The metamodels in the analysis layer define the types

of interaction with metadata that are supported.

� Transformation
The Transformation metamodel contains classes

to describe common transformation metadata used

404C Communication Boundary of a DBMS
in Extract, Transform, Load (ETL) tools and

processes.

� OLAP
The OLAP metamodel contains classes to describe

common analysis metadata using in OLAP pro-

cessing with classes like MemberSelection and

CubeDeployment.

� Data Mining
The Data Mining metamodel provide the necessary

abstractions to model generic representations of

both data mining tasks and models (i.e., mathe-

matical models produced or generated by the exe-

cution of data mining algorithms).

� Information Visualization
The Information Visualization metamodel contains

classes like Rendering, RenderedObject, to describe

metadata associated with the display of data.

� Business Nomenclature
The Business Nomenclature metamodel supports

the definition of terms used in capturing busi-

ness requirements with classes like Nomencla-

ture, BusinesDomain, Taxonomy, Glossary, Term,

Concept, etc.

Management

The metamodels in the management layer define two

aspects of warehouse management.

� Warehouse Process
The Warehouse Process metamodel supports the

documentation of process flows used to execute

transformations. A process flow can associate a

transformation with a set of events, which will be

used to trigger the execution of the transformation.

� Warehouse Operation
The Warehouse Operation metamodel contains

classes for the day-to-day operation and mainte-

nance of the warehouse including scheduled activ-

ities, measurements, and change requests.
Key Applications
Vendors of data warehouse tools, conform to the

CWM specification to ensure that the metadata in

their tools is open and accessible to any CWM compli-

ant tool.

Large organizations leverage the specification in

order to be able to manage and maintain there data

warehouses in a common metadata repository. By

using the CWM specification IT administrators and
system integrators can extract and link metadata

from different vendors tools.

Oracle, IBM, SA, Informatica, Meta Integration

Technology Incorporated are among several industry

leaders who have data warehouse tools that are CWM

compliant to facilitate interoperability.
Cross-references
▶Data Warehouse Metadata

▶Metadata

▶Metadata Interchange Specification

▶Metadata Registry, ISO/IEC 11179

▶Meta Object Facility

▶Metamodel

▶Unified Modelling Language

▶XML Metadata Interchange
Recommended Reading
1. Common Warehouse Model (CWM) Specification, Version 1.1,

Object Management Group. Needham, MA, March 2, 2003.

http://www.omg.org/technology/documents/formal/cwm.htm.

2. CWMMetadata Interchange Patterns Specification, Version 1.0,

Object Management Group. Needham, MA, March 25, 2004.

3. Grossman R.L., Hornick M.F., and Meyer G. Data mining stan-

dards initiatives. Commun. ACM., 45(8):59–61, 2002.

4. Poole J., Chang D., Tolbert D., and Mellor D. Common Ware-

house Metamodel: An Introduction to the Standard for Data

Warehouse Integration. Wiley, 2002.

5. Vaduva A. and Dittrich K.R. Metadata Management for Data

Warehousing: Between Vision and Reality. In Proc. Int. Conf. on

Database Eng. and Applications, 2001, p. 0129.
Communication Boundary of a
DBMS

▶DBMS Interface
Compact Suffix Tries

▶ Suffix Trees
Comparative Analysis

▶Comparative Visualization

http://www.omg.org/technology/documents/formal/cwm.htm

Compensating Transactions C 405

C

Comparative Visualization

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Comparative analysis

Definition
Comparative visualization refers to

1. Methods that support the process of understanding

inwhat way different datasets are similar or different.

2. Methods that allow comparing different character-

istics of a given dataset.

3. Methods that allow a comparison of different types

of (linked) data graphics.

Key Points
Comparisons of datasets may occur in different ways.

Data value to data value: entries of different datasets are

compared to one another based on their values; derived

quantity to derived quantity: these could be statistical

moments of data fields or topological characteristics;

methodology to methodology: comparisons of meth-

odologies involve quantifying differences in experiment

or simulation parameters; and, if the data are visualized,

image to image: such comparisons quantify the differ-

ences in the visualizations produced by a given graphical

method.

Comparative visualizationmethods have been devel-

oped as an enabling technology for computational and

experimental scientists whose ability to collect and gen-

erate data far outpaces their ability to analyze and

understand such data. The Visualization and Analysis

Center for Enabling Technologies (http://www.vacet.

org), for example, provides (publicly available) compar-

ative data visualization software [1] for the scientists at

the various research labs associated with the

US Department of Energy.

Graphical displays that readily allow simultaneous

comparisons of several characteristics of multivariate

datasets – the parallel coordinate display for example –

are sometimes referred to as ‘‘comparative graphs.’’

There is evidence that visual explorations into

a dataset’s structure are particularly effective when

the data can be compared by simultaneously obser-

ving different visualizations of the same data. Today’s

data visualization packages routinely include several
different graphic methods to allow such comparisons.

To be truly effective, the different graphics should be

operationally linked. See [2] and [3] for two examples

among others.
Cross-references
▶ Exploratory Data Analysis

▶ Parallel Coordinates
Recommended Reading
1. Bavoil L., Callahan S.P., Crossno P.J., Freire J., Scheidegger C.E.,

Silva C.T., and Vo H.T. VisTrails: enabling interactive multiple-

view visualizations. In Proc. IEEE Visualization, 2005.

2. Schmid C. and Hinterberger H. Comparative multivariate

visualization across conceptually different graphic displays. In

Proc. 7th Int. Working Conf. on Scientific and Statistical Data-

base Management, 1994.

3. Siirtola H. Combining parallel coordinates with the reorderable

matrix. In Proc. Int. Conf. on Coordinated & Multiple Views in

Exploratory Visualization, 2003.
Compensating Transactions

GREG SPEEGLE

Baylor University, Waco, TX, USA

Definition
Given a transaction T, and its compensating transac-

tion C, then for any set of transactions H executing

concurrently with T, the database state D resulting

from executing THC is equivalent to the database

state D 0 resulting from executing H alone. Typically,

equivalent means both D and D 0 satisfy all database

consistency constraints, but D and D 0 do not have to

be identical.

A compensating transaction is defined in terms of

its corresponding failed transaction, and once started,

must be completed. This may involve re-executing the

compensating transaction multiple times. The result of

compensation is application dependent.
Key Points
A compensating transaction is a set of database opera-

tions that perform a logical undo of a failed transac-

tion. The goal of the compensating transaction is to

restore any database consistency constraints violated

http://www.vacet.org
http://www.vacet.org

406C Computationally Complete Relational Query Languages
by the failed transaction without adversely affecting

other concurrent transactions (e.g., cascading aborts).

However, it does not require the database to be in the

exact same state as if the transaction had never exe-

cuted as with traditional ACID properties. A compen-

sating transaction also removes the externalized affects

of a failed transaction [2].

Compensating transactions can best be understood

by comparing them to traditional atomicity require-

ments. Under traditional atomicity, either all effects of

a transaction are present in the database, or none of

them are. Thus, if a transaction T1 updates a data item

and transactions T2 reads that update, in order to

remove all of the effects of T1, T2 must also be

removed. With compensating transactions, the abort

of T2 is not be required.

Consider an example application of a company

manufacturing widgets. The transaction for buying

widgets consists of two subtransactions, one to order

the widgets and another to pay for them. Since this

business is very efficient, as soon as the widgets are

ordered, another transaction starts executing the

desired widgets. It is possible to compensate for the

ordered widgets by simply removing the order from

the system. The extra widgets would be produced, but

they will be consumed by later orders. Under tradi-

tional atomicity requirements, the production transac-

tion would have to be aborted if the buying transaction

failed after the order was placed (for example, if the

customer could not pay for the widgets).

Compensating transactions are used in long dura-

tion transactions called Sagas [1], and other applica-

tions that require semantic atomicity. Unfortunately,

compensation is not universally possible – the com-

mon example of an externalized event that cannot be

undone is the launching of a missile – or may be very

complex. Thus, compensating transactions are used

when the benefits of avoiding cascading aborts and

early externalization of results outweigh the difficulty

in determining the compensation.

Cross-references
▶ACID Properties

▶ Sagas

▶ Semantic Atomicity

Recommended Reading
1. Garcia-Molina H. and Salem K. SAGAS. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1987, pp. 249–259.
2. Korth H.F., Levy E., and Silberschatz A. A formal approach of

recovery by compensating transactions. In Proc. 16th Int. Conf.

on Very Large Data Bases, 1990, pp. 95–106.
Computationally Complete
Relational Query Languages

VICTOR VIANU
1, DIRK VAN GUCHT

2

1University of California-San Diego, La Jolla, CA, USA
2Indiana University, Bloomington, IN, USA

Synonyms
Complete query languages; Chandra and Harel

complete query languages

Definition
A relational query language (or query language) is a

set of expressions (or programs). The semantics of a

query language defines for each of these expressions

a corresponding query which is a generic, computable

function from finite relation instances to finite relation

instances over fixed schemas. A query language is com-

putationally complete (or complete) if it defines all

queries.

The genericity condition is a consistency criterion

requiring that a query commute with isomorphisms

of the database domain. Thus, when applied to iso-

morphic input relation instances, a query returns

isomorphic output relation instances. The concept of

genericity is based on the well-accepted idea that the

result of a query should be independent of the repre-

sentation of data in a database, and should treat the

elements of the database as uninterpreted objects [4].

The computability condition requires that the query

can be effectively computed, in other words it must be

implementable by a program of a Turing-complete

programming language under some suitable encoding

of relation instances into objects of that language.

Historical Background
The search for an appropriate notion of ‘‘complete’’

query language began soon after the introduction of

the relational model by Codd, with its accompanying

query languages relational algebra (RA) and relational

calculus (RC) [9]. Initially, RA was proposed as a

yardstick for query expressiveness. A language was

called by Codd ‘‘relationally complete’’ if it was able

Computationally Complete Relational Query Languages C 407

C

to simulate RA [10]. Bancilhon and Paredaens inde-

pendently proposed the notion of BP-completeness

of a language, using an instance-based approach: a

language is BP-complete if for every pair of input and

output instances satisfying a consistency criterion (The

criterion requires that every automorphism of the input

be also an automorphism of the output) there exists a

query in the language mapping the input instance to

the output instance [5,13]. The notion of genericity

was first articulated in the database context by Aho and

Ullman [4], although its roots can already be found in

the consistency criterion used in the definition of BP-

completeness, and an idea similar to genericity under-

lies Tarski’s concept of ‘‘logical notion,’’ introduced in a

series of lectures in the mid 1960s [15]. The modern

notion of computationally complete query language is

due to Chandra and Harel, who also defined the first

such language, QL [7].

Foundations
Codd introduced the relational model and its

query languages, relational algebra (RA) and relational

calculus (RC). These query languages are equivalent,

i.e., they define the same set of queries. For example,

assuming that R and S are relation schemas both

of arity 2, then the RA-expression p1,4(s2=3(R � S))

[(R� S), and the RC-expression {(x, y) j ∃z : (R(x, z)
∧S(z, y)) ∨ (R(x, y) ∧¬S(x, y))} define the same

computable query Q which maps each relation in-

stance R over R and each relation instance S over S to

their join unioned with their set difference. Notice that

Q is also generic: consider, for example, the input

relation instances

R1 ¼ a b

a c
S1 ¼ a b

b d

and the isomorphic input relation instances

R2 ¼ e f

e g
S2 ¼ e f

f h

thenQ(R1, S1) andQ(R2, S2) are the isomorphic output

relation instances a c and e g , respectively. (As a

caveat to genericity, consider the query C defined by

the RA-expression s1=a(R), where a is some constant

interpreted as a. Then, C(R1) = R1, but C(R2) = ;. The
difficulty is that, though R1 and R2 are isomorphic,

they are not isomorphic by an isomorphism that

fixes a. If however, the value of e in R2 is replaced by
a, then C(R2
e←a) = R2

e←a. This suggests that when

constants are involved, genericity should be modified

to isomorphisms that fix these constants. In the litera-

ture, this is referred to as C-genericity.)

The development of the relational model led to the

introduction of the query language SQL which has, at

its logical core, a sub-language pure-SQL, that is equiv-

alent with RA and RC. For example, in pure-SQL, the

query Q can be defined by the expression (Here A, B,

C, and D are attribute names referring to the first and

second columns of R, and the first and second columns

of S, respectively.)

(SELECTR.A,S.DASBFROMR,SWHERER.B=S.C)

UNION

(

(SELECT R.A, R.B FROM R)

EXCEPT

(SELECT S.C AS A, S.D AS B FROM S)

);

A natural question is now ‘‘Are RA, RC, and pure-

SQL complete query languages?’’ The answer is no. To

this end, consider the following three queries, which

are easily seen to be generic and computable:

1. TC maps each binary relation instance R to its

transitive closure R∗.

2. EVEN maps each unary relation instance R to {()}

(true) if jRj is even, and to ; (false), otherwise.
3. EVEN< maps each pair of a unary relation instance

R and a binary relation instance O to EVEN(R) if O

defines an ordering on dom(R), and is undefined

otherwise. (Here, dom(R) denotes the set of values

that occur in the tuples of R.)

It turns out that none of the above queries is

expressible in RA (or RC, or pure-SQL). Consider

(1). Fagin showed in [11] that the TC query cannot

be defined by any RC expression (the result was later

re-proven for RA by Aho and Ullman [4]). Intuitively,

the difficulty in computing TC is the following. For

each i� 0, there exists an RA-expression Ei that defines

the pairs of elements in R at distance i in the directed

graph represented by R. However, there does not exist a

single RA-expression that defines the union of all these

pairs, as needed for computing TC. A solution to this

problem is to augment RA with an iteration construct.

This led Chandra and Harel to define the language

While (initially introduced as RQ in [8] and LE

in [6]). The language uses, in addition to database

relations, typed relational variables (of fixed arity)

408C Computationally Complete Relational Query Languages
initialized to ;, to which RA expressions can be

assigned. Iteration is provided by a construct ‘‘while

change to R do hprogrami od’’ whose semantics is to

iterate hprogrami as long as the value of the relational

variable R changes. For example, the following While

program defines TC:

TC :¼ R;

while change to TC

do TC :¼ TC [p1;4ðs3¼4ðTC� RÞÞ od:

Here TC is a binary relation variable (initialized to ;).
The program first assigns R to TC, then loops as long

as TC changes. Upon termination, this value is R∗.

Onemight hope thatWhile is a complete query language.

However, this is not the case. Indeed, even though it is

easy to write a While program that defines the EVEN<

query, Chandra showed that no such program can

define the simple linear-time computable EVEN

query [6]. Thus, While is not computationally com-

plete. Intuitively, While programs do not have the

ability to compute with natural numbers, unless such

computations can be simulated by utilizing an order-

ing on the elements of its input. With such orderings

available, While can define precisely the PSPACE-

computable queries [17]. The PSPACE upper bound

(that holds with or without order) is a consequence of

the fact that a program’s finite set of variables are of

fixed arity and can only hold relation instances built

from the elements of its inputs.

To overcome these problems, it appears natural to

embed RA into a language that can perform arbitrarily

powerful computations. This is in the spirit of ‘‘em-

bedded SQL’’ languages, in which a computationally

complete programming language such as C or Java

accesses the database using SQL queries. A language

called LC (for Looping+Counters), abstracting the ‘‘em-

bedded SQL’’ paradigm, was introduced by Chandra

[6] (with a variant called WhileN later defined in [1]).

The language LC extends While by allowing integer

variables (initialized to zero) that can be incremented

or decremented. Iteration for computation on inte-

gers is provided by an additional while loop of the

form ‘‘while i > 0 do hprogrami od’’ which causes

hprogrami to iterate as long as the value of the integer

variable i is positive. For example, consider the follow-

ing program in an LC-like syntax: (The ‘‘if-else’’ state-

ment is a macro that can be easily written using just the

‘‘while-change’’ construct.)
TC :¼ R;

n :¼ 0;

while change to TC

do

n :¼ nþ 1;

TC :¼ TC [p1;4ðs2¼3ðTC� RÞÞ
od;

if n 	 1 return fðÞg else return ;

At the end of the computation, n contains the number

of times the body of the while loop was executed. Thus,

if R is non-empty, the final value of n is the diameter of

the directed graph represented by R (here the diameter

means the maximum finite distance between two

nodes). The program returns {()} (true) if n 	 1 and ;
(false) otherwise. Note that, since LC is computation-

ally complete on the integers, the condition ‘‘n 	 1’’

could be replaced by any computable property of n.

Thus, LC can test any computable property of the

diameter of R. Clearly, LC can define strictly more

queries than While, since all computable functions on

natural numbers can be defined and used. This leads to

the next question: ‘‘Is LC a complete query language?’’

Again, the answer is no. Indeed, Chandra showed that

the EVEN query can still not be defined in this lan-

guage. This time, the difficulty stems from the fact that,

even though the values of the relation and natural

number variables can depend on each other, LC pro-

grams lack the ability to explicitly coerce (encode) these

values into each other. However, when input relation

instances are accompanied by an ordering of the do-

main, such coercions can be simulated, and Abiteboul

and Vianu showed that then LC is complete [1].

To obtain a complete language without order, sev-

eral solutions are possible. A brute force approach to

the coercion problem is to augment LC with an encod-

ing function enc mapping relations to integers, and a

decoding function dec returning query answers from

their encodings and the original input database. Since

LC is computationally complete on integers, it can com-

pute the integer encoding of the answer from that of the

input. Although this theoretically produces a complete

language, manipulating integer encodings of databases is

not a satisfying solution, so further discussion of this

approach is omitted. Instead, two more appealing alter-

natives are described, that both go back to While as a

starting point and extend it in different ways. Recall that

While is limited to PSPACE computations, as a

Computationally Complete Relational Query Languages C 409

C

consequence of two facts: (i) only relations of fixed arity

are used, and (ii) the relations can be populated by tuples

using only elements occurring in the input. The first

approach, proposed by Chandra and Harel, breaks the

PSPACE space barrier by relaxing (i) it allows untyped

relational variables, whose arity can grow arbitrarily. The

other approach, introduced by Abiteboul and Vianu,

relaxes (ii) it keeps typed relational variables but allows

the introduction of new domain values in the course of

the computation. These languages are described next.

The complete language proposed by Chandra and

Harel was called QL [6]. Up to minor syntactic differ-

ences, QL is very similar to While, only with untyped

relation variables. Consider the following QL program

(For simplicity, the syntax used here differs slightly

from the original QL syntax.) which is strikingly simi-

lar to the LC program shown above:

TC :¼R;

ONE :¼ p1ðRÞ[p2ðRÞ;
N :¼fðÞg;
while change to TC

do

N :¼N�ONE;

TC :¼ TC[p1;4ðs2¼3ðTC�RÞÞ
od;

if ðN¼fðÞgÞ or ðN¼ONEÞ then return fðÞg else
return ;:

In this program, R is a binary relation input variable,

and TC, ONE, and N are relation variables. Note that

the arities of TC and ONE remain fixed throughout

the execution of the program, while the arity of N

changes. Integers can be easily simulated using the

arity of relations. Thus, starting with relation instance

R, the variable ONE is initialized to dom(R), which

plays the role of the natural number 1. The variable N

plays the role of a natural number variable n. The

statement N :={()} corresponds the statement n = 0,

and the statement N := N�ONE serves to increment n

by 1; notice that the � operator plays the role of the

addition operator + over natural numbers, and the

decrement operator can be simulated by projection.

Similarly to the earlier LC program, the final arity

of N is the diameter of the directed graph represented

by R. The final ‘‘if ’’ statement compares N to {()} or

ONE, and the program returns {()} (true) if the diam-

eter of R is at most 1, and ; (false) otherwise. Observe
therefore that this QL program defines the same query

as its corresponding LC program.

The above example illustrates how arithmetic on

natural numbers can be simulated in QL. So far, this

allows simulating LC. Recall that LC is not complete,

but becomes so if an ordering of the domain is

provided. QL is however complete even if an ordering

is not provided, because it can construct its own order-

ings! Indeed, such orderings of the domain can simply

be constructed in QL by building one relation whose

arity equals the size of the input domain. In such a

relation, any tuple that does not contain repeated ele-

ments provides a successor relation on the domain,

which in turns induces an ordering. The completeness

of QL now follows from the completeness of LC on

ordered domains. Thus, QL can express all computable

queries. But is everything it expresses a query? It is easy

to see that all mappings defined by QL programs are

computable and generic. The difficulty is to guarantee

that a QL program always produces answers of the

desired arity. In fact, this property is undecidable for

QL programs. Fortunately, there is an effective syntac-

tic restriction guaranteeing that QL programs are ‘‘well

behaved,’’ i.e., always produce answers of fixed arity.

Moreover, all computable queries can be expressed by

QL programs satisfying the syntactic restriction.

The language WhileNew, introduced by Abiteboul

and Vianu in [3], extends While by allowing the crea-

tion of new values throughout the computation. This

is achieved by an instruction of the form S := new(R),

where R and S are relational variables and arity(S) =

arity(R) + 1. The semantics is the following. Given a

relation instance R over R, the relation instance S over

S is obtained by extending each tuple of R by one

distinct new value not occurring in the input, the

current state, or in the program. For example, if R is

the relation instance in Fig. 1 then S is of the form

shown in the same figure. The values a,b,g are distinct

new values. Note that the new construct is, strictly

speaking, nondeterministic. Indeed, the new values

are arbitrary, so several outcomes are possible depend-

ing on the choice of values. However, the different

outcomes differ only in the choice of new values.

The ability to successively introduce new values

throughout the computation easily allows simulating

integers and arithmetic, yielding the power of LC.

Moreover, orderings of the input domain can also be

constructed and marked by distinct new values. Since

LC is complete on ordered domains, this shows that

410C Computationally Complete Relational Query Languages
WhileNew can express all computable queries. As in

the case of QL, one must ask whether all mappings

expressed by WhileNew are in fact queries according to

the definition. The difficulty arises from the presence

of new values. Indeed, if new values may appear in the

outputs of a WhileNew program, the mapping it

defines is non-deterministic. Moreover, it is undecid-

able whether a WhileNew program never contains new

values in its output. The solution to this problem is

similar to the one for QL: one can impose a syntactic

restriction on WhileNew programs guaranteeing that

no new value appears in their answers. All generic

computable queries can be expressed by WhileNew

programs satisfying the syntactic restriction.

As an aside, suppose the definition of query is

extended by allowing new values in query answers.

This arises naturally in some contexts such as object-

oriented databases, where outputs to queries may con-

tain new objects with their own fresh identifiers. One

might hope that WhileNew remains complete for this

extension. Surprisingly, it was shown by Abiteboul and

Kanellakis that the answer is negative [2]. Indeed,

WhileNew cannot express the query containing the

input/output pair shown in Fig. 2, where c0,...,c3 are

new values. As shown by Abiteboul and Kanellakis,
Computationally Complete Relational Query

Languages. Figure 1. An application of new. Here,

S = new(R).

Computationally Complete Relational Query

Languages. Figure 2. A query with new values not

expressible in WhileNew.
completeness with new values can be achieved by

adding to WhileNew a construct called duplicate elimi-

nation. This is however a rather complex construct,

that encapsulates a test for isomorphism of relations.

The search for a language using more natural primi-

tives and complete for queries with new values in the

answer remains open.

The relational model, though very simple, is not

always the most natural model for databases in certain

application domains. In the late 1980s and early 1990s

database researchers considered object-oriented data-

bases as an alternative to the relational model, and a

significant amount of theory was developed around the

model and its query languages, including the complete-

ness of object-oriented query languages (see [1,16]).

Finally, consistency notions other than genericity can

be considered for specialized application domains.

This was done, for example, in the context of spatial

databases [12,14].

Key Applications
The theoretical query languages discussed here are

closely related to various practical languages. Thus,

RA and RC correspond to pure-SQL. The language

While corresponds to wrapping programming con-

structs such as loops around SQL, as done in PL/SQL

(Oracle); assignment statements can be implemented

using SQL insert and delete operations.

The language LC (or WhileN) can again be

simulated in PL/SQL augmented with natural number

variables (with no coercion allowed). Another ap-

proach is to embed SQL in a programming language

such as C or Java. In such languages, relational vari-

ables must be statically defined and so have fixed arity.

One significant feature of the embedded SQL lan-

guages that sets them apart from LC is that they

allow accessing tuples in relations one at a time, using

looping over cursors. In particular, this allows coercing

the entire database into a native data structure, and

yields computational completeness. However, there is

a catch: programs using cursors are generally non-

deterministic, in the sense that running the same

program on the same database content may yield dif-

ferent results. Unfortunately, it is undecidable whether

a given embedded SQL program is deterministic, and

no natural syntactic restriction is known that ensures

determinism while preserving completeness. Thus,

completeness is achieved at the cost of losing the guar-

antee of determinism.

Complex Event C 411

C

The computationally complete language QL can be

simulated in Dynamic SQL. In this language one can

dynamically create relation variables whose schemas

depend on the data in the database. This can be used

to support untyped relational variables. The language

WhileNew allowing the introduction of new domain

values is akin to object-oriented languages that allow

the creation of new object identifiers.

Future Directions
The database area is undergoing tremendous expan-

sion and diversification under the impetus of the Web

and a host of specialized applications. Consequently,

new structures and objects have to be modeled and

manipulated. For example, in biological and scientific

applications, sequences and matrices occur promi-

nently; in XML databases, text and tree-structured

documents are the main objects. This has led to new

database models and query languages. Their formal

foundations are fast developing, but are not yet as

mature as for the relational data model. Notions of

computationally complete languages for the new mod-

els are still emerging, and are likely to build upon the

theory developed for relational databases.

Cross-references
▶BP-completeness

▶Constraint Query Languages

▶Data Models with Nested Collections and Classes

▶ Ehrenfeucht-Fraı̈ssé Games

▶ Expressive Power of Query Languages

▶Object Data Models

▶Query Language

▶Relational Calculus

▶Relational Model

▶ Semantic Web Query Languages

▶ Semi-Structured Query Languages

▶ SQL

▶XML

▶XPath/XQuery

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, 1995.

2. Abiteboul S. and Kanellakis P.C. Object identity as a query

language primitive. J. ACM, 45(5):798–842, 1998.

3. Abiteboul S. and Vianu V. Procedural languages for database

queries and updates. J. Comput. Syst. Sci., 41(2):181–229, 1990.

4. Aho A.V. and Ullman J.D. Universality of data retrieval lan-

guages. In Proc. 6th ACM SIGACT-SIGPLAN Symp. on Princi-

ples of Programming Languages, 1979, pp. 110–120.
5. Bancilhon F. On the completeness of query languages for rela-

tional data bases. In Proc. 7th Symp. on the Mathematical

Foundations of Computer Science, 1978, pp. 112–123.

6. Chandra A. Programming primitives for database languages. In

Proc. 8th ACM SIGACT-SIGPLAN Symp. on Principles of Pro-

gramming Languages, 1981, pp. 50–62.

7. Chandra A. and Harel D. Computable queries for relational data

bases. J. Comput. Syst. Sci., 21(2):156–178, 1980.

8. Chandra A. and Harel D. Structure and complexity of relational

queries. J. Comput. Syst. Sci., 25:99–128, 1982.

9. Codd E. A relational model for large shared databanks. Com-

mun. ACM, 13(6):377–387, 1970.

10. Codd E. Relational completeness of data base sublanguages. In

Data Base Systems, R. Rustin (ed.). Prentice-Hall, Englewood,

Cliffs, NJ, 1972, pp. 65–98.

11. Fagin R. Monadic generalized spectra. Zeitschrift für Math.

Logik Grundlagen d. Math, 2189–96, 1975.

12. Gyssens M., Van den Bussche J., and Van Gucht D. Complete

geometric query languages. J. Comput. Syst. Sci., 58(3):483–511,

1999.

13. Paredaens J. On the expressive power of the relational algebra.

Inf. Process. Lett., 7(2):107–111, 1978.

14. Paredaens J. Spatial databases, a new frontier. In Proc. 5th Int.

Conf. on Database Theory. 1995, pp. 14–32.

15. Tarski A. What are logical notions? History Phil. Logic, 7:154,

1986. J. Corcoran (ed.).

16. Van den Bussche J., Van Gucht D., Andries M., and Gyssens M.

On the completeness of object-creating database transformation

languages. J. ACM, 44(2):272–319, 1997.

17. Vardi M.Y. The complexity of relational query languages. In

Proc. 14th Annual ACM Symp. on Theory of Computing,

1982, pp. 137–146.
Complex Event

OPHER ETZION

IBM Research Lab in Haifa, Haifa, Israel

Synonyms
Composite event; Derived event

Definition
A complex event is an event derived from a collection of

events by either aggregation or derivation function [3].

Key Points
A complex event [2], [1] is a derived event; it can be

derived by various means:

1. Explicit concatenation of a collection of events,

� Example: Create an event that contains all the

events that are related to the 2008 USA presi-

dential elections.

412C Complex Event Processing
2. Derivation of an aggregated value from a collection

of events from the same type.

� Example: Create an event that contains the

average, maximal and minimal value of a cer-

tain stock during a single trade day.

3. Derivation [4] of an event as a function of other

events that is a result of event pattern detection.

� Example: Whenever a sequence of three

complain-events from the same customer occurs

within a single week, create an event ‘‘angry

customer’’ with the customer-id.

Note that this event may or may not contain the

raw complain events.

Cross-references
▶Complex Event Processing

▶ Event Pattern Detection

Recommended Reading
1. Ericsson A.M., Pettersson P., Berndtsson M., Seiriö M. Seamless

formal verification of complex event processing applications. In

Proc. Inaugural Int. Conf. Distributed Event-Based Systems,

2007, pp. 50–61.

2. Luckham D. The Power of Events. Addison-Wesley, 2002.

3. Luckham D., and Schulte R. (eds.) - EPTS Event Processing

Glossary version 1.1. http://complexevents.com/?p=409.

4. Zimmer D., and Unland R. On the Semantics of Complex Events

in Active Database Management Systems. In Proc. 15th Int.

Conf. on Data Engineering, 1999, pp. 392–399.
Complex Event Processing. Figure 1. Various CEP solution s
Complex Event Processing

OPHER ETZION

IBM Research Lab in Haifa, Haifa, Israel

Synonyms
Event processing; Event stream processing

Definition
Complex event processing deals with various types of

processing complex events.

Key Points
Figure 1 shows that the different applications of the CEP

technology are not monolithic, and can be classified

into five different solution segments, which differ in

their motivation, from the user’s perspective, they are:

� RTE (Real-Time Enterprise): The processing should

affect business processes while they are still run-

ning. For example, stop an instance of a workflow

that deals with trading a certain stock, if the trade

request has been withdrawn.

� Active Diagnostics: Finding the root-cause of a

problem based on events that are symptoms.

� Information Dissemination: A personalized subscrip-

tion that enables subscriptions in lower granularity,

where the subscription does notmatch the published
emgents.

http://complexevents.com/?p=409

Complex Event Processing. Figure 2. Relationships among major complex event processing terms.

Composed Services and WS-BPEL C 413

C

event, but a combination of event. For example,

notify me when IBM stock has gone up 2% within

1 hour.

� BAM (Business Activity Management): Monitor for

exceptional behavior, by defining KPI (Key Perfor-

mance indicators) and other exceptional behavioral

constraints. For example, the delivery has not been

shipped by the deadline.

� Prediction: Mitigate or eliminate future predicted

events.

Figure 2 shows the relations among the different terms

around complex event processing. Complex event may

be a derived event, but the overlapping among them is

partial, the complex event processing is materialized by

detecting patterns which may correspond to situations

(cases that require action). The exact definitions of

terms can be found in the EPTS glossary.

Cross-references
▶Complex Event

▶ Event Pattern Detection

Recommended Reading
1. Etzion O. Event processing, architecture and patterns, Tutorial.

In Proc. 2nd Int. Conf. Distributed Event-Based Systems, 2008.

2. Event processing glossary. Available at: http://www.epts.com

3. Luckham D. The Power of Events. Addison-Wesley, Reading,

MA, 2002.

4. Sharon G. and Etzion O. Event processing networks – model

and implementation. IBM Syst. J., 47(2):321–334, 2008.
5. Zimmer D. and Unland R. On the semantics of complex events

in active database management systems. In Proc. 15th Int. Conf.

on Data Engineering, 1999, pp. 392–399.
Complex Event Processing (CEP)

▶ Event and Pattern Detection over Streams

▶ Stream Processing
Compliance

▶ Storage Security
Component Abstraction

▶Abstraction
Composed Services and WS-BPEL

FRANCISCO CURBERA

IBM Research, T.J. Watson Research Center,

Hawthorne, NY, USA.

Synonyms
Service orchestration; Service choreography; WS-BPEL;

Web services business process execution language

http://www.epts.com

414C Composed Services and WS-BPEL
Definition
Service oriented architectures (SOAs) are models

of distributed software components where business

or scientific functions are delivered by a network of

distributed services. Services can be classified into

atomic services and composed services, based on how

they are created and run. Atomic services are those that

do not depend on other services for their operation,

and are typically built on technologies native to a

specific platform, such as COBOL or Enterprise Java

Beans. Composed services are created by composing

the function provided by one or more external services

into a new service. There is no restriction implied as to

the programming model used to create composed ser-

vices; platform specific programming models such as

Enterprise Java Beans or C# have been extended to

support the creation of composed services. In addition

to that approach, service centric programming models

have been defined to support the development of

composed services. Foremost among those is the

Web Services Execution Language for Web Services

(WS-BPEL or BPEL), a service composition language

based on the workflow programming model.

Historical Background
The service oriented architecture model [1] evolved

early on to include aspects of a component oriented

architecture, based on the similarity between the reuse

of services and of traditional software components.

Component oriented software development has been

a constant reference point in the development of SOA.

Service composition also draws from the experience of

workflow programming and business process re-

engineering [5] as it developed throughout the 1990s.

The workflow programming model relies on a two level

programming paradigm in which applications are

combined to accomplish a business goal by means of

a graph oriented programming approach. The term

‘‘two level programming’’ derives from the differentia-

tion between the programming task whose goal is to

create the individual applications and the creation of

the workflow control and data graphs whose goal is

the use of those applications to achieve a particular

business goal. Because of the close alignment between

two level programming and SOA service reuse through

composition, workflow programming became a second

reference point in the early development of the SOA

model, leading to process oriented service composition

models and eventually the WS-BPEL language [10].
Foundations

Services and Components

The component oriented software development model

(COSD) assumes that software applications and sys-

tems can be more efficiently developed and managed

when created through the aggregation (composition)

of a set of software building blocks (components)

independently produced by third parties. Szyperski

[8] restricts components to binary code and associated

resources, to differentiate components from other soft-

ware abstractions. More importantly, components are

units of deployment (can be independently deployed)

and composition (can be independently integrated

in composed applications). Components are endowed

with well defined interfaces through which they

interact with other components.

Service oriented architectures build on this same

paradigm. Services in SOA are nothing but the inter-

faces of SOA components. SOAs add an important

new perspective to the usual COSD approach. Com-

ponents in SOAs are not only units of independent

deployment, but also units of independent ownership

and management by third parties. The implication is

that when creating a composite application two related

perspectives are possible. In a traditional COSD ap-

proach (‘‘component composition’’), a single party

deploys and maintains control and management rights

over all components. The subjects of the composition

task are individual software (binary) components. At

runtime they are managed as parts of the composed

application to which they belong. By contrast, in a

service oriented approach, the subjects of the compo-

sition are the services exposed by software compo-

nents, which are in principle deployed and managed

independently of the composite application itself.

The term ‘‘service composition’’ is used to refer to a

new SOA application created by composing services.

The services exposed by a service composition are

called ‘‘composite services.’’

The traditional COSD approach is followed by the

Service Component Architecture (SCA, see [2]), which

defines a straightforward model for the deployment

and composition of service oriented components.

In SCA, components are ‘‘wired’’ to each other by

connecting their interfaces, to create new SCA applica-

tions or ‘‘composites.’’ SCA composites are component

compositions, and they can provide services by expos-

ing one or more service interfaces. Composites are

Composed Services and WS-BPEL C 415

C

deployed by deploying and configuring their constitu-

ent component’s binary implementations. SCA com-

posites are potentially components themselves, thus

supporting a recursive composition model.

Service Composition Models

Focusing on both the development time and run-

time natures of a service composition, it is possible

to distinguish two types of service composition

strategies.

‘‘Localized’’ compositions specify the composite’s

application internal operation and its dependencies

on a set of external services, including in particular

the expected behavior of those services. Localized com-

positions are concerned with applications executing

in a single logical location of control. The composition

relies on a single logical node where the application

logic is executed and from which the interactions with

the composed services are controlled. The services used

by the composite are naturally executed in separate

nodes, but their operation is not the concern of the

composition except for its externally visible behavior.

The term ‘‘service orchestration’’ is sometimes used to

refer to localized service compositions. WS-BPEL is

the model for this type of service composition.

‘‘Distributed’’ service compositions specify the

behavior of a set of independent SOA applications

interacting through service interfaces as part of a

distributed composite application. In its purest form,

a distributed composition doesn’t specify the internal

behavior of any of the participating applications,

but only the interactions between the participating

services. The execution of the composite is assumed

to be distributed among a set of independent nodes,

which coordinate their operation according to the

composition’s specification. The Web Services Chore-

ography Description Language [7] is the prime exam-

ple of this type of composition. It is also important to

mention in this category of service composition the use

of SCA as a service wiring specification, in particular in

the context of Enterprise Service Bus runtimes; this

usage of SCA is discussed later in this entry, under

‘‘Key Applications.’’

In spite of the difference in approach, all service

composition models share a set of common character-

istics. Both types of service composition require the

specification of the expected behavior from the com-

posed services. Expected behavior refers here to the

message exchange sequence between the services,
which is frequently referred to as a ‘‘service conversa-

tion.’’ A service conversation is the realization of a

business protocol between two parties, over a SOA

infrastructure, and is the basis for business level inter-

operability between services.

Together with a particular service conversation, the

relationship between two services is characterized by a

particular interaction pattern. Several of these patterns

are possible. In a hierarchical organization, the lifecycle

of one service is subordinated to another’s, such that

the later is responsible for the creation and termination

of runtime instances of the former. This is the relation-

ship between a process and a sub-process. In a peer-to-

peer interaction, both services maintain independent

lifecycles and interact as peers. Again, both relation-

ships are possible in both localized and distributed

compositions.

It is clear that maintaining the appropriate level of

distributed coordination between participating services

at runtime is a non-trivial problem. Hierarchical life-

cycle dependencies as well as distributed transactional

behavior must rely on coordination middleware to

ensure agreement on the outcome and synchronization

of the interaction. These ‘‘coordinated behaviors’’ of

distributed systems are supported in the Web services

specification stack by the Web Services Coordination

specification, which defines a framework for the

creation of distributed protocols [11].

Finally, ‘‘recursive composition’’ is a common char-

acteristic of all service compositionmodels, and the basis

for the creation of composite services through composi-

tion. In a recursive model, the service composition

becomes a service itself, available for further invocation

and composition. WS-BPEL, SCA and WS-CDL all

allow the creation of new services through composition.

A survey of different methodologies for development of

service compositions can be found in [4].

Workflow Oriented Composition in WS-BPEL

WS-BPEL is the model and industry standard for loca-

lized service composition. WS-BPEL is also the proto-

type for workflow (or process) oriented composition, a

form of service composition that follows the workflow

programming model. The WS-BPEL specification

adapts the workflow two level programming model to

a service centric environment.

The WS-BPEL language consists of two main

parts, one dealing with the representation of service

interaction requirements and a second one dealing

416C Composed Services and WS-BPEL
with the specification of the control and data logic of

the workflow.

Service Interaction in Processes AWS-BPEL compo-

sition is called a ‘‘process model.’’ Service interaction

requirements are defined in terms of ‘‘abstract’’ Web

services interfaces, that is, XML interface definitions

containing no references to service access details such

as interaction protocol or endpoint address. Abstract

interfaces are defined using the Web Services Descrip-

tion Language (WSDL, see [11]); abstract interfaces

are called portTypes in WSDL 1.1. The interaction

between the process model and each of the composed

services requires in the general case two such abstract

interfaces, one used by the process to call the service

and one for the service to call back on the process. This

pair of interfaces characterizes the interaction and is

called a ‘‘partner link’’ in WS-BPEL. The actual ways in

which these interfaces are exercised is defined by the

business logic of the process definition, which is de-

scribed later in this section.

WS-BPEL service composition takes place at the

interface type level (‘‘service types composition’’) in-

stead at the instance level (‘‘service instance composi-

tion’’): abstract service interfaces are referenced by the

process, instead of actually deployed services. The goal

of this approach to composition is to expand

the reusability of WS-BPEL processes, since it allows

the same process composition to be used with different

services and using different access protocols, as long as

the correct portTypes are supported. One particular

consequence of this approach is the absence of quality

of service specifications in WS-BPEL processes.

A second aspect of the interaction between services

is the identification of dynamic correlation data fields

for process instance identification and message rout-

ing. A WS-BPEL process specifies a model for the

execution of individual ‘‘process instances.’’ A new

process instance is started any time a ‘‘start’’ message

(as defined by the process model business logic) is

received by the process engine. At any point in time,

many instances of the each process model are executing

the same process engine. In traditional workflow infra-

structures, each instance is identified by a unique

identifier, which is carried by all messages sent to the

process instance. By carrying this identifier, messages

can be routed to the correct instance.

WS-BPEL takes a different approach to the routing

problem. The correlation between messages and pro-

cess instances is done using business information
fields, grouped in data sets that the WS-BPEL specifi-

cation calls ‘‘correlation sets.’’ A correlation set is a

group of message fields that collectively identify the

executing process instance. Correlation fields are iden-

tified using XPath expressions to point to individual

data fields within the messages received by the process,

allowing content based message routing to instances.

Correlation information is also specified in outgoing

messages, when the values of these fields need to be

communicated to an external service. The main benefit

of the WS-BPEL correlation approach is to replace

the use of platform specific artifacts by business mean-

ingful information for the purpose of interoperable

message routing and transaction identification. Corre-

lation values are a key element of any message oriented

business protocol.

Specification of Business Logic in Process Composi-

tions Business logic (the control and data graphs of

a workflow) is specified in WS-BPEL by means of a set

of ‘‘atomic’’ and ‘‘structured activities.’’ Atomic activ-

ities represent individual steps in the computation of

the process graph, and they stand for external service

interaction steps (calling or being called by a service),

or data manipulation primitives (assignment of data

fields). Atomic activities are combined according to

a particular sequence of execution using structured

activities. WS-BPEL provides structured activities

for sequential, parallel as well as conditional and itera-

tive execution. These activities allow the creation of

‘‘structured’’ process graphs, those in which the pro-

gramming style is similar to that of structured

programming languages (albeit with intrinsic parallel

capabilities).

WS-BPEL also supports a graph oriented process

modeling approach, where atomic activities are com-

bined as nodes of an explicit graph. Edges of the graph

are called ‘‘control links,’’ and represent explicit trans-

fer of control between a source and a target activity

(as opposed to the implicit dependency defined by a

sequence activity for example). The execution of the

control link graph follows the ‘‘dead path elimination’’

operational semantics where those graph branches not

followed in the execution of a process instance (typi-

cally because of conditional statements are not satis-

fied) are transitively eliminated to ensure that every

activity in the graph is eventually executed or marked

as part of an eliminated ‘‘dead path.’’ Dead path elimi-

nation and the rule that prevents cyclic control graphs

ensure the termination of every valid WS-BPEL

Composed Services and WS-BPEL C 417

C

graph’s execution. The graph and structured styles are

however not strictly separated and can be combined

in a rich but at times challenging authoring style.

Dead path elimination semantics are embedded in

the structured execution model through exception

handling, see [3].

Data flow in WS-BPEL is not explicitly modeled,

but implied by the use of a set of process variables as

inputs and outputs of atomic activities. Data variables

in WS-BPEL contain XML data, which is typed accord-

ing to the XML Schema language.

WS-BPEL contains error handling and recovery

primitives to support business interaction in loosely

coupled environment. Error handling is supported

through the introduction of ‘‘fault handlers’’ which

are charged with recovering from errors generated in

the course of process execution: faults generated in the

course of a service call, errors explicitly raised by the

process when certain business conditions are detected,

and system generated faults raised when the under-

lying execution runtime cannot comply with the

requirements of process logic (such as errors accessing

message data and other error conditions).

Fault handlers are associated with sections of the

process called ‘‘scopes,’’ the complete process being

the outermost scope. Faults originated within a scope

are handled by the fault handlers attached to the

scope. In the course of recovering from a fault, it may

be determined that a particular action already com-

peted must be ‘‘undone.’’ A ‘‘compensation handler’’

may be associated with that action (atomic activity) or

with a collection of actions (a scope) to indicate the

steps required to ‘‘undo’’ that activity or scope, and

would then be executed by the fault handler. A compen-

sation handler defines a set of business level actions that

provide a logical reversal (backward execution path) of

the action in question. Compensation recovery repre-

sents an alternative to automatic rollback, and is neces-

sary in service oriented scenarios where loosely coupled

services cannot participate in transactions with atomic

semantics and automatic rollback recovery. Business

transaction in SOA environments require looser trans-

actional semantics (see [7] for details) where recovery is

typically specified at the application level.

Key Applications
Current practice of service composition is closely tied to

two types of SOA runtimes available in the industry:

SOA-enabled business processmanagement (BPM)plat-

forms and enterprise service bus (ESB) infrastructures.
WS-BPEL service composition on BPM platforms

represents is by far the most extensive application

of the service composition model in enterprise com-

puting. Its success is due to two factors: the increa-

sed focus of enterprises on end-to-end business

automation, and the fact that service composition

builds on the well known business process integration

paradigm.

There are important differences between platforms

for process oriented service composition and tradi-

tional BPM, appearing in two main areas: the reach

of the process integration capabilities and the approach

to process management. Service oriented process com-

position adds a new perspective typically absent from

traditional BPM platforms, namely, a uniform model

for representing internal and external business func-

tion based on the service paradigm. The result is the

ability to seamlessly incorporate cross departmental

and cross organizational services to capture and auto-

mate end-to-end business requirements. End-to-end

business automation is the main driver of SOA adop-

tion by businesses today.

The management capabilities of the BPM platform

are also significantly affected by the service oriented

model. Full management is now limited to the process

itself and any services deployed locally within the BPM

platform. Unlike in traditional BPM, the ability to

manage other services is limited (or missing altogether)

because they are typically run andmanaged by different

parties (other departmental organizations or different

enterprises). BPM platforms supporting service com-

position must rely on service management standards

(such as the Web Services Distributed Management

specification [7]) and service level agreements (such

as the Web Services Agreement specification, [7]) to

provide visibility and limited control over the execution

of remote services.

The enterprise service bus architecture (ESB, see [7])

is quickly gaining widespread adoption because it

enables simplified service access and reuse across the

enterprise. Services are plugged to the ESB to make

them available for access by other enterprise applica-

tions. ESBs are usually built as service extensions to

traditional messaging backbones (‘‘messaging clouds’’).

Services and applications are connected across the

ESB by creating ‘‘wires’’ that declaratively create a logi-

cal communication channel between the two. The

SCA component and wiring model is used in this con-

text both to drive deployment of SOA components and

also to wire existing services, thus exposing its ability to

418C Composite Event
function as both a component and a service composi-

tion model.

Scientific computing middleware software has,

independently of its commercial counterpart, identi-

fied the need for an architectural model in which

computing resources are consumed following the ser-

vice model. The Open Grid Services Architecture (see

[6,7]) shows how the Grid application model is

supported by SOA. In this context, scientific workflows

have been characterized as compositions of scientific

services and specialized languages have been developed

to enable the composition of complex scientific com-

puting experiments as process oriented service compo-

sitions [9]. The Grid Process Execution Language

(GPEL) in particular adapts WS-BPEL to deal with

scientific and Grid computing requirements such as

processing extremely large data sets, allocating dynam-

ic resources from a Grid infrastructure, and supporting

the integration with legacy scientific code among sev-

eral others (see Chapter 15 in [9]).
Cross-references
▶Workflow Management and Workflow Management

System
Recommended Reading
1. Burbeck S. The Tao of e-business services. Available at

http://www.ibm.com/developerworks/webservices/library/ws-tao/,

October 2000.

2. Curbera F., Ferguson D., Nally M., and Stockton M. Toward a

Programming Model for Service-Oriented Computing. In Proc.

3rd Int. Conf. Service-Oriented Computing. 2005, pp. 33–47.

3. Curbera F., Khalaf R., Leymann F., and Weerawarana S. Excep-

tion Handling in the BPEL4WS Language, In Proc. Int. Conf.

Business Process Management, 2003, pp. 276–290.

4. Dustdar S. and Schreiner W. A survey on web services composi-

tion. Int. J. Web Grid Serv.,1(1):1–30, 2005.

5. Leymann F. and Roller D. Production Workflow. Prentice Hall,

Englewood Cliffs, NJ, 1999.

6. Open Grid Services Architecture, Version 1.5. Available at

http://www.ggf.org/documents/GFD.80.pdf, July 2006.

7. Papazoglou M. Web Services: Principles and Technology.

Prentice Hall, Englewood Cliffs, NJ, 2007.

8. Szyperski C. Component Software. Addison Wesley, Reading,

MA, 2002.

9. Taylor I.J., Deelman E., Gannon D.B., Shields M., (eds.). Work-

flows for e-Science. Scientific Workflows for Grids. Springer,

Berlin, 2007.

10. Web Services Business Process Execution Language Version 2.0.

Available at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.html, April 2007.
11. Weerawarana S., Curbera F., Leymann F., Storey T., and

Ferguson D. Web Services Platform Architecture. Prentice Hall,

Englewood Cliffs, NJ, 2005.
Composite Event

ANNMARIE ERICSSON, MIKAEL BERNDTSSON,

JONAS MELLIN

University of Skövde, Skövde, Sweden

Definition
A composite event is a set of events matching an event

specification.

Key Points
Pioneering work on composite events was done in the

HiPAC project [3] and the ideas were extended and

refined in most proposals for active object-oriented

databases during the early 1990s.

A composite event is composed according to an

event specification (in an event algebra), where the

composition is performed using a set of event opera-

tors such as disjunction, conjunction and sequence.

More advanced event operators have been suggested

in literature, e.g., [2,4,5].

The initiator of a composite event is the event

initiating the composite event occurrence and the ter-

minator is the event terminating the composite event

occurrence.

Events contributing to composite events may carry

parameters (e.g., temporal) in which the event is said

to occur. Events contributing to composite events are

also referred to as constituent events.

Composite events need to be composed according

to some event context that define which event that

can participate in the detection of a composite event.

The event context is an interpretation of the streams of

contributing events. The seminal work by Chakravarthy

et al. [1,2], defines four different event contexts (or

consumption policies): recent, chronicle, continuous,

and cumulative.

In the recent event context, only the most recent

constituent events will be used to form composite

events. The recent event context is, for example, useful

if calculations must be performed on combinations of

the last measured values of temperature and pressure

in a tank [1,2].

http://www.ibm.com/developerworks/webservices/library/ws-tao/,
http://www.ggf.org/documents/GFD.80.pdf,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html,

Composition C 419

C

In the chronicle event context, events are consumed

in chronicle order. The earliest unused initiator/termi-

nator pair are used to form the composite event. The

chronicle event context is, for example, useful if sen-

sors are placed along a conveyor-belt monitoring

objects traveling along the belt and combinations of

sensor events triggered by the same object is needed. In

that case events must be combined in occurrence order

since the first event from the first sensor and the first

event from the second sensor are likely triggered by the

same object [1,2].

In the continuous event context, each initiator

starts the detection of a new composite event and a

terminator may terminate one or more composite

event occurrences. The difference between continuous

and chronicle event contexts is that in the continuous

event context, one terminator can detect more than

one occurrence of the composite event.

In the cumulative event context, all events contri-

buting to a composite event are accumulated until

the composite event is detected. When the composite

event is detected, all contributing events are consumed

[1,2].
Cross-references
▶Active Database (aDB)

▶Active Database Execution Model

▶Active Database Knowledge Model

▶Active Database (Management) System (aDBS/

aDBMS)

▶ ECA Rules

▶ Event

▶ Event Detection

▶ Event Specification
Recommended Reading
1. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.

Composite events for active databases: semantics contexts and

detection. In Proc. 20th Int. Conf. on Very Large Data Bases,

1994, pp. 606–617.

2. Chakravarthy S. and Mishra D. Snoop: an expressive event

specification language for active databases. Data Knowl. Eng.,

14(1):1–26, 1994.

3. Dayal U., Blaustein B., Buchmann A., and Chakravarthyand S.

et al. HiPAC: A Research Project in Active, Time-Constrained

Database Management. Tech. Rep. CCA-88-02, Xerox Advanced

Information Technology, Cambridge, 1988.

4. Gatziu S. Events in an Active Object-Oriented Database System.

Ph.D. thesis, University of Zurich, Switzerland, 1994.
5. Gehani N., Jagadish H.V., and Smueli O. Event Specification in

an Active Object-Oriented Database. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1992, pp. 81–90.
Composite Event Query

▶ Event Specification
Composite Web Applications

▶Web Mashups
Composition

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Synonyms
Service composition; Process composition

Definition
In computer science, composition is the act or mecha-

nism to combine simple components to build more

complicated ones. Composition exists at different levels.

For example, one can think of the usual composition of

functions in mathematics, i.e., the result of the composed

function is passed to the composing one via a parameter.

If one has to functions f and g, these can be combined

into a new function h = f.g, i.e., h(x) = f(g(x)). Another

level of abstraction is the level of activities. Here all kinds

of process modeling languages can be used to compose

activities into processes (e.g., Petri nets, BPMN, etc.).

Typical composition operators are sequential composi-

tion, parallel composition, etc. Process composition is

related to business processmanagement, workflowman-

agement,etc.Yetanotherlevelofabstractionisprovidedby

services,i.e.,morecomplexservicescanbecomposedfrom

simpler ones even when they do not reside in the same

organization. Service composition is sometimes also re-

ferred to as orchestration and a typical language used for

thispurpose isBPEL.

Key Points
The composition of more complex components

from simpler components has been common practice

420C Comprehensions
in computer science right from the start. It is clear

that composition is needed to allow for ‘‘divide and

conquer’’ strategies and reuse. One of the most com-

plex issues is the compositionof processes. There are basi-

cally two types of composition approaches: graphs-

based languages and process algebras. Examples of

graph-based languages are Petri nets, state charts,

BPMN, EPCs, etc. In these languages activities and

subprocesses are connected to impose some ordering

relations. For example two transitions in a Petri net can

be connected by a place such that the first one triggers the

second one [3]. Process algebras enforce a more

structured way ofmodeling processes. Typical operations

are sequential composition (x.y, i.e., x is followed by y),

alternative composition (x + y, i.e., there is a choice

between x and y), and parallel composition (xjjy, i.e., x
and y are executed in parallel) [1,2]. Languages like

BPEL provide a mixture of both styles, e.g., operators

such as sequence, switch, while and pick cor-
respond to the typical process-algebraic operators
while the flow construct defines in essence an acyclic
graph.

The principle of compositionality states that the

meaning of a composite is determined by the meanings

of its constituent parts and the rules used to combine

them. For example, if a process is composed of parts

that have certain properties, then these properties

should be preserved by the composition and should

not depend on lower-level interactions. Such proper-

ties can be obtained by simplifying the language used

or restricting the compositions allowed.

Cross-references
▶Abstraction

▶BPEL

▶BPMN

▶Business Process Management

▶Orchestration

▶ Petri Nets

▶Web Services

▶Workflow Management

▶Workflow Patterns
Recommended Reading
1. Baeten J.C.M. and Weijland W.P. Process Algebra. Cambridge

Tracts in Theoretical Computer Science, vol. 18. Cambridge

University Press, Cambridge, 1990.

2. Milner R. Communicating andMobile Systems: The Pi-Calculus.

Cambridge University Press, Cambridge, UK, 1999.
3. van der Aalst W.M.P. Business Process Management Demysti-

fied: ATutorial on Models, Systems and Standards for Workflow

Management. In J. Desel, W. Reisig, G. Rozenberg (eds.). Lec-

tures on Concurrency and Petri Nets. LNCS, vol. 3098. Springer,

Berlin, 2004, pp. 1–65.
Comprehensions

PETER M.D. GRAY

University of Aberdeen, Aberdeen, UK

Synonyms
Calculus expression; List comprehension; Set abstrac-

tion; ZF-expression

Definition
The comprehension comes from ideas of mathematical

set theory. It originated as a way of defining sets

of values so as to avoid the famous paradoxes of

early set theory, by starting from other well-defined

sets and using some carefully chosen constructors

and filters. The values in the sets could be tuples of

basic values, which suits the relational model, or they

could be object identifiers, which fits with ODMG

object data models [2], or they could be tagged variant

records which fit well with semi-structured data. They

could even be sets, lists or bags defined by other

comprehensions.

The abstract structure of a comprehension precise-

ly describes almost all the computations done in func-

tional query languages, despite their very different

surface syntax. Better still, it allows many optimiza-

tions to be expressed as well defined mathematical

transformations.
Key Points
Consider an example, using SQL syntax, to find the set

of surnames of persons whose forename is ‘‘Jim’’:

SELECT surname FROM person WHERE fore-

name = "Jim"

Using a list comprehension this can be written as:

[surname(p) | p<- person; f <- forename

(p); f = "Jim"]

This denotes the list of values of the expression to

the left of the vertical bar. This expression usually

Compression of Mobile Location Data C 421

C

includes variables such as p which are instantiated by

generators to the right of the bar. It can be transliter-

ated as:

The set of values of the surname of p such that p is in

the set person and f is in the set of forenames of p and f

is equal to ‘‘Jim’’. Here forename(p) could alternatively

be written p.forename or (forename p).

Thus, the vertical bar can be read as such that and

the semicolons as conjunctions (and). The arrows act

as generators, supplying alternative possible values,

subject to restrictions by predicate terms to the right,

acting as filters. Thus p is generated from the set

of persons but is only chosen where the forename of

p satisfies the test of equalling ‘‘Jim’’.

In the above syntax the arrow operator is over-

loaded , so that if a function such as forename delivers

a single value instead of a set then the arrow just

assigns that single value to the variable on its left.

Strictly, one should make a singleton set containing

this value, and then extract it:

[surname(p) | p <- person; f <- [fore-

name(p)]; f = "Jim"]

This wasteful operation would be compiled away to

give this equivalent form:

[surname(p) | p <- person; forename

(p) = "Jim"]

The term ‘‘list comprehension’’ is commonly used, but

one should really distinguish between lists, sets and

bags [1]. Thus comprehensions are usually represented

internally as lists, but often the order is ignored, as in

sets, and sometimes it is necessary to keep duplicates

and form a bag, especially when totaling up the con-

tents! Particular classes of operator used in compre-

hensions give rise to monad comprehensions and

monoid comprehensions with valuable mathematical

properties.
Cross-references
▶OQL
Recommended Reading
1. Buneman P., Libkin L., Suciu D., Tannen V., and Wong L.

Comprehension syntax. ACM SIGMOD Rec., 23(1):87–96,

1994.

2. Fegaras L. and Maier D. Towards an effective calculus for Object

Query Languages. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1995, pp. 47–58.
Compressed and Searchable Data
Format

▶ Indexing Compressed Text
Compressed Full-Text Indexing

▶ Indexing Compressed Text
Compressed Suffix Array

▶ Indexing Compressed Text
Compressed Suffix Tree

▶ Indexing Compressed Text
Compressing XML

▶Managing Compressed Structured Text
Compression of Mobile Location
Data

GOCE TRAJCEVSKI
1, OURI WOLFSON

2,

PETER SCHEUERMANN
1

1Northwestern University, Evanston, IL, USA
2University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Spatio-temporal data reduction

Definition
In moving objects databases (MOD) [8], the data

pertaining to the whereabouts-in-time of a given

mobile object is commonly represented as a sequence

of (location, time) points, ordered by the temporal

dimension. Depending on the application’s settings,

such points may be obtained by different means, e.g.,

an on-board GPS-based system, RFID sensors, road-

network sensors, base stations in a cellular architecture,

422C Compression of Mobile Location Data
etc. The main motivation for compressing the location

data of the moving objects is twofold: (i) Reducing the

storage requirements: for example, maintaining the

information about the daily routes of a few million

vehicles, even if the GPS samples are taken once every

30s, can still generate Terra-Bytes (TB) of data. In

addition, with the increase in the number of cellular

phones and personal digital assistants that are location

aware, the volume of the data corresponding all the

mobile entities in a given region will even further

increase. However, if a given point, say, (x,y,t) can be

eliminated from the representation of the particular

trajectory without prohibitively sacrificing the accura-

cy of its representation, then the space required for that

point’s storage can be saved; (ii) If a particular point

along a given trajectory can be eliminated as soon

as it is ‘‘generated’’ (i.e., when the location value is

obtained by the on-board GPS at a given time), yet

another type of savings can be achieved – that object

need not transmit the (location, time) value to a given

server, thus reducing the bandwidth consumption.

This entry explains the basic problems involved in

compressing spatio-temporal data corresponding to

trajectories of mobile objects, and outlines the founda-

tions of the approaches that have addressed some of

those problems.

Historical Background
The field of data compression originated in the works of

Shannon, Fano, and Huffman in the 1940s [11], and its

main goal is to represent information in as compact

form as possible. Some popular forms of data com-

pression have, historically, been around even earlier,

for instance, the Morse code has been used in telegra-

phy since the mid-nineteenth century. Based on the

observation that some letters occur more frequently

than others, the code assigns shorter sequences of

(combinations of) ‘‘�’’ and ‘‘�’’ to such letters. Thus,

for example, ‘‘e’’ ! ‘‘ � ’’, ‘‘a’’ ! ‘‘ ��’’. On the other

hand, the letters which occur less frequently, are

assigned longer sequences like, for example, ‘‘q’’ !
‘‘����’’. In this setting, the frequency of the occur-

rence of single letters provided statistical structure that

was exploited to reduce the average time to transmit a

particular message since, in practice, the duration of

the symbol ‘‘� ’’ is (approximately) three times longer

than the duration of the ‘‘�’’ symbol. A natural exten-

sion is to use frequency of the words over a given

alphabet, in order to further compress the encoding
of a given text, which is used in the Grad-2 Braille

coding. When the probability model of the source is

known, thepopular approach forencodinga collectionof

letters of a given alphabet is the Huffman coding [11].

Contrary to the ASCII/EBDCIC which are fixed-

length codes, in the sense that every symbol is assigned

same number of bits, Huffman code is a variable-length

one, which assigns shorter codewords to symbols oc-

curring less frequently, in an optimal manner with

respect to the entropy of the source. When dealing

with texts, some statistical correlations can be detected

in terms of the occurrences of words. Taking this into

consideration the, so called, dictionary techniques for

data compression have been obtained, an example of

which is the UNIX compress command. In computer

science, the need for compression techniques was

mainly motivated by the reduction of the size of the

data for storage and transmission purposes.

Different kind of data may exhibit different kinds

of structures that can be exploited for compression,

provided a proper model is developed. For example,

given the sequence of numbers {9,11,11,11,14,13,

15,17,16,17,20,21}, let xn denote its nth element. If

one transmits the binary representation of each xi (i 2
{1,2,...,12}), 5bits-per-sample are needed, for a total of

60bits transmitted. However, if one provides a model

represented by the equation xn ¼ n þ 8, then the dif-

ference-sequence (i.e., the residual) of the initial se-

quence, represented as en ¼ xn � xn becomes: {0, 1,

0, �1, 1, �1, 0, 1, �1, �1, 1, 1}. This sequence consists
of only three different numbers {� 1, 0, 1} Using the

mapping ‘‘ � 1’’! ‘‘00’’; ‘‘0’’ ! ‘‘ � 1’’; ‘‘1’’ ! ‘‘10’’,

each ei can be encoded with only 2bits. Hence, the

sequence can be transmitted with a total of 24bits,

achieving 60% compression ratio and, consequently,

savings in the transmission. Such intrinsic properties

of the underlying domain have been heavily exploited

in the areas of speech compression, image compres-

sion, etc. [11].

There are several classification of compression

techniques. One example, as mentioned above, is

fixed vs. variable length, however, one may also need

to distinguish between static (the codewords are fixed,

say, before the transmission) and dynamic/adaptive.

The classification that is most relevant for this article

is lossless vs. lossy compression. With lossless compres-

sion, the original data can be exactly recovered from

the compressed one, which it is not the case for the

lossy compression.

Compression of Mobile Location Data C 423

C

There are several different measures regarding

the quality of a given compression method: (i) the

complexity of the algorithms; (ii) the memory foot-

print required; (iii) the amount of compression;

(iv) the quality of the data (in lossy compression).

The main goal of the methods for compressing

spatio-temporal data is to strike a good balance bet-

ween the complexity of the algorithm and the error-

bound on the compressed data with respect to the

original one.

There are two research fields that have addressed

problems similar in spirit to the ones of compressing

mobile location data:

1. Cartography. The goal of the map generalization

in cartography is to reduce the size/complexity

of a given map for the purpose of simplified repre-

sentation of the details appropriate to a given

scale [16].

2. Computational geometry (CG). In particular, the

problem of polyline (which is, a sequence of nodes

specifying a chain of line segments) simplification

[3], that can be described as follows. Given a poly-

line PL1 with vertices {v1,v2,...,vn} in a respective

k-dimensional Euclidean space, and a tolerance

e, construct another polyline PL1
0 with vertices

{v1
0,v20,...,vm0} in the same space, such that

m 	 n and for every point P 2 PL1 its distance

from PL1
0 is smaller than a given threshold: dist(P,

PL1
0) 	 e. In case {v1

0,v20,...,vm0}
 {v1, v2,...,vn},

PL1
0 is a strong simplification of PL1; otherwise

PL1
0 is called a weak simplification. There are two

distinct facets of the minimal line simplification

problem: (i) Given PL and e, minimize the number

of points m in PL0 (known as min-# problem) [5],

and (ii) Given PL and the ‘‘budget’’ m of the verti-

ces in PL0, minimize the error e (known as min-e
problem).

A popular heuristic for polyline simplification in

the context of map generalization was proposed by
Compression of Mobile Location Data. Figure 1. Douglas–P
Douglas and Peucker in [6]. Essentially, it recursively

approximates a given polyline in a ‘‘divide and con-

quer’’ manner, where the farthest vertex, according to

the distance used, is selected as the ‘‘divide’’ point.

Given a begin_vertex pi and an end_vertex pj, if the

greatest distance from some vertex pk to the straight

line segment pipj is greater than the tolerance e, then
the trajectory is broken into two parts at pk and the

procedure is recursively called on each of the sub-

polylines {pi,...,pk} and {pk,...,pj}; Otherwise, the verti-

ces between pi and pj are removed from trajectory and

this segment is simplified as a straight line

pipj . An illustration of the DP heuristic is given in

Fig. 1. Although the original version of the algorithm,

as presented in [6], has a running time O(n2), an

O(n logn) algorithm was presented in [9]. However,

none of these algorithms can ensure an optimality, in

terms of the size of the compression (alternatively,

in terms of a minimal e-error for a fixed reduction

factor). An optimal algorithm was presented in [5],

with a complexity of O(n2), subsequently extended for

3D and higher dimensions in [3].

Foundations
Assuming that the objects are moving in a 2D space

with respect to a given coordinate system, a trajectory,

which is often used in the MOD literature [8,13,15] to

describe the motion of the moving objects, is defined

as a function Ft : T ! R2 which maps a given (tem-

poral) interval [tb,te] into a one-dimensional subset of

R2. It is represented as a sequence of 3D points (2D

geography þ time) (x1,y1,t1), (x2,y2,t2),...,(xn,yn,tn),

where tb = t1 and te = tn and t1 	 t2 	 ...	 tn. Each

point (xi,yi,ti) in the sequence represents the 2D

location (xi,yi) of the object, at the time ti. For every

t 2 (ti,tiþ1), the location of the object is obtained by a

linear interpolation between (xi,yi) and (xiþ1,yiþ1) with
the ratio (t � ti) ∕ (tiþ1 � ti), which is, in between two

points the object is assumed to move along a straight

line-segment and with a constant speed. The 2D
eucker heuristic.

424C Compression of Mobile Location Data
projection of the trajectory is a polygonal chain with

vertices (x1,y1), (x2,y2)...(xn,yn), called a route.

Observe that a trajectory may represent both the

past and the future motion, i.e., the motion plan of a

given object (c.f. [8]). Typically, for future trajectories,

the user provides the starting location, starting time

and the destination (plus, possibly, a set of to-be-

visited) points, and the MOD server uses these, along

with the distribution of the speed-patterns on the

road segments as inputs to a dynamic extension of

the Dijkstra’s algorithm [13], to generate the shortest

travel-time trajectory.

One may be tempted to straightforwardly apply the

existing results on polyline simplification from the CG

literature (e.g., the DP [6,9] or the optimal algorithm

[3,5]), in order to compress a given trajectory. How-

ever, as pointed out in [4], the semantics of the

spatial þ temporal domain combined, raises two

major concerns:

1. What is the function used to measure the distance

between points along trajectories?

2. How does the choice of that function affect the

error that the compressed trajectory introduces in

the answers of the popular spatio-temporal

queries? In the sequel, each of these questions is

addressed in a greater detail.
Compression of Mobile Location Data. Figure 2. Hausdorff
Distance Function

A popular distance function between two curves, often

used in CG applications is the, so called, Hausdorff

distance [1]. Essentially, two curves C1 and C2, their

Hausdorff distance simply looks for the smallest e such
that C1 is completely contained in the e-neighborhood
of C2 (i.e., C1 is completely contained in the

Minkowski Sum of C2 and a disk with radius e) and
vice versa. Although it is arguably a very natural dis-

tance measure between curves and/or compact sets, the

Hausdorff distance is too ‘‘static’’, in the sense that it

neither considers any direction nor any dynamics of

the motion along the curves. A classical example of the

inadequacy of the Hausdorff distance, often used in

the CG literature [1,2] is the “man walking the dog’’.

Figure 2 illustrates the corresponding routes of the

man (M-route) and the dog (D-route), as well as their

trajectories M-trajectory and D-trajectory. Observe

that, ignoring the temporal aspect of their motions,

the D-route and the M-route are within Hausdorff

distance of e, as exemplified by the points A and B in

the XY plane. However, their actual temporally aware

distance corresponds to the minimal length of the leash

that the man needs to hold. The 3D part of Fig.2 illus-

trates the discrepancy between the distances among the

points along the routes, and their corresponding coun-

terparts along trajectories: when the dog is at the point
vs. Fréchet distance.

Compression of Mobile Location Data C 425

C

A, which is at time t, the man is actually at M(t), and

their distance is much greater then e (the man is at the

geo-location B at the time t1 > t). The Fréchet distance

[2] is more general than the Hausdorff one, in the

sense that it allows for a variety of possible motion-

patterns along the given route-segments. As an illus-

tration, observe that on the portion of the D-trajectory,

the dog may be moving non-uniformly (i.e., accelerat-

ing) along a route segment.

The discussion above illustrates two extreme points

along the spectrum of distance functions for moving

objects. Although the Fréchet distance is the most

general one, regarding the possible dynamics of

motions, it is unnecessarily complex for the common

trajectory model in MOD settings. The inadequacy of

the L2 norm as a distance function for spatio-temporal

trajectories was pointed out in [4] where, in order to

properly capture the semantics of the problem domain,

alternative distance functions were introduced. Given a

spatio-temporal point pm = (xm,ym,tm) and a trajec-

tory segment pi; pj between the vertices pi = (xi,yi,ti)

and pj = (xj,yj,tj), [4] proposed the Eu and Et distance

functions between the pm and pi; pj , which are

explained next

1. Eu – The three dimensional time_uniform distance,

which is defined when tm 2 [ti,tj], as follows:

Euðpm; pipjÞ ¼
ffi
ðxm � xcÞ2 þ ðym � ycÞ2

q
where
Compression of Mobile Location Data. Figure 3. Eu distanc
pc = (xc,yc,tc) is the unique point on pipj which

has the same time value as pm (i.e., tc = tm). An

illustration of using the Eu distance function for

reducing the size of a given trajectory is presented

in Fig.3. Intuitivelly, the distance is measured at

equal horizontal planes, for the respective values

of the temporal dimension. One can ‘‘visually’’

think of the relationship between the original tra-

jectory and the compressed trajectory as follows:

the original trajectory is contained inside the

sheared cylinder obtained by sweeping (the center

of) a horizontal disk with radius e along the com-

pressed trajectory.

2. Et – The time distance is defined as:

Et ðpm; pipjÞ ¼ jtm � t c j, where tc is the time

of the point on the XY projection p0ip
0
j of pipj ,

which is closest (in terms of the 2D Euclidean

distance) to the XY projection p0m of pm. Intuitively,

to find the time distance between pm and pipj ,

one needs to:

1. Project each of them on the XY plane;

2. Find the point p0c 2 p0i; p
0
j that is closest to p0m;

3. Find the difference between the corresponding

times of pc and pm.

An important observation regarding the computa-

tion of the compressed version of a given original

trajectory as an input, is that both the DP [6] and the
e function for trajectory compression.

Compression of Mobile Location Data. Table 1.

Distance soundness and error-bound on spatio-temporal

query answers

Where_at When_at Intersect
Nearest
neighbor

E2
(L2over
routes)

Unsound Unsound Unsound Unsound

Eu Sound (e) Unsound Sound (e) Sound (2e)

Et Unsound Sound (e) Unsound Unsound

426C Compression of Mobile Location Data
optimal algorithm [5] can be used, provided they are

appropriately modified to reflect the distance function

used. Experimental results in [4] demonstrated that

the DP heuristics yields a compression factor that is

very comparable to the one obtained by the optimal

algorithm, however, its execution is much faster.

Spatio-Temporal Queries and Trajectory Compression

The most popular categories of spatio-temporal

queries, whose efficient processing has been investi-

gated by many MOD researchers [8] are:

1. where_at(T,t) – returns the expected location at

time t.

2. when_at(T,x,y) – returns the time t at which a

moving object on trajectory T is expected to be at

location (x,y).

3. intersect(T,P,t1,t2) – is true if the trajectory T inter-

sects the polygon P between the times t1 and t2.

This is an instance of the, so called, spatio-temporal

range query).

4. nearest_neighbor(T,O,t) – The operator is defined

for an arbitrary set of trajectories O, and it returns a

trajectory T 0 of O. The object moving according to

T 0, at time t, is closest than any other object of O to

the object moving according to T.

5. join(O, Y) – O is a set of trajectories and the

operator returns the pairs (T1,T2) such that their

distance, according to the distance function used, is

less than a given threshold Y.

An important practical consideration for compressing

trajectory data is how the (im)precision generated by

the compression, affects the answers of the spatio-

temporal queries. As it turns out, the distance function

used in the compression process plays an important

role and, towards this, the concept of soundness [4] of a

distance function with respect to a particular query was

introduced in [4]. A pair (distance_function, query) is

called sound if the error of the query-answer, when

processed over the compressed trajectory is bounded.

In case the error is unbounded, which is, although the

compression itself guarantees a distance-error of e
between the points on the compressed trajectory with

respect to the original one, the error of the answer to

the query can grow arbitrarily large, the pair is called

unsound. Table1 below (adapted from [4]) summarizes

the soundness properties of three distance functions

with respect to five categories of spatio-temporal

queries.
As one can see, there is no single distance function

that is sound for all the possible spatio-temporal

queries.

The compression techniques for spatio-temporal

data presented thus far, implicitly assumed that the

trajectories are available in their entirety, i.e., they are

past-motion trajectories. However, in practice, it is

often the case that the (location, time) data is generated

on-board mobile units, and is transmitted to the MOD

server in real time [7,17]. Dead-reckoning is a policy

which essentially represents an agreement between a

given moving object and the MOD server regarding

the updates transmitted by that particular object. The

main idea is that the communication between them can

be reduced (consequently, network bandwidth can be

spared) at the expense of the imprecision of the data

in the MOD representing the object’s motion. In order

to avoid an unbounded error of the object’s location

data, the agreement specifies a threshold d that is a

parameter of the policy, which can be explained as

follows:

1. The object sends its location and the expected veloc-

ity to the MOD server and, as far as the MOD

server is concerned, the future trajectory of that

object is an infinite ray originating at the update

point and obtained by extrapolation, using the

velocity vector.

2. The information that the MOD server has is

the expected trajectory of the moving object. How-

ever, each moving object is aware of its actual

location, by periodically sampling it, e.g., using an

on-board GPS.

3. For as long as its actual location at a given time ti
does not deviate by more than d from the location

that the MOD estimates at ti using the informa-

tion previously transmitted, the object does not

Compression of Mobile Location Data C 427

C

transmit any new updates. When the actual dis-

tance deviates by more then d from its location on

the expected trajectory, the object will send another

(location, time, velocity) update.

The policy described above is commonly known as

a distance-based dead reckoning, and an illustration is

given in Fig.4. At time t0 the object sent its location

and the predicted velocity (arrowed line) to the MOD

server. The dashed line extending the vector indicate

the expected trajectory of the moving object and the

squares along it indicate the object’s positions at six

time instances, as estimated by the MOD, while the

shaded circles indicate the actual positions of the ob-

ject. Typically, the actual trajectory is obtained by con-

necting the GPS points with straight line-segments,

assuming that in-between two updates, the object was

moving with a constant speed. As illustrated, at t6 the

distance between the actual position and the MOD-

estimated one exceeds the threshold agreed upon

(d6>d) and the object sends a new update, at which

point the MOD changes the expected trajectory, based
Compression of Mobile Location Data. Figure 4. Distance-b
on that update. Thus, at t6, the MOD server actually

performs two tasks:

1. Corrects its own ‘‘knowledge’’ about the recent past

and approximates the actual trajectory between t0
and t6 with a straight line-segment, which defines

the actual simplification of the near-past trajectory;

2. generates another infinite ray corresponding to

the future-expected trajectory, starting at the last

update-point, and using the newly received velocity

vector for extrapolation.

Various trade-offs between the update costs and the

(impacts on the) imprecision of the MOD data for

several different variants of dead reckoning are investi-

gated in [17]. The dead-reckoning, in a sense, achieves

in real-time both of the goals of compression: – reduces

the communication, and enables the MOD server to

store only a subset of the actual trajectory. Assuming

that a dead-reckoning policy with threshold d was

used in real-time, clearly, the MOD has obtained a

compressed past-trajectory, say Trm
c, of a given mobile
ased dead-reckoning policy.

428C Compression of Mobile Location Data
object om. If om was to transmit every single GPS-based

update, i.e., no dead-reckoning applied, the MOD

would have an uncompressed trajectory Trm available.

The results in [14] have established that Trm
c is a strong

simplification of Trm, with an error-bound 2d.

Key Applications
The compression of moving objects trajectories data

is of interest in several scientific and application

domains.

Wireless Sensor Networks (WSN)

Wireless sensor networks consist of a large number of

sensors – devices that are capable of measuring various

phenomena; performing elementary calculations; and

communicating with each other, organizing them-

selves in an ad hoc network [19]. A particularly critical

aspect of the WSN is the efficient management of the

energy-reserves, given that the communication be-

tween two nodes drains a lot more battery-power

than the operations of sensing and (local) computing.

Consequently, in many tracking applications that can

tolerate delays and imprecision in the (location, time)

data, performing local compression of the trajectory

data, before it is sent to a particular sink, can yield

substantial increase in the networks’ lifetime. Different

policies for such compressions are presented in [18].

Location-Based Services (LBS)

A variety of applications in LBS depend on the data for

mobile objects with different mobility properties (e.g.,

pedestrians, private vehicles, taxis, public transportation,

etc.). Typically, LBS are concerned with a context-aware

delivery of the data which matches the preferences of

users based on their locations [12]. In order to provide

faster response time, and more relevant information, the

LBS should be able to predict, based on the motion

patterns, what kind of data will be relevant/requested in

a near future by given users. This, in turn, implies some

accumulated knowledge about the mobility patterns of

the users in the (near) past. However, keeping such data

in its entirety can impose prohibitively high storage

requirements.

Geographic Information Systems (GIS)

Recently, a plethora of services and devices has

emerged for providing path planning and navigation

for the mobile users: from MapQuest and Google-

maps, through Garmin and iPaq Travel Companion.
Each of these services relies on some traffic-based

information in order generate the optimal (in distance

or travel-time) path for their users. However, as the

traffic conditions fluctuate, the future-portions of the

routes may need to be recalculated. In order to better

estimate the impact of the traffic fluctuations, some

knowledge from the past is needed which, ultimately

means storing some past information about trajec-

tories. However, as observed in the literature [4], stor-

ing the uncompressed trajectory data corresponding to

daily driving activities of few millions of users, could

require TBs of data.

Spatio-Temporal Data Mining

Clustering is a process of grouping a set of (physical or

abstract) objects into classes of similar objects, and its

purpose is to facilitate faster data analysis in a given

domain of interest. With the recent advances in minia-

turization of computing devices and communications

technologies, the sheer volume makes it very costly to

apply clustering to the original trajectories’ data. Com-

pressing such data, especially if one can guarantee a

bounded error for the queries of interest, can signifi-

cantly improve the processing time for many algo-

rithms for trajectories clustering [10].

Future Directions
Any problem-domain that depends on storing large

volumes of trajectories’ data, in one way and level or

another, needs some sort of data compression in order

to reduce the storage requirements and to speed up

processing of spatio-temporal queries of interest.

Clearly, a desirable property of the compression tech-

niques is to ensure a bound on the errors of the

answers to the queries.

There are several directions of interest for the fu-

ture research on mobile data compression. In applica-

tions like GIS and LBS, it is a paramount to add some

context-awareness to the compression techniques. For

example, combining the mobile location data com-

pression with the particular tourists attractions and

the season/time, could provide a speed-up in algo-

rithms which are used for generating real-time adver-

tisements, while ensuring that the error (in terms of

users that received particular ad) is bounded. An inter-

esting aspect that has been presented in [4] is the,

so-called, aging of the trajectories: a trajectory that is

1-week old could have higher impact on the traffic-

impact analysis, than a trajectory that was recorded

Computational Media Aesthetics C 429

C

5weeks ago. Consequently, one may reduce the older

trajectory with a higher error-bound, thus further redu-

cing the storage requirements. Automatizing this pro-

cess in a manner that reflects the specifics of a given

problem-domain (e.g., context-aware information de-

livery) is an open question. Despite the large body

of works on OLAP and warehousing of traditional

data, very little has been done on spatio-temporal

OLAP. It is likely that the process of mobile data com-

pression will play an important role in these directions.
Cross-references
▶Data Compression

▶Data Mining

▶Moving Objects Databases

Recommended Reading
1. Alt H. and Guibas L. Discrete geometric shapes: matching,

interpolation, and approximation. In Handbook of Computa-

tional Geometry. Elsevier, Amsterdam, 1999.

2. Alt A., Knauer C., and Wenk C. Comparison of distance mea-

sures for planar curves. Algorithmica, 38(1):45–58, 2004.

3. Barequet G., Chen D.Z., Deascu O., Goodrich M.T., and

Snoeyink J. Efficiently approximating polygonal path in three

and higher dimensions. Algorithmica, 33(2):150–167, 2002.

4. Cao H., Wolfson O., and Trajcevski G. Spatio-temporal

data reduction with deterministic error bounds. VLDB J.,

15(3):211–228, 2006.

5. Chan W. and Chin F. Approximation of polygonal curves with

minimum number of line segments or minimal error. Int. J.

Computat. Geometry Appl., 6(1):59–77, 1996.

6. Douglas D. and Peucker T. Algorithms for the reduction of the

number of points required to represent a digitised line or its

caricature. Can. Cartographer, 10(2):112–122, 1973.

7. Gedik B. and Liu L. Mobieyes: a distributed location monitoring

service using moving location queries. IEEE Trans. Mobile Com-

put., 5(10):1384–1402, 2006.

8. Güting R.H. and Schneider M. Moving objects databases. Mor-

gan Kaufmann, Los Altos, CA, 2005.

9. Hershberger J. and Snoeyink J. Speeding up the douglas-peucker

line-simplification algorithm. In Proc. 5th Int. Symp. on Spatial

Data Handling, 1992, pp. 134–143.

10. Jensen C.S., Lin D., and Ooi B.C. Continuous clustering of

moving objects. IEEE Trans. Knowl. Data Eng., 19(9):1161–

1174, 2007.

11. Sayood K. Introduction to Data Compression. Morgan Kauf-

mann, Los Altos, CA, 1996.

12. Schiller J. and Voisard A. Location-Based Services. Morgan

Kaufmann, Los Altos, CA, 2004.

13. Trajcevski G., Wolfson O., Hinrichs K., and Chamberlain K.

Managing uncertainty in moving objects databases. ACM

Trans. Database Syst., 29(3):463–507, 2004.

14. Trajcevski G., Cao H., Wolfson H., Scheuermann P., and

Vaccaro D. On-line data reduction and the quality of history
in moving objects databases. In Proc. 5th ACM Int. Workshop

on Data Eng. for Wireless and Mobile Access, 2006, pp. 19–26.

15. Vlachos M., Hadjielefteriou M., Gunopulos D., and Keogh E.

Indexing multidimensional time-series. VLDB J., 15(1):1–20,

2006.

16. Weibel R. Generalization of spatial data: Principles and selected

algorithms. In Algorithmic Foundations of Geographic Infor-

mation Systems. Van Kreveld M. Nievergelt J., Roos T., and

Widmayer P. (eds.). LNCS Tutorial Springer, Berlin, 1998.

17. Wolfson O., Sistla A.P., Chamberlain S., and Yesha Y. Updating

and querying databases that track mobile units. Distrib. Parallel

Databases, 7(3):257–387, 1999.

18. Xu Y. and Lee W.-C. Compressing moving object trajectory

in wireless sensor networks. Int. J. Distrib. Sensor Netw. 3(2):

151–174, 2007.

19. Zhao F. and Guibas L. Wireless sensor networks: an information

processing approach. Morgan Kaufmann, Los Altos, CA, 2004.
Computational Media Aesthetics

CHITRA DORAI

IBM T. J. Watson Research Center, Hawthorne, NY,

USA

Synonyms
CMA; Media semantics; Production-based approach

to media analysis

Definition
Computational media aesthetics is defined as the

algorithmic study of a variety of image and aural

elements in media founded on their patterns of use

in film grammar, and the computational analysis of the

principles that have emerged underlying their mani-

pulation, individually or jointly, in the creative art of

clarifying, intensifying, and interpreting some event

for the audience [3]. It is a computational framework

to establish semantic relationships between the various

elements of sight, sound, and motion in the depicted

content of a video and to enable deriving reliable, high-

level concept-oriented content annotations as opposed

to verbose low-level features computed today in video

processing for search and retrieval, and nonlinear brows-

ing of video. This media production knowledge-guided

semantic analysis has led to a shift away from a focus on

low level features that cannot answer high level queries

for all types of users, to applying the principled approach

of computational media aesthetics to analyzing and

interpreting diverse video domains such as movies, in-

structional media, broadcast video, etc.

430C Computational Media Aesthetics
Historical Background
With the explosive growth of media available on the

Web, especially on hugely popular video sharing web-

sites such as YouTube, managing the digital media col-

lections effectively and leveraging the media content in

the archives in new and profitable ways continues to be a

challenge to enterprises, big and small. Multimedia con-

tent management refers to everything from ingesting,

archival and storage of media to indexing, annotation

and tagging of content for easy access, search and retriev-

al, and browsing of images, video and audio. One of the

fundamental research problems in multimedia content

management is the semantic gap – that renders all auto-

matic content annotation systems of today brittle and

ineffective – between the shallowness of features in their

descriptive power that can be currently computed auto-

matically and the richness ofmeaning and interpretation

that users desire search algorithms to associate with their

queries for easy searching and browsing of media.

Smeulders et al. [8] describe that while ‘‘the user seeks

semantic similarity, the database can only provide simi-

larity on data processing.’’ This semantic gap is a crucial

obstacle that content management systems have to over-

come in order to provide reliable media descriptions to

drive search, retrieval, and browsing services that can

gain widespread user acceptance and adoption. There is

a lack of framework to establish semantic relationships

between the various elements in the content since cur-

rent features are frame/shot-representational and far too

simple in their expressive power.

Addressing the semantic gap problem in video

processing will enable innovative media management,

annotation, delivery and navigational services for

enrichment of online shopping, help desk services,

and anytime-anywhere training over wireless devices.

Creating technologies to annotate content with deep

semantics results in an ability to establish semantic

relationships between the form and the function in

the media, thus for the first time enabling user access

to stored media not only in predicted manner but

also in unforeseeable ways of navigating and accessing

media elements. Semantics-based media annotations

will break the traditional linear manner of accessing

and browsing media, and support vignette-oriented

viewing of audio and video as intended by the content

creators. This can lead to new offerings of customized

media management utilities for various market seg-

ments such as education and training video archives,
advertisement houses, news networks, broadcasting

studios, etc.

Foundations
Computational Media Aesthetics advocates an app-

roach that markedly departs from existing methods

for deriving video content descriptions by analyzing

audio and visual features (for a survey of representative

work, see [8]). It proposes that to go beyond describing

just what is seen in a video, the visual and emotional

impact of how the content is depicted needs to be

understood. Both media compositional and aesthetic

principles need to guide media analysis for richer,

more expressive descriptions of the content depicted

and seen.

What are the methodologies for analyzing and inter-

preting media? Structuralism, in film studies for exam-

ple, proposes film segmentation followed by an analysis

of the parts or sections. Structural elements or portions

of a video, when separated from cultural and social

connotations can be treated as plain data and therefore,

can be studied using statistical and computational tools.

Another rich source is production knowledge or film

grammar. Directors regularly use accepted rules and

techniques to solve problems presented by the task of

transforming a story from a written script to a captivat-

ing visual and aural narration [2]. These rules encom-

pass a wide spectrum of cinematic aspects ranging from

shot arrangements, editing patterns and the triangular

camera placement principle to norms for cameramotion

and action scenes. Codes and conventions used in nar-

rating a story with a certain organization of a series of

images have become so standardized and pervasive over

time that they appear natural to modern day film pro-

duction and viewing. However, video production mores

are found more in history of use, than in an abstract

predefined set of regulations, are descriptive rather than

prescriptive, and elucidate on ways in which basic visual

and aural elements can be synthesized into larger struc-

tures and on the relationships that exist between the

many cinematic techniques employed worldwide and

their intended meaning to a movie audience.

Media aesthetics is both a process of examination

of media elements such as lighting, picture composi-

tion, and sound by themselves, and a study of their

role in manipulating the viewer’s perceptual reactions,

in communicating messages artistically, and in syn-

thesizing effective media productions [10]. Inspired

Computational Media Aesthetics C 431

C

by it, Dorai and Venkatesh defined Computational

media aesthetics [3] as the algorithmic study of a

variety of image and aural elements in media guided

by the patterns of their use, and the computational

analysis of the principles for manipulating these ele-

ments to facilitate high-level content annotations.

Computational media aesthetics provides a handle

on interpreting and evaluating relative communica-

tion effectiveness of media elements in productions

through knowledge of film codes that mediate per-

ception of the content shown in the video. It exposes

the semantic and semiotic information embedded in

the media production by focusing not merely on the

representation of perceived content in digital video, but

on the semantic connections between the elements and

the emotional, visual appeal of the content seen and

remembered. It advocates a study of mappings between

specific cinematic elements and narrative forms, and

their intended visual and emotional import.

In multimedia processing, many research efforts

have sought tomodel and describe specific events occur-

ring in a particular video domain in detail for providing

high-level descriptions; computational media aesthetics,

on the other hand enables development of video analysis

techniques founded upon production knowledge for

film/video understanding, for the extraction of high-

level semantics associated with the expressive elements

and narrative forms synthesized from the cinematic ele-

ments, and for the detection of high-level mappings

through the use of software models. It highlights the

systematic use of film grammar, as motivation and

also as foundation in the automated process of analyz-

ing, characterizing, and structuring of produced videos

for media search, segment location, and navigational

functions.

Computational media aesthetics provides a frame-

work to computationally determine elements of form

and narrative structure in videos from the basic units

of film grammar namely, the shot, the motion, the

recording distances, and from the practices of com-

bination that are commonly followed during the

audiovisual narration of a story. At first, primitive

computable aspects of cinematographic techniques

are extracted. New expressive elements (higher order

semantic entities) can then be defined and constructed

from these primitive aspects. Both the definition and

extraction of these semantic entities are based on film

grammar, and these entities are formulated only if
directors purposefully design them and manipulate

them. The primitive features and the higher order

semantic notions thus form the vocabulary of content

description language for media.

Key Applications
In seeking to create tools for the automatic understan-

ding of media, computational media aesthetics states

the problem as one of faithfully reflecting the forces at

play inmedia production, and interpreting the datawith

its maker’s eye. Several studies have explored the work-

ings of Computational Media Aesthetics when applied

to extraction of meaning using many of the aesthetic

elements introduced by Zettl [10]: Time, sound and

color. Adams et al. [1] took an example of carrying one

aspect of film grammar all the way from literature to

computable entity, namely tempo and pace for higher

level analysis of movies. Adams et al. [1] showed that

although descriptive and sometimes fuzzy in scope, film

grammar provides rich insights into the perception of

subjective time as tempo and pace and its manipulation

by the makers of film for drama. Further research

[9,6,5,7,4] has applied this approach pervasively from

extractingmood inmusic, emotion inmovies, to adding

musical accompaniment to videos and extracting se-

mantic metadata for mobile images at the time of

image capture.

Film is not the only domain with a grammar to

leverage in analysis. News, sitcoms, educational video,

etc., all have more or less complex grammars that

may be used to capture their crafted structure and to

derive semantic descriptions with automated techni-

ques following the framework of computational media

aesthetics.

Cross-references
▶Media Semantics

▶Multimedia Processing

▶Video Analysis

Recommended Reading
1. Adams B., Dorai C., and Venkatesh S. Towards automatic

extraction of expressive elements from motion pictures: tempo.

In Proc. IEEE Int. Conf. on Multimedia and Expo, 2000, pp.

641–645.

2. Arijon D. Grammar of the film language. Silman-James Press,

Los Angeles, CA, 1976.

3. Dorai C. and Venkatesh S. Computational media aesthetics:

finding meaning beautiful. IEEE Multimed., 8(4):10–12, 2001.

432C Computational Ontology
4. Marc Davis. Editing out video editing. IEEE Multimed.,

10(2):2–12, 2003.

5. Mulhem P., Kankanhalli M.S., Ji Yi., and Hassan H. Pivot vector

space approach for audio-video mixing. IEEE Multimed., 10

(2):28–40, 2003.

6. Salway A. and Graham M. Extracting information about emo-

tions in films, In Proc. 9th Int. Conf. on Multimedia Modeling,

2003, pp. 299–302.

7. Sarvas R., Herrarte E., Wilhelm A., and Davis M. Metadata

creation system for mobile images. In Proc. 2nd Int. Conf.

Mobile Systems, Applications and Services, 2004, pp. 36–48.

8. Smeulders A., Worring M., Santini S., and Gupta A. Content

based image retrieval at the end of the early years. IEEE Trans.

Pattern Anal. Mach. Intell., 22(12):1349–1380, 2000.

9. Yazhong Feng, YuetingZhuang, andYunhePan.Music information

retrieval by detecting mood via computational media aesthetics. In

Proc. IEEE/WIC Int. Conf. onWeb Intelligence, 2003, pp. 235–241.

10. Zettl H. Sight, Sound, Motion: Applied Media Aesthetics

Wadsworth Publishing, Belmont, CA, 1999.
Computational Ontology

▶Ontology
Computer Human Interaction (CHI)

▶Human-Computer Interaction
Computer-based Physician Order
Entry

▶Computerized Physician Order Entry
Computer-based Provider Order
Entry

▶Computerized Physician Order Entry
Computer-Interpretable Formalism

▶ Executable Knowledge
Computerized Order Entry (COE)

▶Computerized Physician Order Entry
Computerized Physician Order Entry

MICHAEL WEINER

Indiana University School of Medicine, Indianapolis,

IN, USA

Synonyms
Computer-based physician order entry; Computer-

based provider order entry; Computerized provider

order entry; Computerized order entry (COE); Physi-

cian order entry

Definition
In daily medical practice, physicians routinely create

plans of diagnosis and treatment for their patients.

These plans typically contain specific, formal orders –

directives – that are expected to be implemented

by other medical professionals, such as nurses or per-

sonnel at laboratories or pharmacies. When such per-

sonnel are expected to implement part of a physician’s

diagnosis or treatment plan, corresponding orders

must be created and documented in the patient’s med-

ical record. Physicians have traditionally used paper-

based charting systems to record medical orders.

Computerized physician order entry (CPOE) is a

process by which physicians directly enter medical

orders into a computer. CPOE is typically done when

the computer is being used to access an electronic health

record (EHR), and the physician is creating a treatment

plan for a specific patient in a clinical setting.

In many medical institutions, non-physicians such

as nurses, dieticians, social workers, pharmacists, thera-

pists, or advanced nurse practitioners can also enter

certain types of orders, hence the broader, useful term

‘‘computerized provider order entry.’’
Historical Background
CPOE was first implemented and described in the latter

half of the twentieth century. In the US, early reports

came from several institutions, including Harvard Medi-

cal School and Brigham and Women’s Hospital, the

US Veterans Health Administration [16,20], Vanderbilt

University [8], University of Virginia [12], Indiana

University, andRegenstrief Institute forHealthCare [14].

In 1994, Sittig and Stead published ‘‘Computer-

based physician order entry: the state of the art’’ [17],

summarizing many of the early results. Many difficul-

ties were reported regarding leadership, delays, cultural

Computerized Physician Order Entry C 433

C

resistance, high costs, technical support, workflow, and

other operational difficulties for end users.

By the end of 2006, CPOE was on the rise, though

adoption rates – often correlated with adoption of

EHRs – varied widely throughout the world. Most

modern EHR systems, whether developed by public,

private, or academic institutions, would be expected to

include at least some form of CPOE. In the US, only

10% of hospitals had complete availability of CPOE in

2002 [2]. In the United Kingdom, Australia, and New

Zealand [21], the fraction is much higher, since use of

EHRs exceeds 80% and is approaching 99% among

general practitioners in ambulatory practice.

Foundations
CPOE can be used to order a variety of medical ser-

vices. In some medical institutions with EHRs, CPOE

can be used to order any type of medical service and

may be required to generate any order. When not

required, providers may have the opportunity to select

between writing orders in a paper-based chart or an

EHR, or clerks or other professionals may perform

CPOE on a provider’s behalf or direction.
Computerized Physician Order Entry. Figure 1. A user inter

would typically authenticate himself or herself, identify a pati

through a series of forms, each of which might facilitate a cer

allow entry of orders for drugs, diagnostic tests, and other ty

of orders into categories is done primarily for the user’s conv

underlying data models.
CPOE is performed via a user interface of some kind,

though this may occur on a desktop computer, terminal

or thin client, personal digital assistant, other portable

computer, or other form of computer. A user would

typically authenticate himself or herself, identify a pa-

tient, and proceed to enter orders, often by navigating

through a series of forms, each of which might facilitate

a certain type of order, such as for radiology, laboratory,

pharmacy, nursing, or referral (see Fig. 1). The layout or

interface seen by the user is highly variable and may

depend on the developer, personal preferences, under-

lying database structures, or medical or administrative

processes generated in response to specific orders.

Many EHRs allow providers to generate orders and

non-order documentation in a single computer session.

Non-order documentation may include clinical details

such as historical information, measurements, other

observations, patient’s preferences or directives, or nar-

rative notes or reports. The workflow imposed by a

CPOE system should be considered carefully in conjunc-

tion with the user’s baseline workflow. Greatest success

with implementation can often be found when the sys-

tem does not disrupt the user’s own pattern of work.
face for computerized physician order entry. A user

ent, and proceed to enter orders, often by navigating

tain type of order. This screenshot shows form fields that

pes of orders (e.g., nursing). The visual separation of types

enience and organization; it may or may not reflect

434C Computerized Physician Order Entry
Once a session is completed, the orders generated

lead to action. This may occur via simple printing of the

orders or through electronic delivery to remote loca-

tions, such as a radiology department, consultant’s

office, laboratory, or pharmacy. Some orders, such

as for prescriptions for drugs or lifestyle changes, may

be provided to patients for direct implementation or

delivery elsewhere. A session’s orders are then typically

archived in the EHR. Consistent with traditional medi-

cal documentation, orders from CPOE are generated

once and cannot be modified or deleted once finalized,

though what is being ordered can often later be mod-

ified or discontinued with a subsequent order.

CPOE has been developed and implemented for a

variety of reasons. Many advantages have been postu-

lated, including rectification of substantial legibility pro-

blems with handwritten orders. CPOE systems have the

potential to refer to all of a patient’s medical history as

well as all available medical knowledge, to improve the

quality of medical care in real time, at the point of care.

One of the most important potentials of CPOE is inclu-

sion of clinical decision support, by which the computer

can be programmed to suggest tailored orders de novo

(e.g., for a vaccination recommended by clinical
Computerized Physician Order Entry. Figure 2. Example of

prescribed benazepril. The software responds, as shown, by p

monitor for possible side effects from the drug. To enable thi

clinical rules that combine guidelines or medical knowledge w
guidelines) or respond to specific orders, such as in

the event of a possible drug reaction [11] or contrain-

dication to a procedure (see Fig. 2). CPOE can reduce

the rate of certain medication errors by more than half

[4]. Removing the healthcare provider from electronic

order entry, or moving CPOE outside the point of care,

could negate these large potential benefits.

Some institutions are starting with, focus, or limit

their computer-based development to electronic pre-

scribing, or ‘‘e-prescribing.’’ This is a form of CPOE.

E-prescribing is targeted especially because prescribing

is frequent, can be targeted by CPOE algorithms, and

represents a most common form of medical error

[13,18]. In the US, the Institute of Medicine has recom-

mended e-prescribing of drugs, in conjunction with

clinical decision support [9].

Medical orders symbolize but also allow and direct

the operations behind medical care. By encoding and

electronically documenting orders, CPOE improves

capabilities to assess and improve quality of care and

to conduct clinical research related to diagnosis and

treatment. Medical practices, governments, and other

authorities can gather and study data from CPOE

systems to improve knowledge about how medical
clinical decision support. In this instance, the user has

rompting the user to decide about ordering blood tests, to

s capability, the application has been programmed with

ith this patient’s medical history, evaluation, or treatment.

Computerized Physician Order Entry C 435

C

care is formulated and delivered. CPOE can also facili-

tate billing processes that depend on orders, such as for

certain procedures or drugs. Query languages or sys-

tems must be designed to accommodate data models

used for CPOE.

Customization of CPOE systems may allow indi-

vidual providers or groups of providers to create tem-

plates or order sets, which are groups of orders often

used or often used together. This could save time,

improve standardization, and improve care.

CPOE does have costs, risks, and unintended con-

sequences [5]. A CPOE system must be developed

thoughtfully and be maintained frequently and regu-

larly, to ensure that it accommodates the latest tests,

treatments, and guidelines, both locally and more

broadly. If an institution does not stock a particular

drug, the system might not allow that drug to be or-

dered ormight at least alert the provider about the issue.

Institutional changes and policies that can affect CPOE

are frequent and so must lead to corresponding mod-

ifications to the CPOE system.

CPOE can increase the time required to generate a

medical order [3,15]. Studies of this have reported

mixed findings, with increases in some and decreases

in others. Increased time for initial learning and ongo-

ing use can cause dissatisfaction among providers

and even complete failures of systems. Increasing

time to generate or implement orders can have adverse

clinical effects. Adverse effects might be expected espe-

cially in emergencies or acute care, when life-saving

drugs may be needed rapidly. Errors in processing elec-

tronic orders could also be expected to lead to adverse

effects in at least some cases. In 2005, Koppel et al.

reported that one CPOE system design often facilitated

medication-related errors, such as by providing inade-

quate views of medications and increasing inappropri-

ate dosing and incompatible orders [10].

If not implemented effectively, increased use of

computers in healthcare might distract providers,

causing them to spend less time with patients or de-

crease patient’s satisfaction [7,19]. This could have an

adverse effect on patient-provider relationship or

patient’s health. Provider-to-provider communication

might also suffer if appropriate internal communica-

tions systems are not used.

Clinical decision support, a key feature of CPOE

systems, can backfire by presenting too many or

inappropriate alerts. Effective solutions to ‘‘alert

overload’’ are not yet well developed or widespread,
though some solutions have been discussed [18].

Several recent studies of interventions in decision sup-

port have had negative results and require further

investigation.

Financial costs of implementing CPOE can be high,

especially initially. Developing cost-effectiveness ana-

lyses of EHRs and CPOE systems are thus complex,

because benefits or harms can occur much later than

implementation of a system and later than the time of

initial care or clinical presentation.

Moving orders from paper to computers has created

situations that require new handling. Computer pro-

grams, for example, must know the authority of the

authenticated user and whether the user has permission

to generate the requested orders. This need also exists

with paper systems but is handled in those environ-

ments by people, rather than computers. In addition,

the use of templates or order sets has not been heavily

studied. Templates may in some cases decrease quality

of care if they are adopted hastily or used in the wrong

setting. In ultimately pooling or sharing data across

institutions, it will be important to use standards and

customary terminologies to represent orders.

Technical Issues

‘‘Prescription’’ is another term for medical order,

though the term is used conventionally to refer to

providing instructions to patients. The structure of a

traditional drug prescription provides a useful frame-

work for understanding the primary components of

medical orders. Drug orders have a superscription (in-

cluding timestamp and patient’s identifier), inscription

(name and amount or strength of ingredient), subscrip-

tion (formulation or method to prepare), and signa

(‘‘sig,’’ or directions including route and frequency).

Orders of any other type have analogous components,

though somemay have additional or somewhat different

components. CPOE systems should handle components

of orders with agility. Below are discussed a few key

technical issues that present themselves in the design,

study, and implementation of CPOE systems.

Data Models for CPOE. One must consider what

data model would best support CPOE. For example,

should orders be categorized and, if so, how? Many

institutions have found that categories of orders, such

as laboratory, consultative, pharmacy, nursing, and ra-

diological, are clinically and informationally logical but

may also be necessary from the standpoint of linking

disparate data systems. A key goal in the design is the

436C Computerized Physician Order Entry
ability to accommodate future expansion of order types

and categories even before those types are developed or

identified. This can prompt a somewhat ‘‘flat’’ model, in

which the nature, type, or category of an order is a value

of a database field, rather than a field or variable itself.

Other important aspects of orders that may have impli-

cations for the data model are the indication for the

order, urgency (i.e., when it should be implemented),

and who is expected to implement it.

Standardization of text in an order can be helpful

for both accuracy of implementation and research. For

example, an order that can have multiple forms, such

as ‘‘take two 40-mg tablets by mouth twice daily’’ and

‘‘take one 80-mg tablet by mouth every 12 hours’’ can

complicate both clinical care and research. Allowing

providers to add narratives or free text is essential for

tailoring to patient’s needs, but this demands effective

handling in data storage and clinical decision support.

A system that can standardize the order accurately

without hindering the user’s experience is desirable

but challenging to create. Standardization of termi-

nology used in orders should accommodate query

systems. One difficulty is that each type of order –

such as for a drug, diet, radiological procedure,

or laboratory test – may have unique ‘‘domains’’ or

components. For example, only drugs have a dose, yet

the dose may need to be a discrete, searchable compo-

nent of a query. Therefore, an ideal data model can

handle all types of orders, as well as new types, but it

can also identify and distinguish between various

values of key components of orders, regardless of how

widespread those components are across various types

of orders.

Order sets can often translate directly into a group of

individual orders, but users often desire the ability to

customize order sets. This may meanmaintaining a base

of order sets but also the customizations that are unique

to each provider or role. Order sets also need to be

integrated with any available decision support systems,

and many providers seek to share customized order sets

with each other. There are thus aspects of order sets that

pertain to the system itself and to particular patients,

groups of providers, and individual providers. Asso-

ciated with each order set is also generally information

about conditions under which the order set applies,

such as a diagnosis, age group, or other criteria found

in a clinical guideline – hence the possible need for order

sets to be linked to ontologies or terminology systems

that in turn link to such guidelines.
Specific types of orders often require further pro-

cessing or delivery to specific clinical departments.

Therefore, the processing needed must be encoded

into the system, though it might be a part of the

main data engine more than a core part of the data

model or record. In any case, if laboratory orders, for

example, need to be delivered to the laboratory, then

the data system must support this well enough so that

all laboratory orders – and only laboratory orders – are

processed in this way. Similarly, systems that notify

particular professionals or departments should be

modular enough that those systems can be updated

readily as personnel or even departments change.

An audit trail is important for documentation,

accreditation, and quality and safety of care. Included

in the data system should be a method to indicate

formally not just who created a record and when, but

what happened to the record: where it was sent and

who accessed it later. Whether this is part of CPOE

or the larger records system may depend on the cir-

cumstances and design of a system. Many alert systems

that stem from orders do not currently provide effec-

tive prioritization, so this is an area of important

research.

Key Applications
CPOE continues to undergo development and will for

the foreseeable future. Due to the difficulty and time

required to generate electronic orders, various forms

of data entry are being explored. These include transcrip-

tion with or without voice recognition and input using

portable devices, digital pens, or tablets. Due to capability

for electronic communication of orders, development

is also occurring in remote areas or environments

with limited access to healthcare, such as for rural or

homebound patients.

CPOE is undergoing significant development espe-

cially in the US, the United Kingdom and other parts

of Europe, Asia, Australia, and New Zealand. It can be

expected to grow throughout the world, even as devel-

oping countries create EHR systems.

Future Directions
The largest looming issues for CPOE are how to maxi-

mize efficiency of data entry and effectiveness of deci-

sion support in the complex environment. There are

also unmet needs for CPOE to be linked to access to

general medical knowledge. Health policy, attention to

quality, patient safety, and reimbursement will likely

Conceptual Data Model C 437

C

gain importance in driving uses of CPOE, especially in

areas where its use is currently low. The precise roles,

usefulness, impact, and specifications of incentives for

healthcare providers to adopt health information tech-

nologies such as CPOE are not yet clear.
Cross-references
▶Clinical Decision Support

▶Data Acquisition

▶ Electronic Health Record
Recommended Reading
1. Agency for Healthcare Research and Quality. AHRQ National

Resource Center for Health Information Technology. 2007.

Available online at: http://healthit.ahrq.gov/ (accessed on August

29, 2007).

2. Ash J.S., Gorman P.N., Seshadri V., and Hersh W.R. Computer-

ized physician order entry in U.S. hospitals: results of a 2002

survey. J. Am. Med. Inform. Assoc., 11(2):95–99, 2004.

3. Bates D.W., Boyle D.L., and Teich J.M. Impact of computerized

physician order entry on physician time. In Proc. Annual Symp.

on Computer Applications in Medical Care, 1994, p. 996.

4. Bates D.W., Leape L.L., Cullen D.J., et al. Effect of computerized

physician order entry and a team intervention on prevention of

serious medication errors. JAMA, 280(15):1311–1316, 1998.

5. Campbell E.M., Sittig D.F., Ash J.S., Guappone K.P., and Dykstra

R.H. Types of unintended consequences related to computerized

provider order entry. J. Am. Med. Inform. Assoc., 13(5):

547–556, 2006.

6. Certification Commission for Healthcare Information Technol-

ogy. 2007. Available online at: http://www.cchit.org/ (accessed

on August 29, 2007).

7. Frankel R., Altschuler A., George S., et al. Effects of exam-room

computing on clinician-patient communication: a longitudinal

qualitative study. J. Gen. Intern. Med., 20(8):677–682, 2005.

8. Geissbuhler A. and Miller R.A. A new approach to the imple-

mentation of direct care-provider order entry. In Proc. AMIA

Annual Fall Symposium, 1996, pp. 689–693.

9. Institute of Medicine. Crossing the Quality Chasm: A New

Health System for the 21st Century. The National Academies

Press, Washington, DC, 2001.

10. Koppel R., Metlay J.P., Cohen A., et al. Role of computerized

physician order entry systems in facilitating medication errors.

JAMA, 293(10):1197–1203, 2005.

11. Kuperman G.J., Bobb A., Payne T.H., et al. Medication-related

clinical decision support in computerized provider order entry

systems: a review. J. Am. Med. Inform. Assoc., 14(1):29–40,

2007.

12. Massaro T.A. Introducing physician order entry at a major

academic medical center: I. Impact on organizational culture

and behavior. Acad. Med., 68(1):20–25, 1993.

13. Miller R.A., Gardner R.M., Johnson K.B., and Hripcsak G.

Clinical decision support and electronic prescribing systems: a
time for responsible thought and action. J. Am. Med. Inform.

Assoc., 12(4):403–409, 2005.

14. Overhage J.M., Mamlin B., Warvel J., Warvel J., Tierney W., and

McDonald C.J. A tool for provider interaction during patient

care: G-CARE. In Proc. Annual Symp. on Computer Applica-

tions in Medical Care, 1995, pp. 178–182.

15. Overhage J.M., Perkins S., Tierney W.M., and McDonald C.J.

Controlled trial of direct physician order entry: effects on phy-

sicians’ time utilization in ambulatory primary care internal

medicine practices. J. Am. Med. Inform. Assoc., 8(4):361–371,

2001.

16. Payne T.H. The transition to automated practitioner order

entry in a teaching hospital: the VA Puget Sound experience.

In Proc. AMIA Annual Symposium, 1999, pp. 589–593.

17. Sittig D.F. and Stead W.W. Computer-based physician order

entry: the state of the art. J. Am. Med. Inform. Assoc., 1(2):

108–123, 1994.

18. Teich J.M., Osheroff J.A., Pifer E.A., Sittig D.F., and Jenders R.A.

Clinical decision support in electronic prescribing: recommen-

dations and an action plan: report of the joint clinical decision

support workgroup. J. Am. Med. Inform. Assoc., 12(4):365–376,

2005.

19. Weiner M. and Biondich P. The influence of information tech-

nology on patient-physician relationships. J. Gen. Intern. Med.,

21(Suppl 1):S35–S39, 2006.

20. Weir C, Lincoln M, Roscoe D, Turner C, and Moreshead G.

Dimensions associated with successful implementation of a

hospital based integrated order entry system. In Proc. Annual

Symp. on Computer Applications in Medical Care, 1994,

pp. 653–657.

21. Wells S., Ashton T., and Jackson R. Electronic clinical decision

support. 2005. Updated October 2005. Available via Internet

at: http://www.hpm.org/survey/nz/a6/2 (accessed on August

29, 2007).
Computerized Provider Order Entry

▶Computerized Physician Order Entry
Concept Languages

▶Description Logics
Conceptual Data Model

▶ Semantic Data Model

http://healthit.ahrq.gov/
http://www.cchit.org/
http://www.hpm.org/survey/nz/a6/2

438C Conceptual Image Data Model
Conceptual Image Data Model

▶ Image Content Modeling
Conceptual Model

▶ Semantic Data Model
Conceptual Modeling

▶ Semantic Modeling for Geographic Information

Systems
Conceptual Modeling for
Geographic Information System

▶ Semantic Modeling for Geographic Information

Systems
Conceptual Modeling for Spatio-
Temporal Applications

▶ Semantic Modeling for Geographic Information

Systems
Conceptual Schema Design

ALEXANDER BORGIDA
1, JOHN MYLOPOULOS

2

1Rutgers University, New Brunswick, NJ, USA
2University of Trento, Trento, Italy

Definition
Conceptual schema design is the process of generating

a description of the contents of a database in high-level

terms that are natural and direct for users of the data-

base. The process takes as input information require-

ments for the applications that will use the database, and
produces a schema expressed in a conceptual modeling

notation, such as the Extended Entity-Relationship

(EER) Data Model or UML class diagrams. The chal-

lenges in designing a conceptual schema include: (i) tur-

ning informal information requirements into a cognitive

model that describes unambiguously and completely

the contents of the database-to-be; and (ii) using the

constructs of a data modeling language appropriately

to generate from the cognitive model a conceptual

schema that reflects it as accurately as possible.

Historical Background
The history of conceptual schema design is intimately

intertwined with that of conceptual data models (aka

semantic data models). In fact, for many years research-

ers focused on the design of suitable languages for con-

ceptual schemas, paying little attention to the design

process itself. Jean-Raymond Abrial proposed the

binary semantic model in 1974 [1], shortly followed

by Peter Chen’s entity-relationship model (ER for

short) [4]. Both were intended as advances over logical

data models proposed only a few years earlier, and

both emphasized the need to model more naturally

the contents of a database. The ER model and its

extensions were relatively easy to map to logical

schemas for relational databases, making EER [9] the

first conceptual modeling notation to be used widely

by practitioners. On the other hand, Abrial’s semantic

model was more akin to object-oriented data models

that became popular more than a decade later.

The advent of object-oriented software analysis

techniques in the late 1980s revived interest in object-

oriented data modeling and led to a number of propo-

sals. Some of these, notably OMT [7] adopted many

ideas from the EER model. These ideas were consoli-

dated into the Unified Modeling Language (UML),

specifically UML class diagrams.

The process of designing conceptual schemas by

using such modeling languages was not studied until

the late 1970s, see for instance [8]. In the early 1980s,

the DATAID project proposed a state-of-the-art design

process for databases, including conceptual schema

design [2].

Throughout this history, research on knowledge rep-

resentation in Artificial Intelligence (AI) has advanced a

set of concepts that overlaps with those of conceptual

data models. Notably, semantic networks, first proposed

in the 1960s, were founded on the notions of concept,

Conceptual Schema Design C 439

C

link and isA hierarchy (analogously to entity, relation-

ship and generalization for the EER model). The formal

treatment of these notations has led to modern mod-

eling languages such as Description Logics, including

OWL, for capturing the semantics of web data. In fact,

Description Logics have been shown to be able to

capture the precise semantics of conceptual modeling

notations such as EER diagrams and UML class

diagrams.

Another important recent development has been

the rise of ontological analysis. An ontology is a specifi-

cation of a conceptualization of a domain. As such, an

ontology offers a set of concepts for modeling an

application, and foundational ontologies strive to

uncover appropriate cognitive primitives with which

to describe and critique conceptual modeling nota-

tions [5]. Foundational ontologies have been used to

analyze the appropriate use of EER constructs [10] and

UML [6]. Based on this work, a two-phase perspective

is adopted here by distinguishing between the design of

a cognitive model based on cognitive primitives, and

the design of a corresponding conceptual schema that

is based on the constructs of a conceptual model such

as the EER or UML class diagrams.

Foundations

Building a cognitive model. Information requirements

for a database-to-be are generally expressed informally,

based onmultiple sources (e.g., applications/queries that

need to be supported, existing paper and computerized

systems). Information requirements describe some

part of the world, hereafter the application domain (or

universe of discourse). A cognitive model is a human

conceptualization of this domain, described in terms

of cognitive primitives that underlie human cognition.

The following are some of the most important among

these primitives.

An object is anything one may want to talk

about, and often represents an individual (‘‘my dog,’’

‘‘math422’’). Usually, individual objects persist over

many states of the application domain. Moreover, they

have qualities (such as size, weight), and can be related

to other individuals by relations (e.g., ‘‘friendOf,’’ ‘‘part

of,’’ ‘‘between’’). Individuals may be concrete (such as

‘‘Janet,’’ or ‘‘that tree’’), abstract (e.g., ‘‘the number 12,’’

‘‘cs422’’), or even hypothetical (e.g., ‘‘Santa,’’ ‘‘the king

of the USA’’). Individuals have a notion of identity,

allowing them, for example, to be distinguished and
counted. For some individuals such as ‘‘Janet,’’ identity

is an intrinsic notion that distinguishes her from all

other objects. Values are special individuals whose

identity is determined by their structure and properties

(e.g., numbers, sets, lists and tuples). The number ‘‘7,’’

for example, is the unique number that comes after

‘‘6,’’ while ‘‘{a, b, c}’’ is the unique set with elements

‘‘a,’’ ‘‘b’’ and ‘‘c.’’

Individuals can be grouped into categories (also

called concepts, types), where each category (e.g.,

‘‘Book’’) captures common properties of all its

instances (e.g., ‘‘my DB textbook,’’ ‘‘Ivanhoe’’). Cate-

gories themselves are usefully structured into taxo-

nomies according to their generality/specificity. For

instance, ‘‘Book’’ is a specialization of ‘‘LibraryMater-

ial,’’ along with ‘‘Journal’’ and ‘‘DVD.’’ Moreover,

‘‘Book’’ has its own specializations, such as ‘‘Hard-

back,’’ ‘‘Paperback.’’

Many categories (e.g., ‘‘Person’’) are primitive, in

the sense that they don’t have a definition. By implica-

tion, there is no algorithm to determine whether a given

individual object is an instance of such a category – one

must be told explicitly such facts. Other categories

are defined, in the sense that instances can be recog-

nized based on some rule. For example, an instance

of ‘‘Teenager’’ can be recognized given an instance of

‘‘Person’’ and its age.

Relations relate two or more objects, for example

‘‘book45 is on loan to Lynn,’’ or ‘‘Trento is between

Bolzano and Verona’’ and can represent among others

a dependence of some sort between these objects. Each

relation is characterized by a positive integer n–its

arity–representing the number of objects being related.

In the example above, ‘‘onLoanTo’’ is binary, while

‘‘between’’ is ternary. Predicate logic notation is used

to express specific relations between individuals, e.g.,

‘‘between(Trento,Bolazano,Verona).’’ Like their indi-

vidual counterparts, relations can be grouped into

relation categories. In turn, relation categories can

be organized into subcategory hierarchies: ‘‘broth-

erOf ’’ and ‘‘sisterOf ’’ are subcategories of ‘‘siblingOf,’’

which in turn is a subcategory of ‘‘relativeOf.’’ A binary

relation category has a domain and a range. A cognitive

model can specify arbitrary constraints between rela-

tions and categories, which describe the valid states

(‘‘semantics’’) of the application domain. Cardinality

constraints, for instance, specify upper/lower bounds

on how many instances of the range of a relation

440C Conceptual Schema Design
can be associated to an instance of the domain, and

vice versa.

A subtle complexity arises when one wants to de-

scribe information about a relation, for example when

did it become or ceased to be true. In such cases the

modeler can resort to reification. For example, the reifi-

cation of ‘‘Trento is between Bolzano and Verona’’ con-

sists of creating a new individual, ‘‘btw73’’ which is an

instance of the category ‘‘Between’’ and is related to its

three arguments via three functional relations: ‘‘refersTo

(btw73,Trento),’’ ‘‘source(btw73,Bolzano),’’ ‘‘destination

(btw73,Verona).’’ Note that this representation allows

another instance of ‘‘Between,’’ say ‘‘btw22,’’ with func-

tions to the same three individuals. To avoid this redun-

dancy, one needs suitable constraints on ‘‘Between.’’ One

can now model other information about such reified

relations, e.g., ‘‘believes(yannis,btw73).’’

There are several categories of relations that deserve

special consideration.

PartOf (with inverse hasPart) represents the part-

whole relation that allows composite conceptualizations

consisting of simpler parts. PartOf actually represents

several distinct relations with different formal properties

[5]. Most prominent among them are the relations

componentOf (e.g., cover is a component of book)

and memberOf (e.g., player member of a team). PartOf

is frequently confused with other relations, such as

containment, connectedness, hasLocation. A useful diag-

nostic test for this confusion is to check that if A is

part of B, and B is damaged, then A is also considered

damaged. Note how ‘‘love-note placed inside book’’

fails this test.

The relation between an object and a category

is often called instanceOf, and the set of all instances

of a category are called its extension. The isA (subcate-

gory) relation represents a taxonomic ordering between

categories, e.g., ‘‘isA(HardcoverBook,Book).’’ The isA

relation is transitive and anti-symmetric and interacts

with instanceOf in an important way: if ‘‘isA(A, B)’’ and

‘‘instanceOf(x,A)’’ then ‘‘instanceOf(x,B).’’ Any general

statements one associates with a category, apply to all its

specializations. For example, ‘‘every book has a title’’ will

automatically apply to subcategories (‘‘every Hardcover-

Book has a title’’); this is called inheritance of con-

straints. In many cases, a group of subcategories are

mutually disjoint (e.g., ‘‘Hardcover,’’ ‘‘Paperback,’’ are

disjoint subcategories of the category ‘‘Book’’). Some-

times, a set of subcategories covers their common

parent category in the sense that every instance of the
latter is also an instance of at least one subcategory (for

example, ‘‘Male,’’ ‘‘Female’’ cover ‘‘Person’’). When

a collection of subcategories partitions a parent cate-

gory, it is often because some relation (e.g., ‘‘gender’’)

takes on a single value from an enumerated set (e.g.,

{‘‘M,’’ ‘‘F’’}).

When building an isA hierarchy, it is useful to start

by building a backbone consisting of primitive, disjoint

concepts that describe the basic categories of indivi-

duals in the application domain. Some categories can

be distinguished from others by their rigidity property:

an instance of the category remains an instance

throughout its lifetime. For example, ‘‘Person’’ is such

a category (in the sense of ‘‘once a person, always a

person’’), but ‘‘Student’’ is not. Once a backbone tax-

onomy has been constructed, other categories, such as

role categories, can be added to the hierarchy as spe-

cializations of the categories. Welty and Guarino [11]

present a principled approach to the construction of

taxonomies. A useful rule for building meaningful

isA hierarchies is to ensure that the children of any

category are all at the same level of granularity. A leaf

category in an isA hierarchy should be further refined

if it has instances that can be usefully grouped into

sub-categories, which participate in new relations or

which are subject to new constraints.

Categories may also be seen as objects, and can then

be grouped into meta-categories that capture common

meta-properties of their instances. For example, the

meta-category ‘‘LibraryMaterialType’’ has instances

such as ‘‘Book,’’ ‘‘Hardback’’ and ‘‘DVD,’’ and may have

an integer-valued meta-property such as ‘‘number-

on-order.’’

In most worlds there are not just enduring objects

but also occurrences of events, activities, processes,

etc., such as borrowing, renewing or returning a

book. These phenomena are called events. An event

can be described from a number of perspectives:

First, there are the participants in an event: the material

borrowed, the patron who did the borrowing, the

library from which the material was borrowed, the

date when the material is required to be returned, etc.

Often these participants are given names describing the

role they play in the event: ‘‘borrower,’’ ‘‘lender,’’ ‘‘due

date.’’ Second, every event takes place in time, so its

temporal aspects can be represented: starting and pos-

sibly ending time if it is of a long duration, cyclic

nature, etc. Third, events may also have parts – the

sub-events that need to take place (e.g., taking the

Conceptual Schema Design C 441

C

book to the counter, proffering the library card,...).

There may also be special relations, such as causality

or temporal precedence that hold among events.

In database modeling, one often ignores events

because they are transient, while the database is sup-

posed to capture persistence. However, events are in

fact present in the background: relations between

objects other than ‘‘partOf ’’ are usually established or

terminated by events. The ‘‘onLoan’’ relation, for ex-

ample, is created by a ‘‘borrow’’ event and terminated

by a ‘‘return’’ event. And values for many qualities (e.g.,

the size or weight of an object) are established through

events representing acts of observation. As a result,

relations often carry information about the events.

Thus information about the ‘‘borrow’’ activity’s parti-

cipants is present in the arguments of the ‘‘onLoan’’

relation. And since ‘‘renew’’ shares the main partici-

pants of ‘‘borrow,’’ its traces can also be attached to

‘‘onLoan,’’ through an additional temporal argument,

such as ‘‘lastRenewedOn.’’

Note that it is application requirements that deter-

mine the level of detail to be maintained in a cogni-

tive model. For example, whether or not one records

the time when the borrowing and renewal occurred,

or whether it is sufficient to have a ‘‘dueDate’’ attribute

on the ‘‘onLoan’’ relation. In addition, the details of

the subparts of ‘‘borrow’’ will very likely be suppressed.

On the other hand, semantic relations between events,

such as the fact that a book renewal can only occur

after the book has been borrowed, do need to be

captured.

Because databases often have multiple sets of users,

there may be several conflicting interpretations of

terms and information needs. The important process

of reconciling such conflicts, known in part as ‘‘view

integration’’ is not addressed in this entry.

From a cognitive model to a conceptual schema.

The above account has focused on the construction of a

model that captures information requirements in terms

of cognitive primitives, with constraints expressed in a

possibly very rich language. Every effort was made to

keep the modeling and methodology independent of a

particular modeling language. Next, one must tackle the

problem of producing a conceptual schema expressed in

some particular formal notation, in this case the EER.

Comparable discussions apply if the target was UML

class diagrams, or even OWL ontologies.

The basic mapping is quite straightforward: cate-

gories of individuals in the conceptual model are
mapped to ER entity sets; relation categories in the

conceptual model are modeled directly as relationship

sets, with the participating entities playing (potentially

named) roles in the relationship set. Qualities and

values related to individuals by binary relations, or

appearing as arguments of relations become attributes.

Cardinality constraints of the cognitive model are

mapped directly to the conceptual schema.

One complex aspect of EER schema development

is the definition of keys consisting of one or more

attributes that uniquely distinguish each individual

instance of an entity set. Moreover, the values of these

attributes must be stable/unchanging over time. For

example, ‘‘isbnNr’’ or ‘‘callNumber’’ would be a natural

key attributes for ‘‘Book.’’ Globally unique identifiers are

actually relatively rare. Instead, entities are often identi-

fied with the help of intermediate relationships (and

attributes). For example, ‘‘BookCopy,’’ has attribute

‘‘copyNr,’’ which surely does not identify a particular

book copy; but if ‘‘BookCopy’’ is represented as a weak

entity, related to ‘‘Book’’ via the ‘‘copyOf ’’ identifying

relationship then ‘‘BookCopy’’ will have a composite

identifier. In other situations where one would need a

large set of attributes to identify an entity, and espe-

cially if these attributes are not under the control of

database administrators, the designer may introduce

a new surrogate entity attribute specifically for identi-

fication purposes (e.g., ‘‘studentId’’ for the entity set

‘‘Student’’).

Sub-categories, with possible disjoint and coverage

constraints, are represented in a direct manner in EER

since it supports these notions. Significantly, in most

version of EER key attribute(s) can only be specified

for the top-most entity in a hierarchy, and must then

be inherited by all sub-entities. Therefore one cannot

have ‘‘Employee’’ with key ‘‘ssn,’’ while sub-class ‘‘Tea-

chingAssistant’’ has key ‘‘studentId.’’ The reason for

this is to avoid multiple ways of referring to what

would otherwise be the same individual.

Since the EER model supports n-ary relationships,

reified relationships are normally only required in case

the model needs to make ‘‘meta’’ statements about rela-

tionships, e.g., recording that a particular loan was ver-

ified by a clerk. In variants of the EER that allow aggregate

relationships, this is modeled by relating entity ‘‘Clerk’’

via relationship ‘‘hasVerified’’ to the aggregate represent-

ing the ‘‘lentTo’’ relationship. In impoverished variants

of EER that do not support aggregates, this can be

encoded using weak entities that reify the relationship.

442C Conceptual Schema Design
The EER notation (in constrast to UML, say),

does not provide support for distinguishing partOf

relationships, nor for relationship hierarchies. How-

ever, the designer may encode these using reified

relationships.

Conceptual Schema Design in Practice

There is a plethora of commercial tools for conceptual

schema design based on the EER model or UML class

diagrams. These support the drawing, documenting

and layout of conceptual schemas, and even the auto-

matic generation of standard logical (relational)

schemas to support database design.

More advanced tools, such as icom (http://www.

inf.unibz.it/~franconi/icom/), allow not just the draw-

ing of conceptual schemas, but their translation to

formal logic. Advantages of such tools include (i) pre-

cise, formal semantics for all the constructs of the

conceptual model; (ii) the ability to check the concep-

tual schema for consistency–an issue which is particu-

larly interesting in the case of finite models; (iii) the

ability to augment a conceptual schema with con-

straints expressed in the underlying logic.

Key Applications
Conceptual schema design is the first–and for many

the most important–step in the design of any database.

Future Directions
One of the major research challenges of the new cen-

tury is data integration, and the semantics of data

captured in conceptual models has been shown to

form a useful foundation for merging multiple infor-

mation sources. In this context, one can imagine using

a conceptual schema as the mediating schema to access

different database sources.

The advent of the Web has made databases a public

resource that can be shared world-wide. In such a

setting, where the user may know nothing about a

database she is accessing, the issues that dominate are

(i) encapsulating the semantics of data along with the

data, so that the user can interpret the data; (ii) ensur-

ing data quality, so that the user can determine wheth-

er the data are suitable for her purposes; (iii) ensuring

compliance with privacy, security and governance reg-

ulations. In turn, these new requirements are going

to redefine the scope of database design in general

and conceptual schema design in particular.
Specifically, extended conceptual modeling lan-

guages and conceptual schema design techniques are

envisioned where quality, privacy, security and gover-

nance policies can be expressed explicitly and can be

accommodated during the design process to produce

conceptual schemas that are well-suited to address

such concerns. We also envision extensions to concep-

tual modeling languages that introduce primitive con-

cepts for modeling dynamic, intentional and social

aspects of an application domain. These aspects con-

stitute an important component of the semantics

of any database and a prerequisite for dealing with

data quality and regulation compliance.

Cross-references
▶Conceptual Data Model

▶Description Logics

▶ Logical Schema Design

▶ Schema Integration

▶ Semantic Data Model

Recommended Reading
1. Abrial J-R. Data Semantics. In Data Management Systems,

K. Koffeman North-Holland, Amsterdam, 1974.

2. Atzeni P., Ceri S., Paraboschi S., and Torlone R. Database

Systems: Concepts, Languages & Architectures. McGraw Hill,

New York, 1999.

3. Batini C., Ceri S., and Navathe S. Conceptual Database Design.

Benjamin/Cummings Publishing Company, Inc., Menlo Park,

CA, 1991.

4. Chen P.P. The entity-relationship model – toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

5. GangemiA.,GuarinoA.,MasoloC.,Oltramari A., and Schneider L.

Sweetening ontologies with DOLCE. In Proc. 12th Int. Conf.

Knowledge Eng. and Knowledge Management: Ontologies and

the Semantic Web, 2002, pp. 166–181.

6. Guizzardi G., Herre H., and Wagner G. Towards Ontological

Foundations for UMLConceptual Models. In Proc. Confederated

Int. Conf. DOA, CoopIS and ODBASE, 2002, pp. 1100–1117.

7. Rumbaugh J., BlahaM., Premerlani W., Eddy F., and LorensenW.

Object-Oriented Modeling and Design. Prentice Hall, Englewood

Cliffs, NJ, 1991.

8. Sakai H. Entity-relationship approach to the conceptual schema

design. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1980, pp. 1–8.

9. Teorey T., Yang D., and Fry J. A logical design methodology for

relational databases using the extended entity-relationship

model. ACM Comput. Surv., 18(2):197–222, 1986.

10. Wand Y., Storey V.C., and Weber R. An ontological analysis of

the relationship construct in conceptual modeling. ACM Trans.

Database Syst., 24(4):494–528, 1999.

11. Welty C. and Guarino N. Supporting ontological analysis of

taxonomic relationships. Data Knowl. Eng., 39:51–74, 2001.

http://www.inf.unibz.it/~franconi/icom/
http://www.inf.unibz.it/~franconi/icom/

Concurrency Control – Traditional Approaches C 443
Conceptual Schemas

▶Resource Description Framework (RDF) Schema

(RDFS)

C

Concurrency Control

▶Concurrency Control – Traditional Approaches

▶Correctness Criteria Beyond Serializability

▶ Performance Analysis of Transaction Processing

Systems
Concurrency Control – Traditional
Approaches

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Concurrency control; Transaction execution; Schedul-

ing; Page locking; Two-phase-locking

Definition
The core requirement on a transactional server is to

provide the ACID properties for transactions, which

requires that the server includes a concurrency control
Concurrency Control – Traditional Approaches. Figure 1. I
component as well as a recovery component. Con-

currency control essentially guarantees the isolation

properties of transactions, by giving each transaction

the impression that it operates alone on the underlying

database and, more technically, by providing serializable

executions. To achieve serializability, a number of algo-

rithms have been proposed. Traditional approaches

focus on the read-writemodel of transactions and devise

numerous ways for correctly scheduling read-write

transactions. Most practical solutions employ a variant

of the two-phase locking protocol.

Key Points
Concurrency control for transactions is done by the

transaction manager of a database system and within

that component by a scheduler. The scheduler imple-

ments an algorithm that takes operations from active

transactions and places them in an interleaving or

schedule that must obey the correctness criterion of

serializability. As illustrated in Fig. 1, which indicates

the ‘‘positioning’’ of a transaction manager within

the multi-layer architecture of a database system, the

scheduler receives steps from multiple transactions, one

after the other, and tries to attach them to the schedule

already output. This is possible if the new schedule is

still serializable; otherwise, the scheduler can block or

even reject a step (thereby causing the respective trans-

action to abort) [1,5,6]. The algorithm a scheduler

follows must be such that serializability can be tested
llustration of a transaction scheduler.

Concurrency Control – Traditional Approaches.

Figure 2. Overview of concurrency control protocol

classes.

444C Concurrency Control – Traditional Approaches
on the fly; moreover, it must be very efficient so that

high throughput rates (typically measured in [com-

mitted] transactions per minute) can not only be

achieved, but even be guaranteed.

Classification of Approaches

Scheduling algorithms for database transactions can be

classified as ‘‘traditional’’ if they concentrate on sched-

uling read-write transactions; non-traditional schedu-

lers takes semantic information into account which is

not available at the syntactic layer of read and write page

operations. Traditional schedulers generally fall into two

categories: A scheduler is optimistic or aggressive if it

mostly lets steps pass and rarely blocks; clearly, this

bears the danger of ‘‘getting stuck’’ eventually when the

serializability of the output can no longer be guaran-

teed. An optimistic scheduler is based on the assump-

tion that conflicts between concurrent transactions are

rare; it will only test from time to time whether the

schedule produced so far is still serializable, and it takes

appropriate measures if the schedule is not.

On the other hand, a scheduler is pessimistic or

conservative if it mostly blocks (upon recognizing con-

flicts); in the extreme yet unlikely case that all transac-

tions but one have been blocked, the output would

become a serial schedule. This type of scheduler is

based on the assumption that conflicts between trans-

actions are frequent and therefore need to be con-

stantly observed. Pessimistic schedulers can be locking

or non-locking schedulers, where the idea of the former

is to synchronize read or write access to shared data

by using locks which can be set on and removed from

data items on behalf of transactions. The intuitive

meaning is that if a transaction holds a lock on a data

object, the object is not available to transactions that

execute concurrently. Non-locking schedulers replace

locks, for example, by timestamps that are attached

to transactions. Among locking schedulers, the most

prominent protocol is based on a two-phase appro-

ach (and hence abbreviated two-phase locking or

2PL) in which, for each transaction, a first phase dur-

ing which locks are obtained is strictly separated from a

second phase where locks can only be released. Non-

two-phase schedulers replace the two-phase property,

for example, by an order in which transactions may

access data objects. Figure 2 summarizes the major

classes of concurrency control protocols. Beyond the

approaches shown in Fig. 2, the concurrency control

problem can even be broken into two subproblems,
which could then be solved individually by possibly

distinct protocols: (i) read operations are synchronized

against write operations or vice versa; (ii) write opera-

tions are synchronized against other write operations,

but not against reads. If these synchronization tasks are

distinguished, a scheduler can be thought of as con-

sisting of two components, one for each of the respec-

tive synchronization tasks. Since the two components

need proper integration, such a scheduler is called a

hybrid scheduler. From an application point of view,

most classes of protocols surveyed above, including the

hybrid ones, have not achieved great relevance in prac-

tice. Indeed, 2PL is by far the most important concur-

rency control protocol, since it can be implemented

with low overhead, it can be extended to abstraction

levels beyond pure page operations, and it has always

outperformed any competing approaches [2–4].

Cross-references
▶B-Tree Locking

▶Distributed Concurrency Control

▶ Locking Granularity and Locks Types

▶ Performance Analysis of Transaction Processing

Systems

▶ Serializability

▶ Snapshot Isolation

▶Two-Phase Locking

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

Concurrency Control Manager C 445

C

2. Bernstein P.A. and Newcomer E. Principles of Transaction Pro-

cessing for the Systems Professional. Morgan Kaufmann, San

Francisco, CA, 1997.

3. Claybrook B. OLTP – Online Transaction Processing Systems.

Wiley, New York, 1992.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

5. Papadimitriou C.H. The Theory of Database Concurrency Con-

trol. Computer Science, Rockville, MD, 1986.

6. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Concurrency Control and Recovery

▶Transaction Management
Concurrency Control Manager

ANDREAS REUTER
1,2

1EML Research GmbH Villa Bosch, Heidelberg,

Germany
2Technical University Kaiserslautern, Kaiserslautern,

Germany

Synonyms
Concurrency control manager; Lock manager;

Synchronization component

Definition
The concurrency control manager (CCM) synchro-

nizes the concurrent access of database transactions

to shared objects in the database. It is responsible for

maintaining the guarantees regarding the effects of

concurrent access to the shared database, i.e., it will

protect each transaction from anomalies that can result

from the fact that other transactions are accessing the

same data at the same time. Ideally, it will make sure

that the result of transactions running in parallel is

identical to the result of some serial execution of the

same transactions. In real applications, however, some

transactions may opt for lower levels of synchroniza-

tion, thus trading protection from side effects of other

transactions for performance. The CCM is responsible

for orchestrating all access requests issued by the trans-

actions such that each transaction receives the level

of protection it has asked for. The CCM essentially
implements one of a number of different synchroniza-

tion protocols, each of which ensures the correct exe-

cution of parallel transactions, while making different

assumptions regarding prevalent access patterns, fre-

quency of conflicts among concurrent transactions,

percentage of aborts, etc. The protocol that most

CCMs are based on is using locks for protecting data-

base objects against (inconsistent) parallel accesses;

for that reason, the CCM is often referred to as the

‘‘lock manager.’’ Some CCMs distinguish between mul-

tiple versions of a data object (e.g., current version,

previous version) in order to increase the level of

parallelism [2].

Key Points
The CCM monitors all access requests issued by

higher-level components, be it to the primary data

(tuples, records), or to access paths, directory data,

etc. on behalf of the database transactions. This infor-

mation (transaction X accesses object O in order to

perform action A at time T) is employed in different

ways, depending on the synchronization protocol used.

In case of locking protocols, each access request has to be

explicitly granted by the CCM. If no conflict will arise by

performing action A on object O, the access request is

granted. If, however, a conflict is detected (e.g., A is an

update request, and some other transaction Y is already

updating object O), the request is not granted, and the

CCM will record the fact that X has to wait for the

completion of transaction Y. In case of optimistic proto-

cols, the requests are granted right away, but when X

wants to commit, all its accesses are checked for conflicts

with accesses performed by other transactions that are

either still running or have committed while X was active.

In those situations the time T of the access request is

relevant. So the basic data structure maintained by the

CCM is a table of accesses/access requests. For locking

protocols, the CCM will also maintain a list of which

transaction waits for the completion of which other

transaction(s). That list is tested by the CCM for dead-

locks. If a deadlock or, in case of optimistic protocols, a

conflict is detected, the CCM decides which transaction

will be aborted. It then informs the transaction manager,

who will initiate the abort; rollback of the operations is

performed by the recovery manager [1].

Cross-references
▶Degrees of Consistency

▶Dependency

446C Condition Event Nets
▶ Isolation

▶ Locking

▶ Scheduling

▶ Synchronization

Recommended Reading
1. Gray J. and Reuter A. Transaction Processing – Concepts and

Techniques. Morgan Kaufmann, San Mateo, 1993.

2. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control.

Morgan Kaufmann, San Mateo, 2001.
T1 A B C ’
Condition Event Nets

▶ Petri Nets

a b x true

e f g true

T2 B C D ’

y c d true
Conditional Branching

▶OR-Split
Conditional Routing

▶OR-Split
Conditional Tables

GÖSTA GRAHNE

Concordia University, Montreal, QC, Canada

Synonyms
C-tables; Extended relations

Definition
A conditional table [4] generalizes relations in two

ways. First, in the entries in the columns, variables,

representing unknown values, are allowed in addition

to the usual constants. The second generalization is

that each tuple is associated with a condition, which

is a Boolean combination of atoms of the form x = y,

x = a, a = b, for x, y null values (variables), and a, b

constants. A conditional table essentially represents an

existentially quantified function free first order theory.
Formally, let con be a countably infinite set of con-

stants, and var be a countably infinite set of variables,

disjoint from con. LetU be a finite set of attributes, and

R
U a relational schema. A tuple in a c-table over R is

a mapping from R, and a special attribute, denoted ’,

to con [var [b, where b is the set of all Boolean

combinations of equality atoms, as above. Every attri-

bute in Rmaps to a variable or a constant, and ’maps

to b. In a multirelational database schema, there are

multi-tables, meaning in effect that variables can be

shared between tables (just as constants are). An exam-

ple of a 2-multitable is shown below. The conditions ’

are all true, and it so happens that the two tables do not

share any variables.
Key Points
It is now possible to extend the complete set of regular

relational operators {p,s,⋈,[,�,r} to work on

c-tables. To distinguish the operators that apply to

tables from the regular ones, the extended operators

are accented by a dot. For instance, c-table join is

denoted ffl_ . The extended operators work as follows:

projection _p is the same as relational projection, except

that the condition column ’ can never be projected

out. Selection _sA=a(T) retains all tuples t in table T,

and conjugates the condition t(A) = a to t(’). A join

Tffl_ T 0 is obtained by composing each tuple t 2 Twith

each tuple t 02 T 0. The new tuple t � t 0 has condition
t(’) ∧ t 0(’) ∧ d(t,t 0), where condition d(t,t 0) states

that the two tuples agree on the values of the join

attributes. The example below serves as an illustration

of this definition. The union [_ is the same as relation-

al union, and so is renaming _r, except that the ’-

column cannot be renamed. Finally, the set difference,

say T _�T 0 is obtained by retaining all tuples t 2 T and

conjugating to them the condition stating that the

tuple t differs from each tuple t0 in T 0. A tuple t differs

from a tuple t0, if it differs from t0 in at least one

column.

Confidentiality Protection C 447
Let T1 and T2 be as in the figure above. The

three c-tables in the figure below, illustrate the

result of evaluating _sC=g(T1), T1 ffl_ T2, and

_pBCðT 2Þ _� _pBCðT 1Þ, respectively.
A B C ’

a b x x = g

e f g g = g

A B C D ’

a y x d b = y ∧ x = c

e y g d f = y ∧ g = c

B C ’

y c (y6¼b ∨ c6¼x) ∧ (y6¼f ∨ c6¼g)

C

Note that the second tuple in the first c-table has

a tautological condition. Likewise, since any two con-

stants differ, the condition of the second tuple in the

middle c-table is contradictory.

So far, nothing has been said about what the

c-tables mean. In the possible worlds interpretation,

an incomplete database is a usually infinite set of ordi-

nary databases, one of which corresponds to the actual

(unknown) database. Considering c-tables, they serve as

finite representations of sets of possible databases. One

(arbitrary) such database is obtained by instantiating the

variables in the c-table to constants. Each occurrence of a

particular variable is instantiated to the same constant.

Formally, the instantiation is a valuation v : con [var!
con, that is identity on the constants. Valuations are

extended to tuples and conditions tables in the obvious

way, with the caveat that given a particular valuation v,

only those tuples t for which v(t(j)) � true, are

retained in v(T). Consider for instance the first table

above. For those valuations v, for which v(x) = g, there

will be two tuples in v(T), namely (a,b,g) and (e,f,g).

For valuations v 0, for which v(x) 6¼g, there will only be
the tuple (e,f,g) in v 0(T).

The remarkable property of c-tables is that for all

c-tables T and relational expressions E, it holds that

v(_E(T)) = E(v(T)) for all valuations v. In other

words, the extended algebra is a Codd sound and
complete inference mechanism for c-tables. Further-

more, c-tables are closed under relational algebra,

meaning that the result of applying any relational

expression on any (schema-wise appropriate) c-table

can be represented as another c-table. The extended

algebra actually computes this representation, as was

seen in the example above.

Needless to say, all of this comes with a price.

Testing whether a c-table is satisfiable, that is, whether

there exists at least one valuation v, such that v(T) 6¼ ;
is an NP-complete problem [2]. Furthermore, even if

one starts with a simple c-table where all variables are

distinct, and all conditions are true, applying even a

monotone relational expression to such a c-table can

result in quite a complex table, so here again [2]

satisfiability of the resulting table is NP-complete [2].

To make matters even worse, testing containment

of c-tables is Pp
2-complete. A c-table T is contained in

a c-table T 0, if every for every valuation v of T, there

exists a valuation v 0 of T 0, such that v(T) = v(T 0).
Nonetheless, c-tables possess a natural robustness.

For instance, it has been shown [1,3] that the set of

of possible databases defined by a set of materialized

views, can be represented as a c-table.

Cross-references
▶Certain (and Possible) Answers

▶ Incomplete Information

▶Maybe answer

▶Naive tables
Recommended Reading
1. Abiteboul S., Duschka O.M. Complexity of Answering Queries

Using Materialized Views. In Proc. 17th ACM SIGACT-SIG-

MOD-SIGART Symp. on Principles of Database Systems, 1998,

pp. 254–263.

2. Abiteboul S., Kanellakis P.C., Grahne G. On the Representation

and Querying of Sets of Possible Worlds. Theor. Comput. Sci.,

78(1):158–187, 1991.

3. Grahne G., Mendelzon A.O. Tableau Techniques for Querying

Information Sources through Global Schemas. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 332–347.

4. Imielinski T., Lipski W. Jr. Incomplete Information in Relational

Databases. J. ACM, 31(4):761–791, 1984.
Confidentiality Protection

▶ Statistical Disclosure Limitation For Data Access

448C Conflict Serializability
Conflict Serializability

▶Two-Phase Locking
Conjunctive Query

VAL TANNEN

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
SPC query; Horn clause query

Definition
Conjunctive queries are first-order queries that both

practically expressive and algorithmically relatively

tractable. They were studied first in [2] and they have

played an important role in database systems since

then.

As a subset of the relational calculus, conjunctive

queries are defined by formulae that make only use of

atoms, conjunction, and existential quantification. As

such they are closely related to Horn clauses and hence

to logic programming. A single Datalog rule can be

seen as a conjunctive query [1].

Optimization and reformulation for various pur-

poses is quite feasible for conjunctive queries, as op-

posed to general relational calculus/algebra queries.

The equivalence (and indeed the containment) of con-

junctive queries is decidable, albeit NP-complete [1].

Key Points
This entry uses terminology defined in the entry Rela-

tional Calculus.

Conjunctive queries are first-order queries of a par-

ticular form: {he1,...,eni j ∃x1...xmc} where c is an

(equality-free) conjunction of relational atoms, i.e.,

atoms of the form R(d1,...,dk) (where d1,...,dk are

variables of constants). In addition, it is required that

any variable among e1,...,en must also occur in one of

the relational atoms of c. This last condition, called
range restriction [3] is necessary for domain indepen-

dence, e.g., consider {(x, y)jR(x)}, and, in fact, it is also

sufficient.

The semantics of a conjunctive query in an instance

I , as a particular case of first-order queries, involves

assignments m defined on the variables among e1,...,en
such that I ; m �9 x1:::xmc. Note however that this is
the same as extending m to a valuation n defined in

addition on x1...xm and such that I ; n �c . Since c is

a conjunction of relational atoms, this amounts to n
being a homomorphism from c seen as a relational

instance (the canonical instance associated to the

query) into I . This simple observation has many useful

consequences, including some that lead to the decid-

ability of equivalence (containment). It also leads to an

alternative way of looking at conjunctive queries,

related to logic programming. Here is an example of

a conjunctive query in both relational calculus form

and in a Prolog-like, or ‘‘rule-based,’’ formalism, also

known as a Datalog rule [1,3]:

fðx; c; xÞ j 9y Rðc; yÞ ^ Sðc; x; yÞgansðx; c; xÞ :
� Rðc; yÞ; Sðc; x; yÞ

In the spirit of rule-based/logic programming, the out-

put tuple of a conjunctive query is sometimes called the

‘‘head’’ of the query and the atom conjunction part

the ‘‘body’’ of the query. So far, this discussion has

considered only the class CQ of conjunctive without

equality in the body. The class CQ= which allows equal-

ities in the body defines essentially the same queries

but there are a couple of technical complications. First,

the range restriction condition must be strengthened

since, for example, {(x, y)j∃z R(x) ∧ y = z} is domain

dependent. Therefore, for CQ= it is required that any

variable among e1,...,en must equal, as a consequence

of the atomic equalities in c, some constant, or some

variable that occurs in one of the relational atoms of c.
CQ= has the additional pleasant property (shared,

in fact, with the full relational calculus) that query

heads can be restricted to consist of just distinct

variables.

Clearly CQ
 CQ=. The converse is ‘‘almost true.’’

It is possible to get rid of equality atoms in a conjunc-

tive query iff the query is satisfiable i.e., there exists

some instance on which the query returns a non-

empty answer. All the queries in CQ are satisfiable

(take the canonical instance). Queries in CQ= are sat-

isfiable iff the equalities in their body do not imply the

equality of distinct constants. Thus, for conjunctive

queries (of both kinds) satisfiability is decidable, as

opposed to general first-order queries. Now, any satis-

fiable query in CQ= can be effectively translated into an

equivalent query in CQ.

The conjunctive queries correspond to a specific

fragment of the relational algebra, namely the fragment

Connectionist Model C 449

C

that uses only the selection, projection, and cartesian

product operations. This fragment is called the SPC

algebra. There is an effective translation that takes

every conjunctive query into an equivalent SPC algebra

expression. There is also an effective translation that

takes every SPC algebra expression into an equivalent

conjunctive query.

Via the translation to the SPC algebra it can be seen

that conjunctive queries correspond closely to certain

SQL programs. For example, the CQ= query ans(x, y) :

�R(x, z), x = c, S(x, y, z) corresponds to

select r.1, s.2

from R r, S s

where r.1=c and s.1=r.1 and r.3=s.2

Such SQL programs, in which the ‘‘where’’ clause is a

conjunction of equalities arise often in practice. So,

although restricted, conjunctive queries are important.

Cross-references
▶Datalog

▶Relational Algebra

▶Relational Calculus

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases:

The Logical Level. Addison Wesley, Reading, MA, 1994.

2. Chandra A.K. and Merlin P.M. Optimal Implementation of

Conjunctive Queries in Relational Data Bases. In Proc. 9th

Annual ACM Symp. on Theory of Computing, 1977, pp. 77–90.

3. Ullman J.D. Principles of Database and Knowledge-Base Sys-

tems, Vol. I. Computer Science, Rockville, MD, 1988.
Connection

SAMEH ELNIKETY

Microsoft Research, Cambridge, UK

Synonyms
Database socket

Definition
A connection is a mechanism that allows a client to

issue SQL commands to a database server. In a typical

usage, the client software opens a connection to the

database server, and then sends SQL commands and

receives responses from the server.

To open a connection, the client specifies the data-

base server, database name, as well as the client’s
credentials. Opening the connection includes a hand-

shake between the client software and the database

server. The client sends its credentials, for example in

the simplest form a user name and password. The

server examines the credentials to authorize the con-

nection. Further information may also be negotiated

such as the specific protocol and data encoding.

Key Points
Handling and servicing connections is an important

part of database servers because connections are the

main source of concurrency.

Database servers limit the number of connections

they can accept and may provide differentiated service

to connections from high priority clients (e.g., from

database administrators).

Connections are implemented using inter-process

(e.g. pipes) or remote (e.g., TPC sockets) communica-

tion mechanisms. Database vendors and third-party

providers supply libraries that client programs use

to open connections to database servers. Several stan-

dards have emerged such as ODBC (Open Database

Connectivity) [2], JDBC (Java Database Connectivity)

[3], andADO.NET (data access classes inMicrosoft.NET

platform) [1].

When client software uses a database system exten-

sively, it employs a connection pool to reuse a group of

open connections, allowing multiple concurrent SQL

commands. Using a connection pool avoids closing

and reopening connections, as well as opening too

many connections that tie up resources at both ends

of the connection.

Cross-references
▶ Session

Recommended Reading
1. Adya A., Blakeley J., Melnik S., and Muralidhar S. Anatomy of

the ADO.NET entity framework. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2007, pp. 877–888.

2. Data Management: SQL Call Level Interface (CLI), Technical

Standard C451–15/10/1993, The Open Group.

3. Sun Microsystems, Java Database Connectivity. Available at:

http://java.sun.com/javase/technologies/database/
Connectionist Model

▶Neural Networks

http://java.sun.com/javase/technologies/database/

450C Consistency in Peer-to-Peer Systems
Consistency in Peer-to-Peer Systems

▶Updates and Transactions in Peer-to-Peer Systems
Consistency Models For Replicated
Data

ALAN FEKETE

University of Sydney, Sydney, NSW, Australia

Synonyms
Replica consistency; Memory consistency

Definition
When a distributed database system keeps several copies

or replicas for a data item, at different sites, then the

system may ensure that the copies are always consistent

(that is, they have the same value), or the system may

allow temporary discrepancy between the copies. Even if

the copies are not the same, the algorithms that manage

the data may be able to hide the discrepancies from

clients. A consistency model defines the extent to

which discrepancies can exist or be observed, between

the copies. If the system offers a strong consistency

model, then clients will not be aware of the fact that

the system has replicated data, while a weak consistency

model requiresmore careful programming of the clients,

so they can cope with the discrepancies they observe.

Historical Background
Most replication research in the 1970s aimed to pro-

vide the illusion of an unreplicated database offering

serializability. In the early 1980s, Bernstein and collea-

gues formalized this notion as a strong consistency

model [2].

The late 1980s and early 1990s focused on systems

that offered weak consistency in various definitions.

Eventual consistency was introduced in the work of

Demers et al. [3], while consistency models in which

reads might see stale values were also explored by sev-

eral groups [1,5].

Since 2000, a new strong consistency model, one-

copy SI, was introduced [4], and it has attracted much

attention.

Foundations
There are many different system architectures that can

be used for a distributed database with replicated data.
For example, clients may submit operations directly to

the different databases, or instead requests may all go

through a middleware layer; the local databases may

communicate directly with one another, or only with

the clients or middleware; the requests that arrive at a

local database may be a read or write on the local

replica of an item, or they may be a SQL statement

(which might involve many reads and/or writes), or

indeed a whole transaction may form a single request;

a read may be performed on one replica and writes on

all replicas (read-one-write-all), or else a complex quo-

rum rule may determine where reads and writes are

performed; and each site may perform the operations

once only, or else there may be possibilities for opera-

tions to be done tentatively, then (after conflicting

information is received) the system might be able to

roll back some operations and then replay them in a

different order. Sometimes several system designs offer

clients the same functionality, so the choice would be

based only on performance, or the validity of assump-

tions in the design (such as the ability to know in

advance which transactions access which items). If

the client cannot learn, by the values returned or the

operations which are allowed, which system design is

used, then one can say that the different designs offer

the same consistency model. However, sometimes a

difference in design does change the functionality of

the whole system, in ways that clients can detect. If one

abstracts away the details of the system design, and

instead focuses on what the essential features are that

distinguish between the properties, then one is describ-

ing the consistency model offered by the system. For

example, some system designs allow clients to learn

about the existence of several copies. Perhaps one client

might read the same item several times and see different

values in each read. These values may have been taken

from different older transactions. This can’t happen in

a system where all the data is at one site, with one copy

for each item. Thus this system provides a consistency

model which reveals the existence of copies to the

client.

A system provides a strong consistency model if

it provides clients with the illusion that there is a

single copy of each piece of data, hiding all evidence

of the replication. There are in fact several variants

among strong models, because there are several differ-

ent isolation models used by different DBMS plat-

forms, and because the formal definition of isolation

doesn’t always capture exactly the properties of an

Consistency Preservation C 451

C

implementation. For example, one-copy serializability

(q.v.) was defined in [2] as a consistency model in

which clients have the illusion of working with a sin-

gle-site unreplicated database which uses a concurren-

cy control algorithm that offer serializability (q.v.) as

the isolation level. In contrast, one-copy SI [4] is a

different strong consistency model, where clients

see the same behaviors as in an unreplicated system

where concurrency control is done by Snapshot Iso-

lation (q.v.).

In contrast to strong consistency models which

maintain an illusion of a single-site system, in weaker

models the clients are able to see that the system has

replicas. Different models are characterized by the ways

in which the divergence between replicas is revealed.

The best-known weak consistency model is eventual

consistency (q.v.) which is suitable for replicated data-

bases where an updating transaction can operate at any

replica, and the changes are then propagated lazily to

other replicas through an epidemic mechanism. Even-

tually, each replica learns about the updates, and this

consistency model ensures that a reconciliation mech-

anism resolves conflicting information, so that when

the system quiesces, the values in all the replicas of

a logical item eventually converge to the same value. In

a system providing eventual consistency, there is

not much that can be said about the value seen by a

read, before convergence has been reached.

A different weak consistency model is common in

systems where there is a single master copy for each

item, and all updates are done first at the master, before

being propagated in order, to the replicas. In this

model, writes happen in a well-defined order, and

each read sees a value from some prefix of this order;

however, a read can see a value that is stale, that is, it

does not include the most recent updates to the item.

Key Applications
The commercial DBMS vendors all offer replication

mechanisms with their products. The performance

impact of strong consistency models is usually seen

as high, and these are typically provided only within

a single cluster. For replication across dispersed

machines, most platforms offer some form of weak

consistency. There are also a range of research proto-

types which give the user a choice between several

consistency models; in general the user sees a tradeoff,

where improved performance comes from accepting

weaker consistency models.
Future Directions
Effective database replication is not yet a solved prob-

lem; the existing proposals compromise somehow

among many desired properties, such as scalability

for read-heavy workloads, scalability for update-

heavy workloads, availability in face of failures or par-

titions, generality of the clients supported, ease of

system programming, capacity to use varied local data-

bases as black boxes, and the consistency provided.

Thus the design space of possible systems is still

being actively explored, and sometimes a new design

achieves a consistency model different from those pre-

viously seen. One topic for ongoing research is how

users can express their requirements for performance

and for different levels of consistency, and how a sys-

tem can then choose the appropriate replica control

mechanism to provide the user with what they need.

Research is also likely in consistency models that deal,

to some extent, with malicious (often called ‘‘Byzan-

tine’’) sites.
Cross-references
▶Data Replication

▶ Strong Consistency Models for Replicated Data

▶Weak Consistency Models for Replicated Data

Recommended Reading
1. Alonso R., Barbará D., and Garcia-Molina H. Data caching

issues in an information retrieval system. ACM Trans. Database

Syst., 15(3):359–384, 1990.

2. Attar R., Bernstein P.A., and Goodman N. Site initialization,

recovery, and backup in a distributed database system. IEEE

Trans. Software Eng., 10(6):645–650, 1984.

3. Demers A.J., Greene D.H., Hauser C., Irish W., Larson J.,

Shenker S., Sturgis H.E., Swinehart D.C., and Terry D.B.

Epidemic algorithms for replicated database maintenance. In

Proc. ACM SIGACT-SIGOPS 6th Symp. on the Principles of

Dist. Comp., 1987, pp. 1–12.

4. Plattner C. and Ganymed G.A. Scalable replication for transac-

tional web applications. In Proc. ACM/IFIP/USENIX Int.

Middleware Conf., 2004, pp. 155–174.

5. Sheth A.P. and Rusinkiewicz M. Management of interdependent

data: specifying dependency and consistency requirements.

In Proc. Workshop on the Management of Replicated Data,

1990, pp. 133–136.
Consistency Preservation

▶ACID Properties

452C Consistent Facts
Consistent Facts

▶ Possible Answers
Consistent Query Answering

LEOPOLDO BERTOSSI

Carleton University, Ottawa, ON, Canada

Definition
Consistent query answering (CQA) is the problem of

querying a database that is inconsistent, i.e., that fails

to satisfy certain integrity constraints, in such a way

that the answers returned by the database are consis-

tent with those integrity constraints. This problem

involves a characterization of the semantically correct

or consistent answers to queries in an inconsistent

database.

Key Points
Databases may be inconsistent in the sense that cer-

tain desirable integrity constraints (ICs) are not satis-

fied. However, it may be necessary to still use the

database, because it contains useful information, and,

most likely, most of the data is still consistent, in some

sense. CQA, as introduced in [1], deals with two pro-

blems. First, with the logical characterization of the

portions of data that are consistent in the inconsistent

database. Secondly, with developing computational

mechanisms for retrieving the consistent data. In par-

ticular, when queries are posed to the database, one

would expect to obtain as answers only those answers

that are semantically correct, i.e., that are consistent

with the ICs that are violated by the database as a whole.

The consistent data in the database is characterized

[1] as the data that is invariant under all the database

instances that can be obtained after making minimal

changes in the original instance with the purpose of

restoring consistency. These instances are the so-called

(minimal) repairs. In consequence, what is consistently

true in the database is what is certain, i.e., true in the

collection of possible worlds formed by the repairs.

Depending on the queries and ICs, there are different

algorithms for computing consistent answers. Usually,

the original query is transformed into a new query,

possibly written in a different language, to be posed

to the database at hand, in such a way that the usual
answers to the latter are the consistent answers to

the former [1]. For surveys of CQA and specific

references, c.f. [2,3].

Cross-references
▶Database Repairs

▶ Inconsistent Databases

Recommended Reading
1. Arenas M., Bertossi L., and Chomicki J. Consistent query

answers in inconsistent databases. In Proc. 18th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1999, pp. 68–79.

2. Bertossi L. Consistent query answering in databases. ACM

SIGMOD Rec., 35(2):68–76, 2006.

3. Chomicki J. Consistent query answering: five easy pieces.

In Proc. 11th Int. Conf. on Database Theory, 2007, pp. 1–17.
Constant Span

▶ Fixed Time Span
Constrained Frequent Itemset
Mining

▶ Frequent Itemset Mining with Constraints
Constraint Databases

FLORIS GEERTS

University of Edinburgh, Edinburgh, UK

Definition
Constraint databases are a generalization of relational

databases aimed to store possibly infinite-sized sets of

data by means of a finite representation (constraints)

of that data. In general, constraints are expressed by

quantifier-free first-order formulas over some fixed

vocabulary O and are interpreted in some O-structure
M¼ hU;Oi. By varying O andM, constraint data-

bases can model a variety of data models found in

practice including traditional relational databases,

spatial and spatio-temporal databases, and databases

with text fields (strings). More formally, let O be a

fixed vocabulary consisting of function, predicate and

constant symbols, and let R ¼ fR1;:::;R‘:g be a rela-

tional schema, where each relation name Ri is of arity

Constraint Databases C 453

C

ni > 0. An O-constraint database D with schema R
maps each relation Ri 2 R to a quantifier-free formula

’D
Ri
ðx1;:::;xniÞ (with ni free variables x1;:::;xni)

in first-order logic over O. When interpreted over

an O-structure M¼ hU;Oi, an O-constraint data-

base D with schema R corresponds to the collection

of the M-definable sets Ri½ �½ �DM ¼ fða1;:::;aniÞ 2 Uni

j M � ’D
Ri
ða1;:::;aniÞg, for Ri 2 R. Constraint query

languages have been devised to manipulate and query

constraint databases.

Key Points
The primary motivation for constraint databases

comes from the field of spatial and spatio-temporal

databases where one wants to store an infinite set of

points in the real Euclidean space and query it as if all

(infinitely) many points are present [3,4,5]. In the

spatial context, the constraints used to finitely repre-

sent data are Boolean combinations of polynomial

inequalities. For instance, the infinite set of points in

the real planeR2 depicted in Fig. 1(a) can be described

by means of a disjunction of polynomial inequalities

with integer coefficients as follows: ’(x, y) = (x2∕25+
y2∕16 = 1)∨(x2 + 4x + y2 � 2y 	 4)∨(x2� 4x + y2 � 2y

	�4)∨(x2 + y2 � 2y = 8 ∧ y < �1). In the language

of constraint databases, ’(x, y) is a quantifier-free first-

order formula over O = (+,�,0,1,<) and Fig. 1(a)

represents the M-definable set in R2 corresponding

to the formula ’ for the O-structureM¼ hR;Oi. If
R is a relational schema consisting of a binary relation

R, then the O-constraint database D with schema R
defined by R 7! ’(x, y) ‘‘stores’’ the set in Fig. 1(a).

In this case, the M-definable sets are also known as

semi-algebraic sets [2].

When Boolean combination of linear inequalities

suffice, such as in geographical information systems

(GIS), one considers constraint databases over O =

(+,0,1,<) andM¼ hR;Oi. Fig. 1(b) shows an exam-

ple of a set defined by means of a first-order formula
Constraint Databases. Figure 1. Example of set

definable by (a) polynomial constraints and (b) linear

constraints.
over O = (+,0,1,<). The advantage of the constraint

approach to represent spatial data is the uniform rep-

resentation of the various spatial entities. Whereas in

GIS one normally defines a special data-type for each

spatial object such as line, poly-line, circle,..., each of

those are now represented by constraints in the same

constraint language.

Other common scenarios of constraint databases

include: dense order constraints over the rationals, where

O = (<,(c)c2Q) and M¼ hQ;Oi. That is, rational

numbers with order and constants for every c 2 Q;

and constraints over strings, where O = ((fa)a2S,≺,el)

andM¼ hS�;Oi [1]. Here, S is a finite alphabet, fa
is a function that adds a at the end of its argument,≺ is

the prefix relation and el(x, y) is a binary predicate that

holds if jxj = jyj, where j�j stands for the length of a

finite string. In the latter case, theM-definable sets are

precisely the regular languages over S.
Finally, standard relational databases with schema

R can be considered as constraint databases over

equality constraints over an arbitrary infinite domain

U, where O ¼ ððcÞc2UÞ and M¼ hU;Oi. Indeed,

consider a tuple t = (a1,...,an) consisting of some

constants ai 2 U, for i 2 [1,n]. The tuple t can be

expressed by the formula ’t(x1,...,xn) = (x1 = a1)

∧...∧ (xn = an) over the signature O ¼ ððcÞc2UÞ.
More generally, an instance I = {t1,...,tN} over R 2 R
corresponds to ’I ¼

WN
i¼1’t i

. Therefore, a relational

instance (I1,...,I‘) over R can be represented as the

constraint database D defined by Ri 7! ’I i
ðx1;:::;xniÞ,

for i 2 [1,‘]. This shows that constraint databases

indeed generalize standard relational databases.

Cross-references
▶Constraint query languages

▶Geographic information system

▶Relational model

▶ Spatial Data Types

Recommended Reading
1. Benedikt M., Libkin L., Schwentick T., and Segoufin L. Definable

relations and first-order query languages over strings. J. ACM,

50(5):694–751, 2003.

2. Bochnak J., Coste M., and Roy M.F. Real Algebraic Geometry.

Springer, Berlin, 1998.

3. Kanellakis P.C., Kuper G.M., and Revesz P.Z. Constraint query

languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

4. Kuper G.M., Libkin L., and Paredaens J. (eds.) Constraint data-

bases. Springer, Berlin, 2000.

5. Revesz P.Z. Introduction to Constraint Databases. Springer,

Berlin, 2002.

454C Constraint Query Languages
Constraint Query Languages

FLORIS GEERTS

University of Edinburgh, Edinburgh, UK

Definition
A constraint query language is a query language for

constraint databases.

Historical Background
The field of constraint databases was initiated in

1990 in a paper by Kanellakis, Kuper and Revesz [9].

The goal was to obtain a database-style, optimizable

version of constraint logic programming. It grew out

of the research on DATALOG and constraint logic

programming. The key idea was that the notion of

tuple in a relational database could be replaced by a

conjunction of constraints from an appropriate lan-

guage, and that many of the features of the relational

model could then be extended in an appropriate way.

In particular, standard query languages such as those

based on first-order logic and DATALOG could be

extended to such a model.

It soon became clear, however, that recursive con-

straint query languages led to non-effective languages.

The focus therefore shifted to non-recursive constraint

query languages. The standard query language is the

constraint relational calculus (or equivalently, the con-

straint relational algebra). The study of this query lan-

guage turned out to lead to many interesting research

problems. During the period from 1990 to 2000, the

constraint setting has been studied in great generality

which led to deep connections between constraint data-

bases and embedded finite model theory. Also, the

potential application of constraint databases in the

spatial context led to numerous theoretical results

and concrete implementations such as the DEDALE

and the DISCO systems. The connection with so-called

o-minimal geometry underlies many of the results in

the spatial setting. The success of this research led to

the publication of a comprehensive survey of the area in

2000 [11] and a textbook in 2002 [13].

In recent years, constraint query languages have

been studied in new application domains such a

strings, spatio-temporal and moving objects.

Foundations
In the constraint model, a database is viewed as a

collection of constraints specified by quantifier-free
first-order logic formulas over some fixed vocabu-

lary O. When interpreted over an O-structure
M¼ hU;Oi, each constraint corresponds to an

M-definable set. Consequently, when interpreted

over M, an O-constraint database corresponds to a

collection ofM-definable sets. For instance, consider

the vocabulary O = (þ, �, 0, 1, <) andM¼ hR;Oi.
Constraints in first-order logic over O, denoted

by FO(O), correspond to Boolean combinations of

polynomial inequalities with integer coefficients. The

corresponding M-definable sets are better known as

semi-algebraic sets. Let R ¼ fR; Sg be a relational

schema consisting of two binary relations R and S

and let D be the constraint database that maps

R 7! ’R(x, y) = (x2 þ y2 	 1) ∧ (y � x � 0) and

S 7! ’S(x, y) = (x2 + y2 	 1) ∧ (�y � x � 0). The two

M-definable sets in R2 corresponding to ’R and ’S

are shown in Figs. 1(a) and (b) respectively.

A constraint database can therefore be viewed from

two different perspectives: First, one can simply look

at the finite representations (constraints) stored in

them; Second, one can regard them as a set of definable

sets. Whereas in traditional relational databases, a

query is simply a mapping that associates with each

database an answer relation, in the constraint setting

the two different perspectives give rise to two different

notions of queries.

Indeed, for a fixed vocabulary O, relational schema

R consisting of relation names R1,...,R‘, where each

relation Ri is of arity ni > 0, and natural number k, a

k-ary constraint query with schema R over O, is a

(partial) function Q that maps each O-constraint data-
basesD with schemaR to a k-aryO-constraint relation
Q(D). That is, a constraint query works entirely on the

representational (constraint) level. On the other hand,

given an additional O-structureM¼ hU;Oi, a k-ary

unrestricted query with schemaR overM is a (partial)

function Q that maps each collection D of sets in Uni ,

for i 2 [1, ‘], to a set Q(D) in Uk . Such a collection of

setsUni , for i 2 [1, ‘], is called an unrestricted database

with schema R overM.

For instance, consider again O = (þ, �,0,1,<)

and R ¼ fR; Sg. The mapping Q1 that associates

each O-constraint database D over R with the binary

O-constraint relation defined by taking the disjunction

of the constraints in R and S, is an example of a 2-ary

constraint query overO. When applied on the database

D given above,Q1(D) is mapped to ’R(x, y)∨ ’S(x, y).

Similarly, the mapping Q2 that maps D to the

Constraint Query Languages. Figure 1. Sets inR2 defined by ’R(x, y) (a); by ’S(x, y) (b); by ’R(x, y)∨ ’S(x, y) (c); and by

’1(x, y) (d). The set in R defined by ’2(x) (e). An example of a non-definable set in R2 (f).

Constraint Query Languages C 455

C

constraint in R or S that contains the polynomial with

the largest coefficient (if there is no such unique con-

straint then Q2 is undefined) is also a constraint query.

It will be undefined on the example database D

since both R and S consist of a polynomial with coeffi-

cient one.

So far, only constraint queries have been consid-

ered. To relate constraint and unrestricted queries

requires some care. Clearly, a constraint query only

makes sense if it corresponds to an unrestricted query.

In this case, a constraint query is called consistent. More

formally, a constraint query Q is called consistent if

there exists an unrestricted query Q0 such that for any

constraint database D and any unrestricted database

D0, ifD representsD0, thenQ(D) is defined if and only

if Q0(D0) is defined and furthermore, Q(D) represent

Q0(D0). One also says that Q represents Q0.

For instance, consider again O = (þ, �,0,1,<),

M¼ hR;Oi and R ¼ fR; Sg. The mapping ~Q1 that

assigns to any two sets A
 R2 and B
 R2,

corresponding to R and S, respectively, their union

A [B
 R2 is an unrestricted query. It is clear that

Q1 and ~Q1 satisfy the condition of consistency and

therefore Q1 is consistent. Fig. 1(c) shows ~Q1(D0) for

the unrestricted databaseD0 shown in Fig. 1(a) and (b).

This set is indeed represented by the constraint rela-

tion Q1(D) 7! ’R(x, y) ∨ ’S(x, y). On the other hand,

it is easily verified that Q2 is not consistent. Indeed, it

suffices to consider the behavior of Q2 on D defined

above and D0 defined by R 7! ’0R(x, y) = (x2 + y2 	 1)

∧ (6(y � x) � 0) and S 7! ’0S(x, y) = (x2 + y2 	 1) ∧
(�y� x� 0). While both D and D0 represent the same

unrestricted database, note that Q2(D) is undefined

while Q2(D
0) 7! ’R. Hence, no unrestricted query

that is consistent with Q2 can exist.

Finally, unrestricted queries are defined without

any reference to the class ofM-definable sets. A desir-

able property, however, is that when an unrestricted

query Q is defined on an unrestricted database D that

consists of M-definable sets, then also Q(D) is an
M-definable set. Such unrestricted queries are called

closed. Note that an unrestricted query that is repre-

sented by a consistent constraint query is uniquely

defined and moreover is trivially closed. An example

of an unrestricted query for O = (+,�,0,1,<) and

M¼ hR;Oi that is not closed is the query Q that

maps anyM-definable set A in R2 to its intersection

A \ ℚ2. Fig. 1(f) shows (approximately) the result of

this query on ~Q1(D0) (i.e., Fig. 1(c)). Since this is not a

semi-algebraic set inR2, it cannot be defined by means

of a quantifier-free FO(O)-formula. As a consequence,

Q is not closed.

Now that the notion of query is defined in the

setting of constraint databases, the basic constraint

query language is introduced. This language, in the

same spirit as the relational calculus for traditional

relational databases, is the relational calculus or first-

order logic of the given class of constraints. More

specifically, given a vocabulary O and relational sche-

ma R, a relational calculus formula over O is a first-

order logic formula over the expanded vocabulary

ðO;RÞ obtained by expanding O with the relation

names (viewed as predicate symbols) of the schema

R. This class of queries is denoted by FOðO;RÞ, or
simply FO(O) whenR is understood from the context.

For instance, for O = (þ, �, 0, 1, <) and

R ¼ fR; Sg, the expressions ’1(x, y) = (R(x, y) ∨
S(x, y)) ∧ x > 0 and ’2(x) = ∃y’1(x, y) are formulas

in FO(þ, �, 0, 1, <, R, S).

Given an O-structure M¼ hU;Oi, formulas in

FOðO;RÞ express (everywhere defined) unrestricted

queries with schema R over M. Indeed, a formula

’ðx1;:::;xkÞ 2 FOðO;RÞ defines the k-ary unrestricted
query Q overM as follows: consider the expansion of

M to a structure hM;Di ¼ hU;O;Di over the ex-

panded vocabulary ðO;RÞ by adding the sets in the

unrestricted database D toM for each Ri 2 R. Then,
QðDÞ¼ fða1;:::;akÞ2Uk j 0hM;Di � ’ða1;:::;akÞg:

For instance, for O = (þ,�,0,1,<) and

M¼hR;OÞ, the formula ’1(x, y) defined above

456C Constraint Query Languages
corresponds to the unrestricted query Q1 that takes the

union of the two sets in R2 corresponding to R and S,

respectively, restricted to those points in R2 with

strictly positive x-coordinate. Similarly for ’2, but

with an additional projection on the x-axis. The results

of these two unrestricted queries have been shown in

Figs. 1(d), (e), respectively.

The previous example raises the following two

questions: (i) are the unrestricted queries expressed

by formulas in first-order logic closed, and (ii) if so,

can one find a corresponding constraint query that is

effectively computable? The fundamental mechanism

underlying the use of first-order logic as a constraint

query language is the following observation that pro-

vides an answer to both questions:

" Every relational calculus formula ’ expresses a consis-

tent, effectively computable, total constraint query

that represents the unrestricted query expressed by

’, if and only if M admits effective quantifier

elimination.

Here, an O-structure M admits effective quantifier

elimination if there exists an effective algorithm that

transforms any first-order formula in FO(O) to an

equivalent (in the structure M) quantifier-free first-

order formula in FO(O).
Consider the two FO(þ,�,0,1,<, R, S)-formulas

’1 and ’2 given above. It is known that the struc-

ture hR, þ, �, 0, 1, <) admits effective quantifier-

elimination. In case of ’1 it is easy to see that the result

of corresponding constraint query is obtained by

‘‘plugging’’ in the constraints for R (resp. S) as given

by the constraint database into the expression for ’1.

That is, on the example database D, ’1 corresponds

to the constraint query that maps D to (’R(x, y) ∨
’S(x, y)) ∧ (x > 0), which is a 2-ary O-constraint
relation. In case of ’2, however, first plug in the

descriptions of the constraints as before, resulting in

∃y (’R(x, y) ∨ ’S(x, y)) ∧ (x > 0). In order to obtain

an O-constraint relation, one needs perform quantifi-

er-elimination. It is easily verified that in this example,

a corresponding constraint query is one that maps D

to (0 < x) ∧ (x 	 1) which is consistent with Fig. 1(e).

ForO-structuresM that admit effective quantifier-

elimination, this suggests the following effective evalu-

ation mechanism for constraint relational calculus

queries ’ on a constraint database D: (i) plug in

the contents of D in the appropriate slots (relations).

Denote the resulting formula by plug(’, D); and
(ii) eliminate the quantifiers in plug(’, D). Since D

consists of quantifier-free formulas, the number of

quantifiers that need to be eliminated is the same as in

’ and is therefore independent of D. For many struc-

turesM this implies that the evaluation of constraint

queries can be done in polynomial data complexity,

which is a desirable property for any query language.

It is important to point out that the classical equiv-

alence between the relational calculus and the relation-

al algebra can be easily extended to the constraint

setting. That is, for a fixed O and schema R, one can
define a constraint relational algebra and show that

every constraint relational calculus formula can be

effectively converted to an equivalent constraint rela-

tional algebra expression, and vice versa. This equiva-

lence is useful for concrete implementations of

constraint database systems.

The study of expressivity of FOðO;RÞ for various
O-structures M has led to many interesting results.

In particular, the impact of the presence of the ‘‘extra’’

structure on the domain elements in U has been

addressed when D consists of an ordinary finite

relational database that takes values from U [3]. In

particular, the correspondence between natural and

active-domain semantics has been revisited. That is,

conditions are identified for M¼ hU;Oi such that

the language FOðO;RÞ is equal to FOactðO;RÞ, the
query language obtained by interpreting 8x and ∃x
over the active domain of D instead of over U.

Such structures are said to admit the natural-

active collapse. Similarly, ordered structures M are

identified that admit the active-generic collapse. That

is, FOactðO;RÞ is equal to FOactð<;RÞ with respect to

the class of generic queries. In other words, every

generic query definable under active domain semantics

with O-constraints is already definable with just order

constraints. Finally, structuresM are considered that

allow the natural-generic collapse. This is the same as

the active-generic collapse but with natural domain

semantics instead of active domain semantics. The

study of these collapse properties for various structures

not only sheds light on the interaction of the structure

on U and the query language, it is also helpful to

understand the expressiveness of constraint query

languages [3,11].

Indeed, let O = (þ, �, 0, 1, <) andM¼ hR;Oi.
It can be shown that M admits all three collapses

because it is a so-called o-minimal structure. As a

consequence, the query EVEN that returns yes if the

Constraint Query Languages C 457

C

cardinality of D is even and no otherwise, is not ex-

pressible in FOðO;RÞ. Indeed, if it would be express-

ible by a query ’ in FOðO;RÞ it would already have

been expressible by a query in FOactð<;RÞ, which is

known not to be true in the traditional database

setting.

The expressivity of FOðO;RÞ has been studied ex-

tensively as well when D corresponds to sets of infinite

size. In particular, expressiveness questions have

been addressed in the spatial setting where O = (+, �,
0, 1, <) and M¼ hR;Oi (polynomial constraints);

and O0 = (þ, 0, 1, <) andM¼ hR;O0i (linear con-
straints). In this setting, many reductions are pre-

sented in [7] to expressiveness questions in the finite

case. Combined with the collapse results mentioned

above, these reductions were used to show that, for

example, topological connectivity of O- (resp. O0-)
constraint databases is not expressible in first-order

logic. Indeed, a proof of this results relies on the fact

that the EVEN-query is not expressible in FOðO;RÞ
(resp. FOðO0;RÞ) [7].

An interesting line of work in the spatial context

concerns the expressive power of FOðO;RÞ with respect

to queries that preserve certain geometrical properties.

More formally, let G be a group of transformations of

Rk. A query Q is called G-generic if, for every transfor-
mation g 2 G, and for any two databases D and D0,
g(D) = D0 implies g(Q(D)) = Q(D0). Transformation

groups and properties of the corresponding generic

queries have been studied for the group of homeo-

morphisms, affinities, similarities, isometries, among

others [8]. Especially the study of the topologically

queries (those that are generic under homeomorph-

isms) has received considerable attention [10,2].

To conclude, both for the historical reasons men-

tioned above and in view of the limited expressive

power of FOðO;RÞ, various recursive extensions of

FOðO;RÞ have been proposed such as: constraint tran-
sitive-closure logic [5], constraint DATALOG [9], and

FOðO;RÞ extended with a WHILE-loop [8]. The inter-

action of recursion with the structure on U imposed

by O leads in most cases to computationally com-

plete query languages. Worse still, queries defined in

these languages may not be closed or even terminate.

To remedy this, special-purpose extensions of FOðO;RÞ
have been proposed that guarantee both termina-

tion and closure. Characteristic examples include

FOðO;RÞ þ AVG and FOðO;RÞ þ SUM in the con-

text of aggregation [4]. In the spatial setting,
extensions of FOðO;RÞ with various connectivity

operators have been proposed [1].

Results concerning constraint query languages have

been both extended to great generality and applied to

concrete settings. Refer to [14] for a gentle introduction

and to [11] for a more detailed survey of this research

area up to 2000. Some more recent results are included

in Chapter 5 of [12] for the general constraint setting

and Chapter 12 in [6] for the spatial setting.

Key Applications
Manipulation and querying of constraint databases,

querying of spatial data.

Cross-references
▶Computationally Complete Relational Query

Languages

▶Constraint Databases

▶ FOL

▶ FOLModeling of IntegrityConstraints (Dependencies)

▶Query Language

▶Relational Calculus

▶Relational Model

Recommended Reading
1. Benedikt M., Grohe M., Libkin L., and Segoufin L. Reachability

and connectivity queries in constraint databases. J. Comput.

Syst. Sci., 66(1):169–206, 2003.

2. Benedikt M., Kuijpers B., Christ of Löding, Van den Bussche J.,

and Wilke T. A characterization of first-order topological prop-

erties of planar spatial data. J. ACM, 53(2):273–305, 2006.

3. Benedikt M. and Libkin L. Relational queries over interpreted

structures. J. ACM, 47(4):644–680, 2000.

4. Benedikt M. and Libkin L. Aggregate operators in constraint

query languages. J. Comput. Syst. Sci., 64(3):628–654, 2002.

5. Geerts F., Kuijpers B., and Van den Bussche J. Linearization and

completeness results for terminating transitive closure queries

on spatial databases. SIAM J. Comput., 35(6):1386–1439, 2006.

6. Geerts F. and Kuijpers B. Real algebraic geometry and constraint

databases. In M. Aiello, I. Pratt-Hartmann, and J. Van Benthem,

editors, Handbook of Spatial Logics. Springer 2007.

7. Grumbach S. and Su J. Queries with arithmetical constraints.

Theor. Comput. Sci., 173(1):151–181, 1997.

8. Gyssens M., Van den Bussche J., and Van Gucht D. Complete

geometric query languages. J. Comput. Syst. Sci., 58(3):483–511,

1999.

9. Kanellakis P.C., Kuper G.M., and Revesz P.Z. Constraint Query

Languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

10. Kuijpers B., Paredaens J., and Van den Bussche J. Topological

elementary equivalence of closed semi-algebraic sets in the real

plane. J. Symb. Log., 65(4):1530–1555, 2000.

11. Kuper G.M., Libkin L., and Paredaens J. Constraint Databases.

editors. Springer, 2000.

458C Constraint-Driven Database Repair
12. Libkin L. Embedded finite models and constraint databases.

In Grädel E., Kolaitis P.G., Libkin L., Marx M., Spencer J.,

Vardi M.Y., Venema Y. and Weinstein S., editors, Finite Model

Theory and Its Applications. Springer, 2007.

13. Revesz P.Z. Introduction to Constraint Databases. Springer,

2002.

14. Van den Bussche J. Constraint databases. A tutorial introduc-

tion. ACM SIGMOD Record, 29(3):44–51, 2000.
Constraint-Driven Database Repair

WENFEI FAN1,2

1University of Edinburgh, Edinburgh, UK
2Bell Laboratories, Murray Hill, NJ, USA

Synonyms
Data reconciliation; Minimal-change integrity mainte-

nance; Data standardization

Definition
Given a set S of integrity constraints and a database

instance D of a schema R, the problem of constraint-

driven database repair is to find an instance D 0 of the
same schema R such that (i) D 0 is consistent, i.e., D 0

satisfies S, and moreover, (ii) D 0 minimally differs

from the original database D, i.e., it takes a minimal

number of repair operations or incurs minimal cost to

obtain D 0 by updating D.

Historical Background
Real life data is often dirty, i.e., inconsistent, inaccu-

rate, stale or deliberately falsified. While the prevalent

use of the Web has made it possible, on an unprece-

dented scale, to extract and integrate data from diverse

sources, it has also increased the risks of creating and

propagating dirty data. Dirty data routinely leads to

misleading or biased analytical results and decisions,

and incurs loss of revenue, credibility and customers.

With this comes the need for finding repairs of dirty

data, and editing the data to make it consistent. This

is the data cleaning approach that US national statisti-

cal agencies, among others, has been practicing for

decades [10].

The notion of constraint-based database repairs is

introduced in [1], highlighting the use of integrity

constraints for characterizing the consistency of the

data. In other words, constraints are used as data

quality rules, which detect inconsistencies as violations

of the constraints. Prior work on constraint-based
database repairs has mostly focused on the following

issues. (i) Integrity constraints used for repair. Earlier

work considers traditional functional dependencies,

inclusion dependencies and denial constraints [1,2,4,

6,12]. Extensions of functional and inclusion depen-

dencies, referred to as conditional functional and

inclusion dependencies, are recently proposed in [3,9]

for data cleaning. (ii) Repair semantics. Tuple deletion

is the only repair operation used in [6], for databases in

which the information is complete but not necessarily

consistent. Tuple deletion and insertion are conside-

red in [1,4] for databases in which the information

may be neither consistent nor complete. Updates, i.e.,

attribute-value modification are proposed as repair

operations in [12]. Cost models for repairs are studied

in [2,8]. (iii) Algorithms. The first algorithms for

finding repairs are developed in [2], based on tradition-

al functional and inclusion dependencies. Algorithms

for repairing and incrementally repairing databases are

studied in [8], using conditional functional dependen-

cies. The repair model adopted by these algorithms

supports updates as repair operations. (iv) Fundamen-

tal issues associated with constraint-based repairs. One

issue concerns the complexity bounds on the database

repair problem [2,6]. Another issue concerns the static

analysis of constraint consistency [3,9] for determining

whether a given set of integrity constraints is dirty

or not itself.

Constraint-based database repairs are one of the

two topics studied for constraint-based data cleaning.

The other topic, also introduced in [1], is consistent

query answers. Given a query Q posed on an inconsis-

tent database D, it is to find tuples that are in the

answer of Q over every repair of D. There has been a

host of work on consistent query answers [1,4,6,11,12]

(see [5,7] for comprehensive surveys).

Foundations
The complexity of the constraint-based database repair

problem is highly dependent upon what integrity con-

straints and repair model are considered.

Integrity Constraints for Characterizing Data

Consistency

A central technical issue for data cleaning concerns how

to tell whether the data is dirty or clean. Constraint-based

database repair characterizes inconsistencies in terms of

violations of integrity constraints. Constraints employed

for data cleaning include functional dependencies,

Constraint-Driven Database Repair C 459

C

inclusion dependencies, denial constraints, conditional

functional dependencies and conditional inclusiondepen-

dencies. To illustrate these constraints, consider the fol-

lowing relational schema R, which consists of three

relation schemas:

customer(name, country-code, area-code, phone,

city, street, zip)

order(name, country-code, area-code, phone,

item-id, title, price, item-type)

book(isbn, title, price, format)

Traditional functional dependencies and inclusion

dependencies defined on the schema R include:

FD: customer(country-code, area-code, phone !
city, street, zip)

IND: order(name, country-code, area-code,

phone)
 customer(name, country-code, area-code,

phone)

The functional dependency FD asserts that the phone

number (country-code, area-code and phone) of a cus-

tomer uniquely determines her address (state, city, street,

zip). That is, for any two customer tuples, if they have

the same country-code, area-code and phone number,

then they must have the same state, city, street, zip

code. The inclusion dependency IND asserts that for

any order tuple t, there must exist a customer tuple

t 0 such that t and t 0 match on their name, country-

code, area-code and phone attributes. In other words,

an item cannot be ordered by a customer who does

not exist.
Constraint-Driven Database Repair. Figure 1. Example data
Consider a set S consisting of FD and IND . One

may want to use S to specify the consistency of data-

base instances of R. An example instance D of R is

shown in Fig. 1. This database is inconsistent, because

tuples t3 and t4 in D violate the functional dependency

FD . Indeed, while t3 and t4 have the same country-

code, area-code and phone number, they differ in their

street attributes. In other words, t3, t4 or both of them

may be dirty.

One may also want to add a denial constraint to the

set S:
DC : 8nm, cc, ac, ph, id, tl, tp, pr: (order(nm, cc,

ac, ph, id, tl, pr, tp) ∧pr > 100)

Here nm, cc, ac, ph, id, tl, tp, pr stand for name,

country-code, area-code, phone number, item-id, title,

item type and price, respectively. This constraint says

that no items in the order table may have a price higher

than 100. In the database D of Fig. 1, tuple t6 violates

the constraint DD : the price of the CD is too high to

be true. In general denial constraints can be expressed

as universally quantified first-order logic sentences of

the form:

8�x1;:::;�xm :ðR1ð�x1Þ ^ :::^Rmð�xmÞ ^’ð�x1;:::;�xmÞÞ;

where Ri is a relation symbol for i 2 [1,m], and ’ is a

conjunction of built-in predicates.

Now consider an instance D 0 of D by removing t3
from D and changing t6[pr] to, e.g., 7.99. Then the

database D 0 satisfies S. However, D 0 is not quite clean:
it violates each of the following constraints. In other
base instance.

460C Constraint-Driven Database Repair
words, if one further extends S by including the fol-

lowing constraints, then D0 no longer satisfies S.

CFD1 : customer(country-code = 44, zip! street)

CFD2 : customer(country-code = 44, area-code =

131, phone! city = EDI, street, zip)

CFD3 : customer(country-code = 01, area-code =

908, phone! city = MH, street, zip)

CIND1 : order(id, title, price; item-type = book)

book(isbn, title, price)

Here CFD1, CFD2 and CFD3 are conditional function-

al dependencies defined on the customer relation. The

constraint CFD1 asserts that for each customer in the

UK, i.e., when the country code is 44, her zip code

uniquely determines her street. In contrast to tradi-

tional functional dependencies, CFD1 does not hold on

the entire customer relation. Indeed, it does not hold

on customer tuples with, e.g., country-code = 01. In-

stead, it is applicable only to the set of customer tuples

with country-code = 44. Constraints CFD2 and CFD3

refine the traditional functional dependency FD given

earlier: CFD2 requires that when the country-code is

44 and area-code is 131, the city must be Edinburgh

(EDI); similarly for CFD3. None of these can be

expressed as traditional functional dependencies.

The constraint CIND1 is a conditional inclusion

dependency, asserting that when the type of an item

t in the order table is book, there must exist a

corresponding tuple t 0 in the book table such that

t and t 0 match on their id, title and price. Again this is

a constraint that only holds conditionally. Indeed,

without the condition item-type = book, a traditional

inclusion dependency order(id, title, price)
 book

(isbn, title, price) does not make sense since, among

other things, it is unreasonable to require each

CD item in the order table to match a tuple in the

book table.

These conditional dependencies tell us that the

database D 0 is not clean after all. Indeed, tuples t1,t2
in the customer table violate CFD1: while they both

represent customers in the UK and have the same zip

code, they differ in their street attributes. Furthermore,

each of t1 and t2 violates CFD2: while its area-code is

131, its city is NYC instead of EDI. Similarly, t4 violates

CFD3. From these one can see that while it takes two

tuples to violate a traditional functional dependency, a

single tuple may violate a conditional functional de-

pendency. The inconsistencies in D 0 are not limited to

the customer table: while tuple t5 in the order table has
item-type = book, there exists no tuple t 0 in the book

table such that t5 and t 0 match on their id, title and

price attributes. Thus either t5 in the order table is

not error-free, or the book table is incomplete or

inconsistent.

Conditional functional and inclusion dependencies

are extensions of traditional functional and inclusion

dependencies, respectively. In their general form each

conditional functional (resp. inclusion) dependency is

a pair comprising of (i) a traditional functional (resp.

inclusion) dependency and (ii) a pattern tableau con-

sisting of tuples that enforce binding of semantically

related data values. Traditional functional (resp. inclu-

sion) dependencies are a special case of conditional

functional (resp. inclusion) dependencies, in which

the tableaux do not include tuples with patterns of

data values. As opposed to traditional functional and

inclusion dependencies that were developed mainly for

schema design, conditional functional and inclusion

dependencies aim to capture the consistency of the

data, for data cleaning. As shown by the example

above, conditional dependencies are capable of detect-

ing more errors and inconsistencies than what their

traditional counterparts can find.

In summary, integrity constraints specify a funda-

mental part of the semantics of the data. Indeed, errors

and inconsistencies in real-world data often emerge as

violations of integrity constraints. The more expressive

the constraints are, the more errors and inconsistencies

can be caught. On the other hand, as will be seen

shortly, the expressive power of the constraints often

comes with the price of extra complexity for finding

database repairs.

Repair Models

Consider functional dependencies, inclusion depen-

dencies, denial constraints, conditional functional

dependencies and inclusion dependencies. Given a da-

tabase instance D of a schema R, if D violates a set S
consisting of these constraints, one can always editD to

obtain a consistent instance D 0 of R, such that D 0

satisfies S. An extreme case is to delete all tuples

from D and thus get an empty D 0. Such a fix is obvi-

ously impractical: it removes inconsistencies as well as

correct information. Apparently database repairs

should not be conducted with the price of losing infor-

mation of the original data. This motivates the criteri-

on for database repairs to minimally differ from the

original data.

Constraint-Driven Database Repair C 461

C

Several repair models have been proposed [1,6].

One model allows tuple deletions only, assuming that

the information in the database D is inconsistent but

is complete. In this model, a repair D 0 is a maximal

subset of D that satisfies S. For example, consider S
consisting of FD given above, and the database D

shown in Fig. 1. Then a repair of D can be obtained

by removing either t3 or t4 from the customer table.

Another model allows both tuple deletions and

insertions. In this model, a repair D 0 is an instance of

R such that (i) D 0 satisfies S, and (ii) the difference

between D and D 0, i.e., (D ∖ D 0) [(D0∖ D), is minimal

when D 0 ranges over all instances of R that satisfy S. As
an example, let S consist of FD and CIND given above,

and D be the database of Fig. 1. Then one can obtain a

repair of D either by removing both t3 and t5, or by

removing t3 but inserting a tuple t 0 to the book table

such that t5 and t 0 agree on their id, title and price

attributes.

A more practical model is based on updates, i.e.,

attribute-value modifications. To illustrate this, let us

consider S consisting of all the constraints that have

been encountered, i.e., FD, IND, DD, CFD1, CFD2,

CFD3 and CIND given above, and the database D of

Fig. 1. Observe that every tuple in the customer rela-

tion violates at least one of the (conditional) functional

dependencies in S. In the two models mentioned

above, the only way to find a repair is by removing all

tuples from the customer table. However, it is possible

that only some fields in a customer tuple are not

correct, and thus it is an overkill to remove the entire

tuple. A more reasonable fix is to update the tuples by,

e.g., changing t1[city] and t2[city] to EDI (for CFD2),

t1[street] to Crichton (forCFD1), t3[city] and t4[city]

to MH (for CFD3), t3[street] to Mountain Ave

(for FD), t6[price] to 7.99 (for DD), and t5[title] to

Harry Porter (for CIND). This yields a repair in the

update model.

An immediate question about the update model

concerns what values should be changed and what

values should be chosen to replace the old values.

One should make the decisions based on both the

accuracy of the attribute values to be modified, and

the ‘‘closeness’’ of the new value to the original value.

Following the practice of US national statistical agencies

[10], one can define a cost metric as follows [2,8].

Assuming that a weight in the range [0,1] is associated

with each attribute A of each tuple t in D, denoted

by w(t,A) (if w(t,A) is not available, a default weight
can be used instead). The weight reflects the confi-

dence of the accuracy placed by the user in the attribute

t[A], and can be propagated via data provenance

analysis in data transformations. For two values v,v 0

in the same domain, assume that a distance function

dis(v,v 0) is in place, with lower values indicating great-

er similarity. The cost of changing the value of an

attribute t[A] from v to v 0 can be defined to be:

cost ðv; v0Þ ¼ wðt ;AÞ � dis ðv; v0Þ=max ðjvj; jv0jÞ;
Intuitively, the more accurate the original t[A] value v

is and more distant the new value v 0 is from v, the

higher the cost of this change. The similarity of v and

v 0 is measured by dis(v,v 0) ∕max(jvj,jv 0j), where jvj is
the length of v, such that longer strings with 1-charac-

ter difference are closer than shorter strings with

1-character difference. The cost of changing the value

of a tuple t to t 0 is the sum of cost(t[A],t 0[A]) when A

ranges over all attributes in t for which the value of t

[A] is modified. The cost of changing D to D0, denoted
by cost(D 0,D), is the sum of the costs of modifying

tuples in D. A repair of D in the update model is

an instance D0 of R such that (i) D 0 satisfies S, and
(ii) cost(D0,D) is minimal when D 0 ranges over all

instances of R that satisfy S.
The accuracy of a repair can be measured by preci-

sion and recall metrics, which are the ratio of the

number of errors correctly fixed to the total number

of changes made, and the ratio of the number of errors

correctly fixed to the total number of errors in the

database, respectively.

Methods for Finding Database Repairs

It is prohibitively expensive to find a repair of a dirty

database D by manual effort. The objective of

constraint-based database repair is to automatically

find candidate repairs of D. These candidate repairs

are subject to inspection and change by human experts.

There have only been preliminary results on methods

for finding quality candidate repairs, as outlined below.

Given a set S of integrity constraints, either defined

on a schema R or discovered from sample instances of

R, one first wants to determine whether or not S is

dirty itself. That is, before S is used to find repairs ofD,

one has to check, at compile time, whether or not S
is consistent or makes sense, i.e., whether or not

there exists a nonempty database instance of R that

satisfies S. For traditional functional and inclusion

dependencies, this is not an issue: one can specify

462C Constraint-Driven Database Repair
arbitrary functional and inclusion dependencies without

worrying about their consistency. While conditional in-

clusion dependencies alone retain this nice property, it is

no longer the case when it comes to conditional func-

tional dependencies. For example, consider the follow-

ing conditional functional dependencies: c1 = R(A =

true! B = b1), c2 = R(A = false! B = b2), c3 = R(B =

b1! A = false), and c4 = R(B = b2! A = true), where

the domain of attribute A is Boolean. While each of

these constraints can be separately satisfied by a non-

empty database instance, there exists no nonempty

instance that satisfies all of these constraints. Indeed,

for any tuple t in an instance, no matter what Boolean

value t[A] has, these constraints force t[A] to take the

other value from the Boolean domain.

The consistency problem is already NP-complete

for conditional functional dependencies alone [9], and

it becomes undecidable for conditional functional and

inclusion dependencies taken together [3]. In light of

the complexity, the consistency analysis is necessarily

conducted by effective heuristic methods, ideally with

performance guarantee. There has been approximate

algorithms developed for checking the consistency of

conditional functional dependencies, and heuristic

algorithms for conditional functional and inclusion

dependencies taken together.

After S is confirmed consistent, one needs to

detect the inconsistencies in the database D, i.e., to

find all tuples in D that violate one or more constraints

in S. It has been shown that it is possible to automati-

cally generate a fixed number of SQL queries from S,
such that these queries can find all violations in D. This

strategy works when S consists of functional depen-

dencies, inclusion dependencies, conditional function-

al and inclusion dependencies [9]. Better yet, the size

of the queries is dependent upon neither the number

of constraints in S nor the pattern tableaux in the

conditional dependencies in S.
After all violations are identified, the next step is

to find an accurate repair of D by fixing these viola-

tions. This is challenging: in the repair model based

on attribute-value updates, the problem of finding a

database repair is already NP-complete even when the

database schema is fixed and only a fixed number of

traditional functional (or inclusion) dependencies are

considered [2].

To cope with the tractability of the problem, several

heuristic algorithms have been developed, based on

the cost model given above. A central idea of these

algorithms is to separate the decision of which attribute
values should be equal from the decision of what value

should be assigned to these attributes. Delaying value

assignment allows a poor local decision to be improved

in a later stage of the repairing process, and also allows

a user to inspect and modify a repair. To this end an

equivalence class eq(t,A) can be associated with each

tuple t in the dirty database D and each attribute A in t.

The repairing is conducted by merging and modifying

the equivalence classes of attributes in D. For example,

if tuples t1,t2 in D violate a functional dependency

R(X ! A), one may want to fix the inconsistency by

merging eq(t1,A) and eq(t2,A) into one, i.e., by forcing

t1 and t2 to match on their A attributes. If a tuple t1
violates an inclusion dependency R1[X]
 R2[Y], one

may want to resolve the conflict by finding an existing

tuple t2 in the R2 relation or inserting a new tuple t2
into the R2 table, such that for each corresponding

attribute pair (A,B) in [X] and [Y], t1[A] = t2[B] by

merging eq(t1,A) and eq(t2,B) into one. A target value

is assigned to each equivalence class when no more

merging is possible.

Based on this idea, effective heuristic algorithms have

been developed for repairing databases using traditional

functional and inclusion dependencies (e.g., [8]). The

algorithms modify tuple attributes in the right-hand

side of a functional or inclusion dependency in the pres-

ence of a violation. This strategy, however, no longer

works for conditional functional dependencies: the pro-

cess may not even terminate if only tuple attributes in the

right-hand side of a conditional functional dependency

can be modified. Heuristic algorithms for repairing con-

ditional functional dependencies have been develo-

ped [8], which are also based on the idea of equivalence

classes but may modify tuple attributes in either the left-

hand side or right-hand side of a conditional functional

dependency in the presence of a violation.

Key Applications
Constraint-based database repairs have a wide range of

applications in, e.g., data standardization, data quality

tools, data integration systems, master data manage-

ment, and credit-card fraud detection.

Future Directions
The study of constraint-based database repair is still in

its infancy. There is naturally much more to be done.

One topic for future research is to identify new integ-

rity constraints that are capable of detecting inconsis-

tencies and errors commonly found in practice,

without incurring extra complexity. The second topic

Content-and-Structure Query C 463

C

is to develop more accurate and practical repair mod-

els. The third topic is to find heuristic methods, with

performance guarantees, for reasoning about integrity

constraints used for data cleaning, such as their consis-

tency and implication analyses. The fourth yet the

most challenging topic is to develop scalable algo-

rithms for finding database repairs with performance

guarantee, such as to guarantee that the precision and

recall of the repairs found are above a predefined

bound with a high confidence.

Cross-references
▶Data Cleaning

▶Data Quality Models

▶Database Dependencies

▶Database Repair

▶ Functional Dependency

▶ Inconsistent Databases

▶Record Linkage

▶Relational Integrity Constraints

▶Uncertain Databases

Recommended Reading
1. Arenas M., Bertossi L.E., and Chomicki J. Consistent

query answers in inconsistent databases. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 68–79.

2. Bohannon P., Fan W., Flaster M., and Rastogi R. A cost-based

model and effective heuristic for repairing constraints by value

modification. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2005.

3. Bravo L., Fan W., and Ma S. Extending dependencies with

conditions. In Proc. 33rd Int. Conf. on Very Large Data Bases,

2007, pp. 243–254.

4. Calı̀ A., Lembo D., and Rosati R. On the decidability and

complexity of query answering over inconsistent and incom-

plete databases. In Proc. 22nd ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2003, pp. 260–271.

5. Chomicki J. Consistent query answering: Five easy pieces. In

Proc. 11th Int. Conf. on Database Theory, 2007, pp. 1–17.

6. Chomicki J. and Marcinkowski J. Minimal-change integrity

maintenance using tuple deletions. Inf. Comput., 197(1–2):

90–121, 2005.

7. Chomicki J. and Marcinkowski J. On the computational com-

plexity of minimal-change integrity maintenance in relational

databases. Inconsistency Tolerance :119–150, 2005.

8. Cong G., Fan W., Geerts F., Jia X., and Ma S. Improving data

quality: Consistency and accuracy. In Proc. 33rd Int. Conf. on

Very Large Data Bases, 2007, pp. 315–326.

9. Fan W., Geerts F., Jia X., and Kementsietsidis A. Conditional

functional dependencies for capturing data inconsistencies.

ACM Trans. Database Syst., 33(2), 2008.

10. Fellegi I. and Holt D. A. systematic approach to automatic edit

and imputation. J. Am. Stat. Assoc., 71(353):17–35, 1976.
11. Lopatenko A. and Bertossi L.E. Complexity of consistent query

answering in databases under cardinality-based and incremental

repair semantics. In Proc. 11th Int. Conf. on Database Theory,

2007, pp. 179–193.

12. Wijsen J. Database repairing using updates. ACM Trans. Data-

base Syst., 30(3):722–768, 2005.
Content Delivery Networks

▶ Storage Grid
Content-and-Structure Query

THIJS WESTERVELD
1,2

1Teezir Search Solutions, Ede, Netherlands
2CWI, Amsterdam, Netherlands

Synonyms
CAS query; CO+S query

Definition
A content-and-structure query is a formulation of an

information need in XML retrieval or, more generally,

in semi-structured text retrieval that includes explicit

information about the structure of the desired result.

Key Points
Content-and-structure query is a term from semi-

structured text retrieval, used predominantly for XML

retrieval. The term refers to a specific way of querying a

structured document collection. In addition to describ-

ing the (topical) content of the desired result, content-

and-structure queries include explicit hints about the

structure of the desired result or the structure of the

context it appears in. Content-and-structure queries

are useful for users who have knowledge about the

collection structure and want to express the precise

structure of the information they are after. For example,

they can express the granularity of the desired results,

e.g., return sections about architecture, or they can

express the structural context of the information they

are looking for, e.g., return sections about architecture

within documents about Berlin. It is up to the retrieval

system to decide how to use the structural hints in

locating the most relevant information. In INEX, the

Initiative for the Evaluation of XML Retrieval [1],

content-and-structure queries are known as CAS

queries or CO+S queries (Content-Only queries with

464C Content-based Image Retrieval (CBIR)
structural hints) and expressed in the NEXI language

[2]. More information on query languages, including

content-only and content-and-structured queries in

the field of XML search can be found in [1].

Cross-references
▶Content-Only Query

▶NEXI

▶XML Retrieval

Recommended Reading
1. Amer-Yahia S. and Lalmas M. XML search: languages, INEX and

scoring. ACM SIGMOD Rec., 35(4):16–23, 2006.

2. Trotman A. and Sigurbjörnsson B. Narrowed extended xpath i

(NEXI). In Advances in XML Information Retrieval: Third In-

ternational Workshop of the Initiative for the Evaluation of

XML Retrieval, INEX 2004. N. Fuhr, M. Lalmas, S. Malik, and

Z. Szlavik (eds). Dagstuhl Castle, Germany, December 6–8, 2004,

Revised Selected Papers , Vol. 3493. Springer, Berlin Heidelberg

New York, GmbH, May 2005. http://www.springeronline.com/

3-540-26166-4.
Content-based Image Retrieval
(CBIR)

▶ Image Database
Content-Based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Definition
Content-based publish/subscribe is a communication

abstraction that supports selective message dissemi-

nation among many sources and many sinks. The

publication message content is used to make notifica-

tion decisions. Subscribers express interest in receiving

messages based on specified filter criteria that are eval-

uated against publication messages. Content-based

publish/subscribe is an instance of the publish/sub-

scribe concept.

Key Points
Content-based publish/subscribe is an instance of the

publish/subscribe concept. In the content-based model
clients interact by publishing messages and subscribing

to messages through the publish/subscribe system. The

key difference between the content-based and other

publish/subscribe models is that the content of publica-

tion messages is used as the basis for disseminating

publications to subscribers. Subscriptions consist of

filters that specify subscriber interests making reference

to publication message content. The publish/subscribe

system matches publications against subscriptions by

evaluating the publication message content against the

filters expressed in subscriptions. The kind of content to

subscribe to that exists in content-based publish/sub-

scribe systems is either out-of-band information and

must be know to clients, or is dynamically discoverable

by clients based on additional support provided by the

system.

A publication message published to the content-

based publish/subscribe system is delivered to all sub-

scribers with matching subscriptions. A subscription

is a Boolean function over predicates. A publication

matches a subscription, if the Boolean function repre-

senting it evaluates to true, otherwise the publication

does not match the subscription.

As in the other publish/subscribe models, the

content-based publish/subscribe model decouples the

interaction among publishing data sources and sub-

scribing data sinks. The same decoupling characteris-

tics as discussed under the general publish/subscribe

concept apply here as well. Specific realizations of this

model found in practice vary in the exact decoupling

offered. To properly qualify as publish/subscribe, at

least the anonymous communication style must exist.

That is publishing clients must not be aware of who

the subscribing clients are and how many subscribing

clients exist, and vice versa. Thus, content-based pub-

lish/subscribe enables the decoupled interaction of

n sources with m sinks for n, m � 1.

In content-based publish/subscribe, the publication

data model is defined by the data model underlying the

definition of publication messages. The publication

data model defines the structure and the type of publi-

cation messages processed by the system. In many

approaches, a publication is a set of attribute-value

pairs, where values are explicitly or implicitly typed.

In explicit typing, each attribute-value pair has an

additional type component specifying the type of

the value. In implicit typing, no type is specified, and

the type interpretation for matching is conveyed by the

operator specified in the subscription referencing the

http://www.springeronline.com/3-540-26166-4
http://www.springeronline.com/3-540-26166-4

Content-Based Publish/Subscribe C 465

C

attribute. The type-based publish/subscribe concept is

a refinement of this based on programming language

type theory.

Some content-based publish/subscribe approaches

exist that define multi-valued attributes, where an attri-

bute may have more than one value. Also, publication

schemas and patterns have been introduced that specify

certain attributes as required, while others are optional.

Besides representing publications as attribute-value

pairs, many other representations of publications have

been introduced in the literature, such as XML, RDF,

and strings.

The subscription language model is closely tied to

the publication data model and defines the subscrip-

tions the publish/subscribe system processes. The sub-

scription language model that corresponds to the

above described attribute-value pair-based publication

data model, represents subscriptions as Boolean func-

tions over predicates. Most content-based publish/

subscribe systems process conjunctions of predicates

only. In these systems, more general subscriptions

must be represented as separate conjunctive subscrip-

tions. A predicate is an attribute- operator-value triple

that evaluates to true or false. Besides representing sub-

scriptions as Boolean functions over predicates, many

other representations of publications have been intro-

duced in the literature, such as XPath, RQL, regular

expressions, and keywords.

Subscription language and publication data model

define subscriptions and publications processed by

the publish/subscribe system. The matching semantic

defines when a publication matches a subscription.

Commonly the matching semantic is crisp; that is a

publication matches a subscription or it does not.

However, other semantics have been explored, such

as an approximate match, a similarity-based match,

or even a probabilistic match.

The publish/subscribe matching problem is stated

as follows: Given a set of subscriptions and a publica-

tion, determine the subscriptions that match for the

given publication. The publish/subscribe system can be

interpreted as a filter that based on the subscriptions

it stores, publications that do not match are filtered

out, while those that match are forwarded to sub-

scribers that have expressed interest in receiving infor-

mation by registering subscriptions. The challenge

is to efficiently solve this problem without compu-

ting a separate match between all subscriptions and

the given publication. This is possible since in many
applications, subscriptions share predicates, subsump-

tion relationships exist among different subscriptions,

and the evaluation of one predicate may allow to

determine the result of other predicates without re-

quiring explicit computation.

Content-based publish/subscribe systems differ in

the publication data model, the subscription language

model, the matching semantic, and the system archi-

tecture. In a system based on a centralized architecture,

all publishers and subscribers connect to one and the

same publish/subscribe system. In a system based on

a distributed architecture, publishers and subscribers

connect to one of many publish/subscribe systems that

are interconnected in a federation. The federated pub-

lish/subscribe system offers the same functionality

and solves the same matching problem as the centra-

lized one.

Content-based publish/subscribe differs from topic-

based publish/subscribe in that the entire message

content is used for matching, while in a topic-based

approach only the topic associated with a message

is used.

Content-based publish/subscribe differs from data-

base stream processing in that the publish/subscribe

systemprocesses publications ofwidely varying schemas.

In the extreme case, every publication processed by

the system could be based on a different schema. In

stream processing, each data stream follows one and

the same schema, which is an important assumption in

thedesignof the streamquery engine.

Content-based publish/subscribe has been an active

area of research, since at least the late 1990s. The early

work in the area was influenced from approaches in

active databases, network management, and distributed

systems. Many academic and industry research projects

have developed content-based publish/subscribe sys-

tems. Various standards exhibit elements of the above

described content-based publish/subscribemodel. These

standards are the CORBA Notification Service [3], the

OMGData Dissemination Service [4], the OGF’s Info-D

specification [2], and the Advanced Message Queuing

Protocol [1].

Content-based publish/subscribe intends to support

applications that need to highly selectively disseminate

messages from one or more data sources to several

data sinks. The mapping of sources to sinks can change

dynamically with every message published and is fully

determined by the publication content and the at publi-

cation time existing subscriptions. Given no change in

466C Content-based Retrieval
the subscription set, one and the same message pub-

lished twice, is sent to the same recipient set. Applica-

tions that require fine-grained filtering capabilities are

ideally suited for realizationwith content-based publish/

subscribe.Most existing publish/subscribe systems allow

the application to dynamically change subscriptions

at run-time. There are many applications that follow

these characteristics. Examples include selective infor-

mation dissemination, information filtering, database

trigger processing, application-level firewalls, intrusion

detection systems, and notification and altering ser-

vices. Furthermore, recently it was demonstrated how

higher-level applications can be build effectively with

content-based publish/subscribe. Scenarios in this cate-

gory are business activity monitoring, business process

execution, monitoring and control of service level agree-

ments, and automatic service discovery.

In the literature, the term content-based publish/

subscribe refers to the above-described model and

encompasses the centralized as well as the distributed

realization of the publish/subscribe concept. In this

context the terms matching and filtering are used inter-

changeably. The term content-based routing is reserved

for the distributed realization of the model, where

the publish/subscribe system is also referred to as

a router, a broker, or a publish/subscribe message

broker. In information retrieval, the publish/subscribe

matching problem is referred to as information filtering.

Subscriptions are then referred to asprofiles orfilters.

Cross-references
▶Content-Based Routing

▶ Publish/Subscribe

▶Type-Based Publish/Subscribe

Recommended Reading
1. AMQP Consortium. Advanced Message Queuing Protocol

Specification, version 0–10 edition, 2008.

2. OGF. Information Dissemination in the Grid Environment Base

Specifications, 2007.

3. OMG. Notification Service Specification, version 1.1, formal/

04–10–11 edition, October 2004.

4. OMG. Data Distribution Service for Real-time Systems, version

1.2, formal/07–01–01 edition, January 2007.
Content-based Retrieval

▶Multimedia Information Retrieval Model
Content-Based Video Retrieval

CATHAL GURRIN

Dublin City University, Dublin, Ireland

Synonyms
Digital video search; Digital video retrieval

Definition
Content-based Video Retrieval refers to the provi-

sion of search facilities over archives of digital video

content, where these search facilities are based on

the outcome of an analysis of digital video content

to extract indexable data for the search process.

Historical Background
As the volume of digital video data in existence constant-

ly increases, the resulting vast archives of professional

video content and UCC (User Created Content) are

presenting an opportunity for the development of

content-based video retrieval systems. Content-based

video retrieval system development was initially lead by

academic research such as the Informedia Digital

Video Library [3] from CMU and the Fı́schlár

Digital Video Suite [6] from DCU (Dublin City Univer-

sity). Both of these systems operated over thousands of

hours of content, however digital video search has now

become an everyday WWW phenomenon, with millions

of items of digital video being indexed by the major

WWW search engines and video upload sites. The early

research focused content-based digital video systems,

such as the offerings from CMU and DCU, exploited

aspects of text search and content-based image search in

order to provide intelligent indexing, retrieval, summari-

zation and visualization of digital video content. In recent

years, the emerging WWW search engines have focused

on the textual indexing of large quantities of digital

video, at the expense of performing complex and time-

consuming visual content analysis.

Foundations
The aim of a content-based video search system is to

answer user queries with a (ranked) list of appropriate

video content. Many different sources of video content

exist and each needs to be treated differently. Firstly

there is professional created content such as TV news

content, documentaries, TV programmes, sports video

and many others. Professional content is directed and

Content-Based Video Retrieval C 467

C

polished content with many visual effects, such as a

movie, music video or TV programme. Secondly there

is the increasing quantities of UCC (User Created

Content), such as home movie content or amateur/

semi-professional content and finally there is security

video content, which is increasingly being captured as

the number of surveillance cameras in use increases. In

addition to the type of content, another factor of key

importance for content-based video search is the

unit of retrieval.

Unit of Retrieval

Different content types will require different units of

retrieval. In most WWW video search systems such as

YouTube or Google Video, the unit of retrieval is

the entire video content, which is sensible because

most of the video content is short UCC or UUC

(User Uploaded Content) clips. Retrieval of entire

video units is not ideal for other types of content, for

example TV news video, where the logical unit of

retrieval would be a news story. There are a number

of units of retrieval that are typically employed in

addition to the entire video unit.

A shot in digital video is a sequence of continu-

ous images (frames) from a single camera. A shot
Content-Based Video Retrieval. Figure 1. StoryBoard Interf
boundary is crossed when a recording instance ends

and a new one begins. In many content-based video

search systems the (automatically segmented) shot is

the preferred unit of retrieval due to the fact that it is

relatively easy to split a video file into its constituent

shot in an automatic process called shot boundary

detection [1]. Once a video stream has been segmented

into shots, it can be browsed or indexed for subsequent

search and retrieval, as shown in Fig. 1. A scene in

digital video is a logical combination of video shots

that together comprise some meaningful semantic

unit. A news story is a special type of scene that is

found in the context of news video. News stories can

be automatically segmented from news video in a

process called story-segmentation. This, like scene seg-

mentation, is not a simple process, though reasonable

accuracy can be achieved by replying on a number of

individual cues from the video content and can be

improved by exploiting the unique video production

techniques of a particular broadcaster. For some video

content, generating a summary or a video skim is a

logical unit of retrieval. These summaries can be inde-

pendent of any user need (context or query) or can be

generated in response to a user need. Summaries have

been successfully employed in the domain of field
ace from the Fı́schlár Video Retrieval System [2].

468C Content-Based Video Retrieval
sports [4] or news summaries of reoccurring news

topics [2]. Finally, as mentioned earlier, the entire

video content may be returned in response to a user

query, as is the case on many WWW video search

engines in 2008.

Representing Video Content Visually on Screen

The quality of the interface to a content-based video

retrieval system has a great effect on the usefulness of

the system. In order to represent digital video visually,

one or more keyframes (usually JPEG images) are

usually extracted from the video to represent the con-

tent. These keyframes can then be employed for visual

analysis of the video content by representing a video

clip (typically a shot) by its keyframe and applying

visual analysis techniques to the keyframe. In addition,

these keyframes may be employed for visual presenta-

tion of video contents to support a degree of random

access into the content. By processing video into a

sequence of shots/scenes, and representing each shot/

scene with one or more keyframes allows for the dis-

play of an entire video as a sequence of keyframes

in what is called a StoryBoard interface, as shown in

Fig. 1. Clicking on any keyframe would typically begin

video playback from that point.

However, relying on simply presenting keyframes

in screen can still require browsing through a very large

information entity for long videos, maybe having over

a hundred keyframes (shots) per hour. Therefore the

ability to search within video content to locate a de-

sired section of the video is desirable.

Searching Archives of Digital Video

The goals of supporting search through digital video

archives are to (i) understand video content and

(ii) understand how relevant content is likely to be to

a user’s query and to (iii) present the most highest

ranked content for user consideration. We try to

achieve these goals by indexing video content utilizing

a number of sources (textual, audio and visual), either

alone or in any combination. The unit of retrieval can

be shots, scenes, stories, entire video units or any other

unit of retrieval required.

Content-Based Retrieval using Text Sources The most

common searching technology used for video retrieval

in the WWW is content searching using proven text

search techniques. This implies that it is possible to

generate textual content (often referred to as a text
surrogate) for the video. There are a number of sources

of text content that can be employed to generate

these textual surrogates, for example sources based on

analyzing the digital video or the broadcast video

stream:

� Spoken words, generated by utilizing a speech-to-

text tool. The spoken words will provide an indica-

tion of the content of the video.

� Written words, extracted using a process of OCR

(OCR – Optical Character Recognition) from the

actual visual content of the video frames.

� Professional closed caption annotation, which are the

closed caption (teletext) transcripts of video that

accompanies much broadcast video content.

In addition there are many sources of textual evi-

dence that can be employed that do not directly rely on

the content of the digital video stream, and typically,

these would be available for publicly available WWW

digital video content:

� Professionally annotated metadata from the content

provider which, if available, provides a valuable

source of content for the textual surrogate.

� Community annotated metadata from general users

of the content. On WWW video sharing sites users

are encouraged to annotate comments about the

video content and these annotations can be a valu-

able source of indexable content.

All of these sources of textual data can be employed

alone, or in any combination to generate textual sur-

rogates for video content (shots, scenes, stories or

entire videos). Users can query such systems with

conventional text queries and this is the way that

most WWW video search engines operate. Text search

through video archives is a very effective way to sup-

port search and retrieval and relies on well-known and

proven text search techniques.

Content-Based Retrieval using Visual Sources

Digital Video, being a visual medium, can also be

analyzed using visual analysis tools, which typically

operate over individual keyframes to visually index

each clip (typically a shot or scene). The visual content

analysis tools are often borrowed from the domain of

visual image analysis. The first generation of video

analysis systems relied on modeling video with easily

extractable low-level visual features such as color,

texture and edge detection. However a significant

Content-Based Video Retrieval C 469

C

‘semantic gap’ exists between these low-level visual

features and the semantic meaning of the video con-

tent, which is how a typical user would like to query a

video search system. To help bridge this semantic gap,

video content in the current generation of video search

systems is processed to seek more complex semantic

(higher-level or derived) visual concepts, such as peo-

ple (faces, newsreaders), location (indoor/outdoor,

cityscape/landscape), objects (buildings, cars, air-

planes), events (explosions, violence) and production

techniques such as camera motion. The output of these

higher-level concept detectors can, with sufficient

development and training, be successfully integrated

(mainly as filters) into content-based video retrieval

systems. However, the development of these concept

detectors can be a difficult process and it is not reason-

able to assume the development of tens of thousands of

concept detectors to cover all concepts for the video

archive. Research carried out by the Informedia team

at CMU suggest that ‘‘concept-based’’ video retrieval

with fewer than 5,000 concepts, detected with minimal

accuracy of 10% mean average precision is likely

to provide high accuracy results, comparable to text

retrieval on the web, for a typical broadcast news video

archive. Extending into other domains besides broad-

cast news may require some additional concepts.

A review of image analysis techniques will provide

more details of these semantic visual concept detectors

and how they can be developed.

The output of easily extracted low-level feature

analysis can be also employed in a content-based

video retrieval system to support linking between visu-

ally similar content, though it is unlikely to be used to

support direct user querying. Semantic features can

form part of a user query, whereby a user, knowing

the semantic factures extracted from a video archive,

can specify semantic features that are required/not

required in the result of a video search. For example,

a user may request video content concerning forest

fires, that also contains the feature ‘fire’.

Content-Based Retrieval using Audio Sources

Apart from the speech-to-text there are other uses

of audio sources for content-based video retrieval.

For example, security video to identify non-standard

audio events, such as a window breaking to provide a

special access point to security video at this point.

Key events in sports video can be identified using

visual analysis (e.g., goal-mouth detection, or onscreen
scoreboard changing) but also using audio analysis,

for example crowd noise level or commentator excite-

ment level.

Effective Retrieval

As can be seen from the current generation of WWW

video search engines, most content-based video re-

trieval relies on user text queries to operate over text

surrogates of video content. In typical situations the

use of visual sources does not achieve any noticeable

improvement in performance over using textual

sources (such as CC text or ASR text). However,

combining both sources of evidence can lead to

higher performance than using either source alone.

Figure 2 summarizes a typical shot-level content-

based indexing process for digital video and illustrates

some of the indexing options available.

Often successful academic video search systems

allow the user to search to find the location in a piece

of video which is likely to be of interest, with the user

being encouraged to browse this area of the video by

presenting keyframes from shots in the general video

area (before and after).

Key Applications
The key application areas can be broadly divided into

two categories; domain dependent video retrieval and

generic (non-domain) video retrieval. In domain de-

pendent video retrieval, the domain of the search sys-

tem is limited, thereby allowing the search tool to

exploit any domain dependent knowledge to develop

a tailored and more effective content-based video re-

trieval system. Typical domains include news video

where the unit of retrieval would a news story. Domain

dependent additions for news video retrieval include

anchor person detection to aid in the identification

of news story bounds, inter-story linkage, story trails

and timeline story progression. An example of a typical

news story retrieval system is the Fı́schlár-News Digital

Video Library that was operational from 2001 to 2004

at Dublin City University, and shown in Fig. 3.

Another example domain dependent application

area is sports video, where research has been progres-

sing on generating automatic summaries of field sports

events and a third example is security video where

research is ongoing into the automatic analysis of

security footage to identify events of interest or even

to identify and track individuals and objects in the

video streams from many cameras in a given location.

Content-Based Video Retrieval. Figure 2. The content-based indexing process for digital video (from Fı́schlár system at

TRECVid in 2004) showing some text extraction, some low-level features and some higher level (derived) features

(concepts).

470C Content-Based Video Retrieval
Domain independent video retrieval attempts to

index all types of content, such as general TV pro-

grammes or generic UCC. Given that there are no

domain specific clues to exploit, retrieval is usually

on textual indexing of a textual surrogate or extracted

visual concepts, such as objects [5], locations, people,

etc. The unit of retrieval would typically be a shot or an

entire video clip, but could also be a non-shot unit that

matches the user request. Domain independent video

retrieval is most commonly seen in WWW video

search engines, which index content based on text

surrogates and returns entire videos in the result set.
Future Directions Future applications of, and research

into content-based video search will likely focus on

developing techniques for providing access to large

archives of digital video content as broadcasters con-

tinue the process of digitizing their huge archives of

programmes and the raw video content (rushes) that

is used in the making of TV programmes. For rushes

content especially, one will not be able to rely on text
transcripts for indexing purposes. In addition, the ever

increasing volume of UCC requires content-based re-

trieval techniques to be developed that will provide an

improved semantic search facility over this content.

Finally, the third point of research into the future will

likely be in migrating content-based retrieval tools

onto consumer devices (PVRs for example), which

themselves are becoming capable of storing hundreds

of hours of recorded video and UCC.

Experimental Results In the field of content-based

video retrieval there exists an annual, worldwide

forum for the evaluation of techniques for video

search, called TRECVid [7] which began in 2001. The

TRECVid workshop is (2007) part of the TREC [8]

conference series is sponsored by the National Institute

of Standards and Technology (NIST). In 2007, 54

teams from Europe, the Americas, Asia, and Australia

participated in TRECVid. Over the course of the

TRECVid evaluations, data employed has been either

TV news, documentaries, educational video and rushes

C
o
n
te
n
t-
B
a
se
d
V
id
e
o
R
e
tr
ie
v
a
l.

F
ig
u
re

3
.
Fı́
sc
h
lá
r-
N
e
w
s,
a
d
o
m
ai
n
d
e
p
e
n
d
e
n
t
co
n
te
n
t-
b
as
e
d
vi
d
e
o
re
tr
ie
va
l
sy
st
e
m
.

Content-Based Video Retrieval C 471

C

Content-Based Video Retrieval. Table 1. Inferred

Average Precision (infAP (In terms of infAP, a value of 1.0

infers that the technique locates only correct examples of

the concept, whereas a value of 0.0 infers that the

technique only locates incorrect examples)) measurement

for the top performing techniques for visual concept

detection at the TRECVid workshop in 2007

CONCEPT infAP CONCEPT infAP

Sports 0.144 Computer/TV
screen

0.209

Weather 0.062 US flag 0.041

Office 0.222 Airplane 0.226

Meeting 0.279 Car 0.265

Desert 0.155 Truck 0.108

Mountain 0.12 Boat/ship 0.212

Waterscape/
waterfront

0.374 People marching 0.104

Police/security 0.046 Explosion/fire 0.069

Military personnel 0.081 Maps 0.236

Animal 0.249 Charts 0.225

472C Content-Based Video Retrieval
(Rushes content, is the unproduced content that is

used to prepare TV programming.) content. TRECVid

has organized a number of tasks for the annual evalua-

tions which may change each year. The tasks evaluated,

2001, have included shot boundary determination,

interactive and automatic (no query modification or

browsing) video search, high-level concept detection,

story boundary determination for TV news and cam-

era motion analysis, among others.

In addition to TRECVid, other evaluation forums

also exist such as Video Analysis and Content Extraction

(VACE) which is a US program that addresses the lack

of tools to assist human analysts monitor and annotate

video for indexing. The video data used in VACE is

broadcast TV news, surveillance, Unmanned Aerial

Vehicle, meetings, and ground reconnaissance video.

Other evaluation forums such as the French ETISEO

and EU PETS evaluations have evaluated content-based

retrieval (event detection and object detection) from

surveillance video. ARGOS, sponsored by the French

government, evaluated tasks similar to TRECVid and

employed video data from TV news, scientific docu-

mentaries and surveillance video archives.

Some summary findings from content-based video

retrieval research are that employing visual analysis

of the video content does not provide a significant

increase in search performance over using text tran-

scripts, that text transcripts provide the single most

important clue for searching content, that employing

as many text sources as possible aids text search quali-

ty, and finally that, incorporating visual content search

can improve retrieval over that of text indexing alone.

The performance of visual indexing tools suggests that

this is an unsolved problem with much research need-

ed. As an example, the highest accuracy attained (in

terms of Inferred Average Precision) for the twenty

visual concepts evaluated at TRECVid in 2007 are

shown in Table 1.

Finally, it should be noted that the interface to an

interactive video search system (for example [3,6]) can

make a huge difference for effective content-based

video search and retrieval. Content searching through

text transcripts can locate the area of the video, but a

good storyboard interface to find the exact video shot

of interest is a valuable addition.

Data Sets The TRECVid evaluation framework pro-

vides a number of datasets to support the comparative

and repeatable evaluation of TREC. Since 2001, these
datasets, along with the associated queries and relevance

judgements are available. The video data employed in

these datasets comes from various sources, such as the

video from the Movie Archive of the Internet Archive,

news video data in a number of languages (English,

Arabic and Chinese) and rushes content. Datasets used

in other evaluation forums are also available

Cross-references
▶Video Abstraction

▶Video Content Analysis

▶Video Content Modeling

▶Video Metadata

▶Video Representation

▶Video Scene and Event Detection

▶Video Segmentation

▶Video Shot Detection

▶Video Skimming

▶Video Summarization
Recommended Reading
1. Browne P., Smeaton A.F., Murphy N., O’Connor N., Marlow S.,

and Berrut C. Evaluating and combining digital video shot

boundary detection algorithms. In Proc. IMVIP 2000 – Irish

Machine Vision and Image Processing Conference, 2000,

pp. 93–100.

Context C 473

C

2. Christel M.G., Hauptmann A.G., Wactlar H.D., and Ng T.D.,

Collages as dynamic summaries for news video. In Proc. 10th

ACM Int. Conf. on Multimedia, 2002, pp. 561–569.

3. Hauptmann A. lessons for the future from a decade of

informedia video analysis research, image and video retrieval.

In Proc. 4th Int. Conf. Image and Video Retrieval, 2005, pp.

1–10.

4. Sadlier D. and O’Connor N. Event detection in field sports

video using audio-visual features and a support vector machine.

IEEE Trans. Circuits Syst. Video Technol., 15(10):1225–1233,

2005.

5. Sivic J. AND Zisserman A. Video Google: a text retrieval ap-

proach to object matching in videos. In Proc. 9th IEEE Conf.

Computer Vision, Vol. 2, 2003, pp. 1470–1477.

6. Smeaton A.F., Lee H., and Mc Donald K. Experiences of creating

four video library collections with the Fı́schlár system. Int. J.

Digit. Libr., 4(1):42–44, 2004.

7. Smeaton A.F., Over P., and Kraaij W. Evaluation campaigns and

TRECVid. In Proc. 8th ACM SIGMM Int. Workshop on Multi-

media Information Retrieval, 2006, pp. 321–330.

8. http://trec.nist.gov Last visited June ’08.
Content-Only Query

THIJS WESTERVELD
1,2

1Teezir Search Solutions, Ede, The Netherlands
2CWI, Amsterdam, The Netherlands

Synonyms
Content-only query; CO query

Definition
A content-only query is a formulation of an infor-

mation need in XML retrieval or, more generally, in

semi-structured text retrieval that does not contain

information regarding the structure of the desired

result.

Key Points
Content-only query or CO query is a term from semi-

structured text retrieval, used predominantly for XML

retrieval. The term refers to a specific way of querying a

semi-structured document collection. Content-only

queries ignore the structure of the collection and only

refer to the (topical) content of the desired result. In

that sense, they are similar to the keyword queries

typically used in traditional information retrieval sys-

tems or in web search engines. The fact that structural

information is lacking from the query formulation

does not mean structure does not play a role. When a
content-only query is posed, it is up to the retrieval

system to decide the appropriate level of granularity to

satisfy the information need. This contrasts so-called

content-and-structure queries where the user specifies

structural clues regarding the desired result. More

information on query languages, including content-

only and content-and-structured queries in the field

of XML search can be found in [1].

Cross-references
▶Content-and-structure query

▶NEXI

▶Xml Retrieval

Recommended Reading
1. Amer-Yahia S. and Lalmas M. XML search: languages, INEX and

scoring. ACM SIGMOD Rec., 35(4):16–23, 2006.
Content-oriented XML Retrieval

▶XML Retrieval
Context

OPHER ETZION

IBM Research Lab in Haifa, Haifa, Israel

Synonyms
Life-span (in part); Space-span (in part)

Definition
A context is a collection of semantic dimensions within

which the event occurs. These dimensions may in-

clude: temporal context, spatial context, state-related

context and reference-related context.

Key Points
Event processing is being done within context, which

means that an event is interpreted differently in differ-

ent contexts, and may trigger different actions in dif-

ferent contexts, or be irrelevant in certain context. In

the event processing network, each agents operates

within a single context. While the term context has

been associated with the spatial dimension, in event

processing it is most strongly associated with the tem-

poral dimension.

http://trec.nist.gov

474C Context-aware Interfaces
Each context-dimension may be specified either

explicitly, or by using higher level abstractions.

Examples are:

� Temporal context:
– Explicit: Everyday between 8AM–5PM EST.

– Implicit: From sunrise to sunset.

– Mixed: Within two hours from admission to

the hospital.
� Spatial context:
– Explicit: Within 1 KM from coordinate + 51� 30

45.7100, �1� 180 25.5600.
– Implicit: Within the borders of the city of

Winchester.

– Mixed: Within 1 KM north of the border

between Thailand and Laos.
� State-oriented context:
– Explicit: When ‘‘red alert’’ is present.

– Implicit: During traffic jam in the area.
� Reference-oriented context:
– Explicit: Context-instance for each platinum-

customer with credit-limit > $1M.

– Implicit: Context-instance for each ‘‘angry

customer.’’
Note that the state-oriented dimension is different,

since it does not relate to the event itself, and is global

in nature. A context may consist of one dimension only

or combination of dimensions. The reference-oriented

context is mainly used to partition the event space.

Context instances may or may not cover the entire

space of possibilities, a context can also be created

from binary operations on contexts (union, intersec-

tion, difference).

Cross-references
▶Complex Event Processing

▶ Event Processing Network

▶Retrospective Event Processing

Recommended Reading
1. Adi A., Biger A., Botzer D., Etzion O., and Sommer Z. Context

awareness in Amit. In Proc. 5th Annual Workshop on Active

Middleware Services, 2003, pp. 160–167.

2. Barghouti N.S. and Krishnamurthy B. Using event contexts and

matching constraints to monitor software processes. In Proc.

17th Int. Conf. on Software Eng., 1995, pp. 83–92.

3. Buvac S. Quantificational logic of context. In Proc. 10th Nation-

al Conf. on AI, 1996, pp. 600–606.

4. Hong C., Lee K., Suh Y., Kim H., Kim H., and Lee H. Developing

context-aware system using the conceptual context model.
In Proc. 6th IEEE Int. Conf. on Information Technology, 2006,

pp. 238.

5. Rakotonirainy A., Indulska J., Loke S.W., and Zaslavsky A.

Middleware for reactive components: An integrated use of con-

text, roles, and event based coordination. In Proc. IFIP/ACM Int.

Conf. on Dist. Syst. Platforms, 2001, pp. 77–98.
Context-aware Interfaces

▶Adaptive Interfaces
Contextual Advertising

▶Web Advertising
Contextualization

JAANA KEKÄLÄINEN, PAAVO ARVOLA, MARKO JUNKKARI

University of Tampere, Tampere, Finland

Definition
In relation to structured text retrieval, contex-

tualization means estimating the relevance of a given

structural text unit with information obtainable from –

besides the unit itself – the surrounding structural text

units, that is, from the context of the unit. From now

on, structural text units are referred to as elements in

accordance with [4]. In other words, in contextualiza-

tion it is assumed that the context of an element gives

hints about the relevance of the element.

Historical Background
Structured information retrieval typically addresses

documents marked-up with, for instance, SGML or

XML. In this article, XML documents are used as a

sample case of structured documents. These docu-

ments have a hierarchical structure, which is often

represented as a tree. In structured text retrieval, like

in information retrieval (IR) in general, querying is

based on words representing the information needed.

Structural conditions, concerning the tree, may or may

not be added to the query. An information retrieval

system (IRS) returns a list of elements ranked by their

retrieval status values (RSV), which are scores given by

the IRS. Typically, RSVs are based on the statistics of

Contextualization. Figure 1. A sample document tree.

Contextualization C 475

C

words (cf. definitional entry Term statistics) appearing

in the element and the query, although other features

of the document or its structure may be used in

addition.

The idea of XML retrieval is not to return whole

documents but those elements that are best matches

to the query–relevant elements with the least irrelevant

content. The length of the textual content varies as the

size of the elements varies in the hierarchy, so that des-

cendant elements oftenhave less text than their ancestors.

As a consequence, small elements down in the hierarchy

may have too few words in commonwith the query, that

is, too little evidence to be matched with the query,

although they might be more exact matches than their

ancestors. This problem, known as the vocabulary

mismatch, is typical for text retrieval, and is caused by

natural language allowing severalways to refer to objects.

However, elements are often dependent on each other

because of textual cohesion. Thus, one solution is to use

the context of the element to give more evidence about

the subject of the element. One could say that ‘‘good

elements’’ appear in ‘‘good company.’’ This approach

was first proposed by Sigurbjörnsson, Kamps, and

deRijke in [8].

Another problem related to the nested structure of

structured texts is the calculation of word statistics.

There are no obvious indexing units like in nonstruc-

tured (flat) text retrieval (cf. entry Indexing units). The

calculation of word weights is challenging since the

length of the elements vary, which has effects on

word frequencies. Moreover, inverted element frequen-

cies, corresponding to inverted document frequencies

(idfs) in weight calculation, vary depending on the

indexing unit. As a solution for this, the concept of

document pivot factor (originally introduced in [9] for

classical document retrieval) is suggested by Mass and

Mandelbrod [6] to scale the final relevance status value

of an element in XML IR. In [6] the scaling is based

on the document pivot factor, RSV of the topmost

ancestor (the root element), and the RSV of the ele-

ment. This can be regarded as contextualization

though for different reasons than in the first men-

tioned case.

Foundations
An XML document consists of elements, which in turn

may contain smaller elements. If an element x contains

immediately another element y, then x is called the

parent of y, whereas y is called a child of x. Any element
containing x is an ancestor of y, and y is a descendant of

those elements. A sample XML document is represented

as a tree in Fig. 1. The document is an article consisting

of a title, sections, subsections, and paragraphs. All

elements are labeled with Dewey indices for reference.

Depending on how a collection is organized, an

element may be viewed at various levels of context.

For example, assuming that documents follow an

article-section-subsection-paragraph division as in

the sample, then the article, the section and the sub-

section form different levels of context for a paragraph.

Further, a subsection can be viewed in the contexts of

the section or article. The length of the path from the

context element to the element at hand determines the

level of context. For example, the parent of an element

determines the first level context; the ancestor with the

path length 2 determines the second level context, etc.

The root element forms the topmost context.

As an example, the paragraph labeled <1,2,2,1> in

Fig. 1 is examined. Now Subsection<1,2,2> forms the

first level context and Section <1,2> the second level

context of this paragraph. The article is the root ele-

ment, or it determines the topmost context of this

paragraph. In turn, Section <1,2> forms the first

level context, and the article the second level (or top-

most) context of Subsection<1,2,2>. The article pos-

sesses no context.

The idea of contextualization is based on the assump-

tion that an element in a relevant context should be

ranked higher than a similar element in a nonrelevant

context. In contextualization, the RSV of an element is

tuned by the RSVof its context element(s). If the RSVof

the context is low (predicting nonrelevance), the RSV

476C Contextualization
of the element should be decreased; if the RSV of the

context is high (predicting relevance), the RSVof the ele-

ment should be increased. Here low and high are relative

to the element RSVand the RSVs of other contexts.

As an example three special contextualization cases

are considered – parent, root or all ancestors as a

context. In defining contextualization function the

following notations, presented in [1], are used:

parent(e) yields the parent element of the element e,

root(e) yields the root element of the element e,

he1,e2,...,enimeans the path from the root element e1 to

its descendant en such that 8i 2 {1,...,n�1} holds

ei = parent(ei+1), and

w(q, e) denotes the RSVof the element e with respect to

the query q.

With relation to the query expression q, contextualiza-

tion based on the nearest context (parent) of the ele-

ment e can be calculated by averaging the RSVs of the

element e and its parent element. Averaging is applied

as an example because it increases the RSV of the

element whose context’s RSV is higher, and decreases

the RSVof such elements whose context’s RSV is lower.

The function for this is denoted by the symbol cp:

cpðq; eÞ ¼ wðq; eÞ þ wðq; parentðeÞÞ
2

:

The contextualization by the topmost context is

denoted by the function symbol cr and it can be calcu-

lated by averaging the RSVs of the element e and its

root element.

crðq; eÞ ¼ wðq; eÞ þ wðq; rootðeÞÞ
2

:

The contextualization function ct is called tower con-

textualization and it yields the average of the RSVs of

all the elements within the path from the root element

to the element e, that is, all ancestors.

ctðq; eÞ ¼
Pn
i¼1

wðq; eiÞ
n

;

when e1 = root(e) and en = e in the path he1,...,eni.
Now, Dewey indices are utilized as a method for

handling the XML tree structure. In the following, the

contextualization for any path between the element and

the root is generalized. The notations used are as follows:

– The symbol x is used for denoting a Dewey index

labeling an element. An element possessing the

index x is called the x element.
– The set of indices related to the XML collection at

hand is denoted by IS.

– The length of an index x is denoted by len(x). For
example len(h1,2,2,3i) is 4.

– The index hii consisting of an integer i (i.e., its

length is 1) is called root index and it is associated

with the whole document.

– Let x be an index and i a positive integer, then the

cutting operation di(x) selects the sub-index of the

index x consisting of its i first integers. For example

if x = ha,b,ci then d2(x) = ha,bi. In terms of the

cutting operation the root index at hand is denoted

by d1(x) whereas the index of the parent element

can be denoted by dlen(x)�1(x).

A general contextualization function C has the follow-

ing arguments: q, x, and g. The arguments q (query)

and x (index) are defined above. The argument g is

called contextualization vector and is set-theoretically

represented as a tuple, consisting of values by which

elements between the root element and x element are

weighted in contextualization. The length of g is len(x).
When referring to the ith position of the contextuali-

zation vector g, the notation g[i] is used. For example,

if g = ha,b,ci then g[2] = b. The value in g[i] relates to

the element with the index di(x). For example, if

x = h1,2,2i then g is the 3-tuple ha,b,ci where a is the

contextualization weight of the root element h1i (i.e.,
the element with index d1(x)), b is the contextualiza-

tion weight of the h1,2i element (i.e., the element with

index d2(x)), and c is the weight of the h1,2,2i element

(i.e., the element with the index dlen (x)(x)). The contex-
tualized RSVs of elements are calculated by weighted

average based on the contextualization vector and

the index at hand. In the sample case above the con-

textualized RSV is calculated as (a * w(q, h1i) + b *w(q,

h1,2i) + c * w(q, h1,2,2i))/(a + b + c). Contextualiza-

tion is applied only to those elements whose basic RSV

is not zero. The general contextualization function C is

formally defined:

Cðq; x; gÞ ¼

0; if wðq; xÞ ¼ 0PlenðxÞ
i¼1

g ½i��wðq;diðxÞÞPlenðxÞ
i¼1

g ½i�
; otherwise:

8>>><
>>>:

The values in g are not bound to any range. This means

that in terms of g, different levels of the context can be

weighted in various ways. For example, weighting may

increase or decrease toward the topmost context (root

element).

Contextualization C 477

C

Now, parent and root contextualization with the

given generalized notation are considered. For simplic-

ity, binary contextualization weights are used, that is,

only such cases where the values of g are either 1 or 0.

Zero value means that the corresponding element is

not taken into account in the contextualization. With

relation to a query expression q, the contextualization

based on the first level (parent) context of the x ele-

ment is calculated using the contextualization vector

where two last elements have the value 1 and the others

zero value. This function is denoted cp(q, x) and de-

fined as follows:

cpðq; xÞ¼Cðq; x; gÞ
where g =

g ½lenðxÞ� ¼ 1

g ½lenðxÞ � 1� ¼ 1;when lenðxÞ > 1

g ½i�
lenðxÞ�2

i¼1
¼ 0;when lenðxÞ > 2

8>>><
>>>:

The contextualization by the topmost context (or

by the root element) is denoted by the function symbol

cr. In this case the weights for the first and the last

element are 1 and the other weights are 0 in the

contextualization vector.

crðq; xÞ¼Cðq; x; gÞwhere g ¼

g ½lenðxÞ� ¼ 1

g ½1� ¼ 1

g ½i�
lenðxÞ�1

i¼2
¼ 0;

when lenðxÞ > 2:

8>>>>><
>>>>>:

There are alternative interpretations and presentations

of the idea of contextualization, for example [8,6,10].

The idea of mixing evidence from the element itself

and its surrounding elements was presented for the

first time by Sigurbjörnsson, Kamps, and de Rijke

[8]. They apply language modeling based on a mixture

model. The final RSV for the element is combined

from the RSV of the element itself and the RSV of the

root element as follows:

wmixðq; eÞ ¼ lpðeÞ þ a � wðq; rootðeÞÞ
þ ð1� aÞ � wðq; eÞ;

where the notation is as given above; wmix(q,e) is the

combined RSV for the element, lp(e) is the length

prior, and a is a tuning parameter.

In [6] independent indices are created for different –

selected – element types. Some indices have sparse data
compared with others, that is, all the words of root

elements are not contained in lower level elements. This

has effects on inverted element frequencies and compa-

rability of the word weights across the indices. To resolve

the problem the final element RSV is tuned by a scaling

factor and the RSV of the root element. With the nota-

tion explained above this can be represented as follows:

wpðq; eÞ ¼DocPivot � wðq; rootðeÞÞ
þ ð1� DocPivotÞ � wðq; eÞ

where wp(q,e) is the pivoted RSV of the element, and

DocPivot is the scaling factor.

In [10], the structural context of the element is

utilized for scoring elements. Original RSVs are

obtained with the Okapi model [7]. For this, word

frequencies are calculated for elements rather than

documents, and normalized for each element type.

The combined RSV for the element is calculated as a

sum of the RSVof the context and the original RSV for

the element, each score multiplied by a parameter.

Machine learning approach is applied for learning the

parameters. Let x = {t1, t2,...,td} be a vector of features

representing the element e. The features are RSVs of

the element e and its different contexts. Then the

combined RSV is

foðxÞ ¼
Xd
j¼1

oj tj ;

where o = {o1, o2,...,od} are the parameters to be

learned. The approach was tested with the parent and

root as the contexts.

Key Applications
Contextualization and similar approached have been

applied in XML retrieval with different retrieval mod-

els: tf-idf based ranking and structural indices [1], the

vector space model [6], and the language modeling [8].

The key application is element ranking. The results

obtained with different retrieval systems seem to

indicate that the root contextualization is the best

alternative.

In traditional text retrieval a similar approach has

been applied to text passages [3,5]. The idea of contex-

tualization is applicable to all structured text documents;

yet the type of the documents to be retrieved has effects

on contextualization. Lengthy documents with one or

few subjects are more amenable for the method than

short documents, or documents with diverse subjects;

contextualization might not work in an encyclopedia

478C Continuous Backup
with short entries, but can improve effectiveness, say, in

the retrieval of the elements of scientific articles.

Experimental Results
The effectiveness of contextualization in XML retrieval

has been experimented with the INEX test collection

consisting of IEEE articles [1,2]. All three contextualiza-

tion types mentioned above (parent, root, and tower

contextualization) were tested. The results show clear

improvement over a non-contextualized baseline; the

best results were obtained with the root and tower

contextualization. Additionally, approaches suggested

in [8,6,10] were tested with the same INEX collection

and reported to be effective compared with non-

contextualized baselines, that is, compared with ranking

based on elements’ basic RSVs.

Cross-references
▶ Indexing Units

▶Term Statistics for Structured Text Retrieval

▶XML Retrieval

Recommended Reading
1. Arvola P., Junkkari M., and Kekäläinen J. Generalized contex-

tualization method for XML information retrieval. In Proc. Int.

Conf. on Information and Knowledge Management, 2005, pp.

20–27.

2. Arvola P., Junkkari M., and Kekäläinen J. Query evaluation with

structural indices. In Proc. 4th Int. Workshop of the Initiative for

the Evaluation of XML Retrieval, 2005, pp. 134–145.

3. Callan J.P. Passage-level evidence in document retrieval. In Proc.

30th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2004, pp. 302–310.

4. Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C

Recommendation 16 August 2006. Available at: http://www.w3.

org/TR/xml/[retrieved 17.8.2007].

5. Kaszkiel M., Zobel J., and Sacks-Davis R. Efficient passage

ranking for document databases. ACM Trans. Infor. Syst.,

17(4):406–439, 1999.

6. Mass Y. and MandelbrodM. Component ranking and automatic

query refinement for XML retrieval. In Proc. 4th Int. Workshop

of the Initiative for the Evaluation of XML Retrieval, 2005,

pp. 73–84.

7. Robertson S.E., Walker S., Jones S., Hancock-Beaulieu M.M.,

and Gatford M. Okapi at TREC-3. In Proc. The 3rd Text Re-

trieval Conf., 1994, pp. 500–226.

8. Sigurbjörnsson B, Kamps J., and De Rijke M. An element-based

approach to XML retrieval. In Proc. 2nd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2003, 19–26.

Available at: http://inex.is.informatik.uni-duisburg.de:2003/

proceedings.pdf [retrieved 29.8.2007].

9. Singhal A., Buckley C., and Mitra M. Pivoted document length

normalization. In Proc. 19th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 1996,

21–29.

10. Vittaut J.-N. and Gallinari P. Machine learning ranking for

structured information retrieval. In Proc. 28th European Conf.

on IR Research, 2006, 338–349.
Continuous Backup

▶Continuous Data Protection (CDP)
Continuous Data Feed

▶Data Stream
Continuous Data Protection

KENICHI WADA

Hitachi, Ltd, Tokyo, Japan

Synonyms
Continuous backup

CDP

Definition
CDP is a data protection service capturing data

changes to storage, often providing the capability of

restoring any point in time copies.

Key Points
CDP differs from usual backups in that users do not

need to specify the point in time until they recover data

from backups. From an application point of view,

every time when it updates data in an original volume,

CDP keeps updates. In case of recovery, when users

specify the point in time, CDP creates the point in time

copy from an original volume and updates.

In several CDP implementations, users can specify

the granularities of restorable objects which help them

to specify the point in time easily. For example, restor-

able objects range from crash-consistent images to

logical objects such as files, mail boxes, messages, data-

base files, or logs.

Cross-references
▶Backup and Restore

http://www.w3.org/TR/xml/[
http://www.w3.org/TR/xml/[
http://inex.is.informatik.uni-duisburg.de:

Continuous Monitoring of Spatial Queries C 479
Recommended Reading
1. Laden G., et al. Architectures for Controller Based CDP. In Proc.

5th USENIX conf. on File and Storage Technologies, 2007,

pp. 107–121.
C

Continuous Monitoring of Spatial
Queries

KYRIAKOS MOURATIDIS

Singapore Management University, Singapore,

Singapore

Synonyms
Spatio-temporal stream processing

Definition
A continuous spatial query runs over long periods of

time and requests constant reporting of its result as the

data dynamically change. Typically, the query type is

range or nearest neighbor (NN), and the assumed

distance metric is the Euclidean one. In general, there

are multiple queries being processed simultaneously.

The query points and the data objects move frequently

and arbitrarily, i.e., their velocity vectors and motion

patterns are unknown. They issue location updates to a

central server, which processes them and continuously

reports the current (i.e., updated) query results. Con-

sider, for example, that the queries correspond to

vacant cabs, and that the data objects are pedestrians

that ask for a taxi. As cabs and pedestrians move, each

free taxi driver wishes to know his/her closest client.

This is an instance of continuous NN monitoring.

Spatial monitoring systems aim at minimizing the

processing time at the server and/or the communica-

tion cost incurred by location updates. Due to the

time-critical nature of the problem, the data are usually

stored in main memory to allow fast processing.

Historical Background
The first algorithms in the spatial database literature

process snapshot (i.e., one-time) queries over static

objects. They assume disk-resident data and utilize

an index (e.g., an R-tree) to restrict the search space

and reduce the I/O cost. Subsequent research consid-

ered spatial queries in client-server architectures. The

general idea is to provide the user with extra informa-

tion (along with the result at query-time) in order

to reduce the number of subsequent queries as he/she
moves (see entryNearest Neighbor Query). These meth-

ods assume that the data objects are either static or

moving linearly with known velocities. Due to the wide

availability of positioning devices and the need for

improved location-based services, the research focus

has recently shifted to continuous spatial queries. In

contrast with earlier assumed contexts, in this setting

(i) there are multiple queries being evaluated simulta-

neously, (ii) the query results are continuously

updated, and (iii) both the query points and the data

objects move unpredictably.

Foundations
The first spatial monitoring method is called Q-index

[13] and processes static range queries. Based on the

observation that maintaining an index over frequently

moving objects is very costly, Q-index indexes the

queries instead of the objects. In particular, the moni-

tored ranges are organized by an R-tree, and moving

objects probe this tree to find the queries that they

influence. Additionally, Q-index introduces the con-

cept of safe regions to reduce the number of location

updates. Specifically, each object p is assigned a circular

or rectangular region, such that p needs to issue an

update only if it exits this area (because, otherwise, it

does not influence the result of any query). Figure 1

shows an example, where the current result of query q1
contains object p1, that of q2 contains p2, and the

results of q3, q4, and q5 are empty. The safe regions

for p1 and p4 are circular, while for p2 and p3 they are

rectangular. Note that no query result can change

unless some objects fall outside their assigned safe

regions. Kalashnikov et al. [4] show that a grid imple-

mentation of Q-index is more efficient (than R-trees)

for main memory evaluation.

Monitoring Query Management (MQM) [1] and

MobiEyes [2] also monitor range queries. They further

exploit the computational capabilities of the objects to

reduce the number of updates and the processing load

of the server. In both systems, the objects store locally

the queries in their vicinity and issue updates to the

server only when they cross the boundary of any of

these queries. To save their limited computational cap-

abilities, the objects store and monitor only the queries

they may affect when they move. MQM and MobiEyes

employ different strategies to identify these queries.

The former applies only to static queries. The latter

can also handle moving ones, making however the

assumption that they move linearly with fixed velocity.

Continuous Monitoring of Spatial Queries. Figure 1.

Circular and rectangular safe regions.

480C Continuous Monitoring of Spatial Queries
Mokbel et al. [7] present Scalable INcremental

hash-based Algorithm (SINA), a system that monitors

both static and moving ranges. In contrast with the

aforementioned methods, in SINA the objects do not

perform any local processing. Instead, they simply

report their locations whenever they move, and the

objective is to minimize the processing cost at the

server. SINA is based on shared execution and incre-

mental evaluation. Shared execution is achieved by

implementing query evaluation as a spatial join be-

tween the objects and the queries. Incremental evalua-

tion implies that the server computes only updates

(i.e., object inclusions/exclusions) over the previously

reported answers, as opposed to re-evaluating the

queries from scratch.

The above algorithms focus on ranges, and their

extension to NN queries is either impossible or non-

trivial. The systems described in the following target

NN monitoring. Hu et al. [3] extend the safe region

technique to NN queries; they describe a method that

computes and maintains rectangular safe regions sub-

ject to the current query locations and kNN results.

Mouratidis et al. [11] propose Threshold-Based algo-

rithm (TB), also aiming at communication cost reduc-

tion. To suppress unnecessary location updates, in TB

the objects monitor their distance from the queries

(instead of safe regions). Consider the example in

Fig. 2, and assume that q is a continuous 3-NN query

(i.e., k = 3). The initial result contains p1, p2, p3. TB

computes three thresholds (t1, t2, t3) which define a

range for each object. If every object’s distance from
q lies within its respective range, the result of the query

is guaranteed to remain unchanged. Each threshold is

set in the middle of the distances of two consecutive

objects from the query. The distance range for p1 is

[0, t1), for p2 is [t1, t2), for p3 is [t2, t3), and for p4, p5 is

[t3,1). Every object is aware of its distance range, and

when there is a boundary violation, it informs the

server about this event. For instance, assume that p1,

p3, and p5 move to positions p01; p
0
3 and p05, respectively.

Objects p3 and p5 compute their new distances from q,

and avoid sending an update since they still lie in their

permissible ranges. Object p1, on the other hand, vio-

lates its threshold and updates its position to the server.

Since the order between the first two NNs may have

changed, the server requests for the current location of

p2, and updates accordingly the result and threshold t1.

In general, TB processes all updates issued since the last

result maintenance, and (if necessary) it decides which

additional object positions to request for, updates the k

NNs of q, and sends new thresholds to the involved

objects.

All the following methods aim at minimizing the

processing time. Koudas et al. [6] describe aDaptive

Indexing on Streams by space-filling Curves (DISC),

a technique for e-approximate kNN queries over

streams of multi-dimensional points. The returned

(e-approximate) kth NN lies at most e distance units

farther from q than the actual kth NN of q. DISC

partitions the space with a regular grid of granularity

such that the maximum distance between any pair of

points in a cell is at most e. To avoid keeping all

arriving data in the system, for each cell c it maintains

only K points and discards the rest. It is proven that an

exact kNN search in the retained points corresponds to

a valid ekNN answer over the original dataset provided

that k 	 K. DISC indexes the data points with a B-tree

that uses a space filling curve mechanism to facilitate

fast updates and query processing. The authors show

how to adjust the index to: (i) use the minimum amount

of memory in order to guarantee a given error bound

e, or (ii) achieve the best possible accuracy, given a

fixed amount of memory. DISC can process both snap-

shot and continuous ekNN queries.

Yu et al. [17] propose a method, hereafter referred

to as YPK-CNN, for continuous monitoring of exact

kNN queries. Objects are stored in main memory

and indexed with a regular grid of cells with size

d�d. YPK-CNN does not process updates as they

arrive, but directly applies them to the grid. Each NN

Continuous Monitoring of Spatial Queries C 481

C

query installed in the system is re-evaluated every T

time units. When a query q is evaluated for the first

time, a two-step NN search technique retrieves its

result. The first step visits the cells in an iteratively

enlarged square R around the cell cq of q until k objects

are found. Figure 3a shows an example of a single NN

query where the first candidate NN is p1 with distance

d from q; p1 is not necessarily the actual NN since there

may be objects (e.g., p2) in cells outside R with distance

smaller than d. To retrieve such objects, the second step

searches in the cells intersecting the square SR centered

at cq with side length 2·d + d, and determines the actual

kNN set of q therein. In Fig. 3a, YPK-CNN processes p1
Continuous Monitoring of Spatial Queries. Figure 2. TB

example (k = 3).

Continuous Monitoring of Spatial Queries. Figure 3. YPK-C
up to p5 and returns p2 as the actual NN. The accessed

cells appear shaded.

When re-evaluating an existing query q, YPK-CNN

makes use of its previous result in order to restrict the

search space. In particular, it computes the maximum

distance dmax among the current locations of the pre-

vious NNs (i.e., dmax is the distance of the previous

neighbor that currently lies furthest from q). The new

SR is a square centered at cq with side length 2·dmax + d.
In Fig. 3b, assume that the current NN p2 of q moves

to location p02. Then, the rectangle defined by

dmax ¼ distðp02; qÞ is guaranteed to contain at least

one object (i.e., p2). YPK-CNN collects all objects

(p1 up to p10) in the cells intersecting SR and identifies

p1 as the new NN. Finally, when a query q changes

location, it is handled as a new one (i.e., its NN set is

computed from scratch).

Xiong et al. [16] propose Shared Execution Algo-

rithm for Continuous NN queries (SEA-CNN). SEA-

CNN focuses exclusively on monitoring the NN

changes, without including a module for the first-

time evaluation of an arriving query q (i.e., it assumes

that the initial result is available). Objects are stored

in secondary memory, indexed with a regular grid.

The answer region of a query q is defined as the circle

with center q and radius NN_dist (where NN_dist is

the distance of the current kth NN). Book-keeping

information is stored in the cells that intersect the

answer region of q to indicate this fact. When updates

arrive at the system, depending on which cells they
NN examples.

482C Continuous Monitoring of Spatial Queries
affect and whether these cells intersect the answer

region of the query, SEA-CNN determines a circular

search region SR around q, and computes the new kNN

set of q therein. To determine the radius r of SR, the

algorithm distinguishes the following cases: (i) If some

of the current NNs move within the answer region or

some outer objects enter the answer region, SEA-CNN

sets r = NN_dist and processes all objects falling in the

answer region in order to retrieve the new NN set.

(ii) If any of the current NNs moves out of the answer

region, processing is similar to YPK-CNN; i.e., r = dmax

(where dmax is the distance of the previous NN that

currently lies furthest from q), and the NN set

is computed among the objects inside SR. Assume

that in Fig. 4a the current NN p2 issues an update

reporting its new location p02. SEA-CNN sets

r ¼ dmax ¼ distðp02; qÞ, determines the cells intersect-

ing SR (these cells appear shaded), collects the

corresponding objects (p1 up to p7), and retrieves p1
as the new NN. (iii) Finally, if the query q moves to a

new location q0, then SEA-CNN sets r = NN_dist + dist

(q, q0), and computes the new kNN set of q by proces-

sing all the objects that lie in the circle centered at q0

with radius r. For instance, in Fig. 4b the algorithm

considers the objects falling in the shaded cells (i.e.,

objects from p1 up to p10 except for p6 and p9) in order

to retrieve the new NN (p4).

Mouratidis et al. [9] propose another NNmonitoring

method, termed Conceptual Partitioning Monitoring

(CPM). CPM assumes the same system architecture

and uses similar indexing and book-keeping structures
Continuous Monitoring of Spatial Queries. Figure 4. SEA-C
as YPK-CNN and SEA-CNN.When a query q arrives at

the system, the server computes its initial result by

organizing the cells into conceptual rectangles based

on their proximity to q. Each rectangle rect is defined

by a direction and a level number. The direction is U, D,

L, or R (for up, down, left and right), and the level

number indicates how many rectangles are between

rect and q. Figure 5a illustrates the conceptual space

partitioning around the cell cq of q. If mindist(c,q) is

the minimum possible distance between any object in

cell c and q, the NN search considers the cells in

ascendingmindist(c, q) order. In particular, CPM initi-

alizes an empty heap H and inserts (i) the cell of q with

key equal to 0, and (ii) the level zero rectangles for each

direction DIR with keymindist(DIR0, q). Then, it starts

de-heaping entries iteratively. If the de-heaped entry is

a cell, it examines the objects inside and updates ac-

cordingly the NN set (i.e., the list of the k closest

objects found so far). If the de-heaped entry is a rect-

angle DIRlvl, it inserts into H (i) each cell c ∈ DIRlvl

with key mindist(c, q) and (ii) the next level rectangle

DIRlvl + 1 with key mindist(DIRlvl + 1, q). The algorithm

terminates when the next entry in H (corresponding

either to a cell or a rectangle) has key greater than

the distance NN_dist of the kth NN found. It can be

easily verified that the server processes only the cells

that intersect the circle with center at q and radius

equal to NN_dist. This is the minimal set of cells

to visit in order to guarantee correctness. In Fig. 5a,

the search processes the shaded cells and returns p2 as

the result.
NN update handling examples.

Continuous Monitoring of Spatial Queries. Figure 5. CPM examples.

Continuous Monitoring of Spatial Queries C 483

C

The encountered cells constitute the influence re-

gion of q, and only updates therein can affect the

current result. When updates arrive for these cells,

CPM monitors how many objects enter or leave the

circle centered at q with radius NN_dist. If the outgoing

objects are more than the incoming ones, the result is

computed from scratch. Otherwise, the new NN set of

q can be inferred by the previous result and the update

information, without accessing the grid at all. Consider

the example of Fig. 5b, where p2 and p3 move to

positions p02 and p03, respectively. Object p3 moves clos-

er to q than the previous NN_dist and, therefore, CPM

replaces the outgoing NN p2 with the incoming p3. The

experimental evaluation in [11] shows that CPM is

significantly faster than YPK-CNN and SEA-CNN.

Key Applications

Location-Based Services

The increasing trend of embedding positioning sys-

tems (e.g., GPS) in mobile phones and PDAs has

given rise to a growing number of location-based ser-

vices. Many of these services involve monitoring

spatial relationships among mobile objects, facilities,

landmarks, etc. Examples include location-aware

advertising, enhanced 911 services, and mixed-reality

games.

Traffic Monitoring

Continuous spatial queries find application in traffic

monitoring and control systems, such as on-the-fly
driver navigation, efficient congestion detection and

avoidance, as well as dynamic traffic light scheduling

and toll fee adjustment.

Security Systems

Intrusion detection and other security systems rely

on monitoring moving objects (pedestrians, vehicles,

etc.) around particular areas of interest or important

people.

Future Directions
Future research directions include other types of spa-

tial queries (e.g., reverse nearest neighbor monitoring

[15,5]), different settings (e.g., NN monitoring over

sliding windows [10]), and alternative distance metrics

(e.g., NN monitoring in road networks [12]). Similar

techniques and geometric concepts to the ones pre-

sented above also apply to problems of a non-spatial

nature, such as continuous skyline [14] and top-k

queries [8,18].

Experimental Results
The methods described above are experimentally eval-

uated and compared with alternative algorithms in the

corresponding reference.

Cross-references
▶B+-Tree

▶Nearest Neighbor Query

▶R-tree (and Family)

▶Reverse Nearest Neighbor Query

484C Continuous Multimedia Data Retrieval
▶Road Networks

▶ Space-Filling Curves for Query Processing

Recommended Reading
1. Cai Y., Hua K., and Cao G. Processing range-monitoring queries

on heterogeneous mobile objects. In Proc. 5th IEEE Int. Conf.

on Mobile Data Management, 2004, pp. 27–38.

2. Gedik B. and Liu L. MobiEyes: Distributed processing of contin-

uously moving queries on moving objects in a mobile system. In

Advances in Database Technology, Proc. 9th Int. Conf. on

Extending Database Technology, 2004, pp. 67–87.

3. Hu H., Xu J., and Lee D. A generic framework for monitoring

continuous spatial queries over moving objects. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 479–490.

4. Kalashnikov D., Prabhakar S., and Hambrusch S. Main memory

evaluation of monitoring queries over moving objects. Distrib.

Parallel Databases, 15(2):117–135, 2004.

5. Kang J., Mokbel M., Shekhar S., Xia T., and Zhang D. Continu-

ous evaluation of monochromatic and bichromatic reverse near-

est neighbors. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 806–815.

6. Koudas N., Ooi B., Tan K., and Zhang R. Approximate NN

queries on streams with guaranteed error/performance

bounds. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004, pp. 804–815.

7. Mokbel M., Xiong X., and Aref W. SINA: Scalable incremental

processing of continuous queries in spatio-temporal databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2004, pp. 623–634.

8. Mouratidis K., Bakiras S., Papadias D. Continuous monitoring

of top-k queries over sliding windows. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2006, pp. 635–646.

9. Mouratidis K., Hadjieleftheriou M., and Papadias D. Conceptual

partitioning: an efficient method for continuous nearest

neighbor monitoring. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 634–645.

10. Mouratidis K. and Papadias D. Continuous nearest

neighbor queries over sliding windows. IEEE Trans. Knowledge

and Data Eng., 19(6):789–803, 2007.

11. Mouratidis K., Papadias D., Bakiras S., and Tao Y. A threshold-

based algorithm for continuousmonitoring of k nearest neighbors.

IEEE Trans. Knowledge and Data Eng., 17(11):1451–1464, 2005.

12. Mouratidis K., Yiu M., Papadias D., and Mamoulis N. Continu-

ous nearest neighbor monitoring in road networks. In Proc.

32nd Int. Conf. on Very Large Data Bases, 2006, pp. 43–54.

13. Prabhakar S., Xia Y., Kalashnikov D., Aref W., and Hambrusch S.

Query indexing and velocity constrained indexing: scalable tech-

niques for continuous queries on moving objects. IEEE Trans.

Comput., 51(10):1124–1140, 2002.

14. Tao Y. and Papadias D. Maintaining sliding window skylines on

data Streams. IEEE Trans. Knowledge and Data Eng., 18(3):

377–391, 2006.

15. Xia T. and Zhang D. Continuous reverse nearest neighbor mon-

itoring. In Proc. 22nd Int. Conf. on Data Engineering, 2006.

16. Xiong X., Mokbel M., and Aref W. SEA-CNN: Scalable proces-

sing of continuous k-nearest neighbor queries in spatio-temporal
databases. In Proc. 21st Int. Conf. on Data Engineering, 2005,

pp. 643–654.

17. Yu X., Pu K., and Koudas N. Monitoring k-nearest neighbor

queries over moving objects. In Proc. 21st Int. Conf. on Data

Engineering, 2005, pp. 631–642.

18. Zhang D., Du Y., and Hu L. On monitoring the top-k unsafe

places, In Proc. 24th Int. Conf. on Data Engineering, 2008,

pp. 337–345.
Continuous Multimedia Data
Retrieval

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Continuous multimedia is widely used in many ap-

plications nowadays. Continuous multimedia objects,

such as audio and video streams, being stored on

disks with different requirements of bandwidths, are

required to be retrieved continuously without interrup-

tion. The response time is an important measurement

in supporting continuous multimedia streams. Several

strategies are proposed in order to satisfy the require-

ments of all users in a multi-user environment where

multiple users are trying to retrieve different continuous

multimedia streams together.

Historical Background
Several multimedia data retrieval techniques are pro-

posed to support the real-time display of continuous

multimedia objects. There are three categories [6]. The

first category is to sacrifice the quality of the data in

order to guarantee the required bandwidth of multi-

media objects. The existing techniques either use lossy

compression techniques (such as predictive [15], fre-

quency oriented [11], and importance oriented [10]),

or use a low resolution device. The second category is

to use the placement techniques to satisfy the continu-

ous requirement by arranging the data to appropriate

disk locations. In other words, it is to organize multi-

media data across the surface of a disk drive to maxi-

mize its bandwidth when it is retrieved [4,5,16,22,20].

The third category is to increase the bandwidth of

storage device by using parallelism. The basic idea is

to employ the aggregate bandwidth of several disk

drives by putting an object across multiple disks, for

Continuous Multimedia Data Retrieval C 485

C

example, a Redundant Arrays of Inexpensive Disk

(RAID) [17]. The existing works [9,19] focus on this

direction.

Foundations
This section focuses on the second and third categories,

and discusses multimedia data retrieval regarding

single/multiple stream(s) and single/multiple disk(s).

Retrieval of a Single Stream on a Single Disk

For the retrieval of a single multimedia stream on a

single disk, the stream data is read into a first-in-first-

out queue (FIFO) continuously first, and then is sent

to the display devices, possibly via a network, at the

appropriate rate. In order to satisfy the real-time

requirements – to display multimedia data continu-

ously on a display, it is required to keep the FIFO non

empty. In other words, there is some multimedia data

to be displayed in the FIFO in the duration of the

playback. As pointed in [6], pre-fetching all the data

into the FIFO before playback is not a feasible solution

because the size of the stream can be very large.

Suppose that a read request of a large multimedia

data is issued. The starting time and the minimum

buffer space, to display the retrieved multimedia data

continuously, are determined as follows, under the

following conditions: (i) the timing of data retrieval

is known in advance, (ii) both the transfer rate and

consumption rate are constant, and (iii) the transfer

rate of the storage device is at least as great as the

consumption rate. Consider Fig. 1. First, the amount

of data, that needs to be consumed by a display, is

illustrated as the dotted line marked data read. The

vertical line segments show the amount of data that

needs to be consumed in order to continuously display,
Continuous Multimedia Data Retrieval. Figure 1.

Finding minimum buffer space and start time (Fig. 2 in [6]).
and the horizontal line shows the time periods such

amount of data is consumed on a display. Second, the

solid zigzag line, marked data buffered, shows the

data to be accessed in the data buffers. The vertical

line segments show the data to be read into the buffers

followed by the line segments that show data is con-

sumed in the buffer during a certain time interval.

Here, in the solid zigzag line, there is a minimum point

(marked minimum-shift up to zero), which is a

possible negative value and is denoted as z(< 0).

Third, the dotted zigzag line (marked shifted buffer

plot) is the line by shifting the entire solid zigzag

line up by the amount of jzj where z < 0. Finally, the

starting time to display is determined as the point at

which the shifted-up dotted zigzag line (shifted

buffer plot) and the dotted line (data read) inter-

sect, which is indicated as intersection - start

time in Fig. 1. Also, the minimum buffer size is the

maximum value of in the line of shifted buffer

plot, which is indicated as required buffer

space in Fig. 1. Details are discussed in [7].

Retrieval of a Single Stream on Multiple Disks

The multimedia data retrieval using multiple disks is a

technique to retrieve a data stream continuously at

the required bandwidth. The main idea behind is

to de-cluster the data stream into several fragments

[14,2], and distribute these fragments across multiple

processors (and disks). By combining the I/O band-

widths of several disks, a system can provide the

required retrieval rate to display a continuous multi-

media stream in real-time. Assume that the required

retrieval rate is B and the bandwidth of each disk is BD.

The degree of de-clustering can be calculated as

M ¼ d B
BD
e, which implies the number of disks that

is needed to satisfy the required retrieval rate.

When the degree of de-clustering is determined,

the fragments can be formed using a round-robin

partitioning strategy as illustrated in Fig. 2, where an

object x is partitioned into M fragments stored on M

disks. The round-robin partitioning is conducted as

follows. First, the object x is divided in N blocks (disk

pages) depending on the disk-page size allowed on

disks. In Fig. 2, the number of blocks is N = M � M.

The first block0 is assigned to first fragment indicated

as x1 in Fig. 2, and the second block1 is assigned to the

second fragment indicated as x2. The first M blocks

from block0 to blockM�1 are assigned to the M frag-

ments one by one. In next run, the next set of blocks,

Continuous Multimedia Data Retrieval. Figure 2.

Round-robin partitioning of object x (Fig. 5 in [9]).

486C Continuous Multimedia Data Retrieval
from blockM to block2M�1 will be assigned to the M

fragments in the similar fashion. The process repeats

until all data blocks are assigned to the fragments in a

round-robin fashion.

Retrieval of Multiple Streams on a Single Disk

In a multi-user environment, several users may re-

trieve data streams simultaneously. Therefore, there

are multiple data streams requested on a single disk.

The data streams are retrieved in rounds, and each

stream is allowed a disk access or a fixed number of

disk accesses at one time. All data retrieval requests

need to be served in turn. Existing solutions include

SCAN, round-robin, EDF, and Sorting-Set algorithms.

The round-robin algorithm retrieves data for each data

retrieval request, in turn, in a predetermined order.

The SCAN algorithm moves the disk head back and

forth, and retrieves the requested blocks when the disk

head passes over the requested blocks [18]. The EDF

(earliest-deadline-first) algorithm serves the request

with the earliest deadline first, where a deadline is

given to a data stream [13]. The sorting-set algorithm

is designed to exploit the trade-off between the num-

ber of rounds between successive reads for a data

stream and the length of the round [8,21], by assigning

each data stream to a sorting set. Fixed time slots are

allocated to a sorting set in a round during which its

requests are possibly processed.
Retrieval of Multiple Streams on Multiple Disks

In order to support multiple stream retrieval, making

use of parallel disks is an effective method, where a

data stream is striped across the parallel disks. There

are several approaches to retrieve data streams when

they are stored on parallel disks (Fig. 3). It is important

to note that the main issue here is to increase the

number of data streams to be retrieved simultaneously.

It is not to speed up retrieval for an individual data

stream using multiple disks. Consider the striped re-

trieval as shown in Fig. 3a, where a data stream is

striped across m parallel disks. Suppose that each disk

has rc bandwidth, m parallel disks can be together used

to increase the bandwidth up to m � rc. However, the

issue is the system capacity in terms of the number of

data streams it can serve, for example, from n data

streams to m � n data streams using m parallel disks.

Suppose that each data stream will be served in turn.

When it increases the number of data streams from n

tom � n, in the striped retrieval, the round length (or in

other words consecutive reads for a single data stream)

increases proportionally from n to m � n. It implies

that, in order to satisfy the required retrieval rate, it

needs to use a larger buffer, which also implies a larger

startup delay. An improvement over striped retrieval is

to use split-stripe retrieval which allows partial stripes

to be used (Fig. 3b), in order to reduce the buffer size

required in the striped retrieval. But, it has its limit to

significantly reduce startup delay and buffer space.

Observe the data transfer patterns in the striped

retrieval and the split-striped retrieval, which show

busty patterns for data to be read into the buffer. For

instance, consider Fig. 3a, an entire strip for a single

data stream will be read in and be consumed in a

period which is related to the round length. It requests

larger buffer sizes, because it needs to keep the data to

be displayed continuously until the next read, in par-

ticular when the number of streams increases from n

tom � n. Instead, an approach is proposed to read small

portion of data frequently, in order to reduce the buffer

space required. The approach is called cyclic retrieval.

As shown in Fig. 3c, the cyclic retrieval tries to read

multiple streams rather than one stream at one time.

Rather than retrieving an entire stripe at once, the

cyclic retrieval retrieves each striping unit of a stripe

consecutively [1,3]. Using this approach, the buffer

space is significantly reduced. But the reduction

comes with cost. The buffer space reduction is

achieved at the expense of cuing (a stream is said to

Continuous Multimedia Data Retrieval. Figure 3. Retrieval of multiple streams on multiple disks [6].

Continuous Multimedia Data Retrieval. Table 1. A

comparison of multi-disk retrieval strategies supporting

n streams (Table 1 in [6])

Striped Cyclic Replicated

Instant restart yes no yes

Clock skew
tolerance

yes no yes

Easy scaling no no yes

Capacity per-system per-system per-title

Startup delay O(n) O(n) O(1)

Buffer space O(n2) O(n) O(n)

Continuous Multimedia Data Retrieval C 487

C

be cued if it is paused and playback may be initiated

instantaneously) and clock skew tolerance.

As an alternative to striped (split-striped) or cyclic

retrieval, it can deal with each disk independently rather

than treating them as parallel disks. Here, each disk

stores a number of titles (data streams). When there is

a multimedia data retrieval request, a disk that contains

the data stream will respond. The data streams that are

frequently requested may be kept in multiple disks using

replication. The number of replications can be deter-

mined based on the retrieval frequency of data streams

[12], as shown in Fig. 3d. Based on the replicated

retrieval, both the startup delay time and buffer space

can be reduced significantly. It is shown that it is easy

to scale when the number of data streams increase at

the expense of more disk space required. [9] discusses

data replication techniques.

A comparison among striped-retrieval, cyclic re-

trieval, and replicated retrieval in supporting n streams

is shown in Table 1.
Key Applications
Continuous multimedia data retrieval is used in many

real-time continuous multimedia streams such as audio

and video through the network. Especially in a multi-

user environment, the continuous multimedia data re-

trieval techniques are used to support simultaneous

display of several multimedia objects in real-time.

488C Continuous Queries in Sensor Networks
Cross-references
▶Buffer Management

▶Buffer Manager

▶Multimedia Data Buffering

▶Multimedia Data Storage

▶Multimedia Resource Scheduling

▶ Scheduling Strategies for Data Stream Processing

▶ Storage Management

▶ Storage Manager

Recommended Reading
1. Berson S., Ghandeharizadeh S., Muntz R., and Ju X.

Staggered striping in multimedia information systems. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1994,

pp. 79–90.

2. Carey M.J. and Livny M. Parallelism and concurrency

control performance in distributed database machines. ACM

SIGMOD Rec., 18(2):122–133, 1989.

3. Chen M.S., Kandlur D.D., and Yu P.S. Storage and

retrieval methods to support fully interactive playout in a dis-

k-array-based video server. Multimedia Syst., 3(3):126–135,

1995.

4. Christodoulakis S. and Ford D.A. Performance analysis

and fundamental performance tradeoffs for CLV optical disks.

ACM SIGMOD Rec., 17(3):286–294, 1988.

5. Ford D.A. and Christodoulakis S. Optimizing random retrievals

from CLV format optical disks. In Proc. 17th Int. Conf. on Very

Large Data Bases, 1991, pp. 413–422.

6. Gemmell D.J. Multimedia information storage and manage-

ment, chap. 1. Disk Scheduling for Continuous Media. Kluwer,

Norwell, MA, USA, 1996.

7. Gemmell J. and Christodoulakis S. Principles of delay-sensitive

multimedia data storage retrieval. ACM Trans. Inf. Syst.,

10(1):51–90, 1992.

8. Gemmell D.J. and Han J. Multimedia network file servers:

multichannel delay-sensitive data retrieval. Multimedia Syst.,

1(6):240–252, 1994.

9. Ghandeharizadeh S. and Ramos L. Continuous retrieval of

multimedia data using parallelism. IEEE Trans. on Knowl. and

Data Eng., 5(4):658–669, 1993.

10. Green J.L. The evolution of DVI system software.

Commun. ACM, 35(1):52–67, 1992.

11. Lippman A. and Butera W. Coding image sequences for interac-

tive retrieval. Commun. ACM, 32(7):852–860, 1989.

12. Little T.D.C. and Venkatesh D. Popularity-based assignment

of movies to storage devices in a video-on-demand system.

Multimedia Syst., 2(6):280–287, 1995.

13. Liu C.L. and Layland J.W. Scheduling algorithms for multipro-

gramming in a hard real-time environment. In Tutorial:

Hard Real-Time Systems. IEEE Computer Society, Los Alamitos,

CA, USA, 1989, pp. 174–189.

14. Livny M., Khoshafian S., and Boral H. Multi-disk management

algorithms. SIGMETRICS Perform. Eval. Rev., 15(1):69–77,

1987.

15. Luther A.C. Digital video in the PC environment, (2nd edn.).

McGraw-Hill, New York, NY, USA, 1991.
16. McKusick M.K., Joy W.N., Leffler S.J., and Fabry R.S. A fast

file system for UNIX. Comput. Syst., 2(3):181–197, 1984.

17. Patterson D.A., Gibson G.A., and Katz R.H. A case for

redundant arrays of inexpensive disks (RAID). In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1988,

pp. 109–116.

18. Teorey T.J. and Pinkerton T.B. A comparative analysis of disk

scheduling policies. In Proc. 3rd ACM Symp. on Operating System

Principles, 1971, pp. 114.

19. Tsai W.J. and Lee S.Y. Storage design and retrieval of con-

tinuous multimedia data using multi-disks. In Proc. 1994

Int. Conf. on Parallel and Distributed Systems, 1994,

pp. 148–153.

20. Wong C.K. Minimizing expected head movement in one-

dimensional and two-dimensional mass storage systems. ACM

Comput. Surv., 12(2):167–178, 1980.

21. Yu P.S., Chen M.S., and Kandlur D.D. Grouped sweeping

scheduling for DASD-based multimedia storage management.

Multimedia Syst., 1(3):99–109, 1993.

22. Yue P.C. and Wong C.K. On the optimality of the probability

ranking scheme in storage applications. J. ACM, 20(4):624–633,

1973.
Continuous Queries in Sensor
Networks

YONG YAO, JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
Long running queries

Definition
A powerful programming paradigm for data acqui-

sition and dissemination in sensor networks is a

declarative query interface. With a declarative query

interface, the sensor network is programmed for long

term monitoring and event detection applications

through continuous queries, which specify what data

to retrieve at what time or under what conditions.

Unlike snapshot queries which execute only once, con-

tinuous queries are evaluated periodically until the

queries expire. Continuous queries are expressed in a

high-level language, and are compiled and installed on

target sensor nodes, controlling when, where, and what

data is sampled, possibly filtering out unqualified data

through local predicates. Continuous queries can have

a variety of optimization goals, from improving result

quality and response time to reducing energy con-

sumption and prolonging network lifetime.

Continuous Queries in Sensor Networks C 489

C

Historical Background
In recent years sensor networks have been deployed

successfully for a wide range of applications from

environmental sensing to process monitoring. A data-

base approach to programming sensor networks has

gained much importance: Clients program the net-

work through queries without knowing how the results

are generated, processed, and returned to the client.

Sophisticated catalog management, query optimiza-

tion, and query processing techniques abstract the

client from the physical details of contacting the rele-

vant sensors, processing the sensor data, and sending

the results to the client. The concept of a sensor net-

work as a database was first introduced in [3]. A

number of research projects, including TinyDB [9]

and Cougar [14] have implemented continuous

queries as part of their database languages for sensor

networks. In these systems time is divided into epochs

of equal size, and continuous queries are evaluated

once per epoch during their lifetime. Figure 1 shows

this database view of sensor networks.

Two properties are significant to continuous query

processing in sensor networks: energy conservation and

fault-tolerance in case of failures of sensors, both topics

that are not of importance in traditional database

systems or data stream systems. Advanced query

processing techniques have been proposed to enable

energy-efficient query processing in the presence of
Continuous Queries in Sensor Networks. Figure 1.

Database view of sensor networks.
frequent node and communication failures. For exam-

ple, a lot of research has been dedicated to in-network

query processing [6,9,14] to reduce the amount of data

to be transmitted inside the network. Another approach

is to permit approximate query processing [4,5], which

produces approximate query answers within a pre-

defined accuracy range, but consumes much less energy.

Sensor data is correlated in time and space. Data

compression in sensor networks and probabilistic

data models [1,7,8] exploit data correlation and remove

redundant data from intermediate results.

Next generation sensor network may consist of

media-rich and mobile sensor nodes, which result in

new challenges arise for continuous query processing

such as mobility and high data rates. ICEDB [15]

describes a new framework for continuous query pro-

cessing in sensor networks with intermittent network

connectivity and large amount of data to transfer.

Foundations
Continuous queries are a natural approach for data

fusion in sensor networks for long running applications

as they provide a high-level interface that abstracts

the user from the physical details of the network. The

design and implementation of continuous queries needs

to satisfy several requirements. First, it has to preserve

the scarce resources such as energy and bandwidth in

battery-powered sensor networks. Thus the simple ap-

proach of transmitting all relevant data back to a central

node for query evaluation is prohibitive for sensor net-

works of non-trivial size, as communication using the

wireless medium consumes a lot of energy. Since sensor

nodes have the ability to perform local computation,

communication can be traded for computation by

moving computation from the clients into the sensor

network, aggregating partial results or eliminating irrel-

evant data. Second, sensor network applications usually

have different QoS requirements, from accuracy, energy

consumption to delay. Therefore the continuous query

model needs to be flexible enough to adopt various

processing techniques in different scenarios.

Sensor Data Model

In the view of a sensor network as a database, each

sensor node is modeled as a separate data source that

generates records with several fields such as the sensor

type, location of the sensor node, a time stamp, and

the value of the reading. Records of the same sensor

type from different nodes have the same schema, and

490C Continuous Queries in Sensor Networks
these records collectively form a distributed table of

sensor readings. Thus the sensor network can be con-

sidered as a large distributed database system consist-

ing of several tables of different types of sensors.

Sensor readings are samples of physical signals

whose values change continuously over time. For ex-

ample, in environmental monitoring applications, sen-

sor readings are generated every few seconds (or even

faster). For some sensor types (such as PIR sensors that

sense the presence of objects) their readings might

change rapidly and thus may be outdated rather quickly,

whereas for other sensors, their value changes only

slowly over time as for temperature sensors that usually

have a small derivative. Continuous queries recompute

query results periodically and keep query results up-to-

date. For applications that require only approximate

results, the system can cache previous results and lower

the query update rate to save energy.

Instead of querying raw sensor data, most applica-

tions are more interested in composite data which

captures high-level events monitored by sensor net-

works. Such composite data is produced by complex

signal processing algorithms given raw sensor mea-

surements as inputs. Composite data usually has a

compact structure and is easier to query.

Continuous Query Models

In TinyDB and Cougar, continuous queries are repre-

sented as a variant of SQL with a few extensions. A

simple query template in Cougar is shown in the figure

below. (TinyDB uses a very similar query structure.)

SELECT {attribute, aggregate}

FROM {Sensordata S}

WHERE {predicate}

GROUP BY {attribute}

HAVING {predicate}

DURATION time interval

EVERY time span e

The template can be extended to support nested

queries, where the basic query block shown below can

appear within the WHERE or HAVING clause of another

query block. The query template has an obvious se-

mantics: the SELECT clause specifies attributes and

aggregates from sensor records, the FROM clause speci-

fies the distributed relation describing the sensor type,

the WHERE clause filters sensor records by a predicate,

the GROUP BY clause classifies sensor records into dif-

ferent partitions according to some attributes, and the
HAVING clause eliminates groups by a predicate. Join

queries between external tables and sensor readings are

constructed by including the external tables and sensor

readings in the FROM clause and join predicates in the

WHERE clause.

Two new clauses introduced for continuous queries

are DURATION and EVERY; The DURATION clause spe-

cifies the lifetime of the continuous query, and the

EVERY or clause determines the rate of query answers.

TinyDB has two related clauses:LIFETIME and SAMPLE

INTERVAL, specifying the lifetime of the query and the

sample interval, respectively. The LIFETIME clause

will be discussed in more detail a few paragraphs later.

In event detection applications, sensor data is col-

lected only when particular events happen. The above

query template can be extended with a condition

clause as a prerequisite to determine when to start or

stop the main query. Event-based queries have the

following structure in TinyDB:

ON EVENT {event(arguments)}:

{query body}

Another extension to the basic query template is life-

time-based queries, which have no explicit EVERY or

SAMPLE INTERVAL clause; only the query lifetime is

specified through a LIFETIME clause [9]. The system

automatically adjusts the sensor sampling rate to the

highest rate possible with the guarantee that the sensor

network can process the query for the specified life-

time. Lifetime-based queries are more intuitive in

some mission critical applications where user queries

have to run for a given period of time, but it is hard to

predict the optimal sampling rate in advance. Since the

sampling rate is adjusted continuously according to the

available power and the energy consumption rate in

the sensor network, lifetime-based queries are more

adaptive to unpredictable changes in sensor networks

deployed in a harsh environment.

Common Types of Continuous Queries in Sensor

Networks Select-All Queries

Recent sensor network deployments indicate that a

very common type of continuous queries is a select-

all query, which extracts all relevant data from the

sensor network and stores the data in a central place

for further processing and analysis. Although select-all

queries are simple to express, efficient processing

of select-all queries is a big challenge. Without optimi-

zation, the size of the transmitted data explodes

Continuous Queries in Sensor Networks C 491

C

quickly, and thus the power of the network would be

drained in a short time, especially for those nodes

acting as bridge to the outside world; this significantly

decreases the lifetime of the sensor network.

One possible approach is to apply model-based data

compression at intermediate sensor nodes [7]. For

many types of signals, e.g., temperature and light, sen-

sor readings are highly correlated in both time and

space. Data compression in sensor networks can signif-

icantly reduce the communication overhead and in-

crease the network lifetime. Data compression can

also improve the signal quality by removing unwanted

noise from the original signal. One possible form of

compression is to construct and maintain a model of

the sensor data in the network; the model is stored both

on the server and on sensor nodes in the network. The

model on the server can be used to predicate future

values within a pre-defined accuracy range. Data com-

munication happens to synchronize the data model on

the server with real sensor measurements [7].

Aggregate Queries

Aggregate queries return aggregate values for each

group of sensor nodes specified by the GROUP BY

clause. Below is is an example query that computes

the average concentration in a region every 10 seconds

for the next hour:

SELECT AVG(R.concentration)

FROM ChemicalSensor R

WHERE R.loc IN region

HAVING AVG(R.concentration) > T

DURATION (now,now+3600)

EVERY 10

Data aggregation in sensor networks is well-studied

because it scales to sensor networks with even

thousands of nodes. Query processing proceeds along

a spanning tree of sensor nodes towards a gateway

node. During query processing, partial aggregate

results are transmitted from a node to its parent in the

spanning tree. Once an intermediate node in the tree

has received all data from nodes below it in a round,

the node compute a partial aggregate of all received

data and sends that output to the next node. This

solution works for aggregate operators that are incre-

mentally computable, such as avg, max, and moments

of the data. The only caveat is that this in-network

computation requires synchronization between sensor

nodes along the communication path, since a node
has to ‘‘wait’’ to receive results to be aggregated.

In networks with high loss rates, broken links are hard

to differentiate from long delays due to high loss rates,

making synchronization a non-trivial problem [13].
Join Queries

In a wide range of event detection applications, sensor

readings are compared to a large number of time and

location varying predicates to determine whether a

user-interesting event is detected [1]. The values of

these predicates are stored in a table. Continuous

queries with a join operator between sensor readings

and the predicate table are suitable for such applications.

Similar join queries can beused to detect defective sensor

nodes whose readings are inaccurate by checking their

readings against readings from neighboring sensors

(again assuming spatial correlation between sensor read-

ings). Suitable placement of the join operator in a sensor

network has also been examined [2].
Key Applications

Habitat Monitoring

In the Great Duck Island experiment, a network of

sensors was deployed to monitor the microclimate in

and around nesting burrows used by birds, with the goal

of developing a habitatmonitoring kit that would enable

researchers worldwide to engage in non-intrusive and

non-disruptive monitoring of sensitive wildlife and

habitats [10]. In a more recent experiment, a sensor

network was deployed to densely record the complex

spatial variations and the temporal dynamics of the

microclimate around a 70-meter tall redwood tree [12].
The Intelligent Building

Sensor networks can be deployed in intelligent build-

ings for the collection and analysis of structural

responses to ambient or forced excitation of the build-

ing’s structure, for control of light and temperature to

conserve energy, and for monitoring of the flow of

people in critical areas. Continuous queries are used

both for data collection and for event-based monitor-

ing of sensitive areas and to enforce security policies.

Industrial Process Control

Idustrial manufacturing processes often have strict

requirements on temperature, humidity, and other

environmental parameters. Sensor networks can be

492C Continuous Query
deployed to monitor the production environment

without expensive wires to be installed. Continuous

join queries compare the state of the environment to a

range of values specified in advance and send an alert

when an exception is detected [1].

Cross-references
▶Approximate Query Processing

▶Data Acquisition and Dissemination in Sensor

Networks

▶Data Aggregation in Sensor networks

▶Data Compression in Sensor Networks

▶Data Fusion in Sensor Networks

▶Database Languages for Sensor Networks

▶Distributed Database Systems

▶ In-Network Query Processing

▶ Sensor Networks

Recommended Reading
1. Abadi D., Madden S., and Lindner W. REED: robust, efficient

filtering and event detection in sensor networks. In Proc. 31st

Int. Conf. on Very Large Data Bases, 2005, pp. 768–780.

2. Bonfils B. and Bonnet P. Adaptive and decentralized

operator placement for in-network query processing. In Proc.

2nd Int. Workshop Int. Proc. in Sensor Networks, 2003,

pp. 47–62.

3. Bonnet P., Gehrke J., and Seshadri P. Towards sensor database

systems. In Proc. 2nd Int. Conf. on Mobile Data Management,

2001, pp. 3–14.

4. Chu D., Deshpande A., Hellerstein J., and HongW. Approximate

data collection in sensor networks using probabilistic models.

In Proc. 22nd Int. Conf. on Data Engineering, 2006.

5. Considine J., Li F., Kollios G., and Byers J. Approximate aggre-

gation techniques for sensor databases. In Proc. 20th Int. Conf.

on Data Engineering, 2004, pp. 449–460.

6. Deligiannakis A., Kotidis Y., and Roussopoulos N. Hierarchical

in-network data aggregation with quality guarantees. In Advances

in Database Technology, Proc. 9th Int. Conf. on Extending Data-

base Technology, 2004, pp. 658–675.

7. Deshpande A., Guestrin C., Madden S., Hellerstein J., and

Hong W. Model-driven data acquisition in sensor networks.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 588–599.

8. Kanagal B. and Deshpande A. Online filtering, smoothing and

probabilistic modeling of streaming data. In Proc. 24th Int.

Conf. on Data Engineering, 2008, pp. 1160–1169.

9. Madden S., Franklin M., Hellerstein J., and Hong W. The design

of an acquisitional query processor for sensor networks. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 491–502.

10. Mainwaring A., Polastre J., Szewczyk R., Culler D., and

Anderson J. Wireless sensor networks for habitat monitoring.

In Proc. 1st ACM Int. Workshop on Wireless Sensor Networks

and Applications, 2002, pp. 88–97.
11. Stoianov I., Nachman L., Madden S., and Tokmouline T.

PIPENET: a wireless sensor network for pipeline monitoring.

In Proc. 6th Int. Symp. Inf. Proc. in Sensor Networks, 2007,

pp. 264–273.

12. Tolle G., Polastre J., Szewczyk R., Culler D., Turner N., Tu K.,

Burgess S., Dawson T., Buonadonna P., Gay D., and Hong W.

A macroscope in the redwoods. In Proc. 3rd Int. Conf. on

Embedded Networked Sensor Systems, 2005.

13. Trigoni N., Yao Y., Demers A.J., Gehrke J., and Rajaraman R.

Wave scheduling and routing in sensor networks. ACM Trans.

Sensor Netw., 3(1):2, 2007.

14. Yao Y. and Gehrke J. Query processing in sensor networks. In

Proc. 1st Biennial Conf. on Innovative Data Systems Research,

2003.

15. Zhang Y., Hull B., Balakrishnan H., and Madden S.

ICEDB: intermittently connected continuous query process-

ing. In Proc. 23rd Int. Conf. on Data Engineering, 2007,

pp. 166–175.
Continuous Query

SHIVNATH BABU

Duke University, Durham, NC, USA

Synonyms
Standing query

Definition
A continuous query Q is a query that is issued once

over a databaseD, and then logically runs continuously

over the data inD untilQ is terminated.Q lets users get

new results from D without having to issue the same

query repeatedly. Continuous queries are best under-

stood in contrast to traditional SQL queries overD that

run once to completion over the current data in D.

Key Points
Traditional database systems expect all data to be

managed within some form of persistent data sets. For

many recent applications, where the data is changing

constantly (often exclusively through insertions of new

elements), the concept of a continuous data stream is

more appropriate than a data set. Several applications

generate data streams naturally as opposed to data sets,

e.g., financial tickers, performancemeasurements in net-

work monitoring, and call detail records in telecommu-

nications. Continuous queries are a natural interface for

monitoring data streams. In network monitoring, e.g.,

continuous queries may be used to monitor whether all

routers and links are functioning efficiently.

ConTract C 493

C

The Tapestry system [3] for filtering streams of

email and bulletin-board messages was the first to

make continuous queries a core component of a data-

base system. Continuous queries in Tapestry were

expressed using a subset of SQL. Barbara [2] later

formalized continuous queries for a wide spectrum of

environments. With the recent emergence of general-

purpose systems for processing data streams, continu-

ous queries have become the main interface that users

and applications use to query data streams [1].

Materialized views and triggers in traditional data-

base systems can be viewed as continuous queries. A

materialized view V is a query that needs to be reeval-

uated or incrementally updated whenever the base data

over which V is defined changes. Triggers implement

event-condition-action rules that enable database sys-

tems to take appropriate actions when certain events

occur.

Cross-references
▶Database Trigger

▶ ECA-Rule

▶Materialized Views

▶ Processing

Recommended Reading
1. Babu S. and Widom J. Continuous queries over data streams.

ACM SIGMOD Rec., 30(3):109–120, 2001.

2. Barbara D. The characterization of continuous queries. Int. J.

Coop. Inform. Syst., 8(4):295–323, 1999.

3. Terry D., Goldberg D., Nichols D., and Oki B. Continuous

queries over append-only databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1992, pp. 321–330.
Continuous Query Languages

▶ Stream-oriented Query Languages and Operators
Continuous Query Processing
Applications

▶ Streaming Applications
Continuous Query Scheduling

▶ Scheduling Strategies for Data Stream Processing
ConTract

ANDREAS REUTER
1,2

1EML Research aGmbH Villa Bosch, Heidelberg,

Germany
2Technical University Kaiserslautern, Kaiserslautern,

Germany

Definition
A ConTract is an extended transaction model that

employs transactional mechanisms in order to provide

a run-time environment for the reliable execution of

long-lived, workflow-like computations. The focus is

on durable execution and on correctness guarantees

with respect to the effects of such computations on

shared data.
Key Points
The notion of a ConTract (concatenated transacti-

ons) combines the principles of workflow programing

with the ideas related to long-lived transactions. The

ConTract model is based on a two-tier programing

approach. At the top level, each ConTract is a script

describing a (long-lived) computation. The script des-

cribes the order of execution of so-called steps. A step is

a predefined unit of execution (e.g., a service invocation)

with no visible internal structure. A step can access

shared data in a database, send messages, etc.

A ConTract, once it is started, will never be lost

by the system, no matter which technical problems

(short of a real disaster) will occur during execution.

If completion is not possible, all computations

performed by a ConTract will be revoked, so in a

sense ConTracts have transactional behaviour in that

they will either be run to completion, or the impossi-

bility of completion will be reflected in the invocation

of appropriate recovery measures.

The ConTract model draws on the idea of Sagas,

where the notion of compensation is employed as a

means for revoking the results of computations beyond

the boundaries of ACID transactions. In a ConTract, by

default each step is an ACID transaction. But it is possi-

ble to group multiple steps (not just linear sequences)

into a transaction. Compensation stepsmust be supplied

by the application explicitly.

The ideas of the ConTract model have selectively

been implemented in some academic prototypes, but a

full implementation has never been attempted. It has

494C ConTracts
influenced many later versions of ‘‘long-lived transac-

tion’’ schemes, and a number of its aspects can be

found in commercial systems such as BizTalk.

Cross-references
▶ Extended Transaction Models

▶ Persistent Execution

▶ Sagas

▶Workflow

Recommended Reading
1. Reuter A. and Waechter H. The ConTract model. In Readings in

Database in Database Systems, (2nd edn.), M. Stonebraker,

J. Hellerstein, (eds.). Morgan Kaufmann, Los Altos, CA, 1992,

pp. 219–263.
ConTracts

▶ Flex Transactions
Contrast Pattern

▶ Emerging Patterns
Contrast Pattern Based
Classification

▶ Emerging Pattern Based Classification
Control Data

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Workflow control data; Workflow engine state data;

Workflow enactment service state data

Definition
Data that is managed by the Workflow Management

System and/or a Workflow Engine. Such data is inter-

nal to the workflow management system and is not

normally accessible to applications.
Key Points
Workflow control data represents the dynamic state of

the workflow system and its process instances.

Workflow control data examples include:

� State information about each workflow instance.

� State information about each activity instance

(active or inactive).

� Information on recovery and restart points within

each process, etc.

The workflow control data may be written to persistent

storage periodically to facilitate restart and recovery of

the system after failure. It may also be used to derive

audit data.

Cross-references
▶Activity

▶ Process Life Cycle

▶Workflow Management and Workflow Management

System

▶Workflow Model
Control Flow Diagrams

▶Activity Diagrams
Controlled Vocabularies

▶ Lightweight Ontologies
Controlling Overlap

▶ Processing Overlaps
Convertible Constraints

CARSON KAI-SANG LEUNG

University of Manitoba, Winnipeg, MB, Canada

Definition
A constraint C is convertible if and only if C is con-

vertible anti-monotone or convertible monotone.

Coordination C 495

C

A constraint C is convertible anti-monotone provided

there is an orderR on items such that when an ordered

itemset S satisfies constraint C, so does any prefix of

S. A constraint C is convertible monotone provided

there is an order R0 on items such that when an

ordered itemset S0 violates constraint C, so does any

prefix of S0.
Key Points
Although some constraints are neither anti-monotone

nor monotone in general, several of them can be

converted into anti-monotone or monotone ones by

properly ordering the items. These convertible con-

straints [1-3] possess the following nice properties. By

arranging items according to some proper order R,
if an itemset S satisfies a convertible anti-monotone

constraint C, then all prefixes of S also satisfy C. Simi-

larly, by arranging items according to some proper

orderR0, if an itemset S violates a convertible monotone

constraint C 0, then any prefix of S also violates C 0.
Examples of convertible constraints include avg(S.

Price)�50, which expresses that the average price of

all items in an itemset S is at least $50. By arranging

items in non-ascending orderR of price, if the average

price of items in an itemset S is at least $50, then the

average price of items in any prefix of S would not be

lower than that of S (i.e., all prefixes of S satisfying a

convertible anti-monotone constraint C also satisfy C).

Similarly, by arranging items in non-descending order

R�1 of price, if the average price of items in an itemset

S falls below $50, then the average price of items in any

prefix of S would not be higher than that of S (i.e., any

prefix of S violating a convertible monotone constraint

C also violates C). Note that (i) any anti-monotone

constraint is also convertible anti-monotone (for any

order R) and (ii) any monotone constraint is also con-

vertible monotone (for any order R0).
Cross-references
▶ Frequent Itemset Mining with Constraints
Recommended Reading
1 Pei J. and Han J. Can we push more constraints into frequent

pattern mining? In Proc. 6th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2000, pp. 350–354.

2. Pei J., Han J., and Lakshmanan L.V.S. Mining frequent item sets

with convertible constraints. In Proc. 17th Int. Conf. on Data

Engineering, 2001, pp. 433–442.
3. Pei J., Han J., and Lakshmanan L.V.S. Pushing convertible

constraints in frequent itemset mining. Data Mining Knowl.

Discov. 8(3):227–252, 2004.
Cooperative Classification

▶Visual Classification
Cooperative Content Distribution

▶ Peer-To-Peer Content Distribution
Cooperative Storage Systems

▶ Peer-to-Peer Storage
Coordination

W.M.P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Definition
Coordination is about managing dependencies be-

tween activities, processes, and components. Unlike

the classical computation models, a coordination

model puts much more emphasis on communication

and cooperation than computation.

Key Points
Turing machines are a nice illustration of the classical

‘‘computation-oriented’’ view of systems. However, this

view is too limited for many applications (e.g., web

services). Many systems can be viewed as a collection

of interacting entities (e.g., communicating Turing

machines). For example, in the context of a service

oriented architecture (SOA) coordination is more im-

portant than computation. There exist many approaches

tomodel and support coordination. Linda is an example

496C ||-Coords
of a language to model coordination and communica-

tion among several parallel processes operating upon

objects stored in and retrieved from a shared, virtual,

associative memory [1]. Linda attempts to separate

coordination from computation by only allowing inter-

action through tuplespaces. However, one could argue

that this is also possible in classical approaches such as

Petri nets (e.g., connect processes through shared

places), synchronized transition systems/automata, pro-

cess algebra, etc. Coordination also plays an important

role in agent technology [2].

Some authors emphasize the interdisciplinary na-

ture of coordination [3]. Coordination is indeed not a

pure computer science issue and other disciplines like

organizational theory, economics, psychology, etc. are

also relevant.
Cross-references
▶Business Process Management

▶Choreography

▶Web Services

▶Workflow Management
Recommended Reading
1. Gelernter D. and Carriero N. Coordination languages and their

significance. Commun. ACM, 35(2):97–107, 1992.

2. Jennings N.R. Commitments and conventions: the foundation

of coordination in multi-agent systems. Knowl. Eng. Rev.,

8(3):223–250, 1993.

3. Malone T.W. and Crowston K. The interdisciplinary study of

coordination. ACM Comput. Surv., 26(1):87–119, 1994.
||-Coords

▶ Parallel Coordinates
Copy Divergence

▶Weak Consistency Models for Replicated Data
Copy Transparency

▶ Strong Consistency Models for Replicated Data
Copyright Issues in Databases

MICHAEL W. CARROLL

Villanova University School of Law, Villanova,

PA, USA

Synonyms
Intellectual property; License

Definition
Copyright is a set of exclusive rights granted by law to

authors of original works of authorship. It applies

automatically as soon as an original work is created

and fixed in a tangible medium of expression, such as

when it is stored on a hard disk. Originality requires

independent creation by the author and a modicum of

creativity. Copyright covers only an author’s original

expression. Facts and ideas are not copyrightable.

Copyright usually applies only partially to databases.

Copyrightable expression usually is found in database

structures, such as the selection and arrangement of

field names, unless these do not reflect any creativity or

are standard within an area of research. Copyright will

also apply to creative data, such as photographs or

expressive and sufficiently long text entries. By and

large, the rule on facts and ideas means that most

numerical data, scientific results, other factual data,

and short text entries are not covered by copyright.

Historical Background
Copyright has evolved from a limited right to control

the unauthorized distribution of a limited class of

works, primarily books, to a more expansive set of

rights that attach automatically to any original work

of authorship. Copyright law has always been national

in scope, but through international treaties most

nations now extend copyright to non-resident copy-

right owners. To comply with these treaties, copyright

is now also automatic in the USA, which has aban-

doned requirements that a copyright owner register

the work with the Copyright Office or publish the

work with the copyright symbol – � – in order to

retain copyright.

Foundations

Copyright

Copyright attaches to an original work of authorship

that has been embodied in a fixed form. The ‘‘work’’ to

Copyright Issues in Databases C 497

C

which copyright attaches can be the structure of the

database or a relatively small part of a database, includ-

ing an individual data element, such as a photograph.

It is therefore possible for a database to contain multi-

ple overlapping copyrighted works or elements. To

the extent that a database owner has a copyright, or

multiple copyrights, in elements of a database, the

rights apply only to those copyrighted elements. The

rights are to reproduce, publicly distribute or commu-

nicate, publicly display, publicly perform, and prepare

adaptations or derivative works.

Standards for Obtaining Copyright

Originality Copyright protects only an author’s ‘‘orig-

inal’’ expression, which means expression indepen-

dently created by the author that reflects a minimal

spark of creativity. A database owner may have a copy-

right in the database structure or in the user interface

with the database, whether that be a report form or

an electronic display of field names associated with

data. The key is whether the judgments made by the

person(s) selecting and arranging the data require the

exercise of sufficient discretion to make the selection or

arrangement ‘‘original.’’ In Feist Publications, Inc. v.

Rural Telephone Service Company, the US Supreme

Court held that a white pages telephone directory

could not be copyrighted. The data—the telephone

numbers and addresses – were ‘‘facts’’ which were not

original because they had no ‘‘author.’’ Also, the selec-

tion and arrangement of the facts did not meet the

originality requirement because the decision to order

the entries alphabetically by name did not reflect the

‘‘minimal spark’’ of creativity needed.

As a practical matter, this originality standard

prevents copyright from applying to complete

databases – i.e., those that list all instances of a particu-

lar phenomenon – that are arranged in an unoriginal

manner, such as alphabetically or by numeric value.

However, courts have held that incomplete databases

that reflect original selection and arrangement of data,

such as a guide to the ‘‘best’’ restaurants in a city, are

copyrightable in their selection and arrangement. Such

a copyright would prohibit another from copying and

posting such a guide on the Internet without permis-

sion. However, because the copyright would be limited

to that particular selection and arrangement of restau-

rants, a user could use such a database as a reference

for creating a different selection and arrangement of
restaurants without violating the copyright owner’s

copyright.

Copyright is also limited by the merger doctrine,

which appears in many database disputes. If there are

only a small set of practical choices for expressing an

idea, the law holds that the idea and expression merge

and the result is that there is no legal liability for using

the expression.

Under these principles, metadata is copyrightable

only if it reflects an author’s original expression. For

example, a collection of simple bibliographic metadata

with fields named ‘‘author,’’ ‘‘title,’’ ‘‘date of publica-

tion,’’ would not be sufficiently original to be copy-

rightable. More complex selections and arrangements

may cross the line of originality. Finally, to the extent

that software is used in a databases, software is pro-

tectable as a ‘‘literary work.’’ A discussion of copyright

in executable code is beyond the scope of this entry.

Fixation A work must also be ‘‘fixed’’ in any medium

permitting the work to be perceived, reproduced,

or otherwise communicated for a period of more

than a transitory duration. The structure and arrange-

ment of a database may be fixed any time that it is

written down or implemented. For works created

after January 1, 1978 in the USA, exclusive rights

under copyright shower down upon the creator at the

moment of fixation.

The Duration of Copyright

Under international treaties, copyright must last for at

least the life of the author plus 50 years. Some

countries, including the USA, have extended the length

to the life of the author plus 70 years. Under U.S. law,

if a work was made as a ‘‘work made for hire,’’ such as

a work created by an employee within the scope of

employment, the copyright lasts for 120 years from

creation if the work is unpublished or 95 years

from the date of publication.

Ownership and Transfer of Copyright

Copyright is owned initially by the author of the work.

If the work is jointly produced by two or more authors,

such as a copyrightable database compiled by two

or more scholars, each has a legal interest in the

copyright. When a work is produced by an employee,

ownership differs by country. In the USA, the employer

is treated as the author under the ‘‘work made for hire’’

doctrine and the employee has no rights in the resulting

498C Copyright Issues in Databases
work. Elsewhere, the employee is treated as the author

and retains certain moral rights in the work while the

employer receives the economic rights in the work.

Copyrights may be licensed or transferred. A non-

exclusive license, or permission, may be granted orally

or even by implication. A transfer or an exclusive license

must be done in writing and signed by the copyright

owner. Outside of the USA, some or all of the author’s

moral rights cannot be transferred or terminated by

agreement. The law on this issue varies by jurisdiction.

The Copyright Owner’s Rights

The rights of a copyright owner are similar throughout

the world although the terminology differs as do the

limitations and exceptions to these rights.

Reproduction As the word ‘‘copyright’’ implies, the

owner controls the right to reproduce the work in

copies. The reproduction right covers both exact dupli-

cates of a work and works that are ‘‘substantially similar’’

to the copyrighted work when it can be shown that the

alleged copyist had access to the copyrighted work. In

the USA, some courts have extended this right to cover

even a temporary copy of a copyrighted work stored in

a computer’s random access memory (‘‘RAM’’).

Public Distribution, Performance, Display or Communi-

cation The USA divides the rights to express the work

to the public into rights to distribute copies, display a

copy, or publicly perform the work. In other parts of

the world, these are subsumed within a right to com-

municate the work to the public.

Within the USA, courts have given the distribution

right a broad reading. Some courts, including the

appeals court in the Napster case, have held that a

download of a file from a server connected to the

internet is both a reproduction by the person request-

ing the file and a distribution by the owner of the

machine that sends the file. The right of public perfor-

mance applies whenever the copyrighted work can be

listened to or watched by members of the public at

large or a subset of the public larger than a family unit

or circle of friends. Similarly, the display right covers

works that can be viewed at home over a computer

network as long as the work is accessible to the public

at large or a subset of the public.

Right of Adaptation, Modification or Right to Prepare

Derivative Works A separate copyright arises with
respect to modifications or adaptations of a copy-

righted work so long as these modifications or adapta-

tions themselves are original. This separate copyright

applies only to these changes. The copyright owner has

the right to control such adaptations unless a statutory

provision, such as fair use, applies.

Theories of Secondary Liability

Those who build or operate databases also have to be

aware that copyright law holds liable certain parties

that enable or assist others in infringing copyright.

In the USA, these theories are known as contributory

infringement or vicarious infringement.

Contributory Infringement Contributory copyright

infringement requires proof that a third party intended

to assist a copyright infringer in that activity. This

intent can be shown when one supplies a means of

infringement with the intent to induce another to

infringe or with knowledge that the recipient will in-

fringe. This principle is limited by the so-called Sony

doctrine, by which one who supplies a service or tech-

nology that enables infringement, such as a VCR or

photocopier, will be deemed not to have knowledge of

infringement or intent to induce infringement so long

as the service or technology is capable of substantial

non-infringing uses.

Two examples illustrate the operation of this rule.

In A&M Records, Inc. v. Napster, Inc., the court of

appeals held that peer-to-peer file sharing is infringing

but that Napster’s database system for connecting users

for peer-to-peer file transfers was capable of substantial

non-infringing uses and so it was entitled to rely on

the Sony doctrine. (Napster was held liable on other

grounds.) In contrast, inMGM Studios, Inc. v. Grokster,

Ltd., the Supreme Court held that Grokster was liable

for inducing users to infringe by specifically advertis-

ing its database service as a substitute for Napster’s.

Vicarious Liability for Copyright Infringement Vicari-

ous liability in the USAwill apply whenever (i) one has

control or supervisory power over the direct infringer’s

infringing conduct and (ii) one receives a direct finan-

cial benefit from the infringing conduct. In the Napster

case, the court held that Napster had control over its

users because it could refuse them access to the Napster

server and, pursuant to the Terms of Service Agree-

ments entered into with users, could terminate access if

infringing conduct was discovered. Other courts have

Copyright Issues in Databases C 499

C

required a greater showing of actual control over the

infringing conduct.

Similarly, a direct financial benefit is not limited

to a share of the infringer’s profits. The Napster court

held that Napster received a direct financial benefit

from infringing file trading because users’ ability

to obtain infringing audio files drew them to use

Napster’s database. Additionally, Napster could poten-

tially receive a financial benefit from having attracted a

larger user base to the service.

Limitations and Exceptions

Copyrights’ limitations and exceptions vary by juris-

diction. In the USA, the broad ‘‘fair use’’ provision is a

fact-specific balancing test that permits certain uses of

copyrighted works without permission. Fair use is

accompanied by some specific statutory limitations

that cover, for example, certain uses in the classroom

use and certain uses by libraries. The factors to consid-

er for fair use are: (i) the purpose and character of the

use, including whether such use is of a commercial

nature or is for nonprofit educational purposes; (ii)

the nature of the copyrighted work; (iii) the amount

and substantiality of the portion used in relation to the

copyrighted work as a whole; and (iv) the effect of

the use upon the potential market for or value of the

copyrighted work. The fact that a work is unpublished

shall not itself bar a finding of fair use if such finding is

made upon consideration of all the above factors.

Countries whose copyright law follows that of

the United Kingdom, a more limited ‘‘fair dealing’’

provision enumerates specific exceptions to copyright.

In Europe, Japan, and elsewhere, the limitations and

exceptions are specified legislatively and cover some

private copying and some research or educational uses.

Remedies and Penalties

In general, a copyright owner can seek an injunction

against one who is either a direct or secondary in-

fringer of copyright. The monetary consequences of

infringement differ by jurisdiction. In the USA, the

copyright owner may choose between actual or statu-

tory damages. Actual damages cover the copyright

owner’s lost profits as well as a right to the infringer’s

profits derived from infringement. The range for stat-

utory damages is $750–$30,000 per copyrighted work

infringed. If infringement is found to have been willful,

the range increases to $150,000. The amount of statu-

tory damages in a specific case is determined by the
jury. There is a safe harbor from statutory damages for

non-profit educational institutions if an employee

reproduces a copyrighted work with a good faith belief

that such reproduction is a fair use.

A separate safe harbor scheme applies to online

service providers when their database is comprised of

information stored at the direction of their users. An

example of such a database would be YouTube’s video

sharing database. The service provider is immune from

monetary liability unless the provider has knowledge

of infringement or has control over the infringer and

receives a direct financial benefit from infringement.

The safe harbor is contingent on a number of require-

ments, including that the provider have a copyright

policy that terminates repeat infringers, that the pro-

vider comply with a notice-and-takedown procedure,

and that the provider have an agent designated to

receive notices of copyright infringement.

Key Applications
In cases arising after the Feist decision, the courts have

faithfully applied the core holding that facts are in the

public domain and free from copyright even when

substantial investments are made to gather such facts.

There has been more variation in the characterization

of some kinds of data as facts and in application of the

modicum-of-creativity standard to the selections and

arrangements in database structures.

On the question of when data is copyrightable,

a court of appeals found copyrightable expression

in the ‘‘Red Book’’ listing of used car valuations.

The defendant had copied these valuations into its

database, asserting that it was merely copying unpro-

tected factual information. The court disagreed, liken-

ing the valuations to expressive opinions and finding a

modicum of originality in these. In addition, the selec-

tion and arrangement of the data, which included a

division of the market into geographic regions, mileage

adjustments in 5,000-mile increments, a selection of

optional features for inclusion, entitled the plaintiff to

a thin copyright in the database structure.

Subsequently, the same court found that the prices

for futures contracts traded on the New York Mercan-

tile Exchange (NYMEX) probably were not expressive

data even though a committee makes some judgments

in the setting of these prices. The court concluded that

even if such price data were expressive, the merger

doctrine applied because there was no other practica-

ble way of expressing the idea other than through a

500C CORBA
numerical value and a rival was free to copy price data

from NYMEX’s database without copyright liability.

Finally, where data are comprised of arbitrary num-

bers used as codes, the courts have split. One court of

appeals has held that an automobile partsmanufacturer

owns no copyright in its parts numbers, which are

generated by application of a numbering system that

the company created. In contrast, another court of

appeals has held that the American Dental Association

owns a copyright in its codes for dental procedures.

On the question of copyright in database struc-

tures, a court of appeals found that the structure of

a yellow pages directory including listing of Chinese

restaurants was entitled to a ‘‘thin’’ copyright, but that

copyright was not infringed by a rival database that

included 1,500 of the listings because the rival had not

copied the plaintiff ’s data structure. Similarly, a differ-

ent court of appeals acknowledged that although a

yellow pages directory was copyrightable as a compi-

lation, a rival did not violate that copyright by copy-

ing the name, address, telephone number, business

type, and unit of advertisement purchased for each

listing in the original publisher’s directory. Finally,

a database of real estate tax assessments that arranged

the data collected by the assessor into 456 fields

grouped into 34 categories was sufficiently original

to be copyrightable.

Cross-references
▶ European Law in Databases

▶ Licensing and Contracting Issues in Databases

Recommended Reading
1. American Dental Association v. Delta Dental Plans Ass’n, 126

F.3d 977 (7th Cir.1997).

2. Assessment Technologies ofWI, LLC v.WIRE data, Inc., 350 F.3d

640 (7th Cir. 2003).

3. Bellsouth Advertising & Publishing Corp. v. Donnelly Informa-

tion Publishing, Inc., 999 F.2d 1436 (11th Cir. 1993) (en banc).

4. CCC Information Services, Inc. v. MacLean Hunter Market

Reports, Inc., 44 F.3d 61 (2d Cir. 1994).

5. Feist Publications, Inc. v. Rural Telephone Service Co., 499 U.S.

340 (1991).

6. Ginsburg J.C. Copyright, common law, and sui generis protec-

tion of databases in the United States and abroad, University of

Cincinnati Law Rev., 66:151–176, 1997.

7. Key Publications, Inc. v. Chinatown Today Publishing Enter-

prises, Inc., 945 F.2d 509 (2d Cir. 1991).

8. New York Mercantile Exchange, Inc. v. Intercontinental-

Exchange, Inc., 497 F.3d 109, (2d Cir. 2007).

9. Southco, Inc. v. Kanebridge Corp., 390 F.3d 276 (3d Cir. 2004)

(en banc).
CORBA

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Object request broker; Common object request broker

architecture

Definition
The Common Object Request Broker Architecture

(CORBA) [2,3] is standardized by the Object Manage-

ment Group (OMG) for distributed object computing.
Key Points
The CORBA standard specifies a platform-independent

and programming language-independent architecture

and a set of APIs to simplify distributed application

development. The central idea in CORBA is to decou-

ple the interface from the implementation. Applica-

tions that provide services declare their interfaces and

operations in the Interface Description Language

(IDL). IDL compilers read these definitions and syn-

thesize client-side stubs and server-side skeletons,

which provide data marshaling and proxy capabilities.

CORBA provides both a type-safe RPC-style object

communication paradigm called the Static Invocation

Interface (SII), and a more dynamic form of communi-

cation called the Dynamic Invocation Interface (DII),

which allows creation and population of requests dyna-

mically via reflection capabilities. The DII is often used

to bridge different object models. CORBA defines a

binary format for on-the-wire representation of data

called the Common Data Representation (CDR). CDR

has been defined to enable programming language-

neutrality.

The CORBA 1.0 specification (October 1991) and

subsequent revisions through version 1.2 (December

1993) defined these basic capabilities, however, they

lacked any support for interoperability across different

CORBA implementations.

The CORBA 2.0 specification (August 1996) de-

fined an interoperability protocol called the General

Inter-ORB Protocol (GIOP), which defines the packet

formats for data exchange between communicating

CORBA entities. GIOP is an abstract specification and

must be mapped to the underlying transport protocol.

The most widely used concrete mapping of GIOP is

Correctness Criteria Beyond Serializability C 501

C

called the Internet Inter-ORB Protocol (IIOP) used for

data exchange over TCP/IP networks.

Despite these improvements, the earlier versions of

CORBA focused only on the client-side portability and

lacked any support for server-side portability. This

limitation was addressed in the CORBA 2.2 specifi-

cation (August 1996) through the Portable Object

Adapter (POA) concept. The POA enables server-side

transparency to applications and server-side portabi-

lity. The POA provides a number of policies that can

be used to manage the server-side objects.

The CORBA specification defines compliance

points for implementations to ensure interoperability.

The CORBA specification has also been enhanced with

additional capabilities that are available beyond the

basic features, such as the Real-time CORBA specifica-

tion [1]. Implementations of these specifications must

provide these additional capabilities.

In general, CORBA enhances conventional proce-

dural RPC middleware by supporting object oriented

language features (such as encapsulation, interface in-

heritance, parameterized types, and exception handling)

and advanced design patterns for distributed communi-

cation. The most recent version of CORBA specification

at the time of this writing is 3.3 (January 2008), which

also includes support for a component architecture.

Cross-references
▶Client-Server Architecture

▶DCE

▶DCOM

▶ J2EE

▶ Java RMI

▶ .NET Remoting

▶Request Broker

▶ SOAP

Recommended Reading
1. ObjectManagement Group, Real-TimeCORBA Specification, Ver-

sion 1.2, OMG Document No. formal/2005-01-04, January 2005.

2. Object Management Group, Common Object Request Broker

Architecture (CORBA), Version 3.1, OMG Document No. for-

mal/2008-01-08, January 2008.

3. Soley R.M. and Stone C.M. Object Management Architecture

Guide, 3rd edn., Object Management Group, June 1995.
Corpora

▶Document Databases
Corpus

▶Test Collection
Correctness Criteria Beyond
Serializability

MOURAD OUZZANI
1, BRAHIM MEDJAHED

2,

AHMED K. ELMAGARMID
1

1Purdue University, West Lafayette, IN, USA
2The University of Michigan – Dearborn, Dearborn,

MI, USA

Synonyms
Concurrency control; Preserving database consistency

Definition
A transaction is a logical unit of work that includes one

or more database access operations such as insertion,

deletion, modification, and retrieval [8]. A schedule (or

history) S of n transactions T1,...,Tn is an ordering of

the transactions that satisfies the following two condi-

tions: (i) the operations of Ti (i = 1,...,n) in S must

occur in the same order in which they appear in Ti, and

(ii) operations from Tj (j 6¼ i) may be interleaved with

Ti’s operations in S. A schedule S is serial if for every

two transactions Ti and Tj that appear in S, either all

operations of Ti appear before all operations of Tj, or

vice versa. Otherwise, the schedule is called nonserial

or concurrent. Non-serial schedules of transactions

may lead to concurrency problems such as lost update,

dirty read, and unrepeatable read. For instance, the lost

update problem occurs whenever two transactions,

while attempting to modify a data item, both read

the item’s old value before either of them writes the

item’s new value [2].

The simplest way for controlling concurrency is

to allow only serial schedules. However, with no con-

currency, database systems may make poor use of their

resources and hence, be inefficient, resulting in smaller

transaction execution rate for example. To broaden the

class of allowable transaction schedules, serializability

has been proposed as the major correctness criterion

for concurrency control [7,11]. Serializability ensures

that a concurrent schedule of transactions is equivalent

to some serial schedule of the same transactions [12].

While serializability has been successfully used in

502C Correctness Criteria Beyond Serializability
traditionaldatabaseapplications, e.g., airline reservations

andbanking,ithasbeenproventoberestrictiveandhardly

applicable in advanced applications such as Computer-

Aided Design (CAD), Computer-Aided Manufacturing

(CAM), office automation, and multidatabases. These

applications introduced new requirements that either

prevent the use of serializability (e.g., violation of local

autonomy in multidatabases) or make the use of serial-

izability inefficient (e.g., long-running transactions in

CAD/CAM applications). These limitations have moti-

vated the introduction of more flexible correctness

criteria that gobeyond the traditional serializability.

Historical Background
Concurrency control began appearing in database sys-

tems in the early to mid 1970s. It emerged as an active

database research thrust starting from 1976 as wit-

nessed by the early influential papers published by

Eswaren et al. [5] and Gray et al. [7]. A comprehensive

coverage of serializability theory has been presented

in 1986 by Papadimitriou in [12]. Simply put, serial-

izability theory is a mathematical model for proving

whether or not a concurrent execution of transactions

is correct. It gives precise definitions and properties

that non-serial schedules of transactions must satisfy

to be serializable. Equivalence between a concurrent

and serial schedule of transactions is at the core of

the serializability theory. Two major types of equi-

valence have then been defined: conflict and view

equivalence. If two schedules are conflict equivalent

then they are view equivalent. The converse is not

generally true.

Conflict equivalence has initially been introduced by

Gray et al. in 1975 [7]. A concurrent schedule of

transactions is conflict equivalent to a serial schedule

of the same transactions (and hence conflict serializ-

able) if they order conflicting operations in the same

way, i.e., they have the same precedence relations of

conflicting operations. Two operations are conflicting if

they are from different transactions upon the same

data item, and at least one of them is write. If two

operations conflict, their execution order matters. For

instance, the value returned by a read operation

depends on whether or not that operation precedes

or follows a particular write operation on the same

data item. Conflict serializability is tested by analyzing

the acyclicity of the graph derived from the execution

of the different transactions in a schedule. This graph,

called serializability graph, is a directed graph that
models the precedence of conflicting operations in

the transactions.

View equivalence has been proposed by Yannakakis

in 1984 [15]. A concurrent schedule of transactions is

view equivalent to a serial schedule of the same trans-

actions (and hence view serializable) if the respective

transactions in the two schedules read and write the

same data values. View equivalence is based on

the following two observations: (i) if each transaction

reads each of its data items from the same writes,

then all writes write the same value in both schedules;

and (ii) if the final write on each data item is the same

in both schedules, then the final value of all data items

will be the same in both schedules. View serializability

is usually expensive to check. One approach is to

check the acyclicity of a special graph called polygraph.

A polygraph is a generalization of the precedence graph

that takes into account all precedence constraints

required by view serializability.

Foundations
The limitations of the traditional serializability concept

combined with the requirement of advanced database

applications triggered a wave of new correctness cri-

teria that go beyond serializability. These criteria aim

at achieving one or several of the following goals:

(i) accept non serializable but correct executions by

exploiting the semantics of transactions, their struc-

ture, and integrity constraints (ii) allow inconsistencies

to appear in a controlled manner which may be accept-

able for some transactions, (iii) limit conflicts by cre-

ating a new version of the data for each update, and

(iv) treat transactions accessing more than one data-

base, in the case of multidatabases, differently from

those accessing one single database and maintain

overall correctness. While a large number of correct-

ness criteria have been presented in the literature,

this entry will focus on the major criteria which

had a considerable impact on the field. These criteria

will be presented as described in their original

versions as several of these criteria have been either

extended, improved, or applied to specific contexts.

Table 1 summarizes the correctness criteria outlined

in this section.

Multiversion Serializability

Multiversion databases aim at increasing the degree of

concurrency and providing a better system recovery. In

such databases, whenever a transaction writes a data

Correctness Criteria Beyond Serializability. Table 1. Representative correctness criteria for concurrency control

Correctness
criterion Basic idea

Examples of application
domains Reference

Multiversion
serializability

Allows some schedules as serializable if a read is performed
on some older version of a data item instead of the newer
modified version.

Multiversion database
systems

[1]

Semantic
consistency

Uses semantic information about transactions to accept
some non-serializable but correct schedules.

Applications that can provide
some semantic knowledge

[6]

Predicatewise
serializability

Focuses on data integrity constraints. CAD database and office
information systems

[9]

Epsilon-
serializability

Allows inconsistencies to appear in a controlled manner by
attaching a specification of the amount of permitted
inconsistency to each transaction.

Applications that tolerate
some inconsistencies

[13]

Eventual
consistency

Requires that duplicate copies are consistent at certain
times but may be inconsistent in the interim intervals.

Distributed databases with
replicated or interdependent
data

[14]

Quasi
serializability

Executes global transactions in a serializable way while
taking into account the effect of local transactions.

Multidatabase systems [4]

Two-level
serializability

Ensures consistency by exploiting the nature of integrity
constraints and the nature of transactions in multidatabase
environments.

Multidatabase systems [10]

Correctness Criteria Beyond Serializability C 503

C

item, it creates a new version of this item instead of

overwriting it. The basic idea of multiversion serial-

izability [1] is that some schedules can be still seen as

serializable if a read is performed on some older ver-

sion of a data item instead of the newer modified

version. Concurrency is increased by having transac-

tions read older versions while other concurrent trans-

actions are creating newer versions. There is only one

type of conflict that is possible; when a transactions

reads a version of a data item that was written by

another transaction. The two other conflicts (write,

write) and (read, write) are not possible since each

write produces a new version and a data item cannot

be read until it has been produced, respectively. Based

on the assumption that users expect their transactions

to behave as if there were just one copy of each data

item, the notion of one-copy serial schedule is defined.

A schedule is one-copy serial if for all i, j, and x, if a

transaction Tj reads x from a transaction Ti, then either

i = j or Ti is the last transaction preceding tj that

writes into any version of x. Hence, a schedule is

defined as one-copy serializable (1-SR) if it is equivalent

to a 1-serial schedule. 1-SR is shown to maintain

correctness by proving that a multiversion schedule

behaves like a serial non-multiversion schedule (there

is only one version for each data item) if the multi-

version schedule is one-serializable. The one-copy
serializability of a schedule can be verified by checking

the acyclicity of the multiversion serialization graph of

that schedule.

Semantic Consistency

Semantic consistency uses semantic information about

transactions to accept some non-serializable but cor-

rect schedules [6]. To ensure that users see consistent

data, the concept of sensitive transactions has been

introduced. Sensitive transactions output only consis-

tent data and thus must see a consistent database

state. A semantically consistent schedule is one that

transforms the database from a consistent state to

another consistent state and where all sensitive trans-

actions obtain a consistent view of the database with

respect to the data accessed by these transactions, i.e.,

all data consistency constraints of the accessed data are

evaluated to True. Enforcing semantic consistency

requires knowledge about the application which must

be provided by the user. In particular, users will need

to group actions of the transactions into steps and

specify which steps of a transaction of a given type

can be interleaved with the steps of another type of

transactions without violating consistency. Four types

of semantic knowledge are defined: (i) transaction

semantic types, (ii) compatibility sets associated with

each type, (iii) division of transactions into steps,

504C Correctness Criteria Beyond Serializability
and (iv) counter-steps to (semantically) compensate

the effect from some of the steps executed within

the transaction.

Predicatewise Serializability

Predicatewise serializability (PWSR) has been intro-

duced as a correctness criterion for CAD database

and office information systems [9]. PWSR focuses

solely on data integrity constraints. In a nutshell, if

database consistency constraints can be expressed in a

conjunctive normal form, a schedule is said to be

PWSR if all projections of that schedule on each

group of data items that share a disjunctive clause

(of the conjunctive form representing the integrity

constraints) are serializable. There are three different

types of restrictions that must be enforced on PWSR

schedules to preserve database consistency: (i) force

the transactions to be of fixed structure, i.e., they are

independent of the database state from which they

execute, (ii) force the schedules to be delayed read,

i.e., a transaction Ti cannot read a data item written

by a transaction Tj until after Tj has completed all of its

operations, or (iii) the conjuncts of the integrity con-

straints can be ordered in a way that no transaction

reads a data item belonging to a higher numbered

conjunct and writes a data item belonging to a lower

numbered conjunct.

Epsilon-Serializability

Epsilon-serializability (ESR) [13] has been introduced

as a generalization to serializability where a limited

amount of inconsistency is permitted. The goal is to

enhance concurrency by allowing some non serializ-

able schedules. ESR introduces the notion of epsilon

transactions (ETs) by attaching a specification of the

amount of permitted inconsistency to each (standard)

transaction. ESR distinguishes between transactions

that contain only read operation, called query epsilon

transaction or query ET, and transactions with at least

one update operation, called update epsilon transac-

tion or update ET. Query ETs may view uncommitted,

possibly inconsistent, data being updated by update

ETs. Thus, update ETs are seen as exporting some

inconsistencies while query ETs are importing these

inconsistencies. ESR aims at bounding the amount of

imported and exported inconsistency for each ET. An

epsilon-serial schedule is defined as a schedule where

(i) the update ETs form a serial schedule if considered

alone without the query ETand (ii) the entire schedule
consisting of both query ETs and update ETs is such

that the non serializable conflicts between query ETs

and update ETs are less than the permitted limits

specified by each ET. An epsilon-serializable schedule

is one that is equivalent to an epsilon-serial schedule.

If the permitted limits are set to zero, ESR corresponds

to the classical notion of serializability.

Eventual Consistency

Eventual consistency has been proposed as an alterna-

tive correctness criterion for distributed databases with

replicated or interdependent data [14]. This criterion is

useful is several applications like mobile databases,

distributed databases, and large scale distributed systems

in general. Eventual consistency requires that duplicate

copies are consistent at certain times but may be incon-

sistent in the interim intervals. The basic idea is that

duplicates are allowed to diverge as long as the copies

are made consistent periodically. The times where these

copies are made consistent can be specified in several

ways which could depend on the application, for exam-

ple, at specified time intervals, when some events occur,

or at some specific times. A correctness criterion that

ensures eventual consistency is the current copy serial-

izability. Each update occurs on a current copy and is

asynchronously propagated to other replicas.

Quasi Serializability

Quasi Serializability (QSR) is a correctness criterion

that has been introduced for multidatabase systems

[4]. A multidatabase system allows users to access

data located in multiple autonomous databases. It

generally involves two kinds of transactions: (i) Local

transactions that access only one database; they are

usually outside the control of the multidatabase sys-

tem, and (ii) global transactions that can access more

than one database and are subject to control by both

the multidatabase and the local databases. The basic

premise is that to preserve global database consistency,

global transactions should be executed in a serializable

way while taking into account the effect of local trans-

actions. The effect of local transactions appears in

the form of indirect conflicts that these local transac-

tions introduce between global transactions which may

not necessarily access (conflict) the same data items.

A quasi serial schedule is a schedule where global

transactions are required to execute serially and local

schedules are required to be serializable. This is in

contrast to global serializability where all transactions,

Correctness Criteria Beyond Serializability C 505

C

both local and global, need to execute in a (globally)

serializable way. A global schedule is said to be quasi

serializable if it is (conflict) equivalent to a quasi serial

schedule. Based on this definition, a quasi serializa-

ble schedule maintains the consistency of multidata-

base systems since (i) a quasi serial schedule preserves

the mutual consistency of globally replicated data

items, based on the assumptions that these replicated

data items are updated only by global transactions, and

(ii) a quasi serial schedule preserves the global transac-

tion consistency constraints as local schedules are seri-

alizable and global transactions are executed following

a schedule that is equivalent to a serial one.

Two-Level Serializability

Two-level serializability (2LSR) has been introduced to

relax serializability requirements in multidatabases and

allow a higher degree of concurrency while ensuring

consistency [10]. Consistency is ensured by exploiting

the nature of integrity constraints and the nature of

transactions in multidatabase environments. A global

schedule, consisting of both local and global transac-

tions, is 2LSR if all local schedules are serializable

and the projection of that schedule on global transac-

tions is serializable. Local schedules consist of all

operations, from global and local transactions, that

access the same local database. Ensuring that each

local schedule is serializable is already taken care of

by the local database. Furthermore, ensuring that the

global transactions are executed in a serializable way

can be done by the global concurrency controller using

any existing technique from centralized databases like

the Two-phase-locking (2PL) protocol. This is possible

since the global transactions are under the full control

of the global transaction manager. [10] shows that

under different scenarios 2LSR preserves a strong notion

of correctness where the multidatabase consistency is

preserved and all transactions see consistent data.

These different scenarios differ depending on (i) which

kind of data items, local or global, global and local

transactions are reading or writing, (ii) the existence of

integrity constraints between local and global data items,

and (iii) whether all transaction are preserving the con-

sistency of local databases when considered alone.

Key Applications
The major database applications behind the need

for new correctness criteria include distributed data-

bases, mobile databases, multidatabases, CAD/CAM
applications, office automation, cooperative applica-

tions, and software development environments. All

of these advanced applications introduced require-

ments and limitations that either prevent the use of

serializability like the violation of local autonomy in

multidatabases, or make the use of serializability inef-

ficient like blocking long-running transactions.

Future Directions
A recent trend in transaction management focuses

on adding transactional properties (e.g., isolation, atom-

icity) to business processes [3]. A business process (BP)

is a set of tasks which are performed collaboratively to

realize a business objective. Since BPs contain activities

that access shared and persistent data resources, they

have to be subject to transactional semantics. However,

it is not adequate to treat an entire BP as a single ‘‘tradi-

tional’’ transaction mainly because BPs: (i) are of long

duration and treating an entire process as a transaction

would require locking resources for long periods of time,

(ii) involve many independent database and application

systems and enforcing transactional properties across

the entire process would require expensive coordination

among these systems, and (iii) have external effects and

using conventional transactional rollbackmechanisms is

not feasible. These characteristics open new research

issues to take the concept of correctness criterion and

how it should be enforced beyond even the correctness

criteria discussed here.

Cross-references
▶ACID Properties

▶Concurrency Control

▶Distributed

▶ Parallel and Networked Databases

▶ System Recovery

▶Transaction Management

▶Two-Phase Commit

▶Two-Phase Locking

Recommended Reading
1. Bernstein P.A. and Goodman N. Multiversion concurrency

control – theory and algorithms. ACM Trans. Database Syst.,

8(4):465–483, 1983.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

control and recovery in database systems. Addison-Wesley,

Reading, MA, 1987.

3. Dayal U., Hsu M., and Ladin R. Business process coordination:

state of the art, trends, and open issues. In Proc. 27th Int. Conf.

on Very Large Data Bases, 2001, pp. 3–13.

506C Correctness Criterion for Concurrent Executions
4. Du W. and Elmagarmid A.K. Quasi serializability: a correctness

criterion for global concurrency control in Interbase. In Proc.

15th Int. Conf. on Very Large Data Bases, 1989, pp. 347–355.

5. Eswaran K.P., Gray J., Lorie R.A., and Traiger I.L. The notions of

consistency and predicate locks in a database system. Commun.

ACM, 19(11):624–633, 1976.

6. Garcia-Molina H. Using semantic knowledge for transaction

processing in a distributed database. ACM Trans. Database

Syst., 8(2):186–213, 1983.

7. Gray J., Lorie R.A., Putzolu G.R., and Traiger I.L. Granularity of

locks in a large shared data base. In Proc. 1st Int. Conf. on Very

Data Bases, 1975, pp. 428–451.

8. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, Los Altos, CA, 1993.

9. Korth H.F. and Speegle G.D. Formal model of correctness with-

out serializability. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1988, pp. 379–386.

10. Mehrotra S., Rastogi R., Korth H.F., and Silberschatz A. Ensur-

ing consistency in multidatabases by preserving two-level serial-

izability. ACM Trans. Database Syst., 23(2):199–230, 1998.

11. Papadimitriou C.H. The serializability of concurrent database

updates. J. ACM, 26(4):631–653, 1979.

12. Papadimitriou C.H. The Theory of Database Concurrency

Control. Computer Science, Rockville, MD, 1986.

13. Ramamritham K. and Pu C. A formal characterization of epsilon

serializability. IEEE Trans. Knowl. Data Eng., 7(6):997–1007,

1995.

14. Sheth A., Leu Y., and Elmagarmid A. Maintaining Consistency

of Interdependent Data in Multidatabase Systems. Tech. Rep.

CSD-TR-91-016, Purdue University, http://www.cs.toronto.edu/

georgem/ws/ws.ps, 1991.

15. Yannakakis M. Serializability by locking. J. ACM, 31(2):

227–244, 1984.
Correctness Criterion for Concurrent
Executions

▶ Serializability
Correlated Data Collection

▶Data Compression in Sensor Networks
Correlation

▶ Similarity and Ranking Operations
Correlation Clustering

▶ Subspace Clustering Techniques
Cost Estimation

STEFAN MANEGOLD

CWI, Amsterdam, The Netherlands

Definition
Execution costs, or simply costs, is a generic term to

collectively refer to the various goals or objectives of

database query optimization. Optimization aims at

finding the ‘‘cheapest’’ (‘‘best’’ or at least a ‘‘reasonably

good’’) query execution plan (QEP) among semanti-

cally equivalent alternative plans for the given query.

Cost is used as a metric to compare plans. Depending

on the application different types of costs are consid-

ered. Traditional optimization goals include minimiz-

ing response time (for the first answer or the complete

result), minimizing resource consumption (like CPU

time, I/O, network bandwidth, or amount of memory

required), or maximizing throughput, i.e., the number

of queries that the system can answer per time. Other,

less obvious objectives – e.g., in amobile environment –

may be to minimize the power consumption needed to

answer the query or the on-line time being connected

to a remote database server.

Obviously, evaluating a QEP to measure its execu-

tion cost does not make sense. Cost estimation refers to

the task of predicting the (approximate) costs of a

given QEP a priori, i.e., without actually evaluating it.

For this purpose, mathematical algorithms or para-

metric equations, commonly referred to as cost models,

provide a simplified ‘‘idealized’’ abstract description of

the system, focusing on the most relevant components.

In general, the following three cost components are

distinguished.

1. Logical costs consider only the data distributions

and the semantics of relational algebra operations

to estimate intermediate result sizes of a given

(logical) query plan.

2. Algorithmic costs extend logical costs by taking also

the computational complexity (expressed in terms

of O-classes) of the algorithms into account.

3. Physical costs finally combine algorithmic costs with

system/hardware specific parameters to predict the

total costs, usually in terms of execution time.

Next to query optimization, cost models can serve

another purpose. Especially algorithmic and physical

cost models can help database developers to understand

http://www.cs.toronto.edu/~georgem/ws/ws.ps
http://www.cs.toronto.edu/~georgem/ws/ws.ps

Cost Estimation C 507

C

and/or predict the performance of existing algorithms

on new hardware systems. Thus, they can improve the

algorithms or even design new ones without having

to run time and resource consuming experiments to

evaluate their performance.

Since the quality of query optimization strongly

depends on the quality of cost estimation, details of

cost estimation in commercial database products are

usually well kept secrets of their vendors.

Historical Background
Not all aspects of database cost estimation are treated as

independent research topic of their own. Mainly selec-

tivity estimation and intermediate result size estimation

have received intensive attention yielding a plethora of

techniques proposed in database literature. Discussion

of algorithmic costs usually occurs with the proposal of

new or modified database algorithms. Given its tight

coupling with query optimization, physical cost estima-

tion has never been an independent research topic of its

own. Apart from very few exceptions, new physical cost

models and estimation techniques are usually published

as ‘‘by-products’’ in publications that mainly deal with

novel optimization techniques.

The first use of (implicit) cost estimation were com-

plexity analyses that led to heuristic optimization rules.

For instance, a join is always considered cheaper than

calculating first the Cartesian product, followed by a

selection. Likewise, linear operations that tend to reduce

the data stream (selections, projections) should be eval-

uated as early as data dependencies allow, followed by

(potentially) quadratic operations that do not ‘‘blow-

up’’ the intermediate results (semijoins, foreign-key

joins). More complex, and hence expensive, operations

(general joins, Cartesian products) should be executed

as late as possible.

Since a simple complexity metric does not necessari-

ly reflect the same ranking of plans as the actual execu-

tion costs, first explicit cost estimation in database query

optimization aimed at estimating intermediate result

sizes. Initial works started with simplifications such as

assuming uniform data distributions and independence

of attribute values. Over time, the techniques have been

improved to model non-uniform data distributions. Til

date, effective treatment of (hidden) correlations is

still an open research topic.

The following refinement was the introduction of

physical costs. With I/O being the dominating cost

factor in the early days of database management
systems, the first systems assessed query plans by mere-

ly estimating the number of I/O operations required.

However, I/O systems exhibit quite different perfor-

mance for sequential and randomly placed I/O opera-

tions. Hence, the models were soon refined to

distinguish between sequential and random accesses,

weighing them with their respective costs, i.e., time to

execute one operation.

With main memory sizes growing, more and more

query processing work is done within main memory,

minimizing disk accesses. Consequently, CPUandmem-

ory access costs can no longer be ignored. Assuming

uniform memory access costs, memory access has initi-

ally been covered by CPU costs. CPU costs are estimated

in terms of CPU cycles. Scoring them with the CPU’s

clock speed yields time, the common unit to combine

CPU and I/O costs to get the overall physical costs.

Only recently with the advent of CPU caches

and extended memory hierarchies, the impact of

memory access costs has become so significant that it

needs to be modeled separately [15,16]. Similarly to

I/O costs, memory access costs are estimated in terms

of number of memory accesses (or cache misses) and

scored by their penalty to achieve time as common

unit.

In parallel and distributed database systems, also

network communication costs are considered as con-

tributing factors to the overall execution costs.

Foundations
Different query execution plans require different

amounts of effort to be evaluated. The objective func-

tion for the query optimization problems assigns every

execution plan a single non-negative value. This value

is commonly referred to as costs in the query optimi-

zation business.

Cost Components

Logical Costs/Data Volume The most important cost

component is the amount of data that is to be processed.

Per operator, three data volumes are distinguished: input

(per operand), output, and temporary data. Data

volumes are usuallymeasured as cardinality, i.e., number

of tuples. Often, other units such as number of I/O

blocks, number of memory pages, or total size in bytes

are required. Provided that the respective tuple sizes,

page sizes, and block sizes are known, the cardinality

can easily be transformed into the other units.

508C Cost Estimation
The amount of input data is given as follows: For the

leaf nodes of the query graph, i.e., those operations that

directly access base tables stored in the database, the

input cardinality is given by the cardinality of the base

table(s) accessed. For the remaining (inner) nodes of the

query graph, the input cardinality is given by the output

cardinality of the predecessor(s) in the query graph.

Estimating the output size of database operations –

or more generally, their selectivity – is anything else but

trivial. For this purpose, DBMSs usually maintain sta-

tistic about the data stored in the database. Typical

statistics are

1. Cardinality of each table,

2. Number of distinct values per column,

3. Highest/lowest value per column (where applicable).

Logical cost functions use these statistics to estimate

output sizes (respectively selectivities) of database opera-

tions. The simplest approach is to assume that attribute

values are uniformly distributed over the attribute’s

domain. Obviously, this assumption virtually never

holds for ‘‘real-life’’ data, and hence, estimations based

on these assumption will never be accurate. This is espe-

cially severe, as the estimation errors compound expo-

nentially throughout the query plan [9]. This shows,

that more accurate (but compact) statistics on data dis-

tributions (of base tables as well as intermediate results)

are required to estimate intermediate results sizes.

The importance of statistics management has led to

a plethora of approximation techniques, for which [6]

have coined the general term ‘‘data synopses’’. Such

techniques range from advanced forms of histograms

(most notably, V-optimal histograms including multi-

dimensional variants) [7,10] over spline synopses

[12,11], sampling [3,8], and parametric curve-fitting

techniques [4,20] all the way to highly sophisticated

methods based on kernel estimators [1] or Wavelets

and other transforms [2,17].

A logical cost model is a prerequisite for the fol-

lowing two cost components.

Algorithmic Costs/Complexity

Logical costs only depend on the data and the query

(i.e., the operators’ semantics), but they do not consid-

er the algorithms used to implement the operators’

functionality. Algorithmic costs extend logical costs

by taking the properties of the algorithms into account.

A first criterion is the algorithm’s complexity in

the classical sense of complexity theory. Most unary

operator are in O(n), like selections, or O(n log n), like
sorting; n being the input cardinality. With proper

support by access structures like indices or hash tables,

the complexity of selection may drop to O(log n) or

O(1), respectively. Binary operators can be in O(n),

like a union of sets that does not eliminate duplicates,

or, more often, in O(n2), as for instance join operators.

More detailed algorithmic cost functions are used to

estimate, e.g., the number of I/O operations or the

amount of main memory required. Though these func-

tions require some so-called ‘‘physical’’ information

like I/O block sizes or memory pages sizes, they are

still considered algorithmic costs and not physical cost,

as these informations are system specific, but not hard-

ware specific. The standard database literature provides

a large variety of cost formulas for the most frequently

used operators and their algorithms. Usually, these

formulas calculate the costs in terms of I/O operations

as this still is the most common objective function for

query optimization in database systems [5,13].

Physical Costs/Execution Time

Logical and algorithmic costs alone are not sufficient

to do query optimization. For example, consider two

algorithms for the same operation, where the first

algorithm requires slightly more I/O operations

than the second, while the second requires significantly

more CPU operations than the first one. Looking

only at algorithmic costs, both algorithms are not

comparable. Even assuming that I/O operations are

more expensive than CPU operations cannot in gener-

al answer the question which algorithm is faster.

The actual execution time of both algorithms depends

on the speed of the underlying hardware. The physical

cost model combines the algorithmic cost model

with an abstract hardware description to derive the

different cost factors in terms of time, and hence

the total execution time. A hardware description

usually consists of information such as CPU speed,

I/O latency, I/O bandwidth, and network bandwidth.

The next section discusses physical cost factors on

more detail.

Cost Factors

In principle, physical costs are considered to occur in

two flavors, temporal and spatial. Temporal costs cover

all cost factors that can easily be related to execution

time, e.g., by multiplying the number of certain events

with there respective cost in terms of some time unit.

Spatial costs contain resource consumptions that can-

not directly (or not at all) be related to time. The

Cost Estimation C 509

C

following briefly describes the most prominent cost

factors of both categories.

Temporal Cost Factors

Disk-I/O This is the cost of searching for, reading, and

writing data blocks that reside on secondary storage,

mainly on disk. In addition to accessing the database

files themselves, temporary intermediate files that are

too large to fit in main memory buffers and hence are

stored on disk also need to be accessed. The cost of

searching for records in a database file or a temporary

file depends on the type of access structures on that file,

such as ordering, hashing, and primary or secondary

indexes. I/O costs are either simply measured in terms

of the number of block-I/Ooperations, or in terms of the

time required to perform these operations. In the latter

case, the number of block-I/O operations is multiplied

by the time it takes to perform a single block-I/O opera-

tion. The time to perform a single block-I/O operation

is made up by an initial seek time (I/O latency) and the

time to actually transfer the data block (i.e., block size

divided by I/O bandwidth). Factors such as whether

the file blocks are allocated contiguously on the same

disk cylinder or scattered across the disk affect the

access cost. In the first case (also called sequential I/O),

I/O latency has to be counted only for the first of a

sequence of subsequent I/O operations. In the second

case (random I/O), seek time has to be counted for

each I/O operation, as the disk heads have to be repo-

sitioned each time.

Main-Memory Access These are the costs for

reading data from or writing data to main memory.

Such data may be intermediate results or any other

temporary data produced/used while performing data-

base operations.

Similar to I/O costs, memory access costs can be

modeled be estimating the number of memory accesses

(i.e., cache misses) and scoring them with their respec-

tive penalty (latency) [16].

Network Communication In centralized DBMSs,

communication costs cover the costs of shipping the

query from the client to the server and the query’s

result back to the client. In distributed, federated, and

parallel DBMSs, communication costs additionally

contain all costs for shipping (sub-)queries and/or

(intermediate) results between the different hosts that

are involved in evaluating the query.

Also with communication costs, there is a latency

component, i.e., a delay to initiate a network con-

nection and package transfer, and a bandwidth
component, i.e., the amount of data that can be trans-

fer through the network infrastructure per time.

CPU Processing This is the cost of performing

operations such as computations on attribute values,

evaluating predicates, searching and sorting tuples, and

merging tuples for join. CPU costs are measured in

either CPU cycles or time. When using CPU cycles, the

timemay be calculated by simply dividing the number of

cycles by the CPU’s clock speed. While allowing limited

portability between CPUs of the same kind, but with

different clock speeds, portability to different types of

CPUs is usually not given. The reason is, that the same

basic operations like adding two integers might require

different amounts of CPU cycles on different types

of CPUs.

Spatial Cost Factors

Usually, there is only one spatial cost factor considered

in database literature: memory size. This cost it the

amount of main memory required to store intermedi-

ate results or any other temporary data produced/used

while performing database operations.

Next to not (directly) being related to execution time,

there is another difference between temporal and spatial

costs that stems from the way they share the respective

resources. A simple example shall demonstrate the differ-

ences. Consider to operations or processes each of which

consumes 50% of the available resources (i.e., CPU

power, I/O-, memory-, and network bandwidth). Fur-

ther, assume that when run one at a time, both tasks have

equal execution time. Running both tasks concurrently

on the same system (ideally) results in the same execution

time, now consuming all the available resources. In case

each individual process consumes 100% of the available

resources, the concurrent execution time will be twice the

individual execution time. In other words, if the com-

bined resource consumption of concurrent tasks exceed

100%, the execution time extends to accommodate the

excess resource requirements. With spatial cost factors,

however, such ‘‘stretching’’ is not possible. In case two

tasks together would require more than 100% of the

available memory, they simply cannot be executed at

the same time, but only after another.

Types of (Cost) Models

According to their degree of abstraction, (cost) models

can be classified into two classes: analytical models and

simulation models.

Analytical Models In some cases, the assumptions

made about the real system can be translated into

510C Cost Estimation
mathematical descriptions of the system under study.

Hence, the result is a set of mathematical formulas that

is called an analytical model. The advantage of an

analytical model is that evaluation is rather easy and

hence fast. However, analytical models are usually not

very detailed (and hence not very accurate). In order to

translate them into a mathematical description, the

assumptions made have to be rather general, yielding

a rather high degree of abstraction.

Simulation Models Simulation models provide a

very detailed and hence rather accurate description of

the system. They describe the system in terms of (a)

simulation experiment(s) (e.g., using event simula-

tion). The high degree of accuracy is charged at the

expense of evaluation performance. It usually takes

relatively long to evaluate a simulation base model,

i.e., to actually perform the simulation experiment(s).

It is not uncommon, that the simulation actually

takes longer than the execution in the real system

would take.

In database query optimization, though it would

appreciate the accuracy, simulation models are not

feasible, as the evaluation effort is far to high. Query

optimization requires that costs of numerous alterna-

tives are evaluated and compared as fast as possible.

Hence, only analytical cost models are applicable in

this scenario.

Architecture and Evaluation of Database Cost Models

The architecture and evaluation mechanism of database

cost models is tightly coupled to the structure of query

execution plans. Due to the strong encapsulation offered

by relational algebra operators, the cost of each operator,

respectively each algorithm, can be described individu-

ally. For this purpose, each algorithm is assigned a set of

cost functions that calculate the three cost components

as described above. Obviously, the physical cost func-

tions depend on the algorithmic cost functions, which

in turn depend on the logical cost functions. Algebraic

cost functions use the data volume estimations of the

logical cost functions as input parameters. Physical

cost functions are usually specializations of algorith-

mic cost functions that are parametrized by the hard-

ware characteristics.

The cost model also defines how the single operator

costs within a query have to be combined to calculate

the total costs of the query. In traditional sequential

DBMSs, the single operators are assumed to have

no performance side-effects on each other. Thus, the
cost of a QEP is the cumulative cost of the operators

in the QEP [18]. Since every operator in the QEP

is the root of a sub-plan, its cost includes the cost

of its input operators. Hence, the cost of a QEP is

the cost of the topmost operator in the QEP. Likewise,

the cardinality of an operator is derived from the

cardinalities of its inputs, and the cardinality of

the topmost operator represents the cardinality of the

query result.

In non-sequential (e.g., distributed or parallel)

DBMSs, this subject is much more complicated, as

more issues such as scheduling, concurrency, resource

contention, and data dependencies have to considered.

For instance, in such environments, more than one

operator may be executed at a time, either on disjoint

(hardware) resources, or (partly) sharing resources.

In the first case, the total cost (in terms of time) is

calculated as the maximum of the costs (execution

times) of all operators running concurrently. In the

second case, the operators compete for the same

resources, and hence mutually influence their perfor-

mance and costs. More sophisticated cost function and

cost models are required here to adequately model this

resource contention [14,19].
Cross-references
▶Distributed Query Optimization

▶Multi-Query Optimization

▶Optimization and Tuning in Data Warehouses

▶ Parallel Query Optimization

▶ Process Optimization

▶Query Optimization

▶Query Optimization (in Relational Databases)

▶Query Optimization in Sensor Networks

▶Query Plan

▶ Selectivity Estimation

▶ Spatio-Temporal Selectivity Estimation

▶XML Selectivity Estimation
Recommended Reading
1. Blohsfeld B., Korus D., and Seeger B. A comparison of selectivity

estimators for range queries on metric attributes. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 239–250.

2. Chakrabarti K., Garofalakis M.N., Rastogi R., and Shim K.

Approximate query processing using wavelets. In Proc. 26th

Int. Conf. on Very Large Data Bases, 2000, pp. 111–122.

3. Chaudhuri S., Motwani R., and Narasayya V.R. On random

sampling over joins. In Proc. ACM SIGMOD Int. Conf.

Count-Min Sketch C 511

C

on Management of Data, Philadephia, PA, USA, June 1999,

pp. 263–274.

4. Chen C.M. and Roussopoulos N. Adaptive selectivity estimation

using query feedback. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1994, pp. 161–172.

5. Garcia-Molina H., Ullman J.D., andWidom J. Database Systems:

The Complete Book. Prentice Hall, Englewood Cliffs, NJ, USA,

2002.

6. Gibbons P.B. and Matias Y. Synopsis data structures for massive

data sets. In Proc. 10th Annual ACM-SIAM Symp. on Discrete

Algorithms, 1999, pp. 909–910.

7. Gibbons P.B., Matias P.B., and Poosala V. Fast incremental

maintenance of approximate histograms. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 466–475.

8. Haas P.J., Naughton J.F., Seshadri S., and Swami A.N. Selectivity

and cost estimation for joins based on random sampling.

J. Comput. Syst. Sci., 52(3):550–569, 1996.

9. Ioannidis Y.E. and Christodoulakis S. On the propagation of

errors in the size of join results. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1991, pp. 268–277.

10. Ioannidis Y.E. and Poosala V. Histogram-based approximation

of set-valued query-answers. In Proc. 25th Int. Conf. on Very

Large Data Bases, 1999, pp. 174–185.

11. König A.C. and Weikum G. Combining histograms and

parametric curve fitting for feedback-driven query result-size

estimation. In Proc. 25th Int. Conf. on Very Large Data Bases,

1999, pp. 423–434.

12. König A.C. and Weikum G. Auto-tuned spline synopses

for database statistics management. In Proc. Int. Conf. on Man-

agement of Data, 2000.

13. Korth H. and Silberschatz A. Database Systems Concepts.

McGraw-Hill, Inc., New York, San Francisco, Washington, DC,

USA, 1991.

14. Lu H., Tan K.L., and Shan M.C. Hash-based join algorithms for

multiprocessor computers. In Proc. 16th Int. Conf. on Very

Large Data Bases, 1990, pp. 198–209.

15. Manegold S. Understanding, Modeling, and Improving

Main-Memory Database Performance. PhD Thesis, Univer-

siteit van Amsterdam, Amsterdam, The Netherlands, December

2002.

16. Manegold S., Boncz P.A., and Kersten M.L. Generic

database cost models for hierarchical memory systems.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 191–202.

17. Matias Y., Vitter J.S., andWangM.Wavelet-based histograms for

selectivity estimation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 448–459.

18. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A., and

Price T.G. Access path selection in a relational database manage-

ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1979, pp. 23–34.

19. SpiliopoulouM. and Freytag J.-C. Modelling resource utilization

in pipelined query execution. In Proc. European Conference on

Parallel Processing, 1996, pp. 872–880.

20. Sun W., Ling Y., Rishe N., and Deng Y. An instant and accurate

size estimation method for joins and selection in a retrieval-

intensive environment. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1993, pp. 79–88.
Count-Min Sketch

GRAHAM CORMODE

AT&T Labs–Research, Florham Park, NJ, USA

Synonyms
CM Sketch
Definition
The Count-Min (CM) Sketch is a compact summary

data structure capable of representing a high-

dimensional vector and answering queries on this vec-

tor, in particular point queries and dot product

queries, with strong accuracy guarantees. Such queries

are at the core of many computations, so the structure

can be used in order to answer a variety of other

queries, such as frequent items (heavy hitters), quantile

finding, join size estimation, and more. Since the data

structure can easily process updates in the form of

additions or subtractions to dimensions of the vector

(which may correspond to insertions or deletions, or

other transactions), it is capable of working over

streams of updates, at high rates.

The data structure maintains the linear projection

of the vector with a number of other random vectors.

These vectors are defined implicitly by simple hash

functions. Increasing the range of the hash functions

increases the accuracy of the summary, and increasing

the number of hash functions decreases the probabi-

lity of a bad estimate. These tradeoffs are quantified

precisely below. Because of this linearity, CM sketches

can be scaled, added and subtracted, to produce sum-

maries of the corresponding scaled and combined

vectors.
Historical Background
The Count-Min sketch was first proposed in 2003 [5]

as an alternative to several other sketch techniques,

such as the Count sketch [3] and the AMS sketch [1].

The goal was to provide a simple sketch data structure

with a precise characterization of the dependence on the

input parameters. The sketch has also been viewed as a

realization of a counting Bloom filter or Multistage-

Filter [8], which requires only limited independence

randomness to show strong, provable guarantees.

The simplicity of creating and probing the sketch has

led to its wide use in disparate areas since its initial

description.

512C Count-Min Sketch
Foundations
The CM sketch is simply an array of counters of width

w and depth d, CM [1, 1] ... CM [d, w]. Each entry of

the array is initially zero. Additionally, d hash functions

h1:::hd : f1:::ng ! f1:::wg
are chosen uniformly at random from a pairwise-

independent family. Once w and d are chosen, the

space required is fixed: the data structure is represented

by wd counters and d hash functions (which can each

be represented in O(1) machine words [14]).

Update Procedure

Consider a vector a, which is presented in an implicit,

incremental fashion (this abstract model captures a

wide variety of data stream settings, see entries on

Data Stream Models for more details). This vector

has dimension n, and its current state at time t is

aðtÞ ¼ ½a1ðtÞ;:::aiðtÞ;:::anðtÞ�. Initially, að0Þ is the

zero vector, 0, so ai(0) is 0 for all i. Updates to individ-

ual entries of the vector are presented as a stream of

pairs. The tth update is (it, ct), meaning that

ait ðtÞ ¼ ait ðt � 1Þ þ ct

ai0 ðtÞ ¼ ai0 ðt � 1Þ i0 6¼ it

This procedure is illustrated in Fig. 1. In the remainder

of this article, t is dropped, and the current state of the

vector is referred to as just a for convenience. It is

assumed throughout that although values of ai increase

and decrease with updates, each ai � 0. The Count-

Min sketch also applies to the case where ais can be less

than zero, with small factor increases in space. Here,

details of these extensions are omitted for simplicity of

exposition (full details are in [5]).

When an update (it, ct) arrives, ct is added to one

count in each row of the Count-Min sketch; the
Count-Min Sketch. Figure 1. Each item i is mapped

to one cell in each row of the array of counts: when an

update of ct to item it arrives, ct is added to each

of these cells.
counter is determined by hj . Formally, given (it, ct),

the following modifications are performed:

81 	 j 	 d : CM ½ j; hjðit Þ� CM ½ j; hjðit Þ� þ ct

Because computing each hash function takes O(1)

(constant) time, the total time to perform an update

is O(d), independent of w. Since d is typically small in

practice (often less than 10), updates can be processed

at high speed.
Point Queries

A point query is to estimate the value of an entry in the

vector ai. The point query procedure is similar to

updates: given a query point i, an estimate is found

as âi ¼ min1	j	dCM ½ j; hjðiÞ�. Since the space used by

the sketch is typically much smaller than that required

to represent the vector exactly, there is necessarily some

approximation in the estimate, which is quantified as

follows:

Theorem 1 (Theorem 1 from [5]). If w ¼ deee and
d ¼ dln 1

de, the estimate âi has the following guarantees:

ai 	 âi ; and, with probability at least 1 � d,

âi 	 ai þ ekak1:
The proof follows by considering the estimate in each

row, and observing that the expected error in using

CM [j, hj(i)] as an estimate has expected (non-nega-

tive) error kak1=w. By the Markov inequality [14], the

probability that this error exceeds Ekak1 is at most
1
e
(where e is the base of the natural logarithm, i.e.,

2.71828 . . ., a constant chosen to optimize the space

for fixed accuracy requirements). Taking the smallest

estimate gives the best estimator, and the probabi-

lity that this estimate has error exceeding Ekak1 is

the probability that all estimates exceed this error,

i.e., e�d 	 d.
This analysis makes no assumption about the

distribution of values in a. However, in many applica-

tions there are Zipfian, or power law, distributions

of item frequencies. Here, the (relative) frequency

of the ith most frequent item is proportional to i�z,
for some parameter z, where z is typically in

the range 1–3 (z = 0 gives a perfectly uniform distribu-

tion). In such cases, the skew in the distribut-

ion can be used to show a stronger space/accuracy

tradeoff:

Theorem 2 (Theorem 5.1 from [7]). For a Zipf

distribution with parameter z, the space required to

Count-Min Sketch C 513

C

answer point queries with error Ekak1 with probability at
least 1 � d is given by O (e�min{1,1/z} ln1∕d).

Moreover, the dependency of the space on z is

optimal:

Theorem 3 (Theorem 5.2 from [7]). The space

required to answer point queries correctly with any con-

stant probability and error at most Ekak1 is O(e�1) over
general distributions, and O(e�1∕z) for Zipf distributions
with parameter z, assuming the dimension of a, n is

O(e�min{1,1/z}).
Range, Heavy Hitter and Quantile Queries

A range query is to estimate
Pr

i¼l ai for a range [l...r].
For small ranges, the range sum can be estimated as a

sum of point queries; however, as the range grows, the

error in this approach also grows linearly. Instead, logn

sketches can be kept, each of which summarizes a

derived vector ak where

ak½j� ¼
Xðjþ1Þ2k�1
i¼j2k

ai

for k = 1...log n. A range of the form j2k...(j + 1)2k � 1

is called a dyadic range, and any arbitrary range [l...r]

can be partitioned into at most 2log n dyadic ranges.

With appropriate rescaling of accuracy bounds, it fol-

lows that:

Theorem 4 (Theorem 4 from [5]). Count-Min

sketches can be used to find an estimate r̂ for a range

query on l...r such that

r̂ � Ekak1 	
Xr
i¼l

ai 	 r̂

The right inequality holds with certainty, and the left

inequality holds with probability at least 1� d. The total
space required is Oðlog2nE log 1

dÞ.
Closely related to the range query is the f-quantile

query, which is to find a point j such that

Xj
i¼1

ai 	 fkak1 	
Xjþ1
i¼1

ai:

A natural approach is to use range queries to binary

search for a j which satisfies this requirement approxi-

mately (i.e., tolerates up to Ekak1 error in the above

expression) given f. In order to give the desired guar-

antees, the error bounds need to be adjusted to account

for the number of queries that will be made.
Theorem 5 (Theorem 5 from [5]). e-approximate

f-quantiles can be found with probability at least 1 � d
by keeping a data structure with space

O 1
E log

2ðnÞ log log n
d

� �� �
. The time for each insert or delete

operation is O logðnÞ log log n
d

� �� �
, and the time to find

each quantile on demand is O logðnÞ log log n
d

� �� �
.

Heavy Hitters are those points i such that

ai � fkak1 for some specified f. The range query

primitive based on Count-Min sketches can again be

used to find heavy hitters, by recursively splitting dy-

adic ranges into two and querying each half to see if the

range is still heavy, until a range of a single, heavy, item

is found. Formally,

Theorem 6 (Theorem 6 from [5]). Using space

O 1
ElogðnÞlog 2logðnÞ

df

� �� �
, and time O logðnÞ log 2logn

df

� �� �
per update, a set of approximate heavy hitters can be

output so that every item with frequency at least

ðfþ EÞkak1 is output, and with probabilitye 1 � d no

item whose frequency is less than fkak1 is output.
For skewed Zipfian distributions, as described

above, with parameter z > 1, it is shown more strongly

that the top-k most frequent items can be found with

relative error e using space only ~OðkEÞ [7].

Inner Product Queries

The Count-Min sketch can also be used to estimate the

inner product between two vectors; in database terms,

this captures the (equi)join size between relations.

The inner product a � b, can be estimated by treating

the Count-Min sketch as a collection of d vectors of

length w, and finding the minimum inner product

between corresponding rows of sketches of the two

vectors. With probability 1 � d, this estimate is at

most an additive quantity Ekak1kbk1 above the true

value of a � b. This is to be compared with AMS

sketches which guarantee Ekak2kbk2 additive error,

but require space proportional to 1
E2 to make this

guarantee.
Interpretation as Random Linear Projection

The sketch can also be interpreted as a collection of

inner-products between a vector representing the input

and a collection of random vectors defined by the hash

functions. Let a denote the vector representing the

input, so that a½i� is the sum of the updates to the ith

location in the input. Let rj,k be the binary vector such

514C Count-Min Sketch
that rj,k[i] = 1 if and only if hj(i) = k. Then it follows

that CM ½j; k� ¼ a � rj;k . Because of this linearity, it fol-
lows immediately that if sketches of two vectors, a and

b, are built then (i) the sketch of a þ b (using the same

w,d,hj) is the (componentwise) sum of the sketches

(ii) the sketch of la for any scalar l is l times the

sketch of a. In other words, the sketch of any linear

combination of vectors can be found. This property

is useful in many applications which use sketches.

For example, it allows distributed measurements to

be taken, sketched, and combined by only sending

sketches instead of the whole data.

Conservative Update

If only positive updates arrive, then an alternate update

methodology may be applied, known as conservative

update (due to Estan and Varghese [8]). For an

update (i,c), âi is computed, and the counts are

modified according to 81 	 j 	 d : CM ½ j; hjðiÞ�
maxðCM ½ j; hjðiÞ�; âi þ cÞ. It can be verified that pro-

cedure still ensures for point queries that ai 	 âi , and

that the error is no worse than in the normal update

procedure; it is remarked that this can improve accu-

racy ‘‘up to an order of magnitude’’ [8]. Note however

that deletions or negative updates can no longer be

processed, and the additional processing that must

be performed for each update could effectively halve

the throughput.

Key Applications
Since its description and initial analysis, the Count-

Min Sketch has been applied in a wide variety of

situations. Here is a list of some of the ways in which

it has been used or modified.

� Lee et al. [13] propose using least-squares optimi-

zation to produce estimates from Count-Min

Sketches for point queries (instead of returning

the minimum of locations where the item was

mapped). It was shown that this approach can

give significantly improved estimates, although at

the cost of solving a convex optimization problem

over n variables (where n is the size of the domain

from which items are drawn, typically 232 or

higher).

� The ‘‘skipping’’ technique, proposed by Bhatta-

charrya et al. [2] entails avoiding adding items to

the sketch (and saving the cost of the hash function

computations) when this will not affect the
accuracy too much, in order to further increase

throughout in high-demand settings.

� Indyk [9] uses the Count-Min Sketch to estimate

the residual mass after removing a subset of items.

That is, given a (small) set of indices I, to estimateP
i=2I ai . This is needed in order to find clusterings

of streaming data.

� The entropy of a data stream is a function of the

relative frequencies of each item or character within

the stream. Using Count-Min Sketches within a

larger data structure based on additional hashing

techniques, Lakshminath and Ganguly [12] showed

how to estimate this entropy to within relative

error.

� Sarlós et al. [17] gave approximate algorithms for

personalized page rank computations which make

use of Count-Min Sketches to compactly represent

web-size graphs.

� In describing a system for building selectivity esti-

mates for complex queries, Spiegel and Polyzotis

[18] use Count-Min Sketches in order to allow

clustering over a high-dimensional space.

� Rusu and Dobra [16] study a variety of sketches for

the problem of inner-product estimation, and con-

clude that Count-Min sketch has a tendency to

outperform its theoretical worst-case bounds by a

considerable margin, and gives better results than

some other sketches for this problem.

� Many applications call for tracking distinct counts:

that is, ai should represent the number of distinct

updates to position i. This can be achieved by

replacing the counters in the Count-Min sketch

with approximate Count-Distinct summaries,

such as the Flajolet-Martin sketch. This is described

and evaluated in [6,10].

� Privacy preserving computations ensure that mul-

tiple parties can cooperate to compute a function of

their data while only learning the answer and not

anything about the inputs of the other participants.

Roughan and Zhang demonstrate that the Count-

Min Sketch can be used within such computations,

by applying standard techniques for computing

privacy preserving sums on each counter indepen-

dently [15].

Related ideas to the Count-Min Sketch have also been

combined with group testing to solve problems in the

realm of Compressed Sensing, and finding significant

changes in dynamic streams.

Count-Min Sketch C 515

C

Future Directions
As is clear from the range of variety of applications

described above, Count-Min sketch is a versatile data

structure which is finding applications within Data

Stream systems, but also in Sensor Networks, Matrix

Algorithms, Computational Geometry and Privacy-

Preserving Computations. It is helpful to think of the

structure as a basic primitive which can be applied

wherever approximate entries from high dimensional

vectors or multisets are required, and one-sided error

proportional to a small fraction of the total mass can

be tolerated (just as a Bloom filter should be consid-

ered in order to represent a set wherever a list or set is

used and space is at a premium). With this in mind,

further applications of this synopsis can be expected to

be seen in more settings.

As noted below, sample implementations are freely

available in a variety of languages, and integration into

standard libraries will further widen the availability of

the structure. Further, since many of the applications

are within high-speed data stream monitoring, it is

natural to look to hardware implementations of the

sketch. In particular, it will be of interest to understand

how modern multi-core architectures can take advan-

tage of the natural parallelism inherent in the Count-

Min Sketch (since each of the d rows are essentially

independent), and to explore the implementation

choices that follow.
Experimental Results
Experiments performed in [7] analyzed the error

for point queries and F2 (self-join size) estimation, in

comparison to other sketches. High accuracy was

observed for both queries, for sketches ranging from a

few kilobytes to a megabyte in size. The typical para-

meters of the sketchwere a depth d of 5, and awidthw of

a few hundred to thousands. Implementations on

desktop machines achieved between and two and

three million updates per second. Other implementa-

tion have incorporated Count-Min Sketch into high

speed streaming systems such as Gigascope [4], and

tuned it to process packet streams of multi-gigabit

speeds.

Lai and Byrd report on an implementation of

Count-Min sketches on a low-power stream processor

[18], capable of processing 40 byte packets at a

throughput rate of up to 13 Gbps. This is equivalent

to about 44 million updates per second.
URL To Code
Several example implementations of the Count-

Min sketch are available. C code is given by the

MassDal code bank: http://www.cs.rutgers.edu/�
muthu/massdal-code-index.html. C++ code due to

Marios Hadjieleftheriou is available from http://

research.att.com/~marioh/sketches/index.html.
Cross-references
▶AMS Sketch

▶Data sketch/synopsis

▶ FM Synopsis

▶ Frequent items on streams

▶Quantiles on streams
Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on Theory of Computing, 1996, pp. 20–29. Journal

version in J. Comput. Syst. Sci., 58:137–147, 1999.

2. Bhattacharrya S., Madeira A., Muthukrishnan S., and Ye T. How

to scalably skip past streams. In Proc. 1st Int. Workshop on

Scalable Stream Processing Syst., 2007, pp. 654–663.

3. Charikar M., Chen K., and Farach-Colton M. Finding frequent

items in data streams. In 29th Int. Colloquium on Automata,

Languages, and Programming, 2002, pp. 693–703.

4. Cormode G., Korn F., Muthukrishnan S., Johnson T.,

Spatscheck O., and Srivastava D. Holistic UDAFs at streaming

speeds. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004, pp. 35–46.

5. Cormode G. and Muthukrishnan S. An improved data

stream summary: the count-min sketch and its applications.

J. Algorithms, 55(1):58–75, 2005.

6. Cormode G. and Muthukrishnan S. Space efficient mining of

multigraph streams. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005,

pp. 271–282.

7. Cormode G. and Muthukrishnan S. Summarizing and mining

skewed data streams. In Proc. SIAM International Conference

on Data Mining, 2005.

8. Estan C. and Varghese G. New directions in traffic measurement

and accounting. In Proc. ACM Int. Conf. of the on Data Com-

munication, 2002, pp. 323–338.

9. Indyk P. Better algorithms for high-dimensional proximity pro-

blems via asymmetric embeddings. In Proceedings of ACM-

SIAM Symposium on Discrete Algorithms, 2003.

10. Kollios G., Byers J., Considine J., Hadjieleftheriou M., and Li F.

Robust aggregation in sensor networks. Q. Bull. IEEE TC on

Data Engineering, 28(1):26–32, 2005.

11. Lai Y.-K. and Byrd G.T. High-throughput sketch update on a

low-power stream processor. In Proc. ACM/IEEE Symp. on

Architecture for Networking and Communications Systems,

2006, pp. 123–132.

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://research.att.com/~marioh/sketches/index.html
http://research.att.com/~marioh/sketches/index.html

516C Coupling and De-coupling
12. Lakshminath B. and Ganguly S. Estimating entropy over data

streams. In Proc. 14th European Symposium on Algorithms,

2006, pp. 148–159.

13. Lee G.M., Liu H., Yoon Y., and Zhang Y. Improving

sketch reconstruction accuracy using linear least squares

method. In Proc. 5th ACM SIGCOMM Conf. on Internet Mea-

surement, 2005, pp. 273–278.

14. Motwani R. and Raghavan P. Randomized Algorithms.

Cambridge University Press, 1995.

15. Roughan M. and Zhang Y. Secure distributed data mining

and its application in large-scale network measurements. Com-

puter Communication Review, 36(1):7–14, 2006.

16. Rusu F. and Dobra A. Statistical analysis of sketch estimators. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2007,

pp. 187–198.

17. Sarlós T., Benzúr A., Csalogány K., Fogaras D., and Rácz B. To

randomize or not to randomize: space optimal summaries for

hyperlink analysis. In Proc. 15th Int. World Wide Web Confer-

ence, 2006, pp. 297–306.

18. Spiegel J. and Polyzotis N. Graph-based synopses for relational

selectivity estimation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 205–216.
Coupling and De-coupling

SERGUEI MANKOVSKII

CA Labs, CA, Inc., Thornhill, ON, Canada

Definition
Coupling is a measure of dependence between compo-

nents of software system.

De-coupling is a design or re-engineering activity

aiming to reduce coupling between system elements.

Key Points
Coupling of system components refers to a measure of

dependency among them. Coupled components might

depend on each other in different ways. Some exam-

ples of the dependencies are:

� One component might depend on syntax, format, or

encoding of data produced by another component.

� One component might depend on the execution

time within another component.

� One component might depend on state of another

component.

Notion of coupling is connected to notion of cohesion.

Cohesion is a measure of how related and focused

are responsibilities of a software component. For

example a highly cohesive component might group

responsibilities
� using the same syntax, format or encoding of data.

� performed at the same time.

� executed in the same state.

Highly cohesive components lead to fewer dependen-

cies between components and voice versa.

Notions of coupling and cohesion were studied in

structured and object oriented programming. The re-

search developed software tools to calculate coupling

and cohesion metrics.

Low coupling is often desirable because it leads to

reliability, easy of modification, low maintenance costs,

understandability, and reusability. Low coupling can

be achieved by deliberately designing system with low

values of coupling metric. It can also be achieved by

re-engineering of existing software system through re-

structuring of system into a set of more cohesive com-

ponents. These activates are called de-coupling.

Cross-references
▶Cohesion

▶OODB (Object-Oriented Database)

▶ Structured Programming
Coverage

▶ Specificity
Covering Index

DONGHUI ZHANG

Northeastern University, Boston, MA, USA

Definition
Given an SQL query, a covering index is a composite

index that includes all of the columns referenced in

SELECT, JOIN, and WHERE clauses of this query.

Because the index contains all the data needed by

the query, to execute the query the actual data in the

table does not need to be accessed.

Key Points
Covering indexes [1] support index-only execution

plans. In general, having everything indexed tends to

increase the query performance (in number of I/Os).

However, using a covering index with too many columns

Crash Recovery C 517

C

can actually degrade performance. Typically, multi-di-

mensional index structures, e.g., the R-tree, perform

poorer than linear scan with high dimensions. Some

guidelines of creating a covering index are: (i) Create a

covering index on frequently used queries. There are

overheads in creating a covering index, which is often

more significant than creating a regular index with

fewer columns. Hence, if a query is seldom used, the

overhead to create a covering index on it is not sub-

stantiated. This corresponds to Amdahl’s law: improve

the ‘‘interesting’’ part to receive maximum overall

benefit of a system. (ii) Try to build a covering index

by expanding an existing index. For instance, if there

already exists an index on ‘‘age’’ and ‘‘salary,’’ and one

needs a covering index on ‘‘age,’’ ‘‘salary,’’ and ‘‘in-

come,’’ it is often better to expand the existing index

rather than building a new index, which would share

two columns with the existing index.

The term ‘‘covering index’’ is sometimes used to

mean the collection of single-column, non-clustered

indexes on all the columns in a table. This is due to the

‘‘index intersection’’ technique incorporated into the

Microsoft SQL Server’s query optimizer [1]. In partic-

ular, the query optimizer can build, at run time, a

hash-based ‘‘covering index’’ to speedup queries on a

frequently used table. This covering index is really a

hash table, which is built based on multiple existing

indexes. Creating single-column indexes on all col-

umns encourages the query optimizer to perform

index intersection, i.e., to build dynamic covering

indexes.

Cross-references
▶Access Methods

▶ Indexing

Recommended Reading
1. McGehee B. Tips on Optimizing Covering Indexes. http://www.

sql-server-performance.com/tips/covering_indexes_p1.aspx, 2007.
Covert Communication

▶ Steganography
CPU Cache

▶ Processor Cache
Crabbing

▶B-Tree Locking
Crash Recovery

THEO HÄRDER

University of Kaiserslautern, Kaiserslautern, Germany

Synonyms
Failure handling; System recovery; Media recovery;

Online recovery; Restart processing; Backward

recovery

Definition
In contrast to transaction aborts, a crash is typically a

major failure by which the state of the current database

is lost or parts of storage media are unrecoverable

(destroyed). Based on log data from a stable log, also

called temporary log file, and the inconsistent and/or

outdated state of the permanent database, system re-

covery has to reconstruct the most recent transaction-

consistent database state. Because DBMS restart may

take too long to be masked for the user, a denial of

service can be observed. Recovery from media failures

relies on the availability of (several) backup or archive

copies of earlier DB states – organized according to

the generation principle – and archive logs (often

duplexed) covering the processing intervals from the

points of time the backup copies were created. Archive

recovery usually causes much longer outages than sys-

tem recovery.

Historical Background
Log data delivering the needed redundancy to recover

from failures was initially stored on nonvolatile core

memory to be reclaimed at restart by a so-called log

salvager [3] in the ‘‘pre-transaction area’’. Advances in

VLSI technology enabled the use of cheaper and larger,

but volatile semiconductor memory as the computers’

main memory. This technology change triggered

by 1971 in industry – driven by database product

adjustments – the development of new and refined

concepts of logging such as log sequence numbers

(LSNs), write-ahead log protocol (WAL), log duplex-

ing and more. Typically, these concepts were not pub-

lished, nevertheless they paved the way towards the use

http://www.sql-server-performance.com/tips/covering_indexes_p1.aspx,
http://www.sql-server-performance.com/tips/covering_indexes_p1.aspx,

518C Crash Recovery
of ACID transactions. As late as 1978, Jim Gray docu-

mented the design of such a logging system implemen-

ted in IMS in a widely referenced publication [5].

Many situations and dependencies related to fail-

ures and recovery from those in databases have been

thoroughly explored by Lawrence Bjork and Charles

Davies in their studies concerning DB/DC systems

back in 1973 leading to the so-called ‘‘spheres of con-

trol’’ [2]. The first published implementation of the

transaction concept by a full-fledged DBMS recovery

manager was that of System R, started in 1976 [4]. It

refined the Do-Undo-Redo protocol and enabled au-

tomatic recovery for new recoverable types and opera-

tions. In 1981, Andreas Reuter presented in his Ph.D.

dissertation further investigations and refinements of

concepts related to failure handling in database sys-

tems [9]. Delivering a first version of the principles of

transaction-oriented database recovery [Härder and

Reuter 1979], including the Ten Commandments [6],

this classification framework, defining the paradigm of

transaction-oriented recovery and coining the acro-

nym ACID for it [7], was finally published in 1983.

The most famous and most complete description of

recovery methods and their implementation was pre-

sented by C. Mohan et al. in the ARIES paper [8] in

1992, while thorough treatment of all questions related

to this topic appeared in many textbooks, especially

those of Bernstein et al. [1], Gray and Reuter [3], and

Weikum and Vossen [11]. All solutions implemented

for crash recovery in industrial-strength DBMSs are

primarily disk-based. Proposals to use ‘‘safe RAM’’,

for example, were not widely accepted.

Foundations
The most difficult failure type to be recovered from is

the system failure or system crash (see Logging and

Recovery). Due to some (expected, but) unplanned

failure event (a bug in the DBMS code, an operating

system fault, a power or hardware failure, etc.), the

current database – comprising all objects accessible to

the DBMS during normal processing – is not available

anymore. In particular, the in-memory state of the

DBMS (lock tables, cursors and scan indicators, status

of all active transactions, etc.) and the contents of the

database buffer and the log buffer are lost. Further-

more, the state lost may include information about

LSNs, ongoing commit processing with participating

coordinators and participants as well as commit re-

quests and votes. Therefore, restart cannot rely on such
information and has to refer to the temporary log file

(stable log) and the permanent (materialized) database,

that is, the state the DBMS finds after a crash at the

non-volatile storage devices (disks) without having

applied any log information.

Consistency Concerns

According to the ACID principle, a database is consis-

tent if and only if it contains the results of successful

transactions – called transaction-consistent database.

Because a DBMS application must not lose changes of

committed transactions and all of them have contrib-

uted to the DB state, the goal of crash recovery is to

establish the most recent transaction-consistent DB

state. For this purpose, redo and undo recovery is

needed, in general. Results of committed transactions

may not yet be reflected in the database, because exe-

cution has been terminated in an uncontrolled manner

and the corresponding pages containing such results

were not propagated to the permanent DB at the time

of the crash. Therefore, they must be repeated, if nec-

essary – typically by means of log information. On the

other hand, changes of incomplete transactions may

have reached the permanent DB state on disk. Hence,

undo recovery has to completely roll back such un-

committed changes.

Because usually many interactive users rely in their

daily business on DBMS services, crash recovery is very

time-critical. Therefore, crash-related interruption of

DBMS processing should be masked for them as far as

possible. Although today DBMS crashes are rather rare

events and may occur several times a month or a year –

depending on the stability of both the DBMS and its

operational environment – , their recovery should take

no more than a number of seconds or at most a few

minutes (as opposed to archive recovery), even if

GByte or TByte databases with thousands of users

are involved.

Forward Recovery

Having these constraints and requirements in mind,

which kind of recovery strategies can be applied?

Despite the presence of so-called non-stop systems

(giving the impression that they can cope with failures

by forward recovery), rollforward is very difficult, if

not impossible in any stateful system. To guarantee

atomicity in case of a crash, rollforward recovery had

to enable all transactions to resume execution so that

they can either complete successfully or require to be

Crash Recovery C 519

C

aborted by the DBMS. Assume the DB state containing

the most recent successful DB operations could be

made available, that is, all updates prior to the crash

have completely reached the permanent DB state. Even

then rollforward would be not possible, because a

transaction cannot resume in ‘‘forward direction’’ un-

less its local state is restored. Moreover in a DBMS

environment, the in-memory state lost makes it entirely

impossible to resume from the point at the time

the crash occurred. For these reasons, a rollback strat-

egy for active transactions is the only choice in case

of crash recovery to ensure atomicity (wiping out

all traces of such transactions); later on these transac-

tions are started anew either by the user or the DBMS

environment. The only opportunities for forward

actions are given by redundant structures where it is

immaterial for the logical DB content whether or

not modifying operations are undone or completed.

A typical example is the splitting operation of a

B-tree node.

Logging Methods and Rules

Crash recovery – as any recovery from a failure – needs

some kind of redundancy to detect invalid or missing

data in the permanent database and to ‘‘repair’’ its state

as required, i.e., removing modifications effected by

uncommitted transactions from it and supplementing

it with updates of complete transactions. For this task,

the recovery algorithms typically rely on log data col-

lected during normal processing. Different forms of

logging are conceivable. Logical logging is a kind of

operator logging; it collects operators and their argu-

ments at a higher level of abstraction (e.g., for internal

operations (actions) or operations of the data manage-

ment language (DML)). While this method of logging

may save I/O to and space in the log file during normal

processing, it requires at restart time a DB state that is

level-consistent w.r.t. the level of abstraction used for

logging, because the logged operations have to be exe-

cuted using data of the permanent database. For exam-

ple, action logging and DML-operation logging require

action consistency and consistency at the application

programming interface (API consistency), respectively

[6]. Hence, the use of this kind of methods implies the

atomic propagation (see below) of all pages modified

by the corresponding operation which can be imple-

mented by shadow pages or differential files. Physical

logging – in the simplest form collecting the before-

and after-images of pages – does not expect any form
of consistency at higher DB abstraction levels and, in

turn, can be used in any situation, in particular, when

non-atomic propagation of modified pages (update-

in-place) is performed. However, writing before- and

after-images of all modified pages to the log file, is very

time-consuming (I/O) and not space-economical at

all. Therefore, a combination of both kinds leads to

the so-called physiological logging, which can be rough-

ly characterized as ‘‘physical to a page and logical

within a page’’. It enables compact representation of

log data (logging of elementary actions confined to

single pages, entry logging) and leads to the practically

most important logging/recovery method; non-atomic

propagation of pages to disk is sufficient for the appli-

cation of the log data. Together with the use of log

sequence numbers in the log entries and in the headers

of the data pages (combined use of LSNs and

PageLSNs, see ARIES Protocol), simple and efficient

checks at restart detect whether or not the modifica-

tions of elementary actions have reached the perma-

nent database, that is, whether or not undo or redo

operations have to be applied.

While, in principle, crash recovery methods do not

have specific requirements for forcing pages to the

permanent DB, sufficient log information, however,

must have reached the stable log. The following rules

(for forcing of the log buffer to disk) have to be

observed to guarantee recovery to the most recent

transaction-consistent DB state:

� Redo log information must be written at the latest

in phase 1 of commit.

� WAL (write ahead logging) has to be applied to

enable undo operations, before uncommitted

(dirty) data is propagated to the permanent

database.

� Log information must not be discarded from the

temporary log file, unless it is guaranteed that it

will no longer be needed for recovery; that is, the

corresponding data page has reached the perma-

nent DB. Typically, sufficient log information

has been written to the archive log, in addition.

Taxonomy of Crash Recovery Algorithms

Forcing log data as captured by these rules yields the

necessary and sufficient condition to successfully cope

with system crashes. Specific assumptions concerning

page propagation to the permanent database only

influence performance issues of the recovery process.

520C Crash Recovery
When dirty data can reach the permanent DB (steal

property), recovery must be prepared to execute undo

steps and, in turn, redo steps when data modified by a

transaction is not forced at commit or before (no-force

property). In contrast, if propagation of dirty data is

prevented (no-steal property), the permanent DB only

contains clean (but potentially missing or old) data,

thus making undo steps unnecessary. Finally, if all

transaction modifications are forced at commit (force

property), redo is never needed at restart.

Hence, these properties concerning buffer replace-

ment and update propagation are maintained by the

buffer manager/transaction manager during normal

processing and lead to four cases of crash recovery

algorithms which cover all approaches so far proposed:

1. Undo/Redo: This class contains the steal/no-force

algorithms which have to observe no other require-

ments than the logging rules. However, potentially

undo and redo steps have to be performed during

restart after a crash.

2. Undo/NoRedo: The so-called steal/force algorithms

guarantee at any time that all actions of committed

transactions are in the permanent DB. However,

because of the steal property, dirty updates may

be present, which may require undo steps, but

never redo steps during restart.

3. NoUndo/Redo: The corresponding class members

are known as no-steal/no-force algorithms which

guarantee that dirty data never reaches the perma-

nent DB. Dirty data pages are either never replaced

from the DB buffer or, in case buffer space is in

short supply, they are displaced to other storage

areas outside the permanent DB. Restart after a

crash may require redo steps, but never undo steps.

4. NoUndo/NoRedo: This ‘‘magic’’ class of the so-

called no-steal/force algorithms always guarantees a
Crash Recovery. Figure 1. Taxonomy of crash recovery algo
state of the permanent DB that corresponds to the

most recent transaction-consistent DB state. It

requires that no modified data of a transaction

reaches the permanent DB before commit and that

all transaction updates are atomically propagated

(forced) at commit. Hence, neither undo nor redo

steps are ever needed during restart.

The discussion of these four cases is summarized in

Fig. 1 which represents a taxonomy of crash recovery

algorithms.

Implementation Implications

The latter two classes of algorithms (NoUndo) require

a mechanism which can propagate a set of pages in an

atomic way (with regard to the remaining DBMS pro-

cessing). Such a mechanism needs to defer updates to

the permanent DB until or after these updates become

committed and can be implemented by various forms

of shadowing concepts or differential file approaches.

Algorithms relying on redo steps, i.e., without the

need to force committed updates to the permanent

DB, have no control about the point of time when

committed updates reach the permanent DB. While

the buffer manager will propagate back most of the

modified pages soon after the related update opera-

tions, a few hot-spot pages are modified again and

again, and, since they are referenced so frequently,

have not been written from the buffer. These pages

potentially have accumulated the updates of many

committed transactions, and redo recovery will there-

fore have to go back very far on the temporary log.

As a consequence, restart becomes expensive and the

DBMS’s out-of-service time unacceptably long. For

this reason, some form of checkpointing is needed to

make restart costs independent of mean time between

failures. Generating a checkpoint means collecting
rithms.

Crash Recovery C 521

C

information related to the DB state in a safe place,

which is used to define and limit the amount of redo

steps required after a crash. The restart logic can then

return to this checkpoint state and attempt to recover

the most recent transaction-consistent state.

From a conceptual point of view, the algorithms of

class 4 seem to be particularly attractive, because they

always preserve a transaction-consistent permanent DB.

However in addition to the substantial cost of providing

atomic update propagation, the need of forcing all

updates at commit, necessarily in a synchronous way

which may require a large amount of physical I/Os

and, in turn, extend the lock duration for all affected

objects, makes this approach rather expensive. Further-

more, with the typical disk-based DB architectures,

pages are units of update propagation, which has the

consequence that a transaction updating a record in a

page cannot share this page with other updaters, because

dirty updates must not leave the buffer and updates of

complete transactionsmust be propagated to the perma-

nent DB at commit. Hence, no-steal/force algorithms

imply at least page locking as the smallest lock granule.

One of these cost factors – either synchronously

forced updates at commit or atomic updates for

NoUndo – applies to the algorithms of class 2 and 3

each. Therefore, they were not a primary choice for the

DBMS vendors competing in the today’s market.

Hence, the laissez-faire solution ‘‘steal, no-force’’

with non-atomic update propagation (update-in-

place) is today’s favorite solution, although it always

leaves the permanent DB in a ‘‘chaotic state’’ containing

dirty and outdated data pages and keeping the latest

version of frequently used pages only in the DB buffer.

Hence, with the optimistic expectation that crashes

become rather rare events, it minimizes recovery pro-

visions during normal processing. Checkpointing is nec-

essary, but the application of direct checkpoints flushing

the entire buffer at a time, is not advisable anymore,

when buffers of several GByte are used. To affect nor-

mal processing as little as possible, so-called fuzzy check-

points are written; only a few pages with metadata

concerning the DB buffer state have to be synchronously
Crash Recovery. Figure 2. Two ways of DB crash recovery a
propagated, while data pages are ‘‘gently’’ moved to the

permanent DB in an asynchronous way.

Archive Recovery

So far, data of the permanent DB was assumed to be

usable or at least recoverable using the redundant data

collected in the temporary log. This is illustrated by the

upper path in Fig. 2. If any of the participating com-

ponents is corrupted or lost because of other hardware

or software failure, archive recovery – characterized by

the lower path – must be tried. Successful recovery also

implies independent failure modes of the components

involved.

The creation of an archive copy, that is, copying the

online version of the DB, is a very expensive process;

for example, creating a transaction-consistent DB copy

would interrupt update operation for a long time

which is unacceptable for most DB applications.

Therefore, two base methods – fuzzy dumping and

incremental dumping – were developed to reduce the

burden of normal DB operation while an archive copy

is created. A fuzzy dump copies the DB on the fly in

parallel with normal processing. The other method

writes only the changed pages to the incremental

dump. Of course, both methods usually deliver incon-

sistent DB copies such that log-based post-processing

is needed to apply incremental modifications. In a

similar way, either type of dump can be used to create

a new, more up-to-date copy from the previous one,

using a separate offline process such that DB operation

is not affected.

Archive copies are ‘‘hopefully’’ never or very infre-

quently used. Therefore, they may be susceptible to

magnetic decay. For this reason, redundancy is needed

again, which is usually solved by keeping several gen-

erations of the archive copy.

So far, all log information was assumed to be writ-

ten only to the temporary log file during normal pro-

cessing. To create the (often duplexed) archive log,

usually an independent and asynchronously running

process copies the redo data from the temporary log.

To guarantee successful recovery, failures when using
nd the components involved.

522C Crawler
the archive copies must be anticipated. Therefore,

archive recovery must be prepared to start from the

oldest generation and hence the archive log must span

the whole distance back to this point in time.
Key Applications
Recovery algorithms, and in particular for crash recov-

ery, are a core part of each commercial-strength DBMS

and require a substantial fraction of design/implemen-

tation effort and of the code base: ‘‘A recoverable action

is 30% harder and requires 20%more code than a non-

recoverable action’’ (J. Gray). Because the occurrence

of failures can not be excluded and all data driving

the daily business are managed in databases, mission-

critical businesses depend on the recoverability of

their data. In this sense, provisions for crash recovery

are indispensable in such DBMS-based applications.

Another important application area of crash recovery

techniques are file systems, in particular their metadata

about file existence, space allocation, etc.
Future Directions
So far, crash recovery provisions are primarily disk-

based. With ‘‘unlimited’’ memory available, main-

memory DBMSs will provide efficient and robust

solutions without the need of non-volatile storage for

crash recovery. More and more approaches are

expected to exploit specialized storage devices such as

battery-backed RAM or to use replication in grid-

organized memories. Executing online transaction

processing sequentially, revolutionary architectural

concepts are already proposed which may not require

transactional facilities at all [10].
Cross-references
▶ACID Properties

▶Application Recovery

▶B-Tree Locking

▶Buffer Management

▶ Logging and Recovery

▶Multi-Level Recovery and the ARIES Algorithm

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

2. Davies C.T. Data processing spheres of control. IBM Syst. J.,

17(2):179–198, 1978.
3. Gray H. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

4. Gray J., McJones P., Blasgen M., Lindsay B., Lorie R., Price T.,

Putzolu F., and Traiger I.L. The recovery manager of the

System R database manager. ACM Comput. Surv., 13(2):

223–242, 1981.

5. Gray J, Michael J. Feynn, Jim Gray, Anita K. Jones, Klans Lagally,

Holger Opderbeck, Gerald J. Popek, Brian Randell, Jerome H.

Saltfer, Hans-Rüdiger Wiehle. Notes on database operating sys-

tems. In Operating Systems: An Advanced Course. Springer,

LNCS 60, 1978, pp. 393–481.

6. Härder T. DBMS Architecture – Still an Open Problem. In Proc.

German National Database Conference, 2005, pp. 2–28.

7. Härder T. and Reuter A. Principles of transaction-

oriented database recovery. ACM Comput. Surv., 15(4):

287–317, 1983.

8. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and Schwarz

P.M. ARIES: a transaction recovery method supporting fine-

granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

9. Reuter A. Fehlerbehandlung in Datenbanksystemen. Carl

Hanser, Munich, 1981, p. 456.

10. Stonebraker M., Madden S., Abadi D.J., Harizopoulos S.,

Hachem N., and Helland P. The End of an Architectural Era

(It’s Time for a Complete Rewrite). In Proc. 33rd Int. Conf. on

Very Large Data Bases, 2007, pp. 1150–1160.

11. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Crawler

▶ Incremental Crawling
Credulous Reasoning

▶ Possible Answers
Cross Product

▶Cartesian Product
Cross-language Cross-Language
Mining and Retrieval C217
Informational Retrieval

▶Cross-Language Mining and Retrieval

Cross-Language Mining and Retrieval C 523

C

Cross-Language Mining and
Retrieval

WEI GAO
1, CHENG NIU

2

1The Chinese University of Hong Kong, Hong Kong,

China
2Microsoft Research Asia, Beijing, China

Synonyms
Cross-language text mining; Cross-language web

mining; Cross-language informational retrieval; Trans-

lingual information retrieval

Definition
Cross-language mining is a task of text mining dealing

with the extraction of entities and their counterparts

expressed in different languages. The interested entities

may be of various granularities from acronyms, syno-

nyms, cognates, proper names to comparable or parallel

corpora. Cross-Language Information Retrieval (CLIR)

is a sub-field of information retrieval dealing with the

retrieval of documents across language boundaries, i.e.,

the language of the retrieved documents is not the same

as the language of the queries. Cross-language mining

usually acts as an effective means to improve the perfor-

mance of CLIR by complementing the translation

resources exploited by CLIR systems.
Historical Background
CLIR addresses the growing demand to access large

volumes of documents across language barriers. Unlike

monolingual information retrieval, CLIR requires

query terms in one language to be matched with the

indexed keywords in the documents of another lan-

guage. Usually, the cross-language matching can be

done by making use of bilingual dictionary, machine

translation software, or statistical model for bilingual

words association. CLIR generally takes into account

but not limited to the issues like how to translate query

terms, how to deal with the query terms nonexistent

in a translation resource, and how to disambiguate

or weight alternative translations (e.g., to decide that

‘‘traitement’’ in a French query means ‘‘treatment’’ but

not ‘‘salary’’ in English, or how to order the French

terms ‘‘aventure,’’ ‘‘business,’’ ‘‘affaire,’’ and ‘‘liaison’’ as

relevant translations of English query ‘‘affair’’), etc.

The performance of CLIR can be measured by the

general evaluation metrics of information retrieval,
such as recall precision, average precision, and mean

reciprocal rank, etc.

The first workshop on CLIR was held in Zürich

during the SIGIR-96 conference. Workshops have been

held yearly since 2000 at the meetings of CLEF (Cross

Language Evaluation Forum), following its predeces-

sor workshops of TREC (Text Retrieval Conference)

cross-language track. The NTCIR (NII Test Collec-

tion for IR Systems) workshop is also held each year

in Japan for CLIR community focusing on English

and Asian languages.

The study of cross-language mining appears relative-

ly more lately than CLIR, partly due to the increasing

demands on the quality of CLIR and machine transla-

tion, as well as the recent advancement of text/Web

mining techniques. A typical early work on cross-lingual

mining is believed to be PTMiner [14] that mines par-

allel text from theWeb used for query translation. Other

than parallel data mining, people also tried to mine the

translations of Out-of-Vocabulary (OOV) terms from

search results returned from search engine [5,18] or

from web anchor texts and link structures [12]. Based

on phonetic similarity, transliteration (the phonetic

counterpart of a name in another language, e.g.,

‘‘Schwarzenegger’’ is pronounced as ‘‘shi wa xin ge’’ in

Chinese pinyin) of foreign names also could be

extracted properly from the Web [10]. These methods

are proposed to alleviate the OOV problem of CLIR

since there is usually lack of appropriate translation

resources for new terminologies and proper names,

particularly in the scenario of cross-language web

search.

Foundations
Most approaches to CLIR perform query translation

followed by monolingual retrieval. So the retrieval

performance is largely determined by the quality of

query translation. Queries are typically translated

either using a bilingual dictionary [15], a machine

translation (MT) software [7], bilingual word associa-

tion model learned from parallel corpus [6,14], or

recently a query log of a search engine [9]. Despite

the types of the resources being used, OOV translation

and translation disambiguation are the two major bot-

tlenecks for CLIR. On one hand, translation resources

can never be comprehensive. Correctly translating

queries, especially Web queries, is difficult since they

often contain new words (e.g., new movies, brands,

celebrities, etc.) occurring timely and frequently, yet

524C Cross-Language Mining and Retrieval
being OOV to the system; On the other hand, many

words are polysemous, or they do not have a unique

translation, and sometimes the alternative translations

have very different meanings. This is known as trans-

lation ambiguity. Selecting the correct translation is

not trivial due to the shortage of context provided in

a query, and effective techniques for translation disam-

biguation are necessary.

It should be mentioned that document translation

with MT in the opposite direction is an alternative

approach to CLIR. However, it is less commonly used

than query translation in the literature mainly because

MT is computationally expensive and costly to devel-

op, and the document sets in IR are generally very

large. For cross-language web search, it is almost im-

practical to translate all the web pages before indexing.

Some large scale attempts to compare query transla-

tion and document translation have suggested no clear

advantage for either of the approaches to CLIR [12].

But they found that compared with extremely high

quality human query translations, it is advantageous

to incorporate both document and query translation

into a CLIR system.

Cross-Language Web Mining

Mining Parallel Data The approaches of mining par-

allel text make extensive use of bilingual websites

where parallel web pages corresponding to the speci-

fied language pair can be identified and downloaded.

Then the bilingual texts are automatically aligned in

terms of sentences and words by statistical aligning

tools, such as GIZAþþ [21]. The word translation

probabilities can be derived with the statistics of

word pairs occurring in the alignments, after which

one can resort to statistical machine translation mod-

els, e.g., IBM model-1 [4], for translating given queries

into the target language. The typical parallel data

mining tools include PTMiner [14], STRAND [16]

and the DOM-tree-alignment-based system [17].

Mining OOV Term Translation Web pages also contain

translations of terms in either the body texts or the

anchor texts of hyper-links pointing to other pages.

For example, in some language pairs, such as Chinese-

English or Japanese-English, the Web contains rich

body texts in a mixture of multiple languages. Many

of them contain bilingual translations of proper nouns,

such as company names and person names. The work
of [5,16] exploits this nice characteristic to automati-

cally extract translations from search result for a large

number of unknown query terms. Using the extracted

bilingual translations, the performance of CLIR be-

tween English and Chinese is effectively improved.

Both methods select translations based on some var-

iants of co-occurrence statistics.

The anchor text of web pages’ hyperlinks is another

source for translational knowledge acquisition. This

is based on the observation that the anchor texts

of hyperlinks pointing to the same URL may contain

similar descriptive texts. Lu et al. [11] uses anchor text

of different languages to extract the regional aliases

of query terms for constructing a translation lexicon.

A probabilistic inference model is exploited to estimate

the similarity between query term and extracted trans-

lation candidates.
Query Translation Disambiguation

Translation disambiguation or ambiguity resolution is

crucial to the query translation accuracy. Compared to

the simple dictionary-based translation approach with-

out addressing translation disambiguation, the effective-

ness of CLIR can be 60% lower than that of monolingual

retrieval [3]. Different disambiguation techniques have

been developed using statistics obtained from document

collections, all resulting in significant performance im-

provement. Zhang et al. [19] give concise review on

three main translation disambiguation techniques.

These methods include using term similarity [1], word

co-occurrence statistics of the target language docu-

ments, and language modeling based approaches [20].

In this subsection, we introduce these approaches fol-

lowing the review of Zhang et al. [19].
Disambiguation by Term Similarity Adriani [1] pro-

posed a disambiguation technique based on the conc-

ept of statistical term similarity. The term similarity is

measured by the Dice coefficient, which uses the term-

distribution statistics obtained from the corpus.

The similarity between term x and y, SIM(x, y), is

calculated as:

SIMðx; yÞ ¼ 2
Pn
i¼1
ðwxiwyiÞ

� Pn
i¼1

w2
xiþ
Pn
i¼1

w2
yi

 �

where wxi and wyi is the weights of term x and y

in document i. This method computes the sum of

maximum similarity values between each candidate

Cross-Language Mining and Retrieval C 525

C

translation of a term and the translations of all other

terms in the query. For each query term, the transla-

tion with the highest sum is selected as its translation.

The results of Indonesian-English CLIR experiments

demonstrated the effectiveness of this approach. There

are many variant term association measures like Jac-

card, Cosine, Overlap, etc. that can be applied similarly

for calculating their similarity.
Disambiguation by Term Co-occurrence Ballesteros

and Croft [3] used co-occurrence statistics obtained

from the target corpus for resolving disambiguation.

They assume the correct translations of query terms

should co-occur in target language documents and

incorrect translations tend not to co-occur. Similar

approach is studied by Gao et al. [8]. They observed

that the correlation between two terms is stronger

when the distance between them is shorter. They

extended the previous co-occurrence model by incor-

porating a distance factor Dðx; yÞ ¼ e
�aðDisðx;yÞ�1Þ

. The

mutual information between term x and y, MI(x, y), is

calculated as:

MIðx; yÞ ¼ log
fwðx; yÞ
fx fy

þ 1

 �
� Dðx; yÞ

where fw(x, y) is the co-occurrence frequency of x and y

that occur simultaneously within a window size of w in

the collection, fx is the collection frequency of x, and

fy is the collection frequency of y. D(x, y) decreases

exponentially when the distance between the two terms

increases, where a is the decay rate, and D(x, y) is the

average distance between x and y in the collection. The

experiments on the TREC9 Chinese collection showed

that the distance factor leads to substantial improve-

ments over the basic co-occurrence model.
Disambiguation by Language Modeling In the work

of [20], a probability model based on hidden Markov

model (HMM) is used to estimate the maximum

likelihood of each sequence of possible translations

of the original query. The highest probable transla-

tion set is selected among all the possible translation

sets. HMM is a widely used for probabilistic model-

ing of sequence data. In their work, a smoothing

technique based on absolute discounting and inter-

polation method is adopted to deal with the zero-

frequency problem during probability estimation. See

[20] for details.
Pre-/Post-Translation Expansion

Techniques of OOV term translation and translation

disambiguation both aim to translate query correctly.

However, it is arguable that precise translation may not

be necessary for CLIR. Indeed, in many cases, it is

helpful to introduce words even if they are not direct

translations of any query word, but are closely rela-

ted to the meaning of the query. This observation has

led to the development of cross-lingual query expan-

sion (CLQE) techniques [2,13]. [2] reported the en-

hancement on CLIR by post-translation expansion.

[13] made performance comparison on various

CLQE techniques, including pre-translation expansion,

post-translation expansion and their combinations. Rel-

evance feedback, the commonly used expansion tech-

nique in monolingual retrieval, is also widely adopted in

CLQE. The basic idea is to expand original query by

additional terms that are extracted from the relevant

retrieval result initially returned. Amongst different rel-

evance feedback methods, explicit feedback requires

documents whose relevancy is explicitly marked by

human; implicit feedback is inferred from users’ beha-

viors that imply the relevancy of the selected docu-

ments, such as which returned documents are viewed

or how long they view some of the documents; blind or

‘‘pseudo’’ relevance feedback is obtained by assuming

that top n documents in the initial result are relevant.

Cross-Lingual Query Suggestion

Traditional query translation approaches rely on static

knowledge and data resources, which cannot effectively

reflect the quickly shifting interests of Web users.

Moreover, the translated terms can be reasonable

translations, but are not popularly used in the target

language. For example, the French query ‘‘aliment bio-

logique’’ is translated into ‘‘biologic food,’’ yet the

correct formulation nowadays should be ‘‘organic

food.’’ This mismatch makes the query translation in

the target language ineffective. To address this prob-

lem, Gao et al. [9] proposed a principled framework

called Cross-Lingual Query Suggestion (CLQS), which

leverages cross-lingual mining and translation disam-

biguation techniques to suggest related queries found

in the query log of a search engine.

CLQS aims to suggest related queries in a language

different from the original query. CLQS is closely

related to CLQE, but is distinct in that it suggests full

queries that have been formulated by users so that the

query integrity and coherence are preserved in the

526C Cross-Language Mining and Retrieval
suggested queries. It is used as a new means of query

‘‘translation’’ in CLIR tasks. The use of query log for

CLQS stems from the observation that in the same

period of time, many search users share the same or

similar interests, which can be expressed in different

manners in different languages. As a result, a query

written in a source language is possible to have an

equivalent in the query log of the target language.

Especially, if the user intends to perform CLIR, then

original query is even more likely to have its corre-

spondent included in the target language log. There-

fore, if a candidate for CLQS appears often in the query

log, it is more likely to be the appropriate one to

suggest. CLQS is testified being able to cover more

relevant documents for the CLIR task.

The key problem with CLQS is how to learn a simi-

larity measure between two queries in different lan-

guages. They define cross-lingual query similarity based

on both translation relation and monolingual similarity.

The principle for learning is, for a pair of queries, their

cross-lingual similarity should fit the monolingual simi-

larity between one query and the other query’s transla-

tion. There are many ways to obtain a monolingual

similarity between queries, e.g., co-occurrence based

mutual information and w2. Any of them can be used

as the target for the cross-lingual similarity function to

fit. In this way, cross-lingual query similarity estima-

tion is formulated as a regression task:

simCLðqf ; qeÞ ¼ w � ’ðf ðqf ; qeÞÞ ¼ simMLðTqf ; qeÞ

where given a source language query qf, a target

language query qe, and a monolingual query similar-

ity between them simML, the cross-lingual query simi-

larity simCL can be calculated as an inner product

between a weight vector and the feature vector in the

kernel space, and ’ is the mapping from the input

feature space onto the kernel space, and w is the weight

vector which can be learned by support vector regression

training. The monolingual similarity is measured by

combining both query content-based similarity and

click-through commonality in the query log.

This discriminative modeling framework can inte-

grate arbitrary information sources to achieve an opti-

mal performance. Multiple feature functions can be

incorporated easily into the framework based on dif-

ferent translation resources, such as bilingual diction-

aries, parallel data, web data, and query logs. They

work uses co-occurrence-based dictionary translation
disambiguation, IBM translation model-1 based on par-

allel corpus, andWeb-based query translation mining as

means to discover related candidate queries in the query

log. Experiments on TREC6 French-English CLIR task

demonstrate that CLQS-based CLIR is significantly

better than the traditional dictionary-based query trans-

lation with disambiguation and machine translation

approaches.

Latent Semantic Index (LSI) for CLIR

Different from most of the alternative approaches dis-

cussed above, LSI for CLIR [6] provides a method for

matching text segments in one language with the seg-

ments of similar meaning in another language without

having to translate either. Using a parallel corpus, LSI

can create a language-independent representation of

words. The representation matrix reflects the patterns

of term correspondences in the documents of two

languages. The matrix is factorized by Singular Value

Decomposition (SVD) for deriving a latent semantic

space with a reduced dimension, where similar terms

are represented by similar vectors. In latent semantic

space, therefore, the monolingual similarity between

synonymous terms from one language and the cross-

lingual similarity between translation pairs from dif-

ferent languages tend to be higher than the similarity

with irrelevant terms. This characteristic allows rele-

vant documents to be retrieved even if they do not

share any terms in common with the query, which

makes LSI suitable for CLIR.

Key Applications
Cross-language mining and retrieval is the foundation

technology for searching web information across

multiple languages. It can also provide the cross-

lingual functionality for the retrieval of structured,

semi-structured and un-structured document data-

bases of specific domains or in large multinational

enterprises.

Experimental Results
In general, for every presented work, there is an accom-

panying experimental evaluation in the corresponding

reference. Especially, the three influential international

workshops held annually, i.e., CLEF, NTCIR and TREC,

defines many evaluation tasks for CLIR, and there are a

large number of experimental results being published

based on these benchmark specifications.

Cross-Language Mining and Retrieval C 527
Data Sets
Data sets for benchmarking CLIR are released to the

participants of TREC, CLEF and NTCIR workshops

annually with license agreements.
C

Cross-references
▶Anchor Text

▶Average Precision

▶Document databases

▶Document Links and Hyperlinks

▶ Evaluation Metrics for Structured Text Retrieval

▶ Information Extraction

▶ Information Retrieval

▶MAP

▶MRR

▶Query Expansion for Information Retreival

▶Query Translation

▶Relevance Feedback

▶ Singular Value Decomposition

▶ Snippet

▶ Stemming

▶ Stoplists

▶Term Statistics for Structuerd Text Retrieval

▶Term Weighting

▶Text Indexing and Retrieval

▶Text Mining

▶Web Information Extraction

▶Web Search Relevance Feedback
Recommended Reading
1. Adriani M. Using statistical term similarity for sense disambigu-

ation in cross-language information retrieval. Inform. Retr.,

2(1):71–82, 2000.

2. Ballestors L.A. and Croft W.B. Phrasal translation and

query expansion techniques for cross-language information

retrieval. In Proc. 20th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1997,

pp. 84–91.

3. Ballestors L.A. and Croft W.B. Resolving ambiguity for cross-

language information retrieval. In Proc. 21st Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1998, pp. 64–71.

4. Brown P.F., Pietra S.A.D., Pietra V.D.J., and Mercer R.L.

The mathematics of machine translation: parameter estimation.

Comput. Linguist., 19:263–312, 1992.

5. Cheng P.-J., Teng J.-W., Chen R.-C., Wang J.-H., Lu W.-H., and

Chien L.-F. Translating unknown queries with Web corpora

for cross-language information retrieval. In Proc. 30th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2004, pp. 146–153.
6. Dumais S.T., Landauer T.K., and Littman M.L. Automatic cross-

linguistic information retrieval using latent semantic indexing.

ACM SIGIR Workshop on Cross-Linguistic Information

Retrieval, 1996, pp. 16–23.

7. Fujii A. and Ishikawa T. Applying machine translation to two-

stage cross-language information retrieval. In Proc. 4th Conf.

Association for Machine Translation in the Americas, 2000,

pp. 13–24.

8. Gao J., Zhou M., Nie, J.-Y., He H., and Chen W. Resolving query

translation ambiguity using a decaying co-occurrence model

and syntactic dependence relations. In Proc. 25th Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2002, pp. 183–190.

9. Gao W., Niu C., Nie J.-Y., Zhou M., Hu J., Wong K.-F., and

Hon H.-W.: Cross-lingual query suggestion using query logs of

different languages. In Proc. 33rd Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 2007,

pp. 463–470.

10. Jiang L., Zhou M., Chien L.-F., and Niu C. Named entity trans-

lation with Web mining and transliteration. In Proc. 20th Int.

Joint Conf. on AI, 2007, pp. 1629–1634.

11. Lu W.-H., Chien L.-F., and Lee H.-J. Translation of Web queries

using anchor text mining. ACM Trans. Asian Lang. Information

Proc., 1(2):159–172, 2002.

12. McCarley J.S. Should we translate the documents or the queries in

cross-language information retrieval? In Proc. 27th Annual

Meeting of the Assoc. for Computational Linguistics, 1999,

pp. 208–214.

13. McNamee P. and Mayfield J. Comparing cross-language

query expansion techniques by degrading translation resources.

In Proc. 25th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2002, pp. 159–166.

14. Nie J.-Y., Smard M., Isabelle P., and Durand R. Cross-language

information retrieval based on parallel text and automatic

mining of parallel text from the Web. In Proc. 22nd Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1999, pp. 74–81.

15. Pirkola A., Hedlund T., Keshusalo H., and Järvelin K.

Dictionary-based cross-language information retrieval: pro-

blems, methods, and research findings. Inform. Retr., 3(3–4):

209–230, 2001.

16. Resnik P. and Smith N.A. The Web as a parallel corpus. Comput.

Linguist., 29(3):349–380, 2003.

17. Shi L., Niu C., Zhou M., and Gao J. A DOM Tree alignment

model for mining parallel data from the Web. In Proc. 44th

Annual Meeting of the Assoc. for Computational Linguistics,

2006, pp. 489–496.

18. Zhang Y. and Vines P. Using the Web for automated translation

extraction in cross-language information retrieval. In Proc. 30th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2004, pp. 162–169.

19. Zhang Y., Vines P., and Zobel J. An empirical comparison of

translation disambiguation techniques for Chinese-English

Cross-Language Information Retrieval. In Proc. 3rd Asia Infor-

mation Retrieval Symposium, 2006, pp. 666–672.

20. Zhang Y., Vines P., and Zobel J. Chinese OOV translation

and post-translation query expansion in Chinese-English

528C Cross-language Text Mining
cross-lingual information retrieval. ACM Trans. Asian Lang.

Information Proc., 4(2):57–77, 2005.

21. http://www.fjoch.com/GIZA++.html
Cross-language Text Mining

▶Cross-Language Mining and Retrieval
Cross-language Web Mining

▶Cross-Language Mining and Retrieval
Cross-lingual Information Retrieval

▶Cross-Language Mining and Retrieval
Cross-lingual Text Mining

▶Cross-Language Mining and Retrieval
Cross-media Information Retrieval

▶Cross-Modal Multimedia Information Retrieval
Cross-Modal Multimedia
Information Retrieval

QING LI, YU YANG

City University of Hong Kong, Hong Kong, China

Synonyms
Multi-modal information retrieval; Cross-media infor-

mation retrieval

Definition
Multimedia information retrieval tries to find the dis-

tinctive multimedia documents that satisfy people’s

needs within a huge dataset. Due to the vagueness on

the representation of multimedia data, usually the user
may only have some clues (e.g., a vague idea, a rough

query object of the same or even different modality as

that of the intended result) rather than concrete and

indicative query objects. In such cases, traditional mul-

timedia information retrieval techniques as Query-By-

Example (QBE) fails to retrieve what users really want

since their performance depends on a set of specifically

defined features and carefully chosen query objects.

The cross-modal multimedia information retrieval

(CMIR) framework consists of a novel multifaceted

knowledge base (which is embodied by a layered

graph model) to discover the query results on multiple

modalities. Such cross-modality paradigm leads to

better query understanding and returns the retrieval

result which meets user need better.

Historical Background
Previous works addressing multimedia information

retrieval can be classified into two groups: approaches

on single-modality, and those on multi-modality

integration.

Retrieval Approaches on Single-Modality

The retrieval approach in this group only deals with

a single type of media, so that most content-based

retrieval (CBR) approaches [2,3,5,8,9] fall into this

group. These approaches differ from each other in

either the low-level features extracted from the data,

or the distance functions used for similarity calculation.

Despite the differences, all of them are similar in two

fundamental aspects: (i) they all rely on low-level fea-

tures; (ii) they all use the query-by-example paradigm.

Retrieval Approaches on Multi-Modality Integration

More recently there are some works that investigate the

integration of multi-modality data, usually between

text and image, for better retrieval performance. For

example, iFind [7] proposes a unified framework

under which the semantic feature (text) and low-level

features are combined for image retrieval, whereas

the 2M2Net [12] system extends this framework to

the retrieval of video and audio. WebSEEK [9] extracts

keywords from the surrounding text of image and

videos, which is used as their indexes in the retrieval

process. Although these systems involve more than

one media, different types of media are not actually

integrated but are on different levels. Usually, text is

only used as the annotation (index) of other medias.

In this regard, cross-modal multimedia information

http://www.fjoch.com/GIZA++.html

Cross-Modal Multimedia Information Retrieval C 529

C

retrieval (CMIR) enables an extremely high degree of

multi-modality integration, since it allows the interac-

tion among objects of any modality in any possible

ways (via different types of links).

MediaNet [1] andmultimedia thesaurus (MMT) [10]

seek to provide a multimedia representation of semantic

concept – a concept described by various media objects

including text, image, video, etc – and establish

the relationships among these concepts. MediaNet

extends the notion of relationships to include even

perceptual relationships among media objects. Both

approaches can be regarded as ‘‘concept-centric’’

approaches since they realize an organization of

multi-modality objects around semantic concepts. In

contrast, CMIR is ‘‘concept-less’’ since it makes no

attempt to identify explicitly the semantics of each

object.

Foundations
The cross-modality multimedia information retrieval

(CMIR) mechanism shapes a novel scenario for multi-

media retrieval: The user starts the search by supplying

a set of seed objects as the hints of his intention, which

can be of any modality (even different with the

intended objects), and are not necessarily the eligible

results by themselves. From the seeds, the system fig-

ures out the user’s intention and returns a set of cross-

modality objects that potentially satisfy this intention.

The user can give further hints by identifying the

results approximating his need, based on which the

system improve its estimation about the user intention

and refines the results towards it. This scenario can be

also interpreted as a cooperative process: the user tries

to focus the attention of the system to the objects by

giving hints on the intended results, while the system

tries to return more reasonable results that allows user

to give better hints. A comparison between CMIR and

the current CBR approaches is shown in Table 1.
Cross-Modal Multimedia Information Retrieval. Table 1. C

CBR paradigms Drawb

Interaction Highly representative
sample object

Vague idea, or clea
appropriate sampl

Data index Low-level features Inadequate to cap

Results Single-modality,
perceptually similar objects

Looks like or sound
what user actually
To support all the necessary functionalities for such

an ideal scenario, a suite of unique models, algorithms

and strategies are developed in CMIR. As shown in

Fig. 1, the foundation of the whole mechanism is a

multifaceted knowledge base describing the relation-

ships among cross-modality objects. The kernel of the

knowledge base is a layered graph model, which char-

acterizes the knowledge on (i) history of user beha-

viors, (ii) structural relationships among media

objects, and (iii) content of media objects, at each

of its layers. Link structure analysis—an established

technique for web-oriented applications—is tailored

to the retrieval of cross-modality data based on the

layered graph model. A unique relevant feedback tech-

nique that gears with the underlying graph model is

proposed, which can enrich the knowledge base by

updating the links of the graph model according to

user behaviors. The loop in Fig. 1 reveals the hill-

climbing nature of the CMIR mechanism, i.e., it

enhances its performance by learning from the previ-

ously conducted queries and feedbacks.

Layered Graph Model

As the foundation of the retrieval capability, the mul-

tifaceted knowledge base accommodates a broad range

of knowledge indicative of data semantics, mainly in

three aspects: (i) user behaviors in the user-system

interaction, (ii) structural relationships among media

objects, and (iii) content of each media object. The

kernel of the knowledge base is a three-layer graph

model, with each layer describing the knowledge in

one aspect, called knowledge layer. Its formal defini-

tion is given as follows.

Definition 1 A knowledge layer is a undirected graph

G = (V, E), where V is a finite set of vertices and E is a

finite set of edges. Each element in V corresponds to a

media object Oi ∈ O, where O is the collection of media
BR paradigms, drawbacks, and suggested remedies in CMIR

acks Suggested remedies in CMIR

r idea without
es

Cross-modality seed objects, only
as hints

ture semantics Multifaceted knowledge (user
behaviors, structure, content)

s like, but not
needs

Cross-modality, semantically related
objects

530C Cross-Modal Multimedia Information Retrieval
objects in the database. E is a ternary relation defined on

V � V � R, where R represents real numbers. Each edge

in E has the form of <Oi, Oj, r>, denoting a semantic

link between Oi and Oj with r as the weight of the link.

The graph corresponds to a |V| � |V| adjacency matrix

(The adjacency matrix defined here is slightly different

from the conventional definition in mathematics, in

which each component is a binary value indicating the

existence of the corresponding edge.) M = [mij], where
Cross-Modal Multimedia Information Retrieval. Figure 2. T

Cross-Modal Multimedia Information Retrieval.

Figure 1. Overview of the CMIR mechanism.
mij = mji always holds. Each element mij = r if there is an

edge <Oi, Oj, r>, and mij = 0 if there is no edge between

Oi and Oj. The elements on the diagonal are set to zero,

i.e., mii = 0.

Each semantic link between two media objects may

have various interpretations, which corresponds to one

of the three cases: (i) a user has implied the relevance

between the two objects during the interaction, e.g.,

designating them as the positive example in the same

query session; (ii) there is a structural relationships

between them, e.g., they come from the same or linked

web page(s); or (iii) they resemble each other in terms

of their content. The multifaceted knowledge base

seamlessly integrates all these links into the same

model while preserving their mutual independence.

Definition 2 The multifaceted knowledge base is a

layered graph model consisting of three superimposed

knowledge layers, which from top to bottom are user

layer, structure layer, and content layer. The vertices

of the three layers correspond to the same set of media

objects, but their edges are different either in occurrences

or in interpretations.

Figure 2 illustrates the layered graph model. Note

that the ordering of the three layers is immutable,

which reflects their priorities in terms of knowledge

reliability. The user layer is placed uppermost since

user judgment is assumedmost reliable (not necessarily

always reliable). Structure links is a strong indicator of

relevance, but not as reliable as user links. The lowest

layer is the content layer. As a generally accepted fact in
he Layered graph model as multifaceted knowledge base.

Cross-Modal Multimedia Information Retrieval C 531

C

CBR area, content similarity does not entail any well-

defined mapping with semantics.

A unique property of the layered graph model is

that it stores the knowledge on the links (or relation-

ships) among media objects, rather than on the

nodes (media objects) upon which most existing re-

trieval systems store the data index. All the algorithms

based of this model can be interpreted as manipulation

of links: to serve the user query, relevant knowledge is

extracted from this graph model by analyzing the

link structure; meanwhile, user behaviors are studied

to enrich the knowledge by updating the links. An

advantage of such link-based approach is that the re-

trieval can be performed in a relatively small locality

connected via links instead of the whole database, and

therefore it can afford more sophisticated retrieval

algorithms.

Link Analysis Based Retrieval

As illustrated in Fig. 3, the retrieval process can be

described as a circle: the intended objects are retrieved

through the upper semicircle, and the user evaluations

are studied and incorporated into the knowledge

base though the lower half-circle, which initiates a

new circle to refine the previously retrieved results

based on the updated knowledge. Consequently, it is

a hill-climbing approach in that the performance

is enhanced incrementally as the loop is repeated.

The retrieval process consists of five steps (as shown

in Fig. 3): (i) generate the seed objects as the hints of
Cross-Modal Multimedia Information Retrieval. Figure 3. O
the user’s intention; (ii) span the seeds to a collection

of candidate objects via the links in the layered graph

model; (iii) distill the results by ranking the candidates

based on link structure analysis, (iv) update the knowl-

edge base to incorporate the user evaluation of the

current results, and (v) refine the results based on

user evaluations.

Key Applications

Multimedia Information Retrieval System

For multimedia data, the modalities supported can be

texts (surrounding or tagged), images, videos and

audios. An ongoing prototype [11] utilizes the primitive

features and similarity functions for these media shown

in Table 2. The experimental results prove the useful-

ness of the approach for better query understanding.

Future Directions
Due to the generality and extensibility of the CMIR,

there are many potential directions that can be imple-

mented on it:

Navigation. The graph model provides abundant

links through which the user can traverse from an

object to its related objects. An intuitive scenario for

navigation is when the user is looking at a certain

object, he is recommended with the objects that are

linked to it in the graph model, ranked by their link

weights and link types, from which he may select one

as the next object he will navigate to.
verview of the link analysis based retrieval algorithm.

Cross-Modal Multimedia Information Retrieval. Table 2. Primitive features and similarity function used in prototype

Text Image Video

Primitive
features

Keywords,
weighted by
TF*IDF

256-d HSV color histogram, 64-d LAB
color coherence, 32-d Tamura
directionality

First frame of each shot as key-frame, indexing
key-frame as an image

Similarity
function

Cosine
distance

Euclidean distance for each feature,
linear combination of different
similarities

Key-frame (image) similarity as shot similarity,
average pair-wise shot similarity as video
similarity

532C Cross-Validation
Clustering. Clustering cross-modality objects into

semantically meaningful groups is also an important

and challenging issue, which requires an underlying

similarity function among objects, along with a method

that produces clusters based on the similarity function.

The layered graph model provides knowledgeable and

rich links, based on which different similarity func-

tions can be easily formulated. Meanwhile, many exist-

ing approaches can be employed as the clustering

method, such as simulated and deterministic annealing

algorithm [4]. Moreover, CMIR inherently allows the

clustering of cross-modality objects, rather than single-

modality objects that most previous classification

approaches can deal with.

Personalized retrieval. The user layer of the graph

model characterizes the knowledge obtained from the

behaviors of the whole population of users, and allows

a query from a single user to benefit from such com-

mon knowledge. However, each user may have his/her

personal interests, which may not agree with each

other. The ‘‘multi-leveled user profile’’ mechanism [6]

leads a good direction for future study.

Cross-references
▶Multimedia Data

▶Multimedia Information Retrieval

Recommended Reading
1. Benitez A.B., Smith J.R., and Chang S.F. MediaNet: a multimedia

information network for knowledge representation. In Proc.

SPIE Conf. on Internet Multimedia Management Systems, vol.

4210, 2000, pp. 1–12.

2. Chang S.F., Chen W., Meng H.J., Sundaram H., and Zhong D.

VideoQ: an automated content based video search system using

visual cues. In Proc. 5th ACM Int. Conf. on Multimedia, 1997.

3. Flickner M., Sawhney H., Niblack W., and Ashley J. Query by

image and video content: the QBIC system. IEEE Comput.,

28(9):23–32, 1995.

4. Hofmann T. and Buhmann J.M. Pairwise data clustering by

deterministic annealing. IEEE Trans. Pattern Anal. Mach. Intell.,

19(1):1–14, 1997.
5. Huang T.S., Mehrotra S., and Ramchandran K. Multimedia

analysis and retrieval system (MARS) project. In Proc. 33rd An-

nual Clinic on Library Application of Data Processing-Digital

Image Access and Retrieval, 1996.

6. Li Q., Yang J., and Zhuang Y.T. Web-based multimedia retrieval:

balancing out between common knowledge and personalized

views. In Proc. 2nd Int. Conf. on Web Information Systems

Eng., 2001.

7. Lu Y., Hu C.H., Zhu X.Q., Zhang H.J., and Yang Q. A unified

framework for semantics and feature based relevance feedback

in image retrieval systems. In Proc. 8th ACM Int. Conf. on

Multimedia, 2000, pp. 31–38.

8. Smith J.R. and Chang S.F. VisualSEEk: a fully automated

content-based image query system. In Proc. 4th ACM Int.

Conf. on Multimedia, 1996.

9. Smith J.R. and Chang S.F. Visually searching the web for content.

IEEE Multimed. Mag., 4(3):12–20, 1997.

10. Tansley R. The Multimedia Thesaurus: An Aid for Multimedia

Information Retrieval and Navigation. Master Thesis, Computer

Science, University of Southampton, UK, 1998.

11. Yang J., Li Q., and Zhuang Y. Octopus: Aggressive search of

multi-modality data using multifaceted knowledge base. In

Proc. 11th Int. World Wide Web Conference, 2002, pp. 54–64.

12. Yang J., Zhuang Y.T., and Li Q. Search for multi-modality data in

digital libraries. In Proc. Second IEEE Pacific-Rim Conference

on Multimedia, 2001.
Cross-Validation

PAYAM REFAEILZADEH, LEI TANG, HUAN LIU

Arizona State University, Tempe, AZ, USA

Synonyms
Rotation estimation

Definition
Cross-Validation is a statistical method of evaluating and

comparing learning algorithms by dividing data into two

segments: one used to learn or train amodel and the other

used to validate themodel. In typical cross-validation, the

training and validation sets must cross-over in successive

Cross-Validation C 533

C

rounds such that each data point has a chance of being

validated against. The basic form of cross-validation is

k-fold cross-validation. Other forms of cross-validation

are special cases of k-fold cross-validation or involve

repeated rounds of k-fold cross-validation.

In k-fold cross-validation, the data is first parti-

tioned into k equally (or nearly equally) sized segments

or folds. Subsequently k iterations of training and vali-

dation are performed such that within each iteration a

different fold of the data is held-out for validation

while the remaining k � 1 folds are used for learning.

Fig. 1 demonstrates an example with k = 3. The darker

section of the data are used for training while the

lighter sections are used for validation. In data mining

and machine learning 10-fold cross-validation (k = 10)

is the most common.

Cross-validation is used to evaluate or compare

learning algorithms as follows: in each iteration, one or

more learning algorithms use k� 1 folds of data to learn

one or more models, and subsequently the learned

models are asked to make predictions about the data

in the validation fold. The performance of each learning

algorithm on each fold can be tracked using some pre-

determined performance metric like accuracy. Upon

completion, k samples of the performance metric will

be available for each algorithm. Different methodolo-

gies such as averaging can be used to obtain an aggre-

gate measure from these sample, or these samples can

be used in a statistical hypothesis test to show that

one algorithm is superior to another.

Historical Background
In statistics or data mining, a typical task is to learn a

model from available data. Such a model may be a
Cross-Validation. Figure 1. Procedure of three-fold cross-va
regression model or a classifier. The problem with eval-

uating such amodel is that it may demonstrate adequate

prediction capability on the training data, but might

fail to predict future unseen data. cross-validation is a

procedure for estimating the generalization performance

in this context. The idea for cross-validation originated

in the 1930s [6]. In the paper one sample is used for

regression and a second for prediction. Mosteller and

Tukey [9], and various other people further developed

the idea. A clear statement of cross-validation, which is

similar to current version of k-fold cross-validation,

first appeared in [8]. In 1970s, both Stone [12] and

Geisser [4] employed cross-validation as means for

choosing proper model parameters, as opposed to

using cross-validation purely for estimating model per-

formance. Currently, cross-validation is widely accepted

in data mining and machine learning community, and

serves as a standard procedure for performance estima-

tion and model selection.

Foundations
There are two possible goals in cross-validation:

� To estimate performance of the learned model from

available data using one algorithm. In other words,

to gauge the generalizability of an algorithm.

� To compare the performance of two or more dif-

ferent algorithms and find out the best algorithm

for the available data, or alternatively to compare

the performance of two or more variants of a para-

meterized model.

The above two goals are highly related, since the sec-

ond goal is automatically achieved if one knows the

accurate estimates of performance. Given a sample
lidation.

534C Cross-Validation
of N data instances and a learning algorithm A, the

average cross-validated accuracy of A on these N

instances may be taken as an estimate for the accuracy

of A on unseen data when A is trained on all N

instances. Alternatively if the end goal is to compare

two learning algorithms, the performance samples

obtained through cross-validation can be used to per-

form two-sample statistical hypothesis tests, compar-

ing a pair of learning algorithms.

Concerning these two goals, various procedures are

proposed:

Resubstitution Validation

In resubstitution validation, the model is learned from

all the available data and then tested on the same set of

data. This validation process uses all the available data

but suffers seriously from over-fitting. That is, the

algorithm might perform well on the available data

yet poorly on future unseen test data.

Hold-Out Validation

To avoid over-fitting, an independent test set is pre-

ferred. A natural approach is to split the available data

into two non-overlapped parts: one for training and

the other for testing. The test data is held out and not

looked at during training. Hold-out validation avoids

the overlap between training data and test data, yield-

ing a more accurate estimate for the generalization

performance of the algorithm. The downside is that

this procedure does not use all the available data and

the results are highly dependent on the choice for the

training/test split. The instances chosen for inclusion

in the test set may be too easy or too difficult to classify

and this can skew the results. Furthermore, the data in

the test set may be valuable for training and if it is held-

out prediction performance may suffer, again leading

to skewed results. These problems can be partially

addressed by repeating hold-out validation multiple

times and averaging the results, but unless this repeti-

tion is performed in a systematic manner, some data

may be included in the test set multiple times while

others are not included at all, or conversely some data

may always fall in the test set and never get a chance to

contribute to the learning phase. To deal with these

challenges and utilize the available data to the max,

k-fold cross-validation is used.

K-Fold Cross-Validation

In k-fold cross-validation the data is first partitioned

into k equally (or nearly equally) sized segments or
folds. Subsequently k iterations of training and valida-

tion are performed such that within each iteration a

different fold of the data is held-out for validation

while the remaining k � 1 folds are used for learning.

Data is commonly stratified prior to being split into k

folds. Stratification is the process of rearranging the

data as to ensure each fold is a good representative of

the whole. For example in a binary classification prob-

lem where each class comprises 50% of the data, it is

best to arrange the data such that in every fold, each

class comprises around half the instances.

Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is a special

case of k-fold cross-validation where k equals the

number of instances in the data. In other words in

each iteration nearly all the data except for a single

observation are used for training and the model is

tested on that single observation. An accuracy estimate

obtained using LOOCV is known to be almost unbi-

ased but it has high variance, leading to unreliable

estimates [3]. It is still widely used when the available

data are very rare, especially in bioinformatics where

only dozens of data samples are available.

Repeated K-Fold Cross-Validation

To obtain reliable performance estimation or compar-

ison, large number of estimates are always preferred. In

k-fold cross-validation, only k estimates are obtained.

A commonly used method to increase the number of

estimates is to run k-fold cross-validation multiple

times. The data is reshuffled and re-stratified before

each round.

Pros and Cons

Kohavi [5] compared several approaches to estimate

accuracy: cross-validation(including regular cross-

validation, leave-one-out cross-validation, stratified

cross-validation) and bootstrap (sample with replace-

ment), and recommended stratified 10-fold cross-

validation as the best model selection method, as

it tends to provide less biased estimation of the

accuracy.

Salzberg [11] studies the issue of comparing two

or more learning algorithms based on a performance

metric, and proposes using k-fold cross-validation

followed by appropriate hypothesis test rather than

directly comparing the average accuracy. Paired t-test is

one test which takes into consideration the variance of

training and test data, and is widely used in machine

Cross-Validation. Table 1. Pros and Cons of different

validation methods

Validation
method Pros Cons

Resubstitution
Validation

Simple Over-fitting

Hold-out
Validation

Independent
training and
test

Reduced data for
training and testing;
Large variance

k-fold cross
validation

Accurate
performance
estimation

Small samples of
performance
estimation;
Overlapped training
data; Elevated Type I
error for comparison;
Underestimated
performance variance
or overestimated
degree of freedom for
comparison

Leave-One-Out
cross-validation

Unbiased
performance
estimation

Very large variance

Repeated
k-fold
cross-validation

Large number
of performance
estimates

Overlapped training
and test data
between each round;
Underestimated
performance variance
or overestimated
degree of freedom for
comparison

Cross-Validation C 535

C

learning. Dietterich [2] studied the properties of 10-fold

cross-validation followed by a paired t-test in detail

and found that such a test suffers from higher than

expected type I error. In this study, this high type I

error was attributed to high variance. To correct for

this Dietterich proposed a new test: 5 � 2-fold cross-

validation. In this test 2-fold cross-validation is run

five times resulting in 10 accuracy values. The data

is re-shuffled and re-stratified after each round. All 10

values are used for average accuracy estimation in the

t-test but only values from one of the five 2-fold cross-

validation rounds is used to estimate variance. In this

study 5 � 2-fold cross-validation is shown to have

acceptable type I error but not to be as powerful as

10-fold cross validation and has not been widely accep-

ted in data mining community.

Bouckaert [1] also studies the problem of inflated

type-I error with 10-fold cross-validation and argues

that since the samples are dependent (because the

training sets overlap), the actual degrees of freedom is

much lower than theoretically expected. This study

compared a large number of hypothesis schemes, and

recommend 10 � 10 fold cross-validation to obtain

100 samples, followed with t-test with degree of free-

dom equal to 10 (instead of 99). However this method

has not been widely adopted in data mining field either

and 10-fold cross-validation remains the most widely

used validation procedure.

A brief summery of the above results is presented

in Table 1.

Why 10-Fold Cross-Validation: From Ideal to Reality

Whether estimating the performance of a learning

algorithm or comparing two or more algorithms in

terms of their ability to learn, an ideal or statistically

sound experimental design must provide a sufficiently

large number of independent measurements of the

algorithm(s) performance.

To make independent measurements of an algo-

rithm’s performance one must ensure that the factors

affecting the measurement are independent from one

run to the next. These factors are: (i) the training

data the algorithm learns from and, (ii) the test data

one uses to measure the algorithm’s performance. If

some data is used for testing in more than one round,

the obtained results, for example the accuracy mea-

surements from these two rounds, will be dependent

and a statistical comparison may not be valid. In fact, it

has been shown that a paired t-test based on taking

several random train/test splits tends to have an
extremely high probability of Type I error and should

never be used [2].

Not only must the datasets be independently con-

trolled across different runs, there must not be any

overlap between the data used for learning and the

data used for validation in the same run. Typically,

a learning algorithm can make more accurate predic-

tions on a data that it has seen during the learning

phase than those it has not. For this reason, an overlap

between the training and validation set can lead to

an over-estimation of the performance metric and is

forbidden. To satisfy the other requirement, namely

a sufficiently large sample, most statisticians call for

30+ samples.

For a truly sound experimental design, one would

have to split the available data into 30 � 2 = 60

partitions to perform 30 truly independent train-test

runs. However, this is not practical because the perfor-

mance of learning algorithms and their ranking is

generally not invariant with respect to the number of

536C Cross-Validation
samples available for learning. In other words, an esti-

mate of accuracy in such a case would correspond to

the accuracy of the learning algorithm when it learns

from just 1∕60 of the available data (assuming training

and validation sets are of the same size). However, the

accuracy of the learning algorithm on unseen data

when the algorithm is trained on all the currently

available data is likely much higher since learning

algorithms generally improve in accuracy as more

data becomes available for learning. Similarly, when

comparing two algorithms A and B, even if A is dis-

covered to be the superior algorithm when using 1∕60
of the available data, there is no guarantee that it

will also be the superior algorithm when using all the

available data for learning. Many high performing

learning algorithms use complex models with many

parameters and they simply will not perform well with

a very small amount of data. But theymay be exceptional

when sufficient data is available to learn from.

Recall that two factors affect the performance mea-

sure: the training set, and the test set. The training set

affects themeasurement indirectly through the learning

algorithm, whereas the composition of the test set has a

direct impact on the performance measure. A reason-

able experimental compromise may be to allow for

overlapping training sets, while keeping the test sets

independent. K-fold cross-validation does just that.

Now the issue becomes selecting an appropriate

value for k. A large k is seemingly desirable, since

with a larger k (i) there are more performance esti-

mates, and (ii) the training set size is closer to the full

data size, thus increasing the possibility that any con-

clusion made about the learning algorithm(s) under

test will generalize to the case where all the data is used

to train the learning model. As k increases, however,

the overlap between training sets also increases. For

example, with 5-fold cross-validation, each training

set shares only 3∕4 of its instances with each of the

other four training sets whereas with 10-fold cross-

validation, each training set shares 8 ∕ 9 of its instances

with each of the other nine training sets. Furthermore,

increasing k shrinks the size of the test set, leading

to less precise, less fine-grained measurements of the

performance metric. For example, with a test set size of

10 instances, one can only measure accuracy to the

nearest 10%, whereas with 20 instances the accuracy

can be measured to the nearest 5%. These competing

factors have all been considered and the general con-

sensus in the data mining community seems to be
that k = 10 is a good compromise. This value of k is

particularity attractive because it makes predictions

using 90% of the data, making it more likely to be

generalizable to the full data.

Key Applications
Cross-validation can be applied in three contexts:

performance estimation, model selection, and tuning

learning model parameters.

Performance Estimation

As previously mentioned, cross-validation can be used

to estimate the performance of a learning algorithm.

One may be interested in obtaining an estimate for any

of the many performance indicators such as accuracy,

precision, recall, or F-score. Cross-validation allows for

all the data to be used in obtaining an estimate. Most

commonly one wishes to estimate the accuracy of a

classifier in a supervised-learning environment. In

such a setting, a certain amount of labeled data is

available and one wishes to predict how well a certain

classifier would perform if the available data is used to

train the classifier and subsequently ask it to label

unseen data. Using 10-fold cross-validation one re-

peatedly uses 90% of the data to build a model and

test its accuracy on the remaining 10%. The resulting

average accuracy is likely somewhat of an underesti-

mate for the true accuracy when the model is trained

on all data and tested on unseen data, but in most cases

this estimate is reliable, particularly if the amount of

labeled data is sufficiently large and if the unseen data

follows the same distribution as the labeled examples.

Model Selection

Alternatively cross-validation may be used to compare

a pair of learning algorithms. This may be done in the

case of newly developed learning algorithms, in which

case the designer may wish to compare the perfor-

mance of the classifier with some existing baseline

classifier on some benchmark dataset, or it may be

done in a generalized model-selection setting. In

generalized model selection one has a large library of

learning algorithms or classifiers to choose from and

wish to select the model that will perform best for a

particular dataset. In either case the basic unit of work

is pair-wise comparison of learning algorithms. For

generalized model selection combining the results of

many pair-wise comparisons to obtain a single best

algorithm may be difficult, but this is beyond the

Cross-Validation C 537

C

scope of this article. Researchers have shown that when

comparing a pair of algorithms using cross-

validation it is best to employ proper two sample

hypothesis testing instead of directly comparing the

average accuracies. Cross-validation yields k pairs of

accuracy values for the two algorithms under test. It is

possible to make a null hypothesis assumption that

the two algorithms perform equally well and set out

to gather evidence against this null-hypothesis using

a two-sample test. The most widely used test is the

paired t-test. Alternatively the non-parametric sign

test can be used.

A special case of model selection comes into play

when dealing with non-classification model selection.

For example when trying to pick a feature selection [7]

algorithm that will maximize a classifier’s performance

on a particular dataset. Refaeilzadeh et al. [10] explore

this issue in detail and explain that there are in fact two

variants of cross-validation in this case: performing

feature selection before splitting data into folds

(OUT) or performing feature selection k times inside

the cross-validation loop (IN). The paper explains that

there is potential for bias in both cases: With OUT, the

feature selection algorithm has looked at the test set, so

the accuracy estimate is likely inflated; On the other

hand with IN the feature selection algorithm is looking

at less data than would be available in a real experi-

mental setting, leading to underestimated accuracy.

Experimental results confirm these hypothesis and

further show that:

� In cases where the two feature selection algorithms

are not statistically differentiable, IN tends to be

more truthful.

� In cases where one algorithm is better than another,

IN often favors one algorithm and OUT the other.

OUT can in fact be the better choice even if it demon-

strates a larger bias than IN in estimating accuracy. In

other words, estimation bias is not necessarily an indi-

cation of poor pair-wise comparison. These subtleties

about the potential for bias and validity of conclusions

obtained through cross-validation should always be

kept in mind, particularly when the model selection

task is a complicated one involving pre-processing as

well as learning steps.

Tuning

Many classifiers are parameterized and their para-

meters can be tuned to achieve the best result with a
particular dataset. In most cases it is easy to learn the

proper value for a parameter from the available data.

Suppose a Naı̈ve Bayes classifier is being trained on a

dataset with two classes: {+, –}. One of the parameters

for this classifier is the prior probability p(+). The best

value for this parameter according to the available data

can be obtained by simply counting the number of

instances that are labeled positive and dividing this

number by the total number of instances. However

in some cases parameters do not have such intrinsic

meaning, and there is no good way to pick a best value

other than trying out many values and picking the one

that yields the highest performance. For example, sup-

port vector machines (SVM) use soft-margins to deal

with noisy data. There is no easy way of learning the best

value for the soft margin parameter for a particular

dataset other than trying it out and seeing how it

works. In such cases, cross-validation can be performed

on the training data as to measure the performance with

each value being tested. Alternatively a portion of the

training set can be reserved for this purpose and not used

in the rest of the learning process. But if the amount of

labeled data is limited, this can significantly degrade the

performance of the learned model and cross-validation

may be the best option.
Cross-references
▶Classification

▶ Evaluation Metrics for Structured Text Retrieval

▶ Feature Selection for Clustering
Recommended Reading
1. Bouckaert R.R. Choosing between two learning algorithms

based on calibrated tests. In Proc. 20th Int. Conf. on Machine

Learning, 2003, pp. 51–58.

2. Dietterich T.G. Approximate statistical tests for comparing

supervised classification learning algorithms. Neural Comput.,

10(7):1895–1923, 1998.

3. Efron B. Estimating the error rate of a prediction rule:

improvement on cross-validation. J. Am. Stat. Assoc., 78:

316–331,1983.

4. Geisser S. The predictive sample reuse method with applications.

J. Am. Stat. Assoc., 70(350):320–328,1975.

5. Kohavi R. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Proc. 14th Int. Joint Conf. on

AI, 1995, pp. 1137–1145.

6. Larson S. The shrinkage of the coefficient of multiple correla-

tion. J. Educat. Psychol., 22:45–55, 1931.

7. Liu H. and Yu L. Toward integrating feature selection algo-

rithms for classification and clustering. IEEE Trans. Knowl.

Data Eng., 17(4):491–502, 2005.

538C Cryptographic Hash Functions
8. Mosteller F. and Tukey J.W. Data analysis, including statistics. In

Handbook of Social Psychology. Addison-Wesley, Reading, MA,

1968.

9. Mosteller F. and Wallace D.L. Inference in an authorship

problem. J. Am. Stat. Assoc., 58:275–309, 1963.

10. Refaeilzadeh P., Tang L., and Liu H. On comparison of

feature selection algorithms. In Proc. AAAI-07 Workshop on

Evaluation Methods in Machine Learing II. 2007, pp. 34–39.

11. Salzberg S. On comparing classifiers: pitfalls to avoid and a recom-

mended approach. Data Min. Knowl. Disc., 1(3):317–328, 1997.

12. Stone M. Cross-validatory choice and assessment of statistical

predictions. J. Royal Stat. Soc., 36(2):111–147, 1974.
Cryptographic Hash Functions

▶Hash Functions
C-Tables

▶Conditional Tables
Cube

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Synonyms
Hypercube

Definition
A cube is a data structure for storing and and analyzing

large amounts of multidimensional data, often referred

to as On-Line Analytical Processing (OLAP). Data in a

cube lives in a space spanned by a number of hierar-

chical dimensions. A single point in this space is called a

cell. A (non-empty) cell contains the values of one or

more measures.

Key Points
As an example, a three-dimensional cube for capturing

salesmay have a Product dimension P, a Time dimension

T, and a Store dimension S, capturing the product sold,

the time of sale, and the store it was sold in, for each

sale, respectively. The cube has two measures: Dollar

Sales and ItemSales, capturing the sales price and the

number of items sold, respectively. In a cube, the
combinations of a dimension value from each dimen-

sion define a cell of the cube. The measure value(s),

e.g., DollarSales and ItemSales, corresponding to the

particular combination of dimension values are then

stored stored in the corresponding cells.

Data cubes provide true multidimensionality. They

generalize spreadsheets to any number of dimensions,

indeed cubes are popularly referred to as ‘‘spreadsheets

on stereoids.’’ In addition, hierarchies in dimensions

and formulas are first-class, built-in concepts, meaning

that these are supported without duplicating their

definitions. A collection of related cubes is commonly

referred to as a multidimensional database or a multi-

dimensional data warehouse.

In a cube, dimensions are first-class concepts with

associated domains, meaning that the addition of new

dimension values is easily handled. Although the term

‘‘cube’’ implies three dimensions, a cube can have any

number of dimensions. It turns out thatmost real-world

cubes have 4–12 dimensions [3]. Although there is no

theoretical limit to the number of dimensions, current

tools often experience performance problems when

the number of dimensions is more than 10–15. To

better suggest the high number of dimensions, the

term ‘‘hypercube’’ is often used instead of ‘‘cube.’’

Depending on the specific application, a highly vary-

ing percentage of the cells in a cube are non-empty,

meaning that cubes range from sparse to dense. Cubes

tend to become increasingly sparse with increasing

dimensionality and with increasingly finer granularities

of the dimensionvalues. A non-empty cell is called a fact.

The example has a fact for each combination of time,

product, and store where at least one sale was made.

Generally, only two or three dimensions may be

viewed at the same time, although for low-cardinality

dimensions, up to four dimensions can be shown by

nesting one dimension within another on the axes.

Thus, the dimensionality of a cube is reduced at

query time by projecting it down to two or three

dimensions via aggregation of the measure values

across the projected-out dimensions. For example, to

view sales by Store and Time, data is aggregates over

the entire Product dimension, i.e., for all products, for

each combination of Store and Time.

OLAP SQL extensions for cubes were pioneered by

the proposal of the data cube operators CUBE and

ROLLUP [1]. The CUBE operator generalizes GROUP

BY, crosstabs, and subtotals using the special ‘‘ALL’’ value

that denotes that an aggregation has been performed

Cube Implementations C 539

C

over all values for one ormore attributes, thus generating

a subtotal, or a grand total.

Cross-references
▶Cube Implementations

▶Dimension

▶Hierarchy

▶Measure

▶Multidimensional Modeling

▶On-Line Analytical Processing

Recommended Reading
1. Gray J., Chaudhuri S., Bosworth A., Layman A., Venkatrao M.,

Reichart D., Pellow F., and Pirahesh H. Data cube: a relational

aggregation operator generalizing group-by, cross-tab and

sub-totals. Data Mining Knowl. Discov., 1(1):29–54, 1997.

2. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation

for capturing and querying complex multidimensional data.

Inf. Syst., 26(5):383–423, 2001.

3. Thomsen E. OLAP Solutions: Building Multidimensional

Information Systems. Wiley, New York, 1997.
Cube Implementations

KONSTANTINOS MORFONIOS, YANNIS IOANNIDIS

University of Athens, Athens, Greece

Synonyms
Cube materialization; Cube precomputation

Definition
Cube implementation involves the procedures of com-

putation, storage, and manipulation of a data cube,

which is a disk structure that stores the results of the

aggregate queries that group the tuples of a fact table on

all possible combinations of its dimension attributes.

For example in Fig. 1a, assuming that R is a fact table

that consists of three dimensions (A, B, C) and one

measure M (see definitional entry for Measure), the

corresponding cube of R appears in Fig. 1b. Each cube

node (i.e., view that belongs to the data cube) stores

the results of a particular aggregate query as shown in

Fig. 1b. Clearly, if D denotes the number of dimensions

of a fact table, the number of all possible aggregate

queries is 2D; hence, in the worst case, the size of the

data cube is exponentially larger with respect to D than

the size of the original fact table. In typical applica-

tions, this may be in the order of gigabytes or even

terabytes, implying that the development of efficient
algorithms for the implementation of cubes is ex-

tremely important.

Let grouping attributes be the attributes of the fact

table that participate in the group-by clause of an

aggregate query expressed in SQL. A common repre-

sentation of the data cube that captures the computa-

tional dependencies among all the aggregate queries

that are necessary for its materialization is the cube

lattice [6]. This is a directed acyclic graph (DAG) where

each node represents an aggregate query q on the fact

table and is connected via a directed edge with every

other node whose corresponding group-by part is

missing one of the grouping attributes of q. For exam-

ple, Fig. 2 shows the cube lattice that corresponds to

the fact table R (Fig. 1a).

Note that precomputing and materializing parts of

the cube is crucial for the improvement of query-

response times as well as for accelerating operators

that are common in On-Line Analytical Processing

(OLAP), such as drill-down, roll-up, pivot, and slice-

and-dice, which make an extensive use of aggregation

[3]. Materialization of the entire cube seems ideal for

efficiently accessing aggregated data; nevertheless, in

real-world applications, which typically involve large

volumes of data, it may be considerably expensive in

terms of storage space, as well as computation and

maintenance time. In the existing literature, several

efficient methods have been proposed that attempt to

balance the aforementioned tradeoff between query-re-

sponse times and other resource requirements. Their

brief presentation is the main topic of this entry.

Historical Background
Most data analysis efforts, whether manual by analysts

or automatic by specialized algorithms, manipulate the

contents of database systems in order to discover

trends and correlations. They typically involve com-

plex queries that make an extensive use of aggregation

in order to group together tuples that ‘‘behave in a

similar fashion.’’ The response time of such queries

over extremely large data warehouses can be prohibi-

tive. This problem inspired Gray et al. [3] to introduce

the data-cube operator and propose its off-line com-

putation and storage for efficiency at query time. The

corresponding seminal publication has been the seed

for a plethora of papers thereafter, which have dealt

with several different aspects of the lifecycle of a data

cube, from cube construction and storage to indexing,

query answering, and incremental maintenance.

Cube Implementations. Figure 2. Example of a cube

lattice.

Cube Implementations. Figure 1. Fact table R and the corresponding data cube.

540C Cube Implementations
Taking into account the format used for the

computation and storage of a data cube, the

cube-implementation algorithms that have appeared

in the literature can be partitioned into four main

categories: Relational-OLAP (ROLAP) algorithms

exploit traditional materialized views in RDBMSes;

Multidimensional-OLAP (MOLAP) algorithms take

advantage of multidimensional arrays; Graph-Based

methods use specialized graph structures; finally,
approximation algorithms use various in-memory

representations, e.g., histograms.

The literature also deals with the rest of the cubes

lifecycle [12]. Providing fast answers to OLAP aggre-

gate queries is the main purpose of implementing data

cubes to begin with, and various algorithms have been

proposed to handle different types of queries on the

formats above. Moreover, as data stored in the original

fact table changes, data cubes must follow suit; other-

wise, analysis of obsolete data may result into invalid

conclusions. Periodical reconstruction of the entire

cube is impractical, hence, incremental-maintenance

techniques have been proposed.

The ideal implementation of a data cube must

address efficiently all aspects of cube functionality in

order to be viable. In the following section, each one of

these aspects is further examined separately.

Foundations
In the following subsections, the main stages of

the cube lifecycle are analyzed in some detail, including

subcube selection, computation, query processing,

and incremental maintenance. Note that the referen-

ces given in this section are only indicative, since

the number of related publications is actually very

Cube Implementations C 541

C

large. A more comprehensive survey may be found

elsewhere [11].

Subcube Selection

In real-world applications, materialization of the entire

cube is often extremely expensive in terms of compu-

tation, storage, and maintenance requirements, mainly

because of the typically large fact-table size and the

exponential number of cube nodes with respect to the

number of dimensions. To overcome this drawback,

several existing algorithms select an appropriate sub-

set of the data cube for precomputation and storage

[4,5,6]. Such selection algorithms try to balance the

tradeoff between response times of queries (sometimes

of a particular, expectedworkload) and resource require-

ments for cube construction, storage, and maintenance.

It has been shown [6] that selection of the optimum

subset of a cube is an NP-complete problem. Hence, the

existing algorithms use heuristics in order to find near-

optimal solutions.

Common constraints used during the selection

process involve constraints on the time available for

cube construction and maintenance, and/or on the

space available for cube storage. As for the criteria

that are (approximately) optimized during selection,

they typically involve some form of the benefit gained

from the materialization of a particular cube subset.

A particularly beneficial criterion for the selection

problem that needs some more attention, since it has

been integrated in some of the most efficient cube-

implementation algorithms (including Dwarf [17] and

CURE [10], which will be briefly presented below) is the

so-called redundancy reduction. Several groups of

researchers have observed that a big part of the cube

data is usually redundant [7,8,10,12,17,20]. Formally, a

value stored in a cube is redundant if it is repeated

multiple times in the same attribute in the cube. For

example, in Fig. 1b, tuples h1, 20i of node A, h1, 2, 20i
of AB, and h1, 2, 20i of AC are redundant, since they can

be produced by properly projecting tuple h1, 2, 2, 20i of
node ABC. By appropriately avoiding the storage of

such redundant data, several existing cube-implementa-

tion algorithms achieve the construction of compressed

cubes that can still be considered as fully materialized.

Typically, the decrease in the final cube size is impres-

sive, a fact that benefits the performance of computation

as well, since output costs are considerably reduced

and sometimes, because early identification of
redundancy allows pruning of parts of the computation.

Furthermore, during query answering, aggregation and

decompression are not necessary; instead, some simple

operations, e.g., projections, are enough.

Finally, for some applications (e.g., for mining

multidimensional association rules), accessing the

tuples of the entire cube is not necessary, because

they only need those group-by tuples with an aggregate

value (e.g. count) above some prespecified minimum

support threshold (minsup). For such cases, the

concept of iceberg cubes has been introduced [2].

Iceberg-cube construction algorithms [2,16] take

into consideration only sets of tuples that aggregate

together giving a value greater than minsup. Hence,

they perform some kind of subcube selection, by stor-

ing only the tuples that satisfy the aforementioned

condition.

Cube Computation

Cube computation includes scanning the data of the

fact table, aggregating on all grouping attributes, and

generating the contents of the data cube. The main

goal of this procedure is to place tuples that aggregate

together (i.e., tuples with identical grouping-attribute

values) in contiguous positions in main memory, in

order to compute the required aggregations with as few

data passes as possible. The most widely used algo-

rithms that accomplish such clustering of tuples are

sorting and hashing. Moreover, nodes connected in the

cube lattice (Fig. 2) exhibit strong computational

dependencies, whose exploitation is particularly bene-

ficial for the performance of the corresponding com-

putation algorithms. For instance, assuming that the

data in the fact table R (Fig. 1a) is sorted according to

the attribute combination ABC, one can infer that it is

also sorted according to both AB and A as well. Hence,

the overhead of sorting can be shared by the computa-

tion of multiple aggregations, since nodes ABC !AB

!A !Ø can be computed with the use of pipelining

without reclustering the data. Five methods that take

advantage of such node computational dependencies

have been presented in the existing literature [1] in

order to improve the performance of computation

algorithms: smallest-parent, cache-results, amortize-

scans, share-shorts, and share-partitions.

Expectedly, both sort-based and hash-based aggre-

gation methods perform more efficiently when the

data they process fits in main memory; otherwise,

542C Cube Implementations
they are forced to use external-memory algorithms,

which generally increase the I/O overhead by a factor

of two or three. In order to overcome such problems,

most computation methods initially apply a step that

partitions data into segments that fit in main memory,

called partitions [2,10,15]. Partitioning algorithms dis-

tribute the tuples of the fact table in accordance with

the principle that tuples that aggregate together must

be placed in the same partition. Consequently, they can

later process each partition independently of the

others, since by construction, tuples that belong to

different partitions do not share the same grouping-

attribute values.

In addition to the above, general characteristics of

cube-computation algorithms, there are some further

details that are specific to each of four main categories

mentioned above (i.e., ROLAP, MOLAP, Graph-Based,

and Approximate), which are touched upon below.

ROLAP algorithms store a data cube as a set of

materialized relational views, most commonly using

either a star or a snowflake schema. Among these algo-

rithms, algorithm CURE [10] seems to be the most

promising, since it is the only solutionwith the following

features: It is purely compatible with the ROLAP frame-

work, hence its integration into any existing relational

engine is rather straightforward. Also, it is suitable not

only for ‘‘flat’’ datasets but also for processing datasets

whose dimension values are hierarchically organized.

Furthermore, it introduces an efficient algorithm for

external partitioning that allows the construction of

cubes over extremely large volumes of data whose size

may far exceed the size ofmainmemory. Finally, it stores

cubes in a compressed form, removing all types of

redundancy from the final result.

MOLAP algorithms store a data cube as a multidi-

mensional array, thereby avoiding to store the dimen-

sion values in each array cell, since the position of the

cell itself determines these values. The main drawback

of this approach comes from the fact that, in practice,

cubes have a large number of empty cells (i.e., cubes are

sparse), rendering MOLAP algorithms inefficient with

respect to their storage-space requirements. To over-

come this problem, the so-called chunk-based algo-

rithms have been introduced [21], which avoid the

physical storage of most of the empty cells, storing

only chunks, which are nonempty subarrays. Array-

Cube [21] is the most widely accepted algorithm in

this category. It has also served as an inspiration to

algorithm MM-Cubing [16], which applies similar
techniques just to the dense areas of the cube, taking

into account the distribution of data in a way that

avoids chunking.

Graph-Based algorithms represent a data cube as

some specialized graph structure. They use such struc-

tures both in memory, for organizing data in a fashion

that accelerates computation of the corresponding

cube, and on disk, for compressing the final result

and reducing storage-space requirements. Among the

algorithms in this category, Dwarf [17] seems to be the

strongest overall, since it is the only one that guaran-

tees a polynomial time and space complexity with

respect to dimensionality [18]. It is based on a highly

compressed data structure that eliminates prefix and

suffix redundancies efficiently. Prefix redundancy

occurs when two or more tuples in the cube share the

same prefix, i.e., the same values in the left dimensions;

suffix redundancy, which is in some sense complemen-

tary to prefix redundancy, occurs when two or more

cube tuples share the same suffix, i.e., the same values

in the right dimensions and the aggregate measures.

An advantage of Dwarf, as well as of the other graph-

based methods, is that not only does its data structure

store a data cube compactly, but it also serves as an

index that can accelerate selective queries.

Approximate algorithms assume that data mining

and OLAP applications do not require fine grained or

absolutely precise results in order to capture trends

and correlations in the data; hence, they store an

approximate representation of the cube, trading accu-

racy for level of compression. Such algorithms exploit

various techniques, inspired mainly from statistics,

including histograms [14], wavelet transformations

[19], and others.

Finally, note that some of the most popular indus-

trial cube implementations include Microsoft SQL

Server Analysis Services (http://www.microsoft.com/

sql/technologies/analysis/default.mspx) and Hyperion

Essbase, which has been bought by ORACLE in 2007

(http://www.oracle.com/hyperion).

Query Processing

The most important motivation for cube materializa-

tion is to provide low response times for OLAP queries.

Clearly, construction of a highly-compressed cube is

useless if the cube format inhibits good query answering

performance. Therefore, efficiency during query proces-

sing should be taken into consideration as well when

selecting a specific cube-construction algorithm and its

http://www.microsoft.com/sql/technologies/analysis/default.mspx
http://www.microsoft.com/sql/technologies/analysis/default.mspx
http://www.oracle.com/hyperion

Cube Implementations C 543

C

corresponding storage format. Note that the latter deter-

mines to a great extent the access methods that can be

used for retrieving data stored in the corresponding

cube; hence, it strongly affects performance of query

processing algorithms over cube data.

Intuitively, it seems that brute-force storage of an

entire cube in an uncompressed format behaves best

during query processing: in this case, every possible

aggregation for every combination of dimensions is

precomputed and the only cost required is that of

retrieving the data stored in the lattice nodes partici-

pating in the query. On the other hand, query proces-

sing over compressed cubes seems to induce additional

overhead for on-line computation or restoration of

(possibly redundant) tuples that have not been materi-

alized in the cube.

Nevertheless, the literature has shown that the

above arguments are not always valid in practice.

This is mostly due to the fact that indexing an uncom-

pressed cube is nontrivial in real-world applications,

whereas applying custom indexing techniques for

some sophisticated, more compact representations

has been found efficient [2]. Furthermore, storing

data in specialized formats usually offers great oppor-

tunities for unique optimizations that allow a wide

variety of query types to run faster over compressed

cubes [2]. Finally, recall that several graph-based algo-

rithms, e.g., Dwarf [17], store the cube in a way that is

efficient with respect to both storage space and query

processing time.

Incremental Maintenance

Asmentioned earlier, in general, fact tables are dynamic

in nature and change over time, mostly as new records

are inserted in them. Aggregated data stored in a cube

must follow the modifications in the corresponding

fact table; otherwise, query answers over the cube will

be inaccurate.

According to the most common scenario used in

practice, data in a warehouse is periodically updated in

a batch fashion. Clearly, the window of time that is

required for the update process must be kept as narrow

as possible. Hence, reconstruction of the entire cube

from scratch is practically not a viable solution; techni-

ques for incremental maintenance must be used instead.

Given a fact table, its corresponding cube, and a set

of updates to the fact table that have occurred since

the last cube update, let delta cube be the cube formed

by the data corresponding to these updates. Most
incremental-maintenance algorithms proposed in the

literature for the cube follow a common strategy [20]:

they separate the update process into the propagation

phase, during which they construct the delta cube, and

the refresh phase, during which they merge the delta

cube and the original cube, in order to generate the

new cube. Most of them identify the refresh phase as

the most challenging one and use specialized techni-

ques to accelerate it, taking into account the storage

format of the underlying cube (some examples can be

found in the literature [12,17]). There is at least one

general algorithm, however, that tries to optimize the

propagation phase [9]. It selects particular nodes of the

delta cube for construction and properly uses them in

order to update all nodes of the original cube.
Key Applications
Efficient implementation of the data cube is essential

for OLAP applications in terms of performance, since

they usually make an extensive use of aggregate

queries.

Cross-references
▶Data Warehouse

▶Dimension

▶Hierarchy

▶Measure

▶OLAP

▶ Snowflake Schema

▶ Star Schema

Recommended Reading
1. Agarwal S., Agrawal R., Deshpande P., Gupta A., Naughton J.F.,

Ramakrishnan R., and Sarawagi S. On the computation of mul-

tidimensional aggregates. In Proc. 22th Int. Conf. on Very Large

Data Bases, 1996, pp. 506–521.

2. Beyer K.S. and Ramakrishnan R. Bottom-up computation of

sparse and iceberg CUBEs. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1999, pp. 359–370.

3. Gray J., Bosworth A., Layman A., and Pirahesh H. Data cube: a

relational aggregation operator generalizing group-by, cross-tab,

and sub-total. In Proc. 12th Int. Conf. on Data Engineering,

1996, pp. 152–159.

4. Gupta H. Selection of views to materialize in a data warehouse.

In Proc. 6th Int. Conf. on Database Theory, 1997, pp. 98–112.

5. Gupta H. and Mumick I.S. Selection of views to materialize

under a maintenance cost constraint. In Proc. 7th Int. Conf.

on Database Theory, 1999, pp. 453–470.

6. Harinarayan V., Rajaraman A., and Ullman J.D. Implement-

ing data cubes efficiently. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1996, pp. 205–216.

544C Cube Materialization
7. Kotsis N. and McGregor D.R. Elimination of redundant

views in multidimensional aggregates. In Proc. 2nd Int. Conf.

Data Warehousing and Knowledge Discovery, 2000,

pp. 146–161.

8. Lakshmanan L.V.S., Pei J., and Zhao Y. QC-Trees: an

efficient summary structure for semantic OLAP. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 64–75.

9. Lee K.Y. and Kim M.H. Efficient incremental maintenance of

data cubes. In Proc. 32nd Int. Conf. on Very Large Data Bases,

2006, pp. 823–833.

10. Morfonios K. and Ioannidis Y. CURE for cubes: cubing using a

ROLAP engine. In Proc. 32nd Int. Conf. on Very Large Data

Bases, 2006, pp. 379–390.

11. Morfonios K., Konakas S., Ioannidis Y., and Kotsis N. ROLAP

implementations of the data cube. ACM Comput. Surv., 39(4),

2007.

12. Morfonios K. and Ioannidis Y. Supporting the Data cube

Lifecycle: the Power of ROLAP. VLDB J., 17(4):729–764, 2008.

13. Mumick I.S., Quass D., and Mumick B.S. Maintenance of

data cubes and summary tables in a warehouse. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 100–111.

14. Poosala V. and Ganti V. Fast approximate answers to

aggregate queries on a data cube. In Proc. 11th Int. Conf.

on Scientific and Statistical Database Management, 1999,

pp. 24–33.

15. Ross K.A. and Srivastava D. Fast computation of sparse data-

cubes. In Proc. 23th Int. Conf. on Very Large Data Bases, 1997,

pp. 116–125.

16. Shao Z., Han J., and Xin D. MM-Cubing: computing iceberg

cubes by factorizing the lattice Space. In Proc. 16th Int. Conf.

on Scientific and Statistical Database Management, 2004,

pp. 213–222.

17. Sismanis Y., Deligiannakis A., Roussopoulos N., and Kotidis Y.

Dwarf: shrinking the PetaCube. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 464–475.

18. Sismanis Y. and Roussopoulos N. The complexity of fully mate-

rialized coalesced cubes. In Proc. 30th Int. Conf. on Very Large

Data Bases, 2004, pp. 540–551.

19. Vitter J.S. and Wang M. Approximate computation of multidi-

mensional aggregates of sparse data using wavelets. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 193–204.

20. Wang W., Feng J., Lu H., and Yu J.X. Condensed cube: an

efficient approach to reducing data cube size. In Proc. 18th Int.

Conf. on Data Engineering, 2002, pp. 155–165.

21. Zhao Y., Deshpande P., and Naughton J.F. An array-based algo-

rithm for simultaneous multidimensional aggregates. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 159–170.
Cube Materialization

▶Cube Implementations
Cube Precomputation

▶Cube Implementations
Curation

▶Biomedical Scientific Textual Data Types and

Processing
Current Date

▶Now in Temporal Databases
Current Semantics

MICHAEL H. BÖHLEN
1, CHRISTIAN S. JENSEN

2,

RICHARD T. SNODGRASS
3

1Free University of Bozen-Bolzano, Bolzano, Italy
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Synonyms
Temporal upward compatibility

Definition
Current semantics constrains the semantics of non-

temporal statements applied to temporal databases.

Specifically, current semantics requires that non-

temporal statements on a temporal database behave

as if applied to the non-temporal database that is the

result of taking the timeslice of the temporal database

as of the current time.

Key Points
Current semantics [3] requires that queries and views on

a temporal database consider the current information

only and work exactly as if applied to a non-temporal

database. For example, a query to determine who man-

ages the high-salaried employees should consider the

current database state only. Constraints and assertions

also work exactly as before: they are applied to the

current state and checked on database modification.

Database modifications are subject to the same con-

straint as queries: they should work exactly as if applied

Curse of Dimensionality C 545

C

to a non-temporal database. Database modifications,

however, also have to take into consideration that the

current time is constantly moving forward. Therefore,

the effects of modifications must persist into the future

(until overwritten by a subsequent modification).

The definition of current semantics assumes a

timeslice operator t[t](Dt) that takes the snapshot

of a temporal database Dt at time t. The timeslice

operator takes the snapshot of all temporal relations

in Dt and returns the set of resulting non-temporal

relations.

Let now be the current time [2] and let t be a

time point that does not exceed now. Let Dt be a

temporal database instance at time t. Let M1,...,Mn,

n � 0 be a sequence of non-temporal database

modifications.

Let Q be a non-temporal query. Current semantics

requires that for all Q, t, Dt, and M1,...,Mn the

following equivalence holds:

QðMnðMn�1ð:::ðM1ðDt Þ:::ÞÞÞÞ
¼ QðMnðMn�1ð:::ðM1ðt½now�ðDt ÞÞÞ:::ÞÞÞ

Note that for n = 0 there are no modifications, and the

equivalence becomes Q(Dt) = Q(t[now](Dt)), i.e., a

non-temporal query applied to a temporal database

must consider the current database state only.

An unfortunate ramification of the above equiva-

lence is that temporal query languages that introduce

new reserved keywords not used in the non-temporal

languages they extend will violate current semantics.

The reason is that the user may have previously used

such a keyword as an identifier (e.g., a table name) in the

database. To avoid being overly restrictive, it is reason-

able to consider current semantics satisfied even when

reserved words are added, as long as the semantics of all

statements that do not use the new reserved words is

retained by the temporal query language.

Temporal upward compatibility [1] is a synonym

that focuses on settings where the original temporal

database is the result of rendering a non-temporal

database temporal.
Cross-references
▶Nonsequenced Semantics

▶Now in Temporal Databases

▶ Sequenced Semantics

▶ Snapshot Equivalence

▶Temporal Database
▶Temporal Data Models

▶Temporal Query Languages

▶Timeslice Operator

Recommended Reading
1. Bair J., Böhlen M.H., Jensen C.S., and Snodgrass R.T. Notions of

upward compatibility of temporal query languages. Wirtschaft-

sinformatik, 39(1):25–34, February 1997.

2. Clifford J., Dyreson C., Isakowitz T., Jensen C.S., and

Snodgrass R.T. On the Semantics of ‘‘NOW’’ in Databases.

ACM Trans. Database Syst., 22:171–214, June 1997.

3. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, Los Altos, CA, 1999.
Current Time

▶Now in Temporal Databases
Current Timestamp

▶Now in Temporal Databases
Curse of Dimensionality

LEI CHEN

Hong Kong University of Science and Technology,

Hong Kong, China

Synonyms
Dimensionality curse

Definition
The curse of dimensionality, first introduced by Bellman

[1], indicates that the number of samples needed to

estimate an arbitrary function with a given level of

accuracy grows exponentially with respect to the num-

ber of input variables (i.e., dimensionality) of the

function.

For similarity search (e.g., nearest neighbor query

or range query), the curse of dimensionality means that

the number of objects in the data set that need to be

accessed grows exponentially with the underlying

dimensionality.

546C Cursor
Key Points
The curse of dimensionality is an obstacle for solving

dynamic optimization problems by backwards induc-

tion. Moreover, it renders machine learning problems

complicated, when it is necessary to learn a state-of-

nature from finite number data samples in a high

dimensional feature space. Finally, the curse of dimen-

sionality seriously affects the query performance

for similarity search over multidimensional indexes

because, in high dimensions, the distances from a

query to its nearest and to its farthest neighbor are

similar. This indicates that data objects tend to be close

to the boundaries of the data space with the increasing

dimensionality. Thus, in order to retrieve even a few

answers to a nearest neighbor query, a large part of the

data space should be searched, making the multi-

dimensional indexes less efficient than a sequential

scan of the data set, typically with dimensionality

greater than 12 [2]. In order to break the curse of

dimensionality, data objects are usually reduced to vec-

tors in a lower dimensional space via some dimension-

ality reduction technique before they are indexed.

Cross-references
▶Dimensionality Reduction

Recommended Reading
1. Bellman R.E. Adaptive Control Processes. Princeton University

Press, Princeton, NJ, 1961.
2. Beyer K.S., Goldstein J., Ramakrishnan R., Shaft U. When is

‘‘Nearest Neighbor’’ Meaningful? In Proc. 7th Int. Conf. on

Database Theory, 1999, pp. 217–235.
Cursor

▶ Iterator
CW Complex

▶ Simplicial Complex
CWM

▶Common Warehouse Metamodel
Cyclic Redundancy Check (CRC)

▶Checksum and Cyclic Redundancy Check (CRC)

Mechanism

	C
	Cache Manager
	Cache Performance
	Cache-Aware Query Processing
	Cache-Conscious Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Spatial Locality
	Temporal Locality
	Prefetching
	Sampling

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Cache-Sensitive Query Processing
	Calculus Expression
	Calendar
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Calendric System
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Camera Break Detection
	Capsule
	Cardinal Direction Relationships
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Cartesian Product
	Synonyms
	Definition
	Key Points
	Cross-references

	Cartography
	CAS
	CAS Query
	Case Handling
	Case Management
	Case Report Forms
	Cataloging
	Cataloging in Digital Libraries
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification
	Cataloging

	Key Applications
	Dublin Core
	XML
	METS and MODS

	Cross-references
	Recommended Reading

	CDA
	CDA R1
	CDA R2
	CDP
	CDs
	CDS
	Cell Complex
	Certain (and Possible) Answers
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chandra and Harel Complete Query Languages
	Change Detection and Explanation on Streams
	Change Detection on Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Regions of Interest
	Estimating Probabilities
	Statistical Testing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Channel-Based Publish/Subscribe
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chart
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chase
	Definition
	Comments

	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Checkpoint
	Checksum and Cyclic Redundancy Check Mechanism
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Choreography
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chronicle Recognition
	Chronon
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	CIFS
	Cipher
	Citation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	CLARA (Clustering LARge Applications)
	CLARANS (Clustering Large Applications Based Upon Randomized Search)
	Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Rules Based on a Single Attribute
	Statistical Modeling (see entry Bayesian Classification)
	Divide and Conquer Technique (see entry Decision Tree Classification)
	Covering Algorithms (see entry Rule-Based Classification)
	Instance-Based Learning (see entry Nearest Neighbor Classification)
	Linear Models (see entry Linear Regression)
	Linear Classification (see entry Neural Networks, Support Vector Machine)
	Missing Values
	Meta-Learning
	Evaluation

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Classification by Association Rule Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification Using Class Association Rules
	Mining Class Association Rules for Classification
	Classifier Building

	Class Association Rules as Features
	Classification Using Normal Association Rules

	Key Applications
	Cross-references
	Recommended Reading

	Classification Learning
	Classification in Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Classification Tree
	Classification Trees
	Classifier Combination
	Client-Server DBMS
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Clinical Classifications
	Clinical Content Database
	Clinical Content Registry
	Clinical Content Repository
	Clinical Data Acquisition, Storage and Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Electronic Data Capture
	Infrastructure and Standards for Data Exchange
	Document Models and Management Systems
	Common Components of Information Systems
	Text-Oriented Information Systems

	Key Applications
	Electronic Data Collection Options
	Patient Registries
	Clinical Workflow Management
	Quality Management, Report Generation, and Analysis

	Future Directions
	Cross-references
	Recommended Reading

	Clinical Data and Information Models
	Definition
	Key Points
	Recommended Reading

	Clinical Data Management Systems
	Clinical Data Quality and Validation
	Definition
	Key Points
	Accuracy
	Completeness
	Reliability

	Cross-references
	Recommended Reading

	Clinical Decision Support
	Synonyms
	Definition
	Historical Background
	Foundations
	Issues of Knowledge Representation
	Storage of Clinical Knowledge in Database Systems
	Standards for Sharing Clinical Decision Support Content between Database Systems

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Clinical Document Architecture
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Clinical Event
	Definition
	Vernacular Definition
	Technical Definitions

	Key Points
	Cross-references
	Recommended Reading

	Clinical Genetics
	Clinical Genomics
	Clinical Judgment
	Clinical Knowledge Base
	Clinical Knowledge Directory
	Clinical Knowledge Management Repository
	Clinical Knowledge Repository
	Synonyms
	Definition
	Key Points
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Clinical Nomenclatures
	Clinical Observation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Clinical Ontologies
	Synonyms
	Definition
	Historical Background
	Foundations
	Properties of Clinical Ontologies

	Key Applications
	Prototypical Clinical Ontologies
	a. The Systematized Nomenclature of Medicine (SNOMED CT)
	b. International Statistical Classification of Diseases (ICD-9, ICD-10, ICD-CM)
	c. Medical Subject Headings (MeSH)
	d. International Classification of Primary Care (ICPC-2, ICPC-2-E)
	e. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV, DSM-V)
	f. Logical Observation Identifiers Names and Codes (LOINC)
	g. Current Procedural Terminology (CPT)

	Cross-references
	Recommended reading

	Clinical Order
	Synonyms
	Definition
	Key Points
	Cross-references

	Clinical Research Chart
	Clinical Result
	Clinical Terminologies
	Clinical Test
	Clock
	Closed Itemset Mining and Non- redundant Association Rule Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Mining Closed Frequent Itemsets
	Non-redundant Association Rules

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Url to Code
	Cross-references
	Recommended Reading

	Closest Pairs
	Closest-Pair Query
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Geographical Information Systems
	Data Analysis
	Decision Making

	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Cloud Computing
	Cluster and Distance Measure
	Synonyms
	Definition
	Clustering
	Distance Measure

	Key Points
	Cross-references
	Recommended Reading

	Cluster Database Replication
	Cluster Databases
	Cluster Replication
	Cluster Stability
	Cluster Validation
	Clustering
	Clustering for Post Hoc Information Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Clustering Index
	Clustering on Streams
	Definition
	Historical Background
	Foundations
	Preliminaries
	General Principles
	Incremental Clustering
	Representations
	Hierarchical Clustering
	On Relaxing the Number of Clusters

	Clustering Evolving Data
	Sliding Windows
	Hierarchies of Windows
	Decaying Data

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Clustering Overview and Applications
	Synonyms
	Definition
	Historical Background
	Foundations
	The Clustering Process
	Clustering Algorithms Taxonomy
	Partitional Algorithms

	Key Applications
	Cross-references
	Recommended Reading

	Clustering Validity
	Synonyms
	Definition
	Historical Background
	Foundations
	External Criteria
	Comparison of C with Partition P (Non-hierarchical Clustering)

	Internal Criteria
	Validating Hierarchy of Clustering Schemes
	Validating a Single Clustering Scheme

	Relative Criteria
	The Modified Hubert Gamma Statistic
	Dunn Family of Indices
	RMSSDT, SPR, RS, CD

	Key Applications
	Cross-references
	Recommended Reading

	Clustering with Constraints
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	CM Sketch
	CMA
	CO Query, Content-Only Query
	CO+S Query
	Co-clustering
	CODASYL Data Model
	Collaborative Software
	Co-locations
	Colored Nets
	Column Segmentation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Committee-based Learning
	Common Object Request Broker Architecture
	Common Subexpression Elimination
	Common Warehouse Metadata Interchange (CWMI)
	Common Warehouse Metamodel
	Synonyms
	Definition
	Historical Background
	Foundations
	Object Model
	Foundation
	Resource
	Analysis
	Management

	Key Applications
	Cross-references
	Recommended Reading

	Communication Boundary of a DBMS
	Compact Suffix Tries
	Comparative Analysis
	Comparative Visualization
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Compensating Transactions
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Computationally Complete Relational Query Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Complex Event
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Complex Event Processing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Complex Event Processing (CEP)
	Compliance
	Component Abstraction
	Composed Services and WS-BPEL
	Synonyms
	Definition
	Historical Background
	Foundations
	Services and Components
	Service Composition Models
	Workflow Oriented Composition in WS-BPEL
	Service Interaction in Processes
	Specification of Business Logic in Process Compositions

	Key Applications
	Cross-references
	Recommended Reading

	Composite Event
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Composite Event Query
	Composite Web Applications
	Composition
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Comprehensions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Compressed and Searchable Data Format
	Compressed Full-Text Indexing
	Compressed Suffix Array
	Compressed Suffix Tree
	Compressing XML
	Compression of Mobile Location Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Distance Function
	Spatio-Temporal Queries and Trajectory Compression

	Key Applications
	Wireless Sensor Networks (WSN)
	Location-Based Services (LBS)
	Geographic Information Systems (GIS)
	Spatio-Temporal Data Mining

	Future Directions
	Cross-references
	Recommended Reading

	Computational Media Aesthetics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Computational Ontology
	Computer Human Interaction (CHI)
	Computer-based Physician Order Entry
	Computer-based Provider Order Entry
	Computer-Interpretable Formalism
	Computerized Order Entry (COE)
	Computerized Physician Order Entry
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Computerized Provider Order Entry
	Concept Languages
	Conceptual Data Model
	Conceptual Image Data Model
	Conceptual Model
	Conceptual Modeling
	Conceptual Modeling for Geographic Information System
	Conceptual Modeling for Spatio-Temporal Applications
	Conceptual Schema Design
	Definition
	Historical Background
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Conceptual Schemas
	Concurrency Control
	Concurrency Control - Traditional Approaches
	Synonyms
	Definition
	Key Points
	Classification of Approaches

	Cross-references
	Recommended Reading

	Concurrency Control and Recovery
	Concurrency Control Manager
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Condition Event Nets
	Conditional Branching
	Conditional Routing
	Conditional Tables
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Confidentiality Protection
	Conflict Serializability
	Conjunctive Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Connection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Connectionist Model
	Consistency in Peer-to-Peer Systems
	Consistency Models For Replicated Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Consistency Preservation
	Consistent Facts
	Consistent Query Answering
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Constant Span
	Constrained Frequent Itemset Mining
	Constraint Databases
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Constraint Query Languages
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Constraint-Driven Database Repair
	Synonyms
	Definition
	Historical Background
	Foundations
	Integrity Constraints for Characterizing Data Consistency
	Repair Models
	Methods for Finding Database Repairs

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Content Delivery Networks
	Content-and-Structure Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Content-based Image Retrieval (CBIR)
	Content-Based Publish/Subscribe
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Content-based Retrieval
	Content-Based Video Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Unit of Retrieval
	Representing Video Content Visually on Screen
	Searching Archives of Digital Video
	Content-Based Retrieval using Text Sources

	Content-Based Retrieval using Visual Sources
	Content-Based Retrieval using Audio Sources
	Effective Retrieval

	Key Applications
	Future Directions
	Experimental Results
	Data Sets

	Cross-references
	Recommended Reading

	Content-Only Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Content-oriented XML Retrieval
	Context
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Context-aware Interfaces
	Contextual Advertising
	Contextualization
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Continuous Backup
	Continuous Data Feed
	Continuous Data Protection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Continuous Monitoring of Spatial Queries
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Location-Based Services
	Traffic Monitoring
	Security Systems

	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Continuous Multimedia Data Retrieval
	Definition
	Historical Background
	Foundations
	Retrieval of a Single Stream on a Single Disk
	Retrieval of a Single Stream on Multiple Disks
	Retrieval of Multiple Streams on a Single Disk
	Retrieval of Multiple Streams on Multiple Disks

	Key Applications
	Cross-references
	Recommended Reading

	Continuous Queries in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Sensor Data Model
	Continuous Query Models
	Common Types of Continuous Queries in Sensor Networks Select-All Queries
	Aggregate Queries
	Join Queries

	Key Applications
	Habitat Monitoring
	The Intelligent Building
	Industrial Process Control

	Cross-references
	Recommended Reading

	Continuous Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Continuous Query Languages
	Continuous Query Processing Applications
	Continuous Query Scheduling
	ConTract
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ConTracts
	Contrast Pattern
	Contrast Pattern Based Classification
	Control Data
	Synonyms
	Definition
	Key Points
	Cross-references

	Control Flow Diagrams
	Controlled Vocabularies
	Controlling Overlap
	Convertible Constraints
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Cooperative Classification
	Cooperative Content Distribution
	Cooperative Storage Systems
	Coordination
	Definition
	Key Points
	Cross-references
	Recommended Reading

	||-Coords
	Copy Divergence
	Copy Transparency
	Copyright Issues in Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Copyright
	Standards for Obtaining Copyright
	Originality
	Fixation

	The Duration of Copyright
	Ownership and Transfer of Copyright
	The Copyright Owner's Rights
	Reproduction
	Public Distribution, Performance, Display or Communication
	Right of Adaptation, Modification or Right to Prepare Derivative Works

	Theories of Secondary Liability
	Contributory Infringement
	Vicarious Liability for Copyright Infringement

	Limitations and Exceptions
	Remedies and Penalties

	Key Applications
	Cross-references
	Recommended Reading

	CORBA
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Corpora
	Corpus
	Correctness Criteria Beyond Serializability
	Synonyms
	Definition
	Historical Background
	Foundations
	Multiversion Serializability
	Semantic Consistency
	Predicatewise Serializability
	Epsilon-Serializability
	 Eventual Consistency
	Quasi Serializability
	Two-Level Serializability

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Correctness Criterion for Concurrent Executions
	Correlated Data Collection
	Correlation
	Correlation Clustering
	Cost Estimation
	Definition
	Historical Background
	Foundations
	Cost Components
	Logical Costs/Data Volume

	Algorithmic Costs/Complexity
	Physical Costs/Execution Time
	Cost Factors
	Temporal Cost Factors
	Spatial Cost Factors
	Types of (Cost) Models
	Architecture and Evaluation of Database Cost Models

	Cross-references
	Recommended Reading

	Count-Min Sketch
	Synonyms
	Definition
	Historical Background
	Foundations
	Update Procedure
	Point Queries
	Range, Heavy Hitter and Quantile Queries
	Inner Product Queries
	Interpretation as Random Linear Projection
	Conservative Update

	Key Applications
	Future Directions
	Experimental Results
	URL To Code
	Cross-references
	Recommended Reading

	Coupling and De-coupling
	Definition
	Key Points
	Cross-references

	Coverage
	Covering Index
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Covert Communication
	CPU Cache
	Crabbing
	Crash Recovery
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Crawler
	Credulous Reasoning
	Cross Product
	Cross-language Cross-Language Mining and Retrieval C217 Informational Retrieval
	Cross-Language Mining and Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Cross-Language Web Mining
	Mining Parallel Data
	Mining OOV Term Translation

	Query Translation Disambiguation
	Disambiguation by Term Similarity
	Disambiguation by Term Co-occurrence
	Disambiguation by Language Modeling

	Pre-/Post-Translation Expansion
	Cross-Lingual Query Suggestion
	Latent Semantic Index (LSI) for CLIR

	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Cross-language Text Mining
	Cross-language Web Mining
	Cross-lingual Information Retrieval
	Cross-lingual Text Mining
	Cross-media Information Retrieval
	Cross-Modal Multimedia Information Retrieval
	Synonyms
	Definition
	Historical Background
	Retrieval Approaches on Single-Modality
	Retrieval Approaches on Multi-Modality Integration

	Foundations
	Layered Graph Model
	Definition 1
	Definition 2

	Link Analysis Based Retrieval

	Key Applications
	Multimedia Information Retrieval System

	Future Directions
	Cross-references
	Recommended Reading

	Cross-Validation
	Synonyms
	Definition
	Historical Background
	Foundations
	Resubstitution Validation
	Hold-Out Validation
	K-Fold Cross-Validation
	Leave-One-Out Cross-Validation
	Repeated K-Fold Cross-Validation
	Pros and Cons
	Why 10-Fold Cross-Validation: From Ideal to Reality

	Key Applications
	Performance Estimation
	Model Selection
	Tuning

	Cross-references
	Recommended Reading

	Cryptographic Hash Functions
	C-Tables
	Cube
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Cube Implementations
	Synonyms
	Definition
	Historical Background
	Foundations
	Subcube Selection
	Cube Computation
	Query Processing
	Incremental Maintenance

	Key Applications
	Cross-references
	Recommended Reading

	Cube Materialization
	Cube Precomputation
	Curation
	Current Date
	Current Semantics
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Current Time
	Current Timestamp
	Curse of Dimensionality
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Cursor
	CW Complex
	CWM
	Cyclic Redundancy Check (CRC)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

