
M

MAC

▶Message Authentication Codes
Machine Learning in Bioinformatics

▶Machine Learning in Computational Biology
Machine Learning in Computational
Biology

CORNELIA CARAGEA, VASANT HONAVAR

Iowa State University, Ames, IA, USA

Synonyms
Data mining in computational biology; Data mining in

bioinformatics; Machine learning in bioinformatics;

Machine learning in systems biology; Data mining in

systems biology

Definition
Advances in high throughput sequencing and ‘‘omics’’

technologies and the resulting exponential growth in

the amount of macromolecular sequence, structure,

gene expression measurements, have unleashed a trans-

formation of biology from a data-poor science into an

increasingly data-rich science. Despite these advances,

biology today, much like physics was before Newton

and Leibnitz, has remained a largely descriptive science.

Machine learning [6] currently offers some of the

most cost-effective tools for building predictive models

from biological data, e.g., for annotating new genomic

sequences, for predicting macromolecular function, for

identifying functionally important sites in proteins, for

identifying genetic markers of diseases, and for discover-

ing the networks of genetic interactions that orchestrate

important biological processes [3]. Advances inmachine
2009 Springer ScienceþBusiness Media, LLC
learning e.g., improved methods for learning from high-

ly unbalanced datasets, for learning complex structures

of class labels (e.g., labels linked by directed acyclic

graphs as opposed to one of several mutually exclusive

labels) from richly structured data such as macromolec-

ular sequences, three-dimensional molecular structures,

and reliable methods for assessing the performance of

the resulting models, are critical to the transformation

of biology from a descriptive science into a predictive

science.

Historical Background
Large scale genome sequencing efforts have resulted

in the availability of hundreds of complete genome

sequences. More importantly, the GenBank repository

of nucleic acid sequences is doubling in size every

18 months [4]. Similarly, structural genomics efforts

have led to a corresponding increase in the number of

macromolecular (e.g., protein) structures [5]. At pres-

ent, there are over a thousand databases of interest to

biologists [16]. The emergence of high-throughput

‘‘omics’’ techniques, e.g., for measuring the expression

of thousands of genes under different perturbations, has

made possible system-wide measurements of biological

variables [8]. Consequently, discoveries in biological

sciences are increasingly enabled by machine learning.

Some representative applications of machine lea-

rning in computational and systems biology include:

identifying the protein-coding genes (including gene

boundaries, intron-exon structure) from genomic

DNA sequences; predicting the function(s) of a prot-

ein from its primary (amino acid) sequence (and

when available, structure and its interacting partners);

identifying functionally important sites (e.g., protein-

protein, protein-DNA, protein-RNA binding sites, post-

translational modification sites) from the protein’s

amino acid sequence and, when available, from the

protein’s structure; classifying protein sequences (and

structures) into structural classes; Identifying functional

modules (subsets of genes that function together) and

genetic networks from gene expression data.

1664M Machine Learning in Computational Biology
These applications collectively span the entire

spectrum of machine learning problems including

supervised learning, unsupervised learning (or cluster

analysis), and system identification. For example, pro-

tein function prediction can be formulated as a super-

vised learning problem: given a dataset of protein

sequences with experimentally determined function

labels, induce a classifier that correctly labels a novel

protein sequence. The problem of identifying func-

tional modules from gene expression data can be for-

mulated as an unsupervised learning problem: given

expression measurements of a set of genes under dif-

ferent conditions (e.g., perturbations, time points),

and a distance metric for measuring the similarity or

distance between expression profiles of a pair of genes,

identify clusters of genes that are co-expressed (and

hence are likely to be co-regulated). The problem of

constructing gene networks from gene expression data

can be formulated as a system identification problem:

given expression measurements of a set of genes under

different conditions (e.g., perturbations, time points),

and available background knowledge or assumptions,

construct a model (e.g., a boolean network, a bayesian

network) that explains the observed gene expression

measurements and predicts the effects of experimental

perturbations (e.g., gene knockouts).

Foundations
Challenges presented by computational and systems

biology applications have driven, and in turn benefited

from, advances in machine learning. Some of these

developments are described below.

Multi-Label Classification: In the traditional clas-

sification problem, an instance xi, i = 1,...,n, is asso-

ciated with a single class label yj from a finite, disjoint

set of class labels Y , j = 1,...,k, k = jYj (single-label
classification problem). If the set Y has only two ele-

ments, then the problem is referred to as the binary

classification problem. Otherwise, if Y has more than

two elements, then it is referred to as multi-class classi-

fication problem. However, in many biological applica-

tions, an instance xi is associated with a subset of, not

necessarily disjoint, class labels in Y (multi-label classi-

fication problem). For example, many genes and pro-

teins are multi-functional. Most of the existing

algorithms cannot simultaneously label a gene or pro-

tein with several, not necessarily mutually exclusive

functions. Each instance is then assigned to a subset

of nodes in the hierarchy, yielding a hierarchical
multi-label classification problem or a structured output

classification problem. The most common approach to

dealing with multi-label classification problem [7] is to

transform the problem into k binary classification pro-

blems, one for each different label yj 2 Y , j = 1,...,k.

The transformation consists of constructing k datasets,

Dj, each containing all instances of the original dataset,

such that an instance in Dj, j = 1,...,k, is labeled with 1

if it has label yj in the original dataset, and 0 otherwise.

During classification, for a new unlabeled instance

xtest, each individual classifier Cj,j = 1,...,k, returns a

prediction that xtest belongs to the class label yj or not.

However, the transformed datasets that result from this

approach are highly unbalanced, typically, with the

number of positively labeled instances being signifi-

cantly smaller than the number of negatively labeled

instances, requiring the use of methods that can cope

with unbalanced data. Alternative evaluation metrics

need to be developed for assessing the performance of

multi-label classifiers. This task is complicated by cor-

relations among the class labels.

Learning from Unbalanced Data: Many of the

macromolecular sequence classification problems pres-

ent the problem of learning from highly unbalanced

data. For example, only a small fraction of amino

acids in an RNA-binding protein binds to RNAs.

Classifiers that are trained to optimize accuracy gener-

ally perform rather poorly on the minority class.

Hence, if accurate classification of instances from the

minority class is important (or equivalently, the false

positives and false negatives have unequal costs or

risks associated with them), it is necessary to change

the distribution of positive and negative instances dur-

ing training by randomly selecting a subset of the

training data for the majority class, or alternatively,

assigning different weights to positive and negative

samples (and learn from the resulting weighted sam-

ples). More recently, ensemble classifiers [11] have been

shown to improve the performance of sequence classi-

fiers on unbalanced datasets. Unbalanced datasets also

complicate both the training and the assessment of the

predictive performance of classifiers. Accuracy is not a

useful performance measure in such scenarios. Indeed,

no single performance measure provides a complete

picture of the classifier’s performance. Hence, it is

much more useful to examine ROC (Receiver Opera-

ting Characteristic) or precision-recall curves [3].

Of particular interest are methods that can directly

optimize alternative performance measures that take

Machine Learning in Computational Biology M 1665

M

into account the unbalanced nature of the dataset and

user-specified tradeoff between false positive and false

negative rates.

Data Representation: Many computational and

systems biology applications of machine learning pres-

ent challenges in data representation. Consider for

example, the problem of identifying functionally im-

portant sites (e.g., RNA-binding residues) from amino

acid sequences. In this case, given an amino acid se-

quence, the classifier needs to assign a binary label

(1 for an RNA-binding residue and 0 for a non RNA-

binding residue) to each letter of the sequence. To solve

this problem using standard machine learning algo-

rithms that work with a fixed number of input features,

it is fairly common to use a sliding window approach

[12] to generate a collection of fixed length windows,

where each window corresponds to the target amino

acid and an equal number of its sequence neighbors on

each side. The classifier is trained to label the target

residue. Similarly, identifying binding sites from a

three-dimensional structure of the protein requires

transforming the problem into one that can be handled

by a traditional machine learning method. Such trans-

formations, while they allow the use of existing ma-

chine learning methods on macromolecular sequence

and structure labeling problems, complicate the task of

assessing the performance of the resulting classifier (see

below).

Performance Assessment: Standard approaches

to assessing the performance of classifiers rely on

k-fold cross-validation wherein a dataset is partitioned

into k disjoint subsets (folds). The performance mea-

sure of interest is estimated by averaging the measured

performance of the classifier on k runs of a cross-

validation experiment, each using a different choice

of the k � 1 subsets for training and the remaining

subset for testing the classifier. The fixed length

window representation described above complicates

this procedure on macromolecular sequence labeling

problems. The training and test sets obtained by

random partitioning of the dataset of labeled windows

can contain windows that originate from the same

sequence, thereby violating a critical requirement for

cross-validation, namely, that the training and test data

be disjoint. The resulting overlap between training and

test data can yield overly optimistic estimates of per-

formance of the classifier. A better alternative is to

perform sequence-based (as opposed to window-

based) cross-validation by partitioning the set of
sequences (instead of windows) into disjoint folds.

This procedure guarantees that training and test

sets are indeed disjoint [9]. Obtaining realistic esti-

mates of performance in sequence classification and

sequence labeling problems also requires the use of

non-redundant datasets [13].

Learning from Sparse Datasets: In gene expres-

sion datasets, the number of genes is typically in

the hundreds or thousands, whereas the number of

measurements (conditions, perturbations) is typically

fewer than ten. This presents significant challenges in

inferring genetic network models from gene expression

data because the number of variables (genes) far

exceeds the number of observations or data samples.

Approaches to dealing with this challenge require

reducing the effective number of variables via variable

selection [17] or abstraction i.e., by grouping variables

into clusters that behave similarly under the observed

conditions. Another approach to dealing with sparsity

of data in such settings is to incorporate information

from multiple datasets [18].

Key Applications
Protein Function Prediction: Proteins are the principal

catalytic agents, structural elements, signal transmitters,

transporters and molecular machines in cells. Under-

standing protein function is critical to understanding

diseases and ultimately in designing new drugs. Until

recently, the primary source of information about pro-

tein function has come from biochemical, structural, or

genetic experiments on individual proteins. However,

with the rapid increase in number of genome sequences,

and the corresponding growth in the number of protein

sequences, the numbers of experimentally determined

structures and functional annotations has significantly

lagged the number of protein sequences. With the avail-

ability of datasets of protein sequences with experi-

mentally determined functions, there is increasing use

of sequence or structural homology-based transfer of

annotation from already annotated sequences to new

protein sequences. However, the effectiveness of such

homology-based methods drops dramatically when

the sequence similarity between the target sequence

and the reference sequence falls below 30%. In many

instances, the function of a protein is determined by

conserved local sequence motifs. However, approaches

that assign function to a protein based on the presence

of a single motif (the so-called characteristic motif)

fail to take advantage of multiple sequence motifs that

1666M Machine Learning in Computational Biology
are correlated with critical structural features (e.g., bind-

ing pockets) that play a critical role in protein function.

Against this background, machine learning methods

offer an attractive approach to training classifiers to

assign putative functions to protein sequences. Machine

learning methods have been applied, with varying

degrees of success, to the problem of protein function

prediction. Several studies have demonstrated that

machine learning methods, used in conjunction with

traditional sequence or structural homology based tech-

niques and sequence motif-based methods outperform

the latter in terms of accuracy of function prediction

(based on cross-validation experiments). However, the

efficacy of alternative approaches in genome-wide pre-

diction of functions of protein-coding sequences from

newly sequenced genomes remains to be established.

There is also significant room for improving current

methods for protein function prediction.

Identification of Potential Functional Annotation

Errors in Genes and Proteins: As noted above, to close

the sequence-function gap, there is an increasing reli-

ance on automated methods in large-scale genome-

wide annotation efforts. Such efforts often rely on

transfer of annotations from previously annotated pro-

teins, based on sequence or structural similarity. Con-

sequently, they are susceptible to several sources of

error including errors in the original annotations

from which new annotations are inferred, errors in

the algorithms, bugs in the software used to process

the data, and clerical errors on the part of human

curators. The effect of such errors can be magnified

because they can propagate from one set of annotated

sequences to another. Because of the increasing reli-

ance of biologists on reliable functional annotations

for formulation of hypotheses, design of experiments,

and interpretation of results, incorrect annotations

can lead to wasted effort and erroneous conclusions.

Hence, there is an urgent need for computational

methods for checking consistency of such annotations

against independent sources of evidence and detect-

ing potential annotation errors. A recent study has

demonstrated the usefulness of machine learning

methods to identify and correct potential annotation

errors [1].

Identification of Functionally Important Sites in

Proteins: Protein-protein, protein-DNA, and protein-

RNA interactions play a pivotal role in protein function.

Reliable identification of such interaction sites from

protein sequences has broad applications ranging from
rational drug design to the analysis of metabolic and

signal transduction networks. Experimental detection

of interaction sites must come from determination of

the structure of protein-protein, protein-DNA and pro-

tein-RNA complexes. However, experimental determi-

nation of such complexes lags far behind the number of

known protein sequences. Hence, there is a need for

development of reliable computational methods for

identifying functionally important sites from a protein

sequence (and when available, its structure, but not the

complex). This problem can be formulated as a sequence

(or structure) labeling problem. Several groups have

developed and applied, with varying degrees of success,

machine learning methods for identification of func-

tionally important sites in proteins (see [21,14,22] for

some examples). However, there is significant room for

improving such methods.

Discovery and Analysis of Gene and Protein Net-

works: Understanding how the parts of biological sys-

tems (e.g., genes, proteins, metabolites) work together

to form dynamic functional units, e.g., how genetic

interactions and environmental factors orchestrate de-

velopment, aging, and response to disease, is one of the

major foci of the rapidly emerging field of systems

biology [8]. Some of the key challenges include the

following: uncovering the biophysical basis and essen-

tial macromolecular sequence and structural features

of macromolecular interactions; comprehending how

temporal and spatial clusters of genes, proteins, and

signaling agents correspond to genetic, developmental

and regulatory networks [10]; discovering topological

and other characteristics of these networks [19]; and

explaining the emergence of systems-level properties of

networks from the interactions among their parts.

Machine learning methods have been developed and

applied, with varying degrees of success, in learning

predictive models including boolean networks [20]

and bayesian networks [15] from gene expression

data. However, there is significant room for improving

the accuracy and robustness of such algorithms by

taking advantage of multiple types of data and by

using active learning.

Future Directions
Although many machine learning algorithms have had

significant success in computational biology, several

challenges remain. These include the development of:

efficient algorithms for learning predictive models

from distributed data; cumulative learning algorithms

Macro M 1667
that can efficiently update a learned model to accom-

modate changes in the underlying data used to train

the model; effective methods for learning from sparse,

noisy, high-dimensional data; and effective approac-

hes to make use of the large amounts of unlabeled

or partially labeled data; algorithms for learning pre-

dictive models from disparate types of data: macromo-

lecular sequence, structure, expression, interaction,

and dynamics; and algorithms that leverage optimal

experiment design with active learning in settings

where data is expensive to obtain.
Cross-references
▶Biological Networks

▶Biostatistics and Data Analysis

▶Classification

▶Clustering

▶Data Mining

▶Graph Database Mining
M

Recommended Reading
1. Andorf C., Dobbs D., and Honavar V. Exploring inconsistencies

in genome-wide protein function annotations: a machine

learning approach. BMC Bioinform., 8:284, 2007.

2. Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H.,

Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T.,

Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S.,

Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., and

Sherlock G. Gene ontology: tool for the unification of biology.

Nat. Gene., 25:25–29, 2000.

3. Baldi P. and Brunak S. Bioinformatics: the machine learning

approach. MIT, Cambridge, MA, 2001.

4. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J.,

and Wheeler D.L. Genbank. Nucleic Acids Res., 35D (Database

issue):21–D25, 2007.

5. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N.,

Weissig H., Shindyalov I.N., and Bourne P.E. The protein data

bank. Nucleic Acids Res., 28:235–242, 2000.

6. Bishop C.M. Pattern Recognition and Machine Learning.

Springer, Berlin, 2006.

7. Boutell M.R., Luo J., Shen X., and Brown C.M. Learning

multi-label scene classification. Pattern Recogn., 37:1757–1771,

2004.

8. Bruggeman F.J. and Westerhoff H.V. The nature of systems

biology. Trends Microbiol., 15:15–50, 2007.

9. Caragea C., Sinapov J., Dobbs D., and Honavar V. Assessing the

performance of macromolecular sequence classifiers. In Proc.

IEEE 7th Int. Symp. on Bioinformatics and Bioengineering,

2007, pp. 320–326.

10. de Jong H. Modeling and simulation of genetic

regulatory systems: a literature review. J. Comput. Biol.,

9:67–103, 2002.
11. Diettrich T.G. Ensemble methods in machine learning. Springer,

Berlin, In Proc. 1st Int. Workshop on Multiple Classifier Sys-

tems, 2000, pp. 1–15.

12. Diettrich T.G. Machine learning for sequential data: a

review. In Proc. Joint IAPR International Workshop on

Structural, Syntactic, and Statistical Pattern Recognition, 2002,

pp. 15–30.

13. El-Manzalawy Y., Dobbs D., and Honavar V. On evaluating

MHC-II binding peptide prediction methods, PLoS One, 3(9):

e3268, 2008.

14. El-Manzalawy Y., Dobbs D., and Honavar V. Predicting linear

B-cell epitopes using string kernels. J. Mole. Recogn., 21243–255,

2008.

15. Friedman N., Linial M., Nachman I., and Pe’er D. Using bayesian

networks to analyze expression data. J. Comput. Biol.,

7:601–620, 2000.

16. Galperin M.Y. The molecular biology database collection: 2008

update. Nucleic Acids Res., 36:D2–D4, 2008.

17. Guyon I. and Elisseeff A. An introduction to variable and feature

selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

18. Hecker L., Alcon T., Honavar V., and Greenlee H. Querying

multiple large-scale gene expression datasets from the develop-

ing retina using a seed network to prioritize experimental tar-

gets. Bioinform. Biol. Insights, 2:91–102, 2008.

19. Jeong H., Tombor B., Albert R., Oltvai Z.N., and Barabasi A.-L.

The large-scale organization of metabolic networks. Nature,

407:651–654, 1987.

20. Lahdesmaki H., Shmulevich I., and Yli-Harja O. On learning

gene regulatory networks under the boolean network model.

Mach. Learn., 52:147–167, 2007.

21. Terribilini M., Lee J.-H., Yan C., Jernigan R.L., Honavar V,

and Dobbs D. Predicting RNA-binding sites from amino acid

sequence. RNA J., 12:1450–1462, 2006.

22. Yan C., Terribilini M., Wu F., Jernigan R.L., Dobbs D., and

Honavar V. Identifying amino acid residues involved in pro-

tein-DNA interactions from sequence. BMC Bioinform., 7:262,

2006.
Machine Learning in Systems
Biology

▶Machine Learning in Computational Biology
Machine-Readable Dictionary (MRD)

▶ Electronic Dictionary
Macro

▶ Snippet

1668M Magnetic Disk
Magnetic Disk

▶Disk
Maid

▶Massive Array of Idle Disks
Main Memory

PETER BONCZ

CWI, Amsterdam, The Netherlands

Synonyms
Primary memory; Random access memory (RAM)

Definition
Primary storage, presently known as main memory, is

the largest memory directly accessible to the CPU in

the prevalent Von Neumann model and stores both

data and instructions (program code). The CPU con-

tinuously reads instructions stored there and executes

them. Also called Random Access Memory (RAM), to

indicate that load/store instructions can access data at

any location at the same cost, it is usually implemented

using DRAM chips, which are connected to the CPU

and other peripherals (disk drive, network) via a bus.

Key Points
The earliest computers used tubes, then transistors

and since the 1970s in integrated circuits. RAM chips

generally store a bit of data in either the state of a flip-

flop, as in SRAM (static RAM), or as a charge in a

capacitor (or transistor gate), as in DRAM (dynamic

RAM). Some types have circuitry to detect and/or

correct random faults called memory errors in the

stored data, using parity bits or error correction

codes (ECC). RAM of the read-only type, ROM, in-

stead uses a metal mask to permanently enable/disable

selected transistors, instead of storing a charge in them.

The main memory available to a program in most

operating systems, while primarily relying on RAM, can

be increased by diskmemory. That is, thememory access

instructions supported by a CPU work on so-called

virtual memory, where an abstract virtual memory
space is divided into pages. At any time, a page either

resides in a swap-file on disk or in RAM, where it

must be in order for the CPU to access it.Whenmemory

is accessed, the Memory Management Unit (MMU) of

the CPU transparently translates the virtual address

into its current physical address. If the memory page

is not in RAM, it generates a page fault, to be a handled

by the OS which then has to perform I/O to the swap

file. If a high percentage of the memory access generates

a page fault, this is called thrashing, and severely lowers

performance.

Over the past decades, the density of RAM chips

has increased, following a planned evolution of finer

chip production process sizes, popularly known as

‘‘Moore’s Law.’’ This has led to an increase in RAM

capacity as well as bandwidth. Access latency has also

decreased, however, the physical distance on the moth-

erboard between DRAM chips and CPU results in a

minimum access latency of around 50ns (real RAM

latencies are often higher). In current multi-GHz CPUs

this means that a memory access instruction takes

hundreds of cycles to execute. Typically, a high per-

centage of instructions in a program can be memory

access instructions (up to 33%) and the RAM latency

can seriously impact performance. This problem is

known as the ‘‘memory wall.’’

To counter the performance problems of the mem-

ory wall, modern computer architecture now features a

memory hierarchy that besides DRAM also includes

SRAM cache memories, typically located on the CPU

chip. Memory access instructions transfer memory in

units of cache-lines, typically 64 bytes at a time (this

cache line size is also related to the width of the

memory bus). Memory access instruction first checks

whether the accessed cache line is in the highest (fast-

est/smallest) L1 cache. This takes just a few CPU cycles.

If a cache miss occurs, the memory access instruction

checks the next cache level. Only if no cache contains

the cache line, memory access is performed. Therefore,

like virtual memory page thrashing, the CPU cache hit

ratio achieved by a program now materially affects

performance.

While in the past access to the DRAM chips over the

bus was typically performed by a chipset, in between

CPU and memory, some modern CPU architectures

have moved the memory controller logic onto the

CPU chip itself, which tends to reduce access latency.

Also, to better serve the memory bandwidth require-

ment multi-CPU systems, modern architectures often

Main Memory DBMS M 1669
have a dedicated memory bus between the CPU and

DRAM. In a Symmetric Multi-Processing (SMP) this

leads to a so-called Non-Uniform Memory Access

architecture (NUMA), where access to the memory

directly connected to a CPU is faster than access to the

memory connected to another CPU.

While database systems traditionally focus on

the disk access pattern (i.e., I/O), modern database

systems, as well as main-memory database systems

(that do not rely on I/O in the first place) now must

carefully plan the in-memory data storage format used

as well as the memory access patterns caused by query

processing algorithms, in order to optimize the use of

the CPU caches and avoid high cache miss ratios.

The increased RAM sizes as well as the increased im-

pact of I/O latency also leads to a trend to rely more

on main memory as the preferred storage medium in

database processing.

Cross-references
▶Cache Memory

▶CPU

▶Disk
M

Main Memory DBMS

PETER BONCZ

CWI, Amsterdam, The Netherlands

Synonyms
In-memory DBMS; MMDBMS
Definition
A main memory database system is a DBMS that

primarily relies on main memory for computer data

storage. In contrast, conventional database management

systems typically employ hard disk based persistent

storage.

Key Points
The main advantage of MMDBMS over normal DBMS

technology is superior performance, as I/O cost is no

more a performance cost factor. With I/O as main

optimization focus eliminated, the architecture of

main memory database systems typically aims at opti-

mizing CPU cost and CPU cache usage, leading to dif-

ferent data layout strategies (avoiding complex tuple
representations) as well as indexing structures (e.g.,

B-trees with lower-fan-outs with nodes of one or a few

CPU cache lines).

While built on top of volatile storage, most MMDB

products offer ACID properties, via the following

mechanisms: (i) Transaction Logging, which records

changes to the database in a journal file and facilitates

automatic recovery of an in-memory database, (ii) Non-

volatile RAM, usually in the form of static RAM backed

up with battery power (battery RAM), or an electrically

erasable programmable ROM (EEPROM). With this

storage, the MMDB system can recover the data store

from its last consistent state upon reboot, (iii) High

availability implementations that rely on database repli-

cation, with automatic failover to an identical standby

database in the event of primary database failure.

Main-memory database systems were originally

popular in real-time systems (used in e.g., telecom-

munications) for their fast and more predictable per-

formance, and this continues to be the case. However,

with increasing RAM sizes allowing more problems

to be addressed using a MMDBMS, this technology

is proliferating into many other areas, such as on-line

transaction systems, and recently in decision support.

Main memory database systems are also deployed as

drop-in systems that intercept read-only queries on

cached data from an existing disk-based DBMS, thus

reducing its workload and providing fast answers to a

large percentage of the workload.

Examples of main-memory database systems are

MonetDB, SolidDB, TimesTen and DataBlitz. MySQL

offers a main-memory backend based on Heap tables.

The MySQL Cluster product is a parallel main memory

system that offers ACID properties through high

availability.

Cross-references
▶Disk

▶Main Memory

▶ Processor Cache

Recommended Reading
1. Bohannon P., Lieuwen D.F., Rastogi R., Silberschatz A.,

Seshadri S., and Sudarshan S. The architecture of the dalı́ main-

memorystoragemanager.Multimedia Tools Appl., 4(2):115–151,

1997.

2. Boncz P.A. and Kersten M.L. MIL primitives for querying a

fragmented world. VLDB J., 8(2):101–119, 1999.

3. DeWitt D.J., Katz R.H., Olken F., Shapiro L.D., Stonebraker M.,

and Wood D.A. Implementation techniques for main memory

1670M Maintenance of Materialized Views with Outer-Joins
database systems. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1984, pp. 1–8.

4. Hvasshovd S-O., Torbjørnsen Ø., Bratsberg S.E., and Holager P.

The ClustRa telecom database: high availability, high

throughput, and real-time response. In Proc. 21th Int. Conf.

on Very Large Data Bases, 1995, pp. 469–477.
Maintenance of Materialized Views
with Outer-Joins

PER-ÅKE LARSON

Microsoft Corporation, Redmond, WA, USA

Definition
An materialized outer-join view is a materialized view

whose defining expression contains at least one outer

join. View maintenance refers to the process of bring-

ing the view up to date after one or more of the

underlying base tables has been updated. View main-

tenance can always be done by recomputing the result,

known as a full refresh, but this is usually prohibitively

expensive. Incremental view maintenance, that is, only

applying the minimal changes required to bring the

view up to date, is normally more efficient.
Historical Background
Full outer join (called generalized join) was proposed

by Lacroix and Pirotte in 1976 [4]. During the 1980’s,

there was considerable discussion in the research

literature about the use and power of outer joins.

Commercial systems began supporting outer joins in

the late 1980’s and at the time of writing (2007) all

major commercial systems do. Optimization of outer-

join queries was an active research area during the

1990’s. Outer join was first included in the 1992

SQL standard. The first view matching algorithm for

outer-join views was published by Larson and Zhou

[5] in 2005.

In 1998 Griffin and Kumar [2] published the first

paper covering incremental maintenance ofmaterialized

outer-join views. A paper 2006 by Gupta and Mumick

[3] described a more efficient procedure but, unfortu-

nately, it does not always produce the correct result. In

2007, Larson and Zhou [6] introduced an method for

efficient incremental maintenance of outer-join views.

At the time of writing, onlyOracle allows (a limited form

of) materialized outer-join views.
Foundations
Larson and Zhou [6] showed that incremental mainte-

nance of an outer-join view can be divided into two

steps: computing and applying a primary delta and a

secondary delta. The first step is very similar to main-

taining an inner-join view while the second step is a

‘‘clean-up’’ step.

This entry describes Larson’s and Zhou’s mainte-

nance procedure for a view without aggregation when

the update consists of insertions into one of its base

tables. The reader is referred to the original paper [6]

for a more complete description of how to handle

deletions, views with aggregation, and how to exploit

foreign-key constraints to simplify maintenance.

Examples illustrating the procedure use a database con-

sisting of the following three tables. Primary keys are

underlined.

O(Okey, Odate, Ocustomer),

L(okey, pkey, Qty, Price),

P(Pkey, Pname).

The following materialized view consisting of two

full outer joins will be used as a running example.

MV ¼ L ffl fo

p l;pð Þ P
� �

ffl fo

p l;oð Þ O

where the join predicates are defined as p(l, p) �
(l.pkey = p.pkey) and p(l, o) � (l.okey = o.okey).

Join-Disjunctive Normal Form

The view maintenance procedure builds on the join-

disjunctive normal form for outer-join expressions

introduced by Galindo-Legaria [6]. The normal form

is described in this section by an example; more details

can be found in [6,1].

Let T1 and T2 be tables with schemas S1 and

S2, respectively. The outer union, denoted by T1 ⊎ T2,

first null-extends (pads with nulls) the tuples of

each operand to schema S1 [S2 and then takes the

union of the results (without duplicate elimination).

Let t1 and t2 be tuples with the same schema. Tuple

t1 is said to subsume tuple t2 if t1 agrees with t2 on all

columns where they both are non-null and t1 contains

fewer null values than t2. The operator removal of

subsumed tuples of T, denoted by T↓, returns the tuples

of T that are not subsumed by any other tuple in T.

The minimum union of tables T1 and T2 is defined

as T1 � T2 = (T1 ⊎ T1)↓. Minimum union is both

commutative and associative.

Maintenance of Materialized Views with Outer-Joins.

Figure 1. Subsumption graph and maintenance

graph for view MV.

Maintenance of Materialized Views with Outer-Joins M 1671

M

Left outer join can be rewritten as T1 ffllo
p T2 = T1

⋈ pT2 � T1 and right outer join as T1 fflro
p T2 =

T1 ⋈ pT2 � T2. Full outer join can be rewritten as

T1 ffl fo
p T2 = T1 ⋈ pT2 � T1 � T2.

The example view was defined as

MV ¼ L ffl fo

p l;pð Þ P
� �

ffl fo

p l;pð Þ O:

Conversion to normal form is done bottom up by

applying the rewrite rules above. First rewrite the join

between L and P in terms of inner joins and minimum

union, which yields

MV ¼ ðspðl;pÞðL � PÞ � L � PÞ ffl fo

pðl;oÞ O:

Then apply the same rewrite to the second outer join,

which produces

MV ¼ ððspðl;pÞðL � PÞ � L � PÞ fflðl;oÞ OÞ
� ðspðl;pÞðL � PÞ � L � PÞ � O:

Inner join distributes over minimum union in the

same way as over regular union. Applying this trans-

formation to the join with O produces

MV ¼ spðl;pÞ^pðl;oÞðO � L � PÞ
� spðl;oÞðO � LÞ � spðl;oÞðO � PÞ
� spðl;pÞðL � PÞ � L � P � O:

The view expression is now in join-disjunctive form

but it can be further simplified. The term sp(l,o)(O �
P) can be eliminated because the join predicate will

never be satisfied.

MV ¼ sPðl;pÞ^Pðl;oÞðO � L � PÞ � spðl;oÞðO � LÞ
� spðl;pÞðL � PÞ � L � P � O:

The normal form shows what form of tuples are found

inMV . For example, it ‘‘contains’’ all tuples in the join

of O and L. Most such tuples are represented implicitly

by being included in a wider tuple composed of tuples

from O, L and P; only the non-subsumed tuples are

stored explicitly in the view.

As illustrated by this example, an outer-join expres-

sion E over a set of tables U can be converted to a

normal form consisting of the minimum union of

terms composed from selections and inner joins (but

no outer joins). More formally, the join-disjunctive

normal form of E equals

E ¼ E1 � E2 � � � � � En
where each term Ei is of the form Ei = spi
(Ti1�Ti2�...�Tim). T i = {Ti1, Ti2...Tim} is a (unique)

subset of the tables in U . Predicate pi is the conjunction
of a subset of the selection and join predicates found in

the original form of the query.

The Subsumption Graph

Every term in the normal form of the view has a

unique set of source tables drawn from U and is null-

extended on all other tables in the view. The set

of source tables of term Ei is denoted by T i and

the set of tables on which it is is null-extended by

Si;Si ¼ U � T i.
A tuple produced by a term with source tables T i

can only be subsumed by tuples produced by terms

whose source set is a superset of T i . The subsumption

relationships among terms can be modeled by a DAG

called the subsumption graph.

The subsumption graph of E contains a node ni for

each term Ei in the normal form and the node is

labeled with the source table set T i of Ei. There is an

edge from a node ni to a node nj, if T i is a minimal

superset of T j . T i is a minimal superset of T j if there

does not exist a node nk in the graph such that

T j � T k � T i .

The subsumption graph for view MV is shown to

the left in Fig. 1. The importance of the subsumption

graph lies in the following observation: when checking

whether a tuple of a term is subsumed, it is sufficient to

check against tuples in the term’s immediate parent

terms. For example, to determine whether a P tuple p1
is subsumed, all that is needed is to check whether it

joins with an L tuple. If it does, the resulting tuple,

which subsumes p1, is included in the LP term.

The result of an outer-join expression is repre-

sented in a minimal form. Only the non-subsumed

Maintenance of Materialized Views with Outer-Joins.

Figure 2. Constructing primary-delta expression for

insertions into table P.

1672M Maintenance of Materialized Views with Outer-Joins
tuples produced by a term Ei in the normal form

are explicitly represented. A subsumed tuple is repre-

sented implicitly by being included in a subsuming

tuple. The net contribution of a term, denoted by Di,

is the set of non-subsumed tuples of term Ei in

the normal form of expression E. Then E can then

be written in the form

E ¼ D1] D2] � � �] Dn:

Consider a view V and suppose one of the its base

tables T is modified. This may affect the net contribu-

tion of a term Di in one of three ways:

1. Directly, which occurs if T is among the tables

in T i ;

2. Indirectly, which occurs if T is not among the tables

in T i but it is among the source tables of at least

one of its parent nodes;

3. No effect, otherwise.

Based on this classification of how terms are affected,

a view maintenance graph is created as follows.

1. Eliminate from the subsumption graph all nodes

that are unaffected by the update of T.

2. Mark the remaining nodes by D or I depending

on whether the node is affected directly or

indirectly.

The maintenance graph for view when updating P

is shown to the right in Fig. 1. The maintenance

graph is used primarily to identify which terms of a

view are indirectly affected and thus may require

maintenance.

Maintenance Procedure

Suppose table T has been updated. If so, any view V

that references T needs to be maintained. The first step

is to compute the view’s maintenance graph and clas-

sify the terms as directly affected, indirectly affected,

and unaffected. Without loss of generality, assume that

the view has n terms, of which terms 1, 2,...,k are

directly affected, terms k þ 1, k þ 2,...,kþ m

are indirectly affected, and terms k þ m þ 1, k þ m

þ 2,...,n are not affected. The view expression can then

be rewritten in the form

V ¼ VD] VI] VUwhere

VD ¼]k
i¼1Di; VI ¼]kþm

i¼kþ1Di;

VU ¼]n
i¼kþmþ1Di:
From this form of the expression, one can see that to

update the view, two delta expressions must be evalu-

ated and applied to the view

DVD ¼]k
i¼1DDi; DVI ¼]kþm

i¼kþ1DDi:

DVD is called the primary delta and DVI the secondary

delta. In summary, maintenance of a view V after

insertions into one of its underlying base tables can

be performed in two steps.

1. Compute the primary delta DVD and insert the

resulting tuples into the view.

2. If there are indirectly affected terms, compute the

secondary delta DVI and delete the resulting tuples

from the view.

Computing the Primary Delta

An expression that computes the primary delta, DVD,

can be constructed by the following simple algorithm.

1. Traverse the operator tree for Valong the path from

T to the root. On any join operator encountered,

apply commutativity rules to ensure that the input

referencing T is on the left.

2. Traverse the path from T to the root of V . Convert

any full outer join operator encountered to a left

outer join and any right outer join operator to an

inner join.

3. Substitute T by DT.

Step 1 is a normal rewrite of the view expression and

does not change the result. Step 2 modifies the expres-

sion so that it computes only VD. After Step 2, the

operators on the path from T to the root consists

only of selects, inner joins, and left outer joins and

the delta expression is always the left input.

Figure 2 illustrates the transformation process for

the example view MV when table P is updated. The

resulting expression for computing the primary delta is

DMVD ¼ DP ffllo
p l;pð Þ L

� �
ffllo

p l;oð Þ O

Maintenance of Materialized Views with Outer-Joins M 1673

M

Computing the Secondary Delta

The secondary delta can be computed efficiently from

the primary delta and either the view or base tables.

Only the case when using the view is described here.

Recall that the base tables have already been updated

and the primary delta has been applied to the view.

The primary delta DVD contains the union of the

deltas for all directly affected terms. However, deltas

for individual terms are needed to compute the sec-

ondary delta. Each term is defined over a unique set of

tables and null extended on all others so tuples from

a particular term are easily identified and can be

extracted from DVD by simple selection predicates.

Let null(T) denote a predicate that evaluates to

true if a tuple is null-extended on table T. null(T)

can be implemented in SQL as ‘‘T.c is null’’ where c

is any column of T that does not contain nulls,

for example, a column of a key. When applying

null and ¬null to a set of tables T = {T1, T2...,Tn}, the

shorthand notations nðT Þ ¼
V

Ti2T nullðTiÞ and

nnðT Þ ¼
V

Ti2T :nullðTiÞ are used.
For the example view, MV , the primary delta con-

tains deltas of three directly affected terms, see Fig. 1.

Non-subsumed tuples from, for example, the LP-term

are uniquely identified by the fact that they are com-

posed of a real tuple from L and from P but are null

extended on O. Hence, DDLP can be extracted from

DVD as follows:

DDLP ¼ pðLPÞ:	snnðLPÞ^nðoÞDMVD

where nn(LP) = ¬null(L) ∧¬null(P) and n(O) =

null(O).

DDLP contains only the delta of the net contribu-

tion of the term. DELP contains the complete delta of

the term, including both subsumed and non-subsumed

tuples. Tuples inDELP are composed of real tuples from

L, and from P, and may or may not be null extended on

O. Hence, DELP can be extracted from DVD as follows:

DELP ¼ dpðLPoÞ:	snnðLPÞDMVD:

The duplicate elimination (d) is necessary because an

LP tuple may have joined with multiple O tuples.

Continuing with the running example, the second-

ary delta consists of DDOL and DDL. DDOL is null

extended on P and the OLP-term is its only parent so

it can be computed as:

DDOL ¼ snnðOLÞ^nðPÞðMV þ DMVDÞ
ffl ls

eq OLð ÞsnnðOLPÞDMVD:
This expression makes sense intuitively. The first part

selects from the view all orphaned (non-subsumed)

tuples of term EOL contained in the view after the

primary delta has been applied. The second part

extracts from the primary delta all tuples added to

the parent term EOLP. The join is a left semijoin and

outputs every tuple from the left operand that joins

with one or more tuples in the right operand. The

complete expression thus amounts to finding all cur-

rently orphaned tuples of the term and retaining those

that cease to be orphans because of the insert. Those

tuples should be deleted from the view.

DL is null extended on O, and P and has one

directly affected parent, the LP-term. DDL can be com-

puted as:

DDL ¼ snnðLÞ^nðOPÞðMV þ DMVDÞ

fflls
eq Lð ÞsnnðLPÞDMVD:

Summary

In summary, after insertion into table P of a set of

tuples DP, the example view MV can be brought up

to date as follows. First compute the primary delta

DMVD ¼ ðDP ffl lo
p l;pð Þ LÞ ffl lo

p l;oð Þ O

and insert the resulting tuples into the view, resulting

in MVþDMVD. Then compute the secondary delta

DMVI ¼ DDOL] DDL

¼ snnðOLÞ^nðPÞðMV þ DMVDÞ

fflls
eq OLð Þ snnðOLPÞ DMVD]

snnðLÞ^nðOPÞðMV þ DMVDÞ

fflls
eq Lð Þ snnðLPÞ DMVD

and delete the resulting tuples from the view.

Key Applications
Queries containing outer joins are often used in analy-

sis queries over large tables in data warehouses. Mate-

rialized outer-join views, especially when aggregated,

can be very beneficial in such scenarios.

Cross-references
▶Materialized Views

▶Maintenance of Materialized Views with Outer-Joins

▶Views

1674M Maintenance of Recursive Views
Recommended Reading
1. Galindo-Legaria C. Outerjoins as disjunctions. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1994,

pp. 348–358.

2. Griffin T. and Kumar B. Algebraic change propagation for semi-

join and outerjoin queries. ACM SIGMOD Rec., 27(3):22–27,

1998.

3. Gupta A. and Mumick I.S. Incremental maintenance of aggre-

gate and outerjoin expressions. Inf. Syst., 31(6):435–464, 2006.

4. Lacroix M. and Pirotte A. Generalized joins. ACM SIGMOD

Rec., 8(3):14–15, 1976.

5. Larson P. and Zhou J. View matching for outer-join views.

In Proc. 31st Int. Conf. on Very Large Data Bases, 2005,

pp. 445–456.

6. Larson P. and Zhou J. Efficient maintenance of materialized

outer-join views. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 56–65.
Maintenance of Recursive Views

SUZANNE W. DIETRICH

Arizona State University, Phoenix, AZ, USA

Synonyms
Incremental maintenance of recursive views; Recursive

view maintenance

Definition
A view is a derived or virtual table that is typically

defined by a query, providing an abstraction or an

alternate perspective of the data that allows for more

intuitive query specifications using these views. Each

reference to the view name results in the retrieval of

the view definition and the recomputation of the view

to answer the query in which the view was referenced.

When views are materialized, the tuples of the com-

puted view are stored in the database with appropriate

index structures so that subsequent access to the

view can efficiently retrieve tuples to avoid the cost

of recomputing the entire view on subsequent refer-

ences to the view. However, the materialized view must

be updated if any relation that it depends on has

changed. Rather than recomputing the entire view on

a change, an incremental view maintenance algorithm

uses the change to incrementally compute updates to

the materialized view in response to that change.

A recursive view is a virtual table definition that

depends on itself. A canonical example of a recursive

view is the transitive closure of a relationship stored in

the database that can be modeled as directed edges in
a graph. The transitive closure essentially determines

the reachability relationship between the nodes in the

graph. Typical examples of transitive closure include

common hierarchies such as employee-supervisor,

bill-of-materials (parts-subparts), ancestor, and course

prerequisites. The incremental view maintenance algo-

rithms for the maintenance of recursive views have

additional challenges posed by the recursive nature of

the view definition.

Historical Background
Aview definition relates a view name to a query defined

in the query language of the database. Initially, incre-

mental view maintenance algorithms were explored in

the context of non-recursive view definitions involving

select, project, and join query expressions, known as

SPJ expressions in the literature. The power of recur-

sive views was first introduced in the Datalog query

language, which is a declarative logic programming

language established as the database query language

for deductive databases in the 1980s. Deductive data-

bases assume the theoretical foundations of relational

data but use Datalog as the query language. Since

its relational foundations assume first normal form,

Datalog looks like a subset of the Prolog programming

language without function symbols. However, Data-

log does not assume Prolog’s top-down left-to-right

programming language evaluation strategy. The evalua-

tion of Datalog needed to be founded on the funda-

mentals of database query optimization. In a database

system, a user need only specify a correct declarative

query, and it is the responsibility of the database system

to efficiently execute that specification. The evaluation

of Datalog was further complicated by the fact that

Datalog allows for relational views that include union

and recursion in the presence of negation. Therefore, the

view definitions in Datalog were more expressive than

the traditional select-project-join views available in rela-

tional databases at that time. Therefore, the incremental

view maintenance algorithms for recursive views in the

early 1990s are typically formulated in the context of the

evaluation of Datalog. The power to define a recursive

union in SQL was added in the SQL:1999 standard.

Historically, it is important to note that the incre-

mental maintenance of recursive views is related to the

areas of integrity constraint checking and condition

monitoring in active databases. These three areas

were being explored in the research literature at around

the same time. In integrity constraint checking, the

Maintenance of Recursive Views M 1675

M

database is assumed to be in a consistent state and

when a change occurs in the database, it needs to

incrementally determine whether the database is still

in a consistent state. In active databases, the database is

responsible for actively checking whether a condition

that it is responsible for monitoring is now satisfied

by incrementally evaluating condition specifications

affected by changes to the database. Although closely

related, there are differences in the underlying assump-

tions for these problems.

Foundations

Recursive View Definition

A canonical example of a recursive view definition

is the reachability of nodes in a directed graph. In

Datalog, the reach view consists of two rules. The first

non-recursive rule serves as the base or seed case, and

indicates that if the stored or base table edge defines a

directed edge from the source node to the destination

node, then the destination can be reached from the

source. The second rule is recursive. If the source

node can reach some intermediate node and there is

an edge from that intermediate node to a destination

node, then the source can reach the destination.

reach(Source, Destination):-

edge(Source, Destination).

reach(Source, Destination):-

reach(Source, Intermediate),

edge(Intermediate, Destination).

Intuitively, one can think of the recursive rule as an

unfolding of the joins required to compute the reach-

ability of paths of length two, then paths of length

three, and so on until the data of the underlying

graph is exhausted.

In SQL, this recursive view is defined with the

following recursive query expression:

with recursive reach(source, destina-

tion) as

(select E.source, E.destination

from edge E)

union

(select S.source, D.destination

from reach S, edge D

where S.destination = D.source)

SQL limits recursive queries to linear recursions, which

means that there is at most one direct invocation of a
recursive item. The specification of the reach view

above is an example of a linear recursion. There is

another linear recursive specification of reach where

the direct recursive call appears on the right side of the

join versus the left side of the join:

reach(Source, Destination):-

edge(Source, Intermediate),

reach(Intermediate, Destination).

However, there is a logically equivalent specification of

reach that is non-linear:

reach(Source, Destination):-

reach(Source, Intermediate),

reach(Intermediate, Destination).

The goal of Datalog evaluation is to allow the user to

specify the recursive view declaratively in a logically

correct way, and it is the system’s responsibility to

optimize the evaluation of the query.

SQL also restricts recursions to those defined in

deductive databases as stratified Datalog with negation.

Without negation, a recursive Datalog program has a

unique solution that corresponds to the theoretical

fixpoint semantics or meaning of the logical specifica-

tion. In the computation of the reach view, each unfold-

ing of the recursion joins the current instance of the

recursive view with the edge relation until no new tuples

can be added. The view instance has reached a fixed

point and will not change. When negation is intro-

duced, the interaction of recursion and negation must

be considered. The concept of stratified negation means

that there can be no negation through a recursive com-

putation, i.e., a view cannot be defined in terms of its

own negation. Recursive views can contain negation but

the negation must be in the context of relations that are

either stored or completely computed before the appli-

cation of the negation. This imposed level of evaluation

with respect to negation and recursion are called strata.

For stratified Datalog with negation, there also exists a

theoretical fixpoint that represents the intuitive mean-

ing of the program.

Consider an example of a view defining a peer as

two employees that are not related in the employee-

supervisor hierarchy:

peer(A, B):- employee(A,...), employee(B,...),

not (supervisor(A,B)), not(supervisor(B,A)).

supervisor(Emp, Sup):-

immediateSupervisor(Emp,Sup).

1676M Maintenance of Recursive Views
supervisor(Emp, Sup):-

supervisor(Emp, S),

immediateSupervisor(S, Sup).

Since peer depends on having supervisor materialized

for the negation, peer is in a higher stratum than

supervisor. Therefore, the strata provide the levels in

which the database system needs to compute views to

answer a query.
Evaluation of Recursive Queries

Initial research in the area emphasized the efficient and

complete evaluation of recursive queries. The intuitive

evaluation of the recursive view that unions the join of

the current view instance with the base data at each

unfolding is known as a naı̈ve bottom-up algorithm.

In a bottom-up approach to evaluating a rule, the

known collection of facts is used to satisfy the subgoals

on the right-hand side of the rule, generating new

facts for the relation on the left-hand side of the rule.

To improve the efficiency of the naı̈ve algorithm, a

semi-naı̈ve approach can be taken that only uses the

new tuples for the recursive view from the last join to

use in the join at the next iteration. A disadvantage

of this bottom-up approach for evaluating a query is

that the entire view is computed even when a query

may be asking for a small subset of the data. This eager

approach is not an issue in the context of materializing

an entire view.

Another recursive query evaluation approach con-

sidered a top-down strategy as in Prolog’s evaluation.

In a top-down approach to evaluation, the evaluation

starts with the query and works toward the collection

of facts in the database. In the context of the reach

recursive view, the reach query is unified with the left-

hand side of the non-recursive rule and rewritten as a

query involving edge. The edge facts are then matched

to provide answers. The second recursive rule is then

used to rewrite the reach query with the query consist-

ing of the goals on the right-hand side of the rule.

This evaluation process continues, satisfying the goals

with facts or rewriting the goals using the rules. The

unification of a goal with the left-hand side of a rule

naturally filters the evaluation by binding variables in

the rule to constants that appear in the query. How-

ever, the evaluation of a left-recursive query using

Prolog’s evaluation strategy enters an infinite loop on

cyclic data by attempting to prove the same query over

and over again. A logic programmer would not write a
logic program that enters an infinite loop, but the

deductive database community was interested in the

evaluation of truly declarative query specifications.

The resulting evaluation approaches combine the

best of top-down filtering with bottom-up material-

ization. The magic sets technique added top-down

filtering by cleverly rewriting the original rules so

that a bottom-up evaluation would take advantage of

constants appearing in the query [1]. Memoing was

added to a top-down evaluation strategy to achieve

the duplicate elimination feature that is inherent in a

bottom-up evaluation of sets of tuples [3]. This dupli-

cate elimination feature avoids the infinite loops on

cyclic data. Top-down memoing is complete for sub-

sets of Datalog on certain types of queries [4]. For

stratified Datalog with negation, top-down memoing

still requires iteration to guarantee complete evalua-

tion. Further research explored additional optimiza-

tions as well as implementations of deductive database

systems [12] and led to research in active databases and

materialized view maintenance.

Incremental Evaluation of Recursive Views

A view maintenance algorithm uses the change to

incrementally determine updates to the view. Consider

a change in the underlying graph for the transitive

closure example. If a new edge is inserted, this edge

may result in a change to the materialized reach view

by adding a connection between two nodes that did

not exist before. However, another possibility is that

the new edge added another path between two nodes

that were already in the materialized view. A similar

situation applies on the removal of an edge. The

deletion could result in a change in the reachability

between nodes or it could result in the removal of a

path but the nodes are still connected via another

route. In addition, in the general case, a view may

depend on many relations including other (recursive)

views in the presence of negation. Therefore, the

approaches for the incremental maintenance of recur-

sive views typically involve a propagation or derivation

phase that determines an approximation or overesti-

mate of the changes, and a filtering or rederivation

phase that checks whether the potential change repre-

sents a change to the view. There are differences in the

underlying details of how these phases are performed.

The two incremental view maintenance algorithms

that will be presented by example are the DRed algo-

rithm [7] and the PF Algorithm [8]. Both the DRed

Maintenance of Recursive Views M 1677

M

and PF algorithms handle recursive stratified Datalog

programs with negation. There are other algorithms

developed for special cases of Datalog programs and

queries, such as the counting technique for nonrecur-

sive programs, but this exposition will explore these

more general approaches for incremental view mainte-

nance. Historically, the PF algorithm was developed in

the context of top-down memoing whereas DRed

assumes a bottom-up semi-naı̈ve evaluation. To assist

with the comparison of the approaches, the notation

introduced for the DRed algorithm [7] will be used to

present both algorithms in the context of the transitive

closure motivational example.

Figure 1 provides a graphical representation of

an edge relation. Assume that the view for reach is

materialized, and the edge (e,f) is deleted from the

graph. The potential deletions or overestimates for

reach, denoted by d�(reach), are computed by creating

D� rules for each rule computing reach. Each reach

rule has k D� rules where k corresponds to the number

of subgoals in the body of the rule. The ith D� rule uses

the current estimate of deleted tuples (d�) for the

ith subgoal. For the nonrecursive rule, there is only

one subgoal. Therefore, there is only one D� rule

indicating that potential edge deletions generate po-

tential deletions to the reach view.

D�(r1): d�(reach(S, D)):- d�(edge(S, D)).
Maintenance of Recursive Views. Figure 1. Sample

Graph.
Since the recursive rule has two subgoals, there are two

D� rules:

D�(r21): d�(reach(S, D)):- d�(reach(S, I)), edge(I, D).
D�(r22): d�(reach(S, D)):- reach(S, I), d�(edge(I, D)).

Potential deletions to the reach view as well as the edge

relation can generate potential deletions to the view.

These potential deletions need to be filtered by

determining whether there exist alternative derivations

or paths between the nodes computed in the potential

deletion. There is a Dr rule defined for each reach

rule that determines the rederivation of the potential

deletions, which is denoted by d+ (reach):

Dr(r1): d+ (reach(S, D)):- d�(reach(S, D)), edgev(S, D).
Dr(r2): d+ (reach(S, D)):- d�(reach(S, D)), reachv(S, I),

edgev(I, D).

The superscript v on the subgoals in the rule indicates

the use of the current instance of the relation

corresponding to the subgoal. If the potential deletion

is still reachable in the new database instance, then

there exists another route between the source and

destination, and it should not be removed from

the materialized view. The actual removals to reach,

indicated by D�(reach), is the set of potential deletions

minus the set of alternative derivations:

D�(reach) = d�(reach) – d+ (reach)

Table 1 illustrates the evaluation of the DRed algorithm

for incrementally maintaining the reach view on the

deletion of edge(e,f) from Fig. 1. The DRed algorithm

uses a bottom-up evaluation of the given rules, starting

with the deletion d�(edge(e, f)). In the first step, the

D� rules compute the overestimate of the deletions

to reach. The result of the D� rules are shown in the

right column, which indicates the potential deletions

to reach as d�(reach). The second step uses the Dr

rules to filter the potential deletions. The right column

illustrates the source destination pairs that are still

reachable after the deletion of edge(e,f) as d+ (reach).

The tuples that must be removed from the materia-

lized view are indicated by D�(reach): {(e,f) (e,h)

(b,f) (b,h)}.

The PF (Propagate Filter) algorithm on the same

example is shown in Table 2. PF starts by propagating

the edge deletion using the nonrecursive rule, which

generates a potential deletion of reach(e,f). This

approximation is immediately filtered to determine

whether there exists another path between e and f.

Maintenance of Recursive Views. Table 2. PF algorithm on deletion of edge (e,f) on materialized reach view

PF algorithm

Propagate Filter
Rule d�(reach) d+ (reach) D�(reach)

d�(edge):{(e, f)} D�(r1) (e,f) {} (e,f)

D�(reach): {(e,f)} D�(r21) (e,g) (e,h) (e,g) (e,h)

D�(reach): {(e,h)} D�(r21) {} {}

d�(edge): {(e, f)} D�(r22) (a,f) (b,f) (a,f) (b,f)

D�(reach): {(b,f)} D�(r21) (b,g) (b,h) (b,g) (b,h)

D�(reach): {(b,h)} D�(r21) {} {}

Maintenance of Recursive Views. Table 1. DRed algorithm on deletion of edge (e,f) on materialized reach view

DRed algorithm

Step 1 Compute overestimate of potential deletions d�(reach)

D�(r1): d�(reach(S, D)):- d�(edge(S, D)). (e,f)

D�(r21): d�(reach(S, D)):- d�(reach(S, I)), edge(I, D). (e,g) (e,h)

D�(r22): d�(reach(S, D)):- reach(S, I), d�(edge(I, D)). (a,f) (b,f)

Repeat until no change: No new tuples for D�(r1) and D�(r22)

D�(r21): d�(reach(S, D)):- d�(reach(S, I)), edge(I, D). (a,g) (a,h) (b,g) (b,h)

Last iteration does not generate any new tuples

Step 2 Find alternative derivations to remove potential deletions d+ (reach)

Dr(r1): d+ (reach(S, D)):- d�(reach(S, D)), edge(S, D).

Dr(r2): d+ (reach(S, D)):- d�(reach(S, D)), reachv(S, I), edgev(I, D). (e,g) (a,f) (a,g) (a,h) (b,g)

Step 3 Compute actual changes to reach D�(reach)

D�(reach) = d�(reach) – d+ (reach) (e, f) (e,h) (b,f) (b,h)

1678M Maintenance of Recursive Views
Since there is no alternate route, the tuple (e,f) is

identified as an actual change, and is then propagated.

The propagation of D�(reach): {(e,f)} identifies (e,g)

and (e,h) as potential deletions. However, the filtering

phase identifies that there is still a path from e to g, so

(e, h) is identified as a removal to reach. The propaga-

tion of (e,h) does not identify any potential deletions.

The propagation of the initial edge deletion d�(edge):
{(e, f)} must be propagated through the recursive rule

for reach using D�(r22). The potential deletions are

immediately filtered, and only actual changes are pro-

pagated. The PF algorithm also identifies the tuples

{(e,f) (e,h) (b,f) (b,h)} to be removed from the

materialized view.

As shown in the above deletion example, the DRed

and PF algorithms both compute overestimates or

approximations of tuples to be deleted from the recur-

sive materialized view. The PF algorithm eagerly filters
the potential deletions before propagating them.

The DRed algorithm propagates the potential deletions

within a stratum but filters the overestimates before

propagating them to the next stratum. There are sce-

narios in which the DRed algorithm outperforms the

PF algorithm and others in which the PF algorithm

outperforms the DRed algorithm.

For the case of insertions, the PF algorithm oper-

ates in a manner similar to deletions, by approximating

the tuples to be added and filtering the potential addi-

tions by determining whether the tuple was provable in

the old database state. However, the DRed algorithm

uses the bottom-up semi-naı̈ve algorithm for Datalog

evaluation to provide an inherent mechanism for de-

termining insertions to the materialized view. In semi-

naı̈ve evaluation, the original rules are executed once

to provide the seed or base answers. Then incremental

versions of the rules are executed until a fixpoint is

Managing Compressed Structured Text M 1679
reached. The incremental rules are formed by creating

k rules associated with a rule where k corresponds to

the number of subgoals in the right-hand side of the

rule. The ith incremental rule uses only the new tuples

from the last iteration for the ith subgoal. However,

when the ith subgoal is a stored relation, then the

corresponding incremental rules are removed since

they will not contribute to the incremental evaluation.

For the motivational example, the incremental rule

for reach is

Dreach(S,I), edge(I, D)

where Dreach represents the new reach tuples com-

puted on the previous iteration. Since a set of tuples

is being computed, duplicate proofs are automatically

filtered and are not considered new tuples. This is the

inherent memoing in bottom-up evaluation that han-

dles cycles in the underlying data.
Key Applications
Query Optimization; Condition Monitoring; Integ-

rity Constraint Checking; Data Warehousing; Data

Mining; Network Management; Mobile Systems.
 M
Cross-references
▶Datalog

▶ Incremental Maintenance of Views with Aggregates

▶View Maintenance

▶Maintenance of Materialized Views with Outer-

Joins
Recommended Reading
1. Bancilhon F., Maier D., Sagiv Y., and Ullman J. Magic sets

and other strange ways to implement logic programs. In Proc.

5th ACM SIGACT-SIGMOD Symp. on Principles of Database

Systems, 1986, pp. 1–15.

2. Ceri S. and Widom J. Deriving production rules for incremental

view maintenance. In Proc. 17th Int. Conf. on Very Large Data

Bases, 1991, pp. 577–589.

3. Dietrich S.W. Extension tables: memo relations in logic

programming. In 14th Int. Colloquium on Automata, Lan-

guages, and Programming, 1987, pp. 264–272.

4. Dietrich S.W. and Fan C. On the completeness of naive memo-

ing in prolog. New Generation Comput., 15:141–162, 1997.

5. Dong G. and Su J. Incremental maintenance of recursive views

using relational calculus/SQL. ACM SIGMOD Rec., 29

(1):44–51, 2000.

6. Gupta A. and Mumick I.S. (eds.). Materialized Views: Techni-

ques, Implementations, and Applications, The MIT Press,

Cambridge, MA, 1999.
7. Gupta A., Mumick I.S., and Subrahmanian V.S. Maintaining

views incrementally. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1993, pp. 157–166.

8. Harrison J.V. and Dietrich S.W. Maintenance of materialized

views in a deductive database: an update propagation approach.

In Proc. Workshop on Deductive Databases, 1992, pp. 56–65.

9. Küchenhoff V. On the efficient computation of the

difference between consecutive database states. In Proc.

2nd Int. Conf. on Deductive and Object-Oriented Databases,

1991, pp. 478–502.

10. Martinenghi D. and Christiansen H. Efficient integrity

constraint checking for databases with recursive views. In Proc.

9th East European Conf. Advances in Databases and Informa-

tion Systems, 2005, pp. 109–124.

11. Ramakrishnan R. (ed.). Applications of Logic Databases.

Kluwer, Norwell, MA, 1995.

12. Ramakrishnan R. and Ullman D. A survey of deductive database

systems. J. Logic Programming, 23(2):125–149, 1995.

13. Ullman J. Principles of Database and Knowledge Base Systems,

Computer Science Press, Rockville, MD, 1989.

14. Urpı́ T. and Olivé A. A method for change computation

in deductive databases. In Proc. 18th Int. Conf. on Very Large

Data Bases, 1992, pp. 225–237.
Managing Compressed
Structured Text

GONZALO NAVARRO

University of Chile, Santiago, Chile

Synonyms
Searching compressed XML; Compressing XML

Definition
Compressing semi-structured text is the problem of

creating a reduced-space representation from which

the original data can be re-created exactly. Compared

to plain text compression, the goal is to take advantage

of the structural properties of the data. A more ambi-

tious goal is being able to manipulate this text in

compressed form, without decompressing it. This

entry focuses on compressing, navigating, and search-

ing semi-structured text, as those are the areas where

more advances have been made.

Historical Background
Modeling data using semi-structured text has been a

topic of interest at least since the 1980’s, with a signifi-

cant burst of activity in the 1990’s [2]. Since then, the

widespread adoption of XML (appearing in 1998, see

the current version at http://www.w3.org/TR/xml) as

http://www.w3.org/TR/xml

1680M Managing Compressed Structured Text
the standard to represent semi-structured data has uni-

fied the efforts of the community around this particular

format. Very early, however, the same features that made

XML particularly appealing for both human and ma-

chine processing were pointed out as significant sources

of redundancy and wasting of storage space and band-

width. This was especially relevant for wireless transmis-

sion and triggered the proposal of theWAP Binary XML

Content Format as early as 1999 (see http://www.w3.org/

TR/wbxml), where simple techniques to compress XML

prior to its transmission were devised.

In parallel, there has been a growing interest in not

only compressing the data for storage or transmission,

but in manipulating it in compressed form. The reason

is the long-standing tradeoff between faster/smaller/

more expensive and slower/larger/cheaper memories.

A more compact data representation has the potential

of fitting in a faster memory, where manipulating it

can be orders of magnitudes faster, even if it requires

more operations, than a naive representation fitting

only in a slower memory.

Foundations
For concreteness, this entry will focus on the de-facto

standard XML, where the structure is a tree or a forest

marked with beginning and ending tags in the text. In

fact this encompasses many other semi-structured text

proposals, hence most of the material of the entry

applies to semi-structured text in general, with mini-

mal changes. In XML, the tags can have attributes and

associated values, and there might be available a gram-

mar giving the permissible context-free syntax of the

semi-structured document.

Compression of Semi-Structured Text

An obvious approach to compressing semi-structured

text is to regard it as plain text and use any of the well-

known text compression methods [5]. Yet, considering

the structure might yield improved compression per-

formance compared to ignoring it. Many compressors

have been proposed trying to exploit structure in dif-

ferent ways. Rather than describing them individually,

the main principles behind them will be presented.

1. The data is a mix of structure and content. The

structure can be regarded as a labeled tree, where

the labels are the tag names, and the content as free

text, which can appear between every consecutive

pair of tree nodes, and within tree leaves. Attribute
information can be handled as text as well, or as

special data attached to tree nodes.

2. The structure and the content can be compressed

separately, which has proved to give good results.

Later, encoded tags and contents can be stored in

the file in their original order, so that the document

can be handled as a plain uncompressed document.

Alternatively, structure and content can be stored

separately with some pointer information to recon-

struct the tree, in which case the structure pointers

may help to point out relevant content to scan in

the querying process.

3. The text content can be compressed using any text

compression method. Semi-static compressors

permit accessing the content at random without

decompressing all from the beginning, whereas

adaptive compressors tend to achieve better com-

pression ratios. Splitting the text into blocks that

are compressed adaptively permits trading ran-

dom access time for compression ratio.

4. The structure can be compressed in several ways,

which can range from a simple scheme of assigning

numbers to the different tag names, to sophisticated

grammar-based compression methods. The latter

may take advantage of the explicit grammar when

it is available.

5. Structure can be used, in addition, to boost com-

pression. If the text contents are grouped according

to the structural path towards the root, and each

group is compressed separately, compression ratios

improve noticeably. This can be as simple as group-

ing texts that are under the same tag (that is,

considering only the deepest tree node containing

the text) or as sophisticated as considering the full

path towards the root.

A sample of different open-source systems that com-

press XML based on diverse combinations of these

principles is

XMill [13],

Millau [10],

XMLPPM [6],

XGrind [15],

XCQ [12],

XPress [14], and

SCM [1].

See http://pages.cpsc.ucalgary.ca/
gleighto/research/

xml-comp.html for a more exhaustive reference.

http://www.w3.org/TR/wbxml
http://www.w3.org/TR/wbxml
http://pages.cpsc.ucalgary.ca/~gleighto/research/xml-comp.html
http://pages.cpsc.ucalgary.ca/~gleighto/research/xml-comp.html

Managing Compressed Structured Text M 1681

M

Navigating and Searching in Compressed Form

The most popular retrieval operations on semi-

structured text are related to navigating the tree and

to searching it. Navigating means moving from a node

to its children, parent, and siblings. Searching means

various path matching operations such as finding

all the paths where a node labeled A is the parent

of another labeled B and that one is the ancestor of

another labeled C, which in turn contains text where

word W appears. A popular language combining navi-

gation and searching operations is XPath (see http://

www.w3.org/TR/xpath20).

Several of the schemes above permit accessing and

decompressing any part of the text at random posi-

tions. This is because they retain the original order of

the components of the document and compress using

a semi-static model. Those compression methods are

transparent, in the sense that the classical techniques to

navigate and search XML data, sequentially or using

indexes, can be used almost directly over this com-

pressed representation.

Other techniques, such as SCM (Huffman variant)

or XCQ, allow random access under a slightly more

complex scheme, because some work is needed in

order to start decompression at a specific point. Finally,

techniques based on adaptive compression (such as

XMLPPM or the PPM variant of SCM) usually achieve

better compression ratios but need to decompress the

whole data before they can operate on it.

Some of these techniques, on the other hand, take

some advantage of the separation between structure

and content in order to run queries faster than scan-

ning all the data. This is the case of XCQ, where the

table that points from each different tree path to all

the contents compressed under the corresponding

model, is useful to avoid traversing those contents if

the path does not match a path matching query. An-

other example is XPress, which encodes paths in a way

that the codes themselves permit checking contain-

ment between two paths. A concept that deviates

from the ideas presented is that of using a tree repre-

sentation that permits sharing repeated subtrees.

A good exponent is [5], which permits running a

large subset of XPath directly over this compressed

representation. The structure can be navigated almost

transparently, and path matching operations can be

sped up by factoring out the work done on repeated

substructures.
Succinct Encodings for Labeled Trees

Succinct representations of labeled trees are an algo-

rithmic development that finds applications in navi-

gating semi-structured text in compressed form. In its

simplest form, a general labeled tree of n nodes can be

represented using a sequence P of 2n balanced parenth-

eses and a sequence L of n labels (which correspond to

tag names and will be regarded as atomic for

simplicity).

This is obtained by traversing the tree in preorder

(that is, first the current node and then recursively each

of its children). As the tree is traversed, an opening

parenthesis is added to P each time one goes down to a

child, and a closing parenthesis when going up back to

the parent. In L, the labels are added in preorder.

Figure 1 (left) shows an example representation of a

labeled tree as a sequence of parentheses and labels in

preorder. It is not hard to rebuild the tree from this

representation. However, what is really challenging is to

navigate the tree directly in this representation (where a

node is represented by the position of its opening

parenthesis). For this sake, only sublinear extra space

on top of the plain representation is needed [9].

An essential operation to achieve efficient navigation

in compressed form is the rank operation on bitmaps:

rank(P, i) is the number of 1s (here representing open-

ing parentheses) in P[1, i]. One immediate application

of rank is to obtain the label of a given node i, as L[rank

(P, i)]. For example, consider the second child of the

root in Fig. 1. It is represented by the opening paren-

thesis at position 8 in the sequence. Its label is therefore

L[rank(‘‘((()())(())(()()))’’, 8)] = L[5] = ‘‘C’’. Another

application of rank, is to compute the depth of a

node i. This is the number of opening minus closing

parenthesis in P[1, i], that is, rank(P, i) � (i � rank

(P, i)) = 2 � rank(P, i)� i. For example, the depth of the

second child of the root is 2 � rank(‘‘((()())(())(()()))’’,
8) � 8 = 2 � 5 � 8 = 2.

It is not possible to fully explain, in a short entry,

the constant-time solutions to rank and other more

complex operations needed to navigate the compressed

tree. To have a flavor of how those solutions operate,

consider the case of supporting rank in constant time

and o(n) extra bits. Absolute rank values are stored at

every sth position of P (for some parameter s), and also

relative (to the beginning of the last absolute sample)

rank values at every bth position of P (for some

parameter b < s). Note that each relative rank value

http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

Managing Compressed Structured Text. Figure 1. An example labeled tree and two compression techniques. On the

left (bottom), as a parentheses plus labels sequence in preorder. On the right, its xbw transform. The dashed boxes

highlight the upward paths. The grayed box is the xbw transform of the tree.

1682M Managing Compressed Structured Text
needs only log s bits to be stored. Then, two table

accesses (absolute plus relative rank) give the partial

rank answer up to the b-bit chunk where position i

belongs. To complete the query in constant time, a

universal table is precomputed, which gives the num-

ber of 1-bits in every possible chunk of b bits. Some bit

masking and a final access to this table suffice to count

the remaining 1s within the chunk. By properly choos-

ing s and b one achieves o(n) extra bits overall, and still

answers rank(P, i) with three table accesses.

Other basic queries can be computed with similar

mechanisms (coarse sampling to store absolute values,

finer sampling to store relative values, and universal

tables to process short chunks). For example, one

can compute select(P, i), the position of the ith open-

ing parenthesis in P, so as to find the tree node

corresponding to the ith label in L. Other essential

operations for the navigation are close(i), the position

of the parenthesis that closes i (that is, the next paren-

thesis with the same depth of i); and enclose(i), the

lowest parenthesis that contains i (that is, the preced-

ing parenthesis with depth smaller than that of i).

With these two operations one can navigate the tree

as follows. The next sibling of i is close(i) + 1 (unless it

is a closing parenthesis, in which case i is the last child

of its parent). The first child of i is i + 1 unless P[i + 1]

is a closing parenthesis, in which case i is a leaf and

hence has no children. The parent of i is enclose(i). The

size of the subtree rooted at i is (close(i)� i + 1) ∕ 2. For
example, consider the first child of the root in Fig. 1,

such that i = 2. It finishes at close(i) = 7. Its next sibling

is close(i) + 1 = 8, the node of the previous examples.

Its first child is i + 1 = 3, the leftmost tree leaf. Its
parent is enclose(i) = 1, the root. The size of its subtree

is (close(i) � i + 1) ∕ 2 = (7 � 2 + 1) ∕ 2 = 3.

In order to enrich the navigation using the labels,

sequence L[1, n] is also processed for symbol rank and

select operations, where rankc(L, i) is the number of

occurrences of c in L[1, i] and selectc(L, j) is the posi-

tion of the jth occurrence of c in L. For example, the

following procedure finds all the descendants of node i

which are labeled c: (i) Find the position j = rank(P, i)

of node i in the sequence of labels. (ii) Compute k =

rankc(L, j� 1), the number of occurrences of c prior to j.

(iii) Find the positions pr = selectc(L, k + r) of c from

j onwards, for successive r values until select(P, pr) >

close(i), that is, until the answers are not anymore

descendants of i. For example, consider again the first

child of the root in Fig. 1, where i = 2 and close(i) = 7,

and find its descendants labeled ‘‘D’’. The first step is to

compute j = rank(P, 2) = 2, the position of its label in L.

Now, k = rank‘‘D’’(L, 1) = 0 tells that there are zero

occurrences of ‘‘D’’ before L[2]. Now the next occur-

rences of ‘‘D’’ in L are found as select‘‘D’’(L, 1) = 4,

select‘‘D’’(L, 2) = 6, ... The first such occurrence is

mapped to the tree node select(P, 4) = 5 (the second

tree leaf), which is within the subtree of i because

i � 5 � close(i). The second occurrence of ‘‘D’’ is

already outside the tree because select(P, 6) = 9 exceeds

close(i) = 7.

Many other powerful navigational operations can

be supported, although a more sophisticated parenth-

eses representation and much more technical develop-

ments are necessary. A good example can be seen in

[4]. Empirical results have been given for the basic

preorder parentheses represenation [9].

Managing Compressed Structured Text M 1683

M

Integrating Indexing and Compression

In recent work [7,8], by means of introducing a so-

called xbw transform, indexing and compression are

made part of a single integrated process, so that the

compressed data represents at the same time the

structured text and an index built on it. This is is a

very original idea which is likely to have practical

impact in the next years.

A brief description of the transform follows. Imag-

ine one takes all the upward paths in the labeled tree.

There is one such path per tree node: given a node, its

path starts from its parent and finishes in the root.

Regard the upward paths as a sequence of labels, and

assume for simplicity that labels are atomic symbols

that can be sorted. If the tree has n nodes, the resulting

n sequences of labels are collected in depth-first order

and then stably sorted in lexicographical order. Finally,

one forms a sequence with the nodes that originated

each of the upward paths, once they are sorted. The

xbw transform of a labeled tree is the sequence obtained

plus a bitmap telling which of those nodes are the last

child of their parent.

For example, take the tree of Fig. 1. The upward

path from the root is the empty string. The up-

ward path from the three root children are all ‘‘A’’,

and so on. The list of all the upward paths found in a

depth-first traversal is shown in the middle of the

figure, and on the right one can see the paths after a

stable lexicographical sorting. Now, collecting the

nodes that originated those paths in order one gets

the labels in the grayed area, S = ‘‘ABCAECCDD’’

(the other element is the bitmap marking the last

children of their parents, last = ‘‘100101011’’). Se-

quence S is essentially a permutation of the tree labels.

As the sorting is stable, all the nodes originating the

same path (e.g., ‘‘A’’) stay in depth-first order. In par-

ticular, sibling nodes are contiguous.

It turns out that it is possible to compute the xbw

transform in linear time and space, and moreover to

recover the original tree from these two sequences in

linear time and space. Furthermore, it is possible to

efficiently navigate the tree in xbw-transformed form,

with operations such as moving to the parent of the

current node, ith child, next sibling, ith child labeled X,

and so on. Those operations also build on the rank and

select operations described. For example, the third

child of the root is represented by the upward path

‘‘AA’’. Its position after the xbw sorting is i = 4, which

acts as the identifier for the node in this representation,

note S[4] = ‘‘A’’ is its label. The process to find its
children is as follows: (i) Find how many ‘‘A’’s are

there before in S, j = rank‘‘A’’ (S, i � 1) = 1. (ii) Find

the beginning of the range of the upward paths starting

with S[i] = ‘‘A’’ in the dashed box, k = 2 (this is

precomputed in a table storing such value for each

different label). (iii) Find the number of 1s in last

before that range, l = rank(last, k � 1) = 1. (iv). Find

the area corresponding to the children of i, select(last,

l + j) + 1 = 5 to select(last, l + j + 1) = 6.

The key operation that makes the xbw transform

unique compared to other tree representations its its

path searching ability: It can identify all the nodes in

the tree that descend from a given path sequence in

time proportional to the length of the sequence and

independent of the collection size (the nodes can then

be retrieved one by one). That is, the xbw-transformed

sequence acts not only as a navigable representation of

the tree but also as a powerful index to carry out some

path searching operations very efficiently.

Apart from saving all the pointer information, the

xbw-transformed sequence groups together the node

labels that descend from the same paths. Therefore, if

root-to-node paths are good predictors of the contents

of nodes (this is the property that most sophisticated

techniques like XMLPPM exploit), the transformed

sequence will contain long regions with similar con-

tents. Those are easily compressible by block-wise

encoding methods.

In [8] they showed how to apply this conceptual

method to real XML data, mixing location path opera-

tions with queries on the text content. They present

a practical implementation and empirical results

showing that it is competitive with the best XML

compressors, which do not offer simultaneous in-

dexing capabilities.

Key Applications
Any application managing semi-structured text, par-

ticularly if it has to transmit it over slow channels or

operate within limited fast memory, even if there is an

unlimited supply of slower memory, benefits from

these techniques.

Future Directions
Several problems remain open. A fundamental one is

the definition of an adequate notion of entropy for

semi-structured data, that is, a compressibility limit.

While there is reasonable consensus on the entropy of

plain text without structure (by taking it as a sequence

in general), there is no agreement even on how to

1684M Mandatory Access Control
measure the entropy of a tree, which is a key part of the

entropy of semi-structured text. The fact that this issue

is open implies that it is hard to determine how good,

in absolute terms, is a compression scheme.

The future of the area is likely to be in manipulat-

ing XML in compressed form, and in this aspect the

xbw transform is a promising direction. Yet, the area is

far from offering a competitive and complete path

search engine over compressed XML, for example. Sim-

ilarly, the state of the art in permitting manipulating

compressed XML, for example updating a semi-

structured text collection, is very preliminary (see

[11] for a recent, still theoretical, work on dynamizing

the xbw transform).

Experimental Results
Experiments can be found in the papers cited. In

particular, for the xbw transform, see [8].

URL to Code
Several public XML compressors are available, for

example

XMill (http://sourceforge.net/projects/xmill),

XMLPPM (http://sourceforge.net/projects/xmlppm),

SCMPPM

(http://www.infor.uva.es/
jadiego/download.php),

and

XGrind (http://cvs.sourceforge.net/viewcvs.py/

xmill/xmill/XGrind).

Cross-references
▶Compression

▶ Semi-Structured Data

▶XML

▶XPath/XQuery

Recommended Reading
1. Adiego J., Navarro G., and de la Fuente P. Using Structural

Contexts to Compress Semistructured Text Collections. Inf.

Proc. & Man., 43:769–790, 2007.

2. Baeza-Yates R. and Navarro G. Integrating contents and struc-

ture in text retrieval. ACM SIGMOD Rec., 25(1):67–79, 1996.

3. Barbay J., Golynski A., Munro I., and Rao S. Adaptive searching

in succinctly encoded binary relations and tree-structured

documents. In Proc. 17th Annual Symp. on Combinatorial

Pattern Matching, 2006, pp. 24–35.

4. Bell T., Cleary J., and Witten I. Text Compression. Prentice Hall,

Englewood Cliffs, NJ, 1990.

5. Buneman, P., Grohe, M., and Koch, C. Path Queries on Com-

pressed XML. In Proc. 29th Very Large Databases Conference,

2003, pp. 141–152.
6. Cheney J. Compressing XMLwith multiplexed hierarchical PPM

models. In Proc. 11th IEEE Data Compression Conf., 2001,

pp. 163–172.

7. Ferragina P., Luccio F., Manzini G., and Muthukrishnan S.

Structuring labeled trees for optimal succinctness, and beyond.

In Proc. 46th Annu. Symp. on Foundations of Computer Sci-

ence, 2005, pp. 184–196.

8. Ferragina P., Luccio F., Manzini G., and Muthukrishnan S.

Compressing and searching XML data via two zips. In Proc.

15th Int. World Wide Web Conf., 2006.

9. Geary R., Rahman N., Raman R., and Raman V. A simple

optimal representation of balanced parentheses. Theoretical

Computer Science, 368(3):231–246, 2006.

10. Girardot M. and Sundaresan N. Millau: An encoding format

for efficient representation and exchange of XML documents

over the WWW. In Proc. 9th Int. World Wide Web Conference,

2000, pp. 747–765.

11. Gupta A., Hon W.K., Shah R., and Vitter J. A framework

for dynamizing succinct data structures. In Proc. 34th Int.

Colloquium on Automata, Languages, and Programming,

2007, pp. 521–532.

12. Levene M. and Wood P. XML structure compression. In Proc.

2nd Int. Workshop on Web Dynamics, 2002.

13. Liefke H. and Suciu D. XMill: an efficient compressor for XML

data. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000, pp. 153–164.

14. Min J.K., Park M.J., and Chung C.W. XPress: a querieable

compression for XML data. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2003, pp. 122–133.

15. Tolani P. and Haritsa J. XGRIND: A query-friendly XML com-

pressor. In Proc. 18th Int. Conf. on Data Engineering, 2002,

pp. 225–234.
Mandatory Access Control

BHAVANI THURAISINGHAM

The University of Texas at Dallas, Richardson, TX,

USA

Synonyms
Multilevel security

Definition
As stated in [1], ‘‘in computer security, ‘mandatory

access control (MAC)’ refers to a kind of access control

defined by the National Computer Security Center’s

Trusted Computer System Evaluation Criteria (TCSEC)

as a means of restricting access to objects based on the

sensitivity (as represented by a label) of the information

contained in the objects and the formal authorization

(i.e., clearance) of subjects to access information of such

http://sourceforge.net/projects/xmill
http://sourceforge.net/projects/xmlppm
http://cvs.sourceforge.net/viewcvs.py/xmill/xmill/XGrind
http://cvs.sourceforge.net/viewcvs.py/xmill/xmill/XGrind
http://www.infor.uva.es/~jadiego/download.php

MANET Databases M 1685

M

sensitivity.’’ With operating systems, the subjects are

processes and objects are files. The goal is to ensure

that when a subject accesses a file, no unauthorized

information is leaked.

Key Point
MACModels:MACmodels were developed initially for

secure operating systems mainly in the 1970s and early

1980s, and started with the Bell and La Padula security

model. This model has two properties: the simple

security property and the *-property (pronounced

the star property). The simple security property states

that a subject has read access to an object if the

subject’s security level dominated the level of the

object. The *-property states that a subject has write

access to an object if the subject’s security level is

dominated by that of the object [2]. Since then, varia-

tions of this model as well as a popular model called

the noninterferencemodel [3] have been proposed. The

noninterference model is essentially about higher-level

processes not interfering with lower level processes.

Note that with the Bell and La Padula model, a higher

level process can covertly send information to a lower

level process by manipulating the file locks, even

though there can be no write down due to the star

property. The noninterference model prevents such

covert communication.

MAC for Database Systems: While Database Man-

agement Systems (DBMS) must deal with many of the

same security concerns as operating systems (identifi-

cation and authentication, access control, auditing),

there are characteristics of DBMSs that introduce

additional security challenges. For example, objects in

DBMSs tend to be of varying sizes and can be of fine

granularity such as relations, attributes and elements.

This contrasts with operating systems where the gran-

ularity tends to be coarse such as files or segments.

Because of the fine granularity in database systems the

objects on which MAC is performed may differ. In

operating systems MAC is usually performed on the

same object such as a file whereas in DBMSs it could be

on relations and attributes. The simple security and

* property are both applicable for database systems.

However many of the database systems have modified,

the *-property to read as follows: A subject has write

access to an object if the subject’s level is that of the

object. This means a subject can modify relations at

its level. Various commercial secure DBMS products

have emerged. These products have been evaluated
using the Trusted Database Interpretation which inter-

prets the TCSEC for database systems.

MAC for Networks: For applications in defense and

intelligence multilevel secure networks are essential.

The idea here is for the network protocols such as

a TCP/IP (Transmission Control Protocol/Internet

Protocol) protocols operate at multiple security levels.

The Bell and La Padula model has been extended for

networks. Furthermore, the commercial multilevel

networks have been evaluated using the Trusted Net-

work Interpretation that interprets the TCSEC for

networks.

Cross-references
▶Multilevel Secure Database Management System

Recommended Reading
1. http://en.wikipedia.org/wiki/Mandatory_access_control

2. Bell D. and LaPadula L. ‘‘Secure Computer Systems: Mathemati-

cal Foundations and Model,’’ M74–244. The MITRE Corpora-

tion, Bedford, MA, 1973.

3. Goguen J. and Meseguer J. Security policies and security models.

In Proc. IEEE Symp. on Security and Privacy, 1982, pp. 11–20.
MANET Databases

YAN LUO, OURI WOLFSON

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Mobile ad hoc network databases

Definition
A mobile ad hoc network (MANET) database is

a database that is stored in the peers of a MANET.

The network is composed by a finite set of mobile peers

that communicate with each other via short range

wireless protocols, such as IEEE 802.11, Bluetooth,

Zigbee, or Ultra Wide Band (UWB). These protocols

provide broadband (typically tens of Mbps) but short-

range (typically 10–100 m) wireless communication.

On each mobile peer there is a local database that

stores and manages a collection of data items, or

reports. A report is a set of values sensed or entered

by the user at a particular time, or otherwise obtained

by a mobile peer. Often a report describes a physical

resource such as an available parking slot. All the local

databases maintained by the mobile peers form the

http://en.wikipedia.org/wiki/Mandatory_access_control

1686M MANET Databases
MANET database. The peers communicate reports and

queries to neighbors directly, and the reports and

queries propagate by transitive multi-hop transmis-

sions. Figure 1 below illustrates the definition.

MANET databases enable matchmaking or resource

discovery services in many application domains, includ-

ing social networks, transportation, mobile electronic

commerce, emergency response, and homeland security.

Communication is often restricted by bandwidth

and power constraints on the mobile peers. Further-

more, reports need to be stored and later forwarded,

thus memory constraints on the mobile devices consti-

tute a problem as well. Thus, careful and efficient utili-

zation of scarce peer resources (specifically bandwidth,

power, and memory) are an important challenge for

MANET databases.

Historical Background
Consider mobile users that search for local resources.

Assuming that the information about the existence

and location of such a resource resides on a server, a

communication infrastructure is necessary to access

the server. Such an infrastructure may not be available

in military/combat situations, disaster recovery, in a

commercial flight, etc. Even if the infrastructure and a

server are both available, a user may not be willing to

pay the dollar-cost that is usually involved in accessing

the server through the cellular infrastructure. Further-

more, cellular bandwidth is limited (e.g., 130 character

text messages). In other words, a client-server app-

roach may have accessibility problems.

Currently, Google and local.com provide static local

information (e.g., the location of a restaurant, pharmacy,

etc.), but not dynamic information such as the location
MANET Databases. Figure 1. A MANET database.
of a taxi cab, a nearby person of interest, or an available

parking slot. These dynamic resources are temporary in

nature, and thus require timely, real-time update rates.

Such rates are unlikely to be provided for the country or

the world by a centralized server farm, e.g., Google.

Thus, dynamic local resources may require local servers,

each dedicated to a limited geographic area. However,

for many areas such a local server may not exist due to

lack of a profitable business model, and if it exists it may

be unavailable (such servers are unlikely to have the

reliability of global sites such as Google). Furthermore,

the data on the server may be unavailable due to propa-

gation delays (think of sudden-brake information that

needs to be propagated to a server and from there to the

trailing vehicles), or due to device limitations (e.g., a cab

customer’s cell-phone may have Bluetooth but not in-

ternet access to update the server), or due to the fact that

updates frommobile devices may involve a communica-

tion cost that nobody is willing to pay, or due to the fact

that the local server (e.g., of Starbucks) may accept only

updates from certain users or certain applications but

not others. In short, a client-(local)-server may have

both accessibility and availability problems.

Thus, a MANET database can substitute or aug-

ment the client-(local)-server approach. Communica-

tion in the MANET is free since it uses the unlicensed

spectrum, and larger in bandwidth than the cellular

infrastructure, thus can provide media rich informa-

tion, such as maps, menus, and even video. A mobile

user may search the MANET database only, or com-

bine it with a client-server search.

Currently, there are quite a few experimental projects

in MANET databases. These can be roughly classified

into pedestrians and vehicular projects. Vehicular

MANET Databases M 1687
projects deal with high mobility and high communica-

tion topology change-rates, whereas pedestrians projects

have a strong concern with power issues. The following

are several active experimental MANET database pro-

jects for pedestrians and vehicles:

Pedestrians Projects

� 7DS – Columbia University
– http://www.cs.unc.edu/~maria/7ds/

– Focuses on accessing web pages in environ-

ments where only some peers have access to

the fixed infrastructure.
� iClouds – Darmstadt University
– http://iclouds.tk.informatik.tu-darmstadt.de/

– Focuses on the provision of incentives to bro-

kers (intermediaries) to participate in MANET

databases.
� MoGATU – University of Maryland, Baltimore

County
– http://mogatu.umbc.edu/

– Focuses on the processing of complex data

management operations, such as joins, in a

collaborative fashion.

M
� PeopleNet – National University of Singapore
– http://www.ece.nus.edu.sg/research/projects/

abstract.asp?Prj=101

– Proposes the concept of information Bazaars,

each of which specializes in a particular type of

information; reports and queries are propa-

gated to the appropriate bazaar by the fixed

infrastructure.
� MoB – University of Wisconsin and Cambridge

University
– http://www.cs.wisc.edu/~suman/projects/agora/

– Focuses on incentives and the sharing among

peers of virtual information resources such as

bandwidth.
� Mobi-Dik – University of Illinois at Chicago
– http://www.cs.uic.edu/~wolfson/html/p2p.html

– Focuses on information representing physical

resources, and proposes stateless algorithms

for query processing, with particular concerns

for power, bandwidth, and memory constraints.
Vehicular Projects

� CarTALK 2000 – A European project
– http://www.cartalk2000.net/

– Develops a co-operative driver assistance sys-

tem based upon inter-vehicle communication
and MANET databases via self-organizing ve-

hicular ad hoc networks.
� FleetNet – Internet on the Road Project
– http://www.ccrle.nec.de/Projects/fleetnet.htm

– Develops a wireless multi-hop ad hoc network

for intervehicle communication to improve the

driver’s and passenger’s safety and comfort. A

data dissemination method called ‘‘contention-

based forwarding’’ (CBF) is proposed in which

the next hop in the forwarding process is select-

ed through a distributed contention mechanism

based on the current positions of neighbors.
� VII – Vehicle Infrastructure Integration, a US DOT

project
– http://www.its.dot.gov/vii/

– The objective of the project is to deploy advanced

vehicle-to-vehicle and vehicle-to-infrastructure

communications that could keep vehicles from

leaving the road and enhance their safe move-

ment through intersections.
� Grassroots, Trafficview – Rutgers University

TrafficInfo – University of Illinois at Chicago

– http://paul.rutgers.edu/~gsamir/dataspace/grassroots.

html

– http://discolab.rutgers.edu/traffic/veh_apps.htm

– http://cts.cs.uic.edu/

– These projects develop an environment in which

each vehicle contributes a small piece of traffic infor-

mation (its current speed and location) to the net-

work, using the P2P paradigm, and each vehicle

aggregates the pieces into a useful picture of the

local traffic.

Foundations
There are twomain paradigms for answering queries in

MANET databases, one is report pulling and the other

one is report pushing.

Report pulling means that a mobile peer issues a

query which is flooded in the whole network, and the

answer-reports will be pulled from the mobile peers

that have them (see e.g., [2]). Report pulling is widely

used in resource discovery, such as route discovery in

mobile ad hoc networks and file discovery by query

flooding in wired P2P networks like Gnutella. Flooding

in a wireless network is in fact relatively efficient as

compared to wired networks because of the wireless

broadcast advantage, but there are also disadvantages

which will be explained below.

http://www.cs.unc.edu/~maria/7ds/
http://iclouds.tk.informatik.tu-darmstadt.de/
http://mogatu.umbc.edu/
http://www.ece.nus.edu.sg/research/projects/abstract.asp?Prj=101
http://www.ece.nus.edu.sg/research/projects/abstract.asp?Prj=101
http://www.cs.wisc.edu/~suman/projects/agora/
http://www.cs.uic.edu/~wolfson/html/p2p.html
http://www.cartalk2000.net/
http://www.ccrle.nec.de/Projects/fleetnet.htm
http://www.its.dot.gov/vii/
http://paul.rutgers.edu/~gsamir/dataspace/grassroots.html
http://paul.rutgers.edu/~gsamir/dataspace/grassroots.html
http://discolab.rutgers.edu/traffic/veh_apps.htm
http://cts.cs.uic.edu/

1688M MANET Databases
Another possible approach for data dissemination

is report pushing. Report pushing is the dual problem

of report pulling; reports are flooded, and consumed

by peers whose query is answered by received reports.

So far there exist mechanisms to broadcast informa-

tion in the complete network, or in a specific geo-

graphic area (geocast), apart from to any one specific

mobile node (unicast/mobile ad hoc routing) or any

one arbitrary node (anycast). Report pushing para-

digm can be further divided into stateful methods

and stateless methods. Most stateful methods are

topology-based, i.e., they impose a structure of links

in the network, and maintain states of data dissemina-

tion. PStree [4], which organizes the peers as a tree,

is an example of topology based methods.

Another group of stateful methods is cluster- or

hierarchy-based method, such as [14], in which

moving peers are grouped into some clusters or hier-

archies and the cluster heads are randomly selected.

Reports are disseminated through the network in a

cluster or hierarchy manner, which means that reports

are first disseminated to every cluster head, and each

cluster head then broadcasts the reports to the member

peers in its group. Although cluster- or hierarchy-

based methods can minimize the energy dissipation

in moving peers, these methods will fail or cost more

energy in highly mobile environments since they

have to maintain a hierarchy structure and frequently

reselect cluster heads.

Another stateful paradigm consists of location-

based methods (see [9]). In location-based methods,

each moving peer knows the location of itself and

its neighbors through some localization techniques,

such as GPS or Atomic Multilateration (see [9]).

The simplest location-based data dissemination

is Greedy Forwarding, in which each moving peer trans-

mits a report to a neighbor that is closer to the destina-

tion than itself. However, Greedy Forwarding can fail

in some cases, such as when a report is stuck in local

minima, which means that the report stays in a mobile

peer whose neighbors are all further from the destina-

tion. Therefore, some recovery strategies are proposed,

such as GPSR (Greedy Perimeter Stateless Routing [6]).

Other location-based methods, such as GAF (Geographic

Adaptive Fidelity [17]) and GEAR (Geographical and

Energy Aware Routing [18]), take advantage of knowl-

edge about both location and energy to disseminate

information and resources more efficiently.
In stateless methods, the most basic and simp-

lest one is flooding-based method, such as [11]. In

flooding-based methods, mobile peers simply propa-

gate received reports to all neighboring mobile

peers until the destination or maximum hop is

reached. Each report is propagated as soon as it is

received. Flooding-based methods have many advan-

tages, such as no state maintenance, no route discovery,

and easy deployment. However, they inherently cannot

overcome several problems, such as implosion, overlap,

and resource blindness. Implosion refers to the waste of

resources taking place when a node forwards a message

to a neighbor although the latter may have already

received it from another source. Overlap occurs when

two nodes read the same report, and thus push into the

network the same information. Resource blindness

denotes the inability of the protocol to adapt the

node’s behavior to its current availability of resources,

mainly power [12]. Therefore, other stateless methods

are proposed, such as gossiping-based methods and

negotiation-based methods.

Gossiping-based methods, such as [3], improve

flooding by transmitting received reports to a subset

of randomly selected neighbors; another option is

to have some neighbors simply drop the report. For

example, the neighbors that are not themselves inter-

ested in the report drop it. The advantages of gossip-

ing-based methods include reducing the implosion

and lowering the system overhead. However, dissemi-

nation, and thus performance, is reduced compared

to pure flooding.

Negotiation-based methods solve the implosion

and overlap problem by transmitting first the id’s of

reports; the reports themselves are transmitted only

when requested (see [7]). Thus, some extra data trans-

mission is involved, which costs more memory, band-

width, and energy. In addition, in negotiation-based

methods, moving peers have to generate meta-data or

a signature for every report so that negotiation can be

carried out, which will increase the system overhead

and decrease the efficiency.

Another important stateless paradigm for data dis-

semination in MANET databases is store-and-forward.

In contrast to flooding, store-and-forward does not

propagate reports as soon as they are received; rather

they are stored and rebroadcast later. This obviously

introduces storage and bandwidth problems, if too

many reports need to be saved and rebroadcast at the

MANET Databases M 1689

M

same time. To address these,methods such as [5] rank all

the reports in a peer’s database in terms of their relevance

(or expected utility), and then the reports are commu-

nicated and saved in the order of their relevance. Or, the

reports requested and communicated are the ones with

the relevance above a certain threshold. The notion of

relevance quantifies the importance or the expected util-

ity of a report to a peer at a particular time and at a

particular location. Other store-and-forward methods

include PeopleNet [10] and 7DS [13].

In summary, the paradigms for data dissemination

in MANET databases are summarized in Fig. 2 below.

Key Applications
MANET databases provide mobile users a search

engine for transient and highly dynamic information

in a local geospatial environment. MANET databases

employ a unified model for both the cellular infra-

structure and the mobile ad hoc environments. When

the infrastructure is available, it can be augmented by

the MANET database approach.

Consider a MANET database platform, i.e., a set of

software services for data management in a MANET

environment; it is similar to a regular Database

Management System, but geared to mobile P2P inter-

actions. Such a platform will enable quick building

of matchmaking or resource discovery services in

many application domains, including social networks,
MANET Databases. Figure 2. Query answering methods in M
emergency response and homeland security, the

military, airport applications, mobile e-commerce,

and transportation.

Social Networks

In a large professional, political, or social gathering,

MANET databases are useful to automatically facili-

tate a face-to-face meeting based on matching profiles.

For example, in a professional gathering, MANET

databases enable attendees to specify queries (interest

profiles) and resource descriptions (expertise) to facil-

itate face-to-face meetings, when mutual interest is

detected. Thus, the individual’s profile that is stored

in MANET databases will serve as a ‘‘wearable web-site.’’

Similarly, MANET databases can facilitate face-to-face

meetings for singles matchmaking.

Emergency Response, Homeland Security, and the

Military

MANET databases offer the capability to extend deci-

sion-making and coordination capability. Consider

workers in disaster areas, soldiers and military person-

nel operating in environments where the wireless

fixed infrastructure is significantly degraded or non-

existent. As mobile users involved in an emergency

response naturally cluster around the location of

interest, a self-forming, high-bandwidth network that

allows database search without the need of potentially
ANET databases.

1690M MANET Databases
compromised infrastructure could be of great benefit.

For instance, the search could specify a picture of a

wanted person.

Airport Applications

A potential opportunity that will benefit both the

consumer and the airport operations is the dissemina-

tion and querying of real-time information regarding

flight changes, delays, queue length, parking informa-

tion, special security alerts and procedures, and bag-

gage information. This can augment the present audio

announcements that often cannot be heard in nearby

restaurants, stores, or restrooms, and augment the

limited number of displays.

Mobile E-commerce

Consider short-range wireless broadcast and mobile

P2P dissemination of a merchant’s sale and inventory

information. It will enable a customer (whose cell

phone is query-capable) who enters a mall to locate a

desired product at the best price. When a significant

percentage of people have mobile devices that can

query retail data, merchants will be motivated to

provide inventory/sale/coupons information electron-

ically to nearby potential customers. The information

will be disseminated and queried in a P2P fashion (in,

say, a mall or airport) by the MANET database.

Transportation Safety and Efficiency

MANET databases can improve safety and mobility by

enabling travelers to cooperate intelligently and auto-

matically. A vehicle will be able to automatically and

transitively communicate to trailing vehicles its ‘‘slow

speed’’ message when it encounters an accident, con-

gestion, or dangerous road surface conditions. This

will allow other drivers to make decisions such as

finding alternative roads. Also, early warning messages

may allow a following vehicle to anticipate sudden

braking, or a malfunctioning brake light, and thus

prevent pile-ups in some situations. Similarly, other

resource information, such as ridesharing opportu-

nities, transfer protection (transfer bus requested to

wait for passengers), will be propagated transitively,

improving the efficiency of the transportation system.

Future Directions
Further work is necessary on data models for mobile

P2P search applications. Work on sensor databases
(e.g., Tinydb [8]) addresses data-models and languages

for sensors, but considers query processing in an envi-

ronment of static peers (see e.g., POS [1]). Cartel [5]

addresses the translation of these abstractions to an

environment in which cars transfer collected data to a

central database via fixed access points. Work on

MANET protocols deals mainly with routing and mul-

ticasting. In this landscape there is a gap, namely gen-

eral query-processing in MANET’s; such processing

needs to be cognizant of many issues related to peer-

mobility. For example, existing mobile P2P query

processing methods deal with simple queries, e.g.,

selections; each query is satisfied by one or more

reports. However, in many application classes one

may be interested in more sophisticated queries, e.g.,

aggregation. For instance, in mobile electronic com-

merce a user may be interested in the minimum gas

price within the next 30 miles on the highway. Proces-

sing of such P2P queries may present interesting opti-

mization opportunities.

After information about a mobile resource is

found, localization is often critical for finding the

physical resource. However, existing (self)-localization

techniques are insufficient. For example, GPS is not

available indoors and the accuracy of GPS is not reli-

able. Thus, furthering the state of the art on localiza-

tion is important for mobile P2P search.

As discussed above, MANET databases do not

guarantee answer completeness. In this sense, the inte-

gration with an available infrastructure such as the

internet or a cellular network may improve perfor-

mance significantly. This integration has two aspects.

First, using the communication infrastructure in order

to process queries more efficiently; and second, using

data on the fixed network in order to provide better

and more answers to a query. The seamless integration

of MANET databases and infrastructure databases

introduces important research challenges.

Other important research directions include:

incentives for broker participation in query processing

(see [16]), and transactions/atomicity/recovery issues

in databases distributed over mobile peers (virtual

currency must be transferred from one peer to another

in an atomic fashion, otherwise may be lost).

Of course, work on efficient resource utilization in

mobile peers, and coping with sparse networks and

dynamic topologies is still very important for mobile

P2P search.

MAP M 1691

M

Cross-references
▶Mobile Ad hoc Network Databases

▶ Peer-to-peer Database

▶ Peer-to-peer Network

Recommended Reading
1. Cox L., Castro M., and Rowstron A. POS: Practical Order

Statistics for wireless sensor networks. In Proc. 23rd Int. Conf.

on Distributed Computing Systems, 2006, pp. 52.

2. Das S.M., Pucha H., and Hu Y.C. Ekta: An efficient DHT

substrate for distributed applications in Mobile Ad hoc

Networks. In Proc. Sixth IEEEWorkshop on Mobile Computing

Systems and Applications, 2004, pp. 163–173.

3. Datta A., Quarteroni S., and Aberer K. Autonomous gossiping: a

self-organizing epidemic algorithm for selective information

dissemination in wireless Mobile Ad-Hoc Networks. In Proc.

Int. Conf. Semantics of a Networked World, 2004, pp. 126–143.

4. Huang Y. and Molina H.G. Publish/subscribe in a mobile

environment. In Proc. 2nd ACM Int. Workshop on Data Eng.

for Wireless and Mobile Access, 2001, pp. 27–34

5. Hull B. et al. CarTel: a distributed mobile sensor computing

system. In Proc. 4th Int. Conf. on Embedded Networked Sensor

Systems, 2006, pp. 125–138.

6. Karp B. and Kung H.T. GPSR: Greedy Perimeter Stateless

Routing for wireless sensor networks. In Proc. 6th Annual

Int. Conf. on Mobile Computing and Networking, 2000,

pp. 243–254.

7. Kulik J., Heinzelman W., and Balakrishnan H. Negotiation-

based protocols for disseminating information in wireless

sensor networks. Wireless Netw., 8:169–185, 2002.

8. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W.

Tiny DB: an acquisitional query processing system for sensor

networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

9. Mauve M., Widmer A., and Hartenstein H. A survey on

position-based routing in Mobile Ad-Hoc Networks. IEEE

Netw., 15(6):30–39, 2001.

10. Motani M., Srinivasan V., and Nuggehalli P. PeopleNet:

engineering a wireless virtual social network. In Proc. 11th

Annual Int. Conf. on Mobile Computing and Networking,

2005, pp. 243–257.

11. Oliveira R., Bernardo L., and Pinto P. Flooding techniques

for resource discovery on high mobility MANETs. In Proc. Int.

Workshop on Wireless Ad-hoc Networks, 2005.

12. Papadopoulos A.A., and McCann J.A. Towards the design of an

energy-efficient, location-aware routing protocol for mobile,

Ad-hoc Sensor Networks. In Proc. of the 15th Int. Workshop

on Database and Expert Systems Applications, 2004, pp.

705–709.

13. Papadopouli M. and Schulzrinne H. Design and implementation

of a P2P Data dissemination and prefetching tool for mobile

users. In Proc. 1st New York Metro Area Networking Workshop,

IBM TJ Watson Research Center. Hawthorne, NY, 2001.

14. Visvanathan A., Youn J.H., and Deogun J. Hierarchical Data

Dissemination Scheme for Large Scale Sensor Networks. In

Proc. IEEE Int. Conf. on Communications, 2005, pp. 3030–

3036.
15. Wolfson O., Xu B., Yin H.B., and Cao H. Search-and-discover

in Mobile P2P Network Databases. In Proc. 23rd Int. Conf. on

Distributed Computing Systems, 2006, pp. 65.

16. Xu B., Wolfson O., and Rishe N. Benefit and pricing of

spatio-temporal information in Mobile Peer-to-Peer Networks.

In Proc. 39th Annual Hawaii Conf. on System Sciences, vol. 9,

2006, pp. 2236.

17. Xu Y., Heidemann J., and Estrin D. Geography-informed

energy conservation for Ad hoc Routing. In Proc. 7th

Annual Int. Conf. on Mobile Computing and Networking,

2001, pp. 70–84.

18. Yu Y., Govindan R., and Estrin D. Geographical and Energy

Aware Routing: a Recursive Data Dissemination Protocol

for Wireless Sensor Networks. Technical Report UCLA/CSD-

TR-01-0023, UCLA, May 2001.
Manmachine Interaction (Obsolete)

▶Human-Computer Interaction
Many Sorted Algebra

▶Data Types in Scientific Data Management
MAP

STEVEN M. BEITZEL
1, ERIC C. JENSEN

2, OPHIR FRIEDER
3

1Telcordia Technologies, Piscataway, NJ, USA
2Twitter, Inc., San Fransisco, CA, USA
3Georgetown University, Washington, DC, USA

Synonyms
Mean average precision

Definition
The Mean Average Precision (MAP) is the arithmetic

mean of the average precision values for an informa-

tion retrieval system over a set of n query topics. It can

be expressed as follows:

MAP ¼ 1

n

X
n

APn

where AP represents the Average Precision value for a

given topic from the evaluation set of n topics.

1692M Map Algebra
Key Points
The Mean Average Precision evaluation metric has

long been used as the de facto ‘‘gold standard’’ for

information retrieval system evaluation at the NIST

Text Retrieval Conference (TREC) [1]. Many TREC

tracks over the years have evaluated run submissions

using the trec_eval program, which calculates Mean

Average Precision, along with several other evaluation

metrics. Much of the published research in the infor-

mation retrieval field over the last 25 years relies on

observed difference in MAP to draw conclusions

about the effectiveness of a studied technique or sys-

tem relative to a baseline.

Recently, the explosive growth of the World Wide

Web and the corresponding difficulty of creating test

collections that are representative, robust, and of appro-

priate scale has created new challenges for the research

community. One such challenge is how to best evaluate

systems in cases of incomplete relevance information.

It has been shown that ranking systems by their MAP

scores when relevance information is incomplete does

not correlate highly with their rankings with complete

judgments. This is a key weakness of MAP as a metric.

In response to this problem, new metrics (such as

BPref, for example) have been proposed that attempt

to compensate for often incomplete relevance informa-

tion [2].
Cross-references
▶Average Precision

▶BPref

▶Chart

▶ Effectiveness Involving Multiple Queries

▶Geometric Mean Average Precision
Recommended Reading
1. National Institute of Standards and Technology. TREC-

2004 common evaluation measures. Available online at:

http://trec.nist.gov/pubs/trec14/appendices/CE.MEASURES05.pdf

(retrieved on August 27, 2007).

2. Sakai T. Alternatives to BPref. In Proc. 33rd Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2007, pp. 71–78.
Map Algebra

▶ Spatial Operations and Map Operations
Map Matching

CHRISTIAN S. JENSEN, NERIUS TRADIŠAUSKAS

1Aalborg University, Aalborg, Denmark

Synonyms
Position snapping
Definition
Map matching denotes a procedure that assigns geo-

graphical objects to locations on a digital map. The

most typical geographical objects are point positions

obtained from a positioning system, often a GPS receiver.

In typical uses, the GPS positions derive from a receiver

located in a vehicle or other moving object traveling in a

road network, and the digitalmapmodels the embedding

into geographical space of the roads by means of poly-

lines that approximate the center lines of the roads. The

GPS positions generally do not intersect with the poly-

lines, due to inaccuracies. The aim of map matching is

then to place the GPS positions at their ‘‘right’’ locations

on the polylines in the map.

Map matching is useful for a number of purposes.

Map matching is used when a navigation system dis-

plays the vehicle’s location on a map. In many applica-

tions, information such as speed limits are assigned to

the representations of roads in a digital map–map

matching offers a means of relating such information

to moving objects. Map matching may also be used for

the representation of a route of a vehicle by means of

the (sub-) polylines in the digital map.

Two general types of map matching exist, namely

on-line map matching and off-line map matching.

With on-line map matching, the map location of an

object’s current position needs to be determined in real

time. Only past, but not future, positions are available.

Vehicle navigation systems exemplify this type of map

matching. In off-line map matching, a static data set

of positions is given, meaning that all future positions

are available when map matching a position. Thus

better map matching may result when compared to

on-line map matching. For example, off-line map

matching may be used for billing in pay-per-use sce-

narios (insurance, road pricing).

Historical Background
One of the earliest map matching algorithms found

in the literature dates back to 1971 and is due to R.L.

http://trec.nist.gov/pubs/trec14/appendices/CE.MEASURES05.pdf

Map Matching. Figure 1. Map and vehicle location

example.

Map Matching M 1693

M

French (see the overview in reference [1]). A 1996

paper by Berstein and Kornhauser [2] offers a brief

introduction to the map matching problem and its

variations.

The scientific literature contains a range of papers

that address different aspects of themapmatching prob-

lem. White et al. [3] study techniques that pay special

attention to intersection areas, where map matching can

be particularly challenging. Taylor et al. [4] propose a

map matching technique that uses differential correc-

tions and height, which leads to improved performance.

Quddus et al. [5] provide a summary of different on-line

and off-line map matching algorithms and describe

advantages and disadvantages of these. Quddus et al.

[6] have most recently proposed a map matching algo-

rithm that utilizes techniques from fuzzy logic. This

technique shows improved accuracy of polyline identifi-

cation and the positioning on polylines. A complex off-

line map matching algorithm was recently developed by

Bratkatsoulas et al. [7] that uses the Fréchet distance to

map match GPS position samples recorded only every

30 seconds. (While GPS receivers typically output a

position every second, it may be that only some of

these are saved for use in subsequent off-line map

matching).

Foundations
Basics. The most common use of map matching

occurs in transportation where the GPS positions

obtained from a GPS receiver in a vehicle are map

matched to a digital representation of a road network.

An example of GPS positions from a vehicle (dots) and

a digital road network are shown in Fig. 1. The vehicle’s

trip started on road #2 and continued along road #1. In

Fig. 2a the start of the trip is enlarged. The dots

represent the vehicle’s GPS locations, and the triangles

represent the corresponding positions map matched

onto the road network. The road network locations

are typically expressed by using linear referencing,

which is a standard means of indicating such locations.

With linear referencing, a tuple (#2,5.2,+1) captures

the road that the vehicle is driving on (#2), a position

on that road measured as a distance from the begin-

ning of the road (5.2 distance units). The third element

captures a perpendicular distance from the road loca-

tion given by the first two elements. In the tuple, the

displacement is one distance unit to the left. Because a

GPS position is typically mapped to the closest loca-

tion in the road digital network (i.e., a perpendicular
projection is used), the third element is capable of

capturing the GPS position that was map matched to

the road network location. Linear referencing is sup-

ported by, e.g., the Oracle DBMS [6].

In Fig. 2b, a place where map matching is challeng-

ing is enlarged. The crosses represent two instance of

wrong map matching to the nearest road, and the

triangles represent the correct map matching.

Categorization of Map Matching Algorithms.

Map matching can be divided into on-line and off-

line map matching. On-line map matching occurs in

real-time. Here, the map matching algorithm tries to

identify the network location of a GPS position every

time a new position is received. The algorithm has

available the current position as well as information

about the map matching of previous positions.

This contrasts off-line map matching, which occurs

after a trip is over and all the positions from the start to

the end are known. Off-line map matching is more

accurate than on-line map matching, as more infor-

mation (i.e., future positions) is available. An off-line

algorithm does not provide a map matching result

until the entire trip has been map matched.

On-line map matching is mostly used in vehicle

navigation, tracking, and other applications that need

the most recent network location of a vehicle. Off-line

map matching is mostly used to determine as accurate-

ly as possible which route a vehicle was driving. Off-

line map matching may also be used in scenarios where

Map Matching. Figure 2. Map matching example.

1694M Map Matching
GPS data are received in batches from content provi-

ders and where the purpose is to build speed maps that

capture the expected travel speeds for different road

segments and time intervals. Network locations of

vehicles are essential in road load analysis, road pric-

ing, and similar applications.

Map matching algorithms can also be divided

into point-to-point, point-to-polyline, and polyline-

to-polyline approaches. In point-to-point map match-

ing, a point out of a point set is identified as a match

for the given position. In point-to-polyline matching,

a polyline in a polyline set is identified, and a point on

the polyline is identified that represents the given point

as a polyline-set location. In the typical scenario, the

polyline set represents a road network, and the posi-

tion is a GPS position. Finally, in polyline-to-polyline

map matching, polylines are identified from the poly-

lines in a road network that best match a given polyline

that is usually constructed from point positions.

Map Matching Principles. This section follows the

explanation of the basic principles of map matching by

considering in some detail the commonly used point-

to-polyline map matching for the on-line case.

Map matching algorithms often consist of two

overall steps (some algorithms skip the first of these

two steps or include an extra step).

In the start-up step, the polyline in the digital road

network on which the vehicle is initially located is

found. Specifically, map matching is done for the first

GPS position received. The correct outcome of this

step is very important, as the map matching algo-

rithms use the connections between roads, or the

road network topology, to determine the ensuing poly-

lines of the vehicle’s movement path. Therefore, algo-

rithms often perform special operations to determine a

reliable match for the first GPS position.

In the steady-state step, the subsequent polylines

in the digital road network are identified to form
the route along which the vehicle is moving. This

subsequent map matching follows a standard pattern:

1. Extract the relevant information from the record

received from the GPS receiver.

2. Select candidate polylines from the digital road

network.

3. Use algorithm-specific heuristics to determine the

most suitable polyline among the candidate

polylines.

4. Determine the vehicle position on the selected

polyline.

First, information such as latitude, longitude, speed,

and heading is extracted from the record obtained

from the positioning unit and is converted into an

appropriate format (a unified coordinate and metric

system consistent with the digital road network).

Second, the candidate polylines are selected. Usual-

ly the polylines that are within a certain threshold

distance of the GPS position are selected. An alterna-

tive approach is to select the n polylines nearest to the

GPS position. The polylines found make up the candi-

date polyline set.

Third, specific heuristics are used to select the best

polyline among the candidates. A common approach is

to assign weights to the candidate polylines according

to different criteria. The polyline with the highest sum

of weights is then chosen. Some algorithms reduce the

set of candidate polylines prior to assigning weights.

For example, polylines that are perpendicular to the

vehicle’s heading may be disregarded, as may polylines

that are not connected with the polyline currently

being considered.

Fourth, the vehicle position on the selected polyline

is found. The usual approach is to select the location

on the polyline that is closest to the vehicle’s position.

This is a point-to-polyline projection. The projection

of the position may be an end point of a line segment

Map Matching M 1695

M

in the polyline, or it may be in the interior of a line

segment. Quddus et al. [5] propose a more sophisti-

cated approach that uses both the distance traveled

since the last map matching and the ‘‘raw’’ projection

of the GPS position onto the polyline.

Dead Reckoning. In certain regions, the signals

emitted by the GPS satellites may be very weak due

to obstacles. This in turn degrades the accuracies of

the positions produced by GPS receivers in those

regions, and in some cases no GPS position may

be produced. In such cases, both on-line and off-line

map matching algorithms may utilize dead reckoning

to estimate the movement of a vehicle in the road

network. The use of dead reckoning is particularly

attractive when the average speed of the vehicle is

known (preferably every second) and when the road

on which the vehicle is driving neither splits nor has

intersections. This occurs when the road is inside

a tunnel with no exits.

Heuristics for the Selection of a Polyline. Differ-

ent algorithms use different heuristics and weights

when attempting to identify the best polyline among

the candidate polylines. Each candidate polyline is as-

signed a weight for each criterion considered, and

the polyline with the highest sum of weights is then

selected. Common weighting criteria include the

following:

� Weight for the proximity of a polyline. A polyline is

assigned a weight according to its proximity to the

GPS position being map matched. It is natural to

assume that the closer a polyline is to the position,

the better a candidate the polyline is.

� Weight for the continuity of a polyline. This weight

is assigned to each polyline for being a continua-

tion of the previously map matched polyline. This

weight represents the reasoning that vehicles tend

to drive on the same road most of the time.

� Weight for direction similarity. Polylines whose

bearing is similar to the vehicle’s heading are

assigned higher values.

� Weight for topology. Higher weights are added to

polylines that are connected to the polyline cur-

rently being map matched to.

Algorithms may also include weights for speed limit

changes, shortest distance, road category, one-way

streets, etc. Off-line map matching algorithms may

use fewer, but more robust weights that are not suitable

for the on-line map matching algorithms.
Execution Time Constraints and Accuracy. In

on-line map matching, the algorithms must keep up

with the GPS device that usually emits one position per

second. With current on-board computing units, it is

usually not a problem for on-line map matching algo-

rithms map match a GPS position within 1 second.

For off-line map matching, there are no real-time

constraints.

Key Applications
Map matching is essential for applications that rely on

the positioning of a user within a road network.

This occurs in vehicle navigation where the user’s

position is to be displayed so that it coincides with the

road network. When GPS data is used for the construc-

tion of speed maps, map matching is used. Such speed

maps may be used for travel time prediction, route

construction, and capacity planning. In metered ser-

vices such as insurance and road pricing, map match-

ing is also used.

Further, map matching is used in location-based

services where the content to be retrieved is positioned

within the road network. Services that offer network-

context awareness utilize map matching. These includ-

ing current network location context awareness [9],

and route context awareness [10].

Tracking also plays a key role in intelligent speed

adaptation [11] where drivers are alerted when they

exceed the current speed limit. The speed limits are

attached to the digital road network, so map matching

is needed to identify the current speed limit. Finally,

map matching is important for a range of other appli-

cation within intelligent transportation systems.

Future Directions
In the near future, digital road networks will have

accurate lane information embedded, and positioning

technologies will be accurate enough to enable lane-

level positioning. This will necessitate the exten-

sion of map matching techniques to function at the

lane level.

Cross-references
▶Compression of Mobile Location Data

▶ Location Prediction

▶ Location-Based Services

▶Mobile Database

▶Mobile Sensor Network Data Management

▶Road Networks

1696M Mapping
▶ Spatial Network Databases

▶ Spatial Operations and Map Operations

▶ Spatio-Temporal Trajectories

▶ Spatiotemporal Interpolation Algorithms

Recommended Reading
1. Bernstein D. and Kornhauser A. An introduction to map

matching for personal navigation assistants. New Jersey TIDE

Center, 1996. http://www.njtide.org/reports/mapmatchintro.

pdf.

2. Brakatsoulas S., Pfoser D., Salas R., and Wenk C. On map-

matching vehicle tracking data. In Proc. 31st Int. Conf. on

Very Large Data Bases, 2005, pp. 853–864.

3. Brilingaitė A. and Jensen C.S. Enabling routes of road network

constrained movements as mobile service context. Geoinforma-

tica, 11(1):55–102, 2007.

4. Civilis A., Jensen C.S., and Pakalnis S. Techniques for efficient

road-network-based tracking of moving objects. IEEE Trans.

Knowl. Data Eng., 17(5):698–712, 2005.

5. French R.L. Historical overview of automobile navigation

technology. In Proc. 36th IEEE Vehicular Technology Conf.,

1986, pp. 350–358.

6. Oracle Corporation. Oracle Spatial and Oracle Locator. http://

www.oracle.com/technology/products/spatial/index.html.

7. Quddus M., Ochieng W., Zhao L., and Noland R. A general

map matching algorithm for transport telematics applications.

GPS Solut. J., 7(3):157–167, 2003.

8. Quddus M.A., Noland R.B., and Ochieng W.Y. A high

accuracy fuzzy logic based map matching algorithm for

road transport. J. Intell. Transport. Syst., 10(3), 2006,

pp. 103–115.

9. Taylor G., Blewitt G., Steup D., Corbett S., and Car A. Road

reduction filtering for GPS-GIS navigation. Transactions in GIS,

5(3):193–207, 2001.

10. Tradisauskas N., Juhl J., Lahrmann H., and Jensen C.S.

Map matching for intelligent speed adaptation. In Proc. 6th

European Congress on Intelligent Transport Systems and

Services, 2007.

11. White C.E., Bernstein D., and Kornhauser A.L. Some map

matching algorithms for personal navigation assistants. Trans-

port. Res. C, 8:91–108, 2000.
Mapping

▶Mediation

▶ Schema Mapping
Mapping Composition

▶ Schema Mapping Composition
Mapping Engines

▶Digital Rights Management
Markup Language

ETHAN V. MUNSON

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Definition
A markup language is specification language that

annotates content through the insertion of marks into

the content itself. Markup languages differ from pro-

gramming languages in that they treat data, rather than

commands or declarations, as the primary element in

the language.

Key Points
Markup languages were initially developed for text

document formatting systems, though they are not

limited to text. In fact, the term markup was taken

directly from the jargon of the publishing business,

where editors and typographers would ‘‘mark up’’

draft documents to indicate corrections or printing

effects. Markup languages are generally quite declara-

tive and have little, if any, computational semantics.

The marks inserted into the content are often called

‘‘tags’’ because that term is used by XML.

Cross-references
▶Document

▶Document Representations (Inclusive Native and

Relational)
MashUp

ALEX WUN

University of Toronto, Toronto, ON, Canada

Definition
A MashUp is a web application that combines data

from multiple sources, creating a new hybrid web

application with functionality unavailable in the origi-

nal individual applications that sourced the data.

http://www.njtide.org/reports/mapmatchintro.pdf
http://www.njtide.org/reports/mapmatchintro.pdf
http://www.oracle.com/technology/products/spatial/index.html
http://www.oracle.com/technology/products/spatial/index.html

Massive Array of Idle Disks M 1697

M

Key Points
An emerging trend in web applications is to provide

public APIs for accessing data that has traditionally

been used only internally by those applications. The

main purpose of providing access to traditionally pri-

vate web application data is to encourage user-driven

development. In other words, consumers are expected

to take that public data and build custom applications

for other consumers – thereby adding value to the

original data sources. MashUps are web applications

that take advantage of these publicly accessible data

sources by correlating the data obtained from different

sources and deriving some novel functionality. A sim-

ple and common example is correlating a data source

that has location information (such as wireless hotspot

locations) with cartographic data (from Google or

Yahoo maps for example) to produce a graphical map

of wireless hotspots.

MashUps are conceptually related to portals, which

also collect data from multiple sources for presenta-

tion. However, portals perform server-side aggregation

whereas MashUps can also perform this aggregation on

the client-side (i.e., correlation can occur in the scripts

of a web page). Additionally, portals present data

collected from disparate sources together but without

interaction between data sets. In contrast, MashUps

focus heavily on merging disparate data sets into one

unified representation. For example, a news portal

would simply present a set of interesting articles gath-

ered from various sources on a single page while a news

MashUp would correlate textual news with related

images and multimedia as well as automatically linking

related articles in a single view.

While similar to MashUps, service composition is a

more generic concept that focuses on orchestrating

web service calls as part of some higher level applica-

tion logic. The coordination of web service calls in a

service composition are often more process-centric

rather than data-centric. For example, a flight-booking

composite service would query the flight reservation

services of different airlines to book a flight based

on customer requirements, while a flight-booking

MashUp would gather flight data from various airlines

and present the data to customers in a single unified

view – likely correlated with other useful data such as

weather.

There is currently no standardization of tech-

nologies or tools used to develop MashUps. In fact,

many industry leaders such as Google, Microsoft, and
Yahoo are pushing their own MashUp development

tools. In particular, many of these tools are targeting

non-programmers in hopes of expanding the base

of users capable of contributing to and developing

MashUps.

Cross-references
▶AJAX

▶ Service

▶Web 2.0/3.0
Massive Array of Idle Disks

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
MAID
Definition
The term Massive Array of Idle Disks refers to an

energy-efficient disk array which has the capability of

changing its disk drives into a low-power mode when

the disk drives are not busy. Disk drives of the array

may be controlled individually or in a group. The term

Massive Array of Idle Disks is often abbreviated to

MAID. A MAID disk array may have additional func-

tions such as data migration/replication and access

prediction to improve the energy saving.
Key Points
The basic idea of MAID is to save energy by exploiting

storage access locality. That is, some disk drives which

are installed in a disk array are frequently accessed

whereas the others are rarely busy. MAID tries to spin

down or power off such ‘‘low-temperature’’ disk drives

to decrease the total energy consumption. The ori-

ginal papers [1,2] which introduced MAID in 2002

studied different design choices and configurations.

MAID disk arrays are mainly used for archival storage

(replacing conventional tape libraries) or near-line

storage (which falls between online storage and archi-

val storage).

Cross-references
▶ Storage Power Management

1698M Matching
Recommended Reading
1. Colarelli D., and Grunwald D. Massive Arrays of Idle Disks for

Storage Archives. In Proc. 2002 ACM/IEEE conf. on Supercom-

puting, 2002, pp. 1–11.

2. Colarelli D., Grunwald D., and Neufeld M. The Case for

Massive Arrays of Idle Disks (MAID). In Proc. 1st USENIX

Conf. on File and Storage Technologies, Work-in Progress

Reports, 2002.

3. Storage Network Industry Association. The Dictionary of

Storage Networking Terminology. Also available at http://www.

snia.org/.
Matching

▶ Similarity and Ranking Operations
Materialized Query Tables

▶ Physical Database Design for Relational Databases
Materialized View Maintenance

▶View Maintenance
Materialized View Redefinition

▶View Adaptation
Materialized Views

▶ Physical Database Design for Relational Databases
Matrix

▶Table
Matrix Masking

STEPHEN E. FIENBERG, JIASHUN JIN

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Adding noise; Data perturbation; Recodings; Samp-

ling; Synthetic data

Definition
Matrix Masking refers to a class of statistical disclosure

limitation (SDL) methods used to protect confidenti-

ality of statistical data, transforming an n � p (cases

by variables) data matrix Z through pre- and post-

multiplication and the possible addition of noise.

Key Points
Duncan and Pearson [3] and many others subse-

quently categorize the methodology used for SDL in

terms of transformations of an n � p (cases by vari-

ables) data matrix Z of the form

Z ! AZB þ C; ð1Þ

where A is a matrix that operates on the n cases, B is

a matrix that operates on the p variables, and C is a

matrix that adds perturbations or noise.

Matrix masking includes a wide variety of standard

approaches to SDL: (i) adding noise, i.e., theC in matrix

masking transformation of equation [1]; (ii) releasing

a subset of observations (delete rows from Z), i.e.,

sampling; (iii) cell suppression for cross-classifications;

(iv) including simulated data (add rows to Z); (v) re-

leasing a subset of variables (delete columns from Z);

(vi) switching selected column values for pairs of rows

(data swapping). Even when one has applied a mask to

a data set, the possibilities of both identity and attri-

bute disclosure remain, although the risks may be

substantially diminished.

Cross-references
▶ Individually Identifiable Data

▶ Inference Control in Statistical Databases

▶ Privacy

▶Randomization Methods to Ensure Data Privacy

▶ Statistical Disclosure Limitation for Data Access

Recommended Reading
1. Doyle P., Lane J.I., Theeuwes J.J.M., and Zayatz L. (eds.). Confi-

dentiality, Disclosure and Data Access: Theory and Practical

Application for Statistical Agencies. Elsevier, New York, 2001.

http://www.snia.org/
http://www.snia.org/

Max-Pattern Mining M 1699
2. Duncan G.T., Jabine T.B., and De Wolf V.A. (eds.). Private Lives

and Public Policies. Report of the Committee on National Sta-

tistics’ Panel on Confidentiality and Data Access. National Acad-

emy Press, WA, USA, 1993.

3. Duncan G.T. and Pearson R.B. Enhancing access to microdata

while protecting confidentiality: prospects for the future (with

discussion). Stat. Sci., 6:219–239, 1991.

4. Federal Committee on Statistical Methodology. Report on sta-

tistical disclosure limitation methodology. Statistical Policy

Working Paper 22. U.S. Office of Management and Budget,

WA, USA, 1994.
Maximal Itemset Mining

▶Max-Pattern Mining
M

Max-Pattern Mining

GUIMEI LIU

National University of Singapore, Singapore,

Singapore

Synonyms
Maximal itemset mining

Definition
Let I = {i1, i2...,in} be a set of items and D = {t1, t2...,tN}

be a transaction database, where ti(i 2 [1,N]) is a

transaction and ti I. Every subset of I is called an

itemset. If an itemset contains k items, then it is called a

k-itemset. The support of an itemset X in D is defined

as the percentage of transactions in D containing X,

that is, sup(X) = j{tjt 2 D ∧ X t}j ∕ jDj. If the support
of an itemset exceeds a user-specified minimum sup-

port threshold, then the itemset is called a frequent

itemset or a frequent pattern. If an itemset is frequent

but none of its supersets is frequent, then the itemset is

called a maximal pattern. The task of maximal pattern

mining is given a minimum support threshold, to

enumerate all the maximal patterns from a given trans-

action database.

The concept of maximal patterns can be and has

already been extended to more complex patterns, such

as sequential patterns, frequent subtrees and frequent

subgraphs. For each type of pattern, a pattern is maxi-

mal if it satisfies the given constraints but none of its

super-patterns satisfies the given constraints.
Historical Background
If a k-itemset is frequent, then all of its subsets are

frequent and the number of them is 2k � 1. Datasets

collected from some domains can be very dense and

contain very long patterns. Any algorithm which pro-

duces the complete set of frequent itemsets suffers

from generating numerous short patterns on these

datasets, and most of the short patterns may be useless.

Some researchers have noticed the long pattern prob-

lem and suggested mining only maximal frequent pat-

terns [1,3,8]. The set of maximal patterns provides a

concise view of the frequent patterns, and it can be

orders of magnitude smaller than the complete set of

frequent patterns. The complete set of frequent pat-

terns can be derived from the set of maximal patterns,

but the support information is lost.

A different concept called closed itemset or closed

pattern has also been proposed to reduce result size. A

pattern is closed if none of its supersets has the same

support as it does. Closed patterns retain the support

information of frequent patterns. The complete set of

frequent patterns can be derived from the set of fre-

quent closed patterns without information loss. A

maximal pattern must be a closed pattern, but not

vice versa.

Given a set of items I, the search space of the

frequent itemset mining problem is the power set of I,

and it can be represented as a set-enumeration tree

given a specific order of I [9]. Figure 1 shows the search

space tree for I = {a, b, c, d, e}, and the items are sorted

lexicographically. Every node in the search space tree

represents an itemset. For every itemset X in the tree,

only the items after the last item of X can be appended

to X to form a longer itemset. These items are called

candidate extensions of X, denoted as cand_ext(X). For

example, items d and e are candidate extensions of ac,

while item b is not a candidate extension of ac because

b is before c in lexicographic order. Mining maximal

patterns can be viewed as finding a border through

the search space tree such that all the nodes below

the border are infrequent and all the nodes above the

border are frequent. As shown in Fig. 1, the dotted

line represents the border. All the nodes above the

dotted line are frequent and all the nodes below

the dotted line are infrequent. Among all the nodes

above the border, only leaf nodes can be maximal, but

not all the leaf nodes are maximal; every internal node

has at least one frequent child (superset) thus cannot

be maximal. The goal of maximal pattern mining is

to find the border by counting support for as less as

Max-Pattern Mining. Figure 1. Search space tree for I = {a, b, c, d, e}.

1700M Max-Pattern Mining
possible itemsets. Most, if not all, existing maximal

pattern mining algorithms try to find some frequent

long patterns first, and then use these long patterns to

prune non-maximal patterns.

The first attempt at mining maximal patterns is

made by Gunopoulos et al. [6], and an algorithm called

dualize and advance is proposed. The algorithm is

based on the observation that given a set of maximal

patterns, any other maximal pattern not in the set must

contain at least one common item with the comple-

ment of every maximal pattern in the set, where the

complement of an itemset X is defined as I � X. The

algorithm works as follows. It first uses a greedy search

to generate some maximal patterns, denoted asH, and

then finds the minimal patterns that contain at least

one common item with the complement of every max-

imal pattern inH. Here a pattern is minimal if none of

its subsets satisfies the condition. These minimal pat-

terns are called minimal transversals of H. If all the

minimal transversals of H are infrequent, it means that

all the maximal patterns are all in H already. Other-

wise, there exists some minimal transversal X of H
such that X is frequent, the algorithm then finds a

maximal superset of X, denoted as Y , and Y must be

a maximal pattern. The algorithm puts Y in H, and

then generates the minimal transversals of the updated

H. This process is repeated until no frequent minimal

transversals of H exists. The upper bound for the time

complexity of this algorithm is sub-exponential to the

output size.

Pincer-search [7] combines the bottom-up and

top-down search strategy, and approaches the border

from both directions. The bottom-up search is similar
to the A priori algorithm [2], and the top-down search

is implemented by maintaining a set called maximum-

frequent-candidate-set (MFCS). MFCS is a minimum

cardinality set of itemsets such that the union of all the

subsets of its elements contains all the frequent item-

sets that have been discovered so far but does not

contain any itemsets that have been determined to be

infrequent. Pincer-search uses MFCS to prune those

candidate itemsets that have a frequent superset in

MFCS to reduce the database scan times and the sup-

port counting cost.

Both the dualize and advance algorithm and the

Pincer-search algorithm maintain the set of candidate

maximal patterns during the mining process and use

them to prune short non-maximal patterns. The main

difference between the two algorithms is that Pincer-

Search considers large sets that may be frequent first,

and then shrinks them to find the real maximal pat-

terns, while the dualize and advance algorithm starts

from some seed maximal patterns and uses them to

find other maximal patterns. Both algorithms can

prune non-maximal patterns effectively, but maintain-

ing and manipulating the set of candidate maximal

patterns can be very costly.

Zaki et al. propose two maximal pattern mining

algorithms MaxClique and MaxEclat [13]. Both algo-

rithms rely on a preprocessing step to cluster itemsets,

and then use a hybrid bottom-up and top-down ap-

proach to find maximal patterns from each cluster

with a vertical data representation. The two algorithms

differ in how the itemsets are clustered. The purpose of

the clustering step is to find some potential maximal

patterns, and the two algorithms use these potential

Max-Pattern Mining M 1701

M

maximal patterns to restrict the search space. However,

the cost of the clustering step can be very high.

Max-Miner [3] is the first successful and practical

algorithm for mining maximal patterns. It uses the

bottom-up search strategy to traverse the search

space as the A priori algorithm [2], but it always

attempts to look ahead in order to quickly identify

long patterns. By identifying a long pattern first,

Max-Miner can prune all its subsets from consider-

ation. Two pruning techniques are proposed in the

Max-Miner algorithm: pruning based on superset fre-

quency and the dynamic reordering technique. These

two pruning techniques are very effective in removing

non-maximal patterns, and have been adopted by all

later maximal pattern mining algorithms.

1. Superset frequency pruning. This technique is also

called the lookahead technique. It is based on the

observation that the itemsets in the sub search

space tree rooted at X are subsets of X [cand_ext

(X). Therefore, if X [cand_ext(X) is frequent, then

none of the itemsets in the subtree rooted at X can

be maximal and the whole branch can be pruned.

There are two ways to check whether X [cand_ext

(X) is frequent. One way is to check whether X [
cand_ext(X) is a subset of some maximal pattern

that has already been discovered. The other way is

to look at the support of X [cand_ext(X) in the

database, which can be done when counting the

support of X’s immediate supersets.

2. Dynamic item reordering. At every node X, Max-

Miner sorts the items in cand_ext(X) in ascending

frequency order. The candidate extensions of an

item include all the items that are after it in the

ascending frequency order. Let i1 and i2 be

two items in cand_ext(X). Item i1 is before i2
in the ordering if sup(X [{i1}) is smaller than

sup(X [{i2}), and item i2 is a candidate extension

of X [{i1}. The motivation behind dynamic

item reordering is to increase the effectiveness of

the superset frequency pruning technique. The

superset frequency pruning can be applied when X

[cand_ext(X) is frequent. It is therefore desirable

to make many Xs satisfy this condition. A good

heuristic for accomplishing this is to force the

most frequent items to be the candidate extensions

of all other items because items with high fre-

quency are more likely to be part of long frequent

itemsets.
Besides the above two pruning techniques, Max-Miner

also uses a technique that can often determine when a

new candidate itemset is frequent before accessing

the database. The idea is to use information gathered

during previous database passes to compute a good

lower-bound on the number of transactions that con-

tain the itemset.

The Max-Miner algorithm uses the breadth-first

search order to explore the search space, which makes

it not very efficient on dense datasets. DepthProject

[1], MAFIA [4], GenMax [5] and AFOPT-Max [8] use

the depth-first search strategy to traverse the search

space. The depth-first search strategy is capable of

finding long patterns first, which makes the superset

frequency pruning technique more effective. These

algorithms differ mainly in their support counting

technique. Both DepthProject and MAFIA assume

that the dataset fits in the main memory. At any

point in the search, DepthProject maintains the pro-

jected transaction sets for some of the nodes on the

path from the root to the node currently being pro-

cessed, where a projected transaction of a node con-

tains only the candidate extensions of the node. It is

possible that a projected transaction is empty, in this

case, the projected transaction is discarded. Since the

projected database is substantially smaller than

the original database both in terms of the number

of transactions and the number of items, the process

of finding the support counts is speeded up substan-

tially. DepthProject also uses a bucketing technique to

speed up the support counting. MAFIA and GenMax

use the vertical mining technique, that is, each itemset

is associated with a tid (transaction id) bitmap, and

support counting is performed by tid bitmap join.

MAFIA uses another pruning technique called parent

equivalence pruning (PEP), which is essentially to re-

move frequent non-closed itemsets. GenMax[5] pro-

poses a progressive focusing technique to improve the

efficiency of superset searching. AFOPT-Max uses a

prefix-tree structure to store projected transactions,

which can make the lookahead pruning technique be

performed more efficiently.

Foundations
In practice, mining maximal patterns is much cheaper

than mining the complete set of frequent itemsets.

However, the worst-case time complexity of maximal

pattern mining is the same as mining all frequent

patterns. Yang [11] studies the complexity of the

1702M Maybe Answer
maximal pattern mining problem and proves that the

problem of counting the number of distinct maximal

frequent itemsets in a transaction database, given an

arbitrary support threshold, is #P-complete, thereby

providing strong theoretical evidence that the problem

of mining maximal frequent itemsets is NP-hard.

The concept of maximal patterns has been extend-

ed to other similar data mining problems dealing with

complex data structures. Yang et al. [12] devise an

algorithm that combines statistical sampling and a

technique called border collapsing to discover long

sequential patterns with sufficiently high confidence

in a noisy environment. Xiao et al. [10] propose an

algorithm to mine maximal frequent subtrees from a

database of unordered labeled trees.

Key Applications
Maximal pattern mining is applicable to dense

domains where extracting all frequent patterns is not

feasible. It can also be used as a preprocessing step to

improve the efficiency of frequent pattern mining and

to decide appropriate thresholds for frequent pattern

mining and association rule mining.

Experimental Results
Each introduced method has an accompanying experi-

mental evaluation in the corresponding reference. A

comprehensive comparison of different algorithms can

be found at http://fimi.cs.helsinki.fi/experiments/.

Data Sets
A collection of datasets commonly used for experi-

ments can be found at http://fimi.cs.helsinki.fi/data/.

URL to Code
http://fimi.cs.helsinki.fi/src/.

Cross-references
▶Closed Itemset Mining and Non-Redundant Associ-

ation Rule Mining

▶ Frequent Itemsets and Association Rules

Recommended Reading
1. Agarwal R.C., Aggarwal C.C., and Prasad V.V.V. Depth first

generation of long patterns. In Proc. 6th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2000,

pp. 108–118.

2. Agrawal R. and Srikant R. Fast algorithms for mining association

rules in large databases. In Proc. 20th Int. Conf. on Very Large

Data Bases, 1994, pp. 487–499.
3. Bayardo R.J. Jr. Efficiently mining long patterns from databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1998, pp. 85–93.

4. Burdick D., Calimlim M., and Gehrke J. Mafia: A maximal

frequent itemset algorithm for transactional databases. In Proc.

17th Int. Conf. on Data Engineering, 2001, pp. 443–452.

5. Gouda K. and Zaki M.J. GenMax: Efficiently mining maximal

frequent itemsets. In Proc. 2001 IEEE Int. Conf. on DataMining,

2001, pp. 163–170.

6. Gunopulos D., Mannila H., and Saluja S. Discovering all most

specific sentences by randomized algorithms. In Proc. 6th Int.

Conf. on Database Theory, 1997, pp. 215–229.

7. Lin D.I., and Kedem Z.M. Pincer search: A new algorithm

for discovering the maximum frequent set. In Advances in

Database Technology, Proc. 1st Int. Conf. on Extending Data-

base Technology, 1998, pp. 105–119.

8. Liu G., Lu H., Lou W., Xu Y., and Yu J.X. Efficient mining of

frequent patterns using ascending frequency ordered prefix-tree.

Data Mining Knowledge Discovery, 9(3):249–274, 2004.

9. Rymon R. Search through systematic set enumeration. In Proc.

Int. Conf. on Principles of Knowledge Representation and

Reasoning, 1992, pp. 268–275.

10. Xiao Y., Yao J.F., Li Z., and Dunham M.H. Efficient data mining

for maximal frequent subtrees. In Proc. 2003 IEEE Int. Conf. on

Data Mining, 2003, pp. 379–386.

11. Yang G. The complexity of mining maximal frequent itemsets

and maximal frequent patterns. In Proc. 10th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2004,

pp. 344–353.

12. Yang J., Wang W., Yu P.S., and Han J. Mining long sequen-

tial patterns in a noisy environment. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2002, pp. 406–417.

13. Zaki M.J., Parthasarathy S., Ogihara M., and Li W. New

algorithms for fast discovery of association rules. In Proc. 3rd

Int. Conf. on Knowledge Discovery and Data Mining, 1997,

pp. 283–286.
Maybe Answer

▶ Possible Answers
MDIS

▶Meta Data Interchange Specification
MDR

▶Metadata Registry, ISO/IEC 11179

http://fimi.cs.helsinki.fi/experiments/
http://fimi.cs.helsinki.fi/data/
http://fimi.cs.helsinki.fi/src/

Measure M 1703
MDS

▶Multidimensional Scaling
Mean Average Precision

▶MAP
M

Mean Reciprocal Rank

NICK CRASWELL

Microsoft Research Cambridge, Cambridge, UK

Synonyms
MRR; Mean Reciprocal Rank of the First Relevant

Document; MRR1

Definition
The Reciprocal Rank (RR) information retrieval mea-

sure calculates the reciprocal of the rank at which the

first relevant document was retrieved. RR is 1 if a

relevant document was retrieved at rank 1, if not it is

0.5 if a relevant document was retrieved at rank 2 and

so on. When averaged across queries, the measure is

called the Mean Reciprocal Rank (MRR).

Key Points
Mean Reciprocal Rank is associated with a user model

where the user only wishes to see one relevant docu-

ment. Assuming that the user will look down the

ranking until a relevant document is found, and that

document is at rank n, then the precision of the set

they view is 1/n, which is also the reciprocal rank

measure. For this reason, MRR is equivalent to Mean

Average Precision in cases where each query has pre-

cisely one relevant document. MRR is not a shallow

measure, in that its value changes whenever the re-

quired document is moved, although the change is

much larger when moving from rank 1 to rank

2 (change is 0.5) compared to moving from rank 100

to 1,000 (change of 0.009).

MRR is an appropriate measure for known item

search, where the user is trying to find a document that

he either has seen before or knows to exist. This is

called navigational search in the case of web search. In

a case where there are multiple copies of the required
document, or otherwise a set of relevant documents

that are substitutes, MRR can still be applied based on

the first copy.

Cross-references
▶Mean Average Precision

▶ Precision-Oriented Effectiveness Measures
Mean Reciprocal Rank of the First
Relevant Document

▶MRR (Mean Reciprocal Rank)
Measure

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Synonyms
Numerical fact

Definition
A measure is a numerical property of a multidimen-

sional cube, e.g., sales price, coupled with an aggre-

gation formula, e.g., SUM. It captures numerical

information to be used for aggregate computations.

Key Points
As an example, a three-dimensional cube for capturing

sales may have a Product dimension P, a Time dimen-

sion T, and a Store dimension S, capturing the product

sold, the time of sale, and the store it was sold in, for

each sale, respectively. The cube has two measures:

DollarSales and ItemSales, capturing the sales price

and the number of items sold, respectively. ItemSales

can be viewed as a function: ItemSales:Dom(P)�Dom

(T)�Dom(S)↦ℕ0 that given a certain combination of

dimension values returns the total number of items

sold for that combination. If a dimension value corre-

sponds to a higher level in the dimension hierarchy,

e.g., a product group or even all products, the result is

an aggregation of several lower-level measure values.

In a multidimensional database, measures generally

represent the properties of the chosen facts that the

users want to study, e.g., with the purpose of optimizing

them. Measures then take on different values for

1704M Media Recovery
different combinations of dimension values. The prop-

erty and formula are chosen such that the value of a

measure is meaningful for all combinations of aggrega-

tion levels. The formula is defined in the metadata and

thus not stored redundantly with the data. Although

most multidimensional data models have measures,

some do not. In these, dimension values are also used

for computations, thus obviating the need for measures,

but at the expense of some user-friendliness [2].

It is important to distinguish three classes of mea-

sures, namely additive, semi-additive, and non-additive

measures, as these behave quite differently in compu-

tations. Additive measure values can be combined

meaningfully along any dimension. For example, it

makes sense to add the total sales over Product,

Store, and Time, as this causes no overlap among the

real-world phenomena that caused the individual

values. Semi-additive measure values cannot be com-

bined along one or more of the dimensions, most often

the Time dimension. Semi-additive measures generally

occur for so-called ‘‘snapshot’’ facts. For example, it

does not make sense to sum inventory levels across

time, as the same inventory item, e.g., a specific prod-

uct item, may be counted several times, but it is

meaningful to sum inventory levels across products

and stores. Non-additive measure values cannot be

combined along any dimension, usually because of

the chosen formula. For example, this occurs when

averages for lower-level values cannot be combined

into averages for higher-level values. The additivity of

measures is related to the so-called ‘‘type’’ of the

measure (Flow, Stock or Value-Per-Unit).

Cross-references
▶Cube

▶Dimension

▶Hierarchy

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶ Summarizability

Recommended Reading
1. Kimball R., Reeves L., Ross M., and Thornthwaite W. The

Data Warehouse Lifecycle Toolkit. Wiley Computer Publishing,

New York, 1998.

2. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation for

capturing and querying complex multidimensional data. Inf.

Syst., 26(5):383–423, 2001.

3. Thomsen E. OLAP Solutions: Building Multidimensional

Information Systems. Wiley, New York, 1997.
Media Recovery

▶Crash Recovery
Media Semantics

▶Computational Media Aesthetics
Median

▶Quantiles on Streams
Mediation

CESARE PAUTASSO

University of Lugano, Lugano, Switzerland

Synonyms
Transformation; Adaptation; Bridging; Mapping

Definition
Mediation is the process of reconciling differences

to reach an agreement between different parties. In

databases, the goal of mediation is to compute a

common view over multiple, distinct, and heteroge-

neous sources of data. In software architecture, a

component plays the role of mediator if it achieves

interoperability by decoupling heterogeneous compo-

nent having mismatching interfaces. Protocol media-

tion enables the exchange of information between

autonomous endpoints that use incompatible commu-

nication protocols.

Mediation middleware helps applications deal with

heterogeneity. By hiding the multiplicity and the com-

plexity of the underlying systems, it transforms a one-

to-many interaction (the application communicating

with multiple data sources) into a simpler, one-to-one

interaction (the application communicates with the

mediator) and shifts the complexity of handling the

communication with multiple, heterogeneous parties

into a reusable component: the mediator.

Mediation M 1705

M

Historical Background
In the context of information systems, the concept of

mediation has been introduced by Gio Wiederhold in

1992 as the organizing principle for the interoperation

of heterogeneous software components and data

sources [8]. Mediation is performed by a layer of intel-

ligent middleware services in information systems, link-

ing data resources and application programs [9].

Programs need to consume information of multiple

data resources and mediators offer them a solution to

deal with representation and abstraction problems and

exchange objects across multiple, heterogeneous infor-

mation sources [5]. In the original vision, mediators

were seen as independently developed, reusable soft-

ware modules exploiting expert knowledge about the

data to create aggregated information for application

programs found at a higher level of abstraction.

As shown in Fig.1, queries from applications are trans-

lated by mediators into sub-queries sent out to the

different data sources. The various sub-answers are

then collected, integrated and returned by the media-

tor as a single answer to the application.

Foundations
Mediation techniques help to deal with the integration

of heterogeneous and incompatible systems. A good

understanding of the nature of the problem of dealing

with heterogeneity helps to determine when and how

mediation should be applied [6]. Conflicts requiring

mediation may be found at the level of specific data

elements (or messages) to be exchanged or at the level

of schema (or interface metadata) definitions. Data
Mediation. Figure 1. Mediation architecture.
valuesmay be stored withmultiple representations (syn-

tactic mismatches) or the same representation may be

interpreted in different ways (semantic mismatches).

Data units (e.g., centimeters versus inches) are also a

significant source of conflicts and potential bugs if they

are not correctly accounted for when performing data

fusion. Identification mismatches are due to the use of

locally unique key identifiers that need to be reconciled

when tuples from different databases are joined. At the

schema level, conflicts involvemismatches in the naming

of corresponding elements (‘‘Customer’’ versus ‘‘Client’’

table); conflicts in the structure (‘‘Street, Number, Zip,

City’’ versus ‘‘Address’’) and granularity (‘‘Purchase

Order’’ versus ‘‘Order Line Item’’) of corresponding

data types.

It is important to address such mismatches and

conflicts at both data and schema levels. To do so,

typical mediation middleware tools provide support

for operations such as:

1. Selection, filtering, and aggregation of data

2. Data type, encoding and format conversion

3. Join, comparison, and fusion of data originating

from multiple data sources

4. Resolution of conflicts between inconsistent

sources

5. Multiplexing and demultiplexing over different

channels

6. Lookup-based data translation

7. View materialization and caching of intermediate

results

Mediator components can be developed using both im-

perative and declarative programming languages. Auto-

matic schema matching techniques and algorithms

that can be applied to support the development of

mediators [7].

Mediation can be provided according to two styles:

� Standard-Based Mediation. The mediator trans-

forms each of the incompatible interfaces to com-

ply with a standardized interface that features the

least common denominator between all representa-

tions. In order for two parties to communicate, this

style requires performing two back-to-back trans-

formations (to the standard representation and

from the standard representation), thus introduces

a larger performance overhead. However, in terms

of development cost and maintainability of the

mediator, providing support for a new interface

1706M Mediation and Adaptation
only requires introducing one additional transfor-

mation in the mediator (assuming that the new

interface can be funneled through the standard

one).

� Point-to-Point Mediation. The mediator directly

maps each pair of incompatible interfaces. This

way, the performance overhead is minimized as

only one transformation is required as data is ex-

changed between two parties. Also, there is no need

to define a standardized representation, which may

be a difficult task in some cases. However, this style

should be applied to mediate between a limited

(and fixed) set of interfaces only. The complexity

of maintaining this kind of mediator does not scale:

adding support for a new interface requires to

introduce n additional mappings in the mediator

(one for each existing interface).

Key Applications
Mediation plays a prominent role in applications that

require integrating data and functionality originally

provided by separate systems (especially in database

federation and data integration [10]). For example, a

mediator performing currency conversion makes it

possible to compare prices of products on sale in

different markets. Likewise, mediation is needed to

build a country-wide census database out of local

databases maintained by different cities, if these have

been created independently based on different data

models and schemas.

In the context of Service-Oriented Architectures,

the role of mediator is associated with the communi-

cation bus (or Enterprise Service Bus). Through the

bus, services exchange messages without being aware

that messages may be transformed while in transit to

reconcile differences between service interfaces. Such

transformations may be based on context and seman-

tics metadata [4]. Mediation is one of the main fea-

tures of the Web Services Modeling Framework [1],

which applies it to address heterogeneity going beyond

traditional data mappings. Also mediators for Business

Logic (to compensate between different message or-

dering constraints found in the public processes of

service) and Message Exchange Protocols (for transla-

tion between different transport protocols, e.g., to pro-

vide reliable and secure message delivery) are

introduced in the framework.

In object-oriented design, the mediator behavioral

pattern has been applied to decouple multiple
collaborating objects [3, p. 273]. Instead of having

the objects depend on each other and partitioning

the interaction logic among them, a mediator object

is introduced. It contains and centralizes some poten-

tially complex interaction logic. All objects only refer

to the mediator and interact through it. This pattern

has also been named mapper in the context of enter-

prise application architecture [2]. Similar to the other

applications of mediation, also in this case the inter-

faces and the overall interactions are simplified thanks

to the mediator. However, the price of employing an

additional layer of indirection between the elements of

a system must be paid.

Cross-references
▶ Enterprise Service Bus

▶ Event Transformation

▶ Schema Mapping

▶View Adaptation

Recommended Reading
1. Fensel D. and Bussler C. The web service modeling framework

WSMF. Electron. Comm. Res. Appl., 1(1):113–137, 2002.

2. Fowler M. Patterns of Enterprise Application Architecture.

Addison-Wesley, Reading, MA, November 2002.

3. Gamma E., Helm R., Johnson R., and Vlissides J. Design Pat-

terns: Elements of Reusable Software. Addison-Wesley, Reading,

MA, 1995.

4. Mrissa M., Ghedira C., Benslimane D., Maamar Z., Rosenberg F.,

and Dustdar S. A context-based mediation approach to compose

semantic web services. ACM Trans. Internet Technol., 8(1):4,

2007.

5. Papakonstantinou Y., Garcia-Molina H., and Widom J. Object

exchange across heterogeneous information sources. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 251–260.

6. Park J. and Ram S. Information systems interoperability: What

lies beneath? ACM Trans. Inf. Syst., 22(4):595–632, 2004.

7. Rahm E. and Bernstein P.A. A survey of approaches to auto-

matic schema matching. Int. VLDB J., 10(4):334–350, December

2001.

8. Wiederhold G. Mediators in the architecture of future informa-

tion systems. Computer, 25(4):38–49, 1992.

9. Wiederhold G. and Genesereth M.R. The conceptual basis for

mediation services. IEEE Expert, 12(5):38–47, 1997.

10. Ziegler P. Data Integration Project World-Wide, 2008. http://

www.ifi.unizh.ch/~pziegler/IntegrationProjects.html.
Mediation and Adaptation

▶Database Middleware

http://www.ifi.unizh.ch/~pziegler/IntegrationProjects.html
http://www.ifi.unizh.ch/~pziegler/IntegrationProjects.html

Memory Hierarchy M 1707
Medical Genetics

▶ Implications of Genomics for Clinical Informatics
MEDLINE/ PubMed

▶Biomedical Scientific Textual Data Types and

Processing
M

Membership Query

MIRELLA M. MORO

The Federal University of Rio Grande do Sol,

Porte Alegre, Brazil

Synonyms
Equality query; Equality selection

Definition
Consider a relation R whose schema contains some

attribute A taking values over a domain D. A member-

ship query retrieves all tuples in R with A = x (x ∈ D).

Key Points
A membership query effectively checks membership in

a set (relation). As such, it can be implemented using

either a hash-based index (built on the attribute(s)

involved in the query) or a B+-tree. If a hashing

scheme is used, each indexed value is placed on an

appropriate hash bucket. Then all records that satis-

fy A = x are located on the bucket responsible for

value x. If A is a numeric attribute (and can thus be

indexed using an order-preserving access method like

a B+-tree) the membership query is a special case of a

range query where the range interval [low, high] is

reduced to a single value (low = high = x).

Cross-references
▶Access Methods

▶B+-Tree

▶Hashing
Memory Consistency

▶Consistency Models For Replicated Data
Memory Hierarchy

STEFAN MANEGOLD

CWI, Amsterdam, The Netherlands

Synonyms
Hierarchical memory system

Definition
A Hierarchical Memory System – or Memory Hierar-

chy for short – is an economical solution to provide

computer programs with (virtually) unlimited fast

memory, taking advantage of locality and cost-

performance of memory technology. Computer stor-

age and memory hardware – from disk drives to

DRAM main memory to SRAM CPU caches – shares

the limitation that as they became faster, they become

more expensive (per capacity), and thus smaller. Con-

sequently, memory hierarchies are organized into sev-

eral levels, starting from huge and inexpensive but slow

disk systems to DRAMmain memory and SRAM CPU

caches (both off and on chip) to registers in the CPU

core. Each level closer to the CPU is faster but smaller

than the next level one step down in the hierarchy.

Memory hierarchies exploit the principle of locality,

i.e., the property that computer programs do not ac-

cess all their code and data uniformly, but rather focus

on referencing only small fractions for given periods of

time. Consequently, during each period of time, only

the fraction currently referenced – also called hot-set,

locality-set, or working-set – needs to be present in the

fastest memory level, while the remaining data and

code can stay in slower levels. In general, all data in

one level is also found in all (slower but larger) mem-

ory levels below it.
Historical Background
A three-level memory hierarchy, consisting of (i) the

CPU’s registers, (ii) DRAM main-memory as primary

storage and (iii) secondary storage, has been in use

since the introduction of drums and then disk drives

as secondary storage. In this memory hierarchy, the

decision of which data are loaded into a higher level at

what time (and written back in case it is modified) is

completely under software control. Application pro-

grams determine when to load data from secondary to

primary memory, and compilers determine when to

load data from main memory into CPU registers.

1708M Memory Hierarchy
With the introduction of virtual memory around

1960 [10] application software – and in particular their

programmers – are provided with uniformly addressable

memory larger than physical memory. The operating

system takes care of loading the references portion of

data into main memory, automating page transfers, and

hence relieving programmers from this task. In the late

1960s, the discovery of the locality principle [7] led to the

invention ofworking sets [6] that exploit locality proper-

ties to predict data references, and enabled the design

of page replacement algorithms that make virtual mem-

ory work efficiently and reliably in multiprogramming

environments. Since then, virtual memory has become

an inherent feature of operating systems. In contrast to

many other application programs, a database manage-

ment system usually does not rely on the operating

system’s generic virtual memory management, only.

Instead, it implements its own buffer pool, exploiting

domain specific knowledge to implement application-

specific replacement algorithms.

Until the 1980s, the three-level memory hierarchy

has been the state-of-the art, mainly because main

memory is considered fast enough to serve the CPU –

or better, the CPU were ‘‘slow enough.’’ Since then,

a continuously growing performance gap develops

between CPU and main memory. With the chip inte-

gration technology following Moore’s Law [12], i.e.,

doubling the number of transistors per chip area rough-

ly every 1.5 years, the performance has grown expo-

nentially, due to increasing clock-speeds, increasing

inherent parallelism, or both. Advanced manufacturing

techniques has grown the capacity and – thanks to even

wider and faster system buses – their data transfer

bandwidth of main memory similarly. Memory access

latency, however, has lagged behind, demonstrating at

most a slight linear improvement.

To bridge this performance gap, in the 1980’s hard-

ware designers started to extend the memory hierarchy

by adding small (and expensive) but fast SRAM cache

memories between the CPU and main memory. Initi-

ally, a single cache level is added, either located on

the system board between CPU and main memory,

or integrated on the CPU chip. With advancing inte-

gration and manufacturing techniques, more levels

are added. Nowadays, two to three cache levels int-

egrated on the CPU chip represent the most common

configuration.

The main difference between cache memories and

the original three levels of the memory hierarchy is that
their contents are completely controlled by hardware

logic. Relying on the locality principle, carefully turned

replacement algorithms (usually variations of LRU),

decide when data are loaded into or evicted from

which cache level. While ensuring transparent use

and easy portability, this approach leaves programs

virtually without means to explicitly control the con-

tent of CPU caches. In modern systems, software pre-

fetching commands have been introduced to provide

programs with limited control to (pre-)load data into

caches without actually accessing it.

The scientific computing and algorithm commu-

nities – both usually focusing on compute-intensive

tasks on memory-based data sets – quickly realized

that they have to make the algorithms and data struc-

tures cache-conscious to exploit the performance poten-

tials of ever faster CPU and CPU caches effectively and

efficiently.

The database world initially ignored the new hard-

ware developments, assuming that optimizing disk

access (I/O) is still the key to high performance execu-

tion of data-intensive tasks on large disk-based data

sets. First proposals of cache-conscious database algo-

rithms occurred in the mid 1990s [14]. It was not until

the end of the 20th century that the database commu-

nity realized that memory access has become a severe

bottleneck also for database query processing perfor-

mance, taking up to 90% of the execution time [4,5].

In the last decade, the development of hardware-aware

database technology from system architectures over

data structures to query processing algorithms

has become a very active and recognized research area

[1–3,13].

Foundations

Memory- and Cache-Architectures

Modern computer architectures have a hierarchical

memory system, as depicted in Fig. 1. The main mem-

ory on the system board consists of DRAM (Dynamic

Random Access Memory) chips. While CPU speeds are

increasing rapidly, DRAM access latency has hardly

progressed over time. To narrow the exponentially

growing performance gap between CPU speed and

memory latency (cf., Fig. 2), cache memories have

been introduced, consisting of fast but expensive

SRAM (Static Random Access Memory) chips. SRAM

cells are usually made-up of six transistors per memory

bit, and hence, they consume a rather large area on the

Memory Hierarchy M 1709
chips. DRAM cells require a single transistor and a

small capacitor to store a single bit. Thus, DRAMs

can store much more data than SRAMs of equal (phys-

ical) size. But due to some current leakage, the capaci-

tor in DRAMs get discharged over time, and have to be

recharged (refreshed) periodically to keep their infor-

mation. These refreshes slow down access.

The fundamental principle of all cache architec-

tures is ‘‘reference locality,’’ i.e., the assumption that at

any time the CPU, thus the program, repeatedly

accesses only a limited amount of data (i.e., memory)
Memory Hierarchy. Figure 1. Hierarchical memory

architecture.

Memory Hierarchy. Figure 2. Trends in CPU and DRAM spe

M

that fits in the cache. Only the first access is ‘‘slow,’’ as

the data have to be loaded from main memory. This is

called a compulsory cache miss (see below). Subsequent

accesses (to the same data or memory addresses) are

then ‘‘fast’’, as the data are then available in the cache.

This is called a cache hit. The fraction of memory

accesses that can be fulfilled from the cache is called

cache hit rate; analogously, the fraction of memory

accesses that cannot be fulfilled from the cache is called

cache miss rate.

Cache memories are often organized in multiple

cascading levels between the main memory and the

CPU. As they become faster, but smaller, the closer

they are to the CPU. Originally, there was one level

(typically 64 KB to 512 KB) of cache memory located

on the system board. As the chip manufacturing pro-

cesses improved, a small cache of about 4 KB to 16 KB

was integrated on the CPU’s die itself, allowing much

faster access. The on-board cache is typically not

replaced by the on-chip cache, but rather both make

up a cache hierarchy, with the one on chip called first

level (L1) cache and the one on board called second

level (L2) cache. Over time, the L2 cache has also been

integrated on the CPU’s die (e.g., with Intel’s Pentium

III ‘‘Coppermine,’’ or AMD’s Athlon ‘‘Thunderbird’’).

On PC systems, the on-board cache has since disappea-

red, keeping two cache levels. On other platforms, e.g.,

workstations based on Compaq’s (formerly DEC’s)
ed.

1710M Memory Hierarchy
Alpha CPU, the on-board cache is kept as third level

(L3) cache, next to the two levels on the die. Most

recent multi-core CPUs usually have a private L1

cache of 16 KB to 64 KB per core. The L2 cache is

also integrated on the CPU’s die. L2 configuration vary

between one private L2 per core to one single L2 that is

shared among all cores. On Intel’s Core 2 Quad, for

instance, each of the two L2 caches is shared by two of

the four cores. Typical L2 sizes are in the order of 1 MB

to 8 MB.

To simplify presentation, the remainder of this entry

assumes a typical system with two cache levels (L1 and

L2). However, the discussion can easily be generalized to

an arbitrary number of cascading cache levels in a

straightforward way.

In practice, caches memories do not only cache the

data used by an application, but also the program itself,

more accurately, the instructions that are currently

being executed. With respect to caching, there is one

major difference between data and program. Usually, a

program must not be modified while it is running, i.e.,

the caches may be read-only. Data, however, requires

caches that also allow modification of the cached data.

Therefore, almost all systems nowadays implement two

separate L1 caches, a read-only one for instructions

and a read-write one for data. The L2 cache, however,

is usually a single ‘‘unified’’ read-write cache used for

both instructions and data.

Caches are characterized by three major parameters:

Capacity (C), Line Size (Z), and Associativity (A):
Capacity (C) A cache’s capacity defines its total size

in bytes. Typical cache sizes range from8KB to 8MB.

Line Size (Z) Caches are organized in cache lines,

which represent the smallest unit of transfer be-

tween adjacent cache levels. Whenever a cache miss

occurs, a complete cache line (i.e., multiple consec-

utive words) is loaded from the next cache level or

from main memory, transferring all bits in the

cache line in parallel over a wide bus. This exploits

spatial locality, increasing the chances of cache hits

for future references to data that are ‘‘close to’’ the

reference that caused a cache miss. Typical cache

line sizes range from 16 bytes to 256 bytes. Divid-

ing the cache capacity by the cache line size

yields the number of available cache lines in the

cache: # = C∕Z.
Associativity (A) To which cache line the memory

is loaded depends on the memory address and on
the cache’s associativity. An A-way set associative

cache allows loading a line in A different positions.

If A > 1, some cache replacement policy chooses

one from among the A candidates. Least Recently

Used (LRU) is the most common replacement al-

gorithm. In case A = 1, the cache is called directly-

mapped. This organization causes the least (virtu-

ally no) overhead in determining the cache line

candidate. However, it also offers the least flexibili-

ty and may cause a lot of conflict misses (see below).

The other extreme case is a fully associative cache.

Here, each memory address can be loaded to any

line in the cache (A = #). This avoids conflict

misses, and only capacity misses (see below) occur

as the cache capacity is exceeded. However, deter-

mining the cache line candidate in this strategy

causes a relatively high overhead that increases

with the cache size. Hence, it is feasible for only

smaller caches. Current PCs and workstations typi-

cally implement two-way to eight-way set associa-

tive caches.
With multiple cache levels, two types are distinguished:

inclusive and exclusive caches. With inclusive caches, all

data stored in L1 is also stored in L2. As data are loaded

from memory, they are stored in all cache levels.

Whenever a cache line needs to be replaced in L1

(because a mapping conflict occurs or as the capacity

is exceeded), its original content can simply be dis-

carded as another copy of that data still remains in the

(usually larger) L2. The new content is then loaded

from where it is found (either L2 or main memory).

The total capacity of an inclusive cache hierarchy is

hence determined by the largest level. With exclusive

caches, all cached data are stored in exactly one cache

level. As data are loaded from memory, they get stored

only in the L1 cache. When a cache lines needs to be

replaced in L1, its original content is first written back

to L2. If the new content is then found in L2, it is

moved from L2 to L1, otherwise, it is copied from

main memory to L1. Compared to inclusive cache

hierarchies, exclusive cache hierarchies virtually extend

the cache size, as the total capacity becomes the sum of

all levels. However, the ‘‘swap’’ of cache lines between

adjacent cache levels in case of a cache miss also causes

more ‘‘traffic’’ on the bus and hence increases the cache

miss latency.

Cache misses can be classified into the following dis-

joint types [9]:

Memory Hierarchy M 1711

M

Compulsory The very first reference to a cache line

always causes a cache miss, which is hence classified

as a compulsory miss, i.e., an unavoidable miss

(even) in an infinite cache. The number of compul-

sory misses obviously depends only on the data

volume and the cache line size.

Capacity A reference that misses in a fully associa-

tive cache is classified as a capacity miss because the

finite sized cache is unable to hold all the referenced

data. Capacity misses can be minimized by increas-

ing the temporal and spatial locality of references in

the algorithm. Increasing cache size also reduces

the capacity misses because it captures more

locality.

Conflict A reference that hits in a fully associative

cache but misses in an A-way set associative cache is

classified as a conflict miss. This is because even

though the cache is large enough to hold all the

recently accessed data, its associativity constraints

force some of the required data out of the cache

prematurely. For instance, alternately accessing

just two memory addresses that ‘‘happen to be’’

mapped to the same cache line will cause a conflict

cache miss with each access. Conflict misses are the

hardest to remove because they occur due to address

conflicts in the data structure layout and are specific

to a cache size and associativity. Data structures

would, in general, have to be remapped to minimize

conflicting addresses. Increasing the associativity of a

cache will decrease the conflict misses.

Coherence Only in case of multi-processor or

multi-core systems with private per processor/core

high-level caches but shared lower-level caches and/

or main memory, the following can occur. If two or

more cores access the same data item, it will be

loaded in each private cache. If one core than modi-

fies this data item in its private cache, the other

copies are invalidated and cannot server futures

references. Instead, to ensure cache coherence, a

cache miss occurs, and the modified data item has

to be loaded from the cache that holds the most up-

to-date copy.
Memory Access Costs

In general, memory access costs are characterized by

the following three aspects:

Latency Latency is the time span that passes after

issuing a data access request until the requested data
is available in the CPU. In hierarchical memory sys-

tems, the latency increases with the distance from the

CPU. Accessing data that are already available in the L1

cache causes L1 access latency (lL1), which is typically

rather small (one or two CPU cycles). In case the

requested data are not found in L1, an L1 miss occurs,

additionally delaying the data access by L2 access laten-

cy (lL2) for accessing the L2 cache. Analogously, if

the data are not yet available in L2, an L2 miss occurs,

further delaying the access by memory access latency

(lMem) to finally load the data from main memory.

Hence, the total latency to access data that are in

neither cache is lMem + lL2 + lL1. As L1 accesses

cannot be avoided, L1 access latency is often assumed

to be included in the pure CPU costs, leaving only

memory access latency and L2 access latency as explicit

memory access costs. As mentioned above, all current

hardware actually transfers multiple consecutive words,

i.e., a complete cache line, during this time.

When a CPU requests data from a certain memory

address, modern DRAM chips supply not only the

requested data, but also the data from subsequent

addresses. The data are then available without addi-

tional address request. This feature is called Extended

Data Output (EDO). Anticipating sequential memory

access, EDO reduces the effective latency. Hence, two

types of latency for memory access need to be distin-

guished. Sequential access latency (ls) occurs with se-

quential memory access, exploiting the EDO feature.

With random memory access, EDO does not speed up

memory access. Thus, random access latency (lr) is

usually higher than sequential access latency.

Bandwidth Bandwidth is a metric for the data volume

(in megabytes) that can be transferred between CPU

and main memory per second. Bandwidth usually

decreases with the distance from the CPU, i.e., between

L1 and L2 more data can be transferred per time than

between L2 and main memory. The different band-

widths are referred to as L2 access bandwidth (bL2)
and memory access bandwidth (bMem), respectively. In

conventional hardware, the memory bandwidth used

to be simply the cache line size divided by the memory

latency. Modern multiprocessor systems typically pro-

vide excess bandwidth capacity b0� b. To exploit this,

caches need to be non-blocking, i.e., they need to allow

more than one outstanding memory load at a time,

and the CPU has to be able to issue subsequent

load requests while waiting for the first one(s) to be

Memory Hierarchy. Table 1. Characteristic parameters

per cache level (i 2 {1,..., N})2

Description Unit Symbol

Cache name (level) – Li

Cache capacity [bytes] Ci

Cache block size [bytes] Zi

Number of cache lines – #i = Ci ∕Zi
Cache associativity – Ai

Sequential access

Access bandwidth [bytes/ns] bSiþ1

Access latency [ns] lsi+1 = Zi=b
S
iþ1

Miss latency [ns] li
s = lSiþ1

Miss bandwidth [bytes/ns] bi
s = bSiþ1

Random access

Access latency [ns] lri+1
Access bandwidth [bytes/ns] bri+1 = Zi ∕l

r
iþ1

Miss bandwidth [bytes/ns] bi
r = briþ1

Miss latency [ns] li
r = lriþ1

1712M Memory Hierarchy
resolved. Further, the access pattern needs to be se-

quential, in order to exploit the EDO feature as

described above.

Indicating its dependency on sequential access, the

excess bandwidth is referred to as sequential access

bandwidth (bs = b0). The respective sequential access

latency is defined as ls = Z ∕bs. For random access la-

tency as described above, the respective random access

bandwidth is defined as br = Z ∕lr.

On some architectures, there is a difference be-

tween read and write bandwidth, but this difference

tends to be small.

Address Translation For data access, logical virtual

memory addresses used by application code have to

be translated to physical page addresses in the main

memory of the computer. In modern CPUs, a Transla-

tion Lookaside Buffer (TLB) is used as a cache for

physical page addresses, holding the translation for

the most recently used pages (typically 64). If a logical

address is found in the TLB, the translation has no

additional costs. Otherwise, a TLB miss occurs. The

more pages an application uses (which also depends on

the often configurable size of the memory pages), the

higher the probability of TLB misses.

The actual TLB miss latency (lTLB) depends on

whether a system handles a TLB miss in hardware or

in software. With software-handled TLB, TLB miss

latency can be up to an order of magnitude larger

than with hardware-handled TLB. Hardware-handled

TLB fetches the translation from a fixed memory struc-

ture that is just filled by the operating system. Soft-

ware-handled TLB leaves the translation method

entirely to the operating system, but requires trapping

to a routine in the operating system kernel on each

TLB miss. Depending on the implementation and

hardware architecture, TLB misses can therefore be

more costly than a main-memory access. Moreover,

as address translation often requires accessing some

memory structure, this can in turn trigger additional

memory cache misses.

TLBs can be treated similar to memory caches, using

the memory page size as their cache line size, and calcu-

lating their (virtual) capacity as number_of _entries �
page_size. TLBs are usually fully associative. Like

caches, TLBs can be organized in multiple cascading

levels.

For TLBs, there is no difference between sequential

and random access latency. Further, bandwidth is
irrelevant for TLBs, because a TLB miss does not

cause any data transfer.

Unified Hardware Model

Summarizing the above discussion, one can describe a

computer’s memory hardware as a cascading hierarchy

of N levels of caches (including TLBs) [11]. An index

i 2 {1,...,N} added to the parameters described above

identifies to the respective value of a specific level. The

relation between access latency and access bandwidth

then becomes li+1 = Zi ∕bi+1. Exploiting the dualism

that an access to level i + 1 is caused a miss on level i

allows some simplification of the notation. Introdu-

cing the miss latency li = li+1 and the respective miss

bandwidth bi = bi+1 yields li = Zi ∕bi. Each cache level is

characterized by the parameters given in Table 1. Costs

for L1 cache accesses are assumed to be included in the

CPU costs, i.e., l1 and b1 are not used and hence

undefined.

Manegold developed a system independent C pro-

gram called Calibrator to measure these parameters on

any computer hardware.

Key Applications
In the last decade, the database community has done

much research on modifying existing and developing

new database technology (system architecture, data

Memory Locality M 1713

M

structures, query processing algorithms) to exploit the

characteristics of the extended memory hierarchy effi-

ciently and effectively, improving query evaluation

performance up to orders of magnitude.

URL to Code
Manegold’s cache-memory and TLB calibration tool

Calibrator is available at http://homepages.cwi.nl/

~manegold/Calibrator/calibrator.shtml

Cross-references
▶Buffer Management

▶Buffer Manager

▶Buffer Pool

▶Cache-Conscious Query Processing

▶ Locality

▶Main Memory

▶Main Memory DBMS

▶ Processor Cache

▶ Secondary Memory

Recommended Reading
1. Ailamaki A., Boncz P.A., and Manegold S. (eds.). Proc. Work-

shop on Data Management on New Hardware, 2005.

2. Ailamaki A., Boncz P.A., and Manegold S. (eds.). Proc. Work-

shop on Data Management on New Hardware, 2006.

3. Ailamaki A. and Luo Q. (eds.) Proc. Workshop on Data

Management on New Hardware, 2007.

4. Ailamaki A.G., DeWitt D.J., Hill M.D., and Wood D.A. DBMSs

on a Modern Processor: Where does time go? In Proc. 25th Int.

Conf. on Very Large Data Bases, 1999, pp. 266–277.

5. Boncz P.A., Manegold S., and Kersten M.L. Database Architec-

ture Optimized for the New Bottleneck: memory access. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 54–65.

6. Denning P.J. The working set model for program behaviour.

Commun. ACM, 11(5):323–333, 1968.

7. Denning P.J. The locality principle. Commun. ACM, 48

(7):19–24, 2005.

8. Hennessy J.L. and Patterson D.A. Computer Architecture – A

Quantitative Approach, 3rd edn. Morgan Kaufmann, San

Mateo, CA, USA, 2003.

9. Hill M.D. and Smith A.J. Evaluating associativity in CPU caches.

IEEE Trans. Comput., 38(12):1612–1630, December 1989.

10. Kilburn T., Edwards D.B.C., Lanigan M.I., and Sumner F.H.

One-level storage system. IRE Trans. Electronic Comput.,

2(11):223–235, April 1962.

11. Manegold S. Understanding, Modeling, and Improving Main-

Memory Database Performance. PhD thesis, Universiteit van

Amsterdam, Amsterdam, The Netherlands, December 2002.

12. Moore G.E. Cramming more components onto integrated cir-

cuits. Electronics, 38(8):114–117, April 1965.

13. Ross K. and Luo Q. (eds.). In Proc. Workshop on Data Manage-

ment on New Hardware, 2007.
14. Shatdal A., Kant C., and Naughton J. Cache conscious algo-

rithms for relational query processing. In Proc. 20th Int. Conf.

on Very Large Data Bases, 1994, pp. 510–512.
Memory Locality

STEFAN MANEGOLD

CWI, Amsterdam, The Netherlands

Synonyms
Principle of locality; Locality principle; Locality of

reference

Definition
Locality refers to the phenomenon that computer

programs — or computational processes in general —

do not access all of their data items uniformly and

independently, but rather in a clustered and/or depen-

dent/correlated manner. Some data items are accessed

more often than others, repeated accesses to the same

data item occur in bursts, and related items are usually

accessed together, concurrently or within a short time

interval.

There are two types of locality:

1. Temporal locality means that accesses to the

same data item are grouped in time, i.e., multiple

accesses to the same data item occur in rather short

time intervals compared to rather long time peri-

ods where the same data item is not accessed.

Hence, temporal locality is the concept that a data

item that is referenced by a program at one point in

time will be referenced again sometime in the near

future.

2. Spatial locality means that data items that are

stored physically close to each other tend to be

accessed together. Hence spatial locality is the con-

cept that likelihood of referencing a data item by a

program is higher if a data item near it has been

referenced recently.

Locality belongs to the most fundamental principles of

computer science.

Key Point
The discovery of the locality principle dates back to the

1960s. Denning’s pioneering work on working-set

memory management exploits the locality principle

to avoid thrashing of virtual memory systems high

levels of multiprogramming [2,3]. Today, this is the

http://homepages.cwi.nl/~manegold/Calibrator/calibrator.shtml
http://homepages.cwi.nl/~manegold/Calibrator/calibrator.shtml

1714M Merge Join
key to making virtual memory systems work reliably

and efficiently.

In particular, with modern hierarchical memory

architectures, exploiting and increasing locality in

algorithms and data structures is the key to achieving

high performance.

Increased temporal locality ensures that once a data

item is referenced, and hence loaded into a fast high-

level memory (e.g., cache), all subsequent references

occur in short succession while the data item is still

available in the cache. Ideally, this data item will not be

required, again, once it is evicted from the fast high-

level memory.

Data transfer between adjacent levels of hierarchi-

cal memory systems does not happen per byte but with

larger granularities, e.g., pages of multiple KB or even

MB at a time between disk and main memory, cache

lines of tens to hundreds of bytes between main mem-

ory and CPU cache. Increased spatial locality ensures

that all data bytes/items that are loaded with each

transfer are indeed useful for the program.

Database system architecture exploits and increases

locality in numerous ways. Key examples for increased

temporal locality are, for instance partitioned join

algorithms, where iterating over small partition of the

outer relation increases temporal locality of repeated

access to the inner relation [5,4]. In fact, smaller parti-

tions of the inner relation also increased spatial loca-

lity. Examples of spatial locality range from clustered

indices over tuned page layouts such as PAX [1] to

the decision between column-stores and row-stores

to optimal support of column-major (OLAP) of row-

major (OLTP) workloads.

Cross-references
▶Buffer Management

▶Buffer Manager

▶Buffer Pool

▶Cache-Conscious Query Processing

▶Main Memory

▶Main Memory DBMS

▶Memory Hierarchy

▶ Processor Cache

▶ Secondary Memory

Recommended Reading
1. Ailamaki A.G., DeWitt D.J., Hill M.D., and Skounakis M. Weav-

ing relations for cache performance. In Proc. 27th Int. Conf. on

Very Large Data Bases, 2001, pp. 169–180.
2. Denning P.J. The working set model for program behaviour.

Commun. ACM, 11(5):323–333, 1968.

3. Denning P.J. The locality principle. Commun. ACM,

48(7):19–24, 2005.

4. Manegold S., Boncz P.A., and Kersten M.L. Optimizing main-

memory join on modern hardware. IEEE Trans. Knowl. Data

Eng., 14(4):709–730, July 2002.

5. Shatdal A., Kant C., and Naughton J. Cache conscious algo-

rithms for relational query processing. In Proc. 20th Int. Conf.

on Very Large Data Bases, 1994, pp. 510–512.
Merge Join

▶ Sort-Merge Join
Merge-purge

▶Deduplication in Data Cleaning

▶Record Matching
Merkle Hash Trees

▶Merkle Trees
Merkle Trees

BARBARA CARMINATI

University of Insubria, Varese, Italy

Synonyms
Merkle hash trees; Hash trees; Authentication trees

Definition
Merkle trees are data structures devised to authenti-

cate, with a unique signature, a set of messages, by at

the same time making an intended verifier able to

verify authenticity of a single message without the

disclosure of the other messages. In particular, given

a set of messages M = {m1,...,mn}, the Merkle tree

created with them is a binary tree whose leaves contain

Message Authentication Codes M 1715

M

the hash value of each message m in M, whereas inter-

nal nodes contain the concatenation of the hash values

corresponding to its children.

Key Point
A Merkle tree is a data structure introduced by Merkle

in 1979 [1] to improve the Lamport-Diffie one-time

signature scheme [2]. In this digital signature scheme,

keys can be used to sign, at most, one message. This

implies that for each signed message a new public key

has to be generated and published. As consequence,

Lamport-Diffie one-time digital signature scheme

requires publishing a large amount of data. To over-

come this drawback, in [1] Merkle proposed a tree-

structure, called authentication tree, with the aim of

authenticating a large number of public keys to be used

in one-time signature scheme.

In general, Merkle trees can be exploited to authen-

ticate with a unique signature a set of messages by, at

the same, time making an intended verifier able to

authenticate a single message without the disclos-

ure of the other messages. Given a set of messages

M = {m1,...,mn}, the corresponding Merkle tree is

computed by means of the following bottom-up recur-

sive computation: at the beginning, for each different

message m 2 M, a different leaf containing the hash

value of m is inserted into the tree; then, for each

internal node, the value associated with it is equal to

h(hljjhr), where hljjhr denotes the concatenation of the

hash values corresponding to the left and right children

nodes, and h() is an hash function. The root node of

the resulting binary hash tree is the digest of all the

messages, and thus it can be digitally signed by using a

standard signature technique. The main benefit of this

method is that a user is able to validate the signature by

having a subset of messages, providing him/her with a

set of additional hash values corresponding to missing

messages. Indeed, these additional hash values, togeth-

er with the provided set of original messages, make a

user able to locally re-build the binary tree and, there-

fore, to validate the signature generated on its root.

Consider, for instance, the following set of messa-

ges M = {m1, m2, m3, m4}. The Merkle tree created

with them is a complete binary tree with height of

two. More precisely, according to the recursive compu-

tation, the root value of the Merkle tree is equal to

h(hrljjhrr), where hrl is its left children with value

h(h(m1)jjh(m2)), whereas hrr is its right children

with value h(h(m3)jjh(m4)). Assume, now, that a user
receives only messages m1 and m2. To make him/her

able to validate the signature, he/she must be provided

also with hash value hrr. Indeed, by having m1 and m2

messages, the user is able to calculate hrl. Then, using

hrr and hrl he/she can compute the hash value of the

root, and thus verify the signature.

Cross-references
▶Digital Signatures

▶ Secure Data Outsourcing

Recommended Reading
1. Merkle R. Secrecy, authentication, and public key systems.

Electrical Engineering, PhD Thesis, Stanford University, 1979.

2. Lamport L. Constructing digital signatures from a one-way

function. Technical Report CSL-98, SRI International, Palo

Alto, 1979.
Message Authentication Codes

MARINA BLANTON

University of Notre Dame, Notre Dame, IN, USA

Synonyms
MAC; Message integrity codes

Definition
A message authentication code (MAC) is a short fixed-

length value which is used to authenticate a message. A

MAC algorithm can be viewed as a hash function that

takes as input two functionally distinct values: a secret

key and a message. The output of a MAC algorithm is a

short string computed in such a way that it is infeasible

to produce the same output on the message without

the knowledge of the key. Thus, the MAC value pro-

tects both the integrity and authenticity of a message by

allowing the entity in possession of the secret key to

detect any changes to the message content.

Key Points
While MAC functions can be viewed as keyed crypto-

graphic hash functions, they have specific security

requirements for authentication purposes. More pre-

cisely, an attacker who does not have access to the

secret key and has not seen the MAC value for a specific

message before should not be able to compute that

value. MAC functions use symmetric techniques (i.e.,

the same key is used to create and verify a MAC) and

1716M Message Integrity Codes
thus are different from digital signatures where the

signing and verification keys differ. Practical MAC

algorithms can be constructed from cryptographic

hash functions (for example, HMAC) or from block

ciphers (for example, CBC-MAC and others).
Cross-references
▶Authentication

▶Digital Signatures

▶Hash Functions

▶ Symmetric Encryption
Recommented Reading
1. Krawczyk H., Bellare M., and Canetti R. HMAC: Keyed-hashing

for message authentication, RFC 2104. Internet Engineering

Task Force (IETF), 1997.

2. Stallings W. Cryptography and Network Security: Principles

and Practices (4th edn.). Pearson-Prentice Hall, Upper Saddle

River, NJ, 2006.
Message Integrity Codes

▶Message Authentication Codes (MAC)
Message Queuing Systems

SARA BOUCHENAK
1, NOËL DE PALMA

2

1University of Grenoble I — INRIA, Grenoble, France
2INPG — INRIA, Grenoble, France

Synonyms
Message-oriented middleware (MOM); Message-

oriented systems; Messaging systems; Queuing systems
Definition
Amessage is an information sent by a sender process to

a receiver process. A message queue is a mechanism

that allows a sender process and a receiver process to

exchange messages. The sender posts a message in the

queue, and the receiver retrieves the message from

the queue. A message queuing system provides a

means to build distributed systems, where distributed
processes communicate through messages exchanged

via queues.

Key Points
A message queuing system provides several facilities,

such as creating messages, creating queues, initializing

sender and receiver processes, and providing a means

to send and receive messages.

First of all, a message queuing system provides a

facility to build a message and fill it with data. Proper-

ties may be associated with a message, such as the

message size, the message expiration time and the

message priority.

A message queuing system also provides facilities to

create a queue and, optionally, to associate parameters

with a queue, such as the queue length (i.e., the maxi-

mum number of messages a queue may hold), the

queue topics (i.e., the types of messages the queues

may contain), etc.

The senders and receivers of messages may com-

municate in a synchronous way or in an asynchronous

way. With a synchronous communication protocol,

a receiver waits for a message from a sender, i.e., it

blocks until the message arrives. Whereas with an

asynchronous communication protocol, the receiver

continues executing and is notified of the reception

of a message when this one arrives.

Furthermore, the destination of a message may

be specified either explicitly or implicitly. In the explic-

it mode, the sender specifies the queue to which the

message is sent. While in the implicit mode, the sender

specifies a topic to which a message is sent, and the

message queuing system is responsible of automatically

finding the queues that correspond to that topic before

sending the message to these queues.

Several message queuing systems are proposed,

some are proprietary and others are open source. Ora-

cle proposes Advanced Queuing for Oracle databases

[3], Skype has Skytools PgQ for PostgreSQL databases

[5], IBM provides WebSphere MQ, Microsoft has

MSMQ [1], and Sun Microsystems defines Java Mes-

sage Service (JMS) as a specification of a Java standard

for message queuing systems [6]. Open source message

queuing systems include ActiveMQ [7], JBoss Messag-

ing [2], and JORAM [4].

Cross-reference
▶Adaptive Middleware for Message Queuing Systems

Metadata Interchange Specification M 1717
Recommended Reading
1. IBM.WebSphereMQ, 2008. http://www-306.ibm.com/software/

integration/wmq/.

2. JBoss. JBoss Messaging, 2008. http://labs.jboss.com/jbossmessa

ging/.

3. Oracle. Oracle9i Application Developer’s Guide – AdvancedQueu-

ing, 2008. http://download.oracle.com/docs/cd/B10500_01/app-

dev.920/a96587/toc.htm.

4. ScalAgent. JORAM: Java Open Reliable Asynchronous Messag-

ing, 2008. http://joram.objectweb.org/.

5. Skype. SkyTools PgQ, 2008. https://developer.skype.com/Skype

Garage/DbProjects/SkyTools.

6. Sun Microsystems. Java Message Service (JMS), 2008. http://

java.sun.com/products/jms/.

7. The Apache Software Foundation. Apache ActiveMQ, 2008.

http://activemq.apache.org/.
Message-Oriented Middleware
(MOM)

▶Message Queuing Systems

▶ Publish/Subscribe Over Streams
M

Message-oriented Systems

▶Message Queuing Systems
Messaging Engines

▶ Interface Engines in Healthcare
Messaging Systems

▶Message Queuing Systems
Meta Data Base

▶Meta Data Repository
Metadata Interchange Specification

WEI TANG

Teradata Corporation, El Segundo, CA, USA

Synonyms
MDIS

Definition
Metadata Interchange Specification (MDIS) is a stan-

dard proposed by the Metadata Coalition (MDC) for

defining metadata.

Key Points
Metadata Coalition (MDC) was an organization

of database and data warehouse venders founded in

October 1995. Its aim was to define a tactical set of

standard specifications for the access and interchange

of meta-data between software tools.

In July 1996, Metadata Interchange Specification

(MDIS) 1.0 was officially ratified by MDC.

The MDIS Version 1.0 specification represents Co-

alition member input and recommendations collected

and synthesized by the Coalition’s technical subcom-

mittee which included representatives from Business

Objects, ETI, IBM, Platinum Technology, Price Water-

house, Prism Solutions, R&O and SAS Institute. The

latest version of MDIS is 1.1, which was published in

August 1997.

The Metadata Interchange Specification draws a

distinction between:

� The Application Metamodel – the tables, etc., used

to ‘‘hold’’ the metadata for schemas, etc., for a

particular application; for example, the set of tables

used to store metadata in Composer may differ

significantly from those used by the Bachman

Data Analyst.

� The Metadata Metamodel – the set of objects that

the MDIS can be used to describe. These represent

the information that is common (i.e., represented)

by one or more classes of tools, such as data dis-

covery tools, data extraction tools, replication

tools, user query tools, database servers, etc. The

metadata metamodel should be:
– Independent of any application metamodel.

– Character-based so as to be hardware/platform-

independent.

http://www-306.ibm.com/software/integration/wmq/
http://www-306.ibm.com/software/integration/wmq/
http://labs.jboss.com/jbossmessaging/
http://labs.jboss.com/jbossmessaging/
http://download.oracle.com/docs/cd/B10500_01/appdev.920/a96587/toc.htm
http://download.oracle.com/docs/cd/B10500_01/appdev.920/a96587/toc.htm
http://joram.objectweb.org/
https://developer.skype.com/SkypeGarage/DbProjects/SkyTools
https://developer.skype.com/SkypeGarage/DbProjects/SkyTools
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://activemq.apache.org/

1718M Meta Data Management System
– Fully qualified so that the definition of each

object is uniquely identified.
There are two basic aspects of the specification:

1. Those that pertain to the semantics and syntax used

to represent the metadata to be exchanged. These

items are those that are typically found in a speci-

fications document.

2. Those that pertain to some framework in which the

specification will be used. This second set of items

is two file-based semaphores that are used by the

specification’s import and export functions to help

the user of the specification control consistency.

MDIS consists of a metamodel, which defines the

syntax and semantics of the metadata to be exchanged,

as well as the specification of a framework for support-

ing an actual MDIS implementation. The MDIS Meta-

model is a hierarchically structured, semantic database

model that’s defined by a tag language. The metamodel

consists of a number of generic, semantic constructs,

such as Element, Record, View, Dimension, Level, and

Subschema, plus a Relationship entity that can be used

in the specification of associations between arbitrary

source and target constructs. The MDIS metamodel

may be extended through the use of named properties

that are understood to be tool-specific and not defined

within MDIS. Interchange is accomplished via an

ASCII file representation of an instance of this meta-

model. Although support for an API is mentioned in

the specification, no API definition is provided.

The MDIS Access Framework specifies several

fairly general mechanisms that support the inter-

change of metamodel instances. The Tool and Con-

figuration Profiles define semaphores that ensure

consistent, bidirectional metadata exchange between

tools. The MDIS Profile defines a number of system

parameters (environment variables) that would be

necessary in the definition of an MDIS deployment.

Finally, Import and Export functions are exposed by

the framework as the primary file interchange

mechanisms for use by tools.

MDIS 1.1 was planned to be incorporated with

Microsoft’s Open Information Model (OIM) when

Microsoft joined the MDC in December 1998. MDC

decided later that MDIS be superseded by OIM. In

2000, the Metadata Coalition merged with the Object

Management Group (OMG). OMG has worked on

integrating OIM into its Common Warehouse Model
(CWM) in order to provide a single standard for

modeling meta-data in data warehouses. MDC,

MDIS, and OIM are no longer in existence today (as

independent entities).

Cross-references
▶Common Warehouse Metamodel (CWM)

▶Metadata Coalition (MDC)

▶Open Information Model (OIM)

Recommented Reading
1. Metadata Interchange Specification (MDIS) Version 1.1. Avail-

able at: http://www.eda.org/rassp/documents/atl/MDIS-11.pdf
Meta Data Management System

▶Meta Data Repository
Meta Data Manager

▶Meta Data Repository
Meta Data Registry

▶Meta Data Repository
Meta Data Repository

CHRISTOPH QUIX

RWTH Aachen University, Aachen, Germany

Synonyms
Meta data base; Meta data manager; Meta data

management system; Meta data registry

Definition
A meta data repository (MDR) is a component which

manages meta data. In the context of database systems,

one example of meta data is information about the

database schema, i.e., a description of the data. In

addition, MDRs can manage information about the

processes which create, use, or update the data, the

hardware components that host these processes or

http://www.eda.org/rassp/documents/atl/MDIS-11.pdf

Meta Data Repository M 1719

M

the database system, or other (human) resources which

make use of the data [6]. As meta data is also data,

meta data repositories offer the same functionality for

meta data as database management systems (DBMS)

for data, e.g., queries, updates, transactions, access

control.

Moreover, as meta data is semantically rich data,

MDRs often employ object-oriented data models as

the basis for the definition of meta data. MDRs should

also offer predefined meta models for different types of

meta data, so that the user is able to store meta data

directly, without defining a meta model in advance.

Another task for a meta data repository is the

integration of meta data from various sources into a

comprehensive meta data model.

Historical Background
The first components that managed meta data in the

context of database systems were dictionary systems

which were integrated into the database management

systems (DBMS) [12]. These dictionaries were already

part of early DBMS products, such as IDMS or IBM

IMS. For example, the integrated data dictionary

(IDD) of IDMS was a separate database inside the

IDMS which was used to maintain meta data of pro-

ducts in the IDMS family [11]. It could be extended

also to maintain other types of meta data.

The relational database systems developed in the

1980s also had integrated dictionary systems (also

known as system catalogs) to maintain definitions

about tables, views, columns, etc. These dictionaries

were mainly used by the DBMS itself, but they could be

also queried by users and other applications to retrieve

information about the contents of a database.

In the 1980s, ANSI started to develop a standard

for Information Resource Dictionary Systems (IRDS)

which was later adopted by ISO [6]. The standard

defined the content, structure, and functionality of an

IRDS. The main requirements stated by the IRDS

standard are the availability of data modeling facilities,

extensibility (i.e., the possibility to add new data

types), and the provision of standard DBMS function-

ality such as query and reporting facilities, integrity

and constraint management, and access control.

With the growing need for integrated information

systems, stand-alone meta data repository systems

became more popular in the 1990s. In contrast to the

integrated repositories in DBMS products, a stand-

alone MDR was able to manage meta data from
different systems. The requirement for meta data inte-

gration was especially important for data warehouses,

where data that was managed by independent, hetero-

geneous systems should be integrated into a common

data store with a uniformed data model. The availabil-

ity of meta data of the data sources was a prerequisite

for data integration. In this context, some companies

tried to build enterprise wide meta data repositories

which were supposed to manage all meta data that is

available in the enterprise. Such an ambitious goal was

hard to achieve, and often, the return-of-investment of

such a system was not as high as expected [5]. There-

fore, the MDR market was significantly reduced at the

end of the 1990s.

Since 2000, two trends for meta data repositories

gained importance: community-focused repositories

and federated repositories [5]. Communicty-focused

repositories are employed in communities (within a

company), which share a common interest, such as

data warehousing or enterprise application integra-

tion. In these communities, the main problem of inter-

operability of meta data tools could be solved by

dedicated bridging technologies, because of the limited

scope of the meta data. With the rising importance of

service oriented architecture (SOA), MDR needed

again to address a broader scope of meta data. There-

fore, federated solutions for MDRs are considered to

be a solution for the meta data integration problem. In

a federated MDR, there are still several MDRs for

different communities but federated queries across

several MDRs are enabled [5].
Foundations

Requirements

Requirements for MDRs were stated in the IRDS stan-

dard [6], in [2], and in [1]:

1. Dynamic extensibility. The MDR should provide

easy functionalities for the extension of the built-

in data models.

2. Management of objects and relationships. Objects

and relationships between objects should be man-

aged by the MDR.

3. Notification. An operation on a specific object in

the MDR might trigger other operations on the

same or different objects. Therefore, the MDR

must be able to notify applications which are inter-

ested in certain events. In addition, the invocation

1720M Meta Data Repository
of methods inside the MDR (based on other

events) should be also possible.

4. Version management. Versioning of meta data is

required to track the evolution of a meta data

object. It is also important to know which versions

of two objects were active at a specific time. It

might be also necessary to maintain relationships

between older and newer versions of an object.

5. Configuration management. A configuration is a set

of meta data objects which belong together in re-

spect of content, e.g., they all describe the state of

one component. The MDR should be able to man-

age a configuration as one group. Configurations

can be also versioned.

6. Integrity constraints. The MDR must provide a lan-

guage for the definition of integrity constraints on

meta data, and enforce the compliance of the meta

data with these constraints.

7. Query and reporting functionality. To retrieve meta

data from the repository, the MDR needs to offer a

query language. In addition, user-configurable

reports should be also supported.

8. User access. If the MDR can be accessed directly

by end-users or administrators, the MDR needs

to support: a browsing facility for meta data, so that

users can navigate through the metadata; an access

control, so that users see or update only meta data

which they are allowed to; a sophisticated user inter-

face if the users are also allowed to update the meta

data, so that the integrity of the MDR is maintained.

9. Interoperability. To enable interoperability with

other tools and repositories, the MDR should sup-

port standards for meta data exchange (such as

XMI) and offer an API (application program

interface).
Architecture

There are several MDRs already available (see ‘‘Sys-

tems’’ section below), each having its own unique

architecture. However, by abstracting from these con-

crete architectures, several components which are

common for all MDRs can be identified:

1. Repository. The repository component is the inter-

nal data store of the MDR and therefore the core

of the MDR. As MDRs have to provide similar

functionality for meta data as DBMS for data,

the repository is often implemented on top of a

DBMS.
2. Meta data manager. The meta data manager acts as

the controller of the repository. As all accesses to

the repository should go through the meta data

manager, it provides an interface for external appli-

cations. Using this interface, applications can store,

update, and query meta data.

3. Models. A MDR needs to come with already prede-

fined meta models (or information models) which

can be directly employed by the users of the MDR

to store meta data. If the user has to define its own

meta models, the effort to get the MDR running

might be too high for the application. Nevertheless,

it should be possible to extend the existing models

for the specific requirements of the applications that

use the MDR.

4. User interface. As described above, a MDR can be

also accessed by users, which are either end-users

using the data or processes described in the MDR,

or administrators controlling the system of which

the MDR is a part. The user interface can consist

of a query facility, a meta data browser, an admin-

istrator interface, and an interface to update the

meta data.

As mentioned above, a current trend for MDRs is the

idea of a federated MDR. This changes the standard

architecture described before: the repository compo-

nent in a federated MDR is not one single data store,

the meta data can be distributed across several inde-

pendent and heterogeneous components. In a feder-

ated MDR architecture, the meta data could be stored

in files, databases, or managed by specific applications.

This increases the complexity of the meta data manag-

er significantly, as meta data queries have to be trans-

formed into queries of the individual systems holding

the meta data.
Systems

There are several MDRs available in the market. They

can be classified as stand-alone MDRs, repositories

integrated into larger software platforms, open source

systems and research prototypes.

The market for stand-alone MDRs is changing

frequently as companies specialized on MDRs are

being acquired by other companies. The current pro-

ducts for separate meta data management solutions

are, for example, ASG Rochade, Adaptive Metadata

Manager, and Advantage Repository. These products

came mainly from the data management area

Meta Data Repository M 1721

M

(especially used as MDRs in data warehouse systems),

but are now also addressing other areas such as enter-

prise application integration and service-oriented

architectures. Other systems, such as Logidex from

LogicLibrary or BEA AquaLogic Registry Repository,

have been originally developed as meta data systems

for service-oriented architectures.

As mentioned above, large software companies are

also addressing the meta data challenges in their soft-

ware or technology platforms. For example, IBM has

an integrated MDR in their information integration

framework.

There are also a fewopen source systemswhich canbe

used asMDR. Two examples are Repository in a Box and

XMDR. In the research community, ConceptBase [9]

is a MDR which has been used in several research pro-

jects. ConceptBase provides a very flexible data model

which can be used for any kind of meta data structure.

Key Applications
There are various application areas for MDRs, basically

in all areas in which the management of meta data is

necessary. The most important applications for MDRs

are situations in which meta data from different sources

has to be integrated in one repository. This goes usually

beyond the capabilities of builtinMDRs, i.e., repositories

which are integrated with other software components.

Data integration in general is an application area in

which MDRs play a central role. If data has to be

integrated from heterogeneous systems, the descrip-

tion of this data is required to enable the integration.

Data warehouse systems [8] are an example for an

architecture of integrated data management in which

the role of MDRs has been defined explicitely.

In the context of data warehouse systems, also the

problem of data quality has been discussed [10,7].

Meta data is often the basis for data quality measure-

ments, e.g., meta data describes the provenance, the

age, the semantics of data. Therefore, MDRs are im-

portant components for data quality projects.

A MDR can also be used as a resource for

structured documentation about IT systems. In addi-

tion to the ‘‘usual’’ meta data artefacts such as models

and mappings for data integration, also a documenta-

tion of the employed systems and their architecture in

an organization is useful.

As discussed before, service-oriented architecture

(SOA) are becoming an important concept for soft-

ware development. As a system based on a SOA
is a distributed and often heterogeneous system,

the management of meta data in a SOA is also impor-

tant. Therefore, a MDR is often also a component

in a SOA.

Another application area for MDRs might the

management of meta data on the web, such as RDF

or OWL ontologies. However, the web is build on the

idea of decentralized data management which is in

conflict with the concept of a central, integrated repos-

itory for all kind of meta data. Nevertheless, MDRs can

be useful to manage the meta data at a specific site, e.g.,

the ontologies which are offered by that site and their

mappings to other ontologies.
Future Directions
The integration of meta data will remain to be a chal-

lenge, however the meta data will be integrated, either

materialized in a repository, federated with a virtual

integration system, or some combination of these.

With the rising importance of web applications, ser-

vice-oriented architectures and similar concepts, it can

be expected that more loosely coupled MDRs with a

federated integration become more successful. Existing

or upcoming meta data standards, such as such as

CWM (common warehouse metamodel) and XMI

(XML metadata interchange), might simplify the

task, but the integration of meta data will remain a

problem. Another trend is the integration of MDR into

larger software platforms as it is done (or planned) by

the major software vendors.

Meta data integration and new architectures for

MDRs are also interesting questions for the research

community: How can such systems be built, that enable

the integrated querying of various meta data sources?

Which lessons can be applied for meta data that have

already been learned at the data level? Other research

questions for MDRs and meta data management are

addressed in model management [3,4] which investi-

gates formal methods for working with data models.

The challenge for MDRs here is to provide generic

structures for the representation of models and

mappings.
Cross-references
▶Data Warehouse Metadata

▶Meta Data Registry

▶Meta Model

▶Meta Object Facility

1722M Meta Model
Recommended Reading
1. Bauer A. and Günzel H. (eds.) Data-Warehouse-Systeme: Archi-

tektur, Entwicklung, Anwendung. dpunkt-Verlag, Heidelberg,

2001.

2. Bernstein P.A. Repositories and Object Oriented Databases.

ACM SIGMOD Rec., 27(1):88–96, 1998.

3. Bernstein P.A., Halevy A.Y., and Pottinger R. AVision for Man-

agement of Complex Models. ACM SIGMOD Rec., 29(4):55–63,

2000.

4. Bernstein P.A. and Melnik S. Model Management 2.0: Manip-

ulating Richer Mappings. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007, pp. 1-12.

5. Blechar M., IT Metadata Repository Magic Quadrant Update

2002. Gartner, Inc., 2002.

6. ISO/IEC Information technology – Information Resource Dic-

tionary System (IRDS) Framework. International Standard ISO/

IEC 10027:1990, DIN Deutsches Institut für Normung, e.V.,

1990.

7. Jarke M., Lenzerini M., Vassiliou Y., and Vassiliadis P. (eds.)

Fundamentals of Data Warehouses. Springer-Verlag, 2000.

8. Jarke M. and Vassiliou Y. Foundations of Data Warehouse

Quality - a Review of the DWQ Project. In Proc. 2nd Int.

Conf. Information Quality, 1997, pp. 299–313.

9. Jeusfeld M.A., Jarke M., Nissen H.W., and Staudt M. Concept-

Base – Managing Conceptual Models about Information

Systems. In Handbook on Architectures of Information Systems,

P. Bernus, K. Mertins, and G. Schmidt (eds.). Springer-Verlag,

1998, pp. 265–285.

10. Tayi G.K. and Ballou D.P. Examining Data Quality. Commun.

ACM, 41(2):54–57, 1998.

11. Wikipedia – The Free Encyclopedia IDMS (Integrated Database

Management System). Article in the encyclopedia, 2008, URL

http://en.wikipedia.org/wiki/IDMS.

12. Wikipedia – The Free Encyclopedia. Metadata. Article in the

encyclopedia, 2008, URL http://en.wikipedia.org/wiki/

Metadata.
Meta Model

▶Metamodel
Meta Object Facility. Table 1. OMG’s Metadata

Architecture

Meta-level MOF terms Examples

M3 Meta-metamodel The ‘‘MOF Model’’

M2 Metamodel,
meta-metadata

UML Metamodel,
CWM Metamodel

M1 Model, metadata UML models, CWM
metadata

M0 Object, data Modeled systems,
Warehouse data
Meta Object Facility

WEI TANG

Teradata Corporation, El Segundo, CA, USA

Synonyms
MOF

Definition
The Meta Object Facility (MOF) is an OMG metamo-

deling and metadata repository standard. It is an exten-

sible model driven integration framework for defining,
manipulating and integrating metadata and data in a

platform independent manner. MOF-based standards

are in use for integrating tools, applications and data [1].

Key Points
MOF was developed as a response to a request

for proposal (RFP), issued by the OMG Analysis and

Design Task Force, for Metadata repository facility

(http://www.omg.org/cgi-bin/doc?cf/96-05-02). The

purpose of the facility was to support the creation,

manipulation, and interchange of meta models.

MOF provides a metadata management frame-

work, and a set of metadata services to enable the

development and interoperability of model and meta-

data driven systems. The MOF metadata framework is

typically depicted as a four-layer architecture as shown

in Table 1:

The MOF specification has three core parts:

1. The specification of the MOF Model

a. The MOF’s built-in meta-metamodel, the ‘‘ab-

stract language’’ for defining MOF metamodels

2. The MOF IDL Mapping

a. A standard set of templates that map an MOF

metamodel onto a corresponding set of CORBA

IDL interfaces

3. The MOF’s interfaces

a. The set of IDL interfaces for the CORBA objects

that represent an MOF metamodel

The OMG adopted the MOF version 1.0 in November

1997. The most recent revision of MOF, 2.0, was

adopted in January 2006 and based on the following

OMG specifications:

� MOF 1.4 Specification – MOF 2.0 is a major revi-

sion of the MOF 1.4 Specification. MOF 2.0

addresses issues deferred to MOF 2.0 by the MOF

1.4 RTF.

http://en.wikipedia.org/wiki/IDMS
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Metadata
http://www.omg.org/cgi-bin/doc?cf/96-05-02

Metadata M 1723

M

� UML 2.0 Infrastructure Convenience Document:

ptc/04-10-14 – MOF 2.0 reuses a subset of the

UML 2.0 Infrastructure Library packages.

� MOF 2.0 XMI Convenience document: ptc/04-06-

11 – Defines the XML mapping requirements for

MOF 2.0 and UML 2.0.

The MOF 2 Model is made up of two main packages,

Essential MOF (EMOF) and Complete MOF (CMOF).

1. The EMOF Model merges the Basic package from

UML2 and merges the Reflection, Identifiers, and

Extension capability packages to provide services

for discovering, manipulating, identifying, and

extending metadata.

2. The CMOFModel is the metamodel used to specify

other metamodels such as UML2. It is built from

EMOF and the Core:Constructs of UML 2. The

Model package does not define any classes of

its own. Rather, it merges packages with its exten-

sions that together define basic metamodeling

capabilities.

Examples of metadata driven systems that use MOF

include modeling and development tools, data ware-

house systems, metadata repositories etc. A number of

technologies standardized by OMG, including UML,

MOF, CWM, SPEM, XMI, and various UML profiles,

use MOF and MOF derived technologies (specifically

XMI and more recently JMI which are mappings of

MOF to XML and Java respectively) for metadata-

driven interchange and metadata manipulation. MOF

mappings from MOF to W3C XML and XSD are

specified in the XMI (ISO/IEC 19503) specification.

Mappings from MOF to Java are in the JMI (Java

Metadata Interchange) specification defined by the

Java Community Process.

Note that MOF 2.0 is closely related to UML 2.0.

MOF 2.0 specification integrates and reuses the com-

plementary UML 2.0 Infrastructure submission to pro-

vide a more consistent modeling and metadata

framework for OMG’s Model Driven Architecture.

UML 2.0 provides the modeling framework and nota-

tion, MOF 2.0 provides the metadata management

framework and metadata services.

MOF was also incorporated into an ISO/IEC (the

International Organization for Standardization/the

International Electrotechnical Commission) standard

(19502:2005) in November 2005. The standard defines

a metamodel (defined using the MOF), a set of inter-

faces (defined using ODP IDL – ITU-T
Recommendation X.920 (1997) | ISO/IEC 14750:1999),

that can be used to define and manipulate a set of

interoperable metamodels and their corresponding

models (including the Unified Modeling Language

metamodel – ISO/IEC 19501:2005, the MOF meta-

metamodel, as well as future standard technologies that

will be specified using metamodels). It also defines the

mapping from MOF to ODP IDL (ITU rec X920|ISO

14750).

In conclusion, the MOF provides the infrastructure

for implementing design and reuse repositories, appli-

cation development tool frameworks, etc. The MOF

specifies precise mapping rules that enable the CORBA

interfaces for metamodels to be generated automati-

cally, thus encouraging consistency in manipulating

metadata in all phases of the distributed application

development cycle.

Cross-references
▶Meta Object Facility

▶Metadata

▶Metamodel

▶Model-Driven Architecture

▶Unified Modeling Language

▶XMI

Recommended Reading
1. Common warehouse metamodel (CWM). Available at

http://www.omg.org/technology/documents/formal/cwm.htm

(accessed on September 22, 2008).

2. ISO/IEC standard 19502:2005 (Information Technology – Meta

Object Facility). Available at http://www.iso.org/iso/iso_catalo

gue/catalogue_tc/catalogue_detail.htm?csnumber=32621

3. MOF Query/Views/Transformations. Available at http://www.

omg.org/spec/QVT/ (current version 1.0)

4. MOF 2.0 versioning and development lifecycle. Available

at http://www.omg.org/technology/documents/formal/MOF_

version.htm

5. OMG’s meta object facility. Available at http://www.omg.org/

mof/ (current version 2.0)
Metadata

MANFRED A. JEUSFELD

Tilburg University, Tilburg, The Netherlands

Definition
Metadata is data linked to some data item, i.e., meta-

data is data about data. The metadata of a data item

http://www.omg.org/technology/documents/formal/cwm.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32621
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32621
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.omg.org/technology/documents/formal/MOF_version.htm
http://www.omg.org/technology/documents/formal/MOF_version.htm
http://www.omg.org/mof/
http://www.omg.org/mof/

1724M Metadata Encoding and Transmission Standard
specifies how the data item was created, in which con-

text it can be used, how its was transformed, or how it

can be interpreted or processed. The earliest use of

metadata are bibliographic records about books, such

as the author of the book. In principle, any type of data

item can have metadata attached to it. The type of the

data item itself can be metadata and determines which

other metadata fields may be attached to the data item.

Key Points
The purpose of metadata is to provide contextual

information for a data item. It may be used hy humans

to determine the usability of a data item. Likewise,

computer programs can read the metadata in order

to guide the processing of a data item. Metadata can be

included in the data item (e.g., the date and location of

a photography) or it may be stored apart of the data

item. In the latter case, the data item requires being

identifiable. In databases, metadata fields can be repre-

sented next to data fields, virtually blurring the distinc-

tion between metadata and data.

Metadata is mostly used in domains where the

structure of the data item is rather complex. Metadata

typically has a simple structure such as name/value

pairs. Applications domains are word processing,

multi-media processing, system design, data ware-

houses, data quality management, and others. The

common characteristic of these domains is the pres-

ence of many data items of the same type, which need

to be managed according to some criteria. Metadata

allows providing the necessary information to check

these criteria. In the semantic web, metadata can be

represented in RDF and related formalisms such as the

Dublin Core.

There is no limitation on the size of metadata

attached to data items. It can be that the size of meta-

data exceeds the size of the data item itself. For exam-

ple, the complete change history of a document is

metadata of the document.

The schema of a database can be interpreted as

metadata about the database. It specifies the type of

the data items stored in the database. Likewise, a

metamodel can be interpreted as metadata about

schemas (or models).

Cross-references
▶Database Schema

▶Dublin Core
▶Metamodel

▶RDF

Recommented Reading
1. Duval E., Hodgins W., Sutton S.A., and Weibel S. Metadata

principles and practicalities. D-Lib Magazine, 8(4), April 2002.
Metadata Encoding and
Transmission Standard

▶ LOC Mets
Metadata Registry, ISO/IEC 11179

RAYMOND K. PON
1, DAVID J. BUTTLER

2

1University of California, Los Angeles, Los Angeles,

CA, USA
2Lawrence Livermore National Laboratory, Livermore,

CA, USA

Synonyms
Metadata repository; MDR
Definition
ISO/IEC-11179 [10] is an international standard that

documents the standardization and registration of

metadata to make data understandable and shareable.

This standardization and registration allows for easier

locating, retrieving, and transmitting data from dispa-

rate databases. The standard defines the how metadata

are conceptually modeled and how they are shared

among parties, but does not define how data is physi-

cally represented as bits and bytes. The standard con-

sists of six parts. Part 1 [5] provides a high-level

overview of the standard and defines the basic element

of a metadata registry – a data element. Part 2 [7]

defines the procedures for registering classification

schemes and classifying administered items in a meta-

data registry (MDR). Part 3 [4] specifies the struc-

ture of an MDR. Part 4 [6] specifies requirements

and recommendations for constructing definitions

for data and metadata. Part 5 [8] defines how adminis-

tered items are named and identified. Part 6 [9] defines

Metadata Registry, ISO/IEC 11179 M 1725
how administered items are registered and assigned an

identifier.
Historical Background
The first edition of the standard was published by the

Technical Committee ISO/IEC JTC1, Information

Technology Subcommittee 32, Data Management and

Interchange, starting in 1994 and completed in 2000.

The second edition was started in 2004 and was com-

pleted in 2005. The second edition cancels and replaces

the first edition of the standard.
M

Foundations
Metadata is data that describes other data. A metadata

registry is a database of metadata. The database allows

for the registration of metadata, which enables the

identification, provenance tracking, and quality moni-

toring of metadata. Identification is accomplished by

assigning a unique identifier to each object registered

in the registry. Provenance details the source of the

metadata and the object described. Monitoring quality

ensures that the metadata accomplishes its designed

task. An MDR also manages the semantics of data, so

that data can be re-used and interchanged. An MDR is

organized so that application designers can determine

whether a suitable object described in the MDR already

exists so that it may be reused instead of developing a

new object.
Part 1: Framework

Part 1 introduces the building blocks of the MDR stan-

dard: data elements, value domains, data element con-

cepts, conceptual domains, and classification schemes.

An MDR is organized as a collection of concepts, which

are mental constructs created by a unique combination

of characteristics. A concept system is a set of concepts

with relations among them. One such concept system

that classifies objects is a classification scheme. A classi-

fication scheme is organized with some specified struc-

ture and is designed for assigning objects to concepts

defined within it.

The basic construct in a metadata registry is the

data element. A data element consists of a data element

concept and a representation. A data element concept

(DEC) is a concept that can be represented as a data

element described independently of any particular

representation. The representation of a data element
consists of a value domain, a data-type, units of mea-

sure, and a representation class. A data element con-

cept may consist of an object class, which is a set of

abstractions in the real world that can be identified

with explicit boundaries, and a property, which is a

characteristic common to all members of an object

class. A value domain is a set of permissible values.

Each value domain is a member of the extension of a

concept known as the conceptual domain. A conceptual

domain is a set of value meanings, which are the asso-

ciated meanings to values.

An MDR contains metadata describing data con-

structs. Registering a metadata item makes it a registry

item. If the registry item is subject to administration, it

is called an administered item. An ISO/IEC 11179

MDR consists of two levels: the conceptual level and

the representational level. The conceptual level con-

tains the classes for the data element concept and

conceptual domain. The representational level con-

tains classes for data element and value domain.

Part 2: Classification

Part 2 provides a conceptual model for managing

concept systems used as classification schemes. Asso-

ciating an object with a concept from a classification

scheme provides additional understanding of the ob-

ject, comparative information across similar objects,

an understanding of an object within the context of a

subject matter field, and the ability to identify differ-

ences of meaning between similar objects.

Classification schemes are registered in an MDR

by recording their attributes, such as those regarding

its designation, definition, classification scheme, admi-

nistration record, reference document, submission,

stewardship, registration authority, and registrar.

Part 2 also defines the mechanism for classifying an

administered item, which is the assignment of a con-

cept to an object. Objects can also be linked together by

relationships linking concepts in the concept system.

Part 3: Registry Metamodel and Basic Attributes

Part 3 describes the basic attributes that are required to

describe metadata items and the structure for a meta-

data registry. The standard uses a metamodel to de-

scribe the structure of an MDR. A metamodel is a

model that describes other models. The registry meta-

model is specified as a conceptual data model, which

describes how relevant information is structured in the

1726M Metadata Registry, ISO/IEC 11179
real world, and is expressed in the Unified Modeling

Language [13].

The registry model is divided into six regions:

� The administration and identification region:

supports the administrative aspects of administered

items in the MDR. This region manages the identi-

fication and registration of items submitted to the

registry, organizations that have submitted and/or

are responsible for items in the registry, supporting

documentation, and relationships among adminis-

tered items. An administered item can be a classifi-

cation scheme, a conceptual domain, context for an

administered item, a data element, a data element

concept, an object class, a property, a representa-

tion class, and a value domain. An administered

item is associated with an administration record,

which records administrative information about

the administered item in the registry.

� The naming and definition region: manages the

names and definitions of administered items and

the contexts for names. Each administered item is

named and defined within one or more contexts. A

context defines the scope within which the data has

meaning, such as a business domain, a subject area,

an information system, a data model, or standards

document.

� The classification region:manages the registration

and administration of classification schemes and

their constituent classification scheme items. It is

also used to classify administered items.

� The data element concepts region: maintains in-

formation on the concepts upon which the data

elements are developed, primarily focusing on

semantics.

� The conceptual and value domain region: admin-

istrates the conceptual domains and value domains.

� The data element region: administrates data ele-

ments, which provide the formal representations

for some information (e.g., a fact, observation,

etc.) about an object. Data elements are reusable

and shareable representations of data element

concepts.
Part 4: Formulation of Data Definitions

Part 4 specifies the requirements and recommenda-

tions for constructing data and metadata definitions.

A data definition must be stated in the singular. It

also must be a descriptive phrase, containing only
commonly understood abbreviations, that state what

the concept is (as opposed to what the concept is not).

A data definition must also be expressed without

embedding definitions of other data. The standard

also recommends that a data definition should be

concise, precise, and unambiguous when stating the

essential meaning of the concept. Additionally, a data

definition should be self-contained and be expressed

without embedding rationale, functional usage, or

procedural information, circular reasoning. Terminol-

ogy and consistent logical structure for related defini-

tions should also be used.

Part 5: Naming and Identification Principles

Part 5 defines the naming and identification of the data

element concept, the conceptual domain, data ele-

ment, and value domain. Each administered item has

a unique data identifier within the register of a Regis-

tration Authority (RA), which is the organization

responsible for an MDR. The international registration

data identifier (IRDI) uniquely identifies an adminis-

tered item globally and consists of a registration

authority identifier (RAI), data identifier (DI), and

version identifier (VI).

Each administered item has at least one name

within a registry of an RA. Each name for an adminis-

tered item is specified within a context. A naming

convention can be used for formulating names. A

naming convention may address the scope of the nam-

ing convention and the authority that establishes the

name. A naming convention may additionally address

semantic, syntactic, lexical, and uniqueness rules. Se-

mantic rules govern the existence of the source and

content of the terms in a name. Syntactic rules govern

the required term order. Lexical rules govern term lists,

name length, character set, and language. Uniqueness

rules determine whether or not names must be unique.

Part 6: Registration

Part 6 specifies how administered items are registered

and assigned an IRDI. Metadata in the MDR is also

associated with a registration status, which is a desig-

nation of the level of registration or quality of the

administered item. There are two types of status cate-

gories: lifecycle and documentation. The lifecycle reg-

istration status categories address the development and

progression of the metadata and the preferences of

usage of the administered item. The documentation

registration status categories are used when there is no

Metamodel M 1727

M

further development in the quality of metadata or use

of the administered item.

Each RA establishes its own procedures for the

necessary activities of its MDR. Some activities include

the submission, progression, harmonization, modifi-

cation, retirement, and administration of administered

items.

Key Applications
The standardization that ISO/IEC 11179 provides

enables for the easy sharing of data. For example,

many organizations exchange data between computer

systems using data integration technologies. In data

warehousing schemes, completed transactions must

be regularly transferred to separate data warehouses.

Exchanges of data can be accomplished more easily if

data is defined precisely so that automatic methods can

be employed. By having a repository of metadata that

describes data, application designers can reuse and

share data between computer systems, making the

sharing of data easier. ISO/IEC 11179 also simplifies

data manipulation by software by enabling the manip-

ulation of data based on characteristics described by

the metadata in the registry. This also allows for the

development of a data representation model for CASE

tools and repositories [3].

There are several organizations that have developed

MDRs that comply with ISO/IEC 11179, such as the

Australian Institute of Health and Welfare [1], the US

Department of Justice [14], the US Environmental

Protection Agency [15], the Minnesota Department

of Education [11], and the Minnesota Department of

Revenue [12]. Currently, there is also an MDR avail-

able developed by Data Foundations [2].

Cross-references
▶Metadata

Recommended Reading
1. Australian Institute of Health and Welfare. Metadata Online

Registry (METeOR). http://meteor.aihw.gov.au/, 2007.

2. Data Foundations. Metadata Registry. http://www.datafoundations.

com/solutions/data_registries.shtml,2007.

3. ISO/IEC JTC1 SC32. Part 1: Framework for the specification and

standardization of data elements. Information Technology –

Metadata registries (MDR), 1st edn., 1999.

4. ISO/IEC JTC1 SC32. Part 3: Registry metamodel and basic

attributes. Information Technology – Metadata registries

(MDR), 2nd edn., 2003.

5. ISO/IEC JTC1 SC32. Part 1: Framework. Information Tech-

nology – Metadata registries (MDR), 2nd edn., 2004.
6. ISO/IEC JTC1 SC32. Part 4: Formulation of data defini-

tions. Information Technology – Metadata registries (MDR),

2nd edn., 2004.

7. ISO/IEC JTC1 SC32. Part 2: Classification. Information Tech-

nology – Metadata registries (MDR), 2nd edn., 2005.

8. ISO/IEC JTC1 SC32. Part 5: Naming and identification princi-

ples. Information Technology – Metadata registries (MDR), 2nd

edn., 2005.

9. ISO/IEC JTC1 SC32. Part 6: Registration. Information Technol-

ogy – Metadata registries (MDR), 2nd edn., 2005.

10. ISO/IEC JTC1 SC32. ISO/IEC 11179, Information Technology –

Metadata registries (MDR), 2007.

11. Minnesota Department of Education. Metadata Registry (K-12

Data). 2007. http://education.state.mn.us/mde-dd.

12. Minnesota Department of Revenue. Property Taxation (Real Es-

tate Transactions). 2007. http://proptax.mdor.state.mn.us/mdr.

13. Object Management Group. Unified Modeling Language. 2007.

http://www.uml.org/.

14. US Department of Justice. Global Justice XML Data Model

(GJXDM). 2007. http://justicexml.gtri.gatech.edu/.

15. US Environmental Protection Agency. Environmental Health

Registry. 2007. http://www.epa.gov/edr/.
Metadata Repository

▶Data Dictionary

▶Metadata Registry, ISO/IEC 11179
Meta-Knowledge

▶Multimedia Metadata
Metamodel

MANFRED A. JEUSFELD

Tilburg University, Tilburg, The Netherlands

Synonyms
Meta model

Definition
A metamodel is a model that consists of statements

about models. Hence, a metamodel is also a model but

its universe of discourse is a set of models, namely

those models that are of interest to the creator of

http://education.state.mn.us/mde-dd
http://proptax.mdor.state.mn.us/mdr
http://www.uml.org/
http://justicexml.gtri.gatech.edu/
http://www.epa.gov/edr/
http://meteor.aihw.gov.au/
http://www.datafoundations.com/solutions/data_registries.shtml
http://www.datafoundations.com/solutions/data_registries.shtml

1728M Metamodel
the metamodel. In the context of information sys-

tems, a metamodel contains statements about the con-

structs used in models about information systems.

The statements in a metamodel can define the con-

structs or can express true and desired properties

of the constructs. Like models are abstractions of

some reality, metamodels are abstractions of models.

The continuation of the abstraction leads to meta

metamodels, being models of metamodels containing

statements about metamodels. Metamodeling is the

activity of designing metamodels (and metameta-

models). Metamodeling is applied to design new mod-

eling languages and to extend existing modeling

languages.

A second sense of the term metamodel is the speci-

fication of the generation of mathematical models, in

particular sets of mathematical equations that describe

some reality.

Historical Background
One of the earliest metamodels is the definition of the

binary data model of Abrial [1]. Abrial distinguished

three abstraction levels: the data level of a database, the

schema of the database (model), and the category level

(metamodel).

The metamodel defining the binary data model

consists of the construct Category and the construct

relation. Abrial interpreted the abstraction between

the levels as classification. For example, Jane is
Metamodel. Figure 1. Abrial’s definition of the binary data m
classified to Person and Person is classified to Cat-

egory. A similar classification holds for the relations.

In the 1980s, the use of metamodels became so

widespread that an ISO standard, the Information

Resource Dictionary Standard [2], was defined. It ex-

tended Abrial’s view by a fourth level, i.e., by metame-

tamodels. In the late 1990s, the Object Management

Group (OMG) [5] consolidated and standardized the

terminology of metamodels. They distinguished the

levels M0 (information), M1 (model), M2 (metamo-

del), and M3 (metametamodel). The M3 level is under

control of OMG. It defined four basic constructs (clas-

ses, associations, data types, and packages). The M2

level is used to define modeling languages such as

UML, IDL, and so forth.

Besides the standardization efforts, there were sev-

eral metamodeling languages developed from the

1990s onwards that mostly adopted the four-level

approach. Examples is the Telos language and the

GOPPR language of MetaEdit+ [9].

Foundations
Meta models in computer science and related domains

are mainly used to facilitate conceptual modeling,

to define constructs of the conceptual modeling lan-

guages, to specify constraints on the use of constructs,

and to encode the similarities of different models

(and metamodels). As conceptual modeling is about

representing concepts, an element of a metamodel is
odel.

Metamodel M 1729

M

also a concept saymeta concept, being interpreted by all

entities that are defined or constrained by the meta

concept. For example, the meta concept EntityType

is a construct of the Entity-Relationship Diagramming

language. It is interpreted by all possible entity types of

all possible entity relationship diagrams. Essentially,

EntityType is the name of a set that has all possible

entity types as elements. A problem with this set-view

is that it immediately introduces sets of sets (=concepts

in metamodels) and sets of sets of sets (concepts of

metametamodels). To overcome this complexity, meta-

models were originally only investigated as level-pairs:

(metametamodel vs. metamodel), (metamodel vs.

model), (model vs. data). First a metametamodel is

developed. Then, a metamodel or several metamodels

are expressed as instances of the metametamodel,

then models are expressed in terms of the metamodels.

The lowest level (M0 in MOF) is typically not expressed

in conceptual modeling since it is about data or actual

activities of some application domain. The pair-wise

approach allows to keep the set-oriented semantics or

other forms of semantics specification relying on dis-

tinguishing a concept from its instances.

The set-oriented semantics is mirrored by a logical

interpretation, in which concepts are represented by

unary predicates and relations and attributes are repre-

sented by binary predicates. For example, EntityType

(Employee) is the fact expressing that Employee

(model level) is classified to EntityType (metamodel

level). A fact Employee(Jane) would then express

that Jane (data level) is an instance of Employee. If

one restricts to just two consecutive levels, predicate

symbols can be distinguished from constant symbols.

In other words, the underlying logic is a first order

logic. Scaling the semantics to more than two levels

would move the logic to higher order.

One can avoid higher order semantics by introdu-

cing a binary predicate In(x,c) where x is some

concept of some modeling level Mi and c is a concept

of the next higher modeling levelMi+1. This framework

allows to represent the facts In(Employee,Entity-

Type) and In(Jane,EntityType) without leaving

first order logic.

The specific choice of the underlying semantics for

metamodels determines to which degree a metamodel

can express the intended meaning of the concepts

included in a metamodel. In UML, the semantics of

the UML constructs are defined in a metamodel using

OCL (object constraint language [6]). Current meta-

modeling tools dominantly use cardinality constraints
as means to constrain the semantics of metamodel

concepts. Constraints exceeding cardinalities have to

be expressed in OCL or script languages.

The second sense of metamodels, the generation

of mathematical equations to describe some reality,

is for example used by Bailey and Basili [3] to develop

a formal framework for understanding real world phe-

nomena in the domain of software engineering.
Key Applications
Meta models became a popular technique at the end of

the 1990s. The current specification of UML is sup-

porting metamodeling in order to extend the capabil-

ities of the language and to adapt it to specific

modeling domains. Tools supporting metamodeling

are among others MetaEdit+ [9], ConceptBase [4]

and Aris [7]. The MetaEdit+ tool claims to accelerate

system development by orders of magnitude since the

concepts of a metamodel can be linked to parameter-

ized program code.
Future Directions
An open problem of metamodels is their utility. If a

metamodel is represented as a UML class diagram,

then it does list the allowed constructs but it does

not explain how to use it in a meaningful way, i.e.,

to represent models in terms of the metamodel. Con-

ceptual modeling textbooks motivate constructs by

examples and discuss scenarios in which certain con-

structs are usable. This pragmatic level is neglected

by metamodels.

Meta models should be seen as part of the larger

model-driven architecture framework. That framework

(also defined by OMG) is based on the assumption that

system development is essentially a series ofmodel trans-

formations. The design of system development methods

is then the combination of metamodeling and the speci-

fication of suitable model transformations.

The relationship between metamodels (or metame-

tamodel) with ontologies is not yet well understood.

Ontologies rely on two levels of abstraction: the con-

cepts defined in the ontology and the real world objects

being the interpretations of the concepts. Apparently,

an ontology makes no difference between a model level

concept like Employee and a metamodel level concept

like EntityType. See also [8] for a discussion.
Cross-references
▶Telos

1730M Metaphor
Recommended Reading
1. Abrial J.R. Data semantics. In Database Management.

In Proc. IFIP Working Conf. on Database Management, 1974,

pp. 1–60.

2. American National Standard Institute. American National

Standard X3.138-1988, Information Resource Dictionary Sys-

tem (IRDS). American National Standard Institute, 1989.

3. Bailey J.W. and Basili V.R. A Meta-model for software develop-

ment resource expenditures. In Proc. 5th Int. Conf. on Software

Eng., 1981, pp. 107–116.

4. Jeusfeld M.A., Jarke M., Nissen H.W., and Staudt M. Managing

conceptual models about information systems. In Handbook on

Architectures of Information Systems, 2nd edn., P. Bernus,

K. Mertins, G. Schmidt (eds.). Springer, Berlin Heidelberg

New York, 2006, pp. 273–294.

5. Object Management Group. Meta Object Facility (MOF) Speci-

fication, Version 1.4. April 2002. Available at: http://www.omg.

org/technology/documents/formal/mof.htm.

6. Object Management Group. Object Constraint Language, OMG

Available Specification Version 2.0. May 2006. Available at:

http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

7. Scheer A.-W. and Schneider K. ARIS – Architecture of

integrated information systems. In Handbook on Architectures

of Information Systems, 2nd edn., P. Bernus, K. Mertins, G.

Schmidt (eds.).Springer, Berlin Heidelberg New York, 2006,

pp. 605–623.

8. Terrasse M.-N., Savonnet M., Leclercq E., Grison T., and Becker

G. Do we need metamodels and ontologies for engineering

platforms? In Proc. 2006 Int. Workshop on Global Integrated

Model Management, 2006, pp. 21–28.

9. Tolvanen J.-P. MetaEdit+: integrated modeling and metamodel-

ing environment for domain-specific languages. In Proc. 21st

ACM SIGPLAN Conf. on Object-Oriented Programming Sys-

tems, Languages & Applications, 2006, pp. 690–691.
Metaphor

▶Visual Metaphor
Metasearch Engines

WEIYI MENG

State University of New York at Binghamton,

Binghamton, NY, USA

Synonyms
Federated search engine
Definition
Metasearch is to utilize multiple other search systems

(called component search systems) to perform simulta-

neous search. A metasearch engine is a search system

that enables metasearch. To perform a basic meta-

search, a user query is sent to multiple existing search

engines by the metasearch engine; when the search

results returned from the search engines are received

by the metasearch engine, they are merged into a single

ranked list and the merged list is presented to the user.

Key issues include how to pass user queries to other

search engines, how to identify correct search results

from the result pages returned from search engines,

and how to merge the results from different search

sources. More sophisticated metasearch engines also

perform search engine selection (also referred to as

database selection), i.e., identify the search engines

that are most appropriate for a query and send the

query to only these search engines. To identify appro-

priate search engines to use for a query requires estimat-

ing the usefulness of each search engine with respect to

the query based on some usefulness measure.

Historical Background
The earliest Web-based metasearch engine is probably

the MetaCrawler system [12] that became operational

in June 1995. (The MetaCrawler’s website (www.meta-

crawler.com) says the system was first devel-

oped in 1994.) Motivations for metasearch include

(i) increased search coverage because a metasearch

engine effectively combines the coverage of all compo-

nent search engines, (ii) improved convenience for

users because a metasearch engine allows users to get

information from multiple sources with one query sub-

mission and the metasearch engine hides the differences

in query formats of different search engines from the

users, and (iii) better retrieval effectiveness because the

result merging component can naturally incorporate

the voting mechanism, i.e., results that are highly ranked

by multiple search engines are more likely to be rele-

vant than those that are returned by only one of them.

Over the last thirteen years, many metasearch engines

have been developed and deployed on the Web. Most of

them are built on top of a small number of popular

general-purpose search engines but there are also meta-

search engines that are connected to more specialized

search engines (e.g., medical/health search engines) and

some are connected to over one thousand search

engines.

http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.metacrawler.com
http://www.metacrawler.com

Metasearch Engines. Figure 1. Metasearch engine

component architecture.

Metasearch Engines M 1731

M

Even the earliest metasearch engines tackled the

issues of search result extraction and result merging.

Result merging is one of the most fundamental com-

ponents in metasearch, and as a result, it has received a

lot of attention in the metasearch and distributed

information retrieval (DIR) communities and a wide

range of solutions has been proposed to achieve effec-

tive result merging. Since different search engines may

index a different set of web pages and some search

engines are better than others for queries in different

subject areas, it is important to identify the appropri-

ate search engines for each user query. The importance

of search engine selection was realized early in meta-

search research and many approaches have been pro-

posed to address this issue. A survey on some earlier

result merging and search engine selection techniques

can be found in [11].

Most metasearch engines are built on top of other

search engines without explicit cooperation from these

search engines. As a result, creating these metasearch

engines requires a connection program and an extrac-

tion program (wrapper) for each component search

engine. The former is needed to pass the query from

the metasearch engine to the search engine and receive

search results returned from the search engine, and the

latter is used to extract the search result records from

the result pages returned from the search engine. While

the programs may not be difficult to produce by an

experienced programmer, maintaining their validity

can be a serious problem as they can become obsolete

when the used search engines change their connection

parameters and/or result display format. In addition,

for applications that need to connect to hundreds or

thousands of search engines, it can be very expensive

and time-consuming to produce and maintain these

programs. As a result, in recent years, automatic wrap-

per generation techniques have received much atten-

tion. Figure 1 shows a basic architecture of a typical

metasearch engine.

Foundations

Result Merging

Result merging is to combine the search results

returned from multiple search engines into a single

ranked list. Early search engines often associated a

numerical matching score (similarity score) to each

retrieved search result and the result merging algo-

rithms at that time were designed to ‘‘normalize’’ the
scores returned from different search engines into

values within a common range with the goal to make

themmore comparable. Normalized scores will then be

used to re-rank all the search results. When matching

scores are not available, the ranks of the search results

from component search engines can be aggregated

using voting-based techniques (e.g., Borda Count

[1]). Score normalization and rank aggregation may

also take into consideration the estimated usefulness of

each selected search engine with respect to the query,

which is obtained during the search engine selection

step. For example, the normalized score of a result can

be weighted by the usefulness score of the search en-

gine that returned the result. This increases the chance

for the results from more useful search engines to be

ranked higher.

Another result merging technique is to download

all returned documents from their local servers and

compute their matching scores using a common simi-

larity function employed by the metasearch engine.

The results will then be ranked based on these scores.

For example, the Inquirus metasearch engine employs

this approach [7]. The advantage of this approach is

that it provides a uniform way to compute ranking

scores so the resulted ranking makes more sense. Its

main drawback is the longer response time due to the

delay caused by downloading the documents and ana-

lyzing them on the fly. Most modern search engines

display the title of each retrieved result together with a

short summary called snippet. The title and snippet of a

result can often provide good clues on whether or not

the result is relevant to a query. As a result, result

merging algorithms that rely on titles and snippets

1732M Metasearch Engines
have been proposed recently (e.g., [9]). When titles

and snippets are used to perform the merging, a mat-

ching score of each result with the query can be com-

puted based on several factors such as the number of

unique query terms that appear in the title/snippet and

the proximity of the query terms in the title/snippet.

It is possible that the same result is retrieved from

multiple search engines. Such results are more likely to

be relevant to the query based on the observation that

different ranking algorithms tend to retrieve the same

set of relevant results but different sets of irrelevant

results [8]. To help rank these results higher in the

merged list, the ranking scores of these results from

different search engines can be added up to produce

the final score for the result. The search results are then

ranked in descending order of the final scores.

Search Engine Selection

To enable search engine selection, some information

that can represent the contents of the documents of

each component search engine needs to be collected

first. Such information for a search engine is called the

representative of the search engine. The representatives

of all search engines used by the metasearch engine are

collected in advance and are stored with the meta-

search engine. During search engine selection for a

given query, search engines are ranked based on how

well their representatives match with the query. Dif-

ferent search engine selection techniques have been

proposed and they often use different types of repre-

sentatives. A simple representative of a search engine

may contain only a few selected key words or a short

description. This type of representative is usually pro-

duced manually by someone familiar with the contents

of the search engine but it can also be automatically

generated. As this type of representatives provides only

a general description of the contents of search engines,

the accuracy of using such representatives for search

engine selection is usually low. More elaborate repre-

sentatives consist of detailed statistical information for

each term in each search engine. In [14], the document

frequency of each term in each search engine is used to

compute the cue validity variance of each query term,

which measures the skew of the distribution of the

query term across all component search engines, to

help rank search engines for each query. In [3], the

document frequency and collection frequency of each

term (the latter is the number of component search

engines that contain the term) are used to represent
each search engine. In [10], the adjusted maximum

normalized weight of each term across all documents

in a search engine is used to represent a search engine.

For a given term t and a search engine S, the adjusted

maximum normalized weight of t is computed as

follows: compute the normalized weight of t in every

document (i.e., the term frequency weight of t divided

by the length of the document) in S, find the maximum

value among these weights, and multiply this maxi-

mum weight by the global idf weight of t across all

component search engines. In [13], the notion of opti-

mal search engine ranking is proposed based on the

objective of retrieving the m most similar (relevant)

documents with respect to a given query Q from across

all component search engines: n search engines are said

to be optimally ranked with order [S1, S2,...,Sn] if for

any integer m, an integer k can be found such that the

m most similar documents are contained in [S1,...,Sk]

and each of these k search engines contain at least one

of the m most similar documents. It is shown in [13]

that a necessary and sufficient condition for the compo-

nent search engines to be optimally ranked is to order

the search engines in descending order of the similarity

of the most similar document with respect to Q in each

search engine. Different techniques have been pro-

posed to estimate the similarity of the most similar

document with respect to a given query and a given

search engine [10,13]. Since it is impractical to find

out all the terms that appear in some pages in a

search engine, an approximate vocabulary of terms

for a search engine can be used. Such an approximate

vocabulary can be obtained from pages retrieved from

the search engine using probe queries [2].

There are also techniques that create search engine

representatives by learning from the search results of

past queries. Essentially such type of representatives is

the knowledge indicating the past performance of a

search engine with respect to different queries. In the

Savvy Search metasearch engine [4], for each compo-

nent search engine S, a weight is maintained for every

term that has appeared in previous queries. After each

query Q is evaluated, the weight of each term in the

representative that appears in Q is increased or de-

creased depending on whether or not S returns useful

results. Over time, if a term for S has a large positive

(negative) weight, then S is considered to have

responded well (poorly) to the term in the past. For a

new query received by the metasearch engine, the

weights of the query terms in the representatives of

Metasearch Engines M 1733

M

different search engines are aggregated to rank the

search engines. In the ProFusion metasearch engine

[5], training queries are used to find out how well

each search engine responds to queries in different

categories. The knowledge learned about each search

engine from training queries is used to select search

engines for each user query and the knowledge is

continuously updated based on the user’s reaction to

the search result, i.e., whether or not a particular re-

trieved result is clicked by the user.

Automatic Search Engine Connection

The search interfaces of most search engines are imple-

mented using the HTML form tag with a query text-

box. In most cases, the form tag of a search engine

contains all information needed to make the connec-

tion to the search engine, i.e., sending queries and

receiving search results, via a program. Such informa-

tion includes the name and the location of the program

(i.e., the search engine server) that evaluates user

queries, the network connection method (i.e., the

HTTP request method, usually GET or POST), and

the name associated with the query textbox that is

used to save the query string. The form tag of each

search engine interface is usually pre-processed to ex-

tract the information needed for program connection

and the extracted information is saved at the meta-

search engine. The existence of Javascript in the form

tag usually makes extracting the connection informa-

tion more difficult. After the metasearch engine

receives a query and a particular search engine,

among possibly other search engines, is selected to

evaluate this query, the query is assigned to the name

of the query textbox of the search engine and sent to

the server of the search engine using the HTTP request

method supported by the search engine. After the

query is evaluated by the search engine, one or more

result pages containing the search results are returned

to the metasearch engine for further processing.

Automatic Search Result Extraction

A result page returned by a search engine is a dynami-

cally generated HTML page. In addition to the search

result records for a query, a result page usually also

contains some unwanted information/links such as

advertisements and sponsored links. It is important

to correctly extract the search result records on each

result page. A typical search result record corresponds

to a retrieved document and it usually contains the
URL and the title of the page as well as a short summary

(snippet) of the document. Since different search

engines produce result pages in different format, a sepa-

rate result extraction program (also called extraction

wrapper) needs to be generated for each search engine.

Automatic wrapper generation for search engines has

received a lot of attention in recent years and different

techniques have been proposed. Most of them analyze

the source HTML files of the result pages as text strings

or tag trees (DOM trees) to find the repeating patterns

of the search record records. A survey that contains

some of the earlier extraction techniques can be found

in [6]. Some more recent works also utilize certain

visual information on result pages to help identify

result patterns (e.g., [15]).

Key Applications
The main application of metasearch is to support

search. It can be an effective mechanism to search

both surface web and deep web data sources. By

providing a common search interface over multiple

search engines, metasearch eliminates users’ burden to

search multiple sources separately. When a metasearch

engine employs certain special component search

engines, it can support interesting special applications.

For example, for a large organization with many

branches (e.g., a university system may have many

campuses), if each branch has its own search engine,

then a metasearch engine connecting to all branch

search engines becomes an organization-wide search

engine. As another example, if a metasearch engine is

created over multiple e-commerce search engines sell-

ing the same type of product, then a comparison-

shopping system can be created. Of course, for

comparison-shopping applications, a different type of

result merging is needed, such as listing different

search results that correspond to the same product in

non-descending order of the prices.

Future Directions
Component search engines employed by a metasearch

engine may change their connection parameters and

result display format anytime. These changes can make

the affected search engines un-usable in the metasearch

engine unless the corresponding connection programs

and result extraction wrappers are changed according-

ly. How to monitor the changes of search engines and

make the corresponding changes in the metasearch

engine automatically and timely is an area that needs

1734M Metric Space
urgent attention from metasearch engine researchers

and developers.

Most of today’s metasearch engines employ only a

small number of general-purpose search engines.

Building large-scale metasearch engines using numer-

ous specialized search engines is another area that

deserves more attention. The current largest meta-

search engine is a news metasearch engine called

AllInOneNews (www.allinonenews.com). This meta-

search engine currently connects to about 1,800 news

search engines. Challenges arising from building very

large-scale metasearch engines include automatic gen-

eration and maintenance of high quality search engine

representatives needed for efficient and effective search

engine selection, and highly automated techniques

to add search engines into metasearch engines and to

adapt to changes of search engines.

Cross-references
▶Deep-Web Search

▶Document Length Normalization

▶Hidden-Web Search

▶ Information Extraction

▶ Information Retrieval

▶ Inverse Document Frequency

▶Query Routing

▶Result Integration

▶ Snippet

▶Term Weighting

▶Web Data Extraction

▶Web Data Extraction System

▶Web Information Retrieval Models

▶Web Search Engines

▶Wrapper

▶Wrapper Generation

▶Wrapper Induction

▶Wrapper Maintenance

▶Wrapper Stability

Recommended Reading
1. Aslam J. and Montague M. Models for metasearch. In Proc. 24th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2001, pp. 276–284.

2. Callan J., Connell M., and Du A. Automatic discovery of

language models for text databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999, pp. 479–490.

3. Callan J., Lu Z., and Croft W.B. Searching distributed collections

with inference networks. In Proc. 18th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1995, pp. 21–28.
4. Dreilinger D. and Howe A. Experiences with selecting

search engines using metasearch. ACM Trans. Inf. Syst., 15

(3):195–222, 1997.

5. Fan Y. and Gauch S. Adaptive agents for information

gathering from multiple, distributed information sources.

In Proc. AAAI Symp. on Intelligent Agents in Cyberspace,

1999, pp. 40–46.

6. Laender A.A., Ribeiro-Neto B., da Silva A., and Teixeira J. A brief

survey of web data extraction tools. ACM SIGMOD Rec., 31

(2):84–93, 2002.

7. Lawrence S. and Lee Giles C. Inquirus, the NECi meta search

engine. In Proc. 7th Int. World Wide Web Conference, 1998,

pp. 95–105.

8. Lee J-H. Combining multiple evidence from different properties

of weighting schemes. In Proc. 18th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1995, pp. 180–188.

9. Lu Y., Meng W., Shu L., Yu C., and Liu K. Evaluation of result

merging strategies for metasearch engines. In Proc. 6th Int.

Conf. on Web Information Systems Eng., 2005, pp. 53–66.

10. Meng W., Wu Z., Yu C., and Li Z. A highly scalable and

effective method for metasearch. ACM Trans. Information

Syst., 19(3):310–335, 2001.

11. Meng W., Yu C., and Liu K. Building efficient and effective

metasearch engines. ACM Comput. Surv., 34(1):48–89, 2002.

12. Selberg E. and Etzioni O. The MetaCrawler archite-

cture for resource aggregation on the web. IEEE Expert,

12(1):11–14, 1997.

13. Yu C., Liu K., Meng W., Wu Z., and Rishe N. A methodology to

retrieve text documents from multiple databases. IEEE Trans.

Knowledge and Data Eng., 14(6):1347–1361, 2002.

14. Yuwono B. and Lee D. Server ranking for distributed

text resource systems on the internet. In Proc. 5th Int.

Conf. on Database Systems for Advanced Applications, 1997,

pp. 391–400.

15. Zhao H., Meng W., Wu Z., Raghavan V., and Yu C. Fully

automatic wrapper generation for search engines. In Proc. 14th

Int. World Wide Web Conf., 2005, pp. 66–75.
Metric Space

PAVEL ZEZULA, MICHAL BATKO, VLASTISLAV DOHNAL

Masaryk University, Brno, Czech Republic

Synonyms
Distance space

Definition
In mathematics, a metric space is a pair M = (D, d),

where D is a domain of objects (or objects’ keys or

indexed descriptors) and d is a total (distance) function.

The properties of the function d : D � D 7!R,

http://www.allinonenews.com

Microdata M 1735
sometimes called the metric space postulates, are typi-

cally characterized as:
(p1)
(p2)
(p3)
(p4)
(p5)

8x, y 2 D, d(x, y) � 0
8x, y 2 D, d(x, y) = d(y, x)
8x 2 D, d(x, x) = 0
8x, y 2 D, x6¼y) d(x, y) > 0
8x, y, z 2 D, d(x, z) � d(x, y) +
d(y, z)

non-negativity,
symmetry,
reflexivity,
positiveness,
triangle inequality.
M

Key Points
Modifying or even abandoning some of the metric

function properties leads to interesting concepts that

can better suit the reality in many situations. A pseudo-

metric function does not satisfy the positiveness prop-

erty (p4), i.e., there can be pairs of different objects

that have zero distance. However, these functions can

be transformed to the standard metric by regarding

any pair of objects with zero distance as a single object.

If the symmetry property (p2) does not hold, the

function is called a quasi-metric. For example, a car-

driving distance in a city where one-way streets exist

is a quasi-metric. The following equation allows to

transform a quasi-metric into a standard metric:

dsym(x, y) = dasym(x, y) + dasym(y, x). By tightening

the triangle inequality property (p5) to 8x, y, z 2 D, d

(x, z)�max{d(x, y),d(y, z)}, an ultra-metric also called

super-metric is obtained. The geometric characteriza-

tion of the ultra-metric requires every triangle to have

at least two sides of equal length, i.e., to be isosceles. A

metric space M is bounded if there exists a number r,

such that d(x, y) � r for any x, y 2 D. More details

about metric functions can be found in [3].
Cross-references
▶Closest-Pair Query

▶ Indexing Metric Spaces

▶ Information Retrieval

▶Nearest Neighbor Query

▶ Spatial Indexing Techniques
Recommended Reading
1. Burago D., Burago Y.D., and Ivanov S. A Course in Metric

Geometry. American Mathematical Society, Providence, Rhode

Island, USA, 2001.

2. Bryant V. Metric Spaces: Iteration and Application. Cambridge

University Press, New York, USA, 1985.

3. Zezula P., Amato G., Dohnal V., and Batko M. Similarity Search:

The Metric Space Approach, Springer-Verlag, Berlin, 2006.
Microdata

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Individual data
Definition
Amicrodata file V with s respondents and t attributes is

an s � t matrix where Vij is the value of attribute j for

respondent i. Attributes can be numerical (e.g., age,

salary) or categorical (e.g., gender, job).
Key Points
The attributes in a microdata set can be classified

in four categories which are not necessarily disjoint

[1,2]:

1. Identifiers. These are attributes that unambiguously

identify the respondent. Examples are the passport

number, social security number, name-surname, etc.

2. Quasi-identifiers or key attributes. These are attri-

butes which identify the respondent with some

degree of ambiguity. (Nonetheless, a combination

of quasi-identifiers may provide unambiguous

identification.) Examples are address, gender, age,

telephone number, etc.

3. Confidential outcome attributes. These are attributes

which contain sensitive information on the respon-

dent. Examples are salary, religion, political affilia-

tion, health condition, etc.

4. Non-confidential outcome attributes. Those attri-

butes which do not fall in any of the categories

above.
Cross-references
▶ k-Anonymity

▶Data Rank/Swapping

▶ Inference Control in Statistical Databases

▶Microdata Rounding

▶Noise Addition

▶Non-Perturbative Masking Methods

▶ PRAM

▶ SDC Score

▶Tabular Data

1736M Microaggregation
Recommended Reading
1. Dalenius T. The invasion of privacy problem and statistics pro-

duction: an overview. Statistik Tidskrift, 12:213–225, 1974.

2. Samarati P. Protecting respondents’ identities in microdata

release. IEEE Trans. on Knowl. and Data Eng., 13(6):1010–

1027, 2001.
Microaggregation

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Definition
Microaggregation is a family of masking methods

for statistical disclosure control of numerical micro-

data (although variants for categorical data exist).

The rationale behind microaggregation is that confi-

dentiality rules in use allow publication of micro-

data sets if records correspond to groups of k or

more individuals, where no individual dominates

(i.e., contributes too much to) the group and k is a

threshold value. Strict application of such confiden-

tiality rules leads to replacing individual values with

values computed on small aggregates (microaggre-

gates) prior to publication. This is the basic principle

of microaggregation.

To obtain microaggregates in a microdata set

with n records, these are combined to form g groups

of size at least k. For each attribute, the average value

over each group is computed and is used to replace

each of the original averaged values. Groups are

formed using a criterion of maximal similarity. Once

the procedure has been completed, the resulting (mod-

ified) records can be published.

The optimal k-partition (from the information loss

point of view) is defined to be the one that maximizes

within-group homogeneity. The higher the within-

group homogeneity, the lower the information loss,

since microaggregation replaces values in a group by

the group centroid. The sum of squares criterion is

common to measure homogeneity in clustering. The

within-groups sum of squares SSE is defined as

SSE ¼
Xg
i¼1

Xni
j¼1

ðxij � �xiÞ0ðxij � �xiÞ

The lower SSE, the higher the within-group homoge-

neity. Thus, in terms of sums of squares, the optimal

k-partition is the one that minimizes SSE.
Key Points
For a microdata set consisting of p attributes, these can

be microaggregated together or partitioned into several

groups of attributes. Also the way to form groups may

vary. Several taxonomies are possible to classify the

microaggregation algorithms in the literature: (i) fixed

group size vs. variable group size; (ii) exact optimal (only

for the univariate case vs. heuristic microaggregation;

(iii) continuous vs. categorical microaggregation.

To illustrate, a heuristic algorithm called MDAV

(maximum distance to average vector, by Domingo-

Ferrer, Mateo-Sanz and Torra) is next given for multivar-

iate fixed group size microaggregation on unprojected

continuous data. MDAV has been implemented in the

m-Argus package:

1. Compute the average record �x of all records in the

dataset. Consider the most distant record xr to the

average record �x (using the squared Euclidean

distance).

2. Find the most distant record xs from the record xr
considered in the previous step.

3. Form two groups around xr and xs, respectively.

One group contains xr and the k� 1 records closest

to xr. The other group contains xs and the k � 1

records closest to xs.

4. If there are at least 3k records which do not belong

to any of the two groups formed in Step 3, go to

Step 1 taking as new dataset the previous dataset

minus the groups formed in the last instance of

Step 3.

5. If there are between 3k � 1 and 2k records which

do not belong to any of the two groups formed in

Step 3: (i) compute the average record �x of the

remaining records; (ii) find the most distant record

xr from �x; (iii) form a group containing xr and the

k � 1 records closest to xr; (iv) form another group

containing the rest of records. Exit the Algorithm.

6. If there are less than 2k records which do not belong

to the groups formed in Step 3, form a new group

with those records and exit the Algorithm.

The above algorithm can be applied independently to

each group of attributes resulting from partitioning the

set of attributes in the dataset. Microaggregation can

be used to achieve k-anonymity.
Cross-references
▶ Inference Control in Statistical Databases

▶ k-Anonymity

Microdata Rounding M 1737
▶Microdata

▶ SDC Score
Recommended Reading
1. Domingo-Ferrer J. and Mateo-Sanz J. M. Practical data-oriented

microaggregation for statistical disclosure control. IEEE Trans.

Knowl. Data Eng., 14(1):189–201, 2002.

2. Domingo-Ferrer J., Sebé F., and Solanas A. A polynomial-time

approximation to optimal multivariate microaggregation. Com-

put. Math. Appl. 55(4):714–732, 2008.

3. Domingo-Ferrer J. and Torra V. Ordinal, continuous and het-

erogenerous k-anonymity through microaggregation. Data

Mining Knowl. Dis., 11(2):195–212, 2005.

4. Hundepool A., Van de Wetering A., Ramaswamy R., Franconi L.,

Capobianchi A., DeWolf P.-P., Domingo-Ferrer J., Torra V.,

Brand R., and Giessing S. m-ARGUS Version 4.0 Software and

User’s Manual. Statistics Netherlands, Voorburg NL, May 2005.

http://neon.vb.cbs.nl/casc.
M

Microbenchmark

DENILSON BARBOSA
1, IOANA MANOLESCU

2,

JEFFREY XU YU
3

1University of Alberta, Edmonton, AB, Canada
2INRIA Saday, Orsay, Cedex, France
3The Chinese University of Hong Kong, Hong Kong,

China

Definition
A micro-benchmark is an experimental tool that stud-

ies a given aspect (e.g., performance, resource con-

sumption) of XML processing tool. The studied

aspect is called the target of the micro-benchmark. A

micro-benchmark includes a parametric measure and

guidelines, explaining which data and/or operation

parameters may impact the target, and suggesting

value ranges for these parameters.
Key Points
Micro-benchmarks help capture the behavior of an

XML processing system on a given operation, as a

result of varying one given parameter. In other

words, the goal of a micro-benchmark is to study the

precise effect of a given system feature or aspect in

isolation.

Micro-benchmarks were first introduced for

object-oriented databases [2]. An XML benchmark
sharing some micro-benchmark features is the

Michigan benchmark [3]. The MemBeR project [1],

developed jointly by researchers at INRIA Futurs,

the University of Amsterdam, and University of

Antwerpen provides a comprehensive repository of

micro-benchmarks for XML.

Unlike application benchmarks, micro-benchmarks

do not directly help determining which XML pro-

cessing system is most appropriate for a given task.

Rather, they are helpful in assessing particular mod-

ules, algorithms and techniques present inside an XML

processing tool. Micro-benchmarks are therefore typi-

cally very useful to system developers.
Cross-references
▶Application Benchmark

▶XML Benchmarks
Recommended Reading
1. Afanasiev L., Manolescu I., and Michiels P. MemBeR: a micro-

benchmark repository for XQuery. In Proc. Database and

XML Technologies, 3rd Int. XML Database Symp., 2005,

pp. 144–161.

2. Carey M.J., DeWitt D.J., and Naughton J.F. The OO7 Bench-

mark. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1993, pp. 12–21.

3. Runapongsa K., Patel J.M., Jagadish H.V., Chen Y., and

Al-Khalifa S. The Michigan benchmark: towards XML query

performance diagnostics. Inf. Syst., 31(2):73–97, 2006.
Microdata Rounding

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Rounding
Definition
Microdata rounding is a family of masking methods

for statistical disclosure control of numericalmicrodata;

a similar principle can be used to protect tabular data.

Rounding replaces original values of attributes with

rounded values. For a given attributeXi, rounded values

are chosen among a set of rounding points defining a

rounding set (often the multiples of a given base value).

http://neon.vb.cbs.nl/casc

1738M Middleware Support for Database Replication and Caching
Key Points
In a multivariate original dataset, rounding is usually

performed one attribute at a time (univariate round-

ing); however, multivariate rounding is also possible

[1,2]. The operating principle of rounding makes it

suitable for continuous data.
Cross-references
▶ Inference Control in Statistical Databases

▶Microdata

▶ SDC Score
Recommended Reading
1. Cox L.H. and Kim J.J. Effects of rounding on the quality and

confidentiality of statistical data. In J. Domingo-Ferrer and L.

Franconi (eds.). Privacy in Statistical Databases-, LNCS,

vol. 4302, 2006, pp. 48–56.

2. Willenborg L. and DeWaal T. Elements of Statistical Disclosure

Control. Springer-Verlag, New York, 2001.
Middleware Support for Database
Replication and Caching

EMMANUEL CECCHET

EPFL, Lausanne, Switzerland

Definition
Database replication is a technique that aims at pro-

viding higher availability and performance than a single

RDBMS. A database replication middleware imple-

ments a number of replication algorithms on top of

existing RDBMS. Features provided by the replication

middleware include load balancing, caching, and fault

tolerance.
Historical Background
Database replication is a well-known mechanism for

performance scaling and availability of databases across

a wide range of requirements. Limitations of 2-phase

commit and synchronous replication have been pointed

out early on by Gray et al. [7]. Since then, research on

middleware-based replication addresses these issues

and tries to provide solutions for better performance

and availability while maintaining consistency guaran-

tees for applications.
Foundations
Database replication is a wide area of research that en-

compasses multiple architectures and possible designs.

This entry does not address in-core database replication,

where the replication algorithms are implemented inside

the database engine. Instead, it focuses on middleware-

based replication, where the replication logic is imple-

mented in a set of middleware components, outside the

database engine.
Shared Disk Versus Shared Nothing

Two main architecture designs can be chosen for data-

base replication. Shared disk replication is mostly used

by in-core implementations, where replicas share the

data storage, such as, a SAN (Storage Area Network).

Middleware-based replication usually uses a shared

nothing architecture, where each replica has its own

local storage. This allows disk IOs to be distributed

among replicas and prevents the storage from being a

Single Point of Failure (SPOF).
Master/Slave Versus Multi-Master

Database replication is often used as a way to scale up

performance. Such efforts are typically targeted at in-

creasing read performance or at increasing write per-

formance; increasing both simultaneously is difficult.

Master-slave replication, depicted in Fig. 1, is pop-

ular because it improves read performance. This setup

is frequently used in e-commerce applications, with

slave databases dedicated to product catalog browsing,

while the master performs all catalog updates.

In this scenario, read-only content is accessed on

the slave nodes and updates are sent to the master. If

the application can tolerate loose consistency, any data

can be read at any time from the slaves given a fresh-

ness guarantee. As long as the master node can handle

all updates, the system can scale linearly simply by

adding slave nodes.

Multi-master replication, as shown on Fig. 2, allows

each replica that owns a full copy of the database to

serve both read and write requests. The replicated

system then behaves as a centralized database which

theoretically does not require any application modifi-

cations. However, replicas need to synchronize to

agree on a serializable execution order of transactions

so that each replica executes update transactions in the

same order. Also, concurrent transactions might

Middleware Support for Database Replication and

Caching. Figure 1. Master/slave scale-out scenario.

Middleware Support for Database Replication and

Caching. Figure 2. Multi-Master database replication.

Middleware Support for Database Replication and

Caching. Figure 3. Query interception at the

DBMS protocol level.

Middleware Support for Database Replication and

Caching. Figure 4. Query interception in JDBC-based

replication.

Middleware Support for Database Replication and Caching M 1739

M

conflict leading to aborts and limiting the system scal-

ability [7]. Even though real applications generally

avoid conflicting transactions, significant efforts are

spent to optimize for this problem in middleware

replication research. However, the volume of update

transactions remains the limiting performance factor

for such systems.

Middleware Design

The replication middleware has to intercept client

requests to process them and run them through the

replication algorithm. A first technique consists of

keeping existing database drivers and to intercept

queries at the database protocol level as show on

Fig. 3. This has the significant advantage to not have

to re-implement database drivers but the database

protocol specification must be available, which is not

always the case for commercial databases. Moreover,

this design requires multi-protocol implementations

and bridges to support heterogeneous clusters.
Another technique provides the application with a

replacement driver that can communicate with the

replication middleware and that is API compatible

with the original driver so that application changes

are not required. Figure 4 shows an example of a

middleware that intercepts queries at the JDBC level.

The client application uses the middleware JDBC

driver, and the middleware uses the database native

JDBC driver to access the replicas. The middleware

driver typically adds functionality such as load

balancing and failover that is usually not present in

standalone database drivers. This is a popular app-

roach introduced by C-JDBC [3] (now Sequoia [9])

and used in other prototypes like Tashkent [5] and

Ganymed [8].

1740M Middleware Support for Database Replication and Caching
Concurrency Control

In replicated database systems, each replica runs Snap-

shot Isolation (SI) as its local concurrency control and

the replicated system provides Generalized Snapshot

Isolation (GSI) to the clients.

Snapshot isolation (SI) is a multi-version database

concurrency control algorithm for centralized data-

bases. In snapshot isolation, when a transaction begins

it receives a logical copy, called snapshot, of the data-

base for the duration of the transaction. This snapshot

is the most recent version of the committed state of the

database. Once assigned, the snapshot is unaffected by

(i.e., isolated from) concurrently running transactions.

When an update transaction commits, it produces a

new version of the database.

Many database vendors use SI, e.g., PostgreSQL,

Oracle and Microsoft SQL Server. SI is weaker than

serializability but in practice many applications run

serializably under SI including the widely used data-

base benchmarks TPC-C and TPC-W. SI has attractive

performance properties. Most notably, read-only tran-

sactions do not block or abort-they do not need read-

locks, and they do not cause update transactions to

block or abort.

Generalized Snapshot Isolation (GSI) extends SI

to replicated databases such that the performance

properties of SI in a centralized setting are maintained

in a replicated setting. In addition, workloads that are

serializable under SI are also serializable under GSI.

Informally, a replica using GSI works as follows.

When a transaction starts, the replica assigns its latest

snapshot to the transaction. All read and write opera-

tions of a transaction, e.g., the SELECT, UPDATE,

INSERT and DELETE SQL statements, are executed

locally on the replica. At commit, the replica extracts

the transaction writeset. If the writeset is empty (i.e., it

is a read-only transaction), the transaction commits

immediately. Otherwise, certification is performed to

detect write-write conflicts among update transactions

in the system. If no conflict is found, then the transac-

tion commits, otherwise it aborts.

Certification results in total order on the commits of

update transactions. Since committing an update trans-

action creates a new version (snapshot) of the database,

the total order defines the sequence of snapshots the

database goes through. Therefore, processing update

transactions proceeds as follows: When a replica receives

update transaction T, it executes T against a snapshot.

At commit, the certification service receives the writeset
of T and the version of the assigned snapshot. If certifi-

cation is successful, the replica applies writesets of

concurrent update transactions that committed before

T in the order determined during certification and

then commits T. Certification is a stateful service

because it maintains recent committed writesets and

their versions.

Statement Replication Versus Transaction Replication

Multi-master replication can be implemented either

by multicasting every update statement (statement

replication) or by capturing transaction writesets (the

set of data W updated by a transaction T, such that

applying W onto a replica is equivalent to executing

T on it) and propagating them after certification

(transaction replication). Both approaches have differ-

ent performance/availability tradeoffs.

Statement-based replication requires that the execu-

tion of an update statement produces the same result

on each replica. However, many SQL statements may

produce different results on every replica if they are not

processed before execution. This requires macros related

to timing or random numbers to be preprocessed for a

deterministic execution cluster-wide. Moreover, stored

procedures or user-defined functions must have a deter-

ministic behavior to prevent replicas from diverging

in content. The advantage of statement-based replica-

tion is that it can replicate any kind of SQL statement

including DDL (Data Definition Language) queries that

alters the database schema or requests that modify

non-persistent objects such as environment variables,

sequences or temporary tables.

Transaction replication relies on writeset extraction

that is usually implemented using triggers. This requires

declaring additional triggers on every database table.

This can become complex if the database already

uses triggers, materialized views or temporary tables.

Writeset extraction does not capture changes such as

auto-incremented keys, sequence values or environment

variable updates. Queries altering such database struc-

tures change the replica they execute on and can result

in cluster divergence. Moreover, most of these data

structures cannot be rolled back (for instance, an auto-

incremented key or sequence number incremented in

a transaction is not decremented at rollback time).

With statement replication, all replicas execute

write transactions simultaneously in the same serial-

izable order, whereas transaction replication executes

update transaction at only one replica and propagates

Middleware Support for Database Replication and Caching M 1741

M

the transaction writeset to other replicas only after

certification at commit time. Therefore, transaction

replication usually offers better performance over

statement replication as long as the writeset extraction

and certification mechanisms are efficient. Statement

replication offers a better infrastructure for failover

during a transaction since each replica has a copy of

every transactional context. With transaction replica-

tion, the failure of the replica executing the transaction

will systematically abort the transaction and force the

transaction to retry.

High Availability

High availability is often synonymous with little down-

time. Such downtime can be either planned or un-

planned, depending on whether it occurs under the

control of the administrator or not. Planned downtime

is incurred during most software and hardware main-

tenance operations, while unplanned downtime can

strike at any time and is caused by foreseeable and

unforeseeable failures (hardware failures, software

bugs, human error, etc.).

A system’s availability is the ratio of its uptime to

total time. In practice, it is computed as the ratio bet-

ween the expected time of continuous operation

between failures to total time, or

Availability ¼ MTTF

MTTF þMTTR
) Unavailability

¼ MTTR

MTTF þMTTR
� MTTR

MTTF

where MTTF is Mean Time To Failure and MTTR is

Mean Time To Repair. Since MTTF >> MTTR, one

can approximate unavailability (ratio of downtime to

total time) as MTTR/MTTF.

The goal of replication together with failover/fail-

back is to reduce MTTR, and thus reduce unavailabili-

ty. Failover is the ability for users of a database node to

be switched over to another database node containing

a replica of the data whenever the node they were

connected to has failed. Failback happens when the

original replica comes back from its failure and users

are re-allocated to that replica.

A replicated database built for availability must

eliminate any single point of failure (SPOF). This

means that the middleware components (load balanc-

er, certifier. . .) must also be replicated. Group com-

munication libraries are used to synchronize the state

of the different components. Total order is usually
required by replication protocols to ensure a serial-

izable execution order.

Several database drivers or connection pools offer

automatic reconnection when a failure is detected. This

technique only offers session failover but not failover

of the transactional context. Sequoia [9] (the continu-

ation of the C-JDBC project) provides transparent fail-

over without losing transactional context. Failover

code is available in the middleware to handle a data-

base failure and additional code is available in the

middleware driver running in the application to han-

dle a middleware failure. A fully transparent failover

requires consistently replicated state kept at all com-

ponents, and is more easily achieved using statement-

based rather than transaction-based replication. In the

latter case, the transaction is only played at a single

replica; if the replica fails, the entire transaction has to

be replayed at another replica, which cannot succeed

without the cooperation of the application.

Load Balancing

Load balancing aims at dispatching user requests or

transactions to the replica that can provide consistent

data with the lowest latency. Load balancer design is

tightly coupled with the replication strategy implemen-

ted. Static strategies such as round-robin or even

weighted-round-robin are usually not well adapted to

the dynamic nature of transactional workloads. Algo-

rithms taking into account replica resource usage such

as LPRF (Least Pending Request First) perform much

better. With additional information on transaction

working set, it is also possible to optimize load balanc-

ing to improve in-memory request execution such as

MALB (Memory-Aware Load Balancing) used in

Tashkent+ [6]. More information on load balancing

can be found in [1].

Caching

To reduce request execution time, the middleware can

provide multiple caches. C-JDBC [3] provides three

different caches. The parsing cache stores the results of

query parsing so that a query that is executed several

times is parsed only once. The metadata cache records

all ResultSet metadata such as column names and types

associated with a query result.

These caches work with query skeletons found in

PreparedStatements used by application servers. A

query skeleton is a query where all variable fields are

replaced with question marks and filled at runtime

1742M Middleware Support for Database Replication and Caching
with a specific API. An example of a query skeleton is

‘‘SELECT * FROM t WHERE x=?’’. In this example,

a parsing or metadata cache hit will occur for any

value of x.

The query result cache is used to store the ResultSet

associated with each query. The query result cache

reduces the request response time as well as the load

on the database replicas. By default, the cache provides

strong consistency. In other words, C-JDBC invalidates

cache entries that may contain stale data as a result of

an update query. Cache consistency may be relaxed

using user-defined rules. The results of queries that

can accept stale data can be kept in the cache for

a time specified by a staleness limit, even though

subsequent update queries may have rendered the

cached entry inconsistent.

Different cache invalidation granularities are avail-

able ranging from database-wide invalidation to

table-based or column-based invalidation. An extra

optimization concerns queries that select a unique

row based on a primary key. These queries are often

issued by application servers using JDO (Java Data

Objects) or EJB (Enterprise Java Beans) technologies.

These entries are never invalidated on inserts since a

newly inserted row will always have a different primary

key value and therefore will not affect this kind of

cache entries. Moreover, update or delete operations

on these entries can be easily performed in the cache.

Key Applications
Middleware-based database replication is currently used

in many e-Commerce production environments that

require both high availability and performance scalabili-

ty. Many open problems remain on the integration of

databases with replication middleware, failure detection

and transparent failover/failback, autonomic manage-

ment and software upgrades.

Future Directions
Current research trends explore autonomic behavior

for replicated databases [4] to automate all manage-

ment operations such as provisioning, tuning, failure

repair and recovery. Heterogeneous clustering is also

used in the context of satellites databases [8] to scale

legacy databases with open source databases. Partial

replication is studied in conjunction with WAN (Wide

Area Network) replication for global applications span-

ning over multiple datacenters distributed on different

continents. A summary of the remaining gaps between
the theory and practice of middleware-based replication

can be found in [2].
URL to Code
The Sequoia source code is available from http://

sequoia.continuent.org
Cross-references
▶Autonomous Replication

▶Caching and Replication

▶Consistency Models for Replicated Data

▶ 1-Copy-Serializability

▶Data Broadcasting

▶Data Partitioning

▶Data Replication

▶Database Clusters

▶Database Middleware

▶Distributed Database Design

▶Distributed Database Systems

▶Distributed DBMS

▶Distributed Deadlock Management

▶Distributed Query Processing

▶Distributed Recovery

▶ Extraction

▶ Inter-Query Parallelism

▶Middleware Support for Precise Failure Semantics

▶ Partial Replication

▶Replica Control

▶Replica Freshness

▶Replicated Database Concurrency Control

▶Replication

▶Replication Based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶Replication in Multi-Tier Architectures Regular

▶ Shared-Disk Architecture

▶ Shared-Nothing Architecture

▶ Snapshot Isolation

▶ Strong Consistency Models for Replicated Data

▶Transactional Middleware

▶Transformation and Loading

▶Weak Consistency Models for Replicated Data
Recommended Reading
1. Amza C., Cox A., and Zwaenepoel W. A comparative

evaluation of transparent scaling techniques for dynamic

content servers. In Proc. 21st Int. Conf. on Data Engineering,

2005, pp. 230–241.

http://sequoia.continuent.org
http://sequoia.continuent.org

Middleware Support for Precise Failure Semantics M 1743
2. Cecchet E., Candea G., and Ailamaki A. Middleware-based

database replication: the gaps between theory and practice.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2008, pp. 739–752.

3. Cecchet E., Marguerite J., and Zwaenepoel W. C-JDBC: flexible

database clustering middleware. In Proc. USENIX Annual Tech-

nical Conf., 2004.

4. Chen J., Soundararajan G., and Amza C. Autonomic provision-

ing of backend databases in dynamic content web servers.

In Proc. IEEE Int. Conf. Autonomic Computing, 2006,

pp. 231–242.

5. Elnikety S., Dropsho S., and Pedone F. Tashkent: uniting

durability with transaction ordering for high-performance

scalable database replication. In Proc. 1st ACM SIGOPS/EuroSys

European Conf. on Comp. Syst., 2006, pp. 117–130.

6. Elnikety S., Dropsho S., and Zwaenepoel W. Tashkent+:

memory-aware load balancing and update filtering in replicated

databases. In Proc. 2nd ACM SIGOPS/EuroSys European Conf.

on Comp. Syst., 2007, pp. 399–412.

7. Gray J.N., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

8. Plattner C., Alonso G., Özsu M.T. Extending DBMSs with satel-

lite databases. VLDB J., 17(4):657–682, 2008.

9. Sequoia project. Available at: http://sequoia.continuent.org
M

Middleware Support for Precise
Failure Semantics

VIVIEN QUÉMA

CNRS, INRIA, Saint-Ismier Cedex, France

Definition
Providing support for precise failure semantics requires

defining an appropriate correctness criterion for repli-

cated action execution of a replication algorithm. Such

a correctness criterion allows formally verifying that a

sequence of actions is executed correctly. In the context

of replication, a sequence of actions executed is correctly

if their side-effect appears to have happened exactly-

once.

Historical Background
Reasoning about the behavior of concurrent programs

has been an active research area during the past dec-

ades. Of particular interest in this area are the works on

linearizability, a consistency criterion for concurrent

objects [4], and on serializability, a consistency criteri-

on for concurrent transactions [5]. These two criteria

facilitate certain kinds of formal reasoning by
transforming assertions about complex concurrent

behavior into assertions about simpler sequential be-

havior. Moreover, these consistency criteria are local

properties: the correctness of individual objects or

services is used to reason about system-level correctness.

Recently, Frølund and Guerraoui introduced x-ability

[2] (exactly-once ability), a correctness criterion for

replicated services. X-ability is independent of partic-

ular replication algorithms. Although they facilitate

reasoning in similar ways, there are fundamental dif-

ferences between x-ability on one hand and serializ-

ability [5] and linearizability [4] on the other. X-ability

has safety as well as liveness aspects to it whereas serial-

izability and linearizability are safety conditions only.

X-ability is a theory of distribution and partial failures

where serializability and linearizability are theories of

concurrency. X-ability does not specify correctness for

concurrent invocations of a replicated service. More

precisely, x-ability states constraints about the concur-

rency among replicas in the context of a given request

(intra-request concurrency), but ignores the concurren-

cy that originates from different requests (inter-request

concurrency). This entry gives a precise description of

the x-ability theory.

Foundations
Frølund and Guerraoui proposed x-ability [2] (exactly-

once ability), a correctness criterion for replicated ser-

vices. X-ability is independent of particular replication

algorithms. Themain idea behind x-ability is to consider

a replicated service correct if it provides the illusion of a

single, fault-tolerant entity. More precisely, an x-able

service must satisfy a contract with its clients as well as

a contract with third-party entities. In terms of clients, a

service must provide idempotent, non-blocking request

processing. Moreover, it must deliver replies that are

consistent with its invocation history. The side-effect of

a service, on third-party entities, must obey exactly-once

semantics. X-ability is a local property: replicated ser-

vices can be specified and implemented independently,

and later composed in the implementation of more

complex replicated services.

To model side-effects, x-ability is based on the

notion of action execution. Actions are executed cor-

rectly (i.e., are x-able) if their side-effect appears to

have happened exactly-once. The side-effect of actions

can be the modification of a shared state or the invo-

cation of another (replicated or non-replicated) service.

X-ability represents the execution of actions as event

http://sequoia.continuent.org

1744M Middleware Support for Precise Failure Semantics
histories and defines the notion of ‘‘appears to have

happened exactly-once’’ in terms of history equiva-

lence: an event history h is x-able if it is equivalent to

a history h0 obtained under failure-free conditions.

Being defined relative to failure-free executions, x-abil-

ity encompasses both safety and liveness. It is a safety

property because it states that certain partial histories

must not occur. It is also a liveness property since it

enforces guarantees about what must occur. History

equivalence is defined relatively to the execution of

two particular kinds of actions, namely idempotent

and undoable actions:

� The side-effect of a history with n incarnations

of an idempotent action is equivalent to a history

with a single incarnation. For example, writing a

particular value to a data object is an idempotent

action.

� An undoable action is similar to a transaction: its

side-effect can be cancelled up to a certain point

(the commit point), after which the side-effect is

permanent. Thus, the side-effect of a history with a

cancelled action is equivalent to the side-effect of a

history with no action at all.
Middleware Support for Precise Failure Semantics.

Figure 1. Abstract syntax for history patterns.
System Model

The replicated service is implemented by a set of repli-

cas. The functionality of the service is captured by a

state machine. Each replica has its own copy of the state

machine. A state machine exports a number of actions.

An action takes an input value and produces an output

value. In addition, an action may modify the internal

state of its state machine and it may communicate with

external entities. A client can invoke a replica’s state

machine by sending a request to the replica. A request

contains the name of an action and an input value for

the action. When it receives a request, a replica invokes

its state machine based on the values in the request. If

no failures occur, the replica returns the action’s out-

put value to the client. The execution of an action

may fail or the replica executing the action may fail.

If the action fails, it returns an exception (or error)

value as the execution result. Formally speaking, action

names are modeled as elements of a set Action (re-

ferred to using the letter a). The set Value contains

the input and output values associated with actions.

Furthermore, two sets, Request and Result, are

defined as follows: Request¼(Action � Value)

and Result¼Value. This signifies that a request is
simply a pair that contains an action name and an input

value (noted ‘‘(a,v)’’ for a request with action name a

and value v).

The actions performed by state machines are repre-

sented by events. More precisely, the x-ability theory

considers two kinds of events: start events to represent

the invocation of a state-machine action by a process,

and completion events to represent the successful com-

pletion of a state-machine action: a process receives

a non-exception value back from the state machine.

The causal and temporal relationship between action

execution and event observation is subject to the fol-

lowing axioms: (i) an action’s start event cannot be

observed unless the action is invoked, (ii) an action’s

completion event cannot be observed before its start

event, and (iii) if an action returns successfully, then its

start and completion events have been observed.

Events are modeled as elements of the set Event.

Events are structured values with the following

structure: e : :¼ S(a, iv) j C(a, ov). The event S(a,

iv) captures the start of executing the action awith iv as

argument. The event C(a,ov) captures the completion

of executing the action a, and ov is the output value

produced by the action.

A sequence of events form a history. The notion of

a sequence captures the total order in which events are

observed. Histories are modeled as elements of the set

History. Histories are structured values as definedby the

following syntax: h : :¼ L j e1...en j h1 �...� hn.
The symbol L denotes the empty history – a history

with no events. The history e1...en contains the events

e1 through en. The history h1 �...� hn is the concatena-
tion of histories h1 through hn. The semantics of con-

catenating histories is to concatenate the corresponding

event sequences. An action a appears with input value iv

in a history h (noted (a, iv) 2 h) if h contains a start event

produced by the execution of a on iv.

To capture structural properties of histories, the

x-ability theory defines the notion of history patterns.

Formally speaking, patterns are elements of the set

Pattern (referred to using the letter p). The abstract

syntax for patterns is depicted in Fig.1. A simple pat-

tern sp matches single-action histories. The pattern

Middleware Support for Precise Failure Semantics M 1745

M

[a, iv,ov] matches a history that contains the events

from a failure-free execution of an action a. The

value iv is the input to a and ov is the output from a.

The pattern ?[a, iv,ov] matches a history in which a

may have failed. A matching history may be the empty

history, it may contain a start event only, or it may

contain both the start and completion event of a. The

pattern sp1 k h sp2 matches a history h0 that contains

an interleaving of three sub-histories h1, h2, and h, where

h1 matches sp1, h2 matches sp2, and h is an arbitrary

history. The interleaving is constrained as follows: the

first event in h1 must also be the first event in h0 and the

last event in h2 must also be the last event in h0.

X-ability defines pattern matching as a relation⊲
between elements of the set History and elements of

the set Pattern. In other words,⊲ is a subset of

History�Pattern (the set of all pairs from Histo-

ry and Pattern). Pattern matching rules are shown

in Fig.2. A history that matches a simple pattern con-

tains at most two events. X-ability defines two opera-

tors on such histories: first and second (see Fig.3).

The first operator returns the first element in a histo-

ry, if any, and L otherwise. The second operator

returns the second element in a history of length two,
Middleware Support for Precise Failure Semantics. Figure

Middleware Support for Precise Failure Semantics. Figure
the only element in a history of length one, and the

empty history otherwise.

X-Able Histories

To be fault-tolerant, a replicated service must be

prepared to invoke the same action multiple times

until the action executes successfully. To provide repli-

cation transparency, the service must have exactly-once

semantics relative to its environment – the service

must maintain the illusion that the action was executed

once only. In short, an x-able history is a history that

maintains the illusion of exactly-once but possibly

contains multiple incarnations of the same action.

The rest of this section describes how the x-ability

theory defines the notion of x-able history.

The x-ability theory defines a history reduction

relation,) , on histories as follows: if h)h0, then

the execution that produced h has the same side-effect

as an execution that produced h0. Essentially, a his-

tory is x-able if it can be reduced, under), to a

history that could arise from a system that does not

fail. Two particular types of actions are considered:

idempotent and undoable. The corresponding

sets are called Idempotent and Undoable. The set
2. Pattern matching rules.

3. The definition of first and second.

1746M Middleware Support for Precise Failure Semantics
Idempotent contains the names of idempotent

actions. The notation ai indicates that the action a is

idempotent. The set Undoable contains names of

undoable actions. The notation au indicates that an

action a is undoable. An undoable action, au, has two

associated actions: a cancellation action, a�1, and a

commit action, ac. The commit and cancellation

actions for an action au take the same arguments as

au, and they return the value nil. Moreover, cancella-

tion and commit actions are idempotent.

Figure 4 defines the)operator in terms of idem-

potent and undoable actions. The first inference rule

(13) defines) as a transitive relation. The second rule

(14) captures the semantics of idempotent actions. If

a history contains a successfully executed idempotent

action ai, then the events from a previous attempt

to execute ai can be removed. The third rule (15) is

concerned with cancellation of undoable actions. Intu-

itively, if an undoable action is successfully cancelled,

then its side-effect can be removed. The fourth rule

(16) states that commit actions are idempotent.

The x-ability theory defines a failure-free history as

a history that could have been produced by a failure-

free execution of a single state-machine action. To

define the notion of failure-free history, the x-ability

theory relies on the definition of a function, called

eventsof, which returns the failure-free history asso-

ciated with an action and its values.

eventsofðau; iv; ovÞ ¼ Sðau; ivÞCðau; ovÞ
Sðac ; ivÞCðac ; nilÞ

ð17Þ

eventsofðaiÞ ¼ Sðai; ivÞCðai; ovÞ ð18Þ

Due to non-determinism, there are multiple failure-

free histories which are possible for a given action a
Middleware Support for Precise Failure Semantics. Figure
and a given input value iv. The set of all possible

histories, FailureFree(a,iv), is defined as follows:

FailureFreeða;ivÞ ¼ fh 2 History j9 ov 2
Result : h ¼ eventsof

ða; iv; ovÞg
ð19Þ

An x-able history is defined as a history that can

be reduced to a failure-free history. Formally speaking,

an x-able history is one that satisfies the predicate

x-able on histories:

X-4ableða;ivÞðhÞ ¼
true if 9h0 2 FailureFreeða; ivÞ : h) h0

false otherwise

(

ð20Þ

This definition of x-able histories applies to single-action

histories, that is, a history that arises from a particular

request. This reflects the fact that x-ability only specifies

correctness relative to distribution and failures, it does

not specify correctness for the concurrent processing of

multiple requests from different clients.

Client-Service Consistency

The x-ability theory formalizes the relationship be-

tween clients and services. More precisely, the reply

value given to a client in response to a request must

be the value returned from the server-side state ma-

chine when the service processes the request. More-

over, the service is not allowed to invent requests. The

server-side history is used to define the constraints for

requests and replies. This history contains a request

value as part of start events and reply values as part of
4. Definition of history reduction.

Middleware Support for Precise Failure Semantics M 1747

M

completion events. The x-ability theory introduces

the notion of history signature, which captures the

client-side information (request and result) that is

legal relative to a given server-side history. Because of

non-determinism and server-side retry, a history can

have multiple signatures. The set of signatures is de-

fined by the following inference rules:

h) S au; ivð ÞC au; ovð ÞS ac ; ivð ÞC ac ; nilð Þ
a; iv; ovð Þ 2 signature hð Þ ð21Þ

h) S ai; iv
� �

C ai; ov
� �

a; iv; ovð Þ 2 signature hð Þ ð22Þ

If a client submits a sequence of requests, one after the

other, later requests should be processed in the context

of earlier requests. To prevent a service from forgetting

the effect of previous requests, the x-ability theory

assumes the existence of a set PossibleReply that

contains the possible reply values for a given request.

To capture the history-sensitive nature of the set of

possible replies, PossibleReply is defined in the context

of a request sequence R1...Rn. The interpretation of

PossibleReply in the context of a sequence is the

set of possible replies to request Rn after the state

machine has executed the requests R1...Rn�1 one after

the other. Thus, the set is written as follows:

PossibleReplyðR1...RnÞ.
X-Able Services

The x-ability theory provides a formal specification of

replication that is independent of a particular replica-

tion protocol. Formally speaking, a replicated service

consists of a server-side state machine S and a client-

side action submit. The state machine captures the

functionality of the service. It is executed by a set of

server processes s1...sn that each have a copy of S. The

action submit can be used by any process p to invoke

the service. The action takes a value in the domain

Request and, when executed, produces a value in

the domain Result. Correctness is specified relative

to a single client C. Thus, the considered system con-

sists of the processes s1...sn and C only. The client

submits one request at a time, and the service is x-

able if the following conditions hold:

� R1. The action submit is idempotent.

� R2. The client C will eventually be able to execute

submit successfully.
� R3. If the client submits a request (a, iv), then the

server-side history for (a, iv) is either empty or it

satisfies x-able(a, iv).

� R4. If the client receives a reply ov in response to a

request (a, iv), and if the server-side history for

executing this request is h, then (a, iv,ov) 2signa-

ture(h).

� R5. If the client successfully submits a sequence

of requests, R1...Rn, and receives the

reply R0 in response to Rn, then R0 is in

PossibleReplyðR1:::RnÞ.

The first two requirements (R1 and R2) are concerned

with the contract between a service and its clients.

Clients use the action submit to invoke the service.

Because submit is idempotent, clients can repeatedly

invoke the service without concern for duplicating

side-effects. The second requirement (R2) is a liveness

property. The action submit is not allowed to fail an

infinite number of times. The requirement also makes

a service non-blocking in the sense that submit is

guaranteed to eventually return a value. The third

requirement (R3) deals with the server-side side-effect

of executing a request. The resulting server-side history

must be x-able, that is, it must be equivalent (under

history reduction) to a failure-free history. The fourth

requirement (R4) forces an algorithm to preserve con-

sistency between the client-side view (request and

reply) and the server-side view (the side-effect). This

requirement, prevents the submit action from invent-

ing reply values. It also prevents the service from

inventing request values. The fifth requirement (R5)

forces the service to correctly maintain S’s state, if any.

The server-side history must be equivalent to a failure-

free execution of the sequence R1...Rn. But since R1 may

result in a transformation of S’s state, the actions

executed for R2 may depend on this state transforma-

tion. So, a replication algorithm must ensure that the

state resulting from R1 is used as a context for execut-

ing R2. The replication algorithm cannot assume that

R1 did not update the state of S, or that the state update

is immaterial to the processing of R2.
Key Applications
A key application of the x-ability theory is the design

transactions protocols for three-tier applications. Such

applications encompass three layers: human users in-

teract with front-end clients (e.g., browsers), middle-

tier application servers (e.g., Web servers) contain

1748M Mini
the business logic of the application, and perform

transactions against back-end databases. Three-tier

applications usually rely on replication and transac-

tion-processing techniques. It has been defined in [1,3]

the notion of the Exactly-Once Transaction (e-Trans-

action) abstraction: an abstraction that encompasses

both safety and liveness properties in three-tier envir-

onments and ensures end-to-end reliability.

Recommended Reading
1. Frølund S. and Guerraoui R. Implementing e-transactions with

asynchronous replication. IEEE Trans. Parallel Distrib. Syst., 12

(2):133–146, 2001.

2. Frølund S. and Guerraoui R. X-ability: a theory of replication.

Distrib. Comput., 14(4):231–249, 2001.

3. Frølund S. and Guerraoui R. e-Transactions: end-to-end

reliability for three-tier architectures. IEEE Trans. Software

Eng., 28(4):378–395, 2002.

4. Herlihy M. and Wing J.M. Linearizability: a correctness con-

dition for concurrent objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, 1990.

5. Papadimitriou C.H. The serializability of concurrent database

updates. J. ACM, 26(4):631–653, 1979.
Mini

▶ Snippet
Minimal-change Integrity
Maintenance

▶Constraint-Driven Database Repair
Mining of Chemical Data

XIFENG YAN

IBM T. J. Watson Research Center, Hawthorne,

NY, USA

Definition
Given a set of chemical compounds, chemical data

mining is to characterize the compounds present in

the data set and apply a variety of mining methods to

discover relationships between the compounds and

their biological and chemical activities.
Historical Background
In 1969, Hansch [6] introduced quantitative structure-

activity relationship (QSAR) analysis which attempts to

correlate physicochemical or structural properties of

compounds with biological and chemical activities.

These physicochemical and structural properties are

determined empirically or by computational methods.

QSAR prefers vectorial mappings of compounds, which

are usually coded by existing physicochemical and struc-

tural fingerprints. Dehaspe et al. [3] applied inductive

logic programming to predict chemical carcinogenicity

by mining frequent substructures in chemical datasets,

which identifies new structural fingerprints so that

QSAR could build comprehensive analytical models.

Foundations
Chemical compounds are unstructured data with

no explicit vector representation. For chemical com-

pounds, various similarity measures are defined, which

could be classified into three categories: (i) physico-

chemical property-based, e.g., toxicity and weight;

(ii) structure-based; and (iii) feature-based. The struc-

ture-based similarity measure directly compares the

topology of two chemical compounds, e.g., maximum

common subgraph, graph edit distance, and graph

kernel. As for the feature-based similarity measure,

each graph is represented as a feature vector, x ¼ [x1,

x2,...,xn], where xi is the value of feature fi. A feature

could be physicochemical or structural. The similarity

between two graphs is measured by the similarity be-

tween their feature vectors. Bunke and Shearer [1] used

maximum common subgraph to measure structure

similarity. Given two graphs G and G 0, if P is the

maximum common subgraph of G and G 0, then the

structure similarity between G and G 0 is defined by

2jEðPÞj
jEðGÞj þ jEðG0Þj ;

where E(G) is the edge set of G.

Kashima et al. [7] introduced marginalized kernels

between labeled graphs,

K ðG;G0Þ ¼
X
h

X
h0

Kzðz; z 0ÞpðhjGÞpðh0jG0Þ;

where z = [G,h] and Kz(z,z
0) is the joint kernel over z.

The hidden variable h is a path generated by random

walks and the joint kernel Kz is defined as a kernel

between these paths. Other sophisticated graph kernels

are also available. For example, Fröhlich et al. [5]

Mining of Chemical Data M 1749

M

proposed optimal assignment kernels for attributed

molecular graphs, which compute an optimal assign-

ment from the atoms of one molecule to those of

another one, including local structures and neighbor-

hood information.

The structure-based similarity measure can serve

general chemical data mining such as chemical struc-

ture classification and clustering. The implicit defini-

tion of feature space makes it hard to interpret, and

hard to adapt to many powerful data management

and analytical tools such as R-tree and support vector

machine. An alternative approach is to mine the most

interesting features from chemical data directly, such as

patterns that are discriminative between compounds

with different chemical activities. Figure 1 depicts the

pipeline of this approach built on features discovered

by a mining process.

The feature-based mining framework includes

three steps: (i) mine patterns/features from chemical

data, (ii) select discriminative or significant features,

and (iii) perform advanced mining. The first step is the

process of finding and extracting useful features from

raw datasets. One kind of features used in data mining is

frequent substructures, the common structures that

occur in many compounds. Formally, given a graph

dataset D ¼ {G1,G2,...,Gn} and a minimum frequency

threshold y, frequent substructures are subgraphs that
are contained by at least yjDj graphs in D. A set of

graph pattern mining algorithms are available for

mining frequent substructures, including SUBDUE,

Warmr, AGM, gSpan, FSG,MoFa/MoSS, FFSM, Gaston,

and so on. Generally, for mining graph patterns

measured by an objective function F, there are two

related mining tasks: (i) enumeration task, find all of

subgraphs g such that F(g) is no less than a threshold;

and (ii) optimization task, find a subgraph g∗ such that

g 	 ¼ argmaxgFðgÞ:

The enumeration task might encounter the exponen-

tial number of patterns as the traditional frequent
Mining of Chemical Data. Figure 1. Feature-based mining f
substructure mining does. To resolve this issue, one

may rank patterns according to their objective score

and select patterns with the highest value. The feature-

based mining framework finds many key applications

in chemical data mining including, but not limited to,

chemical graph search, classification and clustering.

Chemical graph search aims to find graphs that

contain a specific query structure. It is inefficient to

scan the whole database and check each graph. Yan

et al. [9] applied the feature-based mining framework

to support fast search using frequent substructures

selected by the following criterion. Let substructures

f1,f2,...,fn be selected features. Given a new substructure

x, the selectivity power of x can be measured by

1� Prðxjf ’1
;:::; f ’m

Þ; f ’i
 x; 1 � ’i � n:

which shows the absence probability of x given the

presence of f ’1
;:::; f ’m

in a graph. When the selectivity

is high, substructure x is a good candidate to index.

In addition to molecule search, chemical data clas-

sification and clustering could also benefit from graph

patterns. A typical setting of molecule classification is

to induce a mapping hðgÞ : G ! f�1g from the train-

ing samples D ¼ {gi,yi}
n
i=1, where gi 2 G is a labeled

graph and yi 2 {�1} is the class label. Feature-based

classification models were proposed in [8,4]. In these

models, graphs are first transformed to vectors using

discriminative substructures, which are then processed

by standard classification methods.
Key Applications
Chemical Structure Search

Chemical Classification

Chemical Clustering

Quantitative Structure-Activity Relationship Analysis
Experimental Results
PubChem (see dataset URL) provides information on

the biological activities of small molecules, containing
ramework.

1750M Mixed Evidence
the bioassay records for anti-cancer screen tests with

different cancer cell lines. Each dataset belongs to a

certain type of cancer screen with the outcome active

or inactive. These bioassays are experimented to iden-

tify the chemical compounds that display the desired

and reproducible behavior against cancers. Chemical

compound classification is to computationally predict

the activity of untested compounds given the bioassay

data. This process can replace or supplement the phys-

ical assay techniques. Furthermore, it could also iden-

tify substructures that are critical to specific biological

or chemical activities.

The following experiment demonstrates the effec-

tiveness of graph kernel method [7,5] (optimal assign-

ment kernel, OA) and pattern-based classification [8,4]

(PA), both of which show good accuracy. From the

PubChem screen tests, 11 bioassay datasets are dis-

played. Since the active class is very rare (around 5%)

in these datasets, 500 active compounds and 2,000

inactive compounds are randomly sampled from each

dataset for performance evaluation. The classification

accuracy is evaluated with 5-fold cross validation. For

both methods, the same implementation of support

vector machine, LIBSVM [2], with parameter C select-

ed from [2�5,25], is used. Table 1 shows AUC by OA

and PA. The area under the ROC curve (AUC) is

a measure of the model accuracy, in the range of

[0,1]. A perfect model will have an area of one. As

shown in Table 1, PA achieves comparable results

with OA. A detailed examination shows that PA
Mining of Chemical Data. Table 1. Chemical compound

classification

Dataset OA PA

MCF-7: Breast 0.68 � 0.12 0.67 � 0.10

MOLT-4: Leukemia 0.65 � 0.06 0.66 � 0.06

NCI-H23: Non-Small Cell Lung 0.79 � 0.08 0.76 � 0.09

OVCAR-8: Ovarian 0.67 � 0.04 0.72 � 0.06

P388: Leukemia 0.79 � 0.07 0.82 � 0.04

PC-3: Prostate 0.66 � 0.09 0.69 � 0.09

SF-295: Central Nerv Sys 0.75 � 0.11 0.72 � 0.12

SN12C: Renal 0.75 � 0.08 0.75 � 0.06

SW-620: Colon 0.70 � 0.02 0.74 � 0.06

UACC257: Melanoma 0.65 � 0.05 0.64 � 0.05

Yeast: Yeast anticancer 0.64 � 0.04 0.71 � 0.05

Average 0.70 � 0.07 0.72 � 0.07
is able to discover substructures that determine the

activity of compounds, without domain knowledge.
Data Sets
PubChem provides bioassay records for anti-cancer

screen tests with different cancer cell lines, available

at http://pubchem.ncbi.nlm.nih.gov
Cross-references
▶ Frequent Graph Patterns

▶Graph Classification

▶Graph-based Clustering

▶Graph Database

▶Graph Database Mining

▶Graph Kernel

▶Graph Search
Recommended Reading
1. Bunke H. and Shearer K. A graph distance metric based on the

maximal common subgraph. Pattern Recogn. Lett., 19:255–259,

1998.

2. Chang C.-C. and Lin C.-J. LIBSVM: a library for support vector

machines, 2001. Software available at http://www.csie.ntu.edu.

tw/~cjlin/libsvm

3. Dehaspe L., Toivonen H., and King R. Finding frequent sub-

structures in chemical compounds. In Proc. 4th Int. Conf. on

Knowledge Discovery and Data Mining, 1998, pp. 30–36.

4. Deshpande M., Kuramochi M., Wale N., and Karypis G.

Frequent substructure-based approaches for classifying

chemical compounds. IEEE Trans. Knowl. Data Eng.,

17:1036–1050, 2005.

5. Fröhlich H., Wegner J., Sieker F., and Zell A. Optimal assignment

kernels for attributed molecular graphs. In Proc. 22nd Int. Conf.

on Machine Learning, 2005, pp. 225–232.

6. Hansch C. A quantitative approach to biochemical structure-

activity relationships. Acct. Chem. Res., 2:232–239, 1969.

7. Kashima H., Tsuda K., and Inokuchi A. Marginalized kernels

between labeled graphs. In Proc. 20th Int. Conf. on Machine

Learning, 2003, pp. 321–328.

8. Kramer S., Raedt L., and Helma C. Molecular feature mining in

HIV data. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2001, pp. 136–143.

9. Yan X., Yu P.S., and Han J. Graph indexing: A frequent structure-

based approach. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2004, pp. 335–346.
Mixed Evidence

▶Contextualization

http://pubchem.ncbi.nlm.nih.gov
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Mobile Interfaces M 1751
Mixed-Media

▶Multimedia Metadata
MM Indexing

▶Multimedia Data Indexing
MMDBMS

▶Main Memory DBMS
Mobile Ad hoc Network Databases

▶MANET Databases
M
Mobile Database

OURI WOLFSON

University of Illinois at Chicago, Chicago, IL, USA

Definition
A mobile database is a database that resides on a

mobile device such as a PDA, a smart phone, or a

laptop. Such devices are often limited in resources

such as memory, computing power, and battery power.

Key Points
Due to device limitations, a mobile database is often

much smaller than its counterpart residing on servers

and mainframes. A mobile database is managed by a

Database Management System (DBMS). Again, due to

resource constraints, such a system often has limited

functionality compared to a full blown databasemanage-

ment system. For example, mobile databases are single

user systems, and therefore a concurrency control mech-

anism is not required. Other DBMS components such as

query processing and recovery may also be limited.

Queries to the mobile database are usually posed by

the user of the mobile device. Updates of the database

may originate from the user, or from a central server,

or directly from other mobile devices. Updates from
the server are communicated wirelessly. Such commu-

nication takes place either via a point-to-point con-

nection between the mobile device (the client) and the

server, or via broadcasting by the server [Acharya S.,

Franklin M., and Zdonik S, 1995, Dissemination-based

Data Delivery Using Broadcast Disks, Personal Com-

munications]. Direct updates from other mobile

devices may use short-range wireless communication

protocols such as Bluetooth or Wifi [1].

Cross-references
▶Mobile Ad hoc Network Databases

Recommended Reading
1. Cao H., Wolfson O., Xu B., and Yin H., ‘‘MOBI-DIC: MOBIle

DIscovery of loCal Resources in Peer-to-Peer Wireless Network’’.

Bull Comput Soc Tech Committee Data Eng, 28(3):11–18, 2005

(Special Issue on Database Issues for Location Data

Management).
Mobile Interfaces

GIUSEPPE SANTUCCI

University of Rome, Roma, Italy

Synonyms
Handhelds interfaces; Navigation system interfaces

Definition
Mobile interfaces are interfaces specifically designed

for little portable electronic devices (handhelds), like

cellular phones, personal digital assistants (PDAs), and

pagers. Mobile interfaces provide means to execute

complex activities on highly constrained devices, char-

acterized by small screens, low computing power, and

limited input/output (I/O) capabilities. While this

term is mainly used to refer to interfaces for classical

Web applications, like email and Web browsing it

should be intended in a broader sense, encompassing

all Web and non-Web applications that run on little

mobile equipments (e.g., GPS navigation systems).

Historical Background
Mobile interfaces came up with the proliferation of

cellular phones through the 1980s. At that time, the

notion of mobile interface was very primitive and

the offered services were very simple: handling lists of

contacts, usually limited to <name, phone-number>

Mobile Interfaces. Figure 1. A screenshot from Apple

Newton.

1752M Mobile Interfaces
pairs, starting/answering a phone call, writing short

text, setting phone preferences (volume, light, ring

tone, etc.). Even in this restricted scenario, the vendors

had to deal with challenging issues, posed by the very

limited early cellular phones capabilities, in terms of

screen dimension and resolution, limited computing

power, and I/O capabilities. No standards were around

and different, unrelated solutions were adopted. The

most used interaction strategy was to mimic the typical

hierarchical computer menus with very poor results:

the user was (and still is) forced to access functions

and services through a series of boring menus. The

main reason of failure is that while PCs can present to

the user a complete list of all possible choices mobile

phones can show a small number of options at time

(usually one), forcing the user to remember the paths to

the commands. That results in a very large number of

key presses, errors, and mental overwhelming: many of

the advantages of the conventional menus are lost [12].

For about ten years the unique available portable

devices were mainly cellular phones; from 1993 to 1998

Apple Computer (now Apple Inc.) marketed the ‘‘Apple

Newton,’’ the first line of PDAs, personal digital assis-

tants, a term introduced on January 7, 1992 by John

Sculley at the Consumer Electronics Show in Las Vegas,

Nevada, referring to the Apple Newton. The Apple’s

official name for the PDAwas ‘‘MessagePad’’ and it was

based on the ARM 610 RISC processor using a dedica-

ted operating system (Newton OS, an allusion to Isaac

Newton’s apple); however, the word Newton was popu-

larly used to refer to the device and its software. The new

device was characterized by a wider touchable mono-

chromatic screen (366 � 240) with retro illumination

(only for the top version). The increased computational

power and the larger screen allowed for very innovative

interaction techniques (for a portable device): icons,

simulated touchable QWERTY keyboard, and handwrit-

ing recognition (called Calligrapher). Moreover, the user

was allowed to turn the screen horizontally (‘‘land-

scape’’) as well as vertically (‘‘portrait’’) preserving the

handwriting recognition functionality (see Fig. 1).

Even the data management was quite innovative:

programs were able to convert and share data (e.g., the

calendar was able to refer to names in the address book

or to convert a note into an appointment). Finally all

the devices were equipped with a built in infrared

and an expansion port for connecting to a modem

or Ethernet. Disregarding the color absence and the
limited device connectivity, the Palm Newton func-

tionalities were quite similar to the ones of modern

PDAs!

In spite of the innovative interface and capabilities,

the product was not a successful one. The main reasons

were the poor handwriting recognition accuracy, the

high price, and the non comfortable size (it did not fit

in a regular pocket). Still, the pioneering Apple ideas

were captured by other vendors and many similar

devices were around in the next years. Among them,

the Palm series with the PalmOS operative system and

the Graffiti handwriting recognition system conquered

(in 1999) about 80% of the world market, mostly for

the effective handwriting system and for the availabili-

ty of a huge amount of third part software. On Febru-

ary 2000 Palm marketed the PalmIIIc, the first color

PDA. Concerning the interface it is worth noting the

different Graffiti philosophy: instead of allowing the

user to write in his/her own style it forced the user to

learn a set of pen strokes for each character (see Fig. 2).

This narrowed the possibility for erroneous input,

although memorization of the stroke patterns did in-

crease the learning curve for the user. Some studies

demonstrated that even if the error rate with Graffiti

was higher than using the virtual keyboard (19.3 vs.

4.1%), users prefer Graffiti, because its usage is more

natural.

Mobile Interfaces. Figure 2. The PalmOS Graffiti.

Mobile Interfaces M 1753

M

As soon as the hardware made it possible a deeper

integration between PDA and cellular phones started:

phones were equipped with larger screen and complex

applications (smartphones), while PDA included

phone hardware. Moreover, the so called pager devices,

mainly intended for on the way email, came up. In 2004,

smartphones were outselling PDAs for the first time.

Nowadays, the difference between these three categories

in term of capabilities and interface is very little. The

main consequence of this integration is that all these

devices allow for Internet access (through GPRS or

WI-FI) and it is very likely that in the next future there

will be more people accessing the Internet via mobile

devices (phones, PDA, etc) than via conventional PCs.

According to this issuemany researchers are now dealing

with the problem of designing friendly interface for

accessing Internet through portable devices.
Foundations
The research effort concerning mobile interfaces fol-

lowed twomain paths: designing interface for a specific

application running on a specific device (e.g., the

agenda interface of a specific cellular phone) or design-

ing web based applications that can be deployed on

multiple devices (e.g., a web browser working on dif-

ferent PDAs and cellular phones).

Mobile Interface for Specific Devices

The problem of dealing with little screen is not new.

Much literature from the 1980s and early 1990s, written

even before the Web, deals with user interfaces on small

screens. At that time the focus was on first generation

cash dispensing ATMs, electronic typewriters and

photocopiers. All of these systems could display only a

limited number of text lines to communicate with the

user. Research looked into the impact of reduced screen

size on comprehension [3], reading rate [4], and inter-

action [12]. This research is still valid and has new

relevance to mobile Web devices [8].

The availability of graphic display and the diffusion

of navigation system raised the issue of interacting with

graphics and maps [6]. Moreover, the increasing usage

of such systems while driving a car posed several new

issues concerning distracting factors and security [1].

Multi Target Applications

In this case, research deals with techniques able to sup-

port the design of applications that run on several

devices that present different interaction capabilities

(e.g., small/large screens, keyboard/keypad input, etc.).

In order to address this issue, researchers have adopted

two main approaches:

1. Designing applications in order to let them run on

different platforms

2. Adapting existing systems in order to render them

usable on platform that were not originally includ-

ed as service provider (e.g., standard web sites)

In the first approach the solution is offered at design

time, that is, the designer explicitly knows that the

system will run on multiple devices. Some research

exists that follows this approach and the key issues

consist in giving models, methods, and tools to sup-

port the designer in the creation of multi-device appli-

cations and in offering techniques and algorithms to

generate the final interface at run time for the specific

1754M Mobile Interfaces
device utilized. In [10], a tool for support is presented

together with a well defined development life cycle: the

designer starts from abstract tasks definition and upon

it designs the interface in abstract. The final interfaces

are statically generated at design time by following

suggestions offered by the system and further refined

in order to accommodate specific details. Puerta et al.

in [5] propose a similar framework, defining a model

to design user interfaces in abstract as well, but their

work envisions also adaptive techniques to produce the

final user interface. A central mediator agent is respon-

sible for translating the abstract specification of the

user interface, according to a description of device’s

characteristics, into the final interface. Fundamental

questions arising from this kind of research are what

kind of models should be employed to specify abstract

interaction elements and what strategies/techniques

can permit an effective translation of abstract models

into real interfaces.

The second approach is the one that attempts to

bring existing systems, typically web sites, to small screen

devices by means of some sort of adaptation/filtering.

Among them, the WAP forum (www.wapforum.org)

defined a protocol that enables Web-like services on

little, portable devices. The interface uses a card meta-

phor and the designers claim that it is highly appropriate

and usable. However, Nielson [11] raised doubts about

its effectiveness. A similar proposal is i-mode, developed

by the dominant Japanese carrier NTT DoCoMo, and

widely used in Japan. Moreover, the World Wide Web

Consortium (W3C) is also developing a framework that

will enableWeb content to be accessed on a diverse range

of devices [13]. This frameworkwill allow a document to

exist in multiple variants, each variant specifying the

type of support needed by the browser to display its

contents. Device capabilities and user preferences will

also be captured. The information about documents,

devices and users will be used to automatically adapt a

Web page to best suit the device and user.

Key Applications
Users of mobile interfaces are growing at high speed.

According to IDC’s Worldwide Quarterly Mobile Phone

Tracker (www.idc.com), worldwide mobile phone ship-

ments rose 19.1% year over year and increased sequen-

tially 8.8% in 2005 to reach 208.3 million units. While

unconnected PDA’s are a declining segment, the emer-

ging navigator market is still increasing about 10 million

cars guided by navigation systems, 43 million
dedicated portable navigators, and 16 millions smart

phones based navigators forecasted for 2010 (www.

strategyanalytics.net).

These figures make clear the importance of mobile

interfaces in the coming years.

Future Directions
There are some emerging issues that will likely affect

the behavior and structure of mobile interfaces:

� Search versus menu browsing. Several proposals

relies on the idea that, in order to start an action, it

is better to search it (i.e., towrite down the command

name) instead of browsing boring menus [9,7].

� Multimodal interaction. When the hardware allows

it, mobile interfaces can exploit multimodal input/

output (e.g., voice commands, likely together with

the aforementioned search strategy).

� Context and user modeling. Some proposal describe

interfaces that can adapt themselves according to the

user preferences and the context [2], e.g., an interface

for browsing tourist information presents a user with

list of vegetarian restaurants at walking distance,

according to the user location, discovered through

the integrated GPS device, knowing that the user is

vegetarian and that s/he is currently walking.

These research issues could greatly improve the mobile

interfaces in the next years.

Cross-references
▶Multimodal Interfaces

▶Visual Interfaces

▶WIMP Interfaces

Recommended Reading
1. Commission of the European Communities. Commission rec-

ommendation of 22 December 2006 on safe and efficient in-

vehicle information and communication systems: Update of the

European Statement of Principles on Human Machine Interface,

2006.

2. Coutaz J., Crowley J., Dobson S., and Garlan D. Context is key.

Commn. ACM, 48(3):49–53, 2005.

3. Dillon A., Richardson J., and McKnight. The effect of display

size and text splitting on reading lengthy text from the screen,

Behav. Inf. Technol., 9(3):215–227, 1990.

4. Duchnicky R.L. and Kolers P.A. Readability of text scrolled on

visual display terminals as a function of window size. Hum.

Factors, 25(6):683–692, 1983.

5. Eisenstein J., Vanderdonckt J., and Puerta A. Applying model-

based techniques to the development of UIs for mobile

http://www.wapforum.org
http://www.strategyanalytics.net
http://www.strategyanalytics.net

Mobile Sensor Network Data Management M 1755

M

computers. In Proc. Sixth Int. Conf. on Intelligent User Inter-

faces, 2001, pp. 69–76.

6. Frey P.R., Rouse W.B., and Garris R.D. Big graphics and little

screens: designing graphical displays for maintenance tasks.

IEEE Trans. Syst. Man Cybernetics, 22(1): 10–20, 1992.

7. Graf S., Spiessl W., Schmidt A., Winter A., and Rigoll G. In-car

interaction using search based user interfaces. In Proc. 26th

Annual SIGCHI Conf. on Human factors in Computing Sys-

tems. 2008, pp. 1685–1688.

8. Jones M., Marsden G., Mohd-Nasir N., Boone K., and Buchanan

G. Improving web interaction on small displays. In Proc. W8

Conf., Toronto, 1999 Also reprinted in Int. J. Comput. Tele-

commn. Netw., 31(11–16):1129–1137, 1999.

9. Marsden G., Gillary P., Jones M. and Thimbleby H. Successful

user interface design from efficient computer algorithms. In

Proc. ACM CHI 2000 Conf. on Human Factors in Computing

Systems, 2000, pp. 181–182.

10. Mori G., Paternò F., and Santoro C. Tool support for designing

nomadic applications. In Proc. 2003 Int. Conf. on Intelligent

User Interfaces, 2003, pp. 141–148.

11. Nielson J. Graceful degradation of scalable internet services.

Available online at:http://www.useit.com/alertbox/991031.html,

1999.

12. Swierenga S.J. Menuing and scrolling as alternative information

access techniques for computer systems: interfacing with the

user. In Proc. 34th Annual Meeting of Human Factors Society,

1990, pp. 356–359.

13. W3C Mobile Activity Statement. Available online at: http://

www.w3.org/Mobile/Activity.
Mobile Map Services

▶ Location-Based Services (LBS)
Mobile Sensor Network Data
Management

DEMETRIOS ZEINALIPOUR-YAZTI
1

PANOS K. CHRYSANTHIS
2

1University of Cyprus, Nicosia, Cyprus
2University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
MSN data management; Mobile wireless sensor

network data management

Definition
Mobile Sensor Network (MSN) Data Management

refers to a collection of centralized and distributed

algorithms, architectures and systems to handle (store,
process and analyze) the immense amount of spatio-

temporal data that is cooperatively generated by collec-

tions of sensing devices that move in space over time.

Formally, given a set of n homogenous or hetero-

geneous mobile sensors {s1, s2,...,sn} that are capable

of acquiring m physical attributes {a1, a2,...,am}

from their environment at every discrete time

instance t (i.e., datahas a temporal dimension),

an implicit or explicit mechanism that enables each

si (i � n) to move in some multi-dimensional Euclide-

an space (i.e., data has one or more spatial dimen-

sions), MSN Data Management provides the

foundation to handle spatio-temporal data in the

form (si, t, x, [y, z,]a1[,...,am]), where x, y, z defines

three possible spatial dimensions and the bracket expres-

sion ‘‘[]’’ denotes the optional arguments in the tuple

definition. In a more general perspective, MSN Data

Management deals with algorithms, architectures and

systems for in-network and out-of-network query pro-

cessing, access methods, storage, data modeling, data

warehousing, data movement and data mining.

Historical Background
The improvements in hardware design along with the

wide availability of economically viable embedded sen-

sor systems have enabled scientists to acquire environ-

mental conditions at extremely high resolutions. Early

approaches to monitor the physical world were pri-

marily composed of passive sensing devices, such as

those utilized in wired weather monitoring infrastruc-

tures, that could transmit their readings to more pow-

erful processing units for storage and analysis. The

evolution of passive sensing devices has been suc-

ceeded by the development of Stationary Wireless

Sensor Networks (Stationary WSNs). These are com-

posed of many tiny computers, often no bigger than

a coin or a credit card, that feature a low frequency

processor, some flash memory for storage, a radio for

short-range wireless communication, on-chip sensors

and an energy source such as AA batteries or solar

panels. Applications of stationary WSNs have emerged

in many domains ranging from environmental moni-

toring [15] to seismic and structural monitoring as

well as industry manufacturing.

The transfer of information in such networks is

conducted without electrical conductors (i.e., wires)

using technologies such as radio frequency (RF), infra-

red light, acoustic energy and others, as the mobility

aspect inherently hinders the deployment of any

http://www.useit.com/alertbox/991031.html
http://www.w3.org/Mobile/Activity
http://www.w3.org/Mobile/Activity

1756M Mobile Sensor Network Data Management
technology that physically connects nodes with wires.

Since communication is the most energy demanding

factor in such networks, data management researchers

have primarily focused on the development of energy-

conscious algorithms and techniques.

In particular, declarative approaches such as

TinyDB [9] and Cougar [16] perform a combination

of in-network aggregation and filtering in order to

reduce the energy consumption while conveying data

to the querying node (sink). Additionally, approaches

such as TiNA [13] and MINT Views [17] take into

account intelligent in-network data reduction techni-

ques to further reduce the consumption of energy.

Data Centric Routing approaches, such as directed dif-

fusion [8], establish low-latency paths between the sink

and the sensors in order to reduce the cost of commu-

nication. Data Centric Storage [14] schemes organize

data with the same attribute (e.g., humidity readings)

on the same node in the network in order to offer

efficient location and retrieval of sensor data.

The evolution of stationary WSNs in conjunction

with the advances made by the distributed robotics

and low power embedded systems communities have

led to a new class of Mobile (and Wireless) Sensor Net-

works (MSNs) that can be utilized for land [3,5,10],

ocean exploration [11], air monitoring [1], automo-

bile applications [7,6], Habitant Monitoring [12] and a

wide range of other scenarios. MSNs have a similar

architecture to their stationary counterparts, thus are

governed by the same energy and processing limita-

tions, but are supplemented with implicit or explicit

mechanisms that enable these devices to move in space

(e.g., motor or sea/air current) over time. Additionally,

MSN devices might derive their coordinates through

absolute (e.g., dedicated Geographic Positioning Sys-

tem hardware) or relative means (e.g., localization

techniques, which enable sensing devices to derive

their coordinates using the signal strength, time differ-

ence of arrival or angle of arrival). There are several

classes of MSNs which can coarsely be structured into

the following classes: (i) highly mobile, which contains

scenarios in which devices move at high velocities

such as cars, human with cell phones, airplanes, and

others; (ii) mostly static, which contains scenarios in

which devices move at low velocities such as moni-

toring sensors in a shop floor with moving robots;

and (iii) hybrid, which contains both classes such as

an airplane that has sensors installed on inside and

outside.
Foundations
The unique characteristics of MSNs create novel data

management opportunities and challenges that have

not been addressed in other contexts including those

of mobile databases and stationary WSNs. In order to

realize the advantages of such networks, researchers

have to re-examine existing data management and

data processing approaches in order to consider sensor

and user mobility; develop new approaches that con-

sider the impact of mobility and capture its trade-offs.

Finally, MSN data management researchers are

challenged with structuring these networks as huge

distributed databases whose edges consist of numerous

‘‘receptors’’ (e.g., RFID readers or sensor networks)

and internal nodes form a pyramid scheme for

(in-network) aggregation and (pipelined) data stream

processing.

There are numerous advantages of MSNs over their

stationary counterparts. In particular, MSNs offer:

(i) dynamic network coverage, by reaching areas that

have not been adequately sampled; (ii) data routing

repair, by replacing failed routing nodes and by cali-

brating the operation of the network; (iii) data muling,

by collecting and disseminating data/readings from

stationary nodes out of range; (iv) staged data stream

processing, by conducting in-network processing of

continuous and ad-hoc queries; and (v) user access

points, by enabling connection to handheld and other

mobile devices that are out of range from the commu-

nication infrastructure.

These advantages enable a wide range of new appli-

cations whose data management requirements go be-

yond those of stationary WSNs. In particular, MSN

system software is required to handle: (i) the past, by

recording and providing access to history data; (ii) the

present, by providing access to current readings of

sensor data; (iii) the future, by generating predictions;

(iv) distributed spatio-temporal data, by providing

new means of distributed data storage, indexing and

querying of spatio-temporal data repositories; (v) data

uncertainty, by providing new means of handling

real world signals that are inherently uncertain; (vi)

self-configurability, by withstanding ‘‘harsh’’ real-life

environments; and (vii) data and service mash-ups, by

enabling other innovative applications that build on

top of existing data and services.

In light of the above characteristics, the most

predominant data management challenges that have

prevailed in the context of MSNs include:

Mobile Sensor Network Data Management M 1757

M

In-Network Storage: The absence of a stationary

network structure in MSNs makes continuous data

acquisition to some sink point a non-intuitive task

(e.g., mobile nodes might be out of communication

range from the sink). In particular, the absence of an

always accessible sink mandates that acquisition has to

be succeeded by in-network storage of the acquired

events so that these events can later be retrieved by

the user. Mobile devices usually utilize flash memory

as opposed to magnetic disks, which are not shock-

resistant and thus are not appropriate for a mobile

setting. Consequently, a major challenge in MSNs is

to extend local storage structures and access methods

in order to provide efficient access to the data stored

on the local flash media of a sensor device while tradi-

tional database research has mainly focused on issues

related to magnetic disks.

Flexible and Expressive Query Types: In a traditional

database management system, there is a single correct

answer to a given query on a given database instance.

When querying MSNs the situation is notably different

as there are many more degrees of freedom and the

underlying querying engine needs to be guided regard-

ing which alternative execution strategy is the right

one, typically on the basis of target answer quality

and resource availability. In this context, there are

additional relevant parameters that include: (i) Resolu-

tion: physical sensor data can be observed at multiple

resolutions along space and time dimensions; (ii) Con-

fidence: more often than not, correctness of query

results can be specified only in probabilistic terms

due to the inherent uncertainty in the sensor hardware

and the modeling process; (iii) Alternative models: in

some cases, several alternative models apply to a single

scenario. Each alternative typically represents a differ-

ent point in the efficiency (resource consumption) and

effectiveness (result quality) spectrum, thereby allow-

ing a tradeoff between these two metrics on the basis of

application-level expectations. The prime challenge is

to define new declarative query languages that make

use of these new parameters while allowing a highly

flexible and optimizable implementation. Additionally,

approximate query processing with controlled result

accuracy becomes vital for dynamic mobile environ-

ments with varying node velocities, changing data traf-

fic patterns, information redundancy, uncertainty, and

inevitable flexible load shedding techniques. Finally, in

order to have an efficient and optimized implementation

of query types, MSNs will need to consider cross-layer
optimization since all layers of the data stack are involved

in query execution.

Efficient Query Routing Trees: Query routing and

resolution in stationary WSNs is typically founded on

some type of query routing tree that provides each

sensor with a path over which answers can be trans-

mitted to the sink. In a MSN, such a query routing tree

can neither be constructed in an efficient manner nor

be maintained efficiently as the network topology is

transient. The dynamic nature of the underlying phys-

ical network tremendously complicates the inter-

change of information between nodes during the

resolution of a query. In particular, it is known that

sensing devices tend to power-down their transceiver

(transmitter-receiver) during periods of inactivity in

order to conserve energy [2]. While stationary WSNs

define transceiver scheduling approaches, such as those

defined in TAG [9], Cougar [16] and MicroPulse [1],

in order to enable accurate transceiver allocation

schemes, such approaches are not suitable for mobile

settings in which a sensor is not aware of its designated

parent node in the query tree hierarchy. Consequently,

nodes are not able to agree on rendezvous time-points

on which data interchange can occur.

Purpose-Driven Data Reduction: The amount of

data generated fromMSNs can be overwhelming. Con-

sequently, a main challenge is to provide data reduc-

tion techniques which will be tuned to the semantics

of the target application. Furthermore, data reduct-

ion must take into account the entire spectrum of

uses, ranging from real-time to off-line, supporting

both snapshot and continuous queries that take advan-

tage of designated optimization opportunities (e.g.,

multi-query) especially targeted for mobile environ-

ments. Finally, it must also consider the inherently

dynamic aspects of these environments and the possi-

bility of in-network data reduction (e.g., in-network

aggregation).

Perimeter Construction and Swarm-Like Behavior:

In many types of MSNs, new events are more prevalent

at the periphery of the network (e.g., water detection

and contamination detection) rather than uniformly

throughout the network (which is more typically for

applications like fire detection). This creates the neces-

sity to construct the perimeter of a MSN in an online

and distributed manner. Additionally, many types of

MSNs are expected to feature a swarm-like behavior

(The term Swarm (or Flock) refers to a group of objects

that exhibit a polarized, non-colliding and aggregate

1758M Mobile Sensor Network Data Management
motion.). For instance, consider a MSN design that

consists of several rovers that are deployed as a swarm

in order to detect events of interest (e.g., the presence

of water) [18]. The swarm might collaboratively collect

spatio-temporal events of interest and store them in

the swarm until an operator requests them. In order to

increase the availability of the detected answers, in the

presence of unpredictable failures, individual rovers

can perform replication of detected events to neigh-

boring nodes. That creates challenges in data aggrega-

tion, data fusion and data storage that have not yet

been addressed.

Enforcement of Security, Privacy and Trust: Frequent

node migrations and disconnections in MSNs, as well

as resource constraints raise severe concerns with re-

spect to security, privacy and trust. Additionally, the cost

of traditional secure data dissemination approaches

(e.g., using encryption) may be prohibitively high in

volatile mobile environments. As such, research on

encryption-free data dissemination strategies becomes

very relevant here. This includes strategies to deliver

separate and under-defined data shares, secure multi-

party computation and advanced information recovery

techniques.

Context-Awareness and Self-Everything: Providing a

useful level of situational awareness in an unobtrusive

way is crucial to the success of any application utilizing

MSNs as this can be used to improve functionality by

including preferences from the users but can also be

used to improve performance (e.g., better network

routing decisions if the exact topology is known).

Note that context is often obvious in stationary WSN

deployments (i.e., a specific sensor is always in the

same location) but in the context of a MSN additional

data management measures need to be taken into

account in order to enable this parameter. Additional-

ly, it is crucial for them to be ‘‘plug-and-play’’ and self-

everything (i.e., self-configurable and self-adaptive) as

application deployment of sensors in the field is fa-

mously hard, even without the mobility aspect which is

introducing additional challenges. Finally, a crucial

parameter is that of being adaptive both in how to

deal with the system issues (i.e., how to adapt from

failures in network connectivity) and also with user-

interface/application issues (i.e., how to adapt the ap-

plication when the context changes).

Key Applications
MSN Data Management algorithms, architectures and

systems will play a significant role in the development
of future applications in a wide range of disciplines

including the following:

Environmental and Habitant Monitoring: A large

class of MSN applications have already emerged in

the context of environmental and habitant monitoring

systems. Consider an ocean monitoring environment

that consists of n independent surface drifters floating

on the sea surface and equipped with either acoustic or

radio communication capabilities. The operator of

such a MSN might seek to answer queries of the type:

‘‘Has the MSN identified an area of contamination and

where exactly?’’. The MSN architecture circumvents

the peculiarities of individual sensors, is less prone

to failures and is potentially much cheaper. Similar

applications have also emerged with MSNs of car

robots, such as CotsBots [3], Robomotes [5] or

Millibots [10], and MSNs of Unmanned Aerial Vehi-

cles (UAVs), such as SensorFlock [1], in which devices

can fly autonomously based on complex interactions

with their peers. One final challenging application in

this class is that of detecting a phenomenon that itself

is mobile, for example a brush fire which is being

carried around by high winds.

Intelligent Transportation Systems: Sensing systems

have been utilized over the years in order to better

manage traffic with the ultimate goal of reducing acci-

dents and minimizing the time and the energy (gaso-

line) wasted while staying idle in traffic. Since cars are

already equipped with a wide range of sensors, the

generated information can be shared in a vehicle-to-

vehicle network. For example the ABS system can

detect when the road is slippery or when the driver is

hitting the brakes thus this information can be broad-

casted to the surrounding cars but also to the many

cars back and forth, as needed, in order to make sure

that everybody can safely stop with current weather

conditions and car speeds.

Medical Applications: This class includes applica-

tions that monitor humans in order to improve living

conditions and in order to define early warning sys-

tems that identify when human life is at risk. For

instance, Nike+ is an example for monitoring the

health of a group of runners that have simple sensing

devices embedded in their running shoes. Such an

application would require embedded storage and re-

trieval techniques in order to administer the local

amounts of data. Applications in support of the elderly

and those needing constant supervision (e.g., due

to chronic diseases like diabetes, allergies, etc.) are

another example in which MSN data management

Mobile Wireless Sensor Network Data Management M 1759

M

techniques will play an important role. Wellness appli-

cations could also be envisioned, where a health ‘‘dose’’

of exercise is administered according to ones needs and

capabilities. Another area are systems to protect sol-

diers on the battlefield. SPARTNET has recently devel-

oped wearable physiological sensor systems that

collect, organize and interpret data on the health status

of soldiers in order to improve situational and medical

awareness during field trainings. Such systems could

be augmented with functionality of detecting and re-

porting threats that are either derived from individual

signals (e.g., when a soldiers personal health monitor

shows erratic life-signals) and from correlated signals

that are derived frommultiple sensors/soldiers (e.g., by

recognizing when a small group of soldiers is deviating

away from the expected formation). Finally, disaster

and emergency management are another prime area

where MSN data management techniques will play a

major impact.

Location-Based Services and the Sensor Web: The

last group of challenging motivating applications is

that of real-time location-based services, for example

a service that can report whether there are any available

parking spaces or a service that can keep track of buses

moving and report how delayed a certain bus is. Many

of these services become more powerful with the inte-

gration of data from the Sensor Web (i.e., live sensor

data) with theWeb (i.e., static content available online)

and the Deep-web (i.e., data that is stored in a database,

but are accessible through a web page or a web service).

Cross-references
▶Mobile and Ubiquitous Data Management

▶ Sensor Networks

▶ Spatial Network Databases

▶ Stream Data Analysis

Recommended Reading
1. Allred J., Hasan A.B., Panichsakul S., Pisano B., Gray P.,

Huang J-H., Han R., Lawrence D., and Mohseni K. SensorFlock:

an airborne wireless sensor network of micro-air vehicles. In

Proc. 5th Int. Conf. on Embedded Networked Sensor Systems,

2007, pp. 117–129.

2. Andreou P., Zeinalipour-Yazti D., Chrysanthis P.K., and

Samaras G. Workload-aware optimization of query routing

trees in wireless sensor networks In Proc. 9th Int. Conf. on

Mobile Data Management, 2008, pp. 189–196.

3. Bergbreiter S. and Pister K.S.J. CotsBots: an off-the-shelf plat-

form for distributed robotics. In Proc. IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, 2003, pp. 1632–1637.

4. Chintalapudi K. and Govindan R. Localized Edge Detection in

Sensor Fields. Ad-hoc Networks, 1(2–3):273–291, 2003.
5. Dantu K., Rahimi M.H., Shah H., Babel S., Dhariwal A., and

Sukhatme G.S. Robomote: enabling mobility in sensor net-

works. In Proc. 4th Int. Symp. on Information Processing in

Sensor Networks, 2005, pp.

6. Eriksson J., Girod L., Hull B., Newton R., Madden S., and

Balakrishnan H. The Pothole Patrol: using a mobile sensor

network for road surface monitoring. In Proc. 6th Int. Conf.

Mobile Systems, Applications and Services, 2008, pp. 29–39.

7. Hull B., Bychkovsky V., Chen K., Goraczko M., Miu A., Shih E.,

Zhang Y., Balakrishnan H., and Madden S. CarTel: a distributed

mobile sensor computing system. In Proc. 4th Int. Conf. on

Embedded Networked Sensor Systems, 2006, pp. 125–138.

8. Intanagonwiwat C., Govindan R., and Estrin D. Directed diffu-

sion: a scalable and robust communication paradigm for sensor

networks. In Proc. 6th Annual Int. Conf. on Mobile Computing

and Networking, 2000, pp. 56–67.

9. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W. The

design of an acquisitional query processor for sensor networks. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2003.

10. Navarro-Serment L.E., Grabowski R., Paredis C.J.J., and

Khosla P.K. Millibots: the development of a framework and

algorithms for a distributed heterogeneous robot team. IEEE

Robot. Autom. Mag., 9(4), December 2002.

11. Nittel S., Trigoni N., Ferentinos K., Neville F., Nural A., and

Pettigrew N. A drift-tolerant model for data management in

ocean sensor networks. In Proc. 6th ACM Int. Workshop on

Data Eng. for Wireless and Mobile Access, 2007, pp. 49–58.

12. Sadler C., Zhang P., Martonosi M., and Lyon S. Hardware design

experiences in ZebraNet. In Proc. 2nd Int. Conf. on Embedded

Networked Sensor Systems, 2004, pp. 227–238.

13. Sharaf M., Beaver J., Labrinidis A., and Chrysantrhis P.K.

Balancing energy efficiency and quality of aggregate data in

sensor networks. VLDB J., 13(4):384–403, 2004.

14. Shenker S., Ratnasamy S., Karp B., Govindan R., and Estrin D.

Data-centric storage in sensornets. SIGCOMM Comput. Com-

mun. Rev., 33(1):137–142, 2003.

15. Szewczyk R., Mainwaring A., Polastre J., Anderson J., and

Culler D. An analysis of a large scale habitat monitoring

application. In Proc. 2nd Int. Conf. on Embedded Networked

Sensor Systems, 2004, pp. 214–226.

16. Yao Y. and Gehrke J.E. The cougar approach to in-network query

processing in sensor networks. ACM SIGMOD Rec., 32(3):9–18,

2002.

17. Zeinalipour-Yazti D., Andreou P., Chrysanthis P., and

Samaras G. MINT views: materialized in-network top-k

views in sensor networks. In Proc. Int. Conf. on Mobile Data

Management, 2007, pp. 182–189.

18. Zeinalipour-Yazti D., Andreou P., Chrysanthis P., and Samaras G.

SenseSwarm: a perimeter-based data acquisition framework for

mobile sensor networks. In Proc. VLDB Workshop on Data

Management for Sensor Networks, 2007, pp. 13–18.
Mobile Wireless Sensor Network
Data Management

▶Mobile Sensor Network Data Management

1760M Model Management
Model Management

CHRISTOPH QUIX

RWTH Aachen University, Aachen, Germany

Definition

Model management comprises technologies and mec-

hanisms to support the integration, transformation,

evolution, and matching of models. It aims at support-

ing metadata-intensive applications such as database

design, data integration, and data warehousing. To

achieve this goal, a model management system has to

provide definitions for models (i.e., schemas repre-

sented in some metamodel), mappings (i.e., relation-

ships between different models), and operators (i.e.,

operations that manipulate models and mappings).

Model management has become more and more im-

portant, since the interoperability and/or integration

of heterogeneous information systems is a frequent

requirement of organizations. Some important opera-

tions in model management are Merge (integration of

two models), Match (creating a mapping between two

models), and ModelGen (transforming a model given

in one modeling language into a corresponding model

in a different modeling language).

The current understanding of model management

has been defined in [4] and focuses mainly on (but is

not limited to) the management of data models. Most

of the problems mentioned before have been already

addressed separately and for specific applications. The

goal now is to build a model management system

(MMS) which unifies the previous approaches by

providing a set of generic structures representing mod-

els and mappings, and the definition of generic opera-

tions on these structures. Such a system could then be

used by an application to solve model management

tasks.
Historical Background
Model management, as it is understood today, has

been defined by Bernstein et al. [4]. In the 1980s, the

term ‘‘model management’’ was used in the context of

decision support systems, but this refered mainly to

mathematical models. Dolk [7] stated first the require-

ment for a theory for models similar to the relational

database theory. Such a theory should include formal

definitions of models and operations on models and

could be used as a basis for the implementation of a
model management system. This work was based on

a draft of the Information Resource Dictionary System

(IRDS) standard (ISO/IEC 10027:1990) which was

accepted in 1990. The IRDS standard clarified the

terminology of modeling systems and defined a frame-

work structure for such systems as a four-level hier-

archy: at the lowest level reside data instances which

are described by a model (or schema) on the next

higher level. This model is expressed in some modeling

language (or metamodel) which is located at the third

level. The highest level contains a metametamodel

which can be used to define metamodels.

The new definition of model management in 2000

[4] integrated the research efforts of several previously

loosely coupled areas. Therefore, research in model

management did not start from scratch, rather it

could build already on many results such as schema

integration [3], or model transformation [1]. The main

contribution of [4] was the definition of operations

(such asMatch,Merge, Compose) which amodel man-

agement system should offer. Furthermore, it was re-

quired thatmodels andmappings are considered as first

class objects and that operations should address them

as a whole and not only one model element at a time.

Since the vision of model management has been

stated, research diverted into the areas of schema

matching [14], model transformation [1], generic

metamodels [10], schema integration [3], and the defi-

nition and composition of mappings [8]. Each of these

areas will be summarized briefly in the next section.

Recently, research on model management has been

summarized in [5]. It was also emphasized that more

expressive mapping languages are required than pro-

posed in the original vision of model management.

Model management systems should also include a

component in which the mappings can be executed.

Foundations

Schema Matching

Schema matching is the task of identifying a set of

correspondences (also called a morphism or a mapp-

ing) between schema elements. Many aspects have to

be considered during the process of matching, such as

data values, element names, constraint information,

structure information, domain knowledge, cardinality

relationships, and so on. All this information is useful

in understanding the semantics of a schema, but it can

be a very time consuming problem to collect this

Model Management M 1761

M

information. Therefore, automatic methods are re-

quired for schema matching.

A multitude of methods have been proposed for

schema matching [14] using different types of infor-

mation to identify similar elements. The following

categories of schema matchers are frequently used:

� Element-Level Matchers take only the information

of one schema element separately into account.

These can either use linguistic information (name

of the element) or constraint information (data

type, key constraints).

� Structure-Level Matchers use graph matching

approaches to measure the similarity of the struc-

tures implied the schema.

� Instance-Level Matchers use also data instances to

match schema elements. If the instance sets of two

elements are similar, or have a similar value distri-

bution, this might indicate a similarity of the sche-

ma elements.

� Machine-Learning Matchers use either instance

data or previously identified matches as training

data for a machine-learning system. Based on this

training data, the system should then detect similar

matches in new schema matching problems.

It has been agreed that no single method can solve the

schema matching problem in general. Therefore,

matching frameworks have been developed which are

able to combine multiple individual matching meth-

ods to achieve a better result.

Model Transformation

Model transformation (also called ModelGen) is the

task of transforming a given model M in some partic-

ular modeling language into a corresponding model

M 0 in some other modeling language. A classical ex-

ample for such a transformation is the transformation

of an entity-relationship model into a relational data-

base schema. In general, the transformation cannot

guarantee that all semantic information of M is still

present in the resulting model M0 as the target model-

ing language might have limited expressivity.

Whereas transformation of models between differ-

ent modeling languages is a frequent task, it has up to

now mainly been adressed in specialized settings which

map from one particular metamodel to another fixed

metamodel. Recent approaches for generic model

transformations are based on generic model represen-

tations and use a rule-based system to transform a
generic representation of the original model into a

different model in the generic metamodel. As a side

effect, these approaches generate also instance-level

mappings which are able to transform data conform-

ing to the original model into data of the generated

model.

Another important application area of model

transformation is MDA (Model Driven Architecture).

The MDA concept is based on the transformation of

abstract, conceptual models into more concrete imple-

mentation-oriented models.

Generic Metamodel

A generic representation of models is a prerequisite

for building a model management system. Without a

generic representation, model operations would have

to be implemented for each modeling language that

should be supported by the system. Especially for the

task of model transformation, a generic representation

of models is advantageous as the necessary transforma-

tions have just to be implemented for the generic

representation.

Such a generic representation is called a generic

metamodel. A generic metamodel should be able to

represent models originally represented in different

metamodels (or modeling languages) in a generic

way without loosing detailed information about the

semantics of the model.

First implementations of model management sys-

tems used rather simple graph representations of mod-

els, e.g., Rondo [13]. Although the graph-based

approach might allow an efficient implementation

of operations which do not rely on a detailed represen-

tation of the models (such as schema matching), it

is more difficult to implement more complex opera-

tions (such as model transformation or schema

integration).

Schema integration approaches used rather ab-

stract generic metamodels. More detailed generic

metamodels have been used for model transformation.

In [1], the authors describe a metamodel consisting of

‘‘superclasses’’ of the modeling constructs in the native

metamodels. The transition between this internal rep-

resentation and a native metamodel is described as a

set of patterns. This induces the concept of a super-

model which is the union of patterns defined for any

supported native metamodel.

A detailed generic metamodel called GeRoMe

(Generic Role based Metamodel) is proposed in [10].

1762M Model Management
GeRoMe employs the role based modeling approach in

which an object is regarded as playing roles in colla-

borations with other objects. This allows to describe

the properties of model elements as accurately as pos-

sible while using only metaclasses and roles from a

relatively small set. Therefore, GeRoMe provides a ge-

neric, yet detailed representation of data models origi-

nally represented in different metamodels.

Schema Integration

In model management, the Merge operator addresses

the problem of schema integration, i.e., generating a

merged model given two input models and a mapping

between them. The merged model should contain

all the information contained in the input models

and the mapping. In this context, a mapping is not

just a simple set of correspondences between model

elements; it might have itself a complex structure and

is therefore often regarded also as a mapping model. A

mapping model is necessary because the models to be

merged also have complex structures, which usually do

not correspond to each other; the mapping model then

acts as a ‘‘bridge’’ to connect these heterogeneous

structures.

These structural heterogeneities are one class of

conflicts which have to be solved in schema integration.

Other types of conflicts are semantic conflicts (model

elementsdescribeoverlapping setsofobjects), descriptive

conflicts (the same elements are described by different

sets of properties; this includes also name conflicts),

and heterogeneity conflicts (models are described in

different modeling languages) [15]. The resolution of

these conflicts is themainprobleminschema integration.

The problem of schema integration has been ad-

dressed for various metamodels, such as variants of the

ER metamodel [15] or generic metamodels.

Mappings

Depending on the application area, such as data trans-

lation, query translation or model merging, schema

mappings come in different flavors. One can distinguish

between correspondences, also calledmorphisms, exten-

sional and intensional mappings. Correspondences

usually do not have a formal semantics but only state

informally that the respective model elements are simi-

lar. Morphisms are often – as the result of a schema

matching operation [14] – the starting point for specify-

ing more formal mappings. Intensional mappings are

usually used for schema integration (see above) and
are based on the possible instances of a schema. In

contrast to intensional mappings, extensional map-

pings refer to the actual instances of a schema.

Extensional mappings are defined as local-as-view

(LAV), global-as-view (GAV), source-to-target tuple

generating dependencies (s-t tgds), [12], second order

tuple generating dependencies (SO tgds) [8], or similar

formalisms. Each of these classes has certain advan-

tages and disadvantages when it comes to properties

such as composability, invertibility or execution of the

mappings.

Composition is an important sub-problem when

dealing with extensional mappings. In general, the

problem of composing mappings has the following

definition: given a mappingM12 from model S1 to mo-

del S2, and a mappingM23 from model S2 to model S3,

derive a mapping M13 from model S1 to model S3 that

is equivalent to the successive application of M12 and

M23 [8].

Fagin et al. [8] explored the properties of the com-

position of schema mappings specified by a finite set of

s-t tgds. They proved that the language of s-t tgds is not

closed under composition. To ameliorate the problem,

they introduced the class of SO tgds which are closed

under composition.

Model Management Systems

In the recent years, several prototype systems related to

model management have been developed. Many of

them focus only on some particular aspects of model

management whereas only a few try to address a

broader range of model management operators. The

systems Rondo [13] and GeRoMeSuite [11] aim at

providing a complete set of model management opera-

tors and are not restricted to particular modeling lan-

guages. Clio [9] focuses especially on mappings

between XML and relational databases, the generation,

and composition of these mappings. COMA++ [2]

provides schema matching functionality.

Key Applications
Model management can be applied in scenarios, in

which the management of complex data models is

necessary. For example, data warehouses (DWs) are

one application area for model management systems

[6]. For integrating a new data source into the DW, a

Match operator could be used to identify the simila-

rities between the source schema and the DW schema.

If the DW schema has not yet been created, a Merge

Model Management M 1763

M

operator can be used to generate it from several source

schemas. The composition of mappings can be used

after a source schema S has been evolved to a new

version S0: if a mapping from S0 to S is known (either

given by the schema evolution operation, or computed

by a Match operator), one can compose this mapping

with the original mapping between the source schema

S and the integrated schema T to get a mapping from

the new version of the source schema S0 to the

integrated schema T.

Such applications of model management operators

are also possible for other integrated information sys-

tems. For example, web services or e-business systems

often have to take a message in XML format and store

it in some relational data store for further processing.

To implement this data transformation, a mapp-

ing between the XML schema and the schema of the

relational database has to be defined. Such tasks are

already supported by commercial products (e.g., Micro-

soft BizTalk, Altova MapForce). These products already

use some model management operators (e.g., simple

Match operators to simplify the task of mapping defi-

nition), but could further benefit from more powerful

techniques for mapping generation. Clio started as a

research prototype for mapping generation between

XML and relational schemas, results have now been

integrated into the IBM Information Integration

platform.

Another application area for model management is

the design and development of software applications.

Model transformation is an inherent problem in soft-

ware development, models have to be transformed into

new metamodels, and then interoperability between

the original model and the transformed model has to

be implemented. A classical example is the transforma-

tion of an object-oriented data model of an application

to a relational database schema, for which data access

objects later have to be implemented to enable the

synchronization between the data in the database and

in the application. Such tasks are supported by frame-

works (e.g., ADO.NET Entity Framework or the Entity

Beans in Java 2 Enterprise Edition).

Future Directions
Mappings will become more and more important for

MMS in the future [5]. The initial vision of model

management, which considered mappings as rather

simple correspondences attached with some complex

expressions which contain the semantics of the
mapping, was too limited. Mappings are in practice

very complex and therefore, a rich mapping language is

required in a MMS. The MMS must also be able to

reason about the mappings. Furthermore, the MMS

should not only enable the definition of a mapping,

but support also its application; for example, using it

for the integration of two schemas or for data transfor-

mation between two data stores. In addition, complex

processes involving mappings (such as ETL process in

data warehouses) have also to be considered.

Cross-references
▶Data Integration

▶Meta Data Repository

▶Meta Model

▶ Schema Matching

▶ Schema Mapping

▶ Schema Mapping Composition

Recommended Reading
1. Atzeni P. and Torlone R. Management of Multiple Models in

an Extensible Database Design Tool. In Advances in Database

Technology, Proc. 5th Int. Conf. on Extending Database Tech-

nology, 1996, pp. 79–95.

2. Aumueller D., Do H.H., Massmann S., and Rahm E. Schema

and ontology matching with COMAþþ. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2005, pp. 906–908.

3. Batini C., Lenzerini M., and Navathe S.B. A comparative analysis

of methodologies for database schema integration. ACM Com-

put. Surv., 18(4):323–364, 1986.

4. Bernstein P.A., Halevy A.Y., and Pottinger R. AVision for Man-

agement of Complex Models. ACM SIGMOD Rec., 29(4):55–63,

2000.

5. Bernstein P.A. and Melnik S. Model Management 2.0: Manip-

ulating Richer Mappings. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007, pp. 1–12.

6. Bernstein P.A. and Rahm E. Data Warehousing Scenarios for

Model Management. In Proc. 19th Int. Conf. on Conceptual

Modeling, 2000, pp. 1–15.

7. D.R. Dolk Model Management and Structured Modeling: The

Role of an Information Resource Dictionary System. Commun.

ACM, 31(6), 1988.

8. Fagin R., Kolaitis P.G., Popa L., and Tan W.C. Composing

schema mappings: Second-order dependencies to the rescue.

ACM Trans. Database Syst., 30(4):994–1055, 2005.

9. Hernández M.A., Miller R.J., and Haas L.M. Clio: A Semi-

Automatic Tool for Schema Mapping. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2001, pp. 607.

10. Kensche D., Quix C., Chatti M.A., and Jarke M. GeRoMe: A

Generic Role Based Metamodel for Model Management. J. Data

Semant., VIII:82–117, 2007.

11. Kensche D., Quix C., Li X., and Li Y. GeRoMeSuite: A System for

Holistic Generic Model Management. In Proc. 33rd Int. Conf.

on Very Large Data Bases, 2007, pp. 1322–1325.

1764M Model-based Querying in Sensor Networks
12. Lenzerini M. Data Integration: A Theoretical Perspective. In

Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2002, pp. 233–246.

13. Melnik S., Rahm E., and Bernstein P.A. Rondo: A Programming

Platform for Generic Model Management. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2003, pp. 193–204.

14. Rahm E. and Bernstein P.A. A Survey of Approaches to Auto-

matic Schema Matching. VLDB J., 10(4):334–350, 2001.

15. Spaccapietra S. and Parent C. View Integration: A Step Forward

in Solving Structural Conflicts. IEEE Trans. Knowl. Data Eng.,

6(2):258–274, 1994.
Model-based Querying in Sensor
Networks

AMOL DESHPANDE
1, CARLOS GUESTRIN

2, SAM MADDEN
3

1University of Maryland, College Park, MD, USA
2Carnegie Mellon University, Pittsburgh, PA, USA
3Massachussetts Institute of Technology, Cambridge,

MA, USA

Synonyms
Approximate querying; Model-driven data acquisition

Definition
The data generated by sensor networks or other

distributed measurement infrastructures is typically

incomplete, imprecise, and often erroneous, such that

it is not an accurate representation of physical reality.

To map raw sensor readings onto physical reality, a

mathematical description, a model, of the underlying

system or process is required to complement the sensor

data. Models can help provide more robust interpreta-

tions of sensor readings: by accounting for spatial or

temporal biases in the observed data, by identifying

sensors that are providing faulty data, by extrapolating

the values of missing sensor data, or by inferring

hidden variables that may not be directly observable.

Models also offer a principled approach to predict

future states of a system. Finally, since models incor-

porate spatio-temporal correlations in the environ-

ment (which tend to be very strong in many

monitoring applications), they lead to significantly

more energy-efficient query execution – by exploiting

such attribute correlations, it is often possible to use a

small set of observations to provide approximations of

the values of a large number of attributes.

Model-based querying over a sensor network con-

sists of two components: (i) identifying and/or
building a model for a given sensor network, and

(ii) executing declarative queries against a sensor net-

work that has been augmented with such a model

(these steps may happen serially or concurrently).

The queries may be on future or hidden states of the

system, and are posed in a declarative SQL-like lan-

guage. Since the cost of acquiring sensor readings

from the sensor nodes is the dominant cost in these

scenarios, the optimization goal typically is to mini-

mize the total data acquisition cost.
Historical Background
Statistical and probabilistic models have been a main-

stay in the scientific and engineering communities for

a long time, and are commonly used for a variety of

reasons, from simple pre-processing tasks for removing

noise (e.g., using Kalman Filters) to complex analysis

tasks for prediction purposes (e.g., to predict weather or

traffic flow). Standard books on machine learning and

statistics should be consulted for more details (e.g.,

Cowell [3], Russell and Norvig [14]).

The first work to combine models, declarative

SQL-like queries and live data acquisition in sensor

networks was the BBQ System [7,6]. The authors pro-

posed a general architecture for model-based querying,

and posed the optimization problem of selecting the

best sensor readings to acquire to satisfy a user query

(which can be seen as a generalization of the value of

information problem [14]). The authors proposed sev-

eral algorithms for solving this optimization problem;

they also evaluated the approach on a several real-

world sensor network datasets, and demonstrated

that model-based querying can provide high-fidelity

representation of the real phenomena and leads to

significant performance gains versus traditional data

acquisition techniques. Several works since then have

considerably expanded upon the basic idea, including

development of sophisticated algorithms for data ac-

quisition [12,13], more complex query types [15], and

integration into a relational database system [8,11].

The querying aspect of this problem has many

similarities to the problem of approximate query

processing in database systems, which often uses

model-like synopses. For example, the AQUA project

[1] proposed a number of sampling-based synopses

that can provide approximate answers to a variety of

queries using a fraction of the total data in a database.

As with BBQ, such answers typically include tight

Model-based Querying in Sensor Networks M 1765

M

bounds on the correctness of answers. AQUA, however,

is designed to work in an environment where it is

possible to generate an independent random sample

of data (something that is quite tricky to do in sensor

networks, as losses are correlated and communicating

random samples may require the participation of a

large part of the network). AQUA also does not exploit

correlations, which means that it lacks the predictive

power of representations based on probabilistic mod-

els. Deshpande et al. [4] and Getoor et al. [9] proposed

exploiting data correlations through use of graphical

modeling techniques for approximate query proces-

sing, but, unlike BBQ, neither provide any guarantees

on the answers returned. Furthermore, the optimiza-

tion goal of approximate query processing is typically

not to minimize the data acquisition cost, rather it is

minimizing the size of the synopsis, while maintaining

reasonable accuracy.

Foundations
Figure 1 shows the most common architecture of

a model-based querying system (adapted from the

architecture of the BBQ system). The model itself

is located at a centralized, Internet-connected basesta-

tion, which also interacts with the user. The user may

issue either continuous or ad hoc queries against the

sensor network, using a declarative SQL-like language.

The key module in this architecture is the query plan-

ner and model updater, which is in charge of maintain-

ing the model and answering the user queries (possibly

by acquiring more data from the underlying sensor

network). The following sections elaborate on the var-

ious components of such a system.
Model-based Querying in Sensor Networks. Figure 1. Arch

BBQ [7,6]).
Model

Amodel is essentially a simplified representation of the

underlying system or the process, and describes how

various attributes of the system interact with each

other, and how they evolve over time. Hence, the

exact form of the model is heavily dependent on the

system being modeled, and an astounding range of

models have been developed over the years for differ-

ent environments. For ease of exposition, the rest of

this entry focuses on a dynamic model similar to the

one used in the BBQ system.

Let X1,...,Xn denote the (n) attributes of interest in

the sensor network. Further, let Xi
t denote the value of

Xi at time t (assuming that time is discrete). At any

time t, a subset of these attributes may be observed and

communicated to the basestation; here, the observa-

tions at time t are denoted by ot (note that hidden

variables can never be observed). The attributes typi-

cally correspond to the properties being monitored

by the sensor nodes (e.g., temperature on sensor

number 5, voltage on sensor number 8). However,

more generally, they may be hidden variables that

are of interest, but cannot be directly observed. For

example, it may be useful to model and query a hidden

boolean variable that denotes whether a sensor is faulty

[11] – the value of this variable can be inferred using

the model and the actual observations from the sensor.

The model encodes the spatial and temporal rela-

tionships between these attributes of interest. At any

time t, the model provides us with a posterior proba-

bility density function (pdf), pðXt
1;:::;X

t
njo1...ðt�1ÞÞ,

assigning a probability for each possible assignment

to the attributes at time t given the observations
itecture of a model-based querying system (adapted from

1766M Model-based Querying in Sensor Networks
made so far. Such a joint distribution can capture all

the spatial correlations between the attributes; more

compact representations like Bayesian networks can be

used instead as well.

To model the temporal correlations, it is common

to make a Markov assumption; given the values of all

attributes at time t, one assumes that the values of

the attributes at time t + 1 are independent of those

for any time earlier than t. This assumption leads to a

simple model for a dynamic system where the dynam-

ics are summarized by a conditional density called

the transition model, pðXtþ1
1 ;:::;Xtþ1

n jXt
1;:::;X

t
nÞ.

Using a transition model, one can compute

pðXtþ1
1 ;:::;Xtþ1

n jo1:::t Þ from pðXt
1;:::;X

t
njo1...t Þ using

standard probabilistic procedures. Different transition

models may be used for different time periods (e.g.,

hour of day, day of week, season, etc.) to model the

differences in the way the attributes evolve at different

times.

Learning the model. Typically in probabilistic mod-

eling, a class of models is chosen (usually with input

from a domain expert), and learning techniques are

then used to pick the best model in the class. Model

parameters are typically learned from training data,

but can also be directly inferred if the behavior of the

underlying physical process is well-understood. In

BBQ, the model was learned from historical data,

which consisted of readings from all of the monitored

attributes over some period of time.

Updating the model. Given the formulation above,

model updates are fairly straightforward. When a new

setofobservationsarrives(sayot), it can be incorporated

into the model by conditioning on the observa-

tions to compute new distributions (i.e., by computing

pðXt
1;:::;X

t
njo1...t Þ from pðXt

1;:::;X
t
njo1...ðt�1Þ. Similarly,

as time advances, the transition model is used

to compute the new distribution for time t + 1

(i.e., pðXtþ1
1 ;:::;Xtþ1

n jo1...tÞ is computed from

pðXt
1;:::;X

t
njo1...t Þ and pðXtþ1

1 ;:::;Xtþ1
n jXt

1:::X
t
nÞ).

Query Planning and Execution

User queries are typically posed in a declarative SQL-

like language that may be augmented with constructs

that allow users to specify the approximation that the

user is willing to tolerate, and the desired confidence in

the answer. For example, the user may ask the system

to report the temperature readings at all sensors within

� 0.5, with confidence 95%. For many applications
(e.g., building temperature control), such approximate

answers may be more than sufficient. Tolerance for

such approximations along with the correlations

encoded by the model can lead to significant energy

savings in answering such queries.

Answering queries probabilistically based on a pdf

over the query attributes is conceptually straightfor-

ward; to illustrate this process, consider two types of

queries (here, assume that all queries are posed over

attributes Xt
1;:::;X

t
n, and the corresponding pdf is given

by PðXt
1;:::;X

t
nÞÞ:

Value query. A value query [6] computes an ap-

proximation of the values of the attributes to within

� e of the true value, with confidence at least 1 � d.
Answering such a query involves computing the

expected value of each of the attribute, mi
t, using stan-

dard probability theory. These mi
t ’s will be the reported

values. The pdf can then be used again to compute the

probability that Xi
t is within e from the mean, P(Xi

t 2
[mi

t � e, mi
t + e]). If all of these probabilities meet or

exceed user specified confidence threshold, then the

requested readings can be directly reported as the

means mi
t. If the model’s confidence is too low, addi-

tional readings must be acquired before answering the

query (see below).

Max query. Consider an entity version of this query

[2] where the user wants to know the identity of the

sensor reporting the maximum value. A naive ap-

proach to answering this query is to compute, for

each sensor, the probability that its value is the maxi-

mum. If the maximum of these probabilities is above

1 � d, then an answer can be returned immediately;

otherwise, more readings must be acquired. Although

conceptually simple, computing the probability that

a given sensor is reporting the maximum value is

non-trivial, and requires complex integration that

may be computationally infeasible [15].

If the model is not able to provide sufficient con-

fidence in the answer, the system must acquire more

readings from the sensor network, to bring the

model’s confidence up to the user specified threshold.

Suppose the system observes a set of attributes

O � fX1;:::;Xng. After incorporating these observations
into the model and recomputing the answer, typically

the confidence in the (new) answer will be higher (this

is not always true). The new confidence will typically

depend on the actual observed values. Let RðOÞ denote
the expected confidence in the answer after observing

Model-based Querying in Sensor Networks M 1767

M

O. Then, the optimization problem of deciding

which attributes to observe can be stated as follows:

minimizeO 1;...;nf g CðOÞ;
such that RðOÞ � 1� d:

ð1Þ

where CðOÞ denotes the data acquisition cost of

observing the values of attributes in O.

This optimization problem combines three pro-

blems that are known to be intractable, making it

very hard to solve it in general:

1. Answering queries using a pdf: as mentioned above,

this can involve complex numerical integration

even for simple queries such as max.

2. hoosing the minimum set of sensor readings to

acquire to satisfy the query (this is similar to the

classic value of information problem [14,12,15,10]).

3. Finding the optimal way to collect a required set of

sensor readings from the sensor network that mini-

mizes the total communication cost. Meliou et al.

[13] present several approximation algorithms for

this NP-Hard problem.

Example

Figure 2 illustrates the query answering process using a

simple example, where the model takes the form of

time-varying bivariate Gaussian (normal) distribution

over two attributes, X1 and X2. This was the basicmodel

used in the BBQ system. A bivariate Gaussian is the

natural extension of the familiar unidimensional normal

probability density function (pdf), known as the ‘‘bell

curve’’. Just as with its one-dimensional counterpart, a

bivariate Gaussian can be expressed as a function of two

parameters: a length-2 vector of means, m, and a 2 � 2
Model-based Querying in Sensor Networks. Figure 2. Exam

covariance; (b) the resulting Gaussian after a particular value

noise, there might still be some uncertainty about the true va

time advances to t0.
matrix of covariances, S. Figure 2a shows a three-

dimensional rendering of a Gaussian over the two

attributes at time t ;Xt
1 and Xt

2 the z axis represents

the joint density that Xt
2 ¼ x and Xt

1 ¼ yÞ.
Now, consider a value query over this model, posed

at time t, which asks for the values of X1
t and X2

t, within

� E, with confidence 1 � d. The reported values in this

case would be the means (m), and the confidence can be
computed easily using S (details can be found in [6]).

Considering the high initial covariance, it is unlikely

that the Gaussian in Figure 2a can achieve the required

confidence. Suppose the system decides to observe X1
t.

Figure 2b shows the result of incorporating this obser-

vation into the model. Note that not only does the

spread of X1
t reduces to near zero, because of the

high correlation between X1
t and X2

t, the variance of

X2
t also reduces dramatically, allowing the system to

answer the query with required confidence.

Then, after some time has passed, the belief about

the values of X1 and X2 (at time t 0 > t) will be ‘‘spread

out’’, again providing a high-variance Gaussian over

two attributes, although both the mean and variance

may have shifted from their initial values, as shown

in Fig. 2c.

Key Applications
Model-based querying systems like BBQ, that exploit

statistical modeling techniques and optimize the utili-

zation of a network of resource constrained devices

could have significant impact in a number of applica-

tion domains, ranging from control and automation in

buildings [16] to highway traffic monitoring. Integrat-

ing a model into the data acquisition process can

significantly improve data quality and reduce data
ple of Gaussians: (a) 3D plot of a 2D Gaussian with high

of X1
t has been observed (because of measurement

lue of X1
t); (c) the uncertainty about X1 and X2 increases as

1768M Model-based Querying in Sensor Networks
uncertainty. The ability to query over missing, future

or hidden states of the system will prove essential in

many applications where sensor failures are common

(e.g., highway traffic monitoring) or where direct ob-

servation of the variables of interest is not feasible.

Finally, model-based querying has the potential to

significantly reduce the cost of data acquisition, and

thus can improve the life of a resource-constrained

measurement infrastructure (e.g., battery-powered

wireless sensor networks) manyfold.

Future Directions
Model-based querying is a new and exciting research

area with many open challenges that are bound to

become more important with the increasingly wide-

spread use of models for managing sensor data. The

two most important challenges are dealing with a wide

variety of models that may be used in practice, and

designing algorithms for query processing and data

acquisition; these are discussed briefly below:

Model selection and training. The choice of model

affects many aspects of model-based querying, most

importantly the accuracy of the answers and the confi-

dence bounds that can be provided with them. The

problem of selecting the right model class has been

widely studied [3,14] but can be difficult in some appli-

cations. Furthermore, developing a new system for each

differentmodel is not feasible. Ideally, using a newmodel

should involve little to no effort on the part of user.

Given a large variety of models that may be applicable

in various different scenarios, this may turn out to be a

tremendous challenge.

Algorithms for query answering and data acquisition.

Irrespective of the model selected, when and how to

acquire data in response to a user query raises many

hard research challenges. As discussed above, this

problem combines three very hard problems, and de-

signing general-purpose algorithms that can work

across the spectrum of different possible model

remains an open problem.

See Deshpande et al. [5] for a more elaborate dis-

cussion of the challenges in model-based querying.

Cross-references
▶Ad-Hoc Queries in Sensor Networks

▶Approximate Query Processing

▶Continuous Queries in Sensor Networks

▶Data Acquisition and Dissemination in Sensor Net-

works
▶Data Uncertainty Management in Sensor Networks

▶Models

Recommended Reading
1. Acharya S., Gibbons P.B., Poosala V., and Ramaswamy S. Join

synopses for approximate query answering. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1999, pp. 275–286.

2. Cheng R., Kalashnikov D.V., and Prabhakar S. Evaluating prob-

abilistic queries over imprecise data. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003, pp. 551–562.

3. Cowell R., Dawid P., Lauritzen S., and Spiegelhalter D. Probabi-

listic Networks and Expert Systems. Spinger, New York, 1999.

4. Deshpande A., Garofalakis M., and Rastogi R. Independence

is good: dependency-based histogram synopses for high-

dimensional data. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2001, pp. 199–210.

5. Deshpande A., Guestrin C., and Madden S. Using Probabilistic

Models for Data Management in Acquisitional Environments. In

Proc. 2nd Biennial Conf. on Innovative Data Systems Research,

2005, pp. 317–328.

6. Deshpande A., Guestrin C., Madden S., Hellerstein J., and

Hong W. Model-Driven Approximate Querying in Sensor Net-

works. VLDB J., 14(4):417–443, 2005.

7. Deshpande A., Guestrin C., Madden S., Hellerstein J.M., and

Hong W. Model-driven Data Acquisition in Sensor Networks.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 588–599.

8. Deshpande A. and Madden S. MauveDB: supporting model-

based user views in database systems. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2006, pp. 73–84.

9. Getoor L., Taskar B., and Koller D. Selectivity estimation using

probabilistic models. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001, pp. 461–472.

10. Goel A., Guha S., and Munagala K. Asking the right questions:

model-driven optimization using probes. In Proc. 25th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2006, pp. 203–212.

11. Kanagal B. and Deshpande A. Online Filtering, Smoothing and

Probabilistic Modeling of Streaming data. In Proc. 24th Int.

Conf. on Data Engineering, 2008, pp. 1160–1169.

12. Krause A., Guestrin C., Gupta A., and Kleinberg J. Near-optimal

sensor placements: maximizing information while minimizing

communication cost. In Proc. 5th Int. Symp. Inf. Proc. in Sensor

Networks, 2006, pp. 2–10.

13. Meliou A., Chu D., Hellerstein J., Guestrin C., and HongW. Data

gathering tours in sensor networks. In Proc. 5th Int. Symp. Inf.

Proc. in Sensor Networks, 2006, pp. 43–50.

14. Russell S. and Norvig P. Artificial Intelligence: A Modern

Approach. Prentice Hall, 1994.

15. Silberstein A., Braynard R., Ellis C., Munagala K., and Yang J.

A Sampling-Based approach to Optimizing Top-k Queries in

Sensor networks. In Proc. 22nd Int. Conf. on Data Engineering,

2006, p. 68.

16. Singhvi V., Krause A., Guestrin C., Garrett Jr J., and Matthews H.

Intelligent light control using sensor networks. In Proc. 3rd

Int. Conf. on Embedded Networked Sensor Systems, 2005,

pp. 218–229.

Monotonic Constraints M 1769
Model-driven Data Acquisition

▶Model-Based Querying in Sensor Networks
Module

▶ Snippet
MOF

▶Meta Object Facility
Molecular Interaction Graphs

▶Biological Networks
M
Moment

▶Chronon

▶Time Instant
Monitoring

▶Auditing and Forensic Analysis
Monitoring of Real-Time Logic
Expressions

▶ Event Detection
Monotone Constraints

CARSON KAI-SANG LEUNG

University of Manitoba, Winnipeg, MB, Canada

Synonyms
Monotonic constraints
Definition
A constraint C ismonotone if and only if for all itemsets

S and S 0:

if S � S0 and S violatesC; then S0 violatesC:

Key Points
Monotone constraints [1–3] possess the following prop-

erty. If an itemset S violates a monotone constraint C,

then any of its subsets also violates C. Equivalently, all

supersets of an itemset satisfying a monotone con-

straint C also satisfy C (i.e., C is upward closed). By

exploiting this property, monotone constraints can be

used for reducing computation in frequent itemset

mining with constraints. As frequent itemset mining

with constraints aims to find frequent itemsets that

satisfy the constraints, if an itemset S satisfies a mono-

tone constraint C, no further constraint checking

needs to be applied to any superset of S because all

supersets of S are guaranteed to satisfy C. Examples

of monotone constraints include min(S.Price)�$30,

which expresses that the minimum price of all items

in an itemset S is at most $30. Note that, if the mini-

mum price of all items in S is at most $30, adding

more items to S would not increase its minimum price

(i.e., supersets of S would also satisfy such a monotone

constraint).
Cross-references
▶ Frequent Itemset Mining with Constraints
Recommended Reading
1. Brin S., Motwani R., and Silverstein C. Beyond market

baskets: generalizing association rules to correlations. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 265–276.

2. Grahne G., Lakshmanan L.V.S., and Wang X. Efficient mining of

constrained correlated sets. In Proc. 16th Int. Conf. on Data

Engineering, 2000, pp. 512–521.

3. Pei J. and Han J. Can we push more constraints into

frequent pattern mining? In Proc. 6th ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, 2000,

pp. 350–354.
Monotonic Constraints

▶Monotone Constraints

1770M Monotonicity Property
Monotonicity Property

▶Apriori Property and Breadth-First Search

Algorithms
Motion Graphics

▶Dynamic Graphics
Moving Object

RALF HARTMUT GÜTING

University of Hagen, Hagen, Germany

Synonyms
Time dependent geometry

Definition
A moving object is essentially a time dependent geom-

etry. Moving objects are the entities represented and

queried in moving objects databases.

Key Points
The term emphasizes the fact that geometries may

change continuously (whereas earlier work on spatio-

temporal databases allowed only discrete changes, e.g.,

of land parcels). One can distinguish between moving

objects for which only the time dependent position is

of interest and those for which also shape and extent

are relevant and may change over time. The first can be

characterized as moving points, the second as moving

regions. For example, moving points could represent

people, vehicles (such as cars, trucks, ships or air

planes), or animals. Moving regions could be hurri-

canes, forest fires, spread of epidemic diseases etc.

Moving point data may be captured by GPS devices

or RFID tags; moving region data may result from

processing sequences of satellite images, for example.

Moving points and moving regions can be made avail-

able as data types in suitable type systems; such a

design can be found in [1]. Such an environment

may have further ‘‘moving’’ data types (e.g., moving

lines).

Cross-references
▶Moving Objects Databases and Tracking
Recommended Reading
1. Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos

N.A., Schneider M., and Vazirgiannis M. A foundation for

representing and querying moving objects in databases. ACM

Trans. Database Syst., 25:1–42, 2000.
Moving Object Trajectories

▶ Spatio-Temporal Trajectories
Moving Objects Databases and
Tracking

RALF HARTMUT GÜTING

University of Hagen, Hagen, Germany

Synonyms
Spatio-temporal databases; trajectory databases

Definition
Moving objects database systems provide concepts in

their data model and data structures in the implemen-

tation to represent moving objects, i.e., continuously

changing geometries. Two important abstractions are

moving point, representing an entity for which only

the time dependent position is of interest, and moving

region, representing an entity for which also the

time dependent shape and extent is relevant. Examples

of moving points are cars, trucks, air planes, ships,

mobile phone users, RFID equipped goods, or polar

bears; examples of moving regions are forest fires,

deforestation of the Amazon rain forest, oil spills

in the sea, armies, epidemic diseases, hurricanes, and

so forth.

There are two flavors of such databases. The first

represents information about a set of currently moving

objects. Basically one is interested in efficiently main-

taining their location information and asking queries

about the current and expected near future positions

and relationships between objects. In this case, no

information about histories of movement is kept.

This is sometimes also called a tracking database.

The second represents complete histories of move-

ments. The goal in the design of query languages for

moving objects is to be able to ask any kind of ques-

tions about such movements, perform analyses, derive

Moving Objects Databases and Tracking M 1771

M

information, in a way as simple and elegant as possible.

The underlying system must support efficient execu-

tion of such analyses. This view is associated with the

term moving objects database, sometimes also called

trajectory database.

Historical Background
The field of moving objects databases came into being

in the late 1990s mainly by two parallel developments.

First, a model was developed [11,16,17] that allows one

to keep track in a database of a set of time dependent

locations, e.g., to represent vehicles. The authors ob-

served that one should store in a database not the

locations directly, which would require high update

rates, but rather a motion vector, representing an

object’s expected position over time. An update to

the database is needed only when the deviation be-

tween the expected position and the real position

exceeds some threshold. At the same time this concept

introduces an inherent, but bounded uncertainty

about an object’s real location. The model was forma-

lized introducing the concept of a dynamic attribute.

This is an attribute of a normal data type which

changes implicitly over time. This implies that results

of queries over such attributes also change implicitly

over time. A related query language FTL (future tem-

poral logic) was introduced that allows one to specify

time dependent relationships between expected posi-

tions of moving objects.

Second, the European project CHOROCHRONOS

set out to integrate concepts from spatial and temporal

databases. In this case, one represents in a database time-

dependent geometries of various kinds such as points,

lines, or regions. Earlier work on spatio-temporal data-

bases had generally admitted only discrete changes. This

restrictionwas dropped and continuously changing geo-

metries were considered. A model was developed based

on the idea of spatio-temporal data types to represent

histories of continuously changing geometries [2,4–6].

The model offers data types such as moving point or

moving region together with a comprehensive set of

operations. For example, there are operations to com-

pute the projection of a moving point into the plane,

yielding a line value, or to compute the distance between

a moving point and a moving region, returning a time

dependent real number, or moving real, for short. Such

data types can be embedded into a DBMS data model as

attribute types and can be implemented as an extension

package.
A second approach to data modeling for moving

object histories was pursued in CHOROCHRONOS.

Here the constraint model was applied to the represen-

tation of moving objects [10] and a prototype called

Dedale was implemented. Constraint databases can

represent geometries in n-dimensional spaces; since

moving objects exist in 3D (2D + time) or 4D

(3D + time) spaces, they can be handled by this

approach. Several researchers outside CHOROCHRO-

NOS also contributed to the development of constraint-

based models for moving objects.

Foundations

Modeling and Querying Current Movement (Tracking)

Consider first moving objects databases for current

and near future movement, or tracking databases.

Sets of moving entities might be taxi-cabs in a city,

trucks of a logistics company, or military vehicles in a

military application. Possible queries might be:

� Retrieve the three free cabs closest to Cottle Road

52 (a passenger request position).

� Which trucks are within 10 km of truck T70 (which

needs assistance)?

� Retrieve the friendly helicopters that will arrive in

the valley within the next 15 min and then stay

in the valley for at least 10 min.

Statically, the positions of a fleet of taxi-cabs, for

example, could be easily represented in a relation

taxi-cabs(id: int, pos: point)

Unfortunately this representation needs frequent

updates to keep the deviation between real position

and position in the database small. This is not feasible

for large sets of moving objects.

The MOST (moving objects spatio-temporal) data

model [11,16], discussed in this section, stores instead

of absolute positions a motion vector which represents

a position as a linear function of time. This defines an

expected position for a moving object. The distance

between the expected position and the real position is

called the deviation. Furthermore, a distance threshold

is introduced and a kind of contract between a moving

object and the database server managing its position is

assumed. The contract requires that the moving object

observes the deviation and sends an update to the

server when it exceeds the threshold. Hence the thresh-

old establishes a bound on the uncertainty about an

object’s real position.

1772M Moving Objects Databases and Tracking
A fundamental new concept in the MOSTmodel is

that of a dynamic attribute. Each attribute of an object

class is classified to be either static or dynamic. A

dynamic attribute is of a standard data type (e.g., int,

real) within the DBMS conceptual model, but changes

its value automatically over time. This means that

queries involving such attributes also have time depen-

dent results, even if time is not mentioned in the query

and no updates to the database occur.

The MOST model assumes that time advances in

discrete steps, so-called clock ticks. Hence time can be

represented by integer values. For a data type to be

eligible for use in a dynamic attribute, it is necessary

that the type has a value 0 and an addition operation.

This holds for numeric types but can be extended to

types like point. A dynamic attribute A of type T is then

internally represented by three subattributes A.value,

A.updatetime, and A.function, where A.value is of type

T, A.updatetime is a time value, and A.function is a

function f : int ! T such that at time t = 0, f(t) = 0.

The semantics of this representation is called the value

of A at time t and defined as

valueðA; tÞ ¼ A:valueþ

A:functionðt � A:updatetimeÞ

for t � A:updatetime

When attribute A is mentioned in a query, its dynamic

value value(A, t) is meant.

With dynamic attributes, for each clock tick one

obtains a new state of the database, evenwithout explicit

updates. Such a sequence of states is called a database

history. With each explicit update, all subsequent states

change so that one obtains a new database history. One

can now define different types of queries:

� An instantaneous query issued at a time t0 is eval-

uated once on the database history starting at

time t0.
� A continuous query issued at time t0 is (conceptually)

reevaluated for each clock tick. Hence it is evaluated

once on the database history starting at time t0, then

on the history starting at t1, then on. . . t2, and

so forth.

Of course, reevaluating a continuous query on each

clock tick is not feasible. Instead, the evaluation algo-

rithm for such queries is executed only once and
returns a time dependent result, in the form of a set

of tuples with associated time stamps. A reevaluation is

only necessary when explicit updates occur.

The query language associated with the MOST

model is called FTL (future temporal logic). Here are

a few example queries formulated in FTL.

1. Which trucks are within 10 km of truck T70?
RETRIEVE t

FROM trucks t, trucks s

WHERE s.id = ’T70’ ∧ dist(s, t) <= 10

Here nothing special happens, yet, the result is time

dependent.
2. Retrieve the helicopters that will arrive in the valley

within the next 15 min and then stay in the valley

for at least 10 min.
RETRIEVE h

FROM helicopters h

WHERE eventually_within_15

(inside(h, Valley) ∧

always_for_10 (inside(h, Valley)))

Here Valley is a polygon object.
The general form of a query in FTL is

RETRIEVE <target-list> FROM <object

classes> WHERE <FTL-formula>

FTL formulas may contain special time dependent

constructs, in particular:

� If f and g are formulas, then f until g and nexttime

f are formulas

Informally, the meaning is that for a given database

state s, f until g holds if there exists a future state s0 on

the database history such that g holds in state s0 and for

all states from s up to s0, f holds. Similarly, nexttime f

holds in state si+1 if f holds in state si. Based on such

temporal operators one can define bounded temporal

operators like eventually_within_c g or always_for_c g

as they occur in the second example query.

Modeling and Querying History of Movement

Now consider the problem of representing complete

histories of movement in a database. The scope is also

extended from point objects to more complex geomet-

rical shapes.

The idea of the approach [4] presented in the follow-

ing is to introduce spatio-temporal data types that en-

capsulate time dependent geometries with suitable

operations. Formoving objects, point and region appear

Moving Objects Databases and Tracking M 1773

M

to be most relevant, leading to data types moving point

and moving region, respectively. The moving point type

(mpoint for short) can represent entities such as vehi-

cles, people, or animals moving around whereas the

moving region type (mregion) can represent hurricanes,

forest fires, armies, or flocks of animals, for example.

Geometrically, values of spatio-temporal data types

are embedded into a 3D space (2D + time) if objects

move in the 2D plane, or in a 4D space if movement in

the 3D space is modeled. Hence, a moving point and a

moving region can be visualized as shown in Fig. 1

Data types may be embedded in the role of attri-

bute types into a DBMS data model. For example, in a

relational setting, there may be relations to represent

the movements of air planes or storms:

flight (id: string, from: string, to:

string, route: mpoint)

weather (id: string, kind: string,

area: mregion)

The data types include suitable operations such as:

intersection: mpoint � mregion ! mpoint

trajectory: mpoint ! line

deftime: mpoint ! periods

length: line ! real

One discovers quickly that in addition to the main

types of interest, mpoint and mregion, related spatial

and temporal as well as other time-dependent types are

needed. The operations above have the following

meaning: Intersection returns the part of a moving

point whenever it lies inside a moving region, which

is a moving point (mpoint) again. Trajectory projects

a moving point into the plane, yielding a line value

(a curve in the 2D space). Deftime returns the set

of time intervals when a moving point is defined, of

a data type called periods. Length returns the length of

a line value.
Moving Objects Databases and Tracking. Figure 1. A

moving point and a moving region.
Given such operations, one may formulate queries:

‘‘Find all flights from Düsseldorf that are longer

than 5,000 km.’’

select id

from flights

where from = ’DUS’ and length

(trajectory (route)) > 5000

‘‘At what times was flight BA488 within the snow storm

with id S16?’’

select deftime(intersection

(f.route, w.area))

from flights as f, weather as w

where f.id = ’BA488’ and w.id = ’S16’

Reference [4] develops the basic idea, discusses the

distinction between abstract models (using infinite

sets, and describing e.g., a moving region as a function

from time into region values) and discrete models

(selecting a suitable finite representation, e.g., describ-

ing a moving region as a polyhedron in the 3D space),

and clarifies several fundamental questions related

to this approach. A system of related data types and

operations for moving objects is carefully defined in

[6], emphasizing genericity, closure, and consistency.

The semantics of these types is defined at the abstract

level.
Implementation is based on the discrete model

proposed in [5] using algorithms for the operations

studied in [2]. The discrete model uses the so-called

sliced representation as illustrated in Fig. 2. A temporal

function value is represented as a time-ordered se-

quence of units where each unit has an associated

time interval, and time intervals of different units are

disjoint. Each unit is capable of representing a piece of

the moving object by a ‘‘simple’’ function. Simple

functions are linear functions for moving points or

regions, and quadratic polynomials (or square roots

of such) for moving reals, for example.

Within a database system, an extension module

(data blade, cartridge, extender, etc.) can be provided

offering implementations of such types and opera-

tions. The sliced representation is basically stored in

an array of units. (It is a bit more complicated in case

of variable size units as for a moving region, for exam-

ple.) Because values of moving object types can be

large and complex, the DBMS must provide suitable

storage techniques for managing large objects. A large

Moving Objects Databases and Tracking. Figure 2. Sliced representation of a moving(real) and a moving(points) value.

Moving Objects Databases and Tracking. Figure 3.

Geometry of an uncertain trajectory.

1774M Moving Objects Databases and Tracking
part of this design has been implemented prototypical-

ly in the SECONDO extensible DBMS [1] which is avail-

able for download (see URL below).

Related Issues

In this short closing section some issues related to

moving objects databases are briefly discussed.

Uncertainty Locations of moving objects are most

often captured using GPS devices at certain instants of

time. This introduces an inherent uncertainty already for

the sampled positions (due to some inaccuracy of the

GPS device) and in particular for the periods of time

between measurements [9]. Bounded uncertainty is also

introduced due to a contract between location server and

moving object, as discussed above. The MOST model

includes concepts to deal with this uncertainty in query-

ing [16,17]. For history of movement, one can consider

uncertain trajectories based on an uncertainty threshold,

resulting in a shape of a kind of slanted cylinder (Fig. 3).

It is only known that the real position is somewhere

inside this volume. Based on this model, Trajcevski

et al. [15] have defined a set of predicates between a

trajectory and a region in space taking uncertainty and

aggregation over time into account.

Movement in Networks Whereas the basic case is free

movement in the Euclidean plane, it is obvious that

vehicles usually move on transport networks. There is a

branch of research on network-constrained movement

(e.g., [7,13]); there is also work on indexing network

based movements. For network based movement, cap-

tured GPS positions have to be mapped to the trans-

portation network; this is called map matching.

Spatio-Temporal Indexing A lot of research exists on

indexing movement, both for expected near future

movement and for history movement.

Query Processing for Continuous/Location Based

Queries Continuous queries for moving objects have
been studied in depth, for example, maintaining the

result of nearest neighbor or range queries both for

moving query and moving data objects (e.g., [12,14],

see continuous monitoring of spatial queries).

Spatiotemporal Aggregation and Selectivity Estima-

tion Another subfield of research in moving objects

databases considers the problem of computing precisely

or estimating the numbers of moving objects within

certain areas in space and time – hence, of computing

aggregates. For example, various index structures have

been proposed to compute efficiently such aggregates.

This is also related to the problem of performing selec-

tivity estimation for spatio-temporal query processing.

Key Applications
Databases for querying current and near future move-

ment like the MOSTmodel described, are the founda-

tion for location-based services. Service providers can

keep track of the positions of mobile users and notify

them of upcoming service offers even some time ahead.

For example, gas stations, hotels, shopping centres,

sightseeing spots, or hospitals in case of an emergency

might be interesting services for car travelers.

Several applications need to keep track of the cur-

rent positions of a large collection of moving objects,

for example, logistics companies, parcel delivery ser-

vices, taxi fleet management, public transport systems,

air traffic control. Marine mammals or other animals

Moving Objects Databases and Tracking M 1775

M

are traced in biological applications. Obviously, the

military is also interested in keeping track of fighting

units in battlefield management.

Database systems for querying history of move-

ment are needed for more complex analyses of

recorded movements. For example, in air traffic con-

trol one may go back in time to any particular instant

or period to analyze dangerous situations or even

accidents. Logistics companies may analyze the paths

taken by their delivery vehicles to determine whether

optimizations are possible. Public transport systems in

a city may be analyzed to understand reachability of

any place in the city at different periods of the day.

Movements of animals may be analyzed in biological

studies. Historical modeling may represent movements

of people or tribes and actually animate and query

such movements over the centuries.

The data model of such systems offers not only

moving point entities but also moving regions.

Hence also developments of areas on the surface of

the earth may be modeled and analyzed like the defor-

estation of the Amazon rain forest, the Ozone hole,

development of forest fires or oil spills over time, and

so forth.

Future Directions
Recent research in databases has often addressed spe-

cific query types like continuous range queries or

nearest neighbor queries, and then focused on design-

ing efficient algorithms for them. An integration of the

many specific query types into complete language

designs as presented in this entry is still lacking.

Uncertainty may be treated more completely also in

the approaches for querying history of movement.

A seemless query language for querying past, present,

and near future would also be desirable.

A text book covering the topics presented in this

article in more detail is [8].

Experimental Results
Running times for queries of the BerlinMOD bench-

mark (see below), evaluated in the SECONDO system,

can be found in [3].

Data Sets
A collection of links to data sets with real spatio-

temporal data, partially assembled within the CHO-

ROCHRONOSprojectmentioned above can be found at

http://dke.cti.gr/people/pfoser/data.html
Recently a benchmark data set is available, the so-

called BerlinMOD benchmark [3]. It is based on a

simulation of the movements of 2,000 people’s vehicles

in the city of Berlin, observed over 1 month (at scale

factor 1). The benchmark contains a number of test

queries. Test data are generated by the SECONDO system.

The benchmark can be found and the relevant

resources downloaded at

http://dna.fernuni-hagen.de/secondo/Berlin

MOD/Berlin MOD.html

See also real and synthetic test data sets; this entry

should include links to further test data generators.
URL to Code
SECONDO as a prototypical moving objects database

system (for histories of movement, or trajectories) is

available for download at

http://dna.fernuni-hagen.de/Secondo.html/
Cross-references
▶Constraint Query Languages

▶Continuous Monitoring of Spatial Queries

▶ Indexing Historical Spatio-Temporal Data

▶ Indexing of the Current and Near-Future Positions

of Moving Objects

▶ Location-based Services

▶Map Matching

▶Real and Synthetic Test Datasets

▶ Spatial and Spatio-temporal Data Models and Lan-

guages

▶ Spatio-Temporal Data Mining

▶ Spatio-temporal Data Types

▶ Spatio-temporal Data Warehouses

▶ Spatio-temporal Trajectories
Recommended Reading
1. Almeida V.T., Güting R.H., and Behr T. Querying moving

objects in SECONDO. In Proc. 7th Int. Conf. on Mobile Data

Management, 2006, pp. 47–51.

2. Cotelo Lema J.A., Forlizzi L., Güting R.H., Nardelli E., and

Schneider M. Algorithms for moving object databases. The

Comput. J., 46(6):680–712, 2003.

3. DüntgenC., BehrT., andGütingR.H.BerlinMOD: a benchmark for

moving object databases. Informatik-Report 340, Fernuniversität

Hagen, 2007. Available at: http://dna.fernuni-hagen.de/secondo/

BerlinMOD/BerlinMOD.pdf

4. Erwig M., Güting R.H., Schneider M., and Vazirgiannis M.

Spatio-temporal data types: an approach to modeling and

querying moving objects in databases. GeoInformatica,

(3):265–291, 1999.

http://dke.cti.gr/people/pfoser/data.html
http://dna.fernu-nihagen.de/secondo/Berlin MOD.html
http://dna.fernu-nihagen.de/secondo/Berlin MOD.html
http://dna.informatik.fernuni-hagen.de/Secondo.html/
http://www.informatik.fernuni-hagen.de/import/pi4/secondo/BerlinMOD/BerlinMOD.pdf
http://www.informatik.fernuni-hagen.de/import/pi4/secondo/BerlinMOD/BerlinMOD.pdf

1776M Moving Objects Interpolation
5. Forlizzi L., Güting R.H., Nardelli E., and Schneider M. A data

model and data structures for moving objects databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 319–330.

6. Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos

N.A., Schneider M., and Vazirgiannis M. A foundation for

representing and querying moving objects in databases. ACM

Trans. Database Syst., 25:1–42, 2000.

7. Güting R.H., de Almeida V.T., and Ding Z. Modeling and que-

rying moving objects in networks. VLDB J., 15(2):165–190,

2006.

8. Güting R.H., and Schneider M. Moving Objects Data-

bases. Morgan Kaufmann Publishers, San Fransisco, CA, USA,

2005.

9. Pfoser D., and Jensen C.S. Capturing the uncertainty of moving-

object representations. In Proc. 6th Int. Symp. Advances in

Spatial Databases, 1999, pp. 111–131.

10. Rigaux P., Scholl M., Segoufin L., and Grumbach S. Building a

constraint-based spatial database system: model, languages, and

implementation. Inf. Syst., 28(6):563–595, 2003.

11. Sistla A.P., Wolfson O., Chamberlain S., and Dao S. Modeling

and querying moving objects. In Proc. 13th Int. Conf. on Data

Engineering, 1997, 422–432.

12. Song Z., and Roussopoulos N. K-nearest neighbor search for

moving query point. In Proc. 7th Int. Symp. Advances in Spatial

and Temporal Databases, 2001, pp. 79–96.

13. Speicys L., Jensen C.S., and Kligys A. Computational data mod-

eling for network-constrained moving objects. In Proc. 11th

ACM Int. Symp. on Advances in Geographic Inf. Syst., 2003,

pp. 118–125.

14. Tao Y., and Papadias D. Spatial queries in dynamic environ-

ments. ACM Trans. Database Syst., 28(2):101–139, 2003.

15. Trajcevski G., Wolfson O., Hinrichs K., and Chamberlain S.

Managing uncertainty in moving objects databases. ACM

Trans. Database Syst., 29(3):463–507, 2004.

16. Wolfson O., Chamberlain S., Dao S., Jiang L., and Mendez G.

Cost and imprecision in modeling the position of moving

objects. In Proc. 14th Int. Conf. on Data Engineering, 1998,

pp. 588–596.

17. Wolfson O., Sistla A.P., Chamberlain S., and Yesha Y. Updating

and querying databases that track mobile units. Distrib. Parallel

Databases, 7:257–387, 1999.
Moving Objects Interpolation

▶ Spatiotemporal Interpolation Algorithms
Moving Span

▶Variable Time Span
MRR

▶MRR (Mean Reciprocal Rank)
MRR1

▶MRR (Mean Reciprocal Rank)
MSN Data Management

▶Mobile Sensor Network Data Management
Multi-Database

▶Distributed Architecture
Multidatabases

▶Distributed Database Systems
Multidimensional Clustering

▶ Physical Database Design for Relational Databases
Multidimensional Data Formats

AMARNATH GUPTA

University of California San Diego, La Jolla, CA, USA

Definition
The term ‘‘multidimensional data’’ is used in two dif-

ferent ways in data management. In the first sense, it

refers to data aggregates created by different groupings

of relational data for on-line analytical processing. In

the second sense, the term refers to data that can be

described as arrays over heterogeneous data types to-

gether with metadata to describe them.

Multidimensional Modeling M 1777

M

Example: HDF (Hierarchical Data Format) and

NetCDF (network CommonData Form) are well known

multidimensional data formats used in scientific

applications.

Key Points
The goal of a multidimensional data format is to enable

random access to very large, very complex, heteroge-

neous data, such that the data is self describing, sharable,

compact, extendible, and archivable. For example, a

composite of 900 files from a seismic simulation has

been organized in HDF5 format to create a terabyte-

sized dataset. One can mix tables, images, small meta-

data, streams of data from instruments, and structured

grids all in the same HDF file. While multidimensional

file formats are very flexible, they present the challenge of

storing such large datasets and providing concurrent,

random access to any part of the data required by user

queries. Design of novel index structures over these for-

mats is an area of active research.

Cross-references
▶Bitmap-based Index Structures

▶Query Evaluation Techniques for Multidimensional

Data

▶ Storage of Large Scale Multidimensional Data
Recommended Reading
1. Home page of the HDF group. Available at: http://hdf.ncsa.uiuc.

edu/

2. Home page of the NetCDF group. Available at: http://www.

unidata.ucar.edu/software/netcdf/

3. Wu K., Otoo E.J., and Shoshani A. ‘‘An efficient compression

scheme for bitmap indices’’. Technical Report LBNL-49626,

Lawrence Berkeley National Laboratory, Berkeley, CA, 2002.
Multidimensional Database
Management System

▶ Storage of Large Scale Multidimensional Data
Multi-dimensional Mapping

▶ Space Filling Curves

▶ Space-Filling Curves for Query Processing
Multidimensional Modeling

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Synonyms
Dimensional modeling; Star schema modeling

Definition
Multidimensional modeling is the process of modeling

the data in a universe of discourse using the model-

ing constructs provided by a multidimensional data

model. Briefly, multidimensional models categorize

data as being either facts with associated numerical

measures, or as being dimensions that characterize the

facts and are mostly textual. For example, in a retail

business, products are sold to customers at certain times

in certain amounts and at certain prices. A typical fact

would be a purchase. Typical measures would be the

amount and price of the purchase. Typical dimensions

would be the location of the purchase, the type of

product being purchased, and the time of the purchase.

Queries then aggregate measure values over ranges of

dimension values to produce results such as the total

sales per month and product type.
Historical Background
Multidimensional databases do not have their origin in

database technology, but stem from multidimensional

matrix algebra, which has been used for (manual) data

analyses since the late nineteenth century. During the

late 1960s, two companies, IRI and Comshare, inde-

pendently began the development of systems that later

turned into multidimensional database systems. The

IRI Express tool became very popular in the marketing

analysis area in the late 1970s and early 1980s; it later

turned into a market-leading OLAP tool and was

acquired by Oracle. Concurrently, the Comshare sys-

tem developed into System W, which was heavily used

for financial planning, analysis, and reporting during

the 1980s.

A concurrent development started in the early

1980s in the area of so-called statistical data manage-

ment which focused on modeling and managing statis-

tical data [1], initially within social science contexts

such as census data. Many important concepts of

multidimensional modeling such as summarizability

(ensuring correct aggregate query results for complex

http://hdf.ncsa.uiuc.edu/
http://hdf.ncsa.uiuc.edu/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/

Multidimensional Modeling. Figure 1. Sales data cube.

1778M Multidimensional Modeling
data) have their roots in this area. An overview is

found in [14].

In 1991, Arbor was formed with the specific pur-

pose of creating ‘‘a multiuser, multidimensional data-

base server,’’ which resulted in the Essbase system.

Arbor, now Hyperion, later licensed a basic version of

Essbase to IBM for integration into DB2. It was Arbor

and Codd who in 1993 coined the term OLAP [2].

Another significant development in the early 1990s

was the advent of large data warehouses [6] for storing

and analyzing massive amounts of enterprise data.

Data warehouses are typically based on relational star

schemas or snowflake schemas, an approach to imple-

menting multidimensional databases using relational

database technology. The 1996 version of [6] popular-

ized the use of star schema modeling for data

warehouses.

From the mid 1990s and beyond, the introduction

of the ‘‘data cube’’ operator [4] sparked a considerable

research interest in the field of modeling multidimen-

sional databases for use in data warehouses and on-line

analytical processing (OLAP).

In 1998, Microsoft shipped its MS OLAP Server,

the first multidimensional system aimed at the mass

market. This has lead to the current situation where

multidimensional systems are increasingly becoming

commodity products that are shipped at no extra cost

together with leading relational database systems.

A more in-depth coverage of the history of multi-

dimensional databases is available in the literature

[16]. Surveys of multidimensional data models can

also be found in the literature [12,17].

Foundations
First, an overview of the concept of a multidimensional

cube is given, then dimensions, facts, and measures are

covered in turn.

Data Cubes

Data cubes provide true multidimensionality. They

generalize spreadsheets to any number of dimensions.

In addition, hierarchies in dimensions and formulas

are first-class, built-in concepts, meaning that these are

supported without duplicating their definitions. A col-

lection of related cubes is commonly referred to as a

multidimensional database or a multidimensional data

warehouse.

A dimensional cube for, e.g., CD sales can be

obtained by including additional dimensions apart
from just the album and the city where the album

was sold. The most pertinent example of an additional

dimension is a time dimension, but it is also possible to

include other dimensions, e.g., an artist dimension

that describes the artists associated with albums. In a

cube, the combinations of a dimension value from

each dimension define the cells of the cube. The actual

sales counts are stored in the corresponding cells.

In a cube, dimensions are first-class concepts with

associated domains, meaning that the addition of new

dimension values is easily handled. Although the term

‘‘cube’’ implies three dimensions, a cube can have any

number of dimensions. It turns out thatmost real-world

cubes have 4–12 dimensions [6,16]. Although there is no

theoretical limit to the number of dimensions, current

tools often experience performance problems when the

number of dimensions is more than 10–15. To better

suggest the high number of dimensions, the term ‘‘hy-

percube’’ is often used instead of ‘‘cube.’’

Figure 1 illustrates a three-dimensional cube based

on the number of CD sales of two particular albums in

Aalborg, Denmark, and New York, USA, for 2006 and

2007. The cube then contains sales counts for two

cities, two albums, and two years. Depending on the

specific application, a highly varying percentage of the

cells in a cube are non-empty, meaning that cubes

range from sparse to dense. Cubes tend to become

increasingly sparse with increasing dimensionality

and with increasingly finer granularities of the dimen-

sion values.

Multidimensional Modeling M 1779

M

A non-empty cell is called a fact. The example has a

fact for each combination of time, album, and city

where at least one sale was made. A fact has associated

with it a number of measures. These are numerical

values that ‘‘live’’ within the cells. In our case, there is

only one measure, the sales count.

Generally, only two or three dimensions may be

viewed at the same time, although for low-cardinality

dimensions, up to four dimensions can be shown by

nesting one dimension within another on the axes.

Thus, the dimensionality of a cube is reduced at

query time by projecting it down to two or three dimen-

sions via aggregation of the measure values across

the projected-out dimensions. For example, if the

user wants to view just sales by City and Time, she

aggregates over the entire dimension that characterizes

the sales by Album for each combination of City

and Time.

An important goal of multidimensional modeling

is to ‘‘provide as much context as possible for the facts’’

[6]. The concept of dimension is the central means of

providing this context. One consequence of this is a

different view on data redundancy than in relational

databases. In multidimensional databases, controlled

redundancy is generally considered appropriate, as

long as it considerably increases the information

value of the data. One reason to allow redundancy is

that multidimensional data is often derived from other

data sources, e.g., data from a transactional relational

system, rather than being ‘‘born’’ as multidimensional

data, meaning that updates can more easily be handled

[6]. However, there is usually no redundancy in the

facts, only in the dimensions.

Having introduced the cube, its principal elements,

dimensions, facts, and measures, are now described in

more detail.

Dimensions

The notion of a dimension is an essential and distin-

guishing concept for multidimensional databases.

Dimensions are used for two purposes: the selection
Multidimensional Modeling. Figure 2. Schema and instance
of data and the grouping of data at a desired level of

detail.

A dimension is organized into a containment-like

hierarchy composed of a number of levels, each of

which represents a level of detail that is of interest to

the analyses to be performed. The instances of the

dimension are typically called dimension values. Each

such value belongs to a particular level.

In some cases, it is advantageous for a dimension to

have multiple hierarchies defined on it. For example, a

Time dimension may have hierarchies for both Fiscal

Year and Calendar Year defined on it. Multiple hierar-

chies share one or more common lowest level(s), e.g.,

Day and Month, and then group these into multiple

levels higher up, e.g., Fiscal Quarter and Calendar

Quarter to allow for easy reference to several ways of

grouping. Most multidimensional models allow multi-

ple hierarchies. A dimension hierarchy is defined in the

metadata of the cube, or the metadata of the multidi-

mensional database, if dimensions can be shared.

In Fig. 2, the schema and instances of a sample

Location dimension capturing the cities where CDs

are sold are shown. The Location dimension has

three levels, the City level being the lowest. City level

values are grouped into Country level values, i.e.,

countries. For example, Aalborg is in Denmark. The

⊤ (‘‘top’’) level represents all of the dimension, i.e.,

every dimension value is part of the ⊤ (‘‘top’’) value.

In some multidimensional models, a level may have

associated with it a number of level properties that are

used to hold simple, non-hierarchical information. For

example, the duration of an album can be a level

property in the Album level of the Music dimension.

This information could also be captured using an extra

Duration dimension. Using the level property has

the effect of not increasing the dimensionality of

the cube.

Unlike the linear spaces used in matrix algebra,

there is typically no ordering and/or distance metric

on the dimension values in multidimensional models.

Rather, the only ordering is the containment of
for the location dimension.

1780M Multidimensional Modeling
lower-level values in higher-level values. However, for

some dimensions, e.g., the Time dimension, an order-

ing of the dimension values is available and is used for

calculating cumulative information such as ‘‘total sales

in year to date.’’

Most models require dimension hierarchies to

form balanced trees. This means that the dimension

hierarchy must have uniform height everywhere, e.g.,

all departments, even small ones, must be subdivided

into project groups. Additionally, direct links between

dimension values can only go between immediate

parent-child levels, and not jump two or more levels.

For example, all cities are first grouped into states and

then into countries, cities cannot be grouped directly

under countries (as is the case in Denmark which has

no states). Finally, each non-top value has precisely

one parent, e.g., a product must belong to exactly one

product group. Below, the relaxation of these con-

straints is discussed.

Facts

Facts are the objects that represent the subject of the

desired analyses, i.e., the interesting ‘‘thing,’’ or event

or process, that is to be analyzed to better understand

its behavior.

Inmost multidimensional datamodels, the facts are

implicitly defined by their combination of dimension

values. If a non-empty cell exists for a particular com-

bination, a fact exists; otherwise, no fact exists. (Some

other models treat facts as first-class objects with a

separate identity [12].) Next, most multidimensional

models require that each fact be mapped to precisely

one dimension value at the lowest level in each dimen-

sion. Other models relax this requirement [12].

A fact has a certain granularity, determined by the

levels from which its combination of dimension values

are drawn. For example, the fact granularity in our

example cube is ‘‘Year by Album by City.’’ Granularities

consisting of higher-level or lower-level dimension

levels than a given granularity, e.g., ‘‘Year by Album

Genre by City’’ or ‘‘Day by Album by City’’ for our

example, are said to be coarser or finer than the given

granularity, respectively.

It is commonplace to distinguish among three

kinds of facts: event facts, state facts, and cumulative

snapshot facts [6]. Event facts (at least at the finest

granularity) typically model events in the real world,

meaning that a unique instance, e.g., a particular sale

of a given (particular physical instance of a) product in
a given store at a given time, of the overall real-world

process that is captured, e.g., sales for a supermarket

chain, is represented by one fact. Examples of event

facts include sales, clicks on web pages, and movement

of goods in and out of (real) warehouses (flow).

A snapshot fact models the state of a given process

at a given point in time. Typical examples of snapshot

facts include the inventory levels in stores and ware-

houses, and the number of users using a web site. For

snapshot facts, the same physical object, e.g., a specific

physical instance of a can of beans on a shelf, with

which the captured real-world process, e.g., inventory

management, is concerned, may be ‘‘measured’’ at

several time points, meaning that data related to that

particular physical object will occur in several facts at

different time points. This is unlike event facts, where a

specific physical object such as a particular instance of

a can of beans can only be sold once, and will thus only

occur in one fact.

Cumulative snapshot facts are used to handle infor-

mation about a process up to a certain point in time. For

example, the total sales in the year to date may be

considered as a fact. Then the total sales up to and

including the current month this year can be easily com-

pared to the figure for the correspondingmonth last year.

Often, all three types of facts can be found in a

given data warehouse, as they support complementary

classes of analyses. Indeed, the same base data, e.g., the

movement of goods in a (real) warehouse, may often

find its way into three cubes of different types, e.g.,

warehouse flow, warehouse inventory, and warehouse

flow in year-to-date.

Measures

A measure has two components: a numerical property

of a fact, e.g., the sales price or profit, and a formula

(most often a simple aggregation function such as

SUM) that can be used to combine several measure

values into one. In a multidimensional database, mea-

sures generally represent the properties of the chosen

facts that the users want to study, e.g., with the purpose

of optimizing them.

Measures then take on different values for different

combinations of dimension values. The property and

formula are chosen such that the value of a measure

is meaningful for all combinations of aggregation

levels. The formula is defined in the metadata and

thus not replicated as in the spreadsheet example. Most

multidimensional data models provide the built-in

Multidimensional Modeling M 1781

M

concept of measures, but a few models do not. In these

models, dimension values are used for computations

instead [12].

It is important to distinguish among three classes

of measures, namely additive, semi-additive, and non-

additive measures, as these behave quite differently in

computations.

Additive measure values can be summed meaning-

fully along any dimension. For example, it makes sense

to add the total sales over Album, Location, and Time,

as this causes no overlap among the real-world phe-

nomena that caused the individual values. Additive

measures occur for any kind of fact.

Semi-additive measure values cannot be summed

along one or more of the dimensions, most often the

Time dimension. Semi-additive measures generally

occur when the fact is of type snapshot or cumulative

snapshot. For example, it does not make sense to sum

inventory levels across time, as the same inventory

item, e.g., a specific physical instance of an album,

may be counted several times, but it is meaningful to

sum inventory levels across albums and stores.

Non-additive measure values cannot be summed

along any dimension, usually because of the chosen

formula. For example, this occurs when averages for

lower-level values cannot be summed into averages

for higher-level values. Non-additive measures can

occur for any kind of fact.
The Modeling Process

Now, the process to be carried out when doing multi-

dimensional modeling is covered. One difference from

‘‘ordinary’’ data modeling is that the multidimensional

modeler should not try to include all the available data

and all their relationships in the model, but only those

parts which are essential ‘‘drivers’’ of the business.

Another difference is that redundancy may be ok (in

a few, well-chosen places) if introducing redundancy

makes the model more intuitive for the user. For ex-

ample, time-related information may be stored in both

a Calendar time dimension and a Fiscal Year time

dimension, or specific customer info may be present

both in a person-oriented Customer dimension or a

group-oriented Demographics dimension.

Kimball [6,5] advocates a four-step process when

doing multidimensional modeling.

1. Choose the business process(es) to model

2. Choose the grain of the business process
3. Choose the dimensions

4. Choose the measures

Step 1 refers to the facts that not all business processes

may be equally important for the business. For example,

in a supermarket, there are business processes for sales

and purchases, but the sales process is probably the

one with the largest potential for increasing profits,

and should thus be prioritized. Step 2 says that data

should be captured at the right grain, or granularity,

compared to the analysis needs. For example, ‘‘individ-

ual sales items’’ may be captured, or perhaps (slightly

aggregated) ‘‘total sales per product per store per day’’

may be precise enough, enabling performance and

storage gains. Step 3 then goes on to refine the schema

of each part of the grain into a complete dimension

with levels and attributes. For the example above, a

Store, a Product, and a Time dimension are specified.

Finally, Step 4 chooses the numerical measures to cap-

ture for each combination of dimension values, for

example dollar sales, unit sales, dollar cost, profit, etc.

When doing multidimensional modeling ‘‘in

the large’’ for many types of data (many cubes) and

several user groups, the most important task is to

ensure that analysis results are comparable across

cubes, i.e., that the cubes are somehow ‘‘compatible.’’

This is ensured by (as far as possible) picking dimen-

sions and measures from a set of common so-called

‘‘conformed’’ dimensions and measures [6,5] rather

than ‘‘re-definining’’ the same concept, e.g., product,

each time it occurs in a new context. New cubes can

then be put onto the common ‘‘DW bus’’ [5] and used

together. This sounds easier than it is, since it often

requires quite a struggle with different parts of

an organisation to define for example a common Prod-

uct dimension that can be used by everyone.
Complex Multidimensional Modeling

Multidimensional data modeling is not always as sim-

ple as described above. A complexity that is almost

always present is that of handling change in the dimen-

sion values. Kimball [6,5] calls this the problem of

slowly changing dimensions. For example, customer

addresses, product category names, and the way pro-

ducts are categorized may change over time. This must

be handled to ensure correct results both for current

and historical data. Kimball advises three types of

slowly changing dimensions: Type 1 (overwrite previ-

ous value with current value), Type 2 (keep versions of

1782M Multidimensional Modeling
dimension rows), and Type 3 (keep previous and cur-

rent value in different columns). Finally, the concept of

minidimensions [6] advocates the separation of rela-

tively static information (customer name, etc.) and

dynamic information (income, number of kids, etc.)

into separate dimensions.

The traditional multidimensional data models and

implementation techniques assume that the data being

modeled is quite regular. Specifically, it is typically

assumed that all facts map (directly) to dimension

values at the lowest levels of the dimensions and only

to one value in each dimension. Further, it is assumed

that the dimension hierarchies are simply balanced

trees. In many cases, this is adequate to support the

desired applications satisfactorily. However, situations

occur where these assumptions fail.

In such situations, the support offered by ‘‘stan-

dard’’ multidimensional models and systems is inade-

quate, and more advanced concepts and techniques are

called for. Now, the impact of irregular hierarchies on

the performance enhancing technique known as par-

tial, or practical, pre-computation, is reviewed.

Complex multidimensional data are problematic

as they are not summarizable. Intuitively, data is sum-

marizable if the results of higher-level aggregates can

be derived from the results of lower-level aggregates.

Without summarizability, users will either get wrong

query results, if they base them on lower-level results, or

the system cannot use pre-computed lower-level results

to compute higher-level results. When it is no longer

possible to pre-compute, store, and subsequently reuse

lower-level results for the computation of higher-level

results, aggregates must instead be calculated directly

from base data, which leads to considerable increases

in computational costs.

It has been shown that summarizability requires

that aggregate functions be distributive and that the

ordering of dimension values be strict, onto, and
Multidimensional Modeling. Figure 3. Irregular dimensions
covering [12, 7]. Informally, a dimension hierarchy is

strict if no dimension value has more than one (direct)

parent, onto if the hierarchy is balanced, and covering if

no containment path skips a level. Intuitively, this

means that dimension hierarchies must be balanced

trees. If this is not the case, some lower-level values will

be either double-counted or not counted when reusing

intermediate query results.

Figure 3 contains two dimension hierarchies: a

Location hierarchy including a State level, and the hier-

archy for the Organization dimension for some com-

pany. The hierarchy to the left is non-covering, as

Denmark has no states. If aggregates at the State level

are pre-computed, there will be no values for Aalborg

and Copenhagen, meaning that facts mapped to these

cities will not be counted when computing country

totals.

To the right in figure 3, the hierarchy is non-onto

because the Research department has no further sub-

division. If aggregates are materialized at the lowest

level, facts mapping directly to the Research depart-

ment will not be counted. The hierarchy is also non-

strict as the TestCenter is shared between Finance and

Logistics. If aggregates are materialized at the middle

level, data for TestCenter will be counted twice, for

both Finance and Logistics, which is, in fact, what is

desired at this level. However, this means that data will

be double-counted if these aggregates are then com-

bined into the grand total.

Several design solutions exist that aims to solve the

problems associated with irregular hierarchies by alter-

ing the dimension schemas or hierarchies [8,11].

Key Applications
Multidimensional data models have three important

application areas within data analysis. First, multi-

dimensional models are used in data warehousing.

Briefly, a data warehouse is a large repository of
.

Multidimensional Modeling M 1783

M

integrated data obtained from several sources in an

enterprise for the specific purpose of data analysis.

Typically, this data is modeled as being multidimen-

sional, as this offers good support for data analyses.

Second, multidimensional models lie at the core

of on-line analytical processing (OLAP) systems. Such

systems provide fast answers to queries that aggregate

large amounts of so-called detail data to find overall

trends, and they present the results in amultidimension-

al fashion. Consequently, a multidimensional data orga-

nization has proven to be particularly well suited for

OLAP. The widely acknowledged ‘‘OLAP Report’’ com-

pany [15] provides an ‘‘acid test’’ for OLAP by defining

OLAP as ‘‘fast analysis of shared multidimensional in-

formation’’ (FASMI). In this definition, ‘‘Fast’’ refers to

the expectation of response times that are within a few

seconds, ‘‘Analysis’’ refers to the need for easy-to-use

support for business logic and statistical analyses,

‘‘Shared’’ suggests a need for security mechanisms and

concurrency control for multiple users, ‘‘Multidimen-

sional’’ refers to the expectation that a data model with

hierarchical dimensions is used, and ‘‘Information’’ sug-

gests that the system must be able to manage all the

required data and derived information.

Third, multidimensional data are increasingly be-

coming the basis for data mining, where the aim is to

(semi-) automatically discover unknown knowledge in

large databases. Indeed, it turns out that multidimen-

sionally organized data are also particularly well suited

for the queries posed by data mining tools.

Future Directions
A pressing need for multidimensional modeling is the

aspect of standardization, i.e., agreeing on a common

data model, a graphical notation for it, and support by

tools. Also, better integration between ordinary ‘‘oper-

ational modeling’’ and multidimensional modeling is

needed. Another future research line is the modeling of

important system aspects such as security, quality,

requirements, evolution, and interoperability [13].

This will be extended to also cover the modeling of

business intelligence applications such as data mining,

patterns, extraction-transformation-loading (ETL),

what-if analysis, and business process modeling [13].

Finally, an important line of research will cover the

modeling of more (complex) types of data, including

integrating multidimensional data with text data, semi-

structured/XML/web data and spatial/spatio-temporal/

mobile data [9].
Cross-references
▶Business Intelligence

▶Cube

▶Data Warehouse

▶Data Warehouse Maintenance, Evolution and

Versioning

▶Data Warehousing Systems: Foundations and Archi-

tectures

▶Dimension

▶Hierarchy

▶Measure

▶On-Line Analytical Processing

▶ Statistical Data Management

▶ Summarizability

▶What-If Analysis
Recommended Reading
1. Chan P. and Shoshani A. SUBJECT: A directory driven system

for organizing and accessing large statistical databases. In Proc.

9th Int. Conf. on Very Data Bases, 1983, pp. 553–563.

2. Codd E.F. Providing OLAP (On-line Analytical Processing) to

User-Analysts: An IT Mandate. E.F. Codd and Assoc., 1993.

3. Dyreson C.E., Pedersen T.B., and Jensen C.S. Incomplete

information in multidimensional databases, M. Rafanelli (ed.).

Multidimensional Databases: Problems and Solutions. Idea

Group Publishing, 2003.

4. Gray J., Chaudhuri S., Bosworth A., Layman A., Venkatrao M.,

Reichart D., Pellow F., Pirahesh H. Data cube: A relational

aggregation operator generalizing group-by, cross-tab and sub-

totals. Data Mining Knowl. Dis., 1(1):29–54, 1997.

5. Kimball R. et al. The Data Warehouse Lifecycle Toolkit. Wiley,

New York, 1998.

6. Kimball R. and Ross M. The Data Warehouse Toolkit, 2nd ed.

Wiley, New York, 2002.

7. Lenz H. and Shoshani A. Summarizability in OLAP and statisti-

cal data bases. In Proc. 9th Int. Conf. on Scientific and Statistical

Database Management, 1997, pp. 39–48.

8. Niemi T., Nummenmaa J., and Thanisch P. Logical multidimen-

sional database design for ragged and unbalanced aggregation.

In Proc. 3rd Int. Workshop on Design and Man of Data Ware-

houses, CEURWorkshop Proc. 39, 2001, Paper 7.

9. Pedersen T.B. Warehousing the world: a few remaining chal-

lenges. In Proc. ACM 10th Int. Workshop on Data Warehousing

and OLAP, 2007, pp. 101–102.

10. Pedersen T.B. and Jensen C.S. Multidimensional database

technology. IEEE Comput., 34(12):40–46, 2001.

11. Pedersen T.B., Jensen C.S., and Dyreson C.E. Extending practical

pre-aggregation in on-line analytical processing. In Proc. 25th

Int. Conf. on Very Large Data Bases, 1999, pp. 663–674.

12. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation for

capturing and querying complex multidimensional data. Inf.

Syst., 26(5):383–423, 2001.

13. Rizzi S., Abello A., Lechtenbrger J., and Trujillo J. Research in

data warehouse modeling and design: dead or alive? In Proc.

1784M Multidimensional Scaling
ACM 9th Int. Workshop on Data Warehousing and OLAP, 2006,

pp. 3–10.

14. Shoshani A. OLAP and statistical databases: similarities and

differences. In Proc. 16th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1997, pp. 185–196.

15. The OLAP Report web page. http://www.olapreport.com. Cur-

rent as of November 22, 2007.

16. Thomsen E. OLAP Solutions: Building Multidimensional Infor-

mation Systems. Wiley, New York, 1997.

17. Vassiliadis P. and Sellis T.K. A survey of logical models for OLAP

databases. ACM SIGMOD Rec., 28(4):64–69, 1999.
Multidimensional Scaling

HENG TAO SHEN

The University of Queensland, Brisbane,

QLD, Australia

Synonyms
MDS

Definition
Multidimensional scaling (MDS) is a mathematical

dimension reduction technique that best preserves the

inter-point distances by analyzing gram matrix. Given

any two points pi and pj in a dataset P, MSD aims to

minimize the following objective function:

Error ¼
X

½dðpi; pjÞ � d0ðpi; pjÞ�2

Where dðpi; pjÞ and d0ðpi; pjÞrepresent the distance

between points pi and pj in original space and the

lower dimensional subspace respectively.

Key Points
Multidimensional scaling (MDS) is a set of related

statistical techniques often used in data visualisation

and analysis for exploring similarities or dissimilarities

in data. An MDS algorithm starts with a matrix of

point-point (dis)similarities, then assigns a location

of each point in a low-dimensional space. The points

are arranged in this subspace so that the distances

between pairs of points have their original distance

maximally retained. MDS is a generic term that

includes many different specific types. These types

can be classified according to whether the data are

qualitative (called nonmetric MDS) or quantitative

(metric MDS). The number of (dis)similarity matrices

and the nature of the MDS model can also classify

MDS types. This classification yields classical MDS

(one matrix, unweighted model), replicated MDS
(several matrices, unweighted model), and weighted

MDS (several matrices, weighted model) [1,2].

MDS applications include scientific visualisation

and data mining in fields such as cognitive science,

information science, psychophysics, psychometrics,

marketing and ecology [2].

Cross-references
▶Dimensionality Reduction

▶Discrete Fourier Transform

▶Discrete Wavelet Transform and Wavelet Synopses

▶ Independent Component Analysis

▶ Isometric Feature Mapping

▶ Latent Semantic Indexing

▶ Locality-Preserving Mapping

▶ Locally Linear Embedding (Lle) Laplacian Eigenmaps

▶Principal Component Analysis

▶ Semantic Subspace Projection

Recommended Reading
1. Cox M.F. and Cox M.A.A. Multidimensional Scaling. Chapman

and Hall, 2001.

2. Young F.W. and Hamer R.M. Multidimensional Scaling: History,

Theory and Applications. Erlbaum, New York, 1987.
Multidimensional Visualization

▶ Parallel Coordinates
Multi-Granularity Modeling

▶Multiple Representation Modeling
Multi-Layered Architecture

▶Multi-Tier Architecture
Multi-Level Recovery and the ARIES
Algorithm

GERHARD WEIKUM

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
In contrast to basic database recovery with page-level

logging and redo/undo passes, multi-level recovery is

http://www.olapreport.com

Multi-Level Recovery and the ARIES Algorithm M 1785

M

needed whenever the database system uses fine-grained

concurrency control, such as index-key locking or

operation-based ‘‘semantic’’ conflict testing, or when

log records describe composite operations that are not

guaranteed to be atomic by single page writes (as a

consequence of concurrency control or for other rea-

sons). Advanced methods perform logging and recov-

ery at multiple levels like pages and data objects

(records, index entries, etc.). Page-level recovery is

needed to ensure the atomicity and applicability

of higher-level operations, and also for efficient redo.

Higher-level recovery is needed to perform correct

undo for composite operations of loser transactions.

In addition, logged actions at all levels must be testable

at recovery-time, by embedding extra information in

database pages, typically using log sequence numbers

(LSNs), and appropriate logging of recovery steps.

A highly optimized instantiation of these principles is

the ARIES algorithm (Algorithms for Recovery and

Isolation Exploiting Semantics) [8,7], the de facto

standard solution for industrial-strength database sys-

tems. Its salient features are: very fast, potentially par-

allelizable or selective, redo for high availability; use of

LSNs and compensation log records (CLRs) for track-

ing recovery progress; full-fledged support for crash

and media recovery; suitability for all kinds of seman-

tic concurrency control methods.

Historical Background
Crash recovery for composite operations on database

records and indexes has first been addressed by [3], but

that solution required heavy-weight check pointing

(based on shadow storage) and was fairly inefficient.

Some commercial engines developed various techni-

ques to overcome these problems while supporting

fine-grained concurrency control, but there is very

little public literature on such system internals

[1,2,4]. The ARIES algorithm was the first comprehen-

sive solution [8] and has become the state-of-the-art

method for industrial-strength recovery [7]. In parallel

to and independently of the ARIES papers, research on

multi-level recovery developed general principles and a

systematic framework [9,10,6]. The textbook [11] dis-

cusses both the general framework and the ARIES

algorithm in great detail. A correctness proof for the

ARIES algorithm is given in [5].

Foundations
Basic database recovery methods log page modifications

during normal operation. During the restart after a
system crash (i.e., soft failure of the server with all disks

intact), a three-phase recovery procedure is performed

with an analysis pass, a redo pass, and an undo pass

over the log file. This is appropriate when the database

system uses page locking or some other page-granularity

concurrency control. Such locking guarantees that all

updates of loser transactions (i.e., uncommitted transac-

tions that require undo) that are in conflict with updates

of winner transactions (i.e., committed transactions that

may require redo) follow the winners’ updates in the log

file. However, with fine-grained locking or some form

of semantic concurrency control (e.g., exploiting com-

mutative operations on hot-spot objects), this invariant

does no longer hold and thus necessitates more ad-

vanced recovery algorithms.

As an example, consider the following execution

history of two transactions t1 and t2 that insert various

database records, with time proceeding from left to

right and c2 denoting a successful commit of t2:

insert1ðxÞ insert1ðyÞ crash insert2ðzÞ c2

The insertions may appear to be single operations,

but they are not atomic from the system viewpoint.

In fact, each of them may require multiple page writes

to maintain indexes and other storage structures. For

example, the following history of page writes may

result from the above execution:

w1ðpÞ w1ðqÞ w1ðsÞ w1ðrÞw1ðpÞ w1ðqÞ crash
w2ðpÞw2ðsÞ c2

Here, p would be a data page into which all three

records x, y, z are inserted, and q and s may be leaf pages

of the same B þ -tree index. For simplicity, the history

does not show any read accesses like accesses for des-

cending the tree. It may happen that the index update on

behalf of record x triggers a leaf split of page q with a

newly allocated page s and a corresponding update to the

parent page r. The subsequent record operations may

then access the new pages or the old page q, depending

on where their corresponding keys now reside. This is a

very normal situation for a database system, and it is

perfectly admissible from a concurrency control view-

point, because there are no (high-level) conflicts be-

tween the three insert operations. The system may have

to use additional short-term locks or latches on pages to

implement a multi-level concurrency control method,

but this is very normal as well.

If the standard page-level recovery were applied

to this situation, it would first redo (if necessary) all

1786M Multi-Level Recovery and the ARIES Algorithm
page writes of winner transaction t2 and then undo

all page writes of loser transaction t1, using before-

images of pages or byte-range-oriented log records.

This would lead to two kinds of problems:

� Redoing the page write w2(s) may be logically

flawed and lead to an inconsistent index state if

the effects of the preceding leaf split are not prop-

erly reflected in page s. But it is indeed possible that

the loser updates w1(q) and w1(s) were not written

to disk before the crash, and no redo would be

performed for them.

� If all index updates were fully recovered and correctly

captured in the database by the time the undo recov-

ery for t1 takes place, undoing the write w1(s) of

page s would restore the page as of the time before

t1 started, thus accidentally – and incorrectly –

eliminating also the index update of the winner

transaction t2.

If, on the other hand, the logging and recovery

procedures were changed so that only record- and

index-level operations are captured and redone or

undone, one would run into a third problem:

� If the system crashed in the middle of a high-level

operation, say in between the w1(q) and the w1(s)

steps, the database may be left in an inconsistent

state with partial effects of an operation. Such a

database would not be recoverable as all logged

operations could face a state that they cannot prop-

erly interpret.

These problems show the need for multi-level recov-

ery; the solution must meet the following requirements:

� Operation atomicity: High-level operations that

comprise multiple page writes must be guaranteed

to appear atomic (i.e., have an all-or-nothing

impact on the database).

� High-level undo: Operations of loser transactions

must, in full generality, be undone by means of

inverse operations at the same level of abstraction.

For example, the insertion of an index key must be

undone by performing a delete operation on that

key, not by restoring the before-images of the un-

derlying pages (and neither by corresponding byte-

range modifications).

� Testable operations: Before invoking a high-level

operation for undoing or redoing the effect of a

prior operation, it must be tested whether the
effects of the prior operation are indeed present

(as they may have been lost by the crash or already

undone/redone in a recovery procedure that was

interrupted by another crash). This testability is

crucial for handling non-idempotent operations.

� Efficient redo: As the restart time and thus the

unavailability of the system is usually dominated

by the redo pass, it is crucial that the redo actions

are performed as efficiently as possible. This strong-

ly suggests performing redo in terms of page writes

rather than re-executing high-level operations.

Multi-level recovery methods address these require-

ments in the following way:

� For proper undo, both page-level writes and higher-

level operations are logged. The page-level log

records guarantee that high-level operations can

always be made to appear atomic. The high-level

log records guarantee that undo can be performed

by means of inverse operations. During the undo of

a high-level operation, page-level logging is again

enabled. This way, the first two requirements are

satisfied.

� For testable operations, when the recovery proce-

dure undoes a (high-level) operation, both the

resulting page writes and a marker for the inverse

operation itself are logged. The latter kind of log

record is referred to as a compensation log record

(CLR). In addition, the standard technique of

maintaining log sequence numbers (LSNs) in the

headers of modified pages, as a form of virtual time

stamping, is used to be able to compare a log record

to the state of a page and decide whether the logged

action should be undone/redone or disregarded.

� For efficient redo, although redoing high-level

operations may add to the repertoire of recovery

actions, it is much more desirable to perform all

redo steps in terms of page writes. This can leverage

all kinds of acceleration techniques that have been

developed for more conventional, page-level recov-

ery like asynchronous check pointing and dirty-

pages bookkeeping, smart scheduling of page

reads from the database disk, parallelized per-page

redo, and selective redo for pages with very high

availability demands.

� Further considerations on the redo pass lead to the

repeating-history principle [8]: rather than aiming

to redo only winner updates or at least as few loser

updates as possible, it is much simpler to redo all

Multi-Level Recovery and the ARIES Algorithm M 1787

M

logged page writes regardless of their transaction

status, thus effectively reconstructing the database

as of the time of the crash.

All these principles together result in the following

algorithmic template for multi-level recovery:

� Analysis pass for determining loser transactions.

� Redo pass by repeating history in terms of logged

page writes.

� Undo pass for loser transactions, with page-level

undo for incomplete high-level operations and

high-level undo for complete (and possibly just

redone) high-level operations. Logging at both

levels is enabled during the undo pass, thus creating

new log records: page-write log records during the

operation’s execution, and undo information for

the entire operation at the very end, thus also

marking the completion of the operation.

For all steps, idempotence is ensured by two means:

for page writes the standard comparison of page-

header LSN versus log-record LSN is performed; for

high-level operations, only undo idempotence is a

potential issue, and this is guaranteed by the fact that

the preceding redo pass always repeats history so that

all completely repeated operations need subsequently

be undone by definition.

The ARIES algorithm is an integrated and highly

optimized instantiation of these principles, with

various additional features. Its recovery procedure

performs three passes over the log: analysis, repeat-

ing-history redo, and undo. The analysis pass mostly

follows standard recovery methods; the redo pass has

been discussed above; the undo pass uses additional

techniques based on the use of compensation log records

(CLRs). The following undo-relevant log records are

produced by ARIES:

� During normal operation, page writes are logged in

a way that they can be redone or undone (which-

ever is needed later), and each high-level operation

is logged for undo purposes following all page-

write log records that were produced during the

operation’s execution. The high-level log records

have a backward pointer that points to the preceding

high-level action of the same transaction, thus allow-

ing the recovery manager to skip the operation’s

logged page writes.

� During the undo pass, when undoing a page write,

a CLR is written with a backward pointer to the log
record that precedes the undo page write within

the same transaction. When undoing a high-level

operation, normal page-write log records are writ-

ten during the execution of the inverse operation,

and a CLR for the entire high-level operation is

written at the end. That CLR again has a backward

pointer to its preceding high-level action, skipping

its own page writes.

With these preparations, the undo procedure itself

is rather straightforward. For each loser transaction, it

locates the most recent log record and then follows the

backward chain of log records. Whenever a CLR is

encountered, this tells the recovery manager that the

undo of the corresponding action is already completed

(either already during normal operation or by the

preceding redo pass) and the log record should thus

be disregarded. Page-write log records are relevant for

incomplete high-level operations; otherwise high-level

log records determine the undo logic.

This undo procedure of the ARIES algorithm has a

number of great benefits:

� It handles high-level undo in a correct and efficient

way, thus allowing fine-grained and semantic con-

currency control.

� It handles nested rollbacks in a correct and efficient

way. These are situations where a transaction roll-

back is interrupted by a crash and later considered

for undo or when the undo pass after a server

crash is interrupted by a second crash. In all these

situations, it is guaranteed that the amount of

recovery work stays bounded, regardless of how

many ‘‘nested’’ crashes might occur during recov-

ery. This is important for high availability.

� Formedia recovery, restoring the database after disk

failures, an analogous but even more severe situa-

tion arises. As media recovery always starts with a

backup copy of the database and then repeats the

history of a potentially very long archive log, roll-

backs or undo steps for (soft) system crashes that

happened long ago would interfere with log trun-

cation and become performance showstoppers with

pre-ARIES recovery methods. The way ARIES gen-

erates redo log records for undo actions and CLRs

for progress tracking, media recovery is as fast as

possible, which is crucial for availability.

For the example scenario given above, ARIES

would create the following log records during normal

1788M Multi-Level Recovery and the ARIES Algorithm
operation, denoted in the form LSN:action. Note that

log records 5 and 8 will only be used for undo purposes

(if necessary). Further note that the example happens

to show page-level log records for the second insert

operation of t1 but no high-level log record. This may

occur because of the crash happening before the high-

level log record was flushed to the log disk.

1 : w1ðpÞ 2 : w1ðqÞ 3 : w1ðsÞ 4 : w1ðrÞ
5 : insert1ðxÞ 6 : w2ðpÞ 7 : w2ðsÞ 8 : insert2ðzÞ
9 : w1ðpÞ 10 : w1ðqÞ 11 : c2

During recovery, the redo pass processes log

records 1, 2, 3, 4, 6, 7, 9, and 10. Subsequently the

undo pass processes log records 10, 9, and 5 (in this –

chronologically reverse – order). As it does so, it will

create the following new log records, with CLRs

denoted in the form LSN:action!UndoNextLSN with

UndoNextLSN being the LSN of the log record to

which the CLR has a backward pointer.

12 : w1ðqÞ ! 9 13 : w1ðpÞ ! 5 14 : w1ðsÞ
15 : w1ðpÞ 16 : delete1ðxÞ ! 0

If the system crashed again immediately after the

completion of the delete1(x) undo step, the redo pass

would repeat the page writes with LSNs 12, 13, 14, and

15 (in addition to all writes with LSNs 1 through 11

that may need redo again). This means that all effects

of t1 have been properly removed. The subsequent

undo pass would then encounter the CLR 16, but its

backward pointer immediately tells the recovery man-

ager that it can skip all log records of transaction t1

as t1 had already been completely undone before the

second crash.

If the system crashed again after the action with

LSN 14 (a page write issued on behalf of the high-level

undo of insert1(x)), the redo pass would repeat the

page writes with LSNs 12, 13, and 14, thus effectively

removing all effects of insert1(y) but only some partial

effects of insert1(x). The subsequent undo pass would

start with LSN 14, undo it and create a new CLR, and

then encounter LSN 13, which points to LSN 5 which

in turn is the next logged action to undo.

In general, ARIES can be implemented with very

low overhead, and it is compatible with other optimi-

zations in the storage engine of a database system:

flexible free space management, flexible buffer man-

agement, acceleration techniques for the redo pass,
and many more. For high availability, the redo pass of

both crash and media recovery can be parallelized or

performed selectively for most important page sets;

media recovery efficiently works also with fuzzy back-

ups without ever quiescing the system. For index man-

agement, extensions of ARIES have been developed

that optimize the locking, logging, and recovery of

index keys in B + -trees. Finally, there are also exten-

sions of ARIES for the special requirements of shared-

disk clusters with automated fail-over procedures and

very high availability.
Future Directions
The ARIES algorithm is a mature and comprehensive

solution that can be readily adopted for most data

management systems. A salient property of the multi-

level recovery framework is that it can be generalized to

arbitrary kinds of composite operations (with deeper

and flexible nestings). All the ARIES techniques for

efficient repeating-history redo are directly applicable,

and the undo procedures need to be extended to

handle a conceptual stack of undo log records and

corresponding CLRs – with the stack actually being

embedded in the linear log. This generalization is of

potential interest for modern applications like com-

posite Web services or enterprise-level middleware

with integrated recovery.
Cross-references
▶Atomicity

▶ Logging

▶ Persistence

▶ System Recovery

▶Transaction
Recommended Reading
1. Borr A.J. Robustness to crash in a distributed database:

a non shared-memory multi-processor approach. In Proc. 10th

Int. Conf. on Very Large Data Bases, 1984, pp. 445–453.

2. Crus R.A. Data recovery in IBM database 2. IBM Syst. J.,

23(2):178–188, 1984.

3. Gray J., McJones P.R., Blasgen M.W., Lindsay B.G., Lorie R.A.,

Price T.G., Putzolu G.R., and Traiger I.L. The recovery manager

of the system R database manager. ACM Comput. Surv.,

13(2):223–243, 1981.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

5. Kuo D. Model and verification of a data manager based on

ARIES. ACM Trans. Database Syst., 21(4):427–479, 1996.

Multilevel Secure Database Management System M 1789
6. Lomet D.B. MLR: a recovery method for multi-level systems. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1992,

pp. 185–194.

7. Mohan C. Repeating history beyond ARIES. In Proc. 25th Int.

Conf. on Very Large Data Bases, 1999, pp. 1–17.

8. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and

Schwarz P.M. ARIES: a transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

9. Moss J.E.B., Griffeth N.D., and Graham M.H. Abstraction in

recovery management. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1986, pp. 72–83.

10. Weikum G., Hasse C., Brössler P., and Muth P. Multi-level

recovery. In Proc. 9th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 1990, pp. 109–123.

11. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2001.
M

Multilevel Secure Database
Management System

BHAVANI THURAISINGHAM

University of Texas at Dallas, Richardson, TX, USA

Synonyms
Secure database systems; Trusted database systems

Definition
Many of the developments in the 1980s and 1990s in

database security were on multi-level secure database

management systems (MLS/DBMS). These systems

were also called trusted database management systems

(TDBMS). In a MLS/DBMS, users are cleared at dif-

ferent clearance levels such as Unclassified, Confiden-

tial, Secret and TopSecret. Data is assigned different

sensitivity levels such as Unclassified, Confidential,

Secret, and TopSecret. It is generally assumed that

these security levels form a partially ordered lattice.

For example, Unclassified < Confidential < Secret <

TopSecret. Partial ordering comes from having differ-

ent compartments. For example, Secret Compartment

A may be incomparable to Secret Compartment B.

Historical Background
MLS/DBMSs have evolved from the developments in

multilevel secure operating systems such as MULTICS

and SCOMP (see for example [4]) and the develop-

ments in database systems. Few developments were

reported in the late 1970s on MLS/DBMSs. However,
during this time there were many developments in

discretionary security, such as access control for Sys-

tem R and INGRES as well as many efforts on statistical

database security. Then there was a major initiative by

the Air Force and a summer study was convened. This

summer study marks a significant milestone in the

development of MLS/DBMSs [2].

The early developments in MLS/DBMSs influenced

the Air Force Summer Study a great deal. Notable

among these efforts are the Hinke-Schaefer approach

to operating system providing mandatory security, the

Ph.D. Thesis of Deborah Downs at UCLA (University of

California at Los Angeles), the IP Sharp Model devel-

oped in Canada and the Naval Surveillance Model de-

veloped at the MITRE Corporation. The Hinke Schaefer

approach [3] essentially developed a way to host MLS/

DBMSs on top of the MULTICS MLS operating system.

The system was based on the relational system and the

idea was to partition the relation based on attributes and

store the attributes in different files at different levels.

The operating system would then control access to

the files. The early efforts showed a lot of promise to

designing and developing MLS/DBMSs. As a result, the

Air Force started a major initiative, which resulted in the

summer study of 1982

Since the summer study, several efforts were

reported throughout the 1980s. Many of the efforts

were based on the relational data model. At the end of

that decade, the National Computer Security Center

started a major effort to interpret the Trusted Computer

Systems Evaluation Criteria for database systems [7].

This interpretation was called the Trusted Database

Interpretation [8]. In the 1990s research focused on

non-relational systems including MLS object database

systems and deductive database systems. Work was

also carried out on multilevel secure distributed data-

base systems. Challenging research problems such as

multilevel data models, inference problem and secure

transaction processing were being investigated. Several

commercial products began to emerge. Since the

late 1990s, while the interest in MLS/DBMSs began to

decline a little, efforts are still under way to examine

multilevel security for emerging data management tech-

nologies. A detailed discussion of many of the develop-

ments with significant references are given in [5].

Foundations
Many of the developments were based on the relational

model. The early systems were based on the Integrity

1790M Multilevel Secure Database Management System
Lock approach developed at the MITRE Corporation.

Two prototypes were designed and developed. One

used the MISTRESS relational database system and

the other used the INGRES relational database system.

Around 1985 TRW designed and developed a MLS/

DBMS called ASD and this system was designed to be

hosted on ASOS (the Army Secure Operating System).

The approaches were based on the Trusted Subject

based architecture. Later on TRW developed some

extensions to ASD and the system was called ASD

Views where access was granted on views (GARV88).

Two of the notable systems designed in the late 1980s

were the SeaView system by SRI International and

LOCK Data Views system by Honeywell. These two

efforts were funded by the then Rome Air Develop-

ment Center and the goal was to focus on the longer

term approaches proposed by the Summer Study. Both

efforts influenced the commercial developments a

great deal. Three other efforts worth mentioning are

the SINTRA system developed by the Naval Research

Laboratory, the SWORD system developed by the then

Defense Research Agency and funded by the Ministry

of Defense in the United Kingdom and the SDDBMS

effort by Unisys. The SINTRA system was based on the

distributed architecture proposed by the Air Force

Summer Study. The SWORD system proposed some

alternatives to the SeaView and LOCK Data Views data

models. While the initial planning for these systems

began in the late 1980s, the designs were actually de-

veloped in the early 1990s. The SDDBMS effort was

funded by the Air Force Rome Laboratory and inves-

tigated both the partitioned and replicated approaches

to designing an MLS/DBMS.

Around l987, the Rome Air Development Center

(now known as Air Force Research Laboratory in

Rome) funded an effort to design an MLS/DBMS

based on the Entity Relationship (ER) model. The ER

model was initially developed in 1976 by Peter Chen

and since then it has been used extensively to model

applications. The goal of the security effort carried out

by Gajnak and his colleagues was to explore security

properties for the ER model as well as to explore the

use of secure ER models to design DBMSs. The effort

produced MLS ER models that have since been used to

model secure applications. Furthermore variations of

this model have been used to explore the inference

problem by Burns, Thuraisingham and Smith. However,

there does not appear to have been any efforts under-

taken ondesigningMLS/DBMSs based on the ERmodel.
In summary, the ER approach has contributed exten-

sively toward designing MLS applications.

During the late 1980s, efforts began on design-

ing MLS/DBMSs based on object models. Notable

among these efforts is the one by Keefe, Tsai and

Thuraisingham who designed the SODA model by

Keefe and his colleagues. Later Thuraisingham

designed the SORION and SO2 models. These models

extended models such as ORION and O2 with security

properties. Around 1990 Millen and Lunt produced

an object model for secure knowledge base systems.

Jajodia and Kogan developed a message-passing model

in 1990. Finally MITRE designed a model called UFOS.

Designs of MLS/DBMSs were also produced based on

the various models. The designs essentially followed

the designs proposed for MLS/DBMSs based on the

relational model. However with the object model,

one had to secure complex objects as well as handle

secure method execution. While research progressed

on designing MLS/DBMSs based on objects, there were

also efforts on using object models for designing secure

applications. Notable efforts were those by Sell and

Thuraisingham. Today with the development of UML

(Unified Modeling Language) there are efforts to

design secure applications based on UML.

Around 1989 work began at MITRE on the design

and development of multilevel secure distributed data-

base systems (MLS/DDBMS). Prototypes connecting

MLS/DBMSs at different sites were also developed.

Work was then directed toward designing and devel-

oping MLS heterogeneous distributed database sys-

tems. These efforts focused on connecting multiple

MLS/DBMSs, which are heterogeneous in nature. Re-

search was also carried out on MLS federated databases

by Thuraisingham and Rubinovitz.

In the late 1970 and throughout the 1980s there were

many efforts on designing and developing logic-based

database systems. These systems were called deductive

databases. While investigating the inference problem,

multilevel secure deductive database systems were

designed. These systems were based on a logic called

NTML (Non monotonic Typed Multilevel Logic)

designed by Thuraisingham at MITRE. NTML essen-

tially provides the reasoning capability across security

levels, which are non-monotonic in nature. Essentially,

it incorporates constructs to reason about the applica-

tions at different security levels. A Prolog language

based on NTML, which is called NTML-Prolog, was

also designed. Both reasoning with the Closed World

Multilevel Secure Database Management System M 1791

M

Assumption as well as with the Open World Assump-

tion were investigated. Due to the fact that there was

limited success with logic programming and the Japa-

nese Fifth Generation Project, deductive systems are

being used only for a few applications. If such applica-

tions are to be multilevel secure, then systems such as

those based on NTMLwill be needed. Nevertheless there

is use for NTML on handling problems such as the

inference problem. Note that presently the integration

of NTML-like logic with descriptive logics for secure

semantic webs is being explored.

Researchers have identified several hard problems.

The most notable hard problem is the Inference prob-

lem. Inference problem is the process of posing queries

and deducing sensitive information form the legiti-

mate responses received. Many efforts have been dis-

cussed in the literature to handle the inference problem

First of all, Thuraisingham proved that the general

inference problem was unsolvable [6] and this effort

was stated by Dr. John Campbell of the National Secu-

rity Agency as one of the significant developments in

database security in [1]. Then Thuraisingham explored

the use of security constraints and conceptual struc-

tures to handle various types of inferences. Note that

the aggregation problem is a special case of the infer-

ence problem where collections of data elements are

sensitive while the individual data elements are Un-

classified. Another hard problem is secure transaction

processing. Many efforts have been reported on reduc-

ing covert channels when processing transactions in

MLS/DBMSs including the work of Jajodia, Bertino

and Atluri among others. A third challenging problem

is developing a multilevel secure relational data model.

Various proposals have been developed including those

by Jajodia and Sandhu, the Sea View model by Den-

ning and her colleagues and the LOCK Data Views

model by Honeywell. SWORD developed by Wiseman

also proposed its own model. The problem is due to

the fact that different users have different views of the

same element. If multiple values are used to represent

the same entity then the integrity of databases is vio-

lated. However, if what is called polyinstantiation is

not enforced, then there is a potential for signaling

channels. This is still an open problem.

Key Applications
The department of defense was the major funding

agency for multilevel secure database management

systems. The applications are mainly in the defense
and intelligence area. However many of the concepts

can be used to design systems that have multiple labels,

privacy levels or roles. Therefore these systems can also

be used to a limited extent for non-defense applica-

tions including healthcare and financial applications.

Future Directions
As technologies emerge, one can examine multilevel

security issues for these emerging technologies. For

example, as object database systems emerged in the

1980s, multilevel security for object databases began to

be explored. Today there are many new technologies

including data warehousing, e-commerce systems, mul-

timedia systems, real-time systems and the web and

digital libraries. Only a limited number of efforts have

been reported on investigating multilevel security for

the emerging data management systems. This is partly

due to the fact the even for relational systems, there are

hard problems to solve with respect to multilevel secu-

rity. As the system becomes more complex, developing

high assurance multilevel systems becomes an enor-

mous challenge. For example, how can one develop

usable multilevel secure systems say for digital libraries

and e-commerce systems? How can one get acceptable

performance? How does one verify huge systems such as

the WorldWide Web? At present, there is still a lot to do

with respect to discretionary security for such emerging

systems. As progress is made with assurance technolo-

gies and if there is a need for multilevel security for such

emerging technologies, then research initiatives will

commence for these areas.

Cross-references
▶Database Security

▶ Inference Problem

▶Mandatory Access Control

▶Role Based Access Control

Recommended Reading
1. Campbell J. A year of progress in database security. In Proc.

National Computer Security Conf., 1990.

2. Committee on Multilevel Data Management Security, Air Force

Studies Board. Multilevel Data Management Security. National

Academy Press, Washington, DC, 1983.

3. Hinke T. and Schaefer M. Secure data management system.

System Development Corp., Technical Report RADC-TR-75-

266, November 1975.

4. IEEE Computer Magazine, Volume 16, #7, 1983.

5. Thuraisingham B. Database and Applications Security: Integrat-

ing Data Management and Information Security. CRC Press,

Boca Raton, FL, 2005.

1792M Multilevel Security
6. Thuraisingham B. Recursion theoretic properties of the infer-

ence problem. Presented at the IEEE Computer Security Foun-

dations Workshop, Franconia, NH, June 1990 (also available as

MITRE technical Paper MTP291, June 1990).

7. Trusted Computer Systems Evaluation Criteria, National Com-

puter Security Center, MD, 1985.

8. Trusted Database Interpretation. National Computer Security

Center, MD, 1991.
Multilevel Security

▶Mandatory Access Control
Multilevel Transactions and
Object-Model Transactions

GERHARD WEIKUM

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Synonyms
Layered transactions; Open nested transactions

Definition
Multilevel transactions are a variant of nested transac-

tions where nodes in a transaction tree correspond to

executions of operations at particular levels of abstrac-

tion in a layered system architecture. The edges in a

tree represent the implementation of an operation by a

sequence (or partial ordering) or operations at the

next lower level. An example instantiation of this

model are transactions with record and index-key

accesses as high-level operations which are in turn

implemented by reads and writes of database pages

as low-level operations. The model allows reasoning

about the correctness of concurrent executions at dif-

ferent levels, aiming for serializability at the top level:

equivalence to a sequential execution of the transaction

roots. This way, semantic properties of operations,

like different forms of commutativity, can be exploited

for higher concurrency, and correctness proofs for

the corresponding protocols can be derived. Likewise,

multilevel transactions provide a framework for struc-

turing recovery methods and reasoning about their

correctness.

Multilevel transactions have wide applications

outside of database engines as well. For example,
transactional properties can be provided by middle-

ware application servers, layered on top of a database

system. A generalization of this approach is the notion

of object-model transactions, also known as open

nested transactions (trees where the nodes correspond

to arbitrary method invocations). In contrast to mul-

tilevel transactions, there is no layering constraint any-

more, and arbitrary caller-callee relations among

objects of abstract data types can be expressed. This

provides a model for reasoning about transactional

guarantees in composite web services, and for struc-

turing the design and run-time architecture of web-

service-based applications.

Historical Background
Object-model transactions have been around for thirty

years, going back to the work of Bjork and Davies on

‘‘spheres of control’’ [2]. The first work that made these

concepts explicit and gave formal definitions is by

Beeri et al. [1]. Parallel work on the important special

case of multilevel transactions has been done by Moss

et al. [7] and Weikum et al. [13,11]. The textbook [14]

gives a detailed account of both conceptual and practi-

cal aspects. A broader perspective of extended transac-

tion models is given by [9]. More recently, the concept

of object-model transactions has received consider-

able attention also for long-running workflows (e.g.,

[10,15]) and transactional memory (e.g., [8]).

On the system side, multilevel transaction proto-

cols have been employed for concurrency control and

recovery in various products and prototypes [3,5,6,12].

Typically, the layered structure of the protocols is only

implicit; a suite of additional smart implementation

techniques is used for integrated, highly efficient code.

An example for concurrency control is transaction-

duration locking for index-manager operations com-

bined with operation-duration latching. Examples for

recovery are the ARIES family of algorithms by Mohan

et al. [6] and the MLR algorithm by Lomet [5].

Foundations
Multilevel and object-model transactions are best un-

derstood in an object model where operations are

invoked on arbitrary objects. This allows exploiting

‘‘semantic’’ properties of the invoked operations for

the sake of improved performance. This model also

captures situations where an operation on an object

invokes other operations on the same or other objects.

Often the implementation of an object and its

Multilevel Transactions and Object-Model Transactions M 1793

M

operations requires calling operations of some lower-

level types of objects.

For example, operations at the access layer of a data-

base system, such as index searches, need to invoke page

oriented operations at the storage layer underneath.

Similar invocation hierarchies may exist among a collec-

tion of business objects that are made available as ab-

stract data type (ADT) instances within a data server or

an application server, e.g., a ‘‘shopping cart’’ or a ‘‘bank

account’’ object type along with operations like deposit,

withdraw, get_balance, get_history, compute_interests,

etc. The following figure depicts an example of a trans-

action execution against an object model scenario that

refers to the internal layers of a database system.

The figure shows a transaction, labeled t1, which

performs, during its execution, (i) an SQL Select

command to retrieve all records from a database that

satisfy a certain attribute-value condition, and, after

inspecting the result set, (ii) an SQL command to insert

a record for a new record with this attribute value. Since

SQL commands are translated into query execution

plans already at compile time, the operations invoked

at run time refer to an internal level of index and record

accesses. The Select command is executed by first issuing

a Search operation with some key k on an index that
Multilevel Transactions and Object-Model Transactions. Fig

Multilevel Transactions and Object-Model Transactions. Fig
returns the RIDs (i.e., addresses) of the result records.

Next, these records, referred to as x and y in the figure,

are fetched by dereferencing their RIDs. The Search

operation in turn invokes operations at the underlying

storage layer: read and write operations on pages. First

the root of a B+ tree is read, labeled as page r in the

figure, which points to a leaf page, labeled l, that contains

the relevant RID list for key k. The subsequent Fetch

operations to access the two result records x and y by

their RIDs, require only one page access each to pages

p and q, respectively. Finally, the SQL Insert command is

executed as a Store operation, storing the new record and

also maintaining the index. This involves first reading a

metadata page, labeled f that holds free space informa-

tion in order to find a page pwith sufficient empty space.

Then that page is read and subsequently written after the

new record z has been placed in the page. Finally, the RID

of the new record z is added to the RID list of the key k

in the index. This requires reading the B+ tree root

page r, reading the proper leaf page l, and finally writing

page l after the addition of the new RID.

This entire execution is represented in a graphical,

compact form, by connecting the calling operation and

the called operation with an arc when operations in-

voke other operations. As a convention, the caller is
ure 2. Example of a multilevel schedule.

ure 1. Example of a multilevel transaction.

Multilevel Transactions and Object-Model Transactions. Figure 3. Concurrent execution of multilevel schedules with a

multilevel locking protocol.

1794M Multilevel Transactions and Object-Model Transactions
always placed closer to the top of the picture than the

callee. Furthermore, the order in which operations are

invoked is represented by placing them in ‘‘chronolog-

ical’’ order from left to right, which suffices for illus-

tration purposes.

More formally, a multilevel transaction tree is

defined as a partially ordered labeled tree with node

labels being operation invocations and the leaf nodes

denoting elementary (i.e., indivisible) read and write

operations. Moreover, the tree must be perfectly bal-

anced with all leaves having the same distance from the

root; this constraint is dropped for the more general

case of object-model transactions (open nested trans-

actions). Finally, a constraint is imposed on conflicting

leaf nodes to be totally ordered so that no concurrent

write-write or read-write pair of operations is possible

on the same elementary object; for all other cases

partial orders are allowed. It is important to note that

transaction trees model executions and not programs.

Thus, node labels are method names along with con-

crete input parameter values (and possibly even output

parameter values if these are exploited in the reasoning

about concurrency); edges denote the dynamic calling

structure and not a static hierarchy.

A concurrent execution of several transaction

trees, referred to as a multilevel schedule, is essentially

an interleaved forest of the individual transaction trees.

This is illustrated in the figure below, for two transac-

tions with record-level and page-level operations, in
the same spirit as the previous example but with some

simplifications. Like before, the ordering of operations

is indicated by drawing the leaf nodes in their execu-

tion order from left to right (assuming total ordering

of leaves for simplicity). As the caller-callee relation-

ship in transaction trees is captured by vertical or

diagonal arcs, the crossing of such arcs indicates that

two (non-leaf) operations are concurrent. In the figure

the two transactions t1 and t2 are concurrent, and also

the store and fetch operations execute concurrently

and the same holds for the last two modify operations.

To reason about the correctness of such interleav-

ings, it is first necessary to define the ordering of non-

leaf operations: node o1 precedes o2 in the execution,

o1 < o2, if all leaf-level descendants of o1 precede all

leaf-level descendants of o2. The forest of labeled trees

and this execution order < define a multilevel sched-

ule, more generally, a schedule of transaction trees.

Following the standard argumentation about seri-

alizability for conventional, ‘‘flat’’ transactions, the

goal for a correct schedule is to show that the execution

is equivalent to a sequential one based on a notion of

conflicting versus non-conflicting operations. Usually,

commutativity properties of operations are the basis

for defining conflict relations. In the example, this

suggests that store and fetch operations on different

objects as well as pairs of modify operations on

different objects are non-conflicting (even if their

implementations write the same page). Thus, their

Multilevel Transactions and Object-Model Transactions M 1795

M

observed execution order could be changed, by

swapping adjacent operations, without changing the

overall effect of the schedule. But applying this princi-

ple to, for example, the store and fetch operations

in the above schedule does not work because these

two nodes are composite operations (i.e., non-leaf

nodes) and executed concurrently among themselves.

To disentangle the concurrency between these opera-

tions, one needs to reason about the execution order-

ing of their children, and in an actual system,

one would need a lower-level concurrency control

mechanism that treats the two operations as subtran-

sactions. The goal of this disentangling, the counter-

part to serial schedules in conventional concurrency

control theory, are isolated subtrees for the two opera-

tions. A subtree rooted at node o is isolated if there is

a total ordering among all its leaf-level descendants

and o either precedes or follows all other operations

o’ that are not among its descendants (o < o’ or

o’ < o). Once a subtree is isolated, the fact that its

root is a composite operation is no longer important,

and it is possible, for reasoning about equivalent

executions, to reduce an isolated subtree to its root

alone. This argument abstracts from the lower-level

executions, as they are now (shown to be equivalent

to) sequential.

Putting everything together, the above considera-

tions lead to three rules for transforming a multilevel

schedule into equivalent and abstracted executions,

ideally leading to a sequential execution of the transac-

tion roots:

� Commutativity rule: The order of two ordered leaf

operations p and q with, say, the order p < q, can

be reversed provided that
� both are isolated, adjacent in that there is no

other operation r with p < r < q, and

commutative,

� the operations belong to different transactions,

and

� the operations p and q do not have ancestors,

say p’ and q’, respectively, which are non-com-

mutative and totally ordered (in the order

p’ < q’).
� Ordering rule: Two unordered leaf operations p and

q can be (arbitrarily) ordered, i.e., assuming either

p < q or q < p, if they are commutative.

� Tree pruning rule: An isolated subtree can be

pruned and replaced by its root.
A schedule that, by applying the above rules, can be

transformed into a sequential execution of the transac-

tion roots is called tree-reducible or multilevel serial-

izable. Note that this notion of multilevel serializability

is much more liberal than the conventional notion

of read-write-oriented serializability. The example

schedule shown above is not serializable at the leaf

level of read and write operations (i.e., if one ignored

the level of search, fetch, store, and modify operations

and simply connected all leaves directly to the roots),

but these seemingly non-serializable effects on the low-

level storage structures are irrelevant as long as they

are properly handled within the scope of their parent

operations and new transactions access the data

through the higher-level operations like search, fetch,

store, and modify.

The example schedule depicted above is multilevel

serializable. It can be reduced as follows. First the two

reads of the fetch(x) operation are commuted with

their left-hand neighbors so that fetch(x) completely

precedes store(z); analogously the r(t) step of modify

(y) is commuted with its right-hand neighbors, the

children of modify(w), so that modify(w) completely

precedes modify(y). This establishes a serial order of

the record-level operations, all of them now being

isolated subtrees. This enables the application of the

pruning rule to remove all page-level operations. Next,

the fetch(x) operation of t2 is commuted with t1’s

store(z), modify(y), and modify(w) operations all the

way to the right, producing an order where all of t1’s

operations precede all of t2’s operations. This turns t1

and t2 into isolated subtrees. Finally, pruning the

operations of t1 and t2 produces the sequential order

of the transaction roots: t1 < t2.

The transformation rules do not directly lead to an

efficient concurrency control protocol. Rather their

purpose is to prove the correctness of protocols. But

for the case of a layered system, the way the example

was handled points towards a practically viable proto-

col. The key is to consider pairs of adjacent levels and

apply the transformation rules in a bottom-up man-

ner. So first, the commutativity and ordering rules are

used to establish a sequential execution of the parent

nodes of the leaf-level nodes, then these isolated par-

ents are reduced. Then, with the lowest level removed,

this procedure is iterated through the levels until

the roots of the entire transaction trees are isolated.

This proof strategy can be directly turned into a pro-

tocol by enforcing conventional order-preserving

1796M Multilevel Transactions and Object-Model Transactions
conflict-serializability (OPCSR) for each pair of adja-

cent levels. Any protocol for OPCSR can be used, and

even different protocols for different level pairs are

possible. The most widely used protocol, two-phase

locking, is often a natural choice, and then forms the

following multilevel locking protocol:

� Lock acquisition rule: When an operation f(x) is

issued, an f-mode lock on x needs to be acquired

before the operation can start its execution.

� Lock release rule: Once a lock originally acquired by

an operation f(x) with parent o (an operation at the

next higher level) is released, no other descendant

of o is allowed to acquire any locks.

� Subtransaction rule: At the termination of an oper-

ation o, all locks that have been acquired for des-

cendants of o are released, thus treating o as a

committed subtransaction. Note that the o-lock

for o itself is still kept – until the parent of o

terminates. The releasing of lower-level locks at

the end of a subtransaction is the origin of the

name ‘‘open nested transaction’’.

A possible execution of the example schedule under

this multilevel locking protocol is shown in the figure

below (with levels L1 and L0 referring to the record

and page layer in a database engine, and tij denoting

the jth subtransaction of transaction ti).

The example shows that, despite many page-level

conflicts, high concurrency is possible by exploiting the

finer granularity and richer semantics of record-level

operations. These benefits are even more pronounced

for index-key operations. For this case, highly opti-

mized special-purpose protocols like ARIES Key-

Value Locking have been developed. One important

optimization for both record and index operations is

that the subtransactions may use light-weight latching

instead of full-fledged locks.

Another use case with wide applicability are opera-

tions on counters, such as increment and decrement or

conditional variants on lower-bounded or upper-

bounded counters. Such objects and operations are

common in reservation systems, inventory control,

financial trading, and so on. The relaxed (but not

universal) commutativity properties of the operations

can be leveraged for very high concurrency even if

operations access the same object. Again, special im-

plementation techniques like escrow locking have been

developed for these settings. When counter operations

have a composite nature, e.g., by automatically
triggering updates on other objects, then the special

commutativity techniques need to be embedded in a

multilevel transaction framework.

A complication that arises from all these high-con-

currency settings is that undo recovery (for transaction

abort and to wipe out effects of incomplete transactions

after a crash) can no longer be implemented merely

by restoring prior page versions. Instead, adequately

implemented forms of inverse operations need to

be executed. Together with the composite nature of

operations, this necessitates a form of multilevel

recovery.

Most of the outlined principles and algorithms apply

to the general case of object-model transactions as well.

However, the absence of a layering does incur some extra

difficulties, which are beyond the scope of this entry. The

algorithms for fully general object-model transactions

are explained in detail in the textbook [14].

Future Directions
Multilevel transactions have originally been developed

in the database system context, but their usage and

potential benefits are by no means limited to database

management. So not surprisingly, object-model trans-

actions and related concepts are being explored in the

operating systems and programming languages com-

munity. Recent trends include, for example, enhancing

the Java language with a notion of atomic blocks that

can be defined for methods of arbitrary classes. This

could largely simplify the management of concurrent

threads with shared objects, and potentially also the

handling of failures and other exceptions. The run-

time environment could be based on an extended

form of software transactional memory [8].

Another important trend is to enhance compo-

site web services with transactional properties.

Again, object-model transactions is a particularly

intriguing paradigm because of its flexibility in

allowing application-specific methods for providing

atomicity, isolation, and persistence. Adapting and

extending transactional concepts for web services and

combining them with other aspects of service-oriented

computing is the subject of ongoing research [15].

Cross-references
▶Atomicity

▶Concurrency Control

▶ Escrow Transactions

▶Key Value Locking

Multimedia Data M 1797

M

▶ Locking

▶Multi-Level Recovery and the ARIES Algorithm

▶Nested Transaction Models

▶ System Recovery

▶Transaction

▶Transaction Management

Recommended Reading
1. Beeri C., Bernstein P.A., and Goodman N. A model for concur-

rency in nested transactions systems. J. ACM, 36(2):230–269,

1989.

2. Davies C.T. and Davies C.T. Jr. Data processing spheres of

control. IBM Syst. J., 17(2):179–198, 1978.

3. Gray J. and Reuter A. Transaction processing: concepts and

techniques. Morgan Kaufmann, Los Altos, CA, 1993.

4. Greenfield P., Fekete A., Jang J., Kuo D., and Nepal S. Isolation

support for service-based applications: A position paper. In

Proc. 3rd Biennial Conf. on Innovative Data Systems Research,

2007, pp. 314–323.

5. Lomet D.B. MLR: a recovery method for multi-level systems. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1992,

pp. 185–194.

6. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and

Schwarz P.M. ARIES: a transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

7. Moss J.E.B., Griffeth N.D., and Graham M.H. Abstraction in

recovery management. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1986, pp. 72–83.

8. NiY.,MenonV., Adl-TabatabaiA.-R.,HoskingA.L.,HudsonR.L.,

Moss J.E.B., Saha B., and Shpeisman T. Open nesting in

software transactional memory. In Proc. 12th ACM SIGPLAN

Symp. on Principles and Practice of Parallel Programming, 2007,

pp. 68–78.

9. Ramamritham K. and Chrysanthis P.K. A taxonomy of correct-

ness criteria in database applications. VLDB J., 5(1):85–97, 1996.

10. Schuldt H., Alonso G., Beeri C., and Schek H.-J. Atomicity and

isolation for transactional processes. ACM Trans. Database Syst.,

27(1):63–116, 2002.

11. Weikum G. Principles and realization strategies of multi-

level transaction management. ACM Trans. Database Syst.,

16(1):132–180, 1991.

12. Weikum G. and Hasse C. Multi-level transaction management

for complex objects: implementation, performance, parallelism.

VLDB J., 2(4):407–453, 1993.

13. Weikum G. and Schek H.-J. Architectural Issues of Transaction

Management in Multi-Layered Systems. In Proc. 10th Int. Conf.

on Very Large Data Bases, 1984, pp. 454–465.

14. Weikum G. and Vossen G. Transactional Information

Systems: Theory, Algorithms, and the Practice of Con-

currency Control and Recovery. Morgan Kaufmann, Los Altos,

CA, 2001.

15. Zimmermann O., Grundler J., Tai S., and Leymann F. Architec-

tural Decisions and Patterns for Transactional Workflows in

SOA. In Proc. 5th Int. Conf. Service-Oriented Computing,

Germany, 2007, pp. 81–93
Multi-Level Visualization

▶Visualizing Hierarchical Data
Multilingual Information Retrieval

▶Cross-Language Mining and Retrieval
Multi-Master System

▶Optimistic Replication and Resolution
Multimedia

▶ Image

▶ Image Representation

▶Video
Multimedia Content Enrichment

▶Automatic Image Annotation
Multimedia Data

RAMESH JAIN

University of California-Irvine, Irvine, CA, USA

Synonyms
Multimodal data

Definition
Multimedia in principle means data of more than one

medium. It usually refers to data representing multiple

types of medium to capture information and experi-

ences related to objects and events. Commonly used

forms of data are numbers, alphanumeric, text, images,

audio, and video. In common usage, people refer a

data set as multimedia only when time-dependent

data such as audio and video are involved.

1798M Multimedia Data
Historical Background
In early stages of computing, themajor applicationswere

scientific computations. In these applications, compu-

ters dealt with numbers and were programmed to carry

out a sequence of calculations to solve a scientific prob-

lem. As people realized power of computing, new appli-

cations started emerging. Alphanumeric data was the

next type of data to be used in different applications. In

early days, these applications were mostly related to

businesses. These applications were mostly to store

large volumes of data to find desired information from

this data set. These applications were the motivation of

the development of current database technology.

Text is a special case of alphanumeric data. In text,

there is a large string of alphanumeric data that humans

associate with written language. Text has been the basis

of written human communication and has become one

of themost common data form.Most of the information

and communication among humans takes place in text.

Next data type to start appearing on computers was

images. Images started in many applications where

they needed to be analyzed as well as in applications

where computers were used to create and display

images. Image processing and computer vision emer-

ged as fields dealing with image analysis and under-

standing while computer graphics emerged as a field

dealing with creation and display of images. Images

were initially represented in two ways: a list of lines

(called vectors) and a 2-dimensional array of intensity

values. The second method has now become the most

common method of representing images. Images rep-

resent a more complex data type because people per-

ceive not the data, which is really a large collection of

intensity values, but what the data represents. In com-

puter generated images, the semantics of the pixels is

determined and is known at the creation time. In all

other images, the semantics must be determined.

Computer vision researchers have been developing

tools to automatically determine this semantics and

have made progress. However, segmenting an image

to determine objects in it has been a difficult problem

and in general remains an unsolved problem.

Audio data represents variation of a signal over

time. Signal processing deals with many types of sig-

nals, but due to its closeness to human perception,

audio became an important signal type. Unlike regular

numerical, alphanumerical, and image data, audio is

time-varying or time dependent data. Like images, the

numbers have semantics only when they are rendered,
in this case using a speaker, to a human. Both images

and audio are a collection of numbers that have strong

semantics associated with them. This semantics can be

associated only by segmenting the data and identifying

each segment. Video is next in this sequence of seman-

tic richness. Video is a time-dependent sequence of

images synchronized with audio. This means that it

brings with it enormous volume of data and richness

of semantics.

In late 1980s, people started using the term multi-

media to denote combination of text, audio, and video.

This gained popularity because the technology had

advanced enough to combine these media to articulate

thoughts, messages, and stories using appropriate com-

bination of these components and present them easily

on computers, save them on CDs, and transmit and

receive them using compression/decompression and

streaming technologies. By the year 2000, multimedia

had become a common data form on computers

and Internet.

Foundations
Multimedia data is fundamentally different than the

data traditional databases normally manage. Some

fundamental differences in multimedia data are dis-

cussed here by considering several aspects.

Types and Semantics

The data in early generation databases was either a

number or a string of characters. Each data item usu-

ally represented value of an attribute. These attribute

had clear and explicit semantics in the applications

that used the data.

Multimedia data may be considered to be com-

posed of numbers or strings. So an image may be

viewed as a two dimensional array of integers. In

multimedia applications, however, the semantics is

not defined and used at the level of such basic types

as in traditional applications. An image is usually con-

sidered an image that contains certain objects that are

characterized by regions in the image. The relation-

ships among these regions should also be captured.

Depending on the context and an application, the

semantics associated with an image may change and

may need to be represented differently. Similarly an

audio file may be viewed as a collection of phonemes

rather than just integer values at a time instant repre-

senting sound energy. Video is a synchronized combi-

nation of audio and images. But if a video is considered

Multimedia Data M 1799

M

just a combination of separate sound energy and

images, then the semantics of video is lost. The seman-

tics of video is due to synchronized combination of its

components rather than individual elements.

Multimedia types cannot be considered simply

by considering its atomic components. One must con-

sider whole data. The data types and the semantics of

multimedia data are the result of the ‘‘multi’’ and are

not present in single (mono) medium that may be part

of the whole data.

Gestalt philosophy is in action in multimedia data:

the whole is bigger than the sum of its parts.

Sequence and Order

Many components of multimedia data are measure-

ments using some sensors. These sensors measure

some attribute of physical world. These measurements

represent the attribute at a point in space at a particu-

lar time. The semantics of the data is intimately tied to

the space and time underlying the data. The data is

usually organized in the time sequence as it is acquired

over some predefined spatial ordering of its acquisition

using multiple sensors covering the space of interest.

Multimedia data could be archived data or live

data. Archived data is the one that was acquired and

stored and hence comes from a server. Live data is

presented as it is being acquired. Live data is increas-

ingly being used in many applications.

Size

Multimedia data is voluminous. Audio, Images, and

video are much larger in size than alphanumeric data

and text. Usually the size of traditional data can be

measured in bytes to Kilobytes. Images usually, even

the regular amateur photographs run into Megabytes

and video easily runs into Gigabytes to Terabytes. Due

to the size of the multimedia data, it is usually stored

and transmitted in compressed form. For analysis and

use of the data, it must be usually decompressed.

Meta data plays a significant role in the analysis of

multimedia data and is commonly stored as part of the

dataset. Metadata can be of two types: about context or

about content. Contextual metadata is about the situ-

ation of the real world and the parameters of devices

used in acquiring the data. Content related metadata is

obtained either thru analysis of the data or by human

annotation or interpretation of data.

Many different standards have evolved for com-

pression of multimedia data and association and
storage of metadata. Usually these standards related

to the medium and are developed by international

standards body. Some commonly used standards are

JPEG for images, MP3 for audio, and MPEG for video.

Accessing Multimedia Data

Each multimedia data is usually large and represents

measurements acquired using a sensor over space and

time. Even an image is acquired at a location at a

particular time and also contains measurements per-

formed in space using an array of pixel. Each pixel

represents measurements related to a particular point

in three-dimensional space. Each image or audio video

is usually represented as a separate file. This file may

contain raw measurements in original form or in com-

pressed form and may also contain associated meta-

data such as in EXIF data for photos acquired using

digital cameras.

Multimedia data representing a measurement is

usually represented as one file. In databases such data

is usually represented as a pointer to the file, as a

BLOB, or the name of the file.

In most current applications, multimedia data is

accessed based on the metadata. All queries are formed

based on metadata and then the correct file is retrieved

and presented. The granularity at which multimedia

data is accessed is at the level of file. Text search became

so useful when it was applied to documents by analyz-

ing and indexing all areas of a document. This content

analysis and indexing based on content within a file

will be very useful in multimedia data also. Research in

content analysis of multimedia documents for content-

based retrieval is an active research area currently.

Presentation

Multimedia data must be presented to a user by send-

ing it to appropriate devices. Audio must be sent to

speakers and images and video should also be dis-

played using special display programs. Displaying raw

data in a file is not useful to users. In most cases, before

displaying the data, it must be decompressed.

Considering large files and copyright issues, many

times multimedia data is not transferred to users for

storage, users are allowed to see or listen it only once

each time a display request is made. Such playback of

data is commonly called streaming of data and is

commonly used with video. In streaming, the data

from server is sent to a client only for displaying it

once. This is also used in the context of live data also.

1800M Multimedia Data Buffering
Key Applications
Computing at one time was mostly numeric, then it

became alphanumeric. Now it is multimedia. Almost

all applications in computing now deal with multime-

dia data. In a sense, the term multimedia was a good

term to use in the last decade, but now it is a redundant

term. In early days of computing there were two types

of computing: analog and digital. Slowly all computing

became digital. Now no body normally uses the term

digital computing because all computing is digital.

In the same way all computing ranging from scientific

to entertainment will use multimedia data and hence

the term multimedia data or multimedia computing

will shed ‘‘multimedia’’ and simply become data and

computing.

Future Directions
Multimedia data has already become ubiquitous. With

the increasing popularity of mobile phones with cam-

era, digital cameras, and falling prices of sensors of

different kinds multimedia data is becoming as wide-

spread as alphanumeric data. Considering the current

trend and human dependence on sensory data, it is

likely that soon multimedia data will become more

common than the traditional alphanumeric data. In

terms of volume, multimedia data already may be

far ahead of alphanumeric data.

Most of the current techniques which deal with

multimedia data have two major limitations: first

they mostly rely on metadata for access and they treat

each type, such as images, audio, and video, as a

separate type and hence create silos. What is required

is dealing with all data, alphanumeric as well as differ-

ent types of multimedia, as the data related to some

physical objects or situations. This unified approach

will treat all data in a unified manner and will not

distinguish between media. Each media will be consid-

ered only as a source helping understand an object or

a situation.

Cross-references
▶Multimedia Databases

Recommended Reading
1. Jain R. Experiential computing. Commn. ACM, 46(7):48–55,

2003.

2. Kankanhalli M.S., Wang J., and Jain R. Experiential sampling in

multimedia systems. IEEE Trans. Multimed., 8(5):937–946,

2006.
3. Rowe L. and Jain R. ACM SIGMM retreat report on

future directions in multimedia research. ACM Trans. Multime-

dia Comp., Comm., and Appl., 1(1):3–13, 2005.

4. Steinmetz R. and Nahrstedt K. Multimedia Fundamentals:

Media Coding and Content Processing (IMSC Press Multimedia

series). Prentice Hall, 2002.
Multimedia Data Buffering

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Multimedia data are large in size and reside on disks.

When users retrieve large multimedia data, in-memory

buffers are used to reduce the number of disk I/Os,

since memory is significantly faster than disk. The

problem to be studied is to efficiently make use of

buffers in the multimedia system to reduce the number

of I/Os in order to get a better performance when

multiple users are retrieving multiple multimedia

data simultaneously. Existing works on multimedia

data buffering focus on either the replacement algo-

rithms to lower the number of cache misses or the

buffer sharing algorithms when many simultaneous

clients reference the same data item in memory.
Historical Background
Early works on multimedia data buffering focus on

replacement algorithms to reduce the number of

cache misses. Although in the traditional database

systems, a number of different buffer replacement algo-

rithms, such as the least recently used (LRU) and most

recently used (MRU) algorithms are used to approxi-

mate the performance behavior of the optimal buffer

replacement algorithm [1,2,6,8,15]. They do not re-

duce disk I/O significantly when they are used in a

multimedia database system. Many new buffer replace-

ment algorithms are proposed to save as much of the

reserved disk bandwidth for continuous media data as

possible. In [5], the effects of various buffer replace-

ment algorithms on the number of glitches experi-

enced by clients are studied. In [9], the authors

introduce two buffer replacement algorithms, namely,

the basic replacement algorithm (BASIC) and the

distance-based replacement algorithm (DISTANCE),

for multimedia database systems, which have a much

Multimedia Data Buffering M 1801

M

better performance in comparison with LRU and

MRU schema.

In terms of buffer sharing, a simple buffer replace-

ment strategy may miss some opportunities to share

memory buffers [14]. A straightforward use of LRU or

LRU-k [6,8] is shown to be inadequate [7]. Bridging

[3,4,10–12] as a new technique is studied to facilitate

data sharing in memory, but it can degrade the system

performance. In [13], the authors observe that an

uncontrolled buffer sharing scheme may reduce system

performance, and introduce the Controlled Buffer

Sharing (CBS), which can trade memory for disk

bandwidth in order to minimize cost per stream.

Foundations

Buffer Replacement

Assume that each buffer in the buffer space of a system

is of the same size and is tagged as either free or used.

All the free buffers are kept in a free buffer pool. In

order to meet the rate requirement for clients, the

system must pre-fetch the required data block from

disks into the buffer space, so that the required piece of

data is already in the buffer space before being read. In

each service cycle, the system first moves the buffers

containing data blocks that were already consumed in

the last service cycle to the free buffer pool, then

determines which data block need to be pre-fetched

from disk to the buffer next. If the block is not in the

buffer space, then it allocates buffers, from the set of

free buffers for the block and issues disk I/O to retrieve

the needed data block from disk into the allocated

buffers. The algorithm to decide which of the buffers

should be allocated is referred to as the buffer replace-

ment algorithm. Several general replacement algo-

rithms are listed below, which are widely used in

database management systems. (i) LRU: when a buffer

is to be allocated, the buffer containing the block that is

used least recently is selected. (ii) MRU: when a buffer

is to be allocated, the buffer containing the block that is

used most recently is selected. (iii) Optimal: when a

buffer is to be allocated, the buffer containing the

block that will not be referenced for the longest period

of time is selected. Since arrival, pause, resume and

jump time when playing an object are unknown in

advance, the optimal algorithm can only be implemen-

ted for simulation studies.

For the multimedia database systems, the com-

monly used LRU and MRU algorithms may not reduce
disk I/O significantly. Two buffer replacement algo-

rithms are proposed. They are the basic replacement

algorithm (BASIC) and the distance-based replace-

ment algorithm (DISTANCE).

The BASIC Buffer Replacement Algorithm The main

idea behind the BASIC buffer replacement algorithm

[9] is as follows. It is possible to estimate the duration

by assuming each client will remain its consumption

rate for a long period, even though it is difficult to

decide which block will not be referenced for the lon-

gest period of time. It assumes that clients continue to

consume data at the specified rate they are accessing the

blocks. When there is a new request to allocate a buffer,

the BASIC algorithm selects the buffer containing the

block that will not be accessed for the longest period of

time. If there are several such buffers, the algorithmwill

select the block with the highest offset-rate ratio (the

ratio of offset/rate) to be replaced. The BASIC algo-

rithm may reduce the miss ratio to nearly optimal, but

it requires to sort clients and free buffers in the increas-

ing order of their offset, whichmake the overhead of the

BASIC algorithm very high. The DISTANCE algorithm

is proposed to handle the overhead.

The DISTANCE Buffer Replacement Algorithm The

main idea behind the DISTANCE buffer replacement

algorithm is based on distance between clients [9].

Suppose that there are clients, c1,c2,..., accessing the

same media data, M. Assume that each client, ci, is

accessing the M at a certain position of M, denoted as

pi(M), and the data block on disk starting from pi(M)

is kept in a buffer, Bi. Let all clients that are accessing

the same media data M be sorted in order, c1,c2,....

Here, ci is accessing M ahead of cj if i < j, or in other

words, pi(M) > pj(M), because ci has already accessed

pj(M) and is now accessing pi(M). The distance be-

tween ci and its next ci+1 is denoted as disti which is

equal to pi(M) � pi+1(M). Note that the distance di is a

value associated with the client ci. Suppose all clients

c1,c2,..., are accessing their blocks in the buffers in the

current cycle. They all need to move ahead and access

the next data blocks. The question becomes which

buffer they are accessing in the current cycle needs to

be freed if the buffer is full. In brief, the buffers con-

sumed by a client, ci, will be kept longer if the next

client, ci+1, will need them shortly (small distance

disti). The buffers consumed by a client, cj, will be

freed earlier if the next client, cj+1, does not need to

1802M Multimedia Data Buffering
access the data block pj(M), that cj has just accessed,

shortly (large distance distj). The DISTANCE algo-

rithm frees buffers consumed by clients in the previous

cycle in the decreasing order of clients’ disti. In other

words, when a new buffer needs to be allocated and

there are no free buffers, a buffer consumed by a client,

which will not be accessed by its next client shortly,

based on the distance between clients, will be selected

as a victim to be freed.

The DISTANCE algorithm can be implemented by

dynamically maintaining a client list which is ordered

in the decreasing order of clients’ disti. The overhead is

lower than the BASIC algorithm.

Table 1 shows the comparison of overhead and

cache misses of different buffer replacement algo-

rithms, nB is the number of buffers used.

Buffer Sharing

Consider buffer sharing, where cached data can be

shared among all the clients. A naive approach is to

use LRU or LRU-k, which is shown to be inadequate

to efficiently share data. An example is given in Fig. 1.

There are two displays, D1 and D2, and both reference

different blocks of the same clip. With LRU as a

global buffer pool replacement policy, the blocks

accessed by D1 may be discarded before D2 needs to

access.
Multimedia Data Buffering. Table 1. Overhead and cache m

(Table 1 in [9])

nB LRU MRU

300 13:48 s/670,080 13:44 s/668,974

600 13:32 s/670,080 13:18 s/665,748

1,200 16:80 s/665,934 16:27 s/657,634

2,400 13:22 s/654,240 12:32 s/642,914

Multimedia Data Buffering. Figure 1. Two displays may com
Bridging [3,4,10–12] as a technique is to form a

bridge between the data blocks staged by two different

clients referencing the same clip, which enables them

to share memory and use one disk stream. As shown in

Fig. 2, two displays D1 and D2 are supported using a

single disk stream. The distance betweenD1 andD2 is 5.

With the bridging technique, it holds the intermediate

data pages between D1 and D2 in the buffer pool, and

does not swap these pages out from the buffer pool.

However, as analyzed in [11,12], a potential problem is

that a simple bridging may possibly exhaust the avail-

able buffer space, which will have great impacts on

the system performance.

A Controlled Buffer Sharing (CBS) technique is

proposed in [13], which increases disk bandwidth

using memory in order to achieve two objectives,

namely, minimization of cost per simultaneous stream,

and balancing memory and disk utilization. The latter

considers that unlimited memory consumption may in

fact degrade the system performance. The framework of

CBS is shown in Fig. 3. The framework consists of three

components: a configuration planner, a system gener-

ator, and a buffer management technique. The config-

uration planner determines the amount of required

buffer and disk bandwidth in support of a pre-

specified performance objective. The system generator

simply acts as a multiplier. The first two components
isses of different buffer replacement algorithms

BASIC DISTANCE # of refs

33:30 s/638,974 11:89 s/641,274 670,080

1:12min/595,416 10:96 s/599,214 670,080

3:41min/549,570 12:28 s/554,640 670,080

5:31min/480,068 8:64 s/481,364 670,080

pete for buffer frames with LRU (Fig. 1 in [13]).

Multimedia Data Buffering M 1803
are applied off-line to determine the system size. The

buffer management technique controls the memory

consumption at run time.

In the CBS framework, a distance threshold, dt, is

used to capture the cost of memory and disk band-

width and control the number of pinned buffer blocks
Multimedia Data Buffering. Figure 2. Bridging (Fig. 2 in [13

Multimedia Data Buffering. Figure 3. The CBS Scheme (Fig

Multimedia Data Buffering. Figure 4. The effectiveness of d
between two adjacent displays that access the same

clip. As shown in Fig. 4, suppose dt = 5, D1 and D2

can share one disk stream because their distance is

below the specified threshold, while D3 and D4 cannot

share one disk stream because their distance exceeds

the threshold.
]).

. 4 in [13]).

istance threshold (dt = 5) (Fig 5 in [13]).

M

1804M Multimedia Data Indexing
Key Applications
Buffering is widely used in retrieving and playing

multimedia data, especially for network continuous

media applications, where multiple users may need to

display multiple medias simultaneously.

Cross-references
▶Buffer Management

▶Buffer Manager

▶Continuous Multimedia Data Retrieval

▶ I/O Model of Computation

▶Multimedia Data Buffering

▶Multimedia Data Storage

▶Multimedia Resource Scheduling

Recommended Reading
1. Chew K.M., Reddy J., Romer T.H., and Silberschatz A. Kernel

support for recoverable-persistent virtual memory. In Proc.

USENIX MACH III Symposium, 1993, pp. 215–234.

2. Chou H.T. and DeWitt D.J. An evaluation of buffer management

strategies for relational database systems. In Proc. 11th Int. Conf.

on Very Large Data Bases, 1985, pp. 127–141.

3. Dan A., Dias D.M., Mukherjee R., Sitaram D., and Tewari R.

Buffering and caching in large-scale video servers. In Digest of

Papers - COMPCON, 1995, pp. 217–224.

4. Dan A. and Sitaram D. Buffer management policy for an on-

demand video server. IBM Research Report RC 19347.

5. Freedman C.S. and DeWitt D.J. The SPIFFI scalable video-on-

demand system. ACM SIGMOD Rec., 24(2):352–363, 1995.

6. Lee D., Choi J., Kim J.H., Noh S.H., Min S.L., Cho Y., and Kim C.S.

On the existence of a spectrum of policies that subsumes the least

recently used (LRU) and least frequently used (IFU) policies.

SIGMETRICS Perform. Eval. Rev., 27(1):134–143, 1999.

7. Martin C. Demand paging for video-on-demand servers. In

Proc. Int. Conf. on Multimedia Computing and Systems, 1995,

pp. 264–272.

8. O’Neil E.J., O’Neil P.E., and Weikum G. The LRU-K page re-

placement algorithm for database disk buffering. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1993, pp. 297–

306.

9. Özden B., Rastogi R., and Silberschatz A.Multimedia Information

Storage and Management, chap. 7: Buffer Replacement Algo-

rithms for Multimedia Storage Systems. Kluwer Academic, 1996.

10. Rotem D. and Zhao J.L. Buffer management for video database

systems. In Proc. 11th Int. Conf. on Data Engineering, 1995,

pp. 439–448.

11. Shi W. and Ghandeharizadeh S. Buffer sharing in video-on-

demand servers. SIGMETRICS Perform. Eval. Rev., 25(2):13–20,

1997.

12. Shi W. and Ghandeharizadeh S. Trading memory for disk band-

width in video-on-demand servers. In Proc. 1998 ACM Symp.

on Applied Computing, 1998, pp. 505–512.

13. Shi W. and Ghandeharizadeh S. Controlled Buffer

Sharing in Continuous Media Servers. Multimedia Tools

Appl., 23(2):131–159, 2004.
14. Christodoulakis S., Ailamaki N., Fragonikolakis Y., and Koveos

L. Leonidas K. An object oriented architecture for multimedia

information systems. Data Eng., 14(3):4–15, 1991.

15. Stonebraker M. Operating system support for database

management. Readings in database systems (3rd ed.), Morgan

Kaufmann, San Francisco, CA, USA, pp. 83–89, 1998.
Multimedia Data Indexing

PAOLO CIACCIA

University of Bologna, Bologna, Italy

Synonyms
MM indexing

Definition
Multimedia (MM) data indexing refers to the problem

of preprocessing a database of MM objects so that they

can be efficiently searched for on the basis of their

content. Due to the nature of MM data, indexing

solutions are needed to efficiently support similarity

queries, where the similarity of two objects is usually

defined by some expert of the domain and can vary

depending on the specific application. Peculiar features

of MM indexing are the intrinsic high-dimensional

nature of the data to be organized, and the complexity

of similarity criteria that are used to compare objects.

Both aspects are therefore to be considered for design-

ing efficient indexing solutions.

Historical Background
Earlier approaches to the problem of MM data

indexing date back to the beginning of 1990s, when it

became apparent the need of efficiently supporting

queries on large collections of non-standard data

types, such as images and time series. Representing

the content of such data is typically done by automati-

cally extracting some low-level features (e.g., the color

distribution of a still image), so that the problem of

finding objects similar to a given reference one is

transformed into the one of looking for similar fea-

tures. Although, at that time, many solutions from the

pattern recognition field were available for this prob-

lem, they were mainly concerned with the effectiveness

issue (which features to consider and how to compare

them), thus almost disregarding efficiency aspects.

The issue of making similarity query processing

scalable to large databases was first considered in

Multimedia Data Indexing M 1805
systems like QBIC [6] for the indexing of color images

and by more focused approaches such as the one

described by Jagadish in [8] for indexing shapes. Not

surprisingly, these solution adopted index methods

available at that time that had been developed for the

case of low-dimensional spatial databases, such as

R-trees and Grid files. The peculiarity of MM data

then originated a flourishing brand new stream of

research, which resulted in many indexes explicitly

addressing the problems of high-dimensional features

and complex similarity criteria.
M

Foundations
Figure 1 illustrates the typical scenario to be dealt with

for indexing multimedia data. The first step, feature

extraction, is concerned with the problem of highlight-

ing those relevant features, fi, of an object oi on

which content-based search wants to be performed.

In the figure, this is the shape of the image subject

(a cheetah). The second step, feature approximation, is

optional and aims to obtain a more compact represen-

tation, afi, of fi that can be inserted into a suitable index

structure (third step). It has to be remarked that, while

feature extraction is needed to define which are the

relevant aspects of objects on which the search has to

focus on, feature approximation is mainly motivated by

feasibility and efficiency reasons. This is because it might

not be possible to directly index non-approximate fea-

tures and/or indexing approximate features might result

in a better performance of the search algorithms.

Consider a collection O ¼ {o1,o2,...,on} of MM

objects with corresponding features F ¼ {f1, f2,...fn}

and approximate features AF ¼ {af1, af2,...afn}. In

order to compare features, a distance function d is

typically set up, where d(fi, fj) measures how dissimilar

are the feature values of objects oi and oj. Given a

reference object q (the query point), a range query

with radius 2, also called an 2-similarity query, will

return all the objects oi2O such that d(fi, f(q))�2,
Multimedia Data Indexing. Figure 1. The multimedia data i
whereas a k-nearest neighbor query (k-NN) will

return the k objects in O whose features are closest to

those of q.

A simple yet remarkable result due to Agrawal,

Faloutsos, and Swami [1], and now popularly known

as the lower-bounding lemma, provides the basis for

exactly solving queries by means of an index that

organizes approximate features:

The lower-bounding lemma. Let I be an index that

organizes the set of approximate features AF ¼ {af1,

af2,...afn} and that compares such features using an

approximate distance dappr . If, for any pair of objects,

it is dappr(afi, afj)�d(fi, fj), then the result of a range

query obtained from I is guaranteed to contain the

exact result, i.e., no false dismissals are present.

The result easily follows from the observation that,

since dappr lower bounds d by hypothesis, d(fi, f(q))�2
implies dappr(afi, af(q))�2. The lower-bounding

lemma guarantees that querying the index with a

search radius equal to 2 will return a result set that

contains all the objects whose non-approximate fea-

tures satisfy the query constraint.

Filter & Refine

When indexing is based on an approximate distance, a

two-step filter & refine process is therefore needed, in

which the role of the index is to filter outmany irrelevant

objects. The so-resulting candidate objects then need to

be verified by using the actual distance d. The lower-

bounding lemma is also the key for solving k-NN

queries using a multi-step query processing approach.

The effectiveness of the filter & refine approach

depends on two contrasting requirements:

1. The approximate distance function dappr should be

a tight approximation of d, inorder tominimize the

numberoffalsehits,i.e.,thoseobjectsthatdonotsatisfy

the query constraint yet the index is not able todiscard

them.Theseareexactlythoseobjectsoi for which both

dappr(afi,af(q))�2 and d(fi, f(q))>2 hold.
ndexing scenario.

1806M Multimedia Data Indexing
2. At the same time, dappr should be relatively cheap

to compute as compared to d, in order to avoid

wasting much time in the filter phase.

The literature on MM indexing abounds of examples

showing how to derive effective approximations for com-

plex distance functions. For instance, the QBIC system

compares color images using a quadratic form distance

function, d2A(fi, fj) ¼ (fi� fj)A(fi� fj)
T¼

PD
k¼1

PD
l¼1ak,

l(fi,k� fj,k)(fi, l� fj, l), where A¼(ak, l) is a color-to-

color similarity matrix and features are color histo-

grams. Evaluating dA has complexity O(D2), which

becomes too costly even for moderately large values

of D, the number of bins in the color histograms. In [6]

it is demonstrated that using as approximate features

the average RGB color of an image, which is a three-

dimensional vector, and comparing average colors

using the Euclidean distance, i.e., d2avg (afi,afj)¼∑k2{R,

G,B}(afi,k� afj,k)
2, leads to derive that d2avg�dA

2 ∕ l1,
where l1 is the smallest eigenvalue of matrix A. Then,

the lower-bounding lemma guarantees that querying

an index built on average colors with a range query of

radius E=
ffiffiffiffiffi
l1

p
will not lead to any false dismissal.

As another relevant example, consider the problem

of comparing feature vectors that represent time-varying

signals. A distance function more robust than the

Euclidean one to misalignments on the time domain is

the dynamic time warping (DTW) distance. However,

evaluating DTW has a complexity O(D2), which is un-

tenable for long time series. In [9] Keogh introduces an

effective lower-bounding function for the DTW dis-

tance. In essence, the idea is to construct an envelope,

Env(q), around the query time series q, after that an

Euclidean-like distance between Env(q) and a stored

sequence fi can be computed in O(D) time.
The Need for Approximate Features

As anticipated, there are several reasons for which

approximate features might have to be considered.

First, in many relevant cases the features of a MM

object are represented through a high-dimensional

vector, fi¼ (fi,1, fi,2,...,fi,D), with D of the order of the

hundreds or even thousands. At such high dimensions

it is known that the performance of multidimensional

indexes rapidly deteriorates, becoming either compa-

rable to, or even worse than, that of a sequential scan.

This phenomenon, known as the dimensionality curse,

inhibits any approach based on a direct indexing

of feature values. Besides ad hoc solutions, such as
those above described, one might consider using

some dimensionality reduction technique that projects

feature vectors onto a (much) lower D 0-dimensional

space, D 0�D, and then indexing the so-obtained

D 0-dimensional feature vectors. The effectiveness of

such techniques however is highly variable, being

dependent on the actual data distribution.

Another practical reason that could motivate the

use of approximate features is the mismatch between

the type of the features and the one natively supported

by the index. As a simple example, consider an

index implementation that only manages entries of

an arbitrary, but fixed, size, and that objects to be

indexed are regions of pixels described by their bound-

aries. Clearly, boundary descriptions have different

sizes, depending on the shape of the region. In this

case a possible solution would be to use a conservative

approximation of boundaries, like minimum bounding

rectangles.

Finally, it might also be the case that, although in

principle actual feature values could be stored in the

index, the distance function to be used on them cannot

be supported by the index organization. A remarkable

example is the DTW distance: since DTW is not a true

metric, in that it does not satisfy the triangle inequality,

no multidimensional index can directly process queries

with such a distance function.

Metric Indexing

When features are not vectors and/or the distance

function is not the Euclidean distance or some other

(possibly weighted) Lp norm, coordinate-based spatial

indexes cannot be used. There are many cases in which

this situation shows up. For instance, in region-based

image retrieval (RBIR), each image is first automati-

cally segmented into a set of homogeneous regions,

each of them being represented by a vector of low-

level features (usually encoding color and texture

information). Thus, each fi is a set of vectors and as

such cannot be indexed by a spatial index. As a further

example, graphs representing, say, spatially located

objects with their relationships cannot be directly sup-

ported by a coordinate-based index. In cases like these,

one could consider using a metric index, such as the

M-tree [5]. A metric index just requires the distance

function d used to compare feature values to be a

metric, i.e., a positive and symmetric function that

also satisfies the triangle inequality: d(fi, fj) � d(fi,

fk)þd(fk, fj) 8fi, fj, fk. Although there is nowadays a

Multimedia Data Indexing M 1807

M

large number of metric indexes available [14], as

demonstrated in [3] all of them are based on the

common principle of organizing the indexed features

into a set of equivalence classes and then discarding

some of these classes by exploiting the triangle inequal-

ity. For instance, in the case of the M-tree each class

corresponds to the set of feature values stored into a

same leaf of the tree. Triangle inequality can also be

applied to save some distance computations while

searching the index, which turns out to be particularly

relevant in the case of computationally demanding

distance functions (a common case with MM data).

This was first shown for the M-tree, in which distances

between each feature value and its parent in the index

tree are precomputed and stored in the tree. The idea is

quite general and effective, an obvious tradeoff existing

between the amount of extra information stored in the

tree and the benefit this has on pruning the search

space. Along this direction, Skopal and Hoksza pro-

pose the M∗-tree [12], a variant of the M-tree in which

each entry in a node also includes its NN in that node,

i.e., the NN-graph of the features in each node is

maintained.

A common objection to metric indexes is that they

are bound to use only a specific distance function,

namely the one with which the index is built. Along

the direction of increasing flexibility, Ciaccia and

Patella [4] introduce the QIC-M-tree, which is an

extension of the M-tree able to support queries with

any distance function dQ from the same ‘‘family’’ of the

distance dI used to build the tree. On the condition

that there exists a scaling factor SdI!dQ such that

dIðf i; f jÞ � SdI!dQdQðf i; f jÞ holds (i.e., dI lower

bounds dQ up to a constant factor), the lower-bound-

ing lemma applies, and the index can answer queries

based on dQ. A similar idea allows the QIC-M-tree to

use also a ‘‘cheap’’ approximate distance dC as a filter

before computing the ‘‘costly’’ dI and dQ functions.

Ad Hoc Solutions

The availability of general purpose metric indexes does

not rule out the possibility of deriving better, more

specialized solutions for the problem at hand. For

instance, the STRG-Index [10] is a specialized struc-

ture for indexing spatio-temporal graphs arising from

the modelling of video sequences. Consider a video

segment with N frames. Each frame is first segmented

into a set of homogeneous color regions, each of which

becomes a node in the region adjacency graph (RAG)
of that frame, with edges connecting spatially adjacent

regions. Node attributes (such as size, color, and loca-

tion) are then defined, and the same is done for edges

(in which case attributes such as the distance and the

orientation between the centroids of connected regions

can be used). Since a node representing a region can

spanmultiple frames, nodes in consecutive RAGs can be

connected to represent temporal aspects. The resulting

graph is called spatio-temporal region graph (STRG).

The STRG is then decomposed into a set of object

graphs (OGs) and background graphs (BGs), and clus-

ters of OGs are obtained for the purpose of indexing.

Since the distance function used for comparing OGs

(the so-called extended graph edit distance (EGED)) is

a metric, any metric index could be used. The ad hoc

STRG-Index proposed in [10] is a three-level metric

tree, where the root node contains entries for the BGs,

the intermediate level stores clusters of OGs, and indi-

vidual OGs are inserted into the leaf level.

Extensions of available indexes might be also re-

quired as a consequence of feature approximation. An

example is found in [13], where the problem of

providing rotation-invariant retrieval of shapes under

the Euclidean (L2) distance is considered. After convert-

ing a shape boundary into a time series fi ¼ (fi,1, fi,2,...,

fi,D) (this is quite a common way to represent shapes,

see e.g., [2]), a discrete fourier transform (DFT) is

applied to obtain a representation of fi in the frequency

domain. Due to Parseval’s theorem, the DFT transfor-

mation preserves the Euclidean distance [1]. To obtain

invariance to rotation, only the magnitude of DFT

coefficient is retained. The so-resulting vectors Fi are

then compressed by keeping only the k (k � D) coeffi-

cients with the highest magnitude (together with their

position in the original vector) plus an error term 2Fi
given by the square root of the sum of the squares of

dropped coefficients. This information allows a tight

lower bound to be derived on the actual rotation-

invariant Euclidean distance between fi and a query

shape q. For indexing, a variation of the VP-tree is

introduced, which allows compressed features to be

stored and searched.

Key Applications
Any application dealing with massive amounts of mul-

timedia data requires effective indexing solutions for

efficiently supporting similarity queries. This is further

motivated by the complexity of distance functions that

are of interest for multimedia data.

1808M Multimedia Data Querying
Future Directions
All the above indexing techniques and methods assume

(at least) that the distance function is a metric. An

interesting problem is to devise indexing methods for

non-metric distance functions that do not rely on the

lower-bounding lemma. The work of Skopal [11] on

semimetrics appears to be a relevant step on this direc-

tion. In the same spirit, Goial, Lifshits and Schütse [7]

study how to avoid turning the similarity search prob-

lem into a distance-based one, which in several cases

might not yield a metric. Working directly with simi-

larities is however more complex, since there is no

analogue of the triangle inequality property for simi-

larity values. Let ranky(x) be the rank of object x with

respect to object y (i.e., x is the NN of y if ranky(x)¼ 1).

Then, [7] introduces the concept of disorder constant

DC, the smallest value for which the disorder inequality

ranky(x)�DC(rankz(x)þrankz(y)) holds 8x,y,z in the

given dataset, and describes algorithms for NN search

based on this idea. Making this approach practical for

large MM databases remains an open problem.
Cross-references
▶Curse of Dimensionality

▶Dimensionality Reduction

▶High Dimensional Indexing

▶ Indexing and Similarity Search

▶ Indexing Metric Spaces

▶Multimedia Data Querying

▶ Spatial Indexing Techniques
Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A. Efficient similarity

search in sequence databases. In Proc. 4th Int. Conf. on Founda-

tions of Data Organizations and Algorithms, 1993, pp. 69–84.

2. Bartolini I., Ciaccia P., and Patella M. WARP: Accurate retrieval

of shapes using phase of Fourier descriptors and time

warping distance. IEEE Trans. Pattern Anal. Machine Intell.,

27(1):142–147, 2005.

3. Chávez E., Navarro G., Baeza-Yates R., and Marroquı́n J.S. Prox-

imity searching in metric spaces. ACM Comput. Surv., 33

(3):273–321, September 2001.

4. Ciaccia P. and Patella M. Searching in metric spaces with user-

defined and approximate distances. ACM Trans. Database Syst.,

27(4):398–437, December 2002.

5. Ciaccia P., Patella M., and Zezula P. M-tree: An efficient access

method for similarity search in metric spaces. In Proc. 23th Int.

Conf. on Very Large Data Bases, 2007, pp. 426–435.

6. Faloutsos C., Barber R., Flickner M., Hafner J., Niblack W.,

Petkovic D., and Equitz W. Efficient and effective querying by

image content. J. Intell. Inf. Sys., 3(3/4):231–262, July 1994.
7. Goyal N., and Lifshits Y., and Schütse H. Disorder inequality:

A combinatorial approach to nearest neighbor search. In Proc.

1st ACM Int. Conf. on Web Search and Data Mining, 2008,

pp. 25–32.

8. Jagadish H.V. A retrieval technique for similar shapes. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1991,

pp. 208–217.

9. Keogh E. Exact indexing of dynamic time warping. In

Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 406–417.

10. Lee J., Oh J.H., and Hwang S. STRG-index: Spatio-temporal

region graph indexing for large video databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 718–729.

11. Skopal T. On fast non-metric similarity search by metric

access methods. In Advances in Database Technology, Proc.

10th Int. Conf. on Extending Database Technology, 2006,

pp. 718–736.

12. Skopal T. and Hoksza D. Improving the performance of M-tree

family by nearest-neighbor graphs. In Proc. 11th East European

Conf. Advances in Databases and Information Systems, 2007,

pp. 172–188.

13. Vlachos M., Vagena Z., Yu P.S., and Athitsos V. Rotation invari-

ant indexing of shapes and line drawings. In Proc. ACM Int.

Conf. on Information and Knowledge Management, 2005, pp.

131–138.

14. Zezula P., Amato G., Dohnal V., and Batko M. Similarity Search:

The Metric Space Approach. Springer, Berlin Heildelberg,

New York, 2005.
Multimedia Data Querying

K. SELCUK CANDAN
1, MARIA LUISA SAPINO

2

1Arizona State University, Tempe, AZ, USA
2University of Turin, Turin, Italy

Definition
One common characteristic of multimedia systems is

the uncertainty or imprecision of the data. The models

that can capture the imprecise and statistical nature of

multimedia data and query processing are fuzzy and

probabilistic in nature. Therefore multimedia data

query evaluation requires fuzzy and probabilistic data

and query models as well as appropriate query proces-

sing mechanisms. Probabilistic models rely on the

premise that the sources of imprecision in data and

query processing are inherently statistical and thus

they commit onto probabilistic evaluation. Fuzzy

models are more flexible and allow various different

semantics, each applicable under different system

requirements to be selected for query evaluation.

Multimedia Data Querying M 1809
Historical Background
Due to the possibly redundant ways to sense the envi-

ronment, the alternative ways to process, filter, and

fuse multimedia data, and the subjectivity involved in

the interpretation of data and query results, multime-

dia data quality is inherently imprecise:

� Feature extraction algorithms that form the basis

of content-based multimedia data querying are

generally imprecise. For example, high error rate is

encountered in motion capture data due to the mul-

titude of environmental factors involved, including

camera and object speed. Especially for video/ audio/

motion streams, data extracted through feature extr-

action modules are only statistically accurate and

may be based on the frame rate or the position of

the video camera related to the observed object.

� It is rare that a multimedia querying system relies on

exact object matching. Instead, in many cases, mul-

timedia databases leverage similarities between fea-

ture vectors to identify data objects that are similar

to the query. In many cases, it is also necessary to

account for semantic similarities between associated

annotations and partial matches, where objects in
Multimedia Data Querying. Figure 1. Multimedia query pro

stored in the database and how the user interprets the query

cycle. This process itself is usually statistical in nature and, co

results.
the result satisfy some of the requirements in the

query, but fail to satisfy all query conditions.

� Imprecision can also be due to the available index

structures which are imperfect. Due to the sheer size

of the data, many systems rely on clustering and

classification algorithms for pruning during query

processing.

� Query formulation methods are not able to capture

user’s subjective intention perfectly. For example, in

Query by Example (QBE), which features, feature

value ranges, feature combinations, or which simi-

larity notions are to be used for processing is left to

the system to figure out through feature signifi-

cance analysis, user preferences, relevance feedback

(Fig. 1), and/or collaborative filtering techniques,

which are largely statistical and probabilistic

in nature.

Inmany multimedia querying systems, more than one of

these reasons coexist and, consequently, the system must

take them into consideration collectively. Figure 2 pro-

vides an example query (in an SQL-like syntax used by

the SEMCOG system [10]) which brings together im-

precise and exact predicates. Processing this query
cessing usually requires the semantic gap between what is

and the data to be bridged through a relevance feedback

nsequently, introduces probabilistic imprecision in the

M

Multimedia Data Querying. Figure 2. A sample multimedia query with imprecise and exact predicates.

1810M Multimedia Data Querying
requires assessment of different sources of imprecision

and merging them into a single value. Traditional

databases are not able to deal with imprecision since

they are based on Boolean logic: predicates are treated

as propositional functions, which return either true or

false. A naive way to process queries is to transform

imprecision into true or false by mapping values

less than a cut-off to false and the remainder to true.

With this naı̈ve approach, partial results can be

quickly refuted or validated based on their relation-

ships to the cut-off. User provided cut-offs can also be

leveraged for filtering, while maintaining the impreci-

sion value of the results for further processing. In

general, however, cut-off based early pruning leads to

misses of relevant results. This leads to the need for

data models and query evaluation mechanisms, which

can take into account imprecision in the evaluation of

the query criteria. In particular, the data and query

models cannot be propositional in nature.

Foundations
Assessments of the degrees of imprecisions in multi-

media data can take different forms. For example, if

the data is generated through a sensor/operator with a

quantifiable quality rate (for instance a function of the

available sensor power), then a scalar-valued assess-

ment of imprecision may be applicable. This is similar

to the (so called type-1) fuzzy predicates, which (un-

like propositional functions which return true or false)

return a membership value to a fuzzy set. In this

simplest case, the quality assessment of a given object,

o, is modeled as a value 0 � qa(o) � 1. A more general

quality assessment model would take into account

the uncertainties in the assessments themselves. These

type of predicates, where sets have grades of membership

that are themselves fuzzy, are referred to as type-2 fuzzy

predicates. For example the assessment of a given

object o can be modeled as a normal distribution of

qualities, qa(o) = No(qo, xo), where qo is the expected
quality and xo is the variance. Although the type-2

model can be more general and use different
probability distributions, this specific model (using

the normal distribution) is a generally applicable sam-

pling-related imprecision as it relies on the well-known

central limit theorem, which states that the average

of the samples tends to be normally distributed,

even when the distribution from which the average

is computed is not normally distributed. Note that,

in general, such complex statistical assessments of

data precision can be hard to obtain. A compromise

between the above two models represents the range

of possible qualities of an object with a lower- and

an upper-bound. In this case, given an object o,

its quality assessment, qa(o) is modeled as a pair <qolow,

qohigh>, where 0 � qolow � qohigh � 1.

Fuzzy data and query models for multimedia que-

rying are based on the fuzzy set theory and fuzzy logic

introduced by Zadeh in mid 1960s [14]. A fuzzy set, F,

with domain D is defined using a membership func-

tion, F: D ! [0,1]. A fuzzy predicate, then, corre-

sponds to a fuzzy set: instead of returning true(1) or

false(0) values as in propositional functions, fuzzy pre-

dicates return the corresponding membership values

(or scores). Fuzzy clauses combine fuzzy predicates

and fuzzy logical operators into complex fuzzy state-

ments. Like the predicates, the fuzzy clauses also have

associated scores. The meaning of a fuzzy clause (i.e.,

the score it has, given the constituent predicate scores)

depends on the semantics chosen for the fuzzy logical

operators, not (¬), and (∧), and or (∨).

Table 1 shows popular min and product fuzzy se-

mantics used in multimedia querying. These two se-

mantics (along with some others) have the property

that binary conjunction and disjunction operators are

triangular-norms (t-norms) and triangular-conorms

(t-conorms). Intuitively, t-norm functions reflect

the (boundary, commutativity, monotonicity, and as-

sociativity) properties of the corresponding Boolean

operations. Although the property of capturing Bool-

ean semantics is desirable in many applications

of fuzzy logic, for multimedia querying, this is not

always the case [3]. For instance, the partial match

Multimedia Data Querying M 1811

M

requirements invalidate the boundary conditions.

Monotonicity can be too weak a condition for multi-

media query processing. In many cases, according to

real-world and artificial nearest-neighbor workloads,

the highest-scoring predicates are interesting and

the rest is not interesting. This implies that the min

semantics, which gives the highest importance on

the lowest scoring predicate, may not be suitable for

real workloads. Other fuzzy semantics used in multi-

media systems include arithmetic and geometric aver-

age semantics. Figure 3 visualizes the behavior of the

fuzzy conjunction operator under different fuzzy

semantics. It is well established that the only fuzzy

semantics which preserves logical equivalence of state-

ments (involving conjunction and disjunction) and

is also monotonic is the min semantics. This, and

the query processing efficiency it enables due to

its simplicity, make it a popular choice despite its

shortcomings.

Processing multimedia queries, like the one

depicted in Fig. 2, under a fuzzy system requires

extending query languages and query processors with

fuzzy semantics. Many commercial database manage-

ment systems include fuzzy extensions that are suitable

for multimedia applications. Relational databases can
Multimedia Data Querying. Table 1. Fuzzy min and product

the predicate Pi on x

Min semantics

mPi^Pj ðxÞ ¼ minfmiðxÞ; mjðxÞg

mPi^Pj ðxÞ ¼ maxfmiðxÞ; mjðxÞg

m:Pi ðxÞ ¼ 1� miðxÞ

Multimedia Data Querying. Figure 3. Visual representation

horizontal axes correspond to the values between 0 and 1 for

resulting scores according to the corresponding function.
be extended to capture fuzzy data in various different

ways. In tuple-level approaches, the schema of each

fuzzy relation is extended to include one or more

attributes, each representing the degrees of imprecision

of the tuples in the relation with respect to a different

interpretation of the tuples. In these systems, the rela-

tional algebra operators (such as select, project, join,

union, difference) are also extended to apply the

selected fuzzy semantics to the tuple scores. In the

attribute-level approaches, the degrees of uncertainty

are associated individually to the attribute values.

Especially when the imprecisions in the various attri-

butes of a multimedia object are due to different rea-

sons, attribute level approaches are more applicable

due to their finer granularity. Furthermore, since each

attribute can be treated as a fuzzy predicate on the

multimedia object, query evaluation within these

models can benefit more naturally from fuzzy logic

evaluation schemes.

Processing these queries, on the other hand,

requires significant extensions to the underlying data-

base engines. For example, the underlying relational

concepts, such as functional dependencies and nor-

malization, need to be extended to cope with fuzziness

in the stored data. In particular, in multimedia
semantics for logic operators: mi (x) stands for the score of

Product semantics

mPi^Pj ðxÞ ¼
miðxÞ�mj ðxÞ

maxfmiðxÞ;mj ðxÞ;ag
a 2 ½0; 1�

mPi_Pj ðxÞ ¼
miðxÞþmj ðxÞ�miðxÞ�mj ðxÞ�minfmiðxÞ;mj ðxÞ;1�ag

maxf1�miðxÞ;1�mj ðxÞ;ag

m:Pi ðxÞ ¼ 1� miðxÞ

s of various binary fuzzy conjunction semantics: The

the two input conjuncts and the vertical axis represents the

Multimedia Data Querying. Figure 4. The relative

impact of the predicates in a scoring function can vary

based on the scores of the individual predicates.

1812M Multimedia Data Querying
databases, users are usually interested in a result set

which is ranked according to a ranking criterion which

is generally user dependent (Fig. 1). Adali et al. [1]

introduces a similarity algebra which brings together

relational operators and results of multiple similarity

implementations in a uniform language. Other alge-

braic treatments of fuzzy multimedia queries, relying

on finer granularity attribute-based models, include

the FNF2 algebra [5]. When the requirement for exact

matches is removed, the result space becomes signifi-

cantly large, and thus, the query engine cannot rely

on any processing scheme which would need to touch

or enumerate all solutions. Consequently, query pro-

cessing schemes would need to generate results as

progressively (in decreasing order of relevance) as pos-

sible. Fagin [7] proposes ranked query evaluation

algorithms, which assume that individual sources can

progressively output sorted results and also enable

random access. These algorithms also assume that the

query has a monotone combined scoring function.

Candan et al. [4] presents approximate ranked query

processing techniques for cases where not all sub-

queries are able to return ordered results. In turn,

Fagin et al. [8] recognizes that there may be cases

where random accesses are impossible and presents

algorithms under monotonicity assumption to enu-

merate top-k objects without accessing all the data.

These augment monotonicity with an upper bound

principle, which enables bounding of the maximum

possible score of a partial result. Qi et al. [13] estab-

lishes an alternative, sum-max monotonicity property

and shows how to leverage this for developing a self-

punctuating, horizon-based ranked join (HR-Join)

operator for cases when the more strict monotonicity

property does not hold. Top-k querying can also be

viewed as a k-constrained optimization problem,

where the goal function includes both a Boolean con-

straint characterizing the data of interest and a quanti-

fying function which acts as the numeric optimization

target [15]. Adali et al. [2] and Li et al. [11] extend the

relational algebra to support ranking as a first-class

construct. Li et al. [11] also presents a pipelined and

incremental execution model of ranking query plans.

A particular challenge in multimedia querying is

that (as shown in Fig. 1) the underlying query proces-

sing scheme needs to adapt to the specific needs and

preferences of individual users. Due to its flexibility,

the fuzzy model enables various mechanisms of adap-

tation. First of all, if user’s feedback focuses on a
particular attribute in the query, the way the fuzzy

score of the corresponding predicate is computed can

change based on the feedback. Secondly, the semantics

of the fuzzy logic operator can be adapted based on the

feedback of the user. A third mechanism through

which user’s feedback can be taken into account is to

enrich the merge function, used for merging the fuzzy

scores, with weights that regulate the impacts of the

individual predicates. Fagin proposed a generic

weighting mechanism that can be used for any fuzzy

merge function [7]. The mechanism ensures that

(a) the result is a continuous function of the weights

(as long as the original merge function is continuous),

(b) sub-queries with zero weight can be dropped with-

out affecting the rest of the query, and (c) if all weights

are equal, then the result is equal to the original, not-

weighted merge function. Candan and Li [3], on the

other hand, argued that the relative importance of

predicates in a merge function should be measured in

terms of the overall impacts changes in the scores that

the individual predicates would have on the overall

score (Fig. 4). Consequently, the relative importance

of predicates can vary based on the scores the individ-

ual predicates take and the corresponding partial deri-

vatives. A more direct mechanism to capture the user

feedback is to modify the partial derivatives of the

scoring functions appropriately. While the generic

scheme presented by Fagin [7] would satisfy this for

some merge functions, such as the arithmetic average,

it would fail to capture this requirement for others,

such as the commonly used product semantics.

Multimedia Data Querying M 1813

M

Unlike the fuzzy models, which can capture a large

spectrum of application requirements, probabilistic

approaches to data and query modeling are applicable

only to those cases where the source of imprecision is of

statistical nature. These cases include probabilistic noise

in data collection, sampling (over time, space, or popu-

lation members) during data capture or processing,

randomized and probabilistic algorithms (such Markov

chains and Bayesian networks) used inmedia processing

and pattern detection, and probabilistic consideration

of relevance feedback. Dalvi and Suciu [6], for example,

associates a value between 0 and 1 to each tuple in a

given relation: the value expresses to probability with

which a given tuple belongs to the relation. By extending

SQL and the underlying relational algebra with proba-

bilistic semantics and a theory of belief, the authors

provide a probabilistic semantics for query processing

with uncertain matches.

A general simplifying assumption in many proba-

bilistic models is that the individual attributes (and the

corresponding predicates) are independent of each

other: consequently, the probability of a conjunction

can be computed as the product of the probabilities of

the conjuncts; i.e., under these conditions, the proba-

bilistic model corresponds to the fuzzy product seman-

tics. However, the independence assumption does not

always hold (in fact, it rarely holds). Lakshmanan et al.

[9] presents a probabilistic relational data model, an

algebra, and aggregate operators that capture various

types of interdependencies, including independence,

mutual exclusion, as well as positive, negative, and

conditional correlation.

While the simplest probabilistic models associate a

single value between 0 and 1 to each attribute or tuple,

more complete models represent the score in the form

of an interval of possible values or more generally in

terms of a probability distribution describing the possi-

ble values for the attribute or the tuple. Consequently,

these models are able to capture more realistic scenarios,

where the imprecision in data collection and processing

prevents the system to compute the exact quality of the

individual media objects, but (based on the domain

knowledge) can associate probability distributions to

them. Note that relaxing the independence assumption

or extending the model to capture non-singular prob-

ability distributions both necessitate changes in the

underlying rank evaluation algorithms.

Other non-relational probabilistic models for multi-

media querying includes Markov chains and Bayesian
networks. A stochastic process is said to be Markovian if

the conditional probability distribution of the future

states depends only on the present. A Markov chain is

a discrete-time stochastic process which is conditionally

independent of the past states. A random walk on a

graph, G(V,E), is a Markov chain whose state at any

time is described by a vertex of G and the transition

probability is distributed equally among all outgoing

edges. The transition probability distribution in the

corresponding Markov model can be represented as a

matrix, where the (i, j)’th element of this matrix, Tij,

describes the probability that, given that the current

state is i, the process will be in state j in the next time

unit; i.e., the n-step transition probabilities can be

computed as the n’th power of the transition matrix.

Markovian models are used heavily for linkage analysis

in supporting queries over web, multimedia, and social

network data with graphical representations.

A Bayesian network is another graphical probabi-

listic model used especially for representing probabi-

listic relationships between variables (e.g., objects,

properties of the objects, or beliefs about the properties

of the objects) [12]. In a Bayesian network nodes

represent variables and edges between the nodes repre-

sent the relationships between the probability distribu-

tions of the corresponding variables. Consequently,

once they are fully specified, Bayesian networks can

be used for answering probabilistic queries given cer-

tain observations. However, in many cases, both the

structure as well as the parameters of the network have

to be learned through iterative and sampling-based

heuristics, such as expectation maximization (EM),

and Markov Chain Monte Carlo (MCMC) algorithms.

Hidden Markov models (HMMs), where some of the

states are hidden (i.e., unknown), but variables that

depend on these states are observable, are Bayesian

networks used commonly in many machine-learning

based multimedia pattern recognition applications.

This involves training (i.e., given a sequence of obser-

vations, learning the parameters of the underlying

HMM) and pattern recognition (i.e., given the para-

meters of an HMM, finding the most likely sequence of

states that would produce a given output).

Key Applications
Applications of multimedia querying include perso-

nal and public photo/media collections, personal

information management systems, digital libraries,

on-line and print advertisement, digital entertainment,

1814M Multimedia Data Storage
communications, long-distance collaborative systems,

surveillance, security and alert detection, military,

environmental monitoring, ambient and ubiquitous

systems that provide real-time personalized services

to humans, improved accessibility to blind and elderly,

rehabilitation of patients through visual and haptic

feedback, and interactive performing arts.

Future Directions
While most of the existing work in this area focused on

content-based and object-based query processing, fu-

ture directions in multimedia querying will involve

understanding of how media objects affect users and

how do they fit into users experiences in the real world.

These require better understanding of underlying psy-

chological and cognitive processes in human media

processing. Ambient media-rich systems which collect

and feed in diverse media from environmentally em-

bedded sensors necessitate novel ways of continuous

and distributed media processing and fusion schemes.

Intelligent schemes to choose the right objects to pro-

cess are needed to scale query processing workflows to

the immense influx of real-time media data. In a simi-

lar manner, collaborative-filtering based query proces-

sing schemes that can help overcoming the semantic

gap between media and users’ experiences will help the

multimedia databases scale to Internet-scale media

indexing and querying.

Cross-references
▶ Fuzzy Models

▶ Probabilistic Databases

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶ Information Retrieval

▶Multimedia Data

▶Multimedia Databases

▶Multimedia Data Indexing

▶Multimedia Information Retrieval Model

▶Multimedia Retrieval Evaluation

▶Top-K Selection Queries on Multimedia Datasets

Recommended Reading
1. Adali S., Bonatti P.A., Sapino M.L., and Subrahmanian V.S. A

multi-similarity algebra. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 402–413.

2. Adali S., Bufi C., and Sapino M.L. Ranked relations:

query languages and query processing methods for multimedia.

Multimed. Tools Appl., 24(3):197–214, 2004.

3. Candan K.S. and Li W.-S. On similarity measures for multime-

dia database applications. Knowl. Inf. Syst., 3(1):30–51, 2001.
4. Candan K.S., Li W.-S., and Priya M.L. Similarity-based ranking

and query processing in multimedia databases. Data Knowl.

Eng., 35(3):259–298, 2000.

5. Chianese A., Picariello A., Sansone L., and Sapino M.L.

Managing uncertainties in image databases: a fuzzy approach.

Multimed. Tools Appl., (23):237–252, 2004.

6. Dalvi N.N. and Suciu D. Efficient query evaluation on prob-

abilistic databases. In Proc. 30th Int. Conf. on Very Large Data

Bases, 2004, pp. 864–875.

7. Fagin R. Fuzzy queries in multimedia database systems. In Proc.

17th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 1998, pp. 1–10.

8. Fagin R., Lotem A., and Naor M. Optimal aggregation

algorithms for middleware. J. Comput. Syst. Sci., 66

(4):614–656, 2003.

9. Lakshmanan L.V., Leone N., Ross R., and Subrahmanian V.S.

ProbView: a flexible probabilistic database system. ACM Trans.

Database Syst., 22(3):419–469, 1997.

10. Li W.-S. and Candan K.S. SEMCOG: a hybrid object-based

image and video database system and its modelling, language,

and query processing. Theory & Practice of Object Syst., 5

(3):163–180, 1999.

11. Li C., Chang K.C.-C., Ilyas I.F., and Song S. RankSQL:

Query algebra and optimization for relational top-k queries. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 131–142.

12. Pearl J. Bayesian networks: a model of self-activated memory for

evidential reasoning. In Proc. 7th Conf. of the Cognitive Science

Society, 1985, pp. 329–334.

13. Qi Y., Candan K.S., and Sapino M.L. Sum-Max monotonic

ranked joins for evaluating top-K twig queries on weighted

data graphs. In Proc. 33rd Int. Conf. on Very Large Data Bases,

2007, pp. 507–518.

14. Zadeh L.A. Fuzzy sets. Inf. Control, 8(3):338–353, 1965.

15. Zhang Z., Hwang S., Chang K.C., Wang M., Lang C.A., and

Chang Y. Boolean + Ranking: querying a database by

K-constrained optimization. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, pp. 359–370.
Multimedia Data Storage

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Data storage management, as one of the important

functions in database management systems, is to man-

age data on disk in an efficient way to support data

retrieval and data update. Multimedia data storage

management is to manage continuous media data

(audio/video) on disk. The uniqueness of multimedia

data storage management is, in a multiuser environ-

ment, how to arrange the data storage to support a

continuous retrieval of large continuous media data

Multimedia Data Storage. Figure 1. A hiccup free display

(Fig. 3 in [5]).

Multimedia Data Storage M 1815

M

from disk to be displayed on screen, at a pre-specified

rate, without any disruptions, which is also called

hiccup-free display.

Historical Background
In a multimedia environment, the continuous media

needs to be retrieved and displayed continuously. As

magnetic disks are used as the mass storage device for

multimedia data, zoning is one approach to increase

the storage capacity of magnetic disks. Here, zones of

a disk drive are different regions of the disk drive that

usually have different transfer rates. A number of stud-

ies have investigated techniques to support a hiccup-

free display of continuous media (video/audio) using

magnetic disk drives with a single zone [1,2,9,10] in the

early 1990s. These studies assume a fixed transfer rate

for a disk drive. These techniques can be possibly

adopted to design a multi-zone disk system, but such

a multi-zone disk system is then forced to use the

minimum transfer rate of the zones for the entire

disk, in order to guarantee a continuous display of

continuous media objects. Such an approach is called

Min-Z-tfr.

In the late 1990s and early 2000s, many new tech-

niques are proposed to deal with the storage of contin-

uous media in multi-zone disks [4,5]. In [4], VARB

and FIXB are proposed to place media objects on

the multi-zone disks. VARB and FIXB techniques pro-

vide the average transfer rate of zones while ensuring a

continuous display, compared with Min-Z-tfr, which

is forced to use the minimum transfer rate of zones.

VARB and FIXB increase the throughput of the system,

while they also (i) increase startup latency, (ii) waste disk

space, and (3) increase the amount of memory required

to support more simultaneous displays. A configuration

planner is proposed to decrease the drawbacks of VARB

and FIXB, in order to meet the performance require-

ments of applications [4]. As VARB and FIXB [4] take

account of a single media type only, RP, MTP, and MVP

are proposed in [5] to support multiple media types

with different bandwidth requirements. In [4,5], the

discussions focus on multimedia data placement across

disk drives to support continuous display requirement.

Foundations

Hiccup-Free Display

The size of continuous media, especially videos, can

be very large. The transmission of data must be just-in-

time. In other words, data must be retrieved from disks
and transmitted to the display in a timely manner that

prevents hiccups. A cycle-based data retrieval tech-

nique [6,12] is designed to provide continuous display

for multiple users. As shown in Fig. 1, it is a cycle-

based data retrieval technique to support hiccup-free

display [5]. Consider a constant-bit-rate (CBR) media.

In order to guarantee a continuous display of a contin-

uous media A, the system needs to retrieve the block of

Ai before its immediate previous block Ai�1 completes

its display. For each block Ai, there are two tasks,

namely, block retrieval and display initialization. This

process of block retrieval and display initialization

repeats in a cyclic manner until all A blocks have

been displayed. If the time to retrieve a block, termed

block retrieval time, Tp (as indicated in Fig. 1), is

smaller than or equal to the time period to display a

block, then the whole display process will be hiccup

free [5]. The time interval between the time a request

of A arrives and the time the display of A starts is called

startup latency.

FIXB and VARB

Modern disk drivers are produced with multiple zones

to meet the demands for a higher storage capacity [11].

A zone is a contiguous collection of disk cylinders

where the tracks in the cylinders are supposed to have

the same storage capacity. The outer zones have a

higher transfer rate in comparison with the inner

zones. Two approaches, FIXB and VARB, are proposed

in [4] to support a continuous display of continuous

media using a single disk with multi-zones. Suppose

that the disk consists of m zones, Z1, Z2,...,Zm, and

1816M Multimedia Data Storage
the transfer rate of zone Zi is Ri. Assume that each

object X is partitioned into f blocks: X1, X2,...,Xf .

With FIXB (Fixed Block Size), the blocks of an

object X are rendered equi-sized, i.e., Xi = Xj, for any

i and j. The system assigns the blocks of X to the zones

in a round-robin manner. FIXB is designed to support

a predetermined number of simultaneous displays (N).

The retrieval process of this system is to scan the disk

in one direction, for example, starting with the outer-

most zone moving inward, visiting one zone at a time

and multiplexing the bandwidth of that zone among N

block reads. A sweep is a scan of the zones. The time to

perform one such a sweep is denoted as TScan. The time

of reading N blocks from zone Zi, denoted TMUX(Zi), is

dependent on the transfer rate of zone Zi. As the

transfer rate of zones varies, the time to read blocks

from different zones also varies. To support hiccup-free

displays, the system uses buffers to compensate for the

low transfer rates of innermost zones.

VARB makes TMUX(Zi) to be identical for all zones,

using variable block sizes. The size of a block, B(Zi), is a

function of the transfer rate of the zone Zi. This results

in an identical transfer time for all the blocks, Tdisk, i.e.,

Tdisk ¼ BðZiÞ
Ri

¼ BðZjÞ
Rj

, for any i and j. Like FIXB, VARB

assigns the blocks of an object to the zones in a round-

robin manner. Unlike FIXB, with VARB, the blocks of

an object X have different sizes depending on which

zones the blocks are assigned to. Also, like FIXB, VARB

employs memory to compensate for the low band-

width of innermost zones.

With FIXB, the blocks of an object is equi-sized,

whereas VARB renders the blocks in different sizes,

which depends on the transfer rate of its assigned zone.

FIXB is easy to be implemented in comparedwithVARB.

But VARB requires a lower amount of memory and

incurs a lower latency as compared to FIXB.

RP, MTP, and MVP

Based on zoning, there are different data transfer rates

(Ri) to retrieve data from a disk. When a server is

required to support multiple media types with differ-

ent bandwidth requirements, the block reading time

varies widely depending on the block size and its

assigned zone. Suppose that there are n different

media types to be supported. The block size of

a media type i object is determined by Bi = Tp � Di

where Di is the bandwidth requirement of the media

type i, and Tp is a fixed time period which is set to

be the same for all the media types. The transfer
time (service time) to retrieve a block of a media type

i object in zone Zj is si;j ¼ Bi

Rj
. Suppose that there

are b blocks, the average service time is computed as

�s ¼
Xb
i¼1

Fi

Xn
j¼1

Pi;Bj

Xm
k¼1

Pi;Zk
Bj

Rk

where Fi is the access frequency of block i, for 1� i� b,

Pi;Bj
is the probability that the size of block i is Bj, and

Pi;Zk
is the probability that this block is assigned to

zone Zk. The variance of service time is:

s2s ¼
Xb
i¼1

Fi

Xn
j¼1

Xm
k¼1

Pi;Bj
Pi;Zk

ðsj;k � �sÞ2

Three approaches are proposed in [5]: RP, MTP,

and MVP. RP (Random Placement) assigns blocks

to the zones in a random manner. MTP (Maximizing

Throughput Placement) sorts blocks based on their

size and frequency of access (Fi � Bi). The blocks are

assigned to the zones sequentially starting with the

fastest zone, i.e., block i with the highest Fi � Bi
value is assigned to the fastest zone. With MVP (Mini-

mizing Variance Placement), a block of size Bi is placed

on the zone Zj (with Rj) which has the closest Bi

Rj
value

to the average block reading time (�TB):

�TB ¼ average block size

average transfer rate
¼

1
n

Pn
i¼1

Bi

1
m

Pm
i¼1

Ri

Performance studies in [5] demonstrate that both

MTP and MVP are superior to RP. MVP outperforms

MTP regarding the average service time and/or vari-

ance of service time. One advantage of MVP is that it

is not sensitive to the access frequency of objects.

Data Placement across Disk Drivers

The bandwidth of a single disk is insufficient for

the multimedia applications that strive to support

thousands of simultaneous displays. One approach is

to employ a multi-disk architecture. Assuming a system

with D homogeneous disks, the data is striped across

the disks in order to distribute the load of a display

evenly across the disks [2,3,8].

The striping technique is as follows (Fig. 2). First,

the disks are partitioned into k disk clusters where each

cluster consists of d disks: k ¼ dD
d
e. An object X is

partitioned into f blocks, X1, X2,..., Xf, and the blocks

Multimedia Data Storage. Figure 2. Three clusters with two logical zones per cluster (Fig. 12 in [4]).

Multimedia Databases M 1817

M

of X are assigned to the k disk clusters in a round-robin

manner, starting with an arbitrarily chosen disk cluster

and zone, for example, zone Zj in disk cluster Ci.

In a disk cluster, each block of X, Xi, is declustered

[7] into d fragments, Xi,j, where each fragment is

assigned to a different disk in the disk cluster. As

shown in Fig. 2, the X0 block is assigned to the disk

cluster C0, and its two declustered fragments, X0,0 and

X0,1 are assigned to the zone Z0. Note that the frag-

ments of a block need to be assigned to the same zone

on the d disks in the disk cluster where the block is

assigned to. In the retrieval of objects, one zone of all

disks in a disk cluster is active per time period. To

display object X of Fig. 2, it needs to access zone Z0
in disk cluster C0, when the disk cluster is idle, followed

by accessing zone Z1 in disk cluster C1. This process

repeats to retrieve/display all blocks of the object X.

Key Applications
Multimedia information systems have emerged as an

essential component inmany application domains rang-

ing from library information systems to entertainment

technology. The data storage management is the basis

to support a continuous display of multimedia objects.

Cross-references
▶Continuous Multimedia Data Retrieval

▶Multimedia Data Buffering

▶Multimedia Resource Scheduling

▶ Storage Access Model

▶ Storage Devices

▶ Storage Management

▶ Storage Manager

▶ Storage Resource Management

Recommended Reading
1. Anderson D.P. and Homsy G. A continuous media I/O server

and its synchronization Mechanism. Computer, 24(10):51–57,

1991.
2. Berson S., Ghandeharizadeh S., Muntz R., and Ju X. Staggered

striping in multimedia information systems. ACM SIGMOD

Rec., 23(2):79–90, 1994.

3. Ghandeharizadeh S. and Kim S. Striping in Multi-disk Video

Servers. In Proc. SPIE High-Density Data Recording and

Retrieval Tech. Conf., 1995.

4. Ghandeharizadeh S., Kim S., Shahabi C., and Zimmermann R.

Multimedia Information Storage and Management, chap. 2:

Placement of Continuous Media in Multi-Zone Disks. Kluwer

Academic, 1996.

5. Ghandeharizadeh S. and Kim S.H. Design of multi-user editing

servers for continuous media. Multimedia Tools Appl.,

11(1):101–127, 2000.

6. Ghandeharizadeh S., Kim S.H., Shi W., and Zimmermann R. On

minimizing startup latency in scalable continuous media servers.

In Proc. SPIE Conf. on Multimedia Computing and Network-

ing, 1997.

7. Ghandeharizadeh S., Ramos L., Asad Z., and Qureshi W. Object

placement in parallel hypermedia systems. In Proc. 17th Int.

Conf. on Very Large Data Bases, 1991, pp. 243–254.

8. Ozden B., Rastogi R., and Silberschatz A. Disk striping in

video server environments. In Proc. Int. Conf. on Multimedia

Computing and Systems, 1996, pp. 580–589.

9. Rangan P.V. and Vin H.M. Efficient storage Techniques for

Digital Continuous Multimedia. IEEE Trans. Knowl. Data Eng.,

5(4):564–573, 1993.

10. Reddy A.L.N. and Wyllie J.C. I/O issues in a multimedia system.

Computer, 27(3):69–74, 1994.

11. Ruemmler C. and Wilkes J. An introduction to disk drive

modeling. Computer, 27(3):17–28, 1994.

12. Tewari R., Mukherjee R., Dias D.M., and Vin H.M. Design

and performance tradeoffs in clustered video servers. In

Proc. Int. Conf. on Multimedia Computing and Systems, 1996,

pp. 144–150.
Multimedia Databases

RAMESH JAIN

University of California-Irvine, Irvine, CA, USA

Synonyms
Multimodal databases

1818M Multimedia Databases
Definition
Multimedia Databases are databases that contain and

allow key data management operations with multime-

dia data. Traditional databases contained alphanumeric

data and managed it for various applications. Increas-

ingly, applications now contain multimedia data that

requires defining additional types and requires develop-

ment of operations for storage, management, access,

and presentation of multimedia data. Multimedia data-

bases must increasingly deal with issues related to man-

aging multimedia data as well as the traditional data.

Commonly, databases that manage images, audio, and

video in addition to metadata related to these and other

alphanumeric information are called multimedia data-

bases. When databases contain only one of the images,

audio, or video, they are called image databases, audio

databases, and video databases, respectively. Consider-

ing the current trend, it is likely that most databases will

slowly become multimedia databases.

Historical Background
The first in multimedia databases to appear were image

databases that started appearing in late 1980s. Research-

ers in early image databases were more concerned with

using databases for maintaining results of image proces-

sing operations to analyze and understand image analy-

sis systems. Remote sensing and medical imaging

produced images that needed to be saved and analyzed

to extract information for various applications. In most

of these applications, an environment to save images and

processing results of these images were required.

The idea ofmaking images an integral component of

databases first started appearing in early 1990s. Relation-

al data model had become the most common data

model to deal with structured data and was used to

store images as binary large objects (BLOBs) in these

databases. To deal with images as first class data objects

in images, a multilayered datamodel was proposed. This

model considered image objects, and domain objects

and suggested storage of those along with changes in

relationships among objects. Some interesting develop-

ments in early systems evolved along two independent

directions. In one direction [3], a user was considered an

integral part of the query environment and feedback

from user resulted in continuous refinement of queries

leading to finding images that were required. In the

other approach, many low level features were computed

and used for finding images using query by example

approach. These two approaches adopted distinctly
different directions, the first used domain knowledge

and the second relied only on image features without

any use of domain knowledge. The image features used

commonly are different types and characteristics of

color histograms and texture measures. These appro-

aches are commonly called content-based retrieval, to

differentiate them from metadata based retrieval. Com-

mercially image database systems appeared in tradition-

al database systems in mid 1990s. IBM used its QBIC

technology in their DB2 database system and Oracle,

Sybase, and Illustra used technology developed by a

start-up company Virage. All search engines use image

retrieval mostly based on the metadata that includes

name of the file and text in the context of the image on

a webpage.

Content based video retrieval result started in ana-

lyzing video into its constituent parts. At the lowest level

is a frame, an individual image. Images are grouped into

shots, shots into scenes, and scenes into episodes. All

this data is extracted from video and stored in the

database. Speech recognition techniques are used to

prepare the transcript of the video and are also used in

the database. Such systems found early use in TV pro-

gram production and defense applications. Virage tech-

nology was used in these applications. Current search

engines usually use metadata for searching video.

Some specialized video search companies such as

Blinkx (http://www.blinkx.com/) use predominantly

text obtained using speech recognition or closed cap-

tions in television video. News videos have been one of

themajor application domains due to their applications

as well as to good quality of audio available for these.

In audio databases, the signal is analyzed to detect

characteristics that could be used in searching musical

pieces that are similar to those. Such techniques, some-

times referred to as query by humming, were thought

to be useful in finding music of interest.

Some effort has gone into analyzing CAD databases

also for retrieving drawing and objects of interest.

Though some research has started in addressing

multimedia data, rather than just one of the above

multimedia types, most research is in either images,

video, or audio. Text or metadata available in context

of multimedia data is being considered in multimedia

database research increasingly.

Foundations
The most fundamental difference in multimedia data-

bases compared to the traditional databases is in the

http://www.blinkx.com/

Multimedia Databases M 1819

M

rich semantics of the data. Multimedia data, in addi-

tion to being lot more voluminous, is very rich in

semantics. Many queries that users are interested re-

quire understanding of the semantics of the data. The

problem becomes more complex because the semantics

of multimedia is dependent not only on the data, but

also on the specific user, the context in which the query

is asked, and other sets of data available in the system.

Early approaches to multimedia databases did not

consider the nature of multimedia data and just stored

multimedia data either as BLOBs or links to files con-

taining the data. These systems could allow only limit-

ed operations on multimedia data – usually limited to

display or rendering of the data. No other operations

or queries could be performed on this data.

With increasing use of multimedia data and applica-

tions that require use of multimedia data inmany differ-

ent ways, the nature of multimedia databases started

changing. Currently, multimedia databases are still in

their early stages. Many different concepts and approa-

ches are being tried. Some of the important emerging

ideas that are being tried in multimedia databases are

discussed below. This area is currently a very active one

and is likely to receive increasing attention both from

academic and industrial research community.

A multimedia database system is considered to

have the following four clear modules that need to

work together to provide the functionality desired

from them.

Data Analysis and Feature Extraction

A MMDB contains multimedia data but just storing

the data as a BLOB does not allow any queries related

to the content of the data. To solve this problem, data is

analyzed to extract features from the data. These fea-

tures can then be used to derive the required semantics.

The features extracted depend on the nature of the type

of the data and domain of application for the MMDB.

These features could range from low-level features that

are very general and do not depend on the application

domain such as, color histograms and texture features

for images to high level features directly tied to appli-

cation domain such as shape of the tumor.

A significant amount of research related to MMDB

is in specific media related research communities such

as audio processing or computer vision. There is strong

interest in finding efficient and effective features to

interpret multimedia data in general as well as in

specific applications.
Domain Knowledge and Interpretation

Multimedia data interpretation requires use of domain

knowledge. Moreover, the knowledge required for

interpretation of this data is not only the traditional

domain knowledge represented using ontologies and

similar techniques well developed for interpretation of

text; but also media dependent models that require

sophisticated classification approaches. In audio and

video events must be detected in the data and that

requires processing time dependent features.

There is a new emerging perspective that multime-

dia data should be considered evidence for real world

events captured using such data. This requires model-

ing events and representing knowledge about domain

events. This knowledge is then used in interpretation of

multimedia data not in silos but together. Some prog-

ress is being made in representation of events.

Interaction and User Interface

Interaction environments used in traditional databases

and search engines are not satisfactory in many applica-

tions of MMDB. Using keywords or names of objects,

some limited searches can be performed, but many

applications require concepts and ideas that require

both continuous interactions and successive refinement

of queries in what is called emergent semantics environ-

ment. Query by example including query using sketches,

humming, and some other non-textual approaches

are being developed for some applications.

Presentation of results of queries also requires dif-

ferent techniques. Multimedia data is not very suited

to list or record based presentations. Also, in many

applications different media sources must be com-

bined to create multimedia presentations with which

a user can interact to refine and re-articulate their

queries in the emergent semantics environment.

Storage, Matching, and Indexing

In most applications, the size of the multimedia data

requires special attention. Commonly the video files

can not be stored even using BLOBs. It is common to

store file names of multimedia data and compute and

store features from the data in the database. In most

applications, for each file the number of features that

should be stored becomes very large from hundreds to

hundreds of thousands for each multimedia data item.

These features are used in searching for correct results.

Unlike traditional databases, where records are

searched based on exact matches, in MMDB search

1820M Multimedia Information Discovery
requires similarity matching. It is very rare to find a

result using exact matching. Search in MMDB usually

becomes finding data that has maximum similarity

based on features. The similarity techniques [] requires

comparing the features in queried data with all the data

in a MMDB for evaluating similarity.

Indexing in MMDB for similarity computation

requires representing features in a way that can allow

fast computation for potentially similar objects. Many

high dimensional techniques have been developed for

organizing this data. The dimensionality of data,

sometimes called curse of dimensionality, poses inter-

esting challenges in such organization.
Key Applications
Multimedia data is becoming ubiquitous. Ranging

from photos to videos, multimedia data is becoming

part of all applications. Most emerging applications

now have some kind of multimedia data that must

be considered integral part of the databases. More-

over, emerging applications in all applications areas,

ranging from homeland security to healthcare contain

rich multimedia data. Based on current trend, it is safe

to assume that in very near future, much of the data

managed in databases will be multimedia. Some par-

ticular application domains where multimedia is nat-

ural and will continue dominating are entertainment,

news, healthcare, and homeland security.
Future Directions
From structured data to semi-structured data and then

to unstructured data, databases are being challenged to

deal with increasingly semantic-rich environment.

MMDB offer the biggest challenge to databases in

terms of bridging the semantic gap.

Increasingly, applications are talking about situa-

tionmodeling using real life sensor data. These applica-

tions combine live sensory data with other information

to project current situation and also predict near future

for users to take appropriate actions. These databases

will require sophisticated tools to manage streaming

multimedia data. Research efforts in these areas have

already started and are likely to accelerate significantly

in the near future.
Cross-references
▶Multimedia Data
Recommended Reading
1. Bach J., Paul S., and Jain R. An interactive image management

system for face information retrieval. IEEE Trans. Knowl. Data.

Eng., Special Section on Multimedia Information Systems.,

5(4):619–628, 1993.

2. Gupta A., Weymouth T., and Jain R. Semantic Queries with

Pictures, The VIMSYS Model. In Proc. 17th Int. Conf. on Very

Large Data Bases, 1991, pp. 3–6.

3. Jain R. Out of the Box Data Engineering Events in Heteroge-

neous Data (Keynote talk). In Proc. 19th Int. Conf. on Data

Engineering, 2003.

4. Jain R. Events and experiences in human centered computing.

IEEE Comput, 41(2):42–50, 2008.

5. Katayama N. and Shin’ichi Satoh. The SR-tree: An Index Struc-

ture for High-Dimensional Nearest Neighbor Queries. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 369–380.

6. Lew M., Sebe N., Djerba C., and Jain R. Content-based multi-

media information retrieval: state of the art and challenges.

ACM Trans. Multimedia Comp., Comm., and Appl., 2(1):1–19,

2006.

7. Santini S., Gupta A., and Jain R. Emergent semantics through

interaction in Image Databases. IEEE Trans. Knowl. Data.

Eng.,13(3):337–351, 2001.

8. Santini S. and Jain R. Similarity Measures. IEEE Trans. Pattern.

Anal. and Mach. Intell, 21:9, 1999.

9. Smeulders A., Worring M., Santini S., Gupta A., and Jain R.

Image Databases at the end of the early years. IEEE Trans Pattern

Anal Mach Intell, 23(1), 2001.
Multimedia Information Discovery

▶Multimedia Information Retrieval Model
Multimedia Information Retrieval

▶ Semantic Modeling and Knowledge Representation

for Multimedia Data
Multimedia Information Retrieval
Model

CARLO MEGHINI, FABRIZIO SEBASTIANI, UMBERTO

STRACCIA

The Italian National Research Council, Pisa, Italy

Synonyms
Content-based retrieval; Semantic-based retrieval;

Multimedia information discovery

Multimedia Information Retrieval Model M 1821

M

Definition
Given a collection of multimedia documents, the

goal of multimedia information retrieval (MIR) is to

find the documents that are relevant to a user infor-

mation need. A multimedia document is a complex

information object, with components of different

kinds, such as text, images, video and sound, all in

digital form.

Historical Background
The vast body of knowledge nowadays labeled as MIR,

is the product of several streams of research, which

have arisen independently of each others and pro-

ceeded largely in an autonomous way, until the begin-

ning of 2000, when the difficulty of the problem

and the lack of effective results made it evident that

success could be achieved only through integration of

methods. These streams can be grouped into three

main areas:

The first area is that of information retrieval (IR)

proper. The notion of IR attracted significant scienti-

fic interest from the late 1950s in the context of

textual document retrieval. Early characterizations

of IR simply relied on an ‘‘objective’’ notion of topic-

relatedness (of a document to a query). Later, the

essentially subjective concept of relevance gained

ground, and eventually became the cornerstone of IR.

Nowadays, IR is synonymous with ‘‘determination of

relevance’’ [9].

Around the beginning of the 1980s, the area of

multimedia documents came into existence and

demanded an IR functionality that no classical method

was able to answer, due to the medium mismatch prob-

lem (in the image database field, this is often called the

medium clash problem). This problem refers to the fact

that when documents and queries are expressed in

different media, matching is difficult, as there is an

inherent intermediate mapping process that needs to

reformulate the concepts expressed in the medium

used for queries (e.g., text) in terms of the other

medium (e.g., images). In response to this demand, a

wide range of methods for achieving IR on multimedia

documents has been produced, mostly based on tech-

niques developed in the areas of signal processing

and pattern matching, initially foreign to the IR field.

These methods are nowadays known as similarity-

based methods, due to the fact that they use as queries

an object of the same kind of the sought ones (e.g., a

piece of text or an image) [6]. Originally, the term
content-based was used to denote these methods,

where the content in question was not the content of

the multimedia object under study (e.g., the image)

but that of the file that hosts it.

The last area is that of semantic information proces-

sing (SIP) which has developed across the information

system and the artificial intelligence communities

starting in the 1960s. The basic goal of SIP was

the definition of artificial languages that could repre-

sent relevant aspects of a reality of interest (whence

the appellation semantic), and of suitable operations

on the ensuing representations that could support

knowledge-intensive activities. Since the inception

of the field, SIP methods are rooted in first-order

mathematical logic, which offers the philosophically

well-understood and computationally well-studied

notions of syntax, semantics and inference as bases

on which to build. Nowadays, SIP techniques are most-

ly employed in the context of Knowledge Organiza-

tion Systems. In MIR, SIP methods have been used to

develop sophisticate representations of the contents

(in the sense of ‘‘semantics’’) of multimedia docu-

ments, in order to support the retrieval of these

documents based on a logical model. According to

this model, user’s information needs are predicates

expressed in the same language as that used for docu-

ments representations, and a document is retrieved if

its representation logically implies the query. A wide

range of logical models for IR have been proposed,

corresponding to different ways of capturing the un-

certainty inherent in IR, of expressing document con-

tents, of achieving efficiency and effectiveness of

retrieval [4].

To a lesser extent, the database area has also con-

tributed to MIR, by providing indexing techniques

for fast access to large collections of documents.

Initially, typical structures such as inverted files and

B-trees were employed. When similarity-based retriev-

al methods started to appear, novel structures, such

as R- or M-trees were developed in order to support

efficient processing of range and k nearest neighbors

queries [15].

Foundations
MIR is a scientific discipline, endowed with many

different approaches, each stemming from a different

branch of the MIR history. All these approaches can be

understood as addressing the same problem through a

different aspect of multimedia documents.

1822M Multimedia Information Retrieval Model
Documents can be broadly divided from a user

perspective into two main categories: simple and

complex.

A document is simple if it cannot be further decom-

posed into other documents. Images and pieces of text

are typically simple documents. A simple document is

an arrangement of symbols that carry information via

meaning, thus concurring in forming what is called the

content of the document. In the case of text, the sym-

bols are words (or their semantically significant frac-

tions, such as stems, prefixes or suffixes), whereas for

images the symbols are colors and textures. Simple

documents can thus be characterized as having two

parallel dimensions: that of form (or syntax, or symbol)

and that of content (or semantics, or meaning). The

form of a simple document is dependent on the medi-

um that carries the document. On the contrary, the

meaning of a simple document is the set of states of

affairs (or ‘‘worlds’’) in which it is true, and is therefore

medium-independent. For instance, the meaning of a

piece of text is the set of (spatio-temporally deter-

mined) states of affairs in which the assertions made

are true, and the meaning of an image is the set of such

states of affairs in which the scene portrayed in the

image indeed occurs.

Complex documents (or simply documents) are

structured sets of simple documents. This leads to the

identification of structure as the third dimension of

documents. Document structure is typically a binary

relation, whose graph is a tree rooted at the document

and having the component simple documents as

leaves. More complex structures may exist, for instance

those requiring an ordering between the children of the

same parent (such as between the chapters of a book),

or those having an arity greater than 2 (such as syn-

chronization amongst different streams of an audio-

visual document).

Finally, documents, whether simple or complex,

exist as independent entities characterized by (meta-)

attributes (often called metadata in the digital libraries

literature), which describe the relevant properties of

such entities. The set of such attributes is usually called

the profile of a document, and constitutes the fourth

and last document dimension.

Corresponding to the four dimensions of docu-

ments just introduced, there can be four categories of

retrieval, each one being a projection of the general

problem of MIR onto a specific dimension. In
addition, it is possible, and in some cases desirable,

to combine different kinds of retrieval within the same

operation.

Retrieval based on document structure does not

really lead to a genuine discovery, since the user must

have already seen (or be otherwise aware of) the sought

document(s) in order to be able to state a predicate on

their structure. Retrieval based on document profile,

from a purely logical point of view, is not different

from content-based retrieval and in fact many meta-

data schema used for document description (notable,

the Dublin Core Metadata Set) include attributes of

both kinds.

Form-based Multimedia Information Retrieval

The retrieval of information based on form addresses

the syntactic properties of documents. In particular,

form-based retrieval methods automatically create the

document representations to be used in retrieval by

extracting low-level features from documents, such as

the number of occurrences of a certain word in a text,

or the energy level in a certain region of an image.

The resulting representations are abstractions which

retain that part of the information originally present

in the document that is considered sufficient to char-

acterize the document for retrieval purposes. User

queries to form-based retrieval engines may be docu-

ments themselves (this is especially true in the non-

textual case, as this allows overcoming the medium

mismatch problem), from which the system builds

abstractions analogous to those of documents. Docu-

ment and query abstractions are then compared by an

appropriate function, aiming at assessing their degree of

similarity. A document ranking results from these com-

parisons, in which the documents with the highest

scores occur first.

In the case of text, form-based retrieval includes

most of the traditional IR methods, ranging from

simple string matching (as used in popular Web

search engines) to the classical tf-idf term weighting

method, to the most sophisticated algorithms for

similarity measurement. Some of these methods

make use of information structures, such as thesauri,

for increasing retrieval effectiveness. However, what

makes them form-based retrieval methods is their

relying on a form-based document representation.

Two categories of queries addressing text can be

distinguished:

Multimedia Information Retrieval Model M 1823

M

1. Full-text queries, each consisting of a text pattern,

which denotes, in a deterministic way, a set of texts;

when used as a query, the text pattern is supposed to

retrieve any text layout belonging to its denotation.

2. Similarity queries, each consisting of a text, and

aimed at retrieving those text layouts which are

similar to the given text.

In a full-text query, the text pattern can be specified in

many different ways, e.g., by enumeration, via a regular

expression, or via ad hoc operators specific to text

structure such as proximity, positional and inclusion

operators [9].

Queries referring to the form dimension of images

are called visual queries, and can be partitioned as

follows:

1. Concrete visual queries: These consist of full-fledged

images that are submitted to the system as a way to

indicate a request to retrieve ‘‘similar’’ images; the

addressed aspect of similarity may concern color

[2,7], texture [8,14], appearance [12] or combina-

tion thereof [13].

2. Abstract visual queries: These are artificially con-

structed image elements (hence, ‘‘abstractions’’ of

image layouts) that address specific aspects of

image similarity; they can be further categorized into:

a. Color queries: specifications of color patches,

used to indicate a request to retrieve those

images in which a similar color patch occurs

[6,7].

b. Shape queries: specifications of one or more

shapes (closed simple curves in the 2D space),

used to indicate a request to retrieve those

images in which the specified shapes occur as

contours of significant objects [6,11].

c. Combinations of the above [2].

Visual queries are processed by matching a vector of

features extracted from the query image, with each of

the homologous vectors extracted from the images

candidate for retrieval. For concrete visual queries,

the features are computed on the whole image, while

for abstract visual queries only the features indicated in

the query (such as shape or color) are represented in

the vectors involved. For each of the above categories

of visual queries, a number of different techniques have

been proposed for performing image matching,

depending on the features used to capture the aspect
addressed by the category, or the method used to

compute such features, or the function used to assess

similarity.

Semantic Content-based Multimedia Information

Retrieval

On the contrary, semantic-based retrieval methods

rely on symbolic representations of the meaning of

documents, that is descriptions formulated in some

suitable knowledge representation language, spelling

out the truth conditions of the involved document.

Various languages have been employed to this end,

ranging from net-based to logical. Description Logics

[1], or their Semantic Web syntactic forms such as

OWL, are contractions of the Predicate Calculus that

are most suitable candidates for this role, thanks to

their being focused on the representation of concepts

and to their computational amenability. Typically,

meaning representations are constructed manually,

perhaps with the assistance of some automatic tool;

as a consequence, their usage on collections of remark-

able size (text collections can reach nowadays up

to millions of documents) is not viable. The social

networking on which Web 2.0 is based may overcome

this problem, as groups of up to thousands of users

may get involved in the collaborative indexing

process (flicker).

While semantic-based methods explicitly apply

when a connection in meaning between documents

and queries is sought, the status of form-based meth-

ods is, in this sense, ambiguous. On one hand, these

methods may be viewed as pattern recognition tools

that assist an information seeker by providing associa-

tive access to a collection of signals. On the other hand,

form-based methods may be viewed as an alternative

way to approach the same problem addressed by

semantic-based methods, that is deciding relevance,

in the sense of connection in meaning, between docu-

ments and queries. This latter, much more ambitious

view, can be justified only by relying on the assump-

tion that there be a systematic correlation between

‘‘sameness’’ in low-level signal features and ‘‘sameness’’

in meaning. Establishing the systematic correlation

between the expressions of a language and their mean-

ing is precisely the goal of a theory of meaning (see, e.g.,

[5]), a subject of the philosophy of language that is still

controversial, at least as far as the meaning of natural

languages is concerned. So, pushed to its extreme

1824M Multimedia Information Retrieval Model
consequences, the ambitious view of form-based re-

trieval leads to viewing a MIR system as an algorithmic

simulation of a theory of meaning, in force of the fact

that the sameness assumption is relied upon in every

circumstance, not just in the few, happy cases in which

everybody’s intuition would bet on its truth. At pres-

ent, this assumption seems more warranted in the case

of text than in the case of non-textual media, as the

representations employed by form-based textual re-

trieval methods (i.e., vectors of weighted words)

come much closer to a semantic representation than

the feature vectors employed by similarity-based image

retrieval methods. Irrespectively of the tenability of the

sameness assumption, the identification of the alleged

syntactic-semantic correlation is at the moment a re-

mote possibility, so the weaker view of form-based

retrieval seems the only reasonable option.

Mixed Multimedia Information Retrieval

Suppose a user of a digital library is interested in

retrieving all documents produced after January

2007, containing a critical review on a successful rep-

resentation of a Mozart’s opera, and with a picture

showing Kiri in a blueish dress. This need addresses

all dimensions of a document: it addresses structure

because it states conditions on several parts of the

desired documents; it addresses profile because it

places a restriction on the production date; it addresses

form- (in particular color-) and semantic-based image

retrieval on a specific region of the involved image (the

region must be blue and represent the singer Kiri) as

well as on the whole image (must be a scene of a

Mozart’s opera); it addresses from-based text retrieval

by requiring that the document contains a piece of text

of a certain type and content. This is an example of

mixed MIR, allowing the combination of different

types of MIR in the context of the same query [10].

Emerging standards in multimedia document

representation (notably, the ISO standard MPEG21)

address all of the dimensions of a document. Conse-

quently, their query languages support more and more

mixed MIR.

Key Applications
Nowadays, MIR finds its natural context in digital

libraries, a novel generation of information systems

[3], born in the middle of the 1990s as a result of the

First Digital Library Initiative. Digital Libraries are

large collections of multimedia documents which are
made on-line available on global infrastructures for

discovery and access. MIR is a core service of any DL,

addressing the discovery of multimedia documents.

Cross-references
▶ Information Retrieval

Recommended Reading
1. Baader F., Calvanese D., McGuiness D., Nardi D., and Patel-

Scheneider P. (eds.). The description logic handbook.

Cambridge University Press, Cambridge, 2003.

2. Bach J.R., Fuller C., Gupta A., Hampapur A., Horowitz B.,

Humphrey R., Jain R., and Shu C.-F. The Virage image search

engine: an open framework for image management. In Proc. 4th

SPIE Conf. on Storage and Retrieval for Still Images and Video

Databases, 1996, pp. 76–87.

3. Candela L., Castelli D., Pagano P., Thanos C. Ioannidis Y.,

Koutrika G., Ross S., Schek H.-J., and Schuldt H. Setting the

foundations of digital libraries. The DELOS manifesto. D-Lib

Magazine, 13(3/4), March/April 2007.

4. Crestani F., Lalmas M., and van Rijsbergen C.J. (eds.). Logic and

uncertainty in information retrieval: advanced models for the

representation and retrieval of information, The Kluwer Inter-

national Series On Information Retrieval, vol. 4. Kluwer

Academic, Boston, MA, October 1998.

5. Davidson D. Truth and meaning. In Inquiries into truth and

interpretation. Clarendon, Oxford, UK, 1991, pp. 17–36.

6. Del Bimbo A. Visual Information Retrieval. Morgan Kaufmann,

Los Altos, CA, 1999.

7. Faloutsos C., Barber R., Flickner M., Hafner J., and Niblack W.

Efficient and effective querying by image content. J. Intell.

Inform. Syst., 3:231–262, 1994.

8. Liu F. and Picard R.W. Periodicity, directionality, and random-

ness: Wold features for image modelling and retrieval.

IEEE Trans. Pattern Analysis Machine Intell., 18(7):722–733,

1996.

9. Manning C.D., Raghavan P., and Schütze H. An Introduction

to Information Retrieval. Cambridge University Press,

Cambridge, 2007.

10. Meghini C., Sebastiani F., and Straccia U. A model of multime-

dia information retrieval. J. ACM, 48(5):909–970, 2001.

11. Petrakis E.G. and Faloutsos C. Similarity searching in

medical image databases. IEEE Trans. Data Knowl. Eng., 9(3):

435–447, 1997.

12. Ravela S. and Manmatha R. Image retrieval by appearance. In

Proc. 20th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1997, pp. 278–285.

13. Rui Y., Huang T.S., Ortega M., and Mehrotra S. Relevance

feedback: a power tool for interactive content-based image re-

trieval. IEEE Trans. Circuits Syst. Video Tech., 8(5):644–655,

September 1998.

14. Smith J.R. and Chang S.-F. Transform features for texture classi-

fication and discrimination in large image databases. In Proc.

Int. Conf. Image Processing, 1994, pp. 407–411.

15. Zezula P., Amato G., Dohnal V., and Batko M. Similarity Search:

The Metric Approach. Springer, Berlin, 2006.

Multimedia Metadata M 1825
Multimedia Metadata

FRANK NACK

University of Amsterdam, Amsterdam,

The Netherlands

Synonyms
New media metadata; Hypermedia metadata; Meta-

knowledge; Mixed-media
M

Definition
Multimedia is media that utilizes a combination of

different content forms. In general, a multimedia

asset includes a combination of at least two of the

following: text, audio, still images, animation, video,

and some sort of interactivity. There are two categories

of multimedia content: linear and non-linear. Linear

content progresses without any navigation control for

the viewer, such as a cinema presentation. Non-linear

content offers users interactivity to control progress.

Examples are computer games or computer based train-

ing applications. Non-linear content is also known as

hypermedia content.

Metadata is data about data of any sort in any

media, describing an individual datum, content item,

or a collection of data including multiple content

items. In that way, metadata facilitates the understand-

ing, characteristics, use and management of data.

Multimedia metadata is structured, encoded data

that describes content and representation characte-

ristics of information-bearing multimedia entities to

facilitate the automatic or semiautomatic identifica-

tion, discovery, assessment, and management of the

described entities, as well as their generation, manipu-

lation, and distribution.

Historical Background
The first appearance of the idea of mixed media was

Vannevar Bush’s ‘‘Memex’’ system (‘‘memory extend-

er’’). In his article ‘‘As we may think’’ [1], published

1945 in the ‘‘The Atlantic Monthly,’’ he proposed a

device that is electronically linked to a library, able to

display books and films from the library and auto-

matically follow cross-references from one work to an-

other. The Memex was the first simple and elegant

approach towards multimedia information access. Fur-

ther important steps toward the use of multimedia in

digital systems in the 1960s were the introduction of
‘‘hyperlinks and hypermedia’’ by Ted Nelson [2], which

allowed the generation of non-linear presentations, the

development of the mouse by Douglas Engelbart [3],

which supported the direct manipulation of objects on a

computer screen, and the invention of the GUI, devel-

oped at Xerox Parc, which introduced media into

computing.

In particular, it was the development of the web

and digital consumer electronics that allowed comput-

ing to leave the realm of research or government orga-

nizations and enter society in large. The development

of personal computers in the 1980s enabled desktop

publishing, which further enhanced in the 1990s into

adequate manipulation software for digital media,

such as Adobe’s Photoshop and Flash, or Appel’s

Final Cut Express. Yet, only the development of new

distribution platforms in the 1990s, such as CD-ROM,

DVD, and essentially the World Wide Web (Web) in

combination with the rise of media technologies, such

as the digital photo and video camera, or midi and

MP3 player, stimulated the swift growth of digital

media in mixed form. The growing amount of mixed

media available to the public, and more recently

provided by the public in form of user-generated con-

tent, requested for effective access mechanisms, which

resulted in a steady development of content descrip-

tion technologies, mainly based on metadata.

Over the years, a number of metadata standards

have been developed, which address various aspects of

multimedia data, such as

� Low-level features: usually automatically extracted

from the content.

� Semantic features: describing high-level concepts in

form of key-word, ratings and links.

� Structure and identification: describing the spatial

and temporal arrangement of one or more multi-

media assets.

� Management: describing the information gathered

during the life cycle of the multimedia asset, such as

information about reuse, archiving, and rights

management.

The major organizations who contributed to the devel-

opment of standards are: the Dublin Core Metadata

Initiative [4], theWorldWideWeb Consortium (W3C)

[5], the Society for Motion Pictures and Television

Engineering (SMPTE) [6], the Moving Picture Expert

Group (MPEG) [7], the TV-Anytime Consortium [8],

and the International Press Telecommunications

1826M Multimedia Metadata
Council (IPTC) [9]. The common definition language

between all theses languages is in one or the other way

the Extensible Markup Language (XML) [10], defined

by W3C.

The two major approaches towards open standards

for multimedia metadata, with respect to content de-

scription and distribution for multimedia assets, were

certainly provided by the W3C and MPEG, a working

group of ISO/IEC charged with the development of

video and audio encoding standards.

The W3C provided, besides the well known mark-

up languages HTML, XHTML, CSS, SVG, in particular

the Synchronized Multimedia Integration Language

(SMIL). SMIL enables simple authoring of interactive

audiovisual presentations, which integrate streaming

audio and video with images, text or any other media

type. SMIL [11] is an HTML-like language facilitating

the authoring of a SMIL application by using a simple

text-editor. SMIL 1.0 received recommendation status

in 1998, SMIL 2.0 in 2005, and SMIL 3.0 is under

development while this article is written.

Work in the Media Annotation Work has started in

September 2008. This working group (http://www.w3.

org/2008/01/media-annotations-wg.html) is chartered to

provide a simple ontology to support cross-community

data integration of information related to media

objects on the Web, as well as an API to access the

information. In addition there is the Media Fragments

Working Group (http://www.w3.org/2008/WebVideo/

Fragments/), which address temporal and spatial

media fragments in the Web using Uniform Resource

Identifiers (URI). Both groups should finish their work

by June 2010.

MPEG’s contribution to multimedia metadata are

certainly the three standards MPEG-4 [12], MPEG-7

[13] and MPEG-21 [14].

With MPEG-4 the group entered the realm of

media content, arisen due to the growing need for

content manipulation and interaction, and expanded

MPEG-1 to support video/audio ‘‘objects,’’ 3D con-

tent, low bitrate encoding and support for Digital

Rights Management. With respect to multimedia

metadata MPEG4 also provides content authors with

a textual syntax for the MPEG-4 Binary Format for

Scenes (BIFS) to exchange their content with other

authors, tools, or service providers. First, XMT is an

XML-based abstraction of the object descriptor frame-

work for BIFS animations. Moreover, it also respects

existing practice for authoring content, such as SMIL,

HTML, or Extensible 3D (X3D) by allowing the
interchange of the format between a SMIL player, a

Virtual Reality Modeling Language (VRML) player,

and an MPEG player through using the relevant lan-

guage representations such as XML Schema, MPEG-7

DDL, and VRML grammar. As such, the XMTserves as

a unifying framework for representing multimedia

content where otherwise fragmented technologies are

integrated and the interoperability of the textual for-

mat between them is facilitated.

In the mid 1990s, the need for retrieving and

manipulating digital media content form exploding

digital libraries requested new ways of describing mul-

timedia content on deeper semantic granularity, which

resulted in MPEG-7, the multimedia content descrip-

tion standard. MPEG-7 provides a large set of descrip-

tors and description schemata for video (part 3), audio

(part 4) and multimedia content, including its pre-

sentation (part 5). All schemata are described in

the Description Definition Language (DDL), which is

modeled on XML-Schema, a schemata language devel-

oped by the WC3. Since MPEG-7 tries to establish the

richest and most versatile set of audio-visual feature

description structures by embracing standards such as

SMPTE, or PTC, a 1:1 mapping to the text-oriented

XML schema language could not be achieved (see [15]

for a detailed description of existing DDL problems).

However, the goal to be a highly interoperable standard

among well-known industry standards and related

standards of other domains – such as the area of digital

libraries and ontologies using RDF or Dublin Core,

was a useful exercise.

The beginning of the 21st century established an

even faster exchange of multimedia data via the web, as

higher bandwidth as well as access to high quality data

became a commodity. The media businesses, such as

the record or film industry, feared, due to peer-to-peer

technology, for their markets and requested strict digi-

tal rights management enforcement. MPEG reacted

with MPEG-21: MPEG describes this standard as a

multimedia framework.

Both the W3C as well as MPEG provide open

standards, which are able to describe adaptive content,

represented in a single file that can be targeted to

several platforms, such as mobile, broadband or the

web. Both organizations compete with highly success-

ful but rather proprietary industry standards, such as

Adobe’s Flash standard.

The latest trend on multimedia metadata also

reflects the trend towards user-generated content,

namely social tagging. A tag is a keyword or term

http://www.w3.org/2008/01/media-annotations-wg.html
http://www.w3.org/2008/01/media-annotations-wg.html
http://www.w3.org/2008/WebVideo/Fragments/
http://www.w3.org/2008/WebVideo/Fragments/

Multimedia Metadata M 1827

M

associated with or assigned to a piece of information (a

picture, a map, a video clip etc), which enables key-

word-based classification and search. The advantage of

tagging is its ease of use. This approach, though highly

popular (e.g., in YouTube [16] and Flickr [17]), carries

serious problems. Typically there is no information

about the semantics of a tag, no matter if it is a single

tag or a bag of tags. Additionally, different people may

use drastically different terms to describe the same

concept. This lack of semantic distinction can lead to

inappropriate connections.

Foundations
The essential models describing the internal structures

of multimedia compositions and the related produc-

tion processes are: the Dexter Hypertext Reference

Model [18], the Amsterdam Hypermedia Model [19],

HyTime [20], the reference model for intelligent multi-

media presentation systems (IMMPSs) [21], MPEG-4,

SMIL, and the model of Canonical processes of media

production [22].

The basic five functionalities that every multimedia

system needs to address are: media content, layout,

timing, linking and adaptivity.

Media Content

Readers who are interested in the fundamentals of the

single media elements (i.e., their low-level as well as

high-level feature descriptions) are referred to the arti-

cles on audio metadata, image metadata and video

metadata in this encyclopedia.

Layout

Layout deals with the arrangement and style treatment

of media on a screen. This means that layout deter-

mines how a particular media item is presented at a

point in time and how it is rendered when activated. A

multimedia presentation layout describes ‘‘the look

and feel’’ of a composite of all of its media components.

Thus, layout adds the semantic organization that

enables a viewer to quickly and efficiently absorb the

multiple content streams in a multimedia presentation.

There are in general three approaches towards mul-

timedia layout, namely

1. Embedded Layout, where all layout decisions are

resolved at media creation time and then per-

formed by the presentation. Here the control lies

ultimately by the designer of the presentation and

there is no control, besides the required rendering,

at the side of the media player.
2. Dynamic Layout, where all layout is dynamically

determined by the user’s media player, depending

on the multimedia document structure or the

timeline of the presentation. Here, the actual visual

design is mainly in the hand of the media player

rather than the presentation’s designer.

3. Compositing Layout, which decouples media

content from media placement. Here, a presenta-

tion is understood as a composite of relatively

autonomous objects, where each uses embedded

or dynamic layout models, which are then posi-

tioned into a arrangement by a presentation

designer.

The essential classes and their attributes that de-

scribe a layout are:

� A root and several region elements, which establish

the primary connection between media objects ele-

ments and the layout structure.

� Basic layout classes, such as referencing (region

name and ID), scaling (z-index fit), positioning

(width, height, top, left, bottom, right), back-

ground (back ground color, show back ground),

and audio (sound level).

Timing

Timing deals with issues on how elements in a multi-

media presentation get scheduled. Moreover, once an

element is active, it needs to be determined how long it

will be scheduled. The aim in a multimedia presenta-

tion is to go beyond the timing concepts known from

audio and video objects.

Media timing:Media objects in multimedia presen-

tations can either be discrete (e.g., text, with no implicit

duration) or continuous (e.g., a music object, with an

explicit duration defined within its encoding).

Presentation timing : A reference list to one or

more media objects, describing timing primitives

that determine the start and end time relative to one

another.

There are basically 4 different ways of defining the

active period of an object:

1. Implicit duration, as defined when the object was

created (e.g., length of a video in sec).

2. Explicit duration, which describes the actual dura-

tion of the media object in the application (e.g., the

actual duration might be shorter or longer than the

implicit duration).

3. Active duration, which allows repetitions or other

temporal manipulations of a media object.

1828M Multimedia Metadata
4. Rendered duration, which describes the persis-

tence of a media object at the end of its active

duration.

There are various ways to describe time in values, such

as full clock value (e.g., 7:45:23.76, where the last two

items present ms), partial clock values (any sort of

short base notation), time count values (numbers

with a additional type string, e.g., 10S for ‘‘10 s’’),

and time context values, which are represented in

three parts: a date field (YYY:MM:DD), a time field,

and a time zone field.

Usually, a type of synchronization is required, as

media objects start in relation to the container they

belong to. A child element in a parallel container starts

relative to the start time of the parent, whereas child

elements in a sequential container are started relative

to the end of their predecessor.

Linking

Linking defines and activates a non-linear navigation

structure within and across documents.

The simplest form of a link is a pointer. The pointer

defines an address of a document (e.g., a URI) and,

optionally, an offset within the document. The element

that identifies that a link exists is called a source an-

chor. If the anchor points to anything other than the

beginning of a document, this anchor is called a desti-

nation anchor. The typical elements in HTML for

linking are the<a>element, to define the source

anchor and link address, and the <area> </area>

element, which is roughly the same, but it is applied

only to a part of a media object. The basic linking

attributes define the uri (href), the source and destina-

tion state (e.g., play or pause), the external or target

state (e.g., true or false, the display environment) and

the impact of link activation on the source and desti-

nation presentation (e.g., as non-negative percentage).

Both source and destination anchor need to express

temporal moments, as their activation depends on the

temporal behavior of the application. The three

key temporal moments to be addressable are: the des-

tination is already active, the destination is inactive,

and the destination is inactive and the begin time is

unresolved.

Finally, the link needs some attribute that describe

geometry, as the linking into a region of a media item is

possible. The core attributes are shape (values can be

rectangle, circle or poly). The size and position of the
anchor are defined via the origin of the coordinate

space (the 0.0 point) and the resolution of the display

device (support of rendering).

Adaptivity

The aim of multimedia presentations is usually to

adapt them to the needs of the user, which might

address either the runtime environment available to

the user, or the personalized presentation wishes by the

user.

There are four techniques to customize informa-

tion in a presentation:

1. Minimum set: The multimedia presentation

assumes a minimum set of performance, and de-

vice and user characteristics and the presentation

document is designed based on this lowest denom-

inator set (manageable solution but usually no

compelling content)

2. Multiple presentation set : Each presentation repre-

sents a quality level, which the user selects on run-

time (this one-size-fits-all approach is a dead end

for the current trend towards portable and quality

mix devices).

3. Over-specified presentation: All of the potential

media items are available and it is the media player

at the client side which makes a selection at run

time (demands too much during the making

phase).

4. Control presentation: The presentation contains

pointers to all potential alternatives and only

those used by the user would be sent from the

server to the client (the advantage is that the pre-

sentation does not need to send copies of each of

the various data streams across the network).

The essential elements a system would need to

provide any of the above techniques are:

� Switch: which establishes a collection of alternatives

for an interactive multimedia presentation;

� System control attributes, such as sys_language, sys_-

captions, sys_bitrate, sys_screensize, syt_cpu, etc.

Key Applications
Multimedia metadata is useful for the creation, manip-

ulation, retrieval and distribution of mixed media

sources within domains, such as

� The creative industries (e.g., fine arts, entertain-

ment, commercial art, journalism, games, etc)

Multimedia Presentation Databases M 1829
� The entertainment industries (e.g., special effects in

movies and animations)

� Education (e.g., in computer based training courses

and computer simulations, military or industrial

training)

� Mathematical and scientific research (e.g., model-

ing and simulation)

� Medicine (e.g., virtual surgery or simulations of

virus spread, etc)
M

Cross-references
▶Audio Metadata

▶ Image Metadata

▶Video Metadata

Recommended Reading
1. Bordegoni M., Faconti G., Maybury M.T., Rist T., Ruggieri S.,

Trahanias P., and Wilson M. A standard reference model

for intelligent multimedia presentation systems (1997). Avail-

able at http://kazan.cnuce.cnr.it/papers/abstracts/9708.IJCAI97.

Immps.html

2. Bush V. As we may think. Atl. Mon., 176(1):101–108, 1945.

3. Engelbart D. (1968). Available at http://sloan.stanford.edu/

mousesite/1968Demo.html

4. Flickr. Available at http://www.flickr.com/

5. Gronbaek K. and Trigg R.H. Design issues for a dexter-based

hypermedia system. Commun ACM., 37(2):41–49, 1994.

6. Hardman L., Bulterman D.C.A., and van Rossum G. The amster-

dam hypermedia model: adding time and context to the dexter

model. Commun. ACM., 37(2):5062, February 1994.

7. Hardman L., Obrenovic Z., Nack F., Kerherve B., and Piersol K.

Canonical processes of semantically annotated media produc-

tion. Multimedia Syst., 14(6):427–433, 2008.

8. Information processing – Hypermedia/Time-based structuring

language (HyTime) – 2nd ed., ISO/IEC 10744:1997, WG8 PROJ-

ECT: JTC1.18.15.1. Available at http://www1.y12.doe.gov/cap-

abilities/sgml/wg8/document/n1920/

9. MPEG-4: ISO/IEC JTC1/SC29/WG11 N4668 March 2002. Avail-

able at http://www.chiariglione.org/mpeg/standards/mpeg-4/

mpeg-4.htm

10. MPEG-21: ISO/IEC JTC1/SC29/WG11/N5231 Shanghai,

October 2002. Available at http://www.chiariglione.org/mpeg/

standards/mpeg-21/mpeg-21.htm

11. MPEG-7: ISO/IEC JTC1/SC29/WG11N6828 Palma de Mallorca,

October 2004. Available at http://www.chiariglione.org/mpeg/

standards/mpeg-7/mpeg-7.htm

12. Nack F., van Ossenbruggen J., and Hardman L. That obscure

object of desire: multimedia metadata on the web (Part II). IEEE

MultiMedia, 12(1):54–63, 2005.

13. Nelson T.H. A File Structure for the Complex, the Changing,

and the Intermediate. In The NewMedia Reader, NohaWardrip-

Fruin & Nick Montfort. The MIT Press, Cambridge, MA, 2003,

pp. 133–146.

14. SMIL. Available at http://www.w3.org/AudioVideo/
15. The dublin core metadata initiative. Available at http://www.

dublincore.org/

16. The extensible markup language (XML). Available at http://

www.w3.org/XML/

17. The international press telecommunications council [IPTC).

Available at http://www.iptc.org/pages/index.php

18. The moving picture expert group (MPEG). Available at http://

www.chiariglione.org/mpeg/

19. The society for motion pictures and television engineering

(SMPTE). Available at http://www.smpte.org/home/

20. The TV-anytime consortium. Available at http://www.tv-

anytime.org/

21. Youtube. Available at http://www.youtube.com/
Multimedia Presentation Databases

V. S. SUBRAHMANIAN, MARIA VANINA MARTINEZ,

DR. REFORGIATO

University of Maryland, College Park, MD, USA

Synonyms
Multimedia presentation databases

Definition
A multimedia presentation consists of a set of media

objects (such as images, text objects, video clips, and

audio streams) presented in accordance with various

temporal constraints specifying when the object should

be presented, and spatial constraints specifying where

the object should be presented on a screen. Today,

multimedia presentations range from the millions of

PowerPoint presentations users have created the world

over, to more sophisticated presentations authored

using tools such as Macromedia Director. Multi-

media presentation databases provide the mechanisms

needed to store, access, index, and query such collec-

tions of multimedia presentations.

Historical Background
Multimedia presentations have been in existence since

the 1980s, when PowerPoint emerged as a presentation

paradigm and animated computer video games started

gaining popularity. Both of these paradigms allowed a

multimedia presentation author to specify a set of

objects (collections of images, video, audio clips, and

text objects) and then specify how these objects should

be presented. These objects could be presented in

accordance with some temporal constraints that de-

scribe when and in conjunction with which other

http://kazan.cnuce.cnr.it/papers/abstracts/9708.IJCAI97. Immps.html
http://kazan.cnuce.cnr.it/papers/abstracts/9708.IJCAI97. Immps.html
http://sloan.stanford.edu/mousesite/1968Demo.html
http://sloan.stanford.edu/mousesite/1968Demo.html
http://www.flickr.com/
http://www1.y12.doe.gov/capabilities/sgml/wg8/document/n1920/
http://www1.y12.doe.gov/capabilities/sgml/wg8/document/n1920/
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm
http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.w3.org/AudioVideo/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.iptc.org/pages/index.php
http://www.smpte.org/home/
http://www.tv-anytime.org/
http://www.tv-anytime.org/
http://www.youtube.com/
http://www.dublincore.org/
http://www.dublincore.org/
http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/

1830M Multimedia Presentation Databases
objects a given object should be presented. As an in-

creasing number of authoring frameworks came into

being, accompanied by an increasing need to create,

collaborate on, and share presentations, the notion of

multimedia presentations as a programming paradigm

gradually came into existence.

Buchanan and Zellweger [6] were one of the first to

recognize the need to treat multimedia presentations

in a rigorous framework. They recognized that presen-

tations consisted of a set of media objects, and they

proposed presenting these objects in accordance with

some very simple precedence constraints.

Later, Candan et al. [8,7] extended the framework

of Buchanan and Zellweger by describing a multimedia

presentation as a set of media objects together with a

very rich, but polynomially computable set of spatial

and temporal constraints defining their presentation.

They also showed how to help a presentation author

identify when their presentation specifications were

inconsistent and to minimally modify the presentation

constraints so that consistency was restored. Related

work by their co-authors showed how to deliver these

presentations across a network in the presence of

spatial and temporal constraints.

Adali et al. [1] introduced a relational model of

data to support interactive multimedia presentations

and define a variant of the relational algebra that allows

users to dynamically query and create new presenta-

tions using parts of existing ones, generalizing select,

project, and join operations. Lee et al. [11] present a

graph data model for the specification of multimedia

presentations, together with two icon-based based

graphical query languages for multimedia presenta-

tions and the GCalculus (Graph Calculus), a relational

calculus-style language that formalizes the use of tem-

poral operators for querying presentation graphs that

takes the content of a presentation into account. [5,4]

propose methods to present the answer of a query to a

multimedia database as a multimedia presentation. [9]

focuses on specializations and improvements of the

above methods when querying databases consisting

solely of PowerPoint information.

[10] treats multimedia presentations like a tempo-

ral database, and supports querying and reuse of parts

of existing presentations. It considers algebraic opera-

tors such as insert, delete, and join, as well as user

interface operations such as Fast Forward/Rewind,

Skip, and links to other presentation databases, etc.
[13] focuses on indexing and retrieving complex

Flash movies. A generic framework called FLAME

(FLash Access and Management Environment) based

on a 3-layer structure is presented to address this

problem. This framework mines and understands the

contents of the movies to address the representation,

indexing and retrieval of the expressive movie ele-

ments, including heterogeneous components, dynamic

effects, and the way in which the user can interact with

the movie.

Foundations
A multimedia presentation consists of a set O of media

objects and a set of constraints on the presentation of

objects in O. A media-object o is a file such as an image

file, a video file, a text file, or an audio file. Each type of

file is assumed to have an associated player. For exam-

ple, a video file may have QuickTime or the Windows

Media players as its associated player.

The constraints associated with o fall into two

categories: temporal and spatial constaints.

On the temporal side, each object o in O has two

associated variables, st(o) and et(o) denoting, respec-

tively, the start time and end time at which media

object o is presented using its associated players. The

temporal specification associated with a presentation is

a set of constraints of the form

x � y <¼ c

where x, y are variables of the form st(oi), et(oj) and c is

some constant. For example, if o is a video file, and

there exists the constraint et(o’) – st(o) = 0, then this

means that the video object o should start playing as

soon as object o’ finishes being played out.

Likewise, on the spatial side, each object o in O has

four variables llx(o), lly(o), urx(y), ury(o) denoting the

x coordinate of the lower left corner of object o, the y

coordinate of the lower left corner of object o, and

likewise for the upper right corner’s x and y coordi-

nates. [8] presents algorithms to check the consistency

of spatial and temporal constraints, and to minimally

modify the spatial/temporal constraints when they are

inconsistent. In addition, each object o in O has an

associated set of properties that can be stored (and

queried) using any object oriented database manage-

ment system.

A multimedia presentation database M consists of a

set of multimedia objects (and their associated spatial

Multimedia Presentation Databases M 1831

M

and temporal constraints). [1] defines methods to

query such multimedia presentation databases.

Consider the simplest operation: selection. Sup-

pose the query is ‘‘Select all objects o in M such that

C[o] holds and such that st(o) > 10.’’ In this case, the

goal is to look at each multimedia presentationm inM,

and eliminate all objects o fromm such that st(o) < 10.

Also, it is necessary to eliminate all remaining objects

such that C[o] does not hold. The objects that survive

this elimination process must be presented in accor-

dance with the original set of temporal and spatial

constraints present in m. If m* denotes the modifica-

tion of m in this way, then sC(M) = {m* | m in M}.

In addition, [1] defines other operations that allow

videos to be concatenated together using various chro-

matic composition operators (such as smoothing, fad-

ing, etc.), methods to perform joins across videos, and

methods to execute other kinds of relational style

operations.

Key Applications
There are numerous possible applications for multi-

media presentation databases. A simple application is

an engine to query PowerPoint presentations, of which

millions exist in the world today. [9] proposes a Power-

Point database query algebra.

Another application is in the area of digital rights

management. Suppose a major record company wants

to identify all multimedia documents on the web that

contain a clip of their copyrighted music. This corre-

sponds to a select query on all multimedia documents

on the web. The result would be a set of multimedia

documents, some of which might infringe on the copy-

right holder’s rights. The same might apply to online

video on sources such as YouTube where it is not

uncommon to find copyrighted material. The ability

for an entertainment company to find gross violations

of their copyright by searching through YouTube

archives is critical.

Future Directions
As video games become ever more common, and as

virtual worlds such as Second Life become increasingly

popular with users, the ability to query games and

avatar based systems will become increasingly

important.

In addition, methods to index multimedia presen-

tation databases are in their very infancy. Taking into
account the graph based nature of presentation data-

bases such as those in [1,11,2], it is important to

note that methods to index graphs may have a role

to play. However, multimedia presentations are more

complex than labeled directed graphs because presen-

tation constraints can potentially be satisfied in many

different ways.

Cross-references
▶ Spatial Constraints

▶Temporal Constraints

Recommended Reading
1. Adali S., Sapino M.L., and Subrahmanian V.S. A multimedia

presentation algebra. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 121–132.

2. Adali S., Sapino M.L., and Subrahmanian V.S. Interactive multi-

media presentation databases, I: algebra and query equivalences.

Multimedia Syst., 8(3):212–230, 2000.

3. Bailey B., Konstan J.A., Cooley R., and Dejong M. Nsync – a

toolkit for building interactive multimedia presentations. In

Proc. 6th ACM Int. Conf. on Multimedia, 1998, pp. 257–266.

4. Baral C., Gonzalez G., and Nandigam A. SQL+D: extended

display capabilities for multimedia database queries. In Proc.

6th ACM Int. Conf. on Multimedia, 1998, pp. 109–114.

5. Baral C., Gonzalez G., and Son T.C. Design and implementation

of display specification for multimedia answers. In Proc. 14th

Int. Conf. on Data Engineering, 1998, pp. 558–565.

6. Buchanan M.C. and Zellweger P. Automatically generating con-

sistent schedules for multimedia documents. Multimedia Syst.,

1(2):55–67, 1993.

7. Candan K., Lemar E., and Subrahmanian V.S. View management

in multimedia databases. VLDB J., 9(2):131–153, 2000.

8. Candan K.S., Prabhakaran B., and Subrahmanian V.S. CHIMP:

a framework for supporting distributed multimedia document

authoring and presentation. In Proc. 4th ACM Int. Conf. on

Multimedia, 1996, pp. 329–340.

9. Fayzullin M. and Subrahmanian V.S. An algebra for powerpoint

sources. Multimedia Tools Appl. J., 24(3):273–301, 2004.

10. Jiao B. Multimedia presentation database system. In Proc. 8th

ACM Int. Conf. on Multimedia, 2000, pp. 515–516.

11. Lee T., Sheng L., Bozkaya T., Balkir N.H., Özsoyoglu Z.M.,

and Özsoyoglu G. Querying multimedia presentations based

on content. In Readings in Multimedia Computing and Net-

working, K. Jeffay, H. Zhang (eds.). Morgan Kaufmann

Publishers, San Francisco, CA, USA, 2001, pp. 413–437.

12. Wirag S. Modeling of adaptable multimedia documents. In Proc.

Interactive Distributed Multimedia Systems and Telecommuni-

cation Services, International Workshop, LNCS vol. 1309, 1997,

pp. 420–429.

13. Yang J., Li Q., Wenyin L., and Zhuang Y. Content-based

retrieval of FlashTM movies: research issues, generic frame-

work, and future directions. Multimedia Tools Appl.,

34(1):1–23, 2007.

1832M Multimedia Resource Scheduling
Multimedia Resource Scheduling

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Multimedia information systems are different from

the traditional information systems, where continu-

ous media (audio/video) requests special storage and

delivery requirements due to (i) the large transfer rate,

(ii) the storage space required, and (iii) the real-time and

continuous nature. Due to the special characteristic of

continuous media, different types of scheduling are pro-

posed, namely, the disk scheduling and stream schedul-

ing. On one hand, the disk scheduling is to tackle both

the large storage space and the corresponding large

transfer rate requirements. On the other hand, the

stream scheduling is to schedule requests from multiple

clients, in order to minimize the delay in satisfying the

requests. It attempts to support as many requests as

possible, and at the same time, keep the real-time and

continuous nature.
Multimedia Resource Scheduling. Figure 1. Round

length and delay between reads (Fig. 3 in [9]).
Historical Background
Continuous media adds additional requirements to

the traditional information systems. In order to satisfy

these new requirements, new scheduling algorithms

are proposed.

Disk scheduling is designed to achieve the low ser-

vice latency and high disk throughput requirements

[14]. Continuous media, such as audio and video, adds

additional real-time constraints to the disk scheduling

problem. There are two categories of disk schedu-

ling, namely, single disk scheduling and multiple disk

scheduling. The disk scheduling algorithms, for continu-

ous media, can possibly adapt one of the conventional

disk scheduling strategies, which include round-robin,

SCAN [14], and EDF [12]. For single disk scheduling

for continuous media, there are SCAN-EDF [13], and

sorting-set [8,16] scheduling strategies. For multiple disk

scheduling for continuous media, multiple disks can be

accessed in parallel. The increased parallelism is mainly

used to support more streams. There are two categories

of multiple disk scheduling strategies, which are stripe

data across the disks and replicate data across the disks. In

additional, there are three schema for accessing striped

data, which are called, striped retrieval, split-striped re-

trieval [15], and cyclic retrieval [2,3].
Stream scheduling (or session scheduling) is desig-

ned to effectively allocate and share server and network

resources. It aims at supporting as many clients as possi-

ble simultaneously, within the limited server and net-

work resources, by assigning multiple client requests to

a shared data stream. Three policies are proposed

to effectively select the multimedia to be shared: FCFS,

MQL, and FCFS-n [10]. In [6,7], sharing is studiedwhen

a client pauses/resumes while viewing a long video.

A two-level hierarchical scheduling policy is proposed

to deal with time-varying load, such as the load at peek

time and off-peek time, regarding the preservation of

resources for the future requests [1]. In the two-level

hierarchical scheduling, at the higher level, it focuses on

channel allocation with consideration of how many

requests will come in near future; at the lower level, it

focuses on selecting clients to be served with consider-

ation of the clients waiting time.

Foundations
There are mainly two types of resource scheduling in

a multi-stream environment: (i) disk scheduling, and

(ii) stream scheduling.

Disk Scheduling

In a multi-stream environment, multiple users are

requesting to retrieve N continuous multimedia data

streams in a similar time period. The system will serve

each of theN data streams in rounds. In other words, in

any i-th round, the system will serve all the requested

data streams N by reading enough data for all the

requests to be consumed until the next i+1-th round.

Because there are differences between the transfer rate

and the consumption rate, a scheduling strategy needs

to deal with the differences between the transfer rate

and the consumption rate.

Let rc and rt be the rate of display consumption of a

data stream and the rate of data transfer from disk,

respectively. And let pmax and dmax be the maximum

time interval in any round and the maximum time

interval between two consecutive reads for any data

stream, respectively. Figure 1 illustrates the ideas on

Multimedia Resource Scheduling M 1833

M

round-length and delay between two consecutive disk

reads. In order to have enough data to be consumed by

a display, at the consumption rate of rc, in each round

of the time interval at most pmax (to prevent starvation

until the next round), the amount of data it needs is at

least rc � pmax. The dmax shows the possible delay, called

startup delay, to start consuming a data stream, which

implies the time interval it needs to wait if it misses in

the current round.

Consider the disk scheduling for multiple data

streams on a single disk. The round-robin algorithm

retrieves data for each data stream in a fixed order in

every round. Due to the fixed order, the maximum

startup delay (dmax) is similar to pmax. The SCAN

algorithm [13] attempts to read more disk blocks

while moving the disk head over the disk, and retrieve

the requested blocks when the disk header passes

over them [14]. The main advantages of the SCAN

algorithm are: (i) it reduces the seek time to move

the disk header from one location to another in order

to read next disk block, and (ii) it maximizes the

throughput of disk accesses. But, because the order of

serving each data stream is not fixed, the startup delay

for a given data stream can be larger up to 2pmax. The

SCAN-EDF algorithm [13] processes the data stream

requests with the earliest deadline first, using the idea

discussed in EDF [12] (Earliest-Deadline-First), and

processes the requests, that be shared, using the

SCAN algorithm. Note that the SCAN-EDF algorithm

different from the other strategies, is not designed as a

round-based algorithm. The sorting-set algorithm

[8,16] is designed in a way where round-robin and

SCAN are treated as special cases of it. In brief, in the

sorting-set algorithm, each round is further divided

into several time slots. Each time slot is conceptually

considered as a sorting set (or simply set). If a round is

divided into m time slots, there are m time slots, and

therefore there are m sorting sets, namely, set1, set2,...,

and setm. All the sorting sets are served in a fixed order in

each run. When there is a request to retrieve a multime-

dia data stream, the requested data stream is assigned to

a sorting set. If the entire round is treated as a single time

slot, the sorting-set algorithm behaves like the SCAN

algorithm. If the requested data stream is assigned to a

unique sorting set, the sorting-set algorithm behaves

like the round-robin algorithm.

For multiple disks accessing in parallel, there are

two main categories of multiple disks scheduling stra-

tegies, namely, stripe data across the disks and replicate
data across the disks. There are also different schema to

retrieve the striped data: striped retrieval, split-striped

retrieval, and cyclic retrieval. In the striped retrieval,

entire stripes are retrieved in parallel. The split-stripe

retrieval [15] retrieves some consecutive units of an

entire stripe rather than the entire stripe at one time.

The cyclic retrieval [2,3] is designed to retrieve units of

stripes for more than one data stream. The main idea

behind it is to read a small portion of data for a data

stream frequently. As comparison with the other

striped approaches, cyclic retrieval does not need a

large buffer space. Unlike the stripe based algorithms,

data streams can be replicated across disks where

each disk is treated individually and independently.

If a data stream is requested frequently, it can be

replicated in multiple disks.

Stream Scheduling

Continuous data stream retrieval needs to be guaran-

teed by reserving sufficient resources. The resources are

referred to as logical channels (or simply channels).

Stream scheduling policies need to increase the server

capacity, or in other words, to increase the number of

continuous data stream requests to be served with the

limited number of channels. The stream scheduling

needs to consider several facts regarding the possibility

of sharing. There are popular videos which are viewed

by many clients most of the time during a certain time

period. Several clients may view the same video but

start viewing at different times in a short time interval.

A client may pause and then resume when viewing a

long multimedia (video) at any time. The time interval

between such pause and resume is not known, which

can be short or long. A client may also change to

another video after the pause.

Data stream sharing serves multiple clients by a

single I/O stream, which is also referred to as batching

of requests [4,6]. A batching factor indicates how many

clients can share a single I/O stream. In order to effec-

tively support continuous multimedia requests, some

requests need to be delayed, in order to be batched

with other requests. There are three batching policies:

FCFS, MQL, and FCFS-n [10]. With the FCFS (First

Come First Served) policy, it queues all requests into a

single queue. When there is a channel available, the

FCFS policy selects the video, which is requested by the

first client in the queue, to be served, in a first come

first served fashion. If there are other requests in the

queue that request the same video, they will be served

1834M Multimedia Resource Scheduling
by sharing the I/O stream. The MQL (Maximum

Queue Length) policy maintains a queue for a

requested video. If there are n videos to be requested,

there will be n queues. The MQL policy chooses the

video with the maximum queue length to be served,

when a channel becomes available. With the MQL

policy, the videos with a small number of requests

(short queue) may not be served. Therefore, unlike

FCFS which is a fair policy, the MQL policy is seen as

unfair to the videos that are not requested by many

clients. The FCFS-n policy is similar to the FCFS poli-

cy, except that the n hottest videos are assigned to

dedicated streams. A dedicated stream will be served

in a batching window in turn, and the remaining

videos, that are not assigned to a dedicated stream,

are served following the FCFS policy. With the policies,

the batching factor can be increased, but the amount

of waiting time for a client to wait may be increased

as well.

Sharing a data stream is affected by the fact that a

client may pause. A new channel may need to be allo-

cated when the client resumes. Assume that a clientmay

resume shortly after the pause, the system may main-

tain some channels (contingency channels), which can

improve resource utilization. The system needs to guar-

antee that the delay between the receipt of a resume

request from a client and playback is small in order to

assure client satisfaction [4,6]. Figure 2 illustrates the

scheduling with contingency channels for VCR control

operations (pause/resume) [6,7]. The admission con-

trol policy determines the acceptance of a new request.
Multimedia Resource Scheduling. Figure 2. Channel

states under contingency policy (Fig. 2 in [5]).
The scheduling policy determines which request to be

served on the available channel, in order to maximize

certain performance objectives [6]. When there is a

pause request from a client, the admission control

and scheduling policy determines if the client is the

only client viewing the multimedia stream. If it is, the

channel is freed and returned to either the free channel

pool or the contingency pool. A certain number of

contingency channels are maintained in the system.

When there is a resume request from a client, the

scheduling policy checks if there is another request

being served within a predetermined time window, in

order to maximize the possibility of sharing. If there is

another request being served but is beyond the prede-

termined time window, the scheduling policy tries to

use another contingency channel where possible. Oth-

erwise, it will request a free channel with higher prior-

ity when such a free channel becomes available.

The arrival rate of requests to multimedia system

may vary with the time of a day [11], peek time and

off-peek time. The scheduling policy also needs to

address the issues of time-varying load. Note: the opti-

mal policy at the current may not be the optimal when

the load changes shortly. A two-level hierarchical

scheduling policy is proposed to deal with such load

fluctuations [1]. The high-level scheduler controls

channels allocation, whereas the low-level scheduler

controls the clients selection to be served. Three high

level policies are proposed to control channel alloca-

tion rate [1]: on-demand allocation, forced-wait, and

pure rate control. The on-demand allocation allocates

channels to requests when there are channels available.

Under this policy, the waiting time for new requests

may be long, which may cause clients to change from

one video to another to view at high possibility. The

forced-wait policy, as the name implies, forces the first

request to a data stream to wait for up to a certain time

(minimum wait time). The minimum wait time is a

critical parameter, and can be difficult to be selected

in a dynamic environment where the load changes

dynamically. The pure rate control policy allocates

channels uniformly in fixed time intervals (called mea-

surement intervals) during such a time interval only a

certain number of channels are used [1].

Key Applications
In a multimedia environment, multimedia objects are

retrieved from either a digital library, or a video data-

base, or an audio database, and are delivered to a large

Multimedia Retrieval Evaluation M 1835

M

number of clients. The applications in such environ-

ments range from retrieving small multimedia objects

(shopping, medias, education, etc.) to playback of

large video objects (movie, entertainment, etc.).

Cross-references
▶Continuous Multimedia Data Retrieval

▶Multimedia Data Buffering

▶Multimedia Data Storage

▶ Scheduler

▶ Scheduling Strategies Storage ResourceManagement

Recommended Reading
1. Almeroth K.C., Dan A., Sitaram D., and Tetzlaff W.H. Long

Term Channel Allocation Strategies for Video Applications.

IBM Research Report (RC 20249), 1995.

2. Berson S., Ghandeharizadeh S., Muntz R., and Ju X. Staggered

striping in multimedia information systems. ACM SIGMOD

Rec., 23(2):79–90, 1994.

3. Chen M.S., Kandlur D.D., and Yu P.S. Storage and retrieval meth-

ods to support fully interactive playout in a disk-array-based video

server. Multimedia Syst., 3(3):126–135, 1995.

4. Dan A., Shahabuddin P., Sitaram D., and Towsley D. Channel

allocation under batching and VCR control in video-on-demand

systems. J. Parallel Distrib. Comput., 30(2):168–179, 1995.

5. Dan A. and Sitaram D. Multimedia Information Storage

and Management, chap. 11: Session Scheduling and Resource

Sharing in Multimedia Systems. Kluwer Academic, 1996.

6. Dan A., Sitaram D., and Shahabuddin P. Scheduling policies

for an on-demand video server with batching. In Proc. 2nd

ACM Int. Conf. on Multimedia, 1994, pp. 15–23.

7. Dey-Sircar J.K., Salehi J.D., Kurose J.F., and Towsley D. Providing

VCR capabilities in large-scale video servers. In Proc. 2nd ACM

Int. Conf. on Multimedia, 1994, pp. 25–32.

8. Gemmell D.J. Multimedia network file servers: multi-channel

delay sensitive data retrieval. In Proc. 1st ACM Int. Conf. on

Multimedia, 1993, pp. 243–250.

9. Gemmell D.J. Multimedia Information Storage and Manage-

ment, chap. 1: Disk Scheduling for Continuous Media. Kluwer

Academic, 1996.

10. Ghose D. and Kim H.J. Scheduling video streams in video-on-

demand systems: a survey. Multimedia Tools Appl., 11(2):

167–195, 2000.

11. Little T.D.C. and Venkatesh D. Prospects for interactive video-

on-demand. IEEE Multimedia, 1(3):14–24, 1994.

12. Liu C.L. and Layland J.W. Scheduling algorithms for multi-

programming in a hard-real-time environment. J. ACM, 20(1):

46–61, 1973.

13. Reddy A.L.N. and Wyllie J.C. I/O issues in a multimedia system.

Computer, 27(3):69–74, 1994.

14. Teorey T.J. and Pinkerton T.B. A comparative analysis of disk

scheduling policies. Commun. ACM, 15(3):177–184, 1972.

15. Tobagi F.A., Pang J., Baird R., and Gang M. Streaming RAID:

a disk array management system for video files. In Proc. 1st

ACM Int. Conf. on Multimedia, 1993, pp. 393–400.
16. Yu P.S., Chen M.S., and Kandlur D.D. Grouped sweeping

scheduling for DASD-based multimedia storage management.

Multimedia Syst., 1(3):99–109, 1993.
Multimedia Retrieval Evaluation

THIJS WESTERVELD
1,2

1Teezir Search Solutions, Ede, The Netherlands
2CWI, Amsterdam, The Netherlands

Definition
Multimedia Retrieval Evaluation is the activity of mea-

suring the effectiveness of one or more multimedia

search techniques. A common way of evaluating mul-

timedia retrieval systems is by comparing them to each

other in community wide benchmarks. In such bench-

marks participants are invited to submit their retrieval

results for a given set of topics, the relevance of the

submitted items is checked, and effectiveness measures

for each of the submissions are reported. Multimedia

retrieval evaluation measures the effectiveness of mul-

timedia retrieval systems or techniques by looking at

how well the information need as described by a topic

is satisfied by the results retrieved by the system or

technique. Efficiency of the techniques is typically not

taken into account, but may be studied separately.

Historical Background
Until the mid-1990s, no commonly used evaluation

methodology existed for multimedia retrieval. An

important reason for this is that the field has merely

been a showcase for computer vision techniques. Many

papers in the field ‘proved’ the technical merits and

usefulness of their approaches to image processing

by showing a few well-chosen, and well-performing

examples. Since 1996, the problem of systematically

evaluating multimedia retrieval techniques has gained

more and more interest. In that year, the Mira (Multi-

media Information Retrieval Applications) working

group was formed [2]. The group, consisting of peo-

ple from the fields of information retrieval, digital

libraries, and library science studied user behavior

and information needs in multimedia retrieval situa-

tions. Based on their findings, they developed per-

formance measures. Around the same time, in the

multimedia community, the discussion on proper

evaluation started, and Narasimhalu et al. [8]

proposed measures for evaluating content-based

1836M Multimedia Retrieval Evaluation
information retrieval systems. These measures are

based on comparing ranked lists of documents

returned by a system to the perfect, or ideal, ranking.

However, they do not specify how to obtain such a

perfect ranking, nor do they propose a common test

set. A year later, Smith [10] proposed to evaluate image

retrieval using measures from the text retrieval com-

munity and in particular from TREC, the Text Retriev-

al Conference [12] for image retrieval evaluation.

Again, no dataset was proposed. At the start of the

twenty-first century, the evaluation problem gained

more attention within the content-based image retriev-

al community, with the publication of three papers

discussing benchmarking in visual retrieval [3,6,7].

These three papers call for a common test collection

and evaluation methodology and a broader discussion

on the topic. The Benchathlon network (http://www.

benchathlon.net) was started to discuss the develop-

ment of a benchmark for image retrieval. Then, in

2001, TREC started a video track [9] that evolved

into the workshop now known as TRECVID.

Today, a variety of initiatives exists for evaluating

the retrieval of different types of data in a variety of

contexts, a list of these is provided below under data.

Foundations
Information retrieval is interactive. In web search, for

example, queries are often changed or refined after an

initial set of documents has been retrieved and inspected.

In multimedia retrieval, where browsing is common,

interactivity is perhaps evenmore important. Evaluation

should take interactivity into account, and measure user

satisfaction. The evaluation of a system as a whole in an

interactive setting is often called an operational test.

Such tests measure performance in a realistic situation.

Designing such an operational test is difficult and ex-

pensive. Many users are needed to free the experiment

of individual user effects, the experimental setup

should not interfere with the user’s natural behavior,

and learning effects need to be minimized. Also, be-

cause there are many free variables, it is hard to attri-

bute observations to particular causes. In contrast to

these tests in fully operational environments, laboratory

tests are defined as those tests in which possible sources

of variability are controlled. Thus, laboratory tests can

provide more specific information, even though they

are further away from a realistic setting. Also, labora-

tory tests are cheaper to set up, because the interactive

nature is ignored, and the user is removed from the
loop. Laboratory tests measure the quality of the doc-

ument ranking instead of user satisfaction. While some

studies exist to evaluate multimedia retrieval systems

in an operational setting by investigating user satisfac-

tion, most approaches are studied in laboratory tests.

Current laboratory tests are based on the Cranfield

paradigm [1]. In this paradigm, a test collection con-

sists of a fixed set of documents, a fixed set of topics,

and a fixed set of relevance judgements. Documents are

the basic elements to retrieve, topics are descriptions

of the information needs, and relevance judgements

list the set of relevant documents for each topic.

The focus in laboratory tests is on comparative

evaluation. Different approaches are tested, and their

relative performance is measured. The process is as

follows. Each approach produces a ranked lists of

documents for each topic. The quality of the ranked

lists is measured based on the positions of the relevant

documents in the list. The results are averaged across

all topics to obtain an overall quality measure.

For successful evaluation of retrieval techniques,

two components are needed in addition to a test col-

lection [4]: a measure that reflects the quality of the

search and a statistical methodology for judging

whether a measured difference between two techniques

can be considered statistically significant. The mea-

sures used in multimedia retrieval evaluation are typi-

cally based on precision and recall, the fraction of

retrieved documents that is relevant and the fraction

of relevant documents that is retrieved. To measure

recall, the complete set of relevant documents needs

to be known. For larger collections this is impractical

and a pooling method is used instead. With pooling,

the assumption is that with a diverse set of techniques

contributing runs to the evaluation, the probability

that a relevant document is retrieved at a high rank

by at least one of the approaches is high. A merged set

of top ranked documents is assumed to contain most

relevant documents and only this set of documents

is manually judged for relevance. Documents that

are not judged are assumed not relevant. In reality,

some unjudged documents may certainly still be rele-

vant, but it has been shown that this is of no influence

to the comparative evaluation of search systems

[11,13,14].

A number of aspects influence the reliability of

evaluation results. First, a sufficiently large set of topics

is needed. ?] suggest a minimum of 75. Second, the

measures should be stable. This means it should not be

http://www.benchathlon.net
http://www.benchathlon.net

Multimedia Retrieval Evaluation M 1837

M

influenced too much by chance effects. Clearly, mea-

sures based on few observations are less stable than

measures based on many observations. For example,

precision at rank 1 (is the first retrieved document

relevant) is not a very stable measure. Third, there

needs to be a reasonable difference between two

approaches before deciding one approach is better

than the other. Sparck Jones [5] suggests a 5% differ-

ence is noticeable, and a difference greater than 10% is

material. Statistical significance tests take all these

aspects into account and are useful in deciding whether

an observed difference between two approaches is

meaningful or simply due to chance.

Key Applications
Multimedia retrieval evaluation helps to better under-

stand what works and what does not in the area of

multimedia retrieval. Many practitioners in the field

benefit from the area. It gives them the opportunity to

test their ideas in a principled manner and allows them

to build upon approaches that are known to be suc-

cessful. More and more, the papers published in re-

nowned journals and conferences demonstrate the

usefulness of their techniques by a thorough evaluation

on a well-known test collection.

Data Sets
Creating a test collection for multimedia retrieval sys-

tems takes a lot of effort. Especially the generation of

ground truth data for a sufficient number of topics is

something that a small company or research institution

cannot manage on its own. Many workshops exist that

solve this problem by sharing resources in a collabora-

tive effort to create valuable and re-usable test collec-

tions. This approach was first taken in the Text

Retrieval Conferences (TREC) [12], but many others

followed. Below the main collections and evaluation

platforms in multimedia are listed.

The Corel document set is a collection of stock

photographs, which is divided into subsets each relat-

ing to a specific theme (e.g., tigers, sunsets, or English

pub signs). The collection is often used in an evaluation

setting by using the classification into themes as ground

truth. Given a query image, all images from the same

theme –and only those– are assumed relevant. Evaluation

results based on Corel are highly sensitive to the exact

themes used in the evaluation [7]. In addition, Corel

has a clear distinction between themes and an unusually

high similarity within a theme because the photos
in a theme often come from the same photographer

or even the same location. This makes the collection

more homogeneous than can be expected in a realistic

setting.

TRECVID studies video retrieval. The data collec-

tions used have been dominated by broadcast news,

but other raw and edited professional video footage is

studied as well. TRECVID defines a number of tasks

and provides test collections for each of them. In 2007,

four main tasks existed:

Shot boundary detection: identify shot boundaries

in the given video clips with their location and type

(hard or soft transition).

High level feature extraction: For each of the pre-

defined high-level features or concepts, detect the shots

that contain the feature. Features that have been stud-

ied in the past include sky, road, face, vegetation, office

and people marching.

Search: Given a textual description of an informa-

tion need and/or one or more visual examples, find

shots that satisfy this need.

Rushes summarization: Given a set of rushes, i.e.,

raw, unedited footage, provide a visual summary of

this data that in a limited number of frames shows the

key objects and events that are present in the footage.

As part of the Cross-Language Evaluation Forum

(CLEF), ImageCLEF studies cross-language image re-

trieval. ImageCLEF concentrates on two main areas:

retrieval of images from photographic collections

and retrieval of images from medical collections.

The Initiative for the Evaluation of XML retrieval

(INEX) aims to evaluate the effectiveness of XML

retrieval systems. Within this initiative, the INEX mul-

timedia track evaluates the retrieval of multimedia ele-

ments from a structured collection. The data collection

used consists of wikipedia documents and the images

contained in them. Both the retrieval of multimedia

fragments (combinations of text and images) and the

retrieval of images in isolation are studied.

ImagEVAL evaluates image processing technology

for content-based image retrieval. The assessment fo-

cuses on features relating to what collection holders

(from defence, industry and cultural sectors) expect in

terms of how images may be used. The tasks include

recognizing transformed images, combined textual

and visual search and object detection. The collections

are a heterogeneous mix of professional images includ-

ing stock photography, museum archives and industri-

al images.

1838M Multimodal Data
The Music Information Retrieval Evaluation

Exchange (MIREX) evaluates subtasks of music infor-

mation retrieval. The datasets used by MIREX are

cd-quality audio originating from (internet) record

labels that allow tracks of their artists to be published.

The tasks include genre classification,melody extraction,

onset detection, tempo extraction and key finding.
Cross-references
▶ Information Retrieval Evaluation Measures

▶Multimedia Databases

▶Multimedia Information Retrieval
Recommended Readings
1. Cleverdon C.W. The cranfield tests on index languagr devices.

Aslib Proc., 1967, pp. 173–192.

2. Draper S.W., Dunlop M.D., Ruthven I., and van Rijsbergen C.J.

(eds.). In Proc. Mira 99: Evaluating Interactive Information

Retrieval. Electronic Workshops in Computing, 1999.

3. Gunther N.J. and Beretta G. A benchmark for image retrieval

using distributed systems over the internet: BIRDS-I. Technical

Report HPL-2000-162, HP Laboratories, 2000.

4. Hull D. Using statistical testing in the evaluation of retrieval

experiments. In Proc. 16th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1993,

pp. 329–338.

5. Jones K.S. Automatic indexing. J. Doc., 30:393–432, 1974.

6. Leung C.H.C. and Ho-Shing Ip H. Benchmarking for content-

based visual information search. In Advances in Visual Infor-

mation Systems, Fourth Int. Conf., 2000, pp. 442–456.

7. Müller H., Müller W., McG. Squire D., Marchand-Maillet S., and

Pun T. Performance evaluation in content-based image retrieval:

overview and proposals. Pattern Recogn. Lett. (Special Issue

on Image and Video Indexing), 22(5):593–601, 2001.

8. Narasimhalu A.D., Kankanhalli M.S., and Wu J. Benchmarking

multimedia databases. Multimedia Tools Appl., 4(3):333–356,

1997. ISSN 1380-7501.

9. Smeaton A.F., Over P., Costello C.J., de Vries A.P., Doermann D.,

Hauptmann A., Rorvig M.E., Smith J.R., and Wu L. The TREC-

2001 video track: information retrieval on digital video infor-

mation. In Research and Advanced Technology for Digital

Libraries, Sixth European Conference, 2002, pp. 266–275.

10. Smith J.R. Image retrieval evaluation. In Proc. IEEE Workshop

on Content-based Access of Image and Video Libraries, 1998,

pp. 112–113.

11. Voorhees E.M. and Harman D.K. Overview of the eighth

text retrieval conference (TREC-8). In Proc. The 8th Text Re-

trieval Conference, 2000.

12. Voorhees E.M. and Harman D.K. TREC: Experiment and Evalu-

ation in Information Retrieval (Digital Libraries and Electronic

Publishing). MIT, Cambridge, MA, 2005. ISBN 0262220733.

13. Westerveld T. Trecvid as a re-usable test-collection for video

retrieval. In Proc. Multimedia Information Retrieval Workshop,

2005.
14. Zobel J. How reliable are the results of large-scale information

retrieval experiments? In Proc. 21st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1998, pp. 307–314.
Multimodal Data

▶Multimedia Data
Multimodal Databases

▶Multimedia Databases
Multi-modal Information Retrieval

▶Cross-Modal Multimedia Information Retrieval
Multimodal Interfaces

MONICA SEBILLO1, GIULIANA VITIELLO
1,

MARIA DE MARSICO
2

1University of Salerno, Salerno, Italy
2Sapienza University of Rome, Rome, Italy

Definition

Multimodal interfaces are characterized by the (possibly

simultaneous) use of multiple human sensory modal-

ities and can support combined input/output modes.

The termmultimodal recurs across several domains.

Since its first use in the field of interface design, its

affinity and derivation from the terms ‘‘mode’’ and

‘‘modality’’ were discussed. According to Merriam-

Webster, one of the meanings for mode is ‘‘a possible,

customary, or preferred way of doing something,’’

whereas modality can be ‘‘one of the main avenues of

sensation (as vision).’’ In multimodal interfaces, the

former influences the way information is conveyed,

the latter refers to the exploited communication

channel. Both express peculiar aspects of a multimodal

system, which is expected to provide users with flexi-

bility and natural interaction.

Early multimodal interfaces simply combined

display, keyboard, and mouse with voice (speech

Multimodal Interfaces M 1839

M

recognition/synthesis). Later, pen-based input, hand

gestures, eye gaze, haptic input/output, head/body

movements have been progressively used. As a result,

modern multimodal interfaces aim at emulating the

natural multi-sensorial forms of human-human dia-

logue, relying on the integration of advanced interac-

tion modes. To support the described variety of modes,

the system underlying such an interface must include

hardware to acquire and render multimodal expres-

sions and must exploit recognition-based technologies

to interpret them, with response times compatible with

user’s interaction pace.

Historical Background
Bolt’s ‘‘Put That There’’ demonstration system [2] can

be considered as one of the earliest multimodal sys-

tems. The underlying technology allowed a joint use

of voice and gesture by processing speech in parallel

with manual pointing within a virtual graphical space,

where users could be made easily aware of the available

facility and its usage. Spoken input was semantically

processed, while deictic terms in the speech were

resolved by processing the spatial coordinates derived

from pointing. Since then, different proposals of mul-

timodal interfaces can be found in literature [5,4].

Many of them aim at integrating natural languages

and direct manipulation in specific application

domains, such as manufacturing environments and

interactive maps.

The CHI’90 Workshop on Multimedia and Multi-

modal Interface Design represented a turning point [1].

The growing interest by the international community

toward this research area induced the Program Com-

mittee to focus on both the integration of scientific

knowledge about this discipline and the direction of

future developments. Four main topics were identified

for discussion, with respect to which interfaces could

be designed and examined: structural principles for

composition, media appropriateness, enabling techno-

logies, and paradigms/metaphors/models/representations.

Important issues emerged, fromwhich some years later

the first remarkable set of guidelines for the design of

multimodal user interfaces stemmed [9].

Following the scientific attention to the multimodal

paradigm, a variety of systems rapidly came out. Both

hardware and software were enhanced to integrate par-

allel input streams, mostly acquired by speech and pen-

based gestures. One of the first such prototypes was

the QuickSet system developed in 1994 [3]. It was an
agent-based, collaborative, multimodal-multimedia

map system, allowing the user to issue commands

using a combination of speech and pen input. For

illustration purposes, in [8] Oviatt provides a compari-

son among five different speech and gesture systems,

which represented the most exemplifying research-level

systems developed until the late 1990s. In her evalua-

tion, the author takes into account some characteristics,

such as the type of signal fusion and the sizes of gesture

and speech vocabularies, on which integration and in-

terpretation functionalities were based.

More recently, new combinations of speech and

other modalities, such as lip movements and gaze, have

been exploited thanks to advanced input/output tech-

nologies, whose effective integration into flexible yet

reliable interfaces requires the underlying system robust-

ness and performance stability. As a result, multimodal

interfaces have pervaded new application domains,

ranging from virtual reality systems, meant to support

expert users in decision making and simulation of sce-

narios, to training systems and to person identification/

verification systems for security purposes. Such systems

may be further distinguished on the basis of their

inputmodes, which can be either intentionally exploited

by users (active input mode) such as speech and gest-

ures, or captured by the system without an explicit

request by users (passive input mode), such as facial

expressions.

Foundations
In order to clarify the different aspects involved in a

multimodal interface, the complexity of multimodal

interaction can be described in terms of the well-

known execution-evaluation cycle defined by Don

Norman in 1988 [6].

In the case of multimodal interactive cycles,

Norman’s model of interaction may be reformulated

as follows:

1. Establishing the goal.

2. Forming the intention.

3. Specifying the multimodal action sequence in terms

of human output modalities.

4. Executing the multimodal action.

5. Perceiving the system state in terms of human

input modalities.

6. Interpreting the system state.

7. Evaluating the system state with respect to the goals

and the intentions.

1840M Multimodal Interfaces
� Establishing the goal is, as usual, the stage when

the user determines what needs to be done in

the given domain, in terms of a suitable task

language.

� Forming the intention: at this stage the goal is trans-

lated into more precise user’s intention, which will

help the user determining the right sequence of

actions that should be performed to achieve the

goal

� Specifying the multimodal action sequence. The

sequence of actions performed to accomplish the

required task should be precisely stated at this

stage. Here the complexity of multimodal interac-

tion appears for the first time in the cycle. In

fact, each multimodal action can be specified

in terms of:

1. Complementary human output sensory modal-

ities (i.e., multiple utterances at once form the

action) and/or

2. Alternative human output sensory modalities

(i.e., alternative, redundant utterances for the

same action).

Examples of human output modalities include

speaking, gesturing, gazing, touching, moving, facial

expressions and some unintentional utterances such as

blood pressure, temperature, heartbeat, excretion, etc.

A user may, for instance, move an object in the inter-

action scene by speaking and pointing at (gesturing)

the new object location (complementary modalities).

Then, instead of gesturing (s)he may want to gaze

at the new location on the interface where the object

should be moved (alternative modality).

� Executing each multimodal action. At this stage,

each human modality used to specify an action is

translated into corresponding interaction modes.

Thus, each action is executed through

1. Complementary modes or

2. Alternative modes

Text, speech, Braille, mimicking, eye/motion capture,

haptics, bio-electrical sensoring are examples of modes

used to translate human output modalities into the

system input language.

When the execution of the whole sequence of mul-

timodal actions is complete, the system reaches a new

state and communicates it to the user again exploiting

(possibly multiple) interaction modes, such as speech
synthesis, display, haptic/tactile feedback, smell ren-

dering and so on.

� Perceiving the system state. At this stage, the evalua-

tion phase of the cycle begins. Depending on the

combination of system output modes, the user may

perceive the new state through multiple input sen-

sory modalities, such as visual, auditory, tactile,

and (in some revolutionary interfaces) even smell-

ing and tasting.

� Interpreting the system state. Here the user is sup-

posed to interpret the output of her/his sequence of

actions to evaluate what has happened.

� Evaluating the system state with respect to the goals

and the intentions. At the final stage, the user com-

pares the new system state with her/his expecta-

tions, to evaluate if the initial goal has been

effectively reached.

Of course a good mapping should be achieved between

the execution and the evaluation phases in order to

bridge what Norman calls the gulf of execution (i.e., the

distance between user’s specification of the action and

the actions allowed by the system) and the gulf of

evaluation (i.e., the distance between user’s perception

of the new state and her/his expectation). In multi-

modal interfaces the effective reduction of both gulfs

crucially depends on the underlying interactive tech-

nology that must move as close as possible towards

human-human forms of interaction and communica-

tion. Thus, on the execution side, human output mod-

alities should be supported by suitable computer input

devices, e.g., by mapping gaze, speech, touch, gesturing

and smelling onto cameras, microphones, keyboard,

haptic sensors and the most recent olfactory sensors,

respectively. From the evaluation perspective, comput-

er output and its perception by user should be also

tightly linked. This requires the adoption of output

devices, like display, audio and haptic/olfactory ren-

dering devices, able to quickly and effectively reach

the human input sensory system, so that the user

sees, hears, touches and, in general, feels the new sys-

tem state as it is communicated by the multimodal

interface.

As an example, the successful execution of direct

manipulation tasks within an immersive virtual reality

environment may critically depend on the abolition

of any latency time between the moment an action

is performed, e.g., by means of datagloves, and the

Multimodal Interfaces M 1841

M

moment the user recognizes the touch. In this way the

user perceives gesturing as an act that can be directly

realized at the interface. If this cannot be achieved, any

usability benefits coming from the direct manipulation

paradigm would be lost.

The ultimate advantage of multimodal interfaces is

increased usability, in terms of both flexibility and

robustness of the interaction when either redundant

or complementary information is conveyed by modes.

Higher flexibility is gained since multimodal interfaces

can accommodate a wide range of users, tasks and

environments for which each single mode may not be

sufficient. Different types of information may be con-

veyed using the most appropriate or even less error

prone modality, while alternation of different channels

may prevent from fatigue in computer use intensive

tasks. Redundancy of information through different

communication channels is especially desirable when

supporting accessibility, since users with different

impairments may benefit from information and ser-

vices otherwise difficult to obtain. As for the increased

robustness of the interaction, the weaknesses of one

modality may be offset by the strengths of another.

More semantically rich input streams can support

mutual disambiguation for the execution phase. As in

human-human communication, the correct decoding

of transmitted messages requires interpreting the mix

of audio-video signals.

An important research theme in multimodal inter-

face design is how to integrate and synchronize different

modes, taking into account that synchrony of different

‘‘tracks’’ of interaction in different modes, does not

imply their simultaneity. At present, each unimodal

technique is developed separately, with noticeable

advances produced by improvements in both software

recognition-based techniques and hardware input/

output technologies. However, as pointed out in [9],

an effective integration of the involved modal technol-

ogies requires a deep understanding of the ‘‘natural’’

integration patterns that characterize people’s combined

use of different communication modes, as widely stud-

ied by psychologists and cognitive experts. The issue of

integration may become even more complex when a

multimodal interface is designed to support collabora-

tive work, namely the work by multiple users who may

interact through the interface using several input/out-

put modes, either synchronously or asynchronously,

and either locally or remotely.
Key Applications
Recent advances in technology have been urging IT

researchers to investigate innovative multimodal inter-

faces and interaction paradigms, able to exploit the

increased technological power. The common key goal

is to reproduce in the best possible way the interaction

through different channels, typical of a human-human

dialogue. As an example, real ‘‘physical’’ manipulation

might be simulated even when the latter is not possible

due to logistical problems (e.g., remote operation) or

to dangerous settings (e.g., radioactive materials and

areas), or when it is convenient to just simulate a real

operation (e.g., for training purposes). A more natural

and familiar way of managing objects and situations

is also expected to improve global user performances

and increase applications effectiveness.

Among the most recent efforts, research on haptic

equipment deserves a mention. Related advances trig-

ger new potentialities and convey novel features to-

wards many domains, especially industrial, medical,

and biotechnological. In the industrial world, the

goal of improving competitiveness has led to the

experimentation of haptic interfaces in fields like

automotive and aerospace engineering, and texture

manufacturing. In the medical domain, education

and research activities are being increasingly improved

by the adoption of haptic environments for virtual

surgery simulation. Several new challenges are arising

in the field of Biology/Biotechnology, where the adop-

tion of visual interfaces connected to haptic devices is

recognized as a powerful and straightforward mean to

handle nano-objects, such as cells, and the possibility

of force feedback offered by certain haptic systems, is

envisioned as a considerable improvement of opera-

tor’s perception. Last but not least, several multimodal

interfaces enhanced with haptic feedback have been

conceived to address major societal needs, e.g., by

visually impaired people or wheelchair users.

In the following, a brief list of some further appli-

cation domains is presented, where multimodal inter-

faces are presently investigated.

Interaction in Mobile Environments

The problem that has to be solved in applications

designed for mobile environments is that hands, which

are the usual interaction mediator for human-computer

communication with traditional input devices, must be

devoted to different crucial activities, e.g., controlling a

1842M Multimodal Interfaces
steering wheel. In such situation, alternative modes

should rather be exploited to interact with software

applications such as a map browser. Moreover, user’s

visual attention must be focused on catching situations

such as obstacles approach, so that relevant software

events should be communicated for example through

auditory signals, so as to relieve the user from continu-

ously inspecting system state.

Geographic Information Systems

Multimodal interfaces are also being employed as a

means to support decision makers in accessing and

analyzing geospatial information in specific and criti-

cal scenarios, such as crisis management procedures

and what if analyses. Some systems have been recently

proposed, which rely on large screen displays and aug-

mented reality tools for enhanced data visualization, as

well as on collaborative advanced interfaces supporting

speech and gesture recognition.

In these systems, multimodality becomes the

way domain expert users can formulate appropriate

requests to the underlying geographic information sys-

tem and receive rapid responses, provided through

different perspectives. Rapid feedback is in fact a cru-

cial issue in situations when risk and vulnerability

must be predicted as well as during exceptional events

when recovery actions must be taken by users with

complementary expertises.

Interaction in Adverse Settings

As discussed above, it is often necessary to substitute

the human operator in adverse settings in a way that

preserves both his/her health and the effectiveness

of the interaction with environment objects. A much

simpler case is when some communication channel

might be hindered by disturbing conditions and the

presence of other modes may provide possible missing

information.

Multimodal Biometric Databases

Multimodal biometric databases are an example of

tight integration of multiple input modes to achieve

reliable person identification and verification. Finger-

prints are the most well-known biometric method.

More biometrics include hand conformation, iris scan-

ning, features from face, ears or voice or handwriting.

Despite noticeable progresses in biometrics research,

no single bodily or behavioral trait satisfies acceptabil-

ity, speed and reliability constraints of authentication

in real applications. Single biometric systems are
vulnerable to possible attacks, and may suffer from

acquisition failures, or from the possible non-univer-

sality of the biometric feature, as in the case of deaf-mute

subjects for voice recognition. The present trend is there-

fore towards multimodal systems, as flaws of an individ-

ual system can be compensated by the availability of a

higher number of alternative biometries. Integration of

single responses is a crucial point, especially when differ-

ent reliability degrees can be assigned to them due to

input quality or effectiveness of recognition algorithms.

Interaction in Impairment Conditions

Accessibility is a transversal issue relating to different

application domains. Physical impairments call for

flexible system interfaces allowing universal access to

services and information. What should be affected

when designing for accessibility is the structure of

both input and output for each application function.

Functions need parameters including both data and

events triggered by user’s actions. In both cases, it is

necessary to adapt the format manageable by a user

possibly bearing a specific disability to the one accept-

able by the functions. Such adaptation could be

provided by special pieces of software (wrappers). A

different wrapper is needed for each different disability

situation. They would be connected to suitable inter-

faces allowing the user to issue commands and data

according to his/her ability, and translating them for

function call. Information and data returned by the

system undergoes a symmetrical translation. In other

words, multimodal input/output should be dynami-

cally provided. The contribution of (disabled) accessi-

bility experts to the overall design of wrappers is

essential to obtain significant results. They can suggest

the best suited interaction mechanisms and the best

input/output modes to use.

Future Directions
The future challenge for multimodal interfaces is the

ability to better and better mimic human-like sensory

perception. Such interfaces will be able to reliably inter-

pret continuous input from more different visual, audi-

tory, and tactile sources, chosen according to the target

users’ tasks.More advanced recognition of users’ natural

communication modalities will be supported, and more

sophisticated models of multimodal interaction are

expected to replace present bimodal systems. One of

the problems to solve is to design and implement effec-

tive integration schemas among different modalities,

based on available literature on human intersensory

Multiple Query Optimization M 1843

M

perception and on natural human-human multimodal

interaction patterns. More research is required on

human inclination to multimodal communication with

applications, depending on different target tasks, and

about integration and synchronization characteristics

of multimodal input/output in different contexts and

situations.

Cross-references
▶Geographic Information System

▶Mobile and Ubiquitous Data Management

▶Visual Interfaces

Recommended Reading
1. Blattner M.M. and Dannenberg R.B. CHI’90 Workshop on

multimedia and multimodal interface design. SIGCHI Bull.,

22(2):54–58, 1990.

2. Bolt R.A. Put that there: voice and gesture at the graphics

interface. ACM Comput. Graph., 14(3):262–270, 1980.

3. Cohen P.R., Johnston M., McGee D.R., Oviatt S.L., Pittman J.,

Smith I., Chen L., and Clow J. QuickSet: multimodal interaction

for distributed applications. In Proc. 5th ACM Int. Conf. on

Multimedia, 1997, pp. 31–40.

4. European Telecommunications Standards Institute. Human

Factors (HF); Multimodal interaction, communication and

navigation guidelines ETSI EG 202 191 V1.1.1 (2003–08).

5. Jaimes A. and Sebe N. Multimodal human-computer interac-

tion: a survey. Comput. Vis. Image Underst., 108:116–134, 2007.

6. Norman D. The design of everyday things. Doubleday,

New York, 1988.

7. Oviatt S. Ten myths of multimodal interaction. Commun. ACM,

42(11):74–81, 1999.

8. Oviatt S. Multimodal interfaces. In The Human-Computer In-

teraction Handbook: Fundamentals, Evolving Technologies, and

Emerging Applications, J. Jacko, A. Sears (eds.). Lawrence

Erlbaum, NJ, 2003.

9. Reeves L.M., Lai J., Larson J.A., Oviatt S., Balaji T.S., Buisine S.,

Collings P., Cohen P., Kraal B., Martin J.C., McTear M.,

Raman T.V., Stanney K.M., Su H., and Wang Q.Y.

Guidelines formultimodal user interface design. Commun. ACM,

47(1):57–59, 2004.

10. Yuen P.C., Tang Y.Y., and Wang P.S.P. (eds.). Multimodal

Interface for Human-Machine Communication. World Scien-

tific, NJ, 2002.
Multi-Pathing

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Definition
There can be multiple paths between a SCSI initiator

and a SCSI target. Multiple paths between a host and a
storage device are useful to provide more fault-tolerance

as well as to improve system throughput. Multi-pathing

software ensures that the same target volume is not

seen as two separate LUNs by the host.

Key Points
The multiple paths can be configured in active-active

or active-standby modes. In the active-active mode,

both paths are actively transferring data. In the

active-standby mode, the standby path does not

actively transfer data. Some multi-pathing software

allows for dynamic load balancing of traffic between

the multiple paths. Typically, the storage controller

vendor also provides the multi-pathing driver that

runs on the host, and this software is usually limited

to only operating with the vendor’s storage devices.

Software vendors are beginning to provide multi-

pathing software that can interoperate with storage

controllers from multiple storage vendors.
Cross-references
▶ Initiator

▶ LUN

▶Target

▶Volume
Multiple Classifier System

▶ Ensemble
Multiple Imputation

▶ Synthetic Microdata
Multiple Linked Plots

▶Dynamic Graphics
Multiple Query Optimization

▶Multi-Query Optimization

1844M Multiple Representation Modeling
Multiple Representation Modeling

CHRISTINE PARENT
1, STEFANO SPACCAPIETRA2,

CHRISTELLE VANGENOT
2, ESTEBAN ZIMÁNYI

3

1University of Lausanne, Lausanne, Switzerland
2EPFL, Lausanne, Switzerland
3Free University of Brussels, Brussels, Belgium

Synonyms
Multi-scale; Multi-resolution; Multi-granularity

modeling

Definition
Geodata management systems (i.e., GIS and DBMS)

are said to support multiple representations if they have

the capability to record and manage multiple represen-

tations of the same real-world phenomena. For exam-

ple, the same building may have two representations,

one with administrative data (e.g., owner and address)

and a geometry of type point, and the other one with

technical information (e.g., material and height) and a

geometry of type surface. Multirepresentation is essen-

tial to make a data repository suitable for use by various

applications that focus on the same real world of inter-

est, while each application has a specific perception

matching its goals. Different perceptions translate into

different requirements determining what information

is kept and how it is structured, characterized, and

valued. A typically used case is map agencies that edit

a series of national maps at various scales and on

various themes.

Factors that concur in generating different repre-

sentations include the intended use of data and the

level of detail matching the applications concerns.

The former rules the choice of data structures (which

objects, relationships, and attributes are relevant) and

of value domains (e.g., whether the temperatures are

stored in Celsius or Fahrenheit). The latter rules data

resolution from coarse to precise and impacts both the

semantic and the spatial representation.

Multiple representation modeling is the activity of

designing a data repository that consistently holds

multiple representations for various perceptions of a

given set of phenomena. It relies on a multirepresenta-

tion data model, i.e., a data model with constructs and

rules to define and differentiate the various perceptions

and for each perception the representations of the

phenomena of the real world of interest.
Historical Background
Support for different requirements over the same data

set has first been provided by using multiple data files,

each one designed for a specific application. Aiming at

consistency, databases looked instead for ways to gath-

er data into a single repository, generating the need for

multiple representations. First came facilities to define

application-specific subschemas, as simple restrictions

of the database schema. Later, more flexibility was

achieved through the view mechanism. In object-

oriented terms, views are virtual representations

derived from existing data. They create either an alter-

native representation for existing objects (object pre-

serving views) or new objects composed from existing

objects (object generating views). Each view defines a

single new representation. However, views do not pro-

vide multiple perceptions, i.e., there is no possibility to

identify the collection of views that forms a consistent

whole for an application.

Similarly, the concept of is-a link was borrowed

from artificial intelligence to provide for various repre-

sentations of the same object in a classification refine-

ment hierarchy. However, the concept comes with a

population inclusion constraint: The subtype popula-

tion is included in the supertype population. This

cannot cope with situations where the populations of

two object types only overlap, i.e., the two populations

may have specific objects not represented in the other

population. Since then, the situation has not changed

much. It is only in the last decade that the need

for more flexible multirepresentation and explicit

support of various perceptions has been stressed by

researchers.

Multirepresentation research in spatial databases can

be traced back to the 1989 NCGIA program. In the early

1980’s, maps began to be stored in geographic databases,

and that opened up many new research tracks. The

specification and implementation of cartographic gen-

eralization was one of them. It relied on the idea that

cartographic generalization would allow the automatic

derivation of maps at different scales from a single

geographic database. Realizing that this full automation

was not possible increased the focus on multiple repre-

sentation databases [7,9,15]. Under the pressure of de-

livering maps at different scales, the first researches

were, in the early 1990’s, focusing on multi-scale data

structures (i.e., data structures allowing to retrieve ge-

ometry of real-world objects for any given scale) and

Multiple Representation Modeling M 1845

M

multiscale databases (i.e., databases in which the data

for maps at different scales is stored and linked togeth-

er). Later, the multiscale approach was refined and

extended into the multirepresentation approach: scale

indeed is not a concept relevant for databases and there

is nowadays more to a geographical database than pro-

ducing maps. The current scope of multirepresentation

for GIS database comprises various techniques that can

be used, within a single database, to automatically de-

rive a coarser representation from another representa-

tion at finer resolution. These techniques aim at

computing objects at coarser representations, for multi-

resolution analyses rather than for display. They include

generic cartographic generalization operations (not

driven by map display considerations) as well as opera-

tions performed on specific object types (e.g., selection

of instances based on an ad-hoc predicate, aggregation

of instances to create new objects). Some authors use

the term model generalization to denote that the use

of various techniques leads to the creation of a set of

virtual databases for different resolution levels, and

the mappings between their schemas (models in

GIS terms). The automatic derivation rules (the map-

pings) allow update propagation from finer to coarser

representations.

Currently, only a few simple multi-representation

databases exist and are used to their expected potential.

Foundations
Early research on multi-representation in GIS was

driven by cartographers’ requirements. This explains

why the ability to draw maps at different scales has

been for long the targeted objective, popularizing the

concept of multi-scale databases. However, many other

spatial applications that need to perform spatial data

analysis require storing and managing specific repre-

sentations where objects may have various geometries

(derived one from another or not) and also show

varying thematic characteristics (e.g., have different

attributes and different relationships). Thus, the

research domain evolved from multi-scale databases

to multi-representation databases. Equally important

is the capability to provide each application with a

consistent set of data that corresponds to its own

perception of the real world of interest, in short

its own database. Therefore, support of multirepresen-

tation should be complemented with support of

multiperception.
Multiscale Databases

Multiresolution databases are still referred to by the

GIS community as multiscale databases, despite the

fact that scale does not apply to data storing. Scale is

a concept related to the drawing of maps on paper or

on screen. It is the ratio between measures on a map

and the corresponding measures in the real world.

Scale only characterizes an intended use of data. In-

stead, the level of resolution of a spatial database

determines what geometries are stored. It defines a

threshold such that only geometries beyond the thresh-

old are captured and stored.

In early work by Timpf, the different map repre-

sentations of the same real-world entities are inter-

connected using a directed acyclic graph data structure.

The graph allows users to navigate among maps at

different scales by zoom-in and zoom-out operations.

This work later developed into a more general Map

Cube Model [14], supported by a theory on the struc-

ture of series of maps of the same region at different

scales. Each map is described as a composition of

four components: a set of lines representing trans-

portation and hydrology networks, the set of areas,

called containers, created by the lines of the trans-

hydro network, areas that are a refinement of the

container partition, and objects contained in these

areas. The elements stored in each of the four com-

ponents (e.g., streets, land-use areas, buildings) are

then organized into aggregation and/or generaliza-

tion hierarchies. This forms a graph for each compo-

nent, where each level of the graph corresponds to a

given scale.

Stell and Worboys have also proposed a solution to

link a series of maps [12]. Their database organization

is called a stratified map space. Each map gathers

objects of a particular region that share the same se-

mantic and spatial granularity. Maps are grouped by

map spaces, i.e., sets of maps at the same granularity,

describing various regions. The stratified map space is

the set of all maps spaces organized according to a

hierarchy based on different granularity levels. Trans-

formation functions allow users to navigate in a stra-

tified map space and propagate updates.

Multi-Representation Databases

Work on spatial multi-representation databases has

followed two main tracks: either proposing new (con-

ceptual) data models that include explicit description

1846M Multiple Representation Modeling
of multi-representation, or proposing frameworks that

organize a set of existing classic (i.e., without multi-

representation) databases into a global multirepresen-

tation repository.

Database Models for Multiple Representations Several

data models with specific concepts for multiple-repre-

sentation modeling have been proposed. They range

from simple solutions allowing users to associate vari-

ous geometries to the same objects to more sophisticat-

ed solutions. They are discussed here according to the

requirements for multiple-representation modeling.

A model for multirepresentation should allow one

to characterize the same objects using different sets of

attributes, and attributes with different values and diffe-

rent domains. This flexibility is supported by theMADS

model [8], where multiple representations of a given

phenomenon may be organized according to two stra-

tegies. In the first one, the various spatial and semantic

descriptions of the same real-world phenomenon are

merged into a single database construct. Each element

of a description is qualified by a tag (called stamp)whose

value identifies the perceptions for which it is relevant.

Object and relationship types can thus have various sets

of attributes depending on the perception. Attributes

may bear various cardinalities or value domains accord-

ing to the perception stamp; they can also contain a

value that is a function of the perception stamp.

The Vuel approach [2] also offers the possibility of

associating various semantic and spatial descriptions to

the same real-world entities. In addition, various graph-

ical representations, useful for drawing maps at differ-

ent scales, can be defined. The data model is a snowflake

model for spatial data warehousing. The fact table is

composed of a specific kind of tuples, called vuels. A

vuel fact is a particular representation of a real-world

entity. It has three components: a geometry, a graphical

description, and a semantic description. The vuel rep-

resentation may vary according to these three dimen-

sions. Moreover, the semantic dimension is a fact table

itself with four dimensions: the class, the attribute, the

domain of value, and the value dimensions. This allows

the creation of various semantic descriptions by com-

bining the dimensions (different classes, different sets of

attributes, attributes with various domains and various

values). OMT-G [3], a UML-based model, supports the

modeling of multiple representations of data through

a specific kind of relationship called conceptual gener-

alization relationship. This relationship allows the
definition of various views of the same real-world enti-

ties as subclasses of a shared super-class. The superclass

describes the thematic attributes that are common to all

the representations and it has no spatial representation.

Each subclass describes its own view by specifying its

own thematic and spatial attributes. The subclasses

inherit the common attributes from the superclass. A

presentation diagram shows graphical representations

that may be associated to a class and the operations to

obtain them. MRSL [5], another UML-based model,

supports multi-representation through the introduc-

tion of two concepts: representation objects (r-objects)

and integration objects (i-objects). All r-objects corres-

ponding to the same real-word phenomenon are

linked by a monovalued or multivalued link to a single

i-object, whose role is to ensure consistency among

them. Each r-object specifies a specific set of attributes

and values for the same real-world object.

Multiple representation modeling is not limited to

associating multiple sets of attributes or values to one

object. In particular, when changing the level of detail,

objects may disappear, whereas others may be grouped.

Thus, in addition, there is the need to put into corre-

spondence one object with several objects or two dif-

ferent sets of objects.

In the second strategy of the MADS approach,

the various descriptions of the same phenomena be-

long to separate object types. They can be linked by

inter-representation links that are either traditional

associations or multi-associations. Multi-associations

are binary relationships that, contrarily to association

relationships, do not link two objects but two groups

of objects. A multi-association is needed whenever the

real-world entities are not represented per se, but

through two different decompositions; e.g., a decom-

position of a road in segments according to the num-

ber of lanes, and one according to crossroads. The

other modeling approaches only support correspon-

dence links of kind association, and the supported

cardinality of the link varies: in MRSL, a i-object can

be linked to r-objects through 1:1 and 1:N links thus

providing support for the 1:N and N:M correspon-

dences. In Vuel, corresponding objects can also be linked

through 1:1 or 1:N inter-representation links. However,

there is no support for N:M inter-representation links.

OMT-G does not support inter-representation associa-

tions between objects.

Not only do objects need multiple representations,

but relationships also do. This is only supported by

Multiple Representation Modeling M 1847

M

MADS. In MADS, all characteristics of a relationship

may have various representations: its semantics (e.g.,

topological, aggregation, or plain), its roles, and its

cardinalities. For instance, a relationship type can be

a topological adjacency relationship in one description

and a near relationship in another one with a more

precise resolution.

In the spatial context, as data from one representa-

tion may often result from the derivation of the same

data represented at another resolution, the representa-

tions of the same real-world entity are not independent

and one may expect to be able to state constraints

between these representations. Consistency constraints

in databases are maintained through the definition of

integrity constraints. Some constraints, such as cardin-

alities, are embedded in the concepts of the model – in

particular some constraints are inherent to the multi-

ple-representation concepts – while other constraints

need to be defined in the application. MRSL is the only

model proposing specific multirepresentation con-

straints: three kinds of rules can be associated to an

i-object and its linked r-objects: consistency rules,

which can be object or value correspondences, match-

ing rules, and restoration rules. Matching rules specify

how to match objects representing the same entity.

They can be attribute comparison, spatial match

operations, or global identifiers. Restoration rules are

used to restore consistency between an i-object and its

r-objects when needed.

Finally, considering that a multirepresentation

database contains several representations of the same

real-world phenomena, it is important to associate

metadata to the representations to identify the applica-

tion(s) they are relevant for, but also in order to know

which representations together form a consistent whole

for the application. This important requirement is ful-

filled by MADS through the concept of perception

stamp. In MADS, a perception stamp is a vector of

values (e.g., a viewpoint and a resolution) that identifies

a particular perception, and all elements of the data-

base (types, properties, instances) are stamped for

defining for which perception they are relevant. In

Vuel, the designer can define views that are composi-

tions of vuels. Each view defines a particular perception,

thus providing a functionality similar to perception

stamps.

Architectures for Distributed Representations Instead

of proposing new concepts allowing users to integrate
multiple representations of the same real-world phe-

nomena into a unique multirepresentation database,

other proposals followed a less intrusive approach.

Capitalizing on the fact that there already exist many

spatial databases, these approaches create a multi-

representation framework out of a set of existing classic

(i.e., describing a unique perception and resolution)

databases. There are two main kinds of proposals:

the first one focuses on the definition of links between

objects in corresponding databases, the second one

aims at building federated database management

systems.

In the first category, the work of Kilpelainen [6] was

one of the first proposals tackling multiple representa-

tions from a database point of view. It supports bi-

directional links that allow one to propagate updates

in both directions and perform reasoning processes in

the form of generalization operators.

In federated spatial databases, users access a set

of databases through a single integrated schema,

which describes virtual multirepresentation objects.

During query processing, multirepresentation objects

are dynamically constructed by merging all the corre-

sponding monorepresentation objects that exist in the

various databases. There have been several proposals

for spatial database integration [4]. Particularly inter-

esting are those that build the integrated schema

using multirepresentation concepts, e.g., [5], based

on MRSL, and [11], based on MADS. Using MRSL,

each r-object in the integrated schema holds an UML

tag that identifies the corresponding source database.

Using MADS, perception stamps can fulfill the same

functionality.
Key Applications

Cartography

As they cannot automatically derive maps at different

scales from a single detailed database, national map

agencies have to create several databases, one per scale.

For them, multirepresentation modeling is crucial for

two main reasons:

1. To propagate updates [1]: The cost of updating

can be lowered by entering updates only once in

a database and propagating them, at least semi-

automatically, to the other databases.

2. To enforce consistency [10]: Multi-representation

databases play an important role in order to

1848M Multiple Representation Modeling
enforce consistency between the same data de-

scribed at different levels of details. In addition,

integrating existing databases to create a multi-

representation database allows one to detect incon-

sistencies between the databases.

Multi-Scale Analysis

Multirepresentation databases can benefit many appli-

cations that need to analyze data at different levels of

details or defined for different viewpoints. For exam-

ple, a fire monitoring application may need very de-

tailed data on current fires (to direct the action of fire

brigades as precisely as possible), only need medium-

level resolution data for records of past fires, and use

low-level resolution data for generic organization of

fire management activities.

Other candidate applications are those relying on

spatial data warehouses, using spatial OLAP and spatial

data cubes to perform multi-dimensional analysis. An

example is traffic accident monitoring applications,

e.g., for analysis of the number of deadly accidents

according to multilevel criteria (by road, region, de-

partment, or state). Multirepresentation storage of

spatial data is needed in order to drill-up and drill-

down the cube [2].

Future Directions
Work in progress explores the use of multirepresenta-

tion capabilities in support of modularization of

knowledge repositories. In particular, the semantic

web community is developing various approaches to

turn huge ontologies that are being built in several

knowledge domains into smaller sets of more manage-

able ontological modules. Existing approaches follow

both the integrated direction (a single ontology is

modularized) and the distributed direction (various

existing ontologies are interconnected within a global

knowledge sharing system). A forthcoming book on

Ontology Modularization [13] is due for publication

in 2008.

Cross-references
▶Database Design

▶Distributed Spatial Databases

▶ Field-Based Spatial Modeling

▶Geographic Information System

▶Multidimensional Modeling

▶ Semantic Modeling for Geographic Information

Systems
▶ Spatial and Spatio-Temporal Data Models and

Languages

▶ Spatial Data Types

▶Topological Data Models

▶Topological Relationships
Recommended Reading
1. Badard T. and Lemarié C. Propagating updates between geo-

graphic databases with different scales, chapter 10. In Innova-

tions in GIS 7: GIS and GeoComputation, P. Atkinson, D.

Martin (eds.). Taylor and Francis, London, UK, 2000,

pp. 135–146.

2. Bédard Y. and Bernier E. Supporting multiple representations

with spatial view management and the concept of VUEL. In

Proc. Joint Workshop on Multi-Scale Representations of Spatial

Data, 2002.

3. Borges K., Davis C.A., and Laender A. OMT-G: an object-

oriented data model for geographic applications. GeoInformatica,

5(3):221–260, 2001.

4. Devogele T., Parent C., and Spaccapietra S. On spatial database

integration. Int. J. Geogr. Inf. Syst., 12(4):335–352, 1998.

5. Friis-Christensen A., Jensen C.S., Nytun J.P., and Skogan D. A

conceptual schema language for the management of multiple

representations of geographic entities. Trans. GIS, 9(3):345–380,

2005.

6. Kilpelaı̈nen T. Maintenance of topographic data by multiple

representations. In Proc. Annual Conference and Exposition of

GIS/LIS, 1998, pp. 342–351.

7. Mustière S. and Van Smaalen J. Database requirements for gen-

eralisation and multiple representations. In Generalisation of

Geographical Information: Cartographic Modelling and Appli-

cations, W.A. Mackaness, A. Ruas, T. Sarjakoski (eds.). Elsevier,

Amsterdam, 2007.

8. Parent C., Spaccapietra S., and Zimányi E. Conceptual Modeling

for Traditional and Spatio-temporal Applications. The MADS

Approach. Springer, Berlin, 2006.

9. Sarjakoski L.T. Conceptual models of generalisation and multi-

ple representation. In Generalisation of Geographical Informa-

tion: Cartographic Modelling and Applications, W.A.

Mackaness, A. Ruas, T. Sarjakoski (eds.). Elsevier, Amsterdam,

2007, pp. 11–36.

10. Sheeren D., Mustière S., and Zucker J.D. How to integrate

heterogeneous spatial databases in a consistent way? In Proc.

8th East-European Conf. Advances in Databases and Informa-

tion Systems, 2004, pp. 364–378.

11. Sotnykova A., Vangenot C., Cullot N., Bennacer N., and Aufaure

M.-A. Semantic mappings in description logics for spatio-

temporal database schema integration. Journal on Data

Semantics III:143–167, 2005.

12. Stell J.G. and Worboys M.F. Stratified map spaces: a formal basis

for multi-resolution spatial databases. In Proc. 8th Int. Symp. on

Spatial Data Handling, 1998, pp. 180–189.

13. Stuckenschmidt H., Parent C., and Spaccapietra S. (Eds.). Mod-

ular Ontologies. Springer LNCS, 2009.

14. Timpf S. Map cube model: a model for multi-scale data. In Proc.

8th Int. Symp. on Spatial Data Handling, 1998, pp. 190–201.

Multi-Query Optimization M 1849
15. Weibel R. and Dutton G. Generalizing spatial data and dealing

with multiple representations. In Geographical Information Sys-

tems: Principles, Techniques, Management and Applications,

vol. 1, 2nd edn., P. Longley, M.F. Goodchild, D.J. Maguire,

D.W. Rhind (eds.). Wiley, 1999, pp. 125–155.
Multiplicity

▶ Statistical Disclosure Limitation For Data Access
Multiprocessor Data Placement

▶ Parallel Data Placement
Multiprocessor Database
Management

▶ Parallel Database Management

M

Multiprocessor Query Processing

▶ Parallel Query Processing
Multi-Query Optimization

PRASAN ROY
1, S. SUDARSHAN

2

1Aster Data Systems, Inc., Redwood City, CA, USA
2Indian Institute of Technology, Bombay, India

Synonyms
Multiple query optimization; Global query optimiza-

tion; Common subexpression elimination; Optimiza-

tion of DAG-structured query evaluation plans

Definition
Multi-query optimization is the task of generating an

optimal combined evaluation plan for a collection of

multiple queries. Unlike traditional single-query opti-

mization, multi-query optimization can exploit com-

monalities between queries, for example by computing
common sub-expressions (i.e., subexpressions that are

shared by multiple queries) once and reusing them, or

by sharing scans of relations from disk.

Historical Background
Early work on multi-query optimization includes work

by Sellis [11], Park and Segev [7] and Rosenthal and

Chakravarthy [9]. Shim et al. [12] consider heuristics

to reduce the cost of multi-query optimization. How-

ever, even with heuristics, these approaches are ex-

tremely expensive for situations where each query

may have a large number of alternative evaluation

plans.

Subramanian and Venkataraman [13] consider

sharing only among the best plans of the query; this

approach can be implemented as an efficient, post-

optimization phase in existing systems, but does not

guarantee optimality. In fact, Roy et al. [10] show that

it can be significantly suboptimal. Rao and Ross [8]

address the problem of sharing common computation

across multiple invocations of a subquery, which is a

special case of multi-query optimization,

Roy et al. [10] address the problem of extending

top-down cost-based query optimizers to support

multi-query optimization, and present greedy heuris-

tics, as well as implementation optimizations. Their

techniques were shown to be practical and to give

good results. Dalvi et al. [1] explores the possibility

of sharing intermediate results by pipelining, avoiding

unnecessary materializations. Diwan et al. [2] consider

issues of scheduling and caching in multi-query opti-

mization. Zhou et al. [14] discuss the implementation

of multi-query optimization on a commercial query

optimizer.

In addition to the motivation of optimizing a col-

lection (batch) of queries, multi-query optimization

has also been applied to other settings. For example,

Mistry et al. [6] consider the issue of multi-query

optimization in the context of view maintenance,

while Fan et al. [3] point out the importance of multi-

query processing in optimizing XPath queries.

Foundations
Multi-query optimization is more expensive than in-

dependent optimization of multiple queries, since a

globally optimal plan may involve subplans that are

sub-optimal for the individual queries.

Consider a batch consisting of two queries (A ⋈ B

⋈ C) and (B ⋈ C ⋈ D). A traditional system would

1850M Multi-Query Optimization
evaluate each of these queries independently, using the

individual best plans suggested by the query optimizer

for each of these queries. Let these best plans be as

shown in Fig. 1a. Suppose the base relations A, B, C

and D each have a scan cost of 10 units (the actual unit

of measure is not relevant to this example). Each of the

joins have a cost of 100 units, giving a total evaluation

cost of 460 units. On the other hand, in the plan shown

in Fig. 1b, the common subexpression (B ⋈ C) is first

computed and materialized on the disk at a cost of 10.

Then, it is scanned twice – the first time to join with A

in order to compute (A⋈ B⋈ C), and the second time

to join it with D in order to compute (B⋈ C⋈D) – at

a cost of 10 per scan. Each of these joins have a cost of

100 units. The total cost of this consolidated plan is

thus 370 units, which is about 20% less than the cost of

the traditional plan of Fig. 1a. Although the benefit

here is small, it could be significantly more for batches

containing more queries.

The expression (B ⋈ C) that is common between

the two queries (A ⋈ B ⋈ C) and (B ⋈ C ⋈ D) in

the above example is a common subexpression (CSE).

A relation used in multiple queries can be thought of as

a special case of a common subexpression. Although

there is no need to compute and store it, a scan of the

relation from disk can be shared by multiple queries.

A plan for a single complex query can have

common subexpressions within itself. Traditional

optimizers ignore the possibility of exploiting such a

common subexpression, but some of the techniques

for multi-query optimization, such as [10] can exploit

such common subexpressions.

Challenges

The job of a multi-query optimizer can be broken into

two parts: (i) recognize possibilities of shared compu-

tation by identifying CSEs, and (ii) find a globally

optimal evaluation plan exploiting the CSEs identified.
Multi-Query Optimization. Figure 1. Example illustrating be
Identifying CSEs Each query can have a large number

of alternative evaluation plans. Given a particular eval-

uation plan for each of a set of queries, it is straightfor-

ward to find common subexpressions amongst these

plans. However, since the number of possible combi-

nations of such plans is very large, enumerating them

is not feasible.

Subexpressions that could be shared between some

plans for two or more queries can however be identified

without enumerating all possible plan combinations.

The number of such potentially common subexpressions

is still very large, but smaller than the number of plan

combinations.

Finding the Optimal Plan in Presence of CSEs Tradi-

tional query optimizers use dynamic programming

algorithms to find the best plan for an input query.

These dynamic programming algorithms are applica-

ble because, in the absence of sharing of common

subexpressions, each subplan of the overall best plan

is also the best plan for the subexpression it computes.

In the presence of sharing, such a property does not

hold – as shown in the example above, a globally

optimal plan can consist of subplans that are not

globally optimal – and therefore a straightforward

dynamic programming approach does not work. The

problem of finding an optimal combined plan in pres-

ence of CSEs is therefore a strictly harder problem than

traditional query optimization.

Engineering an Efficient Multi-Query Optimizer

As mentioned earlier, a simple minded approach

that iterates over all possible plans for each query and

analyzes each combination of plans is very expensive,

and infeasible for non-trivial queries. And conversely,

a heuristic that only considers the individual best

plan for each query does not work well, as mentioned

earlier.
nefits of sharing computation.

Multi-Query Optimization M 1851

M

A more practical approach was presented in [10].

This approach efficiently finds the set of potentially

common subexpressions for a set of queries, and then

identifies the subset of CSEs to share, and the best

resulting consolidated plan, using an iterative greedy

heuristic.

Instead of enumerating the search space of possible

plan combinations, the idea is to store all the plans

across all the queries in a single compact data structure

called the Logical Query DAG (LQDAG). The LQDAG

is a refinement of the ‘‘memo’’ data structure used

in transformational top-down optimizers, such as

Volcano [4], to memorize the best plans of the inter-

mediate results. (Such memorization, as done in top-

down query optimizers such as Volcano, is equivalent

to dynamic programming, as used in System R and

other bottom-up query optimizers.)

Figure 2a shows a LQDAG for the query A⋈ B⋈C;

this LQDAG represents the three alternative plans for the

query: (A⋈ B)⋈ C, A⋈ (B⋈ C) and B⋈ (A⋈ C).

Each square node (equivalence node) in the LQDAG

represents a distinct intermediate result, and each

round node (operation node) below represents a dis-

tinct plan to compute the same from the underlying

intermediate results. In general, a LQDAG can represent

multiple queries in a consolidated manner, with a dis-

tinct root node for each distinct query. Figure 2b shows

a consolidated LQDAG for the two example queries

seen earlier, A ⋈ B ⋈ C, and B ⋈ C ⋈ D.

The CSEs for the given queries correspond to

equivalence nodes in the LQDAG that are shared either

within the same plan, or between plans for two distinct

queries; [10] presents an efficient algorithm that iden-

tifies the set of all CSEs in a single bottom-up traversal

of the LQDAG.
Multi-Query Optimization. Figure 2. (a) LQDAG for A ⋈ B ⋈

B ⋈ C ⋈ D.
After the CSEs are identified, the next task is to find

the best consolidated plan for the queries exploiting

these CSEs. When the number of CSEs is large, an

exhaustive search is not feasible; a natural approach is

then to use a greedy heuristic that iteratively picks the

CSE with the greatest benefit (i.e., whose use would

result in the greatest decrease in the overall evaluation

cost), terminating when no further decrease is possible.

This algorithm requires that the benefit of each candi-

date CSE be recomputed in each iteration – this involves

finding the best plan that uses the candidate CSE, in

addition to the CSEs selected in earlier iterations.

With multiple such optimization calls in each iter-

ation, a naive implementation of the greedy heuristic

would be too expensive to be practical. [10] shows how

to make this approach practical by (i) incorporating

additional heuristics to significantly reduce the number

of benefit computations, and (ii) showing how to effi-

ciently perform a benefit computation by exploiting the

LQDAG representation of the plan space. Additional

insights on the task of seamlessly incorporating multi-

query optimization into theMicrosoft SQL-Server query

optimizer are presented by Zhou et al. [14].

The above approach assumes that CSEs are materi-

alized and read back from disk when required. Dalvi

et al. [1] shows how to schedule queries such that

results can be pipelined to multiple uses, even with a

limited buffer space, thereby minimizing IO. Diwan

et al. [2] addresses the issue of caching results in

limited memory, and scheduling queries to minimize

cache usage.

Key Applications
The idea of sharing computation among different

queries to save on time and resources is ubiquitous.
C, and (b) Combined LQDAG for A ⋈ B ⋈ C and

1852M Multi-Resolution
As queries become increasingly expensive, the need for

multi-query optimization to enable such savings is

likely to increase as well. A few representative applica-

tions which motivate multi-query optimization are

listed below.

� On-Line Analytic Processing (OLAP) and Report-

ing: A typical OLAP and reporting workload con-

sists of queries with a significant amount of

overlap. This overlap can occur for several reasons.

For instance, queries might overlap in the kind

of analysis they perform, or in the subset of

data they are interested in; different queries could

compute different aggregates over a join of the

same set of tables. Alternatively, the queries could

be against a virtual view; these queries clearly

overlap at least in the computation of the result

of the virtual view. Or else, the queries could in-

volve common table expressions (specified using

the WITH clause) that could be used in multiple

places in the query; parts or whole of such com-

mon table expressions could be transiently materi-

alized and reused [14]. Finally, the queries could

involve correlated nested subqueries – invariant

parts of these nested subqueries could be compu-

ted once and shared across invocations of the

subquery [8].

� Materialized View Maintenance : Materialized

views are supported by most major database systems

today. Such materialized views must be updated

when the underlying relations are updated. The

maintenance plans for different views often share

common computation. Mistry et al. [6] show how

to exploit multi-query optimization to create an

optimal view maintenance plan.

� XML Query Processing : In systems that store XML

data in relational databases, the XPATH queries

containing regular path expressions translate into

a sequence of queries with significant overlap. Such

queries are likely to benefit significantly from

multi-query optimization [3].

� Stream Query Processing : Monitoring applications

such as financial analysis and network intrusion

detection often have to process multiple queries

over a common stream of data. Such queries are

likely to overlap significantly in the expressions

they compute, and are likely to gain from multi-

query optimization [5].
Cross-references
▶Cost-based Query Optimization

▶Query Optimization

▶Transformational Query Optimization

Recommended Reading
1. Dalvi N.N., Sanghai S.K., Roy P., and Sudarshan S. Pipelining in

multi-query optimization. J. Comput. Syst. Sci., 66(4):728–762,

2003.

2. Diwan A.A., Sudarshan S., and Thomas D. Scheduling and

Caching in Multi-Query Optimization. In Proc. 13th Int. Conf.

Management of Data, 2006.

3. Fan W., Yu J.X., Lu H., Lu J., and Rastogi R. Query translation

from XPATH to SQL in the presence of recursive DTDs. In Proc.

31st Int. Conf. on Very Large Data Bases, 2005, pp. 337–348.

4. Graefe G. and McKenna W.J. The Volcano Optimizer Generator:

Extensibility and Efficient Search. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 209–218.

5. Krishnamurthy S., Wu C., and Franklin M. On-the-fly sharing

for streamed aggregation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 623–634.

6. Mistry H., Roy P., Sudarshan S., and Ramamritham K.

Materialized view selection and maintenance using multi-

query optimization. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001, pp. 307–318.

7. Park J. and Segev A. Using common subexpressions to optimize

multiple queries. In Proc. 4th Int. Conf. on Data Engineering,

1988, pp. 311–319.

8. Rao J. and Ross K.A. Reusing invariants: a new strategy for

correlated queries. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1998, pp. 37–48.

9. Rosenthal A. and Chakravarthy U.S. Anatomy of a modular

multiple query optimizer. In Proc. 14th Int. Conf. on Very

Large Data Bases, 1988, pp. 230–239.

10. Roy P., Seshadri S., Sudarshan S., and Bhobe S. Efficient and

extensible algorithms for multi query optimization. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2000, pp. 249–260.

11. Sellis T.K. Multiple query optimization. ACM Trans. Database

Syst., 13(1):23–52, 1988.

12. Shim K., Sellis T., and Nau D. Improvements on a heuristic

algorithm for multiple-query optimization. Data Knowl. Eng.,

12:197–222, 1994.

13. Subramanian S.N. and Venkataraman S. Cost-based optimiza-

tion of decision support queries using transient views. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1998,

pp. 319–330.

14. Zhou J., Larson P.Å., Freytag J.C., and Lehner W. Efficient

exploitation of similar subexpressions for query processing. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2007,

pp. 533–544.
Multi-Resolution

▶Multiple Representation Modeling

Multi-Resolution Terrain Modeling M 1853

M

Multi-Resolution Terrain Modeling

ENRICO PUPPO

University of Genova, Genova, Italy

Synonyms
Level-of-detail (LOD) terrain modeling

Definition
Multi-resolution terrain models provide the capability of

using different representations of terrain at different

levels of accuracy and complexity, depending on specific

application needs. The major motivation behind multi-

resolution is improving performance in geometry

processing and visualization. Given a terrain database,

a multi-resolution model provides the mechanisms

to answer queries that combine both spatial and resolu-

tion criteria. In the simplest case, one could ask for

a representation of terrain on a given area and with a

given accuracy in elevation. More sophisticated multi-

resolution models support adaptive queries, also known

as selective refinement queries, where resolution may

vary smoothly on the extracted representation, accord-

ing to some given criterion. For instance, one could ask

for an accuracy of at least 10 m on a given range of

elevations, and smoothly degrading to say 100 m out of

that range; similarly, high resolution could be focused

in the proximity of a lineal feature (e.g., a road, a river);

in view-dependent visualization, it is useful to have

maximal resolution close to the viewpoint, and de-

grade it smoothly according to distance from it; etc.

Multi-resolution engines must be able to answer such

queries in real time even on planetary size databases.

For instance, in view-dependent visualization it may be

necessary to change representation, hence answering a

query, at each frame, i.e., 25–30 times per second.

Historical Background
The concept of multi-resolution has been known since

the mid 1970s, with seminal work by J. Clark [3]. Since

then, many different proposals appeared in the litera-

ture, both in the context of terrain modeling and, more

generally, in CAD and computer graphics (see [13]).

The design of multi-resolution terrain models is

inter-related with terrain generalization, i.e., the prob-

lem of taking a representation of a terrain and gener-

ating another, smaller representation of the same

terrain at a lower accuracy. The ideal aim of terrain
generalization is to achieve an optimal ratio between

accuracy and size of representation. This problem has

been shown to be NP-hard by Agarwal and Suri [1].

However, starting with seminal work by Fowler and

Little in the late 1970s [8], many algorithms for terrain

generalization have been proposed in the literature that

achieve good results in practice.

Early multi-resolution models belonged to two

general classes: discrete models and tree-like models.

In a discrete model, a collection of alternative repre-

sentations of the same terrain at different resolutions

is stored. Tree-like models follow a hierarchical ap-

proach: a base model provides a coarse representation

of terrain made of a small number of atomic cells; each

such cell is refined by decomposition into smaller cells

at the next level of resolution; refinement is repeated

over several levels and the model in maintained in a

tree-like data structure. A notable example is given by

restricted quadtrees, introduced first by Von Herzen

and Barr in 1987 [15] and widely developed later by

several authors. This class of models is suited to effi-

ciently manage data with a regular distribution.

Many models developed (starting in the mid 1990s)

are based on Triangulated Irregular Networks (TINs).

Such models support also the manipulation of irregu-

larly distributed data and may all be seen as instances

of a general framework introduced by Puppo in 1996

[14]. The basic elements of such a framework are local

modification operations, which change the resolution

of a representation locally, and the hierarchical organi-

zation of such modifications on a directed acyclic

graph. Such models come in many variants, they all

support selective refinement and may achieve the best

ratios between level of accuracy and number of trian-

gles used in a representation.

Foundations
The simplest way to perform terrain generalization and

implicitly obtain a multi-resolution model from a data-

base of regularly distributed data is based on sub-sam-

pling. Given a grid of elevation data at high resolution, a

coarser sub-grid is obtained by regularly sampling data

along each axis with a fixed step. In this case, the term

resolution is referred to the size of cells in the resulting

grid, or, in other terms, to the size of the step used to sub-

sample. This method maintains the regular structure of

data, but it provides no control on the loss of accuracy

and it is not adaptive. Thus, a large number of samples

1854M Multi-Resolution Terrain Modeling
may be used even to represent terrain in flat areas, while

vertical error could easily exceed the allowed tolerance on

areas that contain sudden variations of altitude.

Better results can be obtained by building gene-

ralized representations in the form of TINs. Generali-

zation algorithms, run with different thresholds on

the same dataset at high resolution, provide a discrete

model consisting of a collection of TIN representations

at different accuracies. Being adaptive, such represen-

tations may contain small triangles in areas where

terrain has large variations, and large triangles in rela-

tively flat areas. In this case, the term resolution is more

related to accuracy than to the size of atomic elements

in the representation.

Discrete models support simple queries to extract a

representation at fixed resolution. It is sufficient to

select the layer corresponding to the desired resolution,

and the region of interest within that layer. However,

discrete models have several drawbacks: they usually

provide only a small number of levels of detail; they

cannot relate different representations of the same area

at different resolutions; and they cannot combine data

at different resolutions within a single representation.

The Delaunay pyramid proposed by De Floriani in

1989 [5] is a TIN based discrete model in which
Multi-Resolution Terrain Modeling. Figure 1.

A quadtree adaptive subdivision. The corresponding

terrain surface has cracks.

Multi-Resolution Terrain Modeling. Figure 2. In a restricted

of adjacent quadrants and triangulating quadrants with suita
vertical links between triangles that overlap at succes-

sive levels of detail are also maintained. In this sense, it

comes midway between discrete and tree-like models.

Compact data structures have also been proposed to

maintain a Delaunay pyramid with many levels, and

some authors have proposed variations of this model

that can support selective refinement.

In tree-like models, each node represents exactly

the same portion of terrain covered by its children.

Having a straightforward hierarchical structure, these

models can also act as spatial indexes. Most successful

models have been developed for regularly distributed

data (for instance, the multi-resolution model adopted

in Google Earth falls in this category). The simplest

example consists of a quadtree structure built over a

regular grid of data, which directly provides an adap-

tive version of the discrete model based on sub-

sampling (see Fig. 1). Unfortunately, representations

of adjacent portions of terrain from different levels of

the quadtree cannot be combined seamlessly, as cracks

would appear on the transition between quadrants

from different levels (the resulting representation

is said to be non-conforming). Restricted quadtrees

solve this problem by triangulating the quadrants in a

quadtree according to some predefined patterns that

eliminate cracks, thus obtaining conforming represen-

tations (see Fig. 2). In practice, restricted quadtrees

may support selective refinement and generate adap-

tive TINs made of right triangles and having their

vertices at a subset of the data in the high resolution

grid. Similar results are obtained by a hierarchical

decomposition pattern based on triangle bisection

(see Fig. 3), proposed in the mid 1990s by Lindstrom

et al. [11] and later adopted in many variants by many

authors. A square universe S is initially covered by

two isosceles right triangles. The bisection rule subdi-

vides a triangle into two similar triangles by splitting

it at the midpoint v of its longest edge. A binary tree
quadtree, cracks can be eliminated by balancing the level

ble patterns.

Multi-Resolution Terrain Modeling. Figure 3. Recursive

triangle bisection generates a regular hierarchy based

on the same triangles that appear in the restricted

quadtree, but it exhibits a better flexibility.

Multi-Resolution Terrain Modeling M 1855

M

of right triangles is thus obtained. In order to extract

conforming meshes, such tree must be traversed in a

proper way. In practice, adjacent triangles that are split

by introducing a given vertex v will have to be split

together during selective refinement. This scheme can

be easily generalized to a spherical domain starting,

e.g., from an octahedron. Efficient algorithms and data

structures have been developed for this scheme, which

can support selective refinement efficiently even on

planetary size databases. A great advantage of restricted

quadtrees and triangle bisection schemes comes from

the regular distribution of data. Very compact implicit

data structures can be designed, which have a small

overhead with respect to maintaining just the single

resolution data at the highest available detail, and are

also suitable for implementation in secondary mem-

ory. Most efficient data structures, though, assume that

the collection of all data in the database forms a unique

regular grid at a given (high) resolution. In most real

cases, however, the database is rather a patchwork of

partially overlapping grids at different resolutions. In

2003, Gerstner proposed a data structure for the

scheme based on triangle bisection, which works also

in the latter case [9].

Cignoni et al. in 2003 proposed a model oriented to

terrain rendering, the BDAM, which combines triangle

bisection with adaptive schemes based on TINs [2].

The triangle bisection scheme is used as a spatial index,

to obtain a coarse decomposition of the domain. Stan-

dard algorithms traverse such an index during selective

refinement, and triangular blocks are collected from

the proper levels of the tree. A TIN consisting of
possibly a large number of triangles is associated to

each triangular block in the spatial index. In this way,

the representation resulting from selective refinement

is in fact given by the collection of TINs corresponding

to triangular blocks extracted during traversal of the

index. TINs can be maintained on efficient data struc-

tures, suitable to be used in combination with Gra-

phics Processing Units (GPUs), which may greatly

improve performance. With this mechanism, perfor-

mances in terrain visualization are excellent even on

huge (planetary size) databases.

Other tree-like models have been developed based

on TINs, which can work on arbitrary datasets. A

triangle in a TIN may be refined by inserting a variable

number of points either inside it or on its edges on the

basis of an error-driven refinement criterion. Edges

that survive across different levels of the hierarchy

permit to combine surface patches from different levels

of the tree, thus supporting selective refinement. Com-

pared to models for regularly distributed data, these

latter models can achieve a better ratio between size

and accuracy, because no constraint is imposed on the

vertex distribution, but need more complicated and

expensive data structures to be stored.

Many other models developed (starting in the mid

1990s) have been oriented to irregularly distributed

data and are all based on TINs and local modifications.

A local modification is an operation that substitutes a

small (local) portion of a TIN with another represen-

tation, formed by a different number of triangles.

Modifications can be described either explicitly, by

enumerating triangles that are eliminated and triangles

that replace them, or, more often, implicitly through

some mesh editing operations. The most famous

and widely used editing operation is edge collapse (see

Fig. 4), which is at the basis of the Progressive Meshes

(PM) introduced by Hoppe in 1996 [10], and of many

other models proposed in the literature. Edge collapse

consists of collapsing an edge e of a TIN to a point. As a

consequence, the two triangles incident at e will col-

lapse to edges and disappear, thus the number of

triangles, edges and vertices in the TIN will decrease

by two, three, and one unit, respectively. Iterative edge

collapse provides a powerful method for terrain gener-

alization. The resulting sequence of collapses, together

with their inverse operations called vertex splits, and

the base mesh obtained from generalization, constitute

a PM. Similar models can be built by using local

modifications different from edge collapse, provided

1856M Multi-Resolution Terrain Modeling
that they can be reversed. This simple structure sup-

ports the efficient extraction of terrain representations

at many different levels of detail, but do not directly

support selective refinement. In 1996, Puppo took a

more general approach in analyzing models based on

local modifications [14]. He proved that the inherent

dependency relation between local modifications in

a sequence is in fact a partial order, which can be

encoded in a directed acyclic graph having such mod-

ifications as nodes (see Fig. 5). By traversing such
Multi-Resolution Terrain Modeling. Figure 5. A sequence o

portions of a mesh with other, more refined, groups of triangle

directed acyclic graph: a modification M depends on another

that was introduced by M0.

Multi-Resolution Terrain Modeling. Figure 4. Edge collapse

edge e together with its endpoints v1 and v2 collapse to verte

collapse to edges w1v and w4v, respectively. Edge collapse is
graph in a proper order, selective refinement can be

performed efficiently. This general framework consist-

ing of a partial order of local modifications is called a

Multi-Triangulation (MT). Among the many schemes

that fit in the MT framework, the data structure pro-

posed by El-Sana and Varshney in 1999 is excellent for

compactness [7]. Their model is based on edge collapse

and just a binary tree of the vertices introduced

from collapse operations is maintained, which con-

tains in fact just a subset of the links in the graph of
f arbitrary local refinement modifications substitute

s. The corresponding Multi-Triangulation is described by a

modification M0 if and only if M eliminates some triangle

is a local modification for iterative terrain generalization:

x v; triangles adjacent to e together with their other edges

inverted by a refinement operation called vertex split.

Multiscale Interface M 1857

M

dependencies of the MT. A clever mechanism based on

enumeration of nodes in the tree allows them to re-

trieve the correct dependencies among nodes and run

selective refinement correctly and efficiently.

In the literature, also other kinds of multi-resolution

models have been proposed, which follow a functional

approach rather than a geometric one (see, e.g., [12]).

The basic idea is that a function can be decomposed

into a simpler part at low resolution, together with a

collection of perturbations called wavelet coefficients

which define its details at progressively finer levels

of resolution. Wavelets have been widely used for

multi-resolution representation and compression of sig-

nals and images, while their applications to terrain and

surfaces is more recent. The discrete computation of

wavelets requires a recursive subdivision of the domain

into regular cells like equilateral triangles or squares.

Therefore these methods are just suitable for regularly

distributed data and resulting hierarchies correspond to

either quaternary triangulations or quadtrees.

For a more detailed treatment of multi-resolution

terrain modeling see, e.g., [13,4,6] and references

therein.

Key Applications
Multi-resolution terrain modeling is essential to man-

age complexity in those applications that need to either

analyze or visualize terrain data at different scales, such

as planetary browsers, flight simulators, CAD tools

for road design, and all intensive computational tasks

related to terrain, such as drainage networks and

visibility.

Cross-references
▶Digital Elevation Models

▶Discrete Wavelet Transform and Wavelet Synopses

▶Geographic Information System

▶Quadtrees (and Family)

▶ Simplicial Complex

▶Triangulated Irregular Network

Recommended Reading
1. Agarwal P.K. and Suri S. Surface approximation and geometric

partitions. In Proc. 5th Annual ACM -SIAM Symp. on Discrete

Algorithms, 1994, pp. 24–33.

2. Cignoni P., Ganovelli F., Gobbetti E., Marton F., Ponchio F.,

and Scopigno R. Planet-sized batched dynamic adaptive meshes

(P-BDAM). In Proc. IEEE Visualization, 2003, pp. 147–155.

3. Clark J.H. Hierarchical geometric models for visible surface

algorithms. Commun. ACM, 19(10):547–554, 1976.
4. Danovaro E., De Floriani L., Magillo P., Puppo E., and Sobrero

D. Level-of-detail for data analysis and exploration: A historical

overview and some new perspectives. Comput. Graph., 30(3):

334–344, 2006.

5. De Floriani L. A pyramidal data structure for triangle-based

surface description. IEEE Comp. Graph. Appl., 9(2):67–78,

1989.

6. De Floriani L., Magillo P., and Puppo E. Geometric structures

and algorithms for geographical information systems. In Hand-

book of Computational Geometry, J.R. Sack and J. Urrita (eds.),

Elsevier Science, Amsterdam, 1999.

7. El-Sana J. and Varshney A. Generalized view-dependent simpli-

fication. Comput. Graph. Forum, 18(3):C83–C94, 1999.

8. Fowler R.J. and Little J.J. Automatic extraction of irregular

network digital terrain models. In Proc. 6th Annual Conf.

Computer Graphics and Interactive Techniques, 1979,

pp. 199–207.

9. Gerstner T. Multiresolution compression and visualization of

global topographic data. Geoinformatica, 7(1):7–32, 2003.

10. Hoppe H. Progressive meshes. In Proc. 23rd Annual

Conf. Computer Graphics and Interactive Techniques, 1996,

pp. 99–108.

11. Lindstrom P., Koller D., Ribarsky W., Hodges L.F., Faust N., and

Turner G.A. Real-time, continuous level of detail rendering of

height fields. In Proc. 23rd Annual Conf. Computer Graphics

and Interactive Techniques, 1996, pp. 109–118.

12. Lounsbery M., DeRose T.D., and Warren J. Multiresolution

analysis for surfaces of arbitrary topological type. ACM Trans.

Graph., 16(1):34–73, 1997.

13. Lübke D., Reddy M., Cohen J.D., Varshney A., Watson B., and

Hübner R. Level Of Detail for 3D Graphics. Morgan Kaufmann,

Los Altos, CA, 2002.

14. Puppo E. Variable resolution terrain surfaces. In Proc. 8th Cana-

dian Conf. on Computational Geometry, 1996, pp. 202–210.

15. Von Herzen B. and Barr A.H. Accurate triangulations of

deformed, intersecting surfaces. In Proc. 14th Annual

Conf. Computer Graphics and Interactive Techniques, 1987,

pp. 103–110.
Multi-scale

▶Multiple Representation Modeling
Multiscale Views

▶Distortion Techniques
Multiscale Interface

▶Zooming Techniques

1858M Multiset Semantics
Multiset Semantics

▶Bag Semantics
Multi-Step Query Processing

PEER KRÖGER, MATTHIAS RENZ

Ludwig Maximillian University of Munich, Munich,

Germany

Synonyms
Filter/refinement query processing

Definition
A query on a database reports those objects which

fulfill a given query predicate. A query processor has

to evaluate the query predicate for each object in the

database which is a candidate for the result set. Multi-

step query processing (filter/refinement query proces-

sing) is a technique to speed up queries specifying

query predicates that are complex and costly to evalu-

ate. The idea is to save the costs of the evaluation of the

complex query predicate by reducing the candidate set

for which the query predicate has to be evaluated

applying one or more filter steps. The aim of each filter

step is to identify as many true hits (objects that truly

fulfill the complex query predicate) and as many true

drops (objects that truly do not fulfill the query predi-

cate) as possible by applying a less costly query pre-

dicate. The remaining candidates that are not pruned

as drops or reported as hits in one of the filter steps

need to be tested in a refinement step where the exact

(costly) query predicate is evaluated. Obviously, the

less costly the filter predicates are and the smaller

the number of candidates that need to be refined, the

higher the performance gain of a multi-step query

processing is over a single-step query processing. In

addition, if any of the applied filter steps is able to

report true hits, first results can be reported to the user

significantly sooner by a multi-step query processor

compared to a single-step query processor.

Historical Background
In many database applications the management of

complex objects is required. For example, the parts of

a geographical map such as streets, lakes, forests – or

generally regions – are stored as polylines or polygons.
Queries on these complex objects usually involve com-

plex query predicates that are costly to evaluate. For

example, in order to retrieve all regions of a map that

intersect with a given query window it is required to

test the intersection of the query window and the

database polygons which is computationally rather

expensive. In such situations, the evaluation of the

query predicate (e.g., ‘‘intersects the query window’’)

becomes the bottleneck of query processing. Index

structures are designed for shrinking down the search

space of tentative hits in order to scale well for very

large databases. Principally, the aim of index structures

is the same as that of the filter-steps in multi-step

query processing. However, index structures are only

applicable for the first filter step. The reason is that

index structures are designed to organize the entire

database and cannot be applied to a reduced set of

candidates.

To cope with complex data objects and costly query

predicates, the paradigm of multi-step query proces-

sing (filter/refinement query processing) has been de-

fined originally for spatial queries such as point queries

and region queries on databases of spatial objects [6,2].

This paradigm has been applied to similarity search in

databases of complex objects performing general simi-

arity queries such as distance range queries [1,3] and k-

nearest neighbor (kNN) queries [4] using costly dis-

tance functions. The key idea is to apply one or more

filter steps each using cheaper query predicates (e.g.,

cheaper distance functions), the so-called filter predi-

cates, in order to identify as many objects as possible as

true hits or true drops. For the remaining candidates,

for which the query predicate cannot be decided using

any of the filter steps, the exact (more costly) query

predicate needs to be evaluated in a refinement step. To

ensure correct results, the filter predicates are required

to be based on conservative approximations of the

exact objects. This ensures that if any object does not

qualify for a filter predicate, it can also not qualify for

the exact query predicate. For example, if the regions of

a map are conservatively approximated by minimum

bounding rectangles (MBRs) of the corresponding poly-

gons, those regions whose corresponding MBRs do

not intersect with the query window cannot intersect

with the query window. This conservative property of

the filter predicates enables discarding true drops. On

the other hand, filter predicates that are based on pro-

gressive approximations of the exact objects can be

used to identify true hits. For example, if the regions

Multi-Step Query Processing M 1859

M

of a map are progressively approximated by an incircle

of the corresponding polygons, those regions whose

corresponding incircle intersect with the query window

do also intersect with the query window.

Foundations
Multi-step query processing is usually used in applica-

tions where the objects in the database are complex

and the queries launched on objects rely on costly

predicates that cannot be evaluated efficiently. In

such applications, the evaluation of the query predi-

cate becomes the bottleneck in query execution.

General Schema of Multi-Step Query Processing

Multi-step query processing is based on the follow-

ing idea: design one or more filter predicates that

can be evaluated much faster than the original query

predicate and that can be used to shrink down the

number of candidates for which it is unknown whether

they qualify for the query predicate or not. The query

processing starts with all database objects as candidates

and applies the designed filters sequentially on the

remaining candidates. Each filter ideally identifies

true hits that can be added to the result set and true

drops that can be pruned. The candidates that cannot

be classified as true hits or true drops after all filter

steps need to be refined by evaluating the (costly)

original query predicate. This general schema is illu-

strated in Fig. 1. The order in which the single

filter steps are applied usually depends on the cost of

each filter step and on the selectivity of each filter

step. The selectivity of a filter step determines the

fraction of objects that are identified as true hit or
Multi-Step Query Processing. Figure 1. General schema of
true drop by the corresponding filter and do not need

any further processing. In order to produce correct

results, obviously, the filter steps must not produce

false drops (i.e., drop objects that match the original

query predicate according to a filter predicate) and

false hits (i.e., report objects that do not match the

original query predicate as hits according to a filter

predicate).

In order to apply multi-step query processing, it is

important to design appropriate filter predicates for

the original query predicates of the given application.

An appropriate filter predicate can usually be designed

by designing a less complex representation that approx-

imates the complex database objects. The evaluation of

the query predicate on these less complex object

approximations should be less costly than on the orig-

inal object representation. In the following, special

instances of multi-step query processing is discussed

in more detail.

Example: Multi-Step Query Processing of Similarity

Queries

Usually, similarity between objects is expressed by

means of a pair-wise distance function dist. A high

distance between two objects denotes low similarity

of these objects whereas a low distance implies high

similarity. For example, if the database objects are

points (of any dimensionality), dist could be the Eu-

clidean distance, i.e., the vicinity of the corresponding

points in the Euclidean space. If the database objects

are sequences, dist could be the Edit distance. If the

database objects are spatial regions (e.g., of a map), dist

could be the smallest Euclidean distance between the
multi-step query processing.

1860M Multi-Step Query Processing
corresponding polygons. The two most important and

general types of similarity queries are distance range

(DR) queries and k-nearest neighbor (kNN) queries.

A distance range query is a general query type in

non-standard database systems such as spatial DBS,

temporal DBS, and multi-media DBS. Given a query

object q, a distance function dist(.,.), and a distance

threshold e, a distance range query returns all database
objects o that have a distance less or equal than e to q,

i.e., dist(q, o) � e. They can be efficiently supported

using index structures or multi-step query processing.

According to the above definition the query predi-

cate of DR queries is given as follows: all hits o must

qualify the predicate dist(q, o)� e, where q is the query
object and e is a distance threshold. The query predi-

cate of kNN queries is quite similar to DR queries: all

hits o must qualify the predicate dist(q, o) � d(q, k),

where q is the query object and d(q, k) is the k-nearest

neighbor distance. However, the big difference between

DR queries and kNN queries is that the distance

threshold e is given in advance, whereas the value of

d(q, k) is usually not known at query time.

A filter predicate for identify true drops (conserva-

tive property) can be designed as follows. First, a less

complex representations to conservatively approxi-

mate the exact objects should to be developed. Usually,

this can only be implemented for spatial objects: the

conservative approximation must completely contain

the exact object, e.g., a minimum bounding box

(MBR) is a conservative approximation of a polygon.

A second step is essential: A (cheaper) distance func-

tion on the approximation must be designed that

implements the lower bounding property. Let dist(.,.)

be the exact distance function on the exact database

objects and LB(.,.) the cheaper filter distance. The

distance function LB(.,.) lower bounds the exact dis-

tance dist(.,.), if the following holds:

LBðx; yÞ � distðx; yÞ

for all database objects x and y. Since the exact predi-

cate of a similarity query usually determines the hits as

those objects that have a distance less than a threshold

e to the query object q, all objects owith e< LB(q, o)�
dist(q, o) can be excluded from the result set without

further processing. In other words, the filter predicate

is similar to the original query predicate, but uses LB

instead of dist.

For example, if the database contains the regions of

a map, and dist(r1, r2) is the smallest Euclidean distance
between the regions (polygons) r1 and r2, an appropri-

ate filter can be designed as follows. The regions are

approximated by MBRs and LB(m1, m2) is defined as

the smallest Euclidean distance between the MBRs

m1 and m2) of r1 and r2, respectively. Obviously, eval-

uating LB on the MBRs is usually much less complex

and costly than evaluating dist on the polygons.

A filter predicate for identifying true hits can be

designed analogously. First, a less complex representa-

tion to progressively approximate the exact objects

should be developed. Again, this can usually be imple-

mented only for spatial objects: the progressive ap-

proximation must be completely contained within

the exact object, e.g., the maximal circle contained

within a polygon (incircle) is a progressive approxima-

tion of that polygon. Again, a second step is essential: A

(cheaper) distance function on the approximation

must be designed that implements the upper bounding

property. Again, let dist(.,.) be the exact distance func-

tion on the exact database objects and UB(.,.) the

cheaper filter distance. The distance function UB(.,.)

upper bounds the exact distance dist(.,.), if the follow-

ing holds:

UBðx; yÞ � distðx; yÞ

for all database objects x and y. All objects o with

e > UB(q, o) � dist(q, o) can be added to the result

set without further processing. In other words, the

filter predicate is again similar to the original query

predicate, but uses UB instead of dist.

Sometimes, an approximate representation of the

database objects allows the definition of two distance

functions, one lower bounding distance and one upper

bounding distance. Filter predicates that do not use

upper or lower distances cannot be applied to reduce

the number of candidates.

Example: Algorithms for Multi-Step Query Processing of

Similarity Queries

The algorithm for multi-step distance range queries is

rather easy. Since the distance threshold e is known in

advance, in each filter step, true hits and/or true drops

are identified as described above, depending on the

property of the distance used in the filter predicate.

On the other hand, a multi-step solution for kNN

queries is not trivial, because in order to determine the

exact value of d(q, k) that can be used to identify

objects based on any filter predicates as true hits

or true drops, at least k objects need to be refined.

Multi-Step Query Processing M 1861

M

Since the k nearest neighbors are not known in

advance, the k objects that need to be refined to deter-

mine the exact value of d(q, k) are not known. Obvi-

ously, this is a vicious circle.

The multi-step kNN query processing algorithm

proposed in [4] tries to approximate d(q, k) by refining

any k objects and take the maximum value d0(q, k) of

these exact distances. then, a multi-step DR query with

query object q and distance threshold d0(q, k) is eval-

uated. The resulting (refined) objects are ranked in

ascending exact distances to q and only the first k

objects of this ranking are reported as final result.

In [7], the authors enhance this approach with an

algorithm that minimizes the number of refinements.

The basic assumption of this algorithm is that only a

conservative filter is applied. In the case of only

one filter step, the algorithm uses a ranking query

in the filter step. Given a query object q and a distance

function dist(.,.), a ranking query returns a sequence of

the database objects in a database D sorted by ascend-

ing distances to q. A ranking query is a general query

type in non-standard database systems such as spatial

DBS, temporal DBS, and multi-media DBS and can be

efficiently supported using index structures. In the

context of multi-step query processing in the filter

step a ranking query returns a ranking of the database

objects sorted in ascending filter distances to the query

object q. Initially, the first k objects of the ranking are

refined and an approximation d0(q, k) of the true value

of d(q, k) is determined from these refined distances as

above. Then, in each iteration, the next object from

the ranking is fetched as long as the filter distance of

the next object in the ranking is greater than the

current approximation d0(q, k). As long as this is not

the case, the currently fetched object is refined and

d0(q, k) is updated. This algorithmic schema can

easily be extended to applying multiple filter steps. It

can be shown that – if only a conservative filter is

implemented – this algorithm is optimal with regard

to the number of refinements.

Finally, the algorithm in [5] further enhances the

preceding algorithms that take only a conservative

filter into account, by additionally using a progressive

filter. The algorithm is similar to that in [7] but deter-

mines d0(q, k) from the progressive filter as long as this

is possible rather than from exact distances. As a con-

sequence, the proposed algorithm reduces the number

of refinements significantly. It can be shown that – if

both a conservative filter and a progressive filter are
implemented – this algorithm is optimal with regard to

the number of refinements.

Key Applications
More and more applications suffer from the increasing

complexity of the objects and of the functions required

to evaluate query predicates on such objects, e.g., com-

plex distance functions or spatial intersections. In the

meantime, the efficient support of multi-step query

processing is essential for many application areas

such as molecular biology, medical imaging, CAD sys-

tems, and multimedia databases.

In this context, one of the most important applica-

tion where multi-step query processing is essential for

efficient query processing is similarity search in time

series databases. Time series may be very large. Typical

similarity queries in time series databases are distance

range queries and k-nearest neighbor queries. Due to

the curse of dimensionality, similarity queries cannot

efficiently be supported by indexing the time-series

based on the raw data. A common method to over-

come this problem is to reduce the dimensionality of

the object descriptions and use this lower-dimensional

feature space to index the time series. Similarity

queries are then performed using the paradigm of

multi-step query processing. In the filter step, approxi-

mated similarity distances are computed based on the

dimensionality reduced representations, while the re-

finement step applies similarity distance functions

based on the raw time series data. Usually, the filter

step is conservative, i.e., the filter distances lower

bound the exact distances.

Another important application which requires

multi-step query processing is the support of proximity

queries in spatial networks like road networks where

point objects located within the road network that is

represented by a graph are queried. Usually, the objects

are positions of buildings or individuals like persons or

cars that can have a static location or may move within

the network. Example queries could be ‘‘retrieve all cars

within the road network having a smaller distance to

the fast-food restaurant Pinky than 5.0 km’’ or ‘‘give me

the three filling stations having the smallest distance to

my actual position.’’ Since the motion of the objects is

restricted by the network, i.e., objects can only move

along a path in the network graph, the distance between

two objects is not measured using the Euclidean dis-

tance. Rather, the length of the shortest path between

two objects is used as distance measure. For each

1862M Multi-Tier Architecture
distance computation it is necessary to apply the Dijk-

stra algorithm which is too expensive to answer such

proximity queries on large databases in real time.

Therefore, distance approximations are needed, which

can be computed more efficiently and can be used in

the filter step of a multi-step query processing algo-

rithm. The simplest road-network distance approxima-

tion that fulfills the lower bound criterion is the

Euclidean distance. Anothermethod to achieve suitable

distance approximations is the pre-computation of dis-

tances based on certain landmarks (reference nodes).

The distance approximation based on landmarks has

the advantage that, in addition to the lower bounding

distance approximation, it is possible to compute a

distance approximationwhich fulfills the upper bound-

ing property.

A further important application of multi-step query

processing is the support of spatial queries in spatial

databases, i.e., databases containing objects having a

spatial extension. One of the most important query

types in such databases is the point-in-polygon test.

Given a database with two-dimensional polygon objects

and a certain query point, retrieve all polygons that

include the query point. Several filter steps can

be applied for this problem to avoid unnecessary

point-in-polygon-tests. For example, the polygons can

be conservatively approximated by minimum bounding

rectangles (MBRs). Obviously, MBRs that do not con-

tain the query point can be discarded as true drops. On

the other hand, progressive approximations of the poly-

gons can be used to identify true hits.

Cross-references
▶Closest-Pair Query

▶High Dimensional Indexing

▶ Indexing Metric Spaces

▶Nearest Neighbor Query

▶ Spatial Indexing Techniques

▶ Spatial Join

▶ Spatio-Temporal Data Mining

Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A. Efficient similarity

search in sequence databases. In Proc. 4th Int. Conf. on

Foundations of Data Organization and Algorithms, 1993,

pp. 69–80.

2. Brinkhoff T., Horn H., Kriegel H.-P., and Schneider R. A storage

and access architecture for efficient query processing in spatial

database systems. In Proc. 3rd Int. Symp. Advances in Spatial

Databases, 1993, pp. 357–376.
3. Faloutsos C., Ranganathan M., and Manolopoulos Y. Fast sub-

sequence matching in time series database. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1994, pp.419.

4. Korn F., Sidiropoulos N., Faloutsos C., Siegel E., and Protopapas

Z. Fast nearest neighbor search in medical image databases.

In Proc. 22th Int. Conf. on Very Large Data Bases, 1996,

pp. 215–226.

5. Kriegel H.-P., Kröger P., Kunath P., and RenzM. Generalizing the

optimality of multi-step k-nearest neighbor query processing. In

Proc. 10th Int. Symp. Advances in Spatial and Temporal Data-

bases, 2007, pp. 75–9.

6. Orenstein J. and Manola F. Probe spatial data modelling and

query processing in an image database application. IEEE Trans.

Softw. Eng., 14(5), 1988.

7. Seidl T. and Kriegel H.-P. Optimal multi-step k-nearest neighbor

search. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 154–16.
Multi-Tier Architecture

HEIKO SCHULDT

University of Basel, Basel, Switzerland

Synonyms
n-tier architecture; Multi-layered architecture

Definition
A Multi-tier Architecture is a software architecture in

which different software components, organized in

tiers (layers), provide dedicated functionality. The

most common occurrence of a multi-tier architecture

is a three-tier system consisting of a data management

tier (mostly encompassing one or several database

servers), an application tier (business logic) and a

client tier (interface functionality). Novel deployments

come with additional tiers. Web information systems,

for instance, encompass a dedicated tier (web tier)

between client and application layer.

Conceptually, a multi-tier architecture results from

a repeated application of the client/server paradigm.

A component in one of the middle tiers is client to the

next lower tier and at the same time acts as server to

the next higher tier.

Historical Background
Early generation software systems have been built in a

monolithic way. This means that all the different tasks

for implementing a particular application and pre-

senting the results to a user are provided by a single

Multi-Tier Architecture M 1863

M

dedicated software component. With the advent of

client/server architectures in the 1980s, different tasks

could be separated and possibly even be distributed

across network boundaries. In a client/server architec-

ture (two tier architecture), the client is responsible for

presenting the application to the user while the server

is in charge of data management. For the provision of

business logic, two alternatives have emerged. First, in

so-called fat client/thin server architectures, the client

also provides business logic, in addition to presenta-

tion and user interfaces. This can be realized by using

SQL against the underlying database server in the

application program run by the client, either by

embedding SQL into a higher programming language

or by using the database server’s call level interface

(e.g., JDBC, ODBC). Second, in thin client/fat server

architectures, the database server also provides busi-

ness logic while the client solely focuses on presenta-

tion issues. Fat servers can be realized by using

persistent stored modules or stored procedures inside

the database server. In the case of evolving business

logic, fat client architectures, although being the most

common variant of client/server systems, impose quite

some challenges when new client releases need to be

distributed in large deployments. In addition, a fat

client architecture usually comes along with a high
Multi-Tier Architecture. Figure 1. Structure of a three tier a
network load since data is completely processed

at the client side. Fat servers, in contrast, impose a

single point of failure and a potential performance

bottleneck.

Three-tier architectures thus are the next step in the

evolution of client/server architectures where both cli-

ent and database server are freed from providing busi-

ness logic. This task is taken over by an application

layer (business tier) between client and database server.

In multi-tier architectures, additional tiers are intro-

duced, such as for instance a web tier between client

and application layer.

Foundations
Multi-tier systems follow an architectural paradigm

that is based on separation of concerns. The architec-

ture considers a vertical decomposition of functionali-

ty into a stack of dedicated software layers. Between

each pair of consecutive layers, a client/server style

of interaction is applied, i.e., the lower layer acts as

server for the next higher layer (see Fig. 1). Typical tiers

in a three-tier architecture are data management, busi-

ness and client tier. Multi-tier architectures consider

additional layers, such as a web tier which hosts servlet

containers and a web server and which is located be-

tween client tier and application tier.
rchitecture.

1864M Multi-Tier Architecture
In addition to vertical decomposition and distribu-

tion across tiers, in many cases multi-tier architectures

also leverage horizontal distribution within tiers. For

the data management tier, this means that several

distributed database servers can be used. Most com-

monly, horizontal distribution is applied at the busi-

ness tier, i.e., providing several application server

instances [7].

The main benefit of multi-tier applications is that

each tier can be deployed on different heterogeneous

and distributed platforms. Load balancing within tiers,

especially for the application tier, is supported by dis-

tributing requests across the different application serv-

er instances. This can be implemented by a dispatcher

which accepts calls from the next higher layer and

distributes them accordingly (this is done, for instance,

in TP Monitors which allow to distribute requests

among application processes at the middle tier in a

three-tier architecture).

When multi-tier architectures are used in a busi-

ness context, they have to support transactional inter-

actions. Due to the inherent distribution of software

components across layers and potentially even within

layers, distributed transactions are needed. This is usual-

ly implemented by a two-phase commit protocol (2PC)

[5] (depending on the application server and the mid-

dleware used, this can be done, for instance, via CORBA

OTS, the Java Transaction Service JTS, etc.). While 2PC

provides support for atomicity in distributed transac-

tions, it does not take into account the layered architec-

ture where transactions at one layer are implemented by

using services and operations of the next lower layer.

Multi-level transactions [11] take this structure into

account. SAP ERP [4], for instance, applies multi-level

transactions by jointly considering the application server

and data management tier. Asynchronous interactions

between components in a multi-tier architecture require

a message-oriented middleware (MOM). In this case,

transactional semantics can be supported by persistent

queues and queued transactions [1].

In order to increase the performance of multi-tier

systems and to improve response times, caching is used

at the application tier. For this, different database

technologies such as replication, materialized views,

etc. can be applied outside the DBMS [6].

Key Applications
Due to the proliferation of both commercial and open

source application servers, multi-tier architectures
can be found in a very large variety of different

domains. Applications include, but are not limited to,

distributed information systems, Web information sys-

tems, e-Commerce, etc.

Experimental Results
The Transaction Processing Performance Council

(TPC) has defined a benchmark, TPC-App, for evalu-

ating the business tier and in particular the perfor-

mance of application servers in a three- or multi-tier

architecture [10]. It includes Web Service interac-

tions, distributed transactions, and asynchronous

interactions via message-oriented middleware (reliable

messaging and persistent queues).

Cross-references
▶Application Server

▶Client/Server Architecture

▶Database Middleware

▶Distributed Transaction Management

▶ Java EE

▶Message Queuing Systems

▶Middleware Support for Database Replication and

Caching

▶Multilevel Transactions and Object-Model Transac-

tions

▶Replication in Multi-Tier Architectures

▶ Service Oriented Architecture

▶Transactional Middleware

▶Web Services

▶Web Transactions

Recommended Reading
1. Bernstein P. and Newcomer E. Principles of Transaction Proces-

sing. Morgan Kaufmann, Los Altos, CA, 1997.

2. Birman K. Reliable Distributed Systems: Technologies, Web Ser-

vices, and Applications. Springer, Berlin, 2005.

3. Britton C. IT Architectures and Middleware. Addison Wesley,

Reading, MA, USA, 2001.

4. Buck-Emden R. and Galimow J. SAP R/3 System: A Client/Ser-

ver Technology. Addison-Wesley, Reading, MA, USA, 1996.

5. Lindsay B., Selinger P., Galtieri C., Gray J., Lorie R., Price T.,

Putzolu F., and Wade B. Notes on Distributed Databases. IBM

Research Report RJ2571, San Jose, CA, USA, 1979.

6. Mohan C. Tutorial: Caching Technologies for Web

Applications. In Proc. 27th Int. Conf. on Very Large Data

Bases, 2001.

7. Mohan C. Tutorial: Application Servers and Associated Technolo-

gies. In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

8. Myerson J. The Complete Book of Middleware. Auerbach,

Philadelphia, PA, 2002.

Multivariate Data Visualization M 1865
9. Orfali R., Harkey D., and Edwards J. Client/Server Survival

Guide. Wiley, 3rd edn., 1999.

10. Transaction Processing Performance Council.TPC-App. http://

www.tpc.org/tpc_app/default.asp, 2008.

11. Weikum G. and Schek H.J. Concepts and Applications of Multi-

level Transactions and Open Nested Transactions. In Database

Transaction Models for Advanced Applications, K. Elmagarmid

(ed.), Morgan Kaufmann, Los Altos, CA, 1992, pp. 515–553.

12. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control.

Morgan Kaufmann, Los Altos, CA, 2001.
M

Multivalued Dependency

SOLMAZ KOLAHI

University of British Columbia, Vancouver,

BC, Canada

Synonyms
MVD

Definition
Amultivalued dependency (MVD) over a relation sche-

ma R[U], is an expression of the form X↠ Y , where X,

Y U. An instance I of R[U] satisfies X ↠ Y , denoted

by I⊨X ↠ Y , if for every two tuples t1,t2 in I such that

t1[X] = t2[X], there is another tuple t3 in I such that

t3[X] = t1[X] = t2[X], t3[Y] = t1[Y], and t3[Z] = t2[Z],

where Z = U � XY (XY represents X [Y). In other

words, for every value of X, the value of attributes in Y

is independent of the value of attributes in Z. A multi-

valued dependency X ↠ Y is a special case of a join

dependency expressed as ⋈[XY,X(U � XY)], which

specifies that the decomposition of any instance I

satisfying ⋈ [XY,X(U � XY)] into pXY(I) and

pX(U�XY)(I) is lossless, i.e., I = pXY(I) ⋈ pX(U�XY)(I).
Movies

Title Director Actor Year

Pulp
Fiction

Quentin
Tarantino

John Travolta 1994

Pulp
Fiction

Quentin
Tarantino

Samuel L. Jackson 1994

The Matrix Andy Wachowski Keanu Reeves 1999

The Matrix Andy Wachowski Laurence
Fishburne

1999

The Matrix Larry Wachowski Keanu Reeves 1999

The Matrix Larry Wachowski Laurence
Fishburne

1999
Key Points
Multivalued dependencies, like functional dependen-

cies, can cause redundancy in relational databases.

For instance, in the following table, each director of

the movie The Matrix is recorded once per actor of the

movie, and this is because the instance satisfies the

MVD title ↠ director.

Multivalued dependencies have been considered in

the normalization techniques that try to improve the

schema of a database by disallowing redundancies. The

most common normal form that takes MVDs into

account is the Fourth Normal Form (4NF). The impli-

cation problem for MVDs can be solved in polynomial

time. That is, given a set S of MVDs, it is possible to

check whether an MVD X ↠ Y is logically implied

by S, denoted by S⊨X ↠ Y , in the time that is

polynomial in the size of S and X ↠ Y . Multivalued

dependencies are usually considered together with

functional dependencies (FDs) in the normalization

of relational data. There is a sound and complete set

of rules (axioms) that can be used to infer new depen-

dencies from a set of MVDs and FDs defined over a

relation R[U]:

MVD0 (complementation): If X↠ Y, then X↠ (U� X).

MVD1 (reflexivity): If Y X, then X ↠ Y .

MVD2 (augmentation): If X ↠ Y , then XZ ↠ YZ.

MVD3 (transitivity): If X ↠ Y and Y ↠ Z, then

X ↠ (Z � Y).

FMVD1 (conversion): If X ! Y , then X ↠ Y.

FMVD2 (interaction): If X ↠ Y and XY ! Z, then

X ! (Z � Y).

It is also known that the set {MVD0,...,MVD3}

is an axiomatization for MVDs considered alone.

Cross-references
▶ Fourth Normal Form

▶ Functional Dependency

▶ Join

▶ Join Dependency

▶Normal Forms and Normalization

▶ Projection

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, USA, 1995.
Multivariate Data Visualization

▶Dynamic Graphics

http://www.tpc.org/tpc_app/default.asp
http://www.tpc.org/tpc_app/default.asp

1866M Multivariate Visualization Methods
Multivariate Visualization Methods

ANTONY UNWIN

Augsburg University, Augsburg, Germany

Synonyms
Graphical displays of many variables

Definition
Multivariate datasets contain much information. One-

and two-dimensional displays can reveal some of this,

but complex pieces of information need more sophis-

ticated displays that visualize several dimensions of the

data simultaneously. Usually several displays are

needed.
Historical Background
Graphical displays have been used for presenting and

analysing data for many years. Playfair [10] produced

some fine work over 200 years ago. Minard prepared

what Tufte has called ‘‘the finest graphic ever drawn’’

in the middle of the nineteenth century, showing

Napoleon’s advance on and retreat from Moscow, in-

cluding information on the size of the army and the

temperature at the time. Neugebaur introduced many

innovative ideas in the 1920s and 1930s. Most of these

graphics are primarily one- or two-dimensional.

Techniques for displaying higher dimensional data

have mainly been suggested more recently.

Foundations
There are two quite different aims of data display:

analysis and presentation. Graphics aid analysts in

understanding data and in determining structure.

Graphics are good for identifying outliers, for picking

out local patterns, and for recognizing global features.

Graphics are also valuable for conveying that infor-

mation to others. Wilkinson’s book [13] defines a

formal structure. Unwin et al. [12] discuss graphics

for large datasets. Theus et al. [11] present interactive

graphics for exploring data. The Handbook of Data

Visualization [2] provides an overview of the current

state of play.

For displaying multivariate data, indeed for dis-

playing data in general, it is important to distinguish

between different data types. Variables may be categor-

ical, ordinal, continuous, temporal, spatial or logical
(and other specialist types could be added as well). In

data analysis the most common types are continuous

and categorical. Ordinal may sometimes be treated as

categorical (when there are only a few distinct values)

and sometimes as continuous (when there are many).

No printed graphic can display more than two

dimensions fully at once. Multivariate graphics use

projections, conditioning, and linking to capture

higher dimensional information. Some displays can

deal with very large numbers of cases (area displays

such as mosaic plots), and some can potentially handle

very many variables (parallel coordinate plots). Most

displays are limited in both dimensions. One strategy is

to use small multiples, multiple versions of the same

graphic restricted to subsets of the data. Trellis plots

[1] are the most important example of this approach.

Whether many small displays are used or a range of

large displays (which might be referred to as large

multiples), more than one display will always be nec-

essary to reveal the information in the data.

It is essential to bear in mind that to have enough

evidence to confirm complex relationships lots of data

are needed. Think of determining the effects of all the

influences on car insurance premiums or of estimating

the effects of factors in health studies (for instance

breast cancer risk). Graphical methods must be able

to deal with large datasets to be fully useful [12].

Multivariate Continuous Data

For multivariate continuous data the most popular

graphic solution is parallel coordinate plots [8]. Fur-

ther approaches include scatterplot matrices (sploms),

showing all scatterplots of two variables at a time, and

trellis plots, which display the data in subsets defined

by conditioning variables. Glyphs, individual images

for each case whose form depends on the separate

variable values, can be an interesting possibility for

smaller datasets (at most a few hundred cases). Matrix

visualizations [2] are also interesting for smaller data-

sets and display each value by a color coding, with cases

in the rows and variables in the columns. Including

options for ordering both rows and columns is essen-

tial. Microarray data are often displayed in this way.

Other alternatives, known under the common

heading of dimension reduction plots, display two-

dimensional approximations of multivariate data,

e.g., multi-dimensional scaling (MDS) and biplots.

Dynamicmethods include the grand tour and projection

Multivariate Visualization Methods. Figure 1. A parallel coordinate plot of the ratings of 46 wines by 32 judges.

The axes are common scaled and have been ordered by mean values.

Multivariate Visualization Methods. Figure 2. An MDS

display based on five variables for cars sold in Germany.

Each car is represented by a circular-based glyph.

Multivariate Visualization Methods M 1867

M

pursuit [3], both of which work by moving smoothly

through two dimensional projections of the data.

Figure 1 shows a parallel coordinate plot of 32

judges’ rankings of 46 American and French Cabernet

wines from a 1999 tasting. The axes (one for each wine)

have been given a common scale and sorted by their

mean ratings from left to right, so that the highest

ranked wine is on the far left and the lowest on the

far right. What is striking is the lack of agreement

amongst the judges. While there is a discernible

trend, it is obscured by the high variability of the

ratings. Most wines were ranked best by at least one

judge and worst by at least one other. So the main

message of this plot is that while the league table of

results and statistical tests (whether the ordering was

significantly non-random) imply a consensus ranking

of the wines, the data convey otherwise. Parallel coor-

dinate plots, like all high-dimensional plots, require

fine-tuning to reveal information. In this case, com-

mon scaling and sorting were important tools. As

parallel coordinate plots are covered in another entry,

they are not discussed in detail here. One interesting

new variant is represented by textile plots [9] in which

the axes are rescaled to make the individual lines link-

ing cases as horizontal as possible.

In MDS [4] the attempt is made to find a low-

dimensional (almost always two dimensional) approx-

imation to high dimensional data by positioning

points so that the distances between them in the low

dimensional display are close to the distances between

them in the original dimension. For a high number of

dimensions this is unlikely to be effective, but it often

produces interesting views. The MDS display depends

on the criterion used to match the distances (e.g.,

emphasising the absolute differences or the relative
differences). Since all possible pairs must be consid-

ered, it is not efficient for large datasets. MDS displays

are not unique for two reasons: an optimal solution in

terms of the criterion will not necessarily be found; any

solution is rotation invariant. Figure 2 shows an MDS

plot of five-dimensional data on 381 cars sold in

Germany. Each case is represented by a circular-based

glyph using these five dimensions and two additional

ones. The selected group at the top of the display seem

relatively well separated in this view. They are all

midsize luxury cars.

Biplots were developed by Gabriel [5]. He pointed

out that both cases and variables could be plotted on

the same approximating low dimensional plot. The

two axes are usually chosen to be the first two principal

Multivariate Visualization Methods. Figure 3. A

mosaicplot of the numbers who sailed on the Titanic with

the survivors selected. Women are to the left and men

to the right, adults are below and children above. Within

these groups the classes are ordered first, second, third,

crew.

1868M Multivariate Visualization Methods
components. Lines representing variables which are

well approximated appear longer than those which

represent variables badly approximated and the angles

between the lines reflect the correlations between the

variables in the low dimensional hyperplane. More

complex biplots are also possible [6]. Like MDS dis-

plays, biplots will not work well in general, neither for

many cases nor many variables, but often the two-

dimensional projections produced can offer insightful

views of the data.

Multivariate Categorical Data

Continuous data can always be sensibly binned and

compressed, while retaining the option of zooming in

to reveal the full level of detail. This does not hold for

categorical data, where it may not be possible to com-

bine any of the individual categories with others. While

displays of single categorical variables are simple, the

number of combinations rises exponentially with

the number of variables. One binary variable can be

displayed in a barchart of two columns. Twenty binary

variables would give rise to 220 combinations, a little

over a million, many of which are likely to be empty,

even for extremely large datasets.

Classic mosaicplots were suggested by Hartigan [7]

for displaying a small number of categorical variables

in a multivariate way. Other variations (multiple

barcharts, fluctuation diagrams, equal binsize plots,

doubledecker plots) [12] are often more useful. All

depend very much on a careful choice of the ordering

of variables and on an informative choice of size and

aspect ratio. The ordering of variables determines

which comparisons can be made, while the aspect

ratio influences how well the comparison can be made.

Figure 3 shows a mosaic plot of the Titanic data

with the order of variables, gender, age, class. The block

of four equally tall columns at the left of the display

shows the numbers of adult women in each of the three

passenger classes and the crew, with the proportion

who survived highlighted. It is obvious that survival

rates for adult women declined across the three pas-

senger classes (the number of women in the crew was

too small for any conclusion to be drawn). The next

block of four columns relates to adult males and shows

that the second class adult males had the lowest sur-

vival rate, a rather surprising result. The smaller bars at

the top of the display refer to the children on board.

The survival rates for males and females within classes

can be compared approximately in this display, but
clearly another display would be better for that, one

using the variable ordering class, age, gender. Even

in this dataset with only four variables, one plot is

not enough.

The main idea underlying all mosaicplots is that

each combination of variable values is displayed by a

rectangle whose area is proportional to the number of

cases with that combination. The layout of the combi-

nations is key in determining the interpretation, which

can be difficult at the best of times, and is eased by

providing interactive tools to query and adjust the

graphic. Multiple barcharts are for comparing distri-

butions of subsets (and are therefore related to trellis

plots). Fluctuation diagrams are best for larger num-

bers of combinations to identify which are most com-

mon. Equal binsize plots and doubledecker plots are

for comparing highlighted proportions.

Figure 4 shows a fluctuation diagram of a dataset

from the Pakistan Labour Force Survey. Five variables

are considered (the numbers of categories, including

missings, are in brackets): gender [2], relation to head

of household [9], marital status [4], literacy [3], and

urban/rural [2], making 432 possible combinations in

all. Although there are just under 140,000 cases, many of

the combinations are empty or rare (e.g., fewwomen and

few single men are heads of households). The biggest

single combination (male, son in household, never

married, literate, living in a rural area) is highlighted

and includes 9,678 cases or 7% of the dataset. Using

interactive querying and animating the construction of

the plot, one variable at a time, aids interpretation

considerably. No display of several categorical variables

Multivariate Visualization Methods. Figure 4. A

fluctuation diagram of five variables from the Pakistani

Labour Force Survey: gender, relation to head of

household, marital status, literacy, urban/rural. The biggest

single combination is highlighted.

Multivariate Visualization Methods M 1869

M

at once can either be easy to grasp immediately or

convey all the potentially available information.

Interactive Graphics and Multivariate Graphics

Although both parallel coordinate plots and mosaic-

plots can be used for static plots, they are much more

effective when used interactively. Their necessarily

complex nature (after all, they have to display multi-

variate structure) demands careful scrutiny to grasp

the information in them to the full, and the gain of

understanding can be considerably enhanced when

these graphics are empowered with interactive tools.

Interactive graphics may also be used to gain in-

sight into multivariate datasets using one- or two-

dimensional displays. Multiple linked simple displays
of the same dataset can be easier to interpret than

complex multivariate plots.

Key Applications
Descriptive statistics and Exploratory Data Analysis.

Future Directions
Many other more or less esoteric multivariate visuali-

zations have been proposed. None should be dismissed

out of hand, every visualization is probably ideal for

some particular dataset. Nevertheless any succesful

graphic should satisfy a number of criteria: it should

be based on a readily recognizable and interpretable

concept; it should be flexible and capable of being

made interactive; it should be able to handle more

than just three or four dimensions.

Displaying and interpreting even four-dimensional

data is tricky. Dominating features can usually be seen,

more subtle effects cannot. In higher dimensions the

difficulties become much greater. At the moment it is

impossible to visualize large numbers of categorical

variables and although several hundred continuous

variables can readily be displayed in parallel coordinate

plots, the chances of identifying important features are

slim. Nevertheless, graphics displays are useful for

checking results found analytically and this can be

very valuable. Visualizing multivariate data is new

and progress is to be expected.

Visualization is currently mainly used for presenta-

tion of data, rather than for exploration of data. A single

graphic can only display a limited number of aspects of a

multivariate dataset and many are needed to convey all

information available. The development of multivariate

graphics should consider the design of sets of graphics

rather than more elaborate versions of single ones. More

interactive tools will have be developed. Sorting, rescal-

ing, and querying are just some of the basics required.

Visualization is an important component of data

analysis. It provides a complementary approach to

analytic modeling and is much more suited to carrying

out exploratory data analysis. Results found by models

should be checked with graphics and ideas generated

with graphics should be investigated analytically. The

tighter integration of analytic and graphical methods

would be of great advantage.

Cross-references
▶Data Visualization

▶Dynamic Graphics

1870M Multi-Version Concurrency Control
▶ Parallel Coordinates

▶ Parallel Coordinates Plot (PCP)

▶Visual Data Mining

▶Visualizing Categorical Data

▶Visualizing Quantitative Data

Recommended Reading
1. Becker R., Cleveland W., and Shyu M.J. The Visual Design and

Control of Trellis Display. J. Computational and Graphical Sta-

tistics, 5:123–155, 1996.

2. Chen C.H., Haerdle W., and Unwin A. Handbook of Data

Visualization. Springer, Berlin, 2007.

3. Cook D. and Swayne D. Interactive and Dynamic Graphics for

Data Analysis. Springer, New York, 2007.

4. Cox M. and Cox M. Multidimensional Scaling. Chapman and

Hall, London, 2001.

5. Gabriel K. The biplot ‐ graphic display of matrices with

application to principal component analysis. Biometrika,

58:453–467, 1971.

6. Gower J. and Hand D. Biplots. Chapman & Hall, London, 1996.

7. Hartigan J.A. and Kleiner B. Mosaics for Contingency Tables. In

Proc. 13th Symposium on the Interface, 1981, pp. 268–273.

8. Inselberg A. Parallel Coordinates. Springer, New York, 2008.

9. Kumasaka N. and Shibata R. High Dimesional Data Visual-

isation: the Textile Plot. Computational Statistics and Data

Analysis, 52(7):3616–3644, 2008.

10. Playfair W. Playfair’s Commercial and Political Atlas and Statis-

tical Breviary. Cambridge University Press, London, 2005.

11. Theus M. and Urbanek S. Interactive Graphics for Data Analysis.

CRC Press, London, 2008.

12. Unwin A.R., Theus M., and Hofmann H. Graphics of Large

Datasets. Springer, New York, 2006.

13. Wilkinson L. The Grammar of Graphics. Springer, New York,

2nd edn., 2005.
Multi-Version Concurrency Control

▶Multi-version Serializability and Concurrency

Control
Multi-Version Concurrency Control
Algorithms

▶Multi-version Serializability and Concurrency

Control
Multi-Version Database

▶ Supporting Transaction Time Databases
Multi-Version Databases

▶Multi-version Serializability and Concurrency

Control
Multi-version Serializability and
Concurrency Control

WOJCIECH CELLARY

Poznan University of Economics, Poznan, Poland

Synonyms
Multi-version databases; Multi-version concurrency

control; Multi-version concurrency control algorithms

Definition
Given a multi-version database, where each data item

is a sequence of its versions. The number of versions of

a data item may be limited or not. If it is unlimited,

then each update of a data item over the limit gives rise

to its next version. If it is limited, than each update of a

data item replaces its oldest version. In case of limited

number of versions, a database is called a K-version

database. In multi-version databases any read opera-

tion of a data item, subsequent to a write operation of

this data item, may access any of its currently existing

versions. Thus, a multi-version schedule of a transac-

tion set differs form the ordinary, mono-version sched-

ule by a mapping of the data item read operations into

the data item version read operations. Multi-version

serializability plays the same role for the multi-version

databases, as serializability for the ordinary, mono-ver-

sion ones. Multi-version serializability is used to prove

correctness of a concurrent execution of a set of transac-

tions, whose read and write operations interleave, and

moreover, read operations may access one of many

available versions of a data item.

Historical Background
Multi-version serializability problem was a hot research

topic in mid eighties. First works were published by P.A.

Bernstein and N. Goodman [2,3] in 1983. Research was

continued by G. Lausen [7], next by S.Muro, T. Kameda,

and T. Minoura [8]. The next group of researchers

involved was composed of C.H. Papadimitriou,

P.C. Kanellakis, and T. Hadzilacos [6,9]. There is a lot

of work devoted to different variants of multi-version

Multi-version Serializability and Concurrency Control M 1871

M

concurrency control algorithms. A comprehensive back-

ground may be found in [5].

Foundations
Definition of a multiversion schedule. A multiversion

schedule mvs of a set of transactions t is a triple

mvsðtÞ ¼ ðTðtÞ; h;<mvsÞ, where (i) T(t) is a the set

of all database operations involved in the transactions

of the set t extended by the database operations of two

hypothetical initial and final transactions and which

respectively write the initial state of the database and

read the final state of the database; (ii) h is a function

which maps each read operation rijðxÞ 2 TðtÞ into a

write operation wklðxÞ 2 TðtÞ; and (iii) <mvs ¼ [i < Ti

is a partial order relation over T(t) such that: if

Tij < Ti
Tik then Tij < mvs Tik , and if hðrijðxÞÞ ¼ wklðxÞ

then wklðxÞ< mvs rijðxÞ. Function h defined above

maps a read operation of a data item into the

write operation of a version of this data item – more

precisely – into the write operation which creates the

version of the data item read. Relation <mvs is defined

by two conditions. The first one states that <mvs hon-

ors all orderings stipulated by transactions of the set t.
The second one states that a transaction cannot read

a version of a data item until it has been created. A

multi-version schedule is serial if no two transactions

are executed concurrently, otherwise, it is concurrent.

Multiversion schedule equivalence. Two multi-

version schedules are equivalent if they are view

and state equivalent. Two multiversion schedules

mvsðtÞ ¼ ðTðtÞ;h;<mvsÞ andmvs0ðtÞ ¼ ðTðtÞ;h0; <mvs0 Þ
of the set t are view equivalent if and only if h = h 0.

If the transactions of two multi-version schedules

mvs(t) and mvs0(t) receive an identical view of the

database, i.e., if both multiversion schedules are view

equivalent, then all the write operations issued by

transactions in both schedules are the same. Two

multiversion schedules mvsðtÞ ¼ ðTðtÞ;h;<mvsÞ and

mvs0ðtÞ ¼ ðTðtÞ;h0;<mvs0 Þ of the set of transactions t
are final-state equivalent if and only if for every initial

state of the database and any computations performed

by the transactions contained in t the final states of the
database reached as the result of schedules mvs(t) and
mvs0(t) are identical.

Standard serial multiversion schedule. A serial mul-

tiversion schedulemvsðtÞ ¼ ðTðtÞ; h;<mvsÞ is standard
if each read operation rijðxÞ 2 TðtÞ accesses the ver-

sion of a data item x created by the last write operation

wkl (x) 2 T(t) preceding rij (x). Since in a serial
schedule, for every two transactions Ti and Tk, either

all database operations of Ti precede all database

operations of Tk or vice versa, the last write operation

preceding a read operation is well defined. Note that a

standard serial multi-version schedule in multi-version

databases corresponds to a serial mono-version sched-

ule in mono-version databases. From the consistency

property of each transaction, i.e., from the assumption

that each transaction separately preserves database con-

sistency, it follows that a standard serial multi-version

schedule must also preserve database consistency.

On the basis of the above observation it is possible to

define the multi-version serializability criterion [3].

Multi-version serializability criterion. A multi-version

schedule mvs(t) is correct if it is equivalent to any

standard serial multi-version schedule of the set t.
Intuitively, the above criterion can be interpreted as

follows. A concurrent schedule of a set of transactions

in a multi-version database is correct if it is equivalent

to a serial schedule of the transactions in which data

replication over versions is transparent.
Key Applications
Multi-version serializability is used to prove correct-

ness of concurrency control algorithms devoted to

multiversion databases. As an example, consider a

multi-version two-phase locking algorithm, called

WAB [3,1,4], devoted to K-version databases. The con-

cept of multi-version two-phase locking is broader

than the concept of mono-version two-phase locking

(cf. section on two-phase locking). An algorithm is a

multi-version two-phase locking algorithm if it satisfies

the following conditions:

1. There are two phases of transaction execution: the

locking phase and the unlocking phase. During the

locking phase a transaction must obtain all locks it

requests. The moment when all locks are granted,

which is equivalent to the end of the locking phase

and the beginning of the unlocking phase, is called

the commit point of a transaction. New versions of

the data items prepared in the transaction’s private

workspace are written to the database during the

unlocking phase.

2. The execution order of a set of transactions t is

determined by the order of transaction commit

points.

3. The execution of any transactionT 2 ðtÞ does not
require locking data items that T does not access.

1872M Multi-version Serializability and Concurrency Control
The concepts of locking and unlocking phases do not

have exactly the same meaning as the similar notions

used in the mono-version two-phase locking algo-

rithm. In the WAB algorithm, the process of setting

the so called ‘‘certify lock’’ is two-phase, but not as in

the two-phase locking algorithm, the process of acces-

sing data. In the WAB algorithm, each transaction

initiated in the database and each version of a data

item is certified or uncertified. When a transaction

begins, it is uncertified. Similarly, each new version of

a data item prepared in the transaction’s workspace is

uncertified. A certify operation is introduced, denoted

by c(wij(x)), where wij (x) is a Ti’s write operation, and

a new lock mode – the certify lock denoted by CL(x).

Certify locks are mutually incompatible. The algo-

rithm requires that all certify and read operations of a

data item x be <mvs related. Similarly, all certify opera-

tions must be <mvs related. The execution order of

the certify operations determines a precedence rela-

tion �w defined on the set t. The precedence relation
�w specifies the order of transaction executions as

follows: Ti �w Tk if and only if there exist such

certify operations c(wij(x)) and c(wkl(x)) that

cðwijðxÞÞ �mvs cðwklðxÞÞ.
According to the WAB algorithm, any read opera-

tion Tij (x) concerns the last certified version of a data

item x or any uncertified version of this data item. The

version selected depends on a particular implementa-

tion of theWAB algorithm. Any write operation wij (x)

prepares a new version of a data item x in the work-

space of transaction Ti (the version prepared is uncer-

tified). At the end of transaction execution, the

transaction and the new versions of the data items

it prepared are being certified. The Ti’s certifica-

tion is a two-phase locking procedure. It consists of

certify-locking all data items that the transaction Ti
accessed to write. The Ti’s certification is completed,

when all certify locks are set and the following condi-

tions are satisfied:

1. at the moment of Ti’s certification, the versions of

all data items read by Ti are certified;

2. for each data item x that Ti wrote, all transactions

that read certified versions of x are certified.

To satisfy condition (ii), a certify token is allocated to

each data item x to forbid reading certified versions of

x other than the last one. On the other hand, all

uncertified versions of x are allowed to be read. When

the transaction Ti’s certification is completed (the
commit point), the procedure for certifying the ver-

sions of data items prepared by Ti is initiated. It was

proved in [3] that the WAB algorithm is correct in the

sense that any schedule produced by it is multi-version

serializable. The main drawback of this algorithm is a

possibility of a deadlock.

Future Directions
In database systems, multiple versions of data items are

necessary to ensure transaction atomicity and to recover

form crashes. The original idea of multiversion concur-

rency control based onmultiversion serializability was to

use those versions also to increase the degree of transac-

tion concurrency, and as a result to improve database

performance. However, such double use of versions

decreases database reliability, because of the complexity

of multiversion concurrency control. For practice, reli-

ability of databases is of ultimate importance. This is why

the concept of multiversion concurrency control was not

well accepted in practice, except some implementations

of two-version concurrency control concerning two

values of each data item: before and after write opera-

tions. The concept of multiversion concurrency control

may find attention in database systems applied in areas

where ACID properties may be relaxed.

Cross-references
▶Atomicity

▶Concurrency Control – Traditional Approaches

▶Replicated Database Concurrency Control

▶ Serializability

▶Transaction

▶Transaction Management

▶Transaction Models–the Read/Write Approach

Recommended Reading
1. Bernstein P.A. and Goodman N. A sophisticate’s introduction

to distributed database concurrency control. In Proc. 8th Int.

Conf. on Very Data Bases, 1982, pp. 62–76.

2. Bernstein P.A. and Goodman N. Concurrency Control and

Recovery for Replicated Distributed Databases. Tech. Rep. TR-

20/83, Harvard University, 1983.

3. Bernstein P.A. and Goodman N. Multiversion concurrency

control – theory and algorithms. ACM Trans. Database Syst.,

8(4):465–483, 1983.

4. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems.Addison-Wesley,

Reading, MA, 1987.

5. Cellary W., Gelenbe E., and Morzy T. Concurrency Control in

Distributed Database Systems, Elsevier Science, North-Holland,

1988.

MVD M 1873
6. Hadzilacos T. and Papadimitriou C.H. Algorithmic aspects

of multiversion concurrency control. J. Comput. Syst. Sci.,

33(2):297–310, 1986.

7. Lausen G. Formal aspects of optimistic concurrency control in a

multiple version database system. Inf. Syst., 8(4):291–301, 1983.

8. Muro S., Kameda T., and Minoura T. Multi-version concurrency

control scheme for database system. J. Comput. Syst. Sci.,

29:207–224, 1984.

9. Papadimitriou C.H. and Kanellakis P.C. On concurrency control

by multiple versions. ACM Trans. Database Syst., 9(1):89–99,

1984.
Music Metadata

▶Audio Metadata
Music Retrieval

▶Query by Humming
MVD

▶Multivalued Dependency
M

	M
	MAC
	Machine Learning in Bioinformatics
	Machine Learning in Computational Biology
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Machine Learning in Systems Biology
	Machine-Readable Dictionary (MRD)
	Macro
	Magnetic Disk
	Maid
	Main Memory
	Synonyms
	Definition
	Key Points
	Cross-references

	Main Memory DBMS
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Maintenance of Materialized Views with Outer-Joins
	Definition
	Historical Background
	Foundations
	Join-Disjunctive Normal Form
	The Subsumption Graph
	Maintenance Procedure
	Computing the Primary Delta
	Computing the Secondary Delta
	Summary

	Key Applications
	Cross-references
	Recommended Reading

	Maintenance of Recursive Views
	Synonyms
	Definition
	Historical Background
	Foundations
	Recursive View Definition
	Evaluation of Recursive Queries
	Incremental Evaluation of Recursive Views

	Key Applications
	Cross-references
	Recommended Reading

	Managing Compressed Structured Text
	Synonyms
	Definition
	Historical Background
	Foundations
	Compression of Semi-Structured Text
	Navigating and Searching in Compressed Form
	Succinct Encodings for Labeled Trees
	Integrating Indexing and Compression

	Key Applications
	Future Directions
	Experimental Results
	URL to Code
	Cross-references
	Recommended Reading

	Mandatory Access Control
	Synonyms
	Definition
	Key Point
	Cross-references
	Recommended Reading

	MANET Databases
	Synonyms
	Definition
	Historical Background
	Pedestrians Projects
	Vehicular Projects

	Foundations
	Key Applications
	Social Networks
	Emergency Response, Homeland Security, and the Military
	Airport Applications
	Mobile E-commerce
	Transportation Safety and Efficiency

	Future Directions
	Cross-references
	Recommended Reading

	Manmachine Interaction (Obsolete)
	Many Sorted Algebra
	MAP
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Map Algebra
	Map Matching
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Mapping
	Mapping Composition
	Mapping Engines
	Markup Language
	Definition
	Key Points
	Cross-references

	MashUp
	Definition
	Key Points
	Cross-references

	Massive Array of Idle Disks
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Matching
	Materialized Query Tables
	Materialized View Maintenance
	Materialized View Redefinition
	Materialized Views
	Matrix
	Matrix Masking
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Maximal Itemset Mining
	Max-Pattern Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Maybe Answer
	MDIS
	MDR
	MDS
	Mean Average Precision
	Mean Reciprocal Rank
	Synonyms
	Definition
	Key Points
	Cross-references

	Mean Reciprocal Rank of the First Relevant Document
	Measure
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Media Recovery
	Media Semantics
	Median
	Mediation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Mediation and Adaptation
	Medical Genetics
	MEDLINE/ PubMed
	Membership Query
	Synonyms
	Definition
	Key Points
	Cross-references

	Memory Consistency
	Memory Hierarchy
	Synonyms
	Definition
	Historical Background
	Foundations
	Memory- and Cache-Architectures
	Memory Access Costs
	Latency
	Bandwidth
	Address Translation

	Unified Hardware Model

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Memory Locality
	Synonyms
	Definition
	Key Point
	Cross-references
	Recommended Reading

	Merge Join
	Merge-purge
	Merkle Hash Trees
	Merkle Trees
	Synonyms
	Definition
	Key Point
	Cross-references
	Recommended Reading

	Message Authentication Codes
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommented Reading

	Message Integrity Codes
	Message Queuing Systems
	Synonyms
	Definition
	Key Points
	Cross-reference
	Recommended Reading

	Message-Oriented Middleware (MOM)
	Message-oriented Systems
	Messaging Engines
	Messaging Systems
	Meta Data Base
	Metadata Interchange Specification
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommented Reading

	Meta Data Management System
	Meta Data Manager
	Meta Data Registry
	Meta Data Repository
	Synonyms
	Definition
	Historical Background
	Foundations
	Requirements
	Architecture
	Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Meta Model
	Meta Object Facility
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Metadata
	Definition
	Key Points
	Cross-references
	Recommented Reading

	Metadata Encoding and Transmission Standard
	Metadata Registry, ISO/IEC 11179
	Synonyms
	Definition
	Historical Background
	Foundations
	Part 1: Framework
	Part 2: Classification
	Part 3: Registry Metamodel and Basic Attributes
	Part 4: Formulation of Data Definitions
	Part 5: Naming and Identification Principles
	Part 6: Registration

	Key Applications
	Cross-references
	Recommended Reading

	Metadata Repository
	Meta-Knowledge
	Metamodel
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Metaphor
	Metasearch Engines
	Synonyms
	Definition
	Historical Background
	Foundations
	Result Merging
	Search Engine Selection
	Automatic Search Engine Connection
	Automatic Search Result Extraction

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Metric Space
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microdata
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microaggregation
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microbenchmark
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microdata Rounding
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Middleware Support for Database Replication and Caching
	Definition
	Historical Background
	Foundations
	Shared Disk Versus Shared Nothing
	Master/Slave Versus Multi-Master
	Middleware Design
	Concurrency Control
	Statement Replication Versus Transaction Replication
	High Availability
	Load Balancing
	Caching

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Middleware Support for Precise Failure Semantics
	Definition
	Historical Background
	Foundations
	System Model
	X-Able Histories
	Client-Service Consistency
	X-Able Services

	Key Applications
	Recommended Reading

	Mini
	Minimal-change Integrity Maintenance
	Mining of Chemical Data
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Mixed Evidence
	Mixed-Media
	MM Indexing
	MMDBMS
	Mobile Ad hoc Network Databases
	Mobile Database
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Mobile Interfaces
	Synonyms
	Definition
	Historical Background
	Foundations
	Mobile Interface for Specific Devices
	Multi Target Applications

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Mobile Map Services
	Mobile Sensor Network Data Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Mobile Wireless Sensor Network Data Management
	Model Management
	Definition
	Historical Background
	Foundations
	Schema Matching
	Model Transformation
	Generic Metamodel
	Schema Integration
	Mappings
	Model Management Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Model-based Querying in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Model
	Query Planning and Execution
	Example

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Model-driven Data Acquisition
	Module
	MOF
	Molecular Interaction Graphs
	Moment
	Monitoring
	Monitoring of Real-Time Logic Expressions
	Monotone Constraints
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Monotonic Constraints
	Monotonicity Property
	Motion Graphics
	Moving Object
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Moving Object Trajectories
	Moving Objects Databases and Tracking
	Synonyms
	Definition
	Historical Background
	Foundations
	Modeling and Querying Current Movement (Tracking)
	Modeling and Querying History of Movement
	Related Issues
	Uncertainty
	Movement in Networks
	Spatio-Temporal Indexing
	Query Processing for Continuous/Location Based Queries
	Spatiotemporal Aggregation and Selectivity Estimation

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Moving Objects Interpolation
	Moving Span
	MRR
	MRR1
	MSN Data Management
	Multi-Database
	Multidatabases
	Multidimensional Clustering
	Multidimensional Data Formats
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Multidimensional Database Management System
	Multi-dimensional Mapping
	Multidimensional Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Cubes
	Dimensions
	Facts
	Measures
	The Modeling Process
	Complex Multidimensional Modeling

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multidimensional Scaling
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Multidimensional Visualization
	Multi-Granularity Modeling
	Multi-Layered Architecture
	Multi-Level Recovery and the ARIES Algorithm
	Definition
	Historical Background
	Foundations
	Future Directions
	Cross-references
	Recommended Reading

	Multilevel Secure Database Management System
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multilevel Security
	Multilevel Transactions and Object- Model Transactions
	Synonyms
	Definition
	Historical Background
	Foundations
	Future Directions
	Cross-references
	Recommended Reading

	Multi-Level Visualization
	Multilingual Information Retrieval
	Multi-Master System
	Multimedia
	Multimedia Content Enrichment
	Multimedia Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Types and Semantics
	Sequence and Order
	Size
	Accessing Multimedia Data
	Presentation

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Data Buffering
	Definition
	Historical Background
	Foundations
	Buffer Replacement
	The BASIC Buffer Replacement Algorithm
	The DISTANCE Buffer Replacement Algorithm

	Buffer Sharing

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Data Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Filter & Refine
	The Need for Approximate Features
	Metric Indexing
	Ad Hoc Solutions

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Data Querying
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Data Storage
	Definition
	Historical Background
	Foundations
	Hiccup-Free Display
	FIXB and VARB
	RP, MTP, and MVP
	Data Placement across Disk Drivers

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Analysis and Feature Extraction
	Domain Knowledge and Interpretation
	Interaction and User Interface
	Storage, Matching, and Indexing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Information Discovery
	Multimedia Information Retrieval
	Multimedia Information Retrieval Model
	Synonyms
	Definition
	Historical Background
	Foundations
	Form-based Multimedia Information Retrieval
	Semantic Content-based Multimedia Information Retrieval
	Mixed Multimedia Information Retrieval

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Metadata
	Synonyms
	Definition
	Historical Background
	Foundations
	Media Content
	Layout
	Timing
	Linking
	Adaptivity

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Presentation Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Resource Scheduling
	Definition
	Historical Background
	Foundations
	Disk Scheduling
	Stream Scheduling

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Retrieval Evaluation
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Readings

	Multimodal Data
	Multimodal Databases
	Multi-modal Information Retrieval
	Multimodal Interfaces
	Definition
	Historical Background
	Foundations
	Key Applications
	Interaction in Mobile Environments
	Geographic Information Systems
	Interaction in Adverse Settings
	Multimodal Biometric Databases
	Interaction in Impairment Conditions

	Future Directions
	Cross-references
	Recommended Reading

	Multi-Pathing
	Definition
	Key Points
	Cross-references

	Multiple Classifier System
	Multiple Imputation
	Multiple Linked Plots
	Multiple Query Optimization
	Multiple Representation Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Multiscale Databases
	Multi-Representation Databases
	Database Models for Multiple Representations
	Architectures for Distributed Representations

	Key Applications
	Cartography
	Multi-Scale Analysis

	Future Directions
	Cross-references
	Recommended Reading

	Multiplicity
	Multiprocessor Data Placement
	Multiprocessor Database Management
	Multiprocessor Query Processing
	Multi-Query Optimization
	Synonyms
	Definition
	Historical Background
	Foundations
	Challenges
	Identifying CSEs
	Finding the Optimal Plan in Presence of CSEs

	Engineering an Efficient Multi-Query Optimizer

	Key Applications
	Cross-references
	Recommended Reading

	Multi-Resolution
	Multi-Resolution Terrain Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Multi-scale
	Multiscale Views
	Multiscale Interface
	Multiset Semantics
	Multi-Step Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	General Schema of Multi-Step Query Processing
	Example: Multi-Step Query Processing of Similarity Queries
	Example: Algorithms for Multi-Step Query Processing of Similarity Queries

	Key Applications
	Cross-references
	Recommended Reading

	Multi-Tier Architecture
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Multivalued Dependency
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Multivariate Data Visualization
	Multivariate Visualization Methods
	Synonyms
	Definition
	Historical Background
	Foundations
	Multivariate Continuous Data
	Multivariate Categorical Data
	Interactive Graphics and Multivariate Graphics

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multi-Version Concurrency Control
	Multi-Version Concurrency Control Algorithms
	Multi-Version Database
	Multi-Version Databases
	Multi-version Serializability and Concurrency Control
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Music Metadata
	Music Retrieval
	MVD

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

