
T

Table

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Table; List; Matrix
Definition
A data structure to organize the tuples of a relation:

{<valueix, valueiy ,...>, <valuejx, valuejy ,...>, ...} in a

structured way.

An arrangement of numbers, words, symbols or

items of any kind, in columns and rows.

One-way table. The values of one or more variables

(sets of data) are displayed either horizontally or verti-

cally as a list. Each row or each column represents one

data item.

Two-way table. Also known as a contingency

table or cross tabulation (cross tab). The rows are

labeled with values of one of two variables and the

columns with values of the other. The cell at each row

and column intersection displays the value of a char-

acteristic of the data that is shared by the two variables

when they have the value displayed in the row and

column headings.

Multi-way table. The general idea of cross tabula-

tion extended to more than two variables. The rows or

columns or both are grouped by values of additional

variables.
Key Points
In database terminology a (one-way) table is the data

structure used to represent data that are organized with

the relational model.

Two-way and multi-way tables are widely used tools

to explore data by examining frequencies of observa-

tions that belong to specific categories on more than

one variable.
2009 Springer ScienceþBusiness Media, LLC
In the context of data visualization, tables are an

effective way to show exact numerical values and are

usually better suited than graphicalmethods to represent

small data sets. They assist users in making compar-

isons and provide them with a convenient way of

storing data for rapid reference. Tables can be format-

ted in many different ways to suit the type of data, the

purpose of the table and its intended use.

Ehrenberg [3] discusses tables in the context of

readability, Bertin [1] considers tables as part of an

information processing system, Card et al. [2] use them

as a step in the process of mapping data to visual form

while Harris [4] lists terms and key elements used in the

design of tables.

The terminology for tables has also been influenced

by the widespread use of table-based spreadsheet pro-

grams. One example is the notion of a pivot table, a

practical feature to reorganize lists as user specified

tables, particularly useful for cross tabulations.

Cross-references
▶Chart

▶Data Visualization

▶Tabular Data
Recommended Reading
1. Bertin J. Graphics and Graphic Information-Processing. Walter

de Gruyter, Berlin, New York, 1981.

2. Card S.K., MacKinlay J.D., and Shneiderman B. Readings in

Information Visualization: Using Vision to Think. Morgan

Kaufmann, San Francisco, CA, 1999.

3. Ehrenberg A.S.C. A Primer in Data Reduction. Wiley,

Chichester, UK, 1982.

4. Harris R.L. Information Graphics: A Comprehensive Illustrated

Reference, Oxford University Press, New York, 1999.
Table Design

▶ Physical Database Design for Relational Databases

2908T Table Normalization
Table Normalization

▶ Physical Database Design for Relational Databases
Tabular Data

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Table

Definition
From microdata, tabular data can be generated by

crossing one or more categorical attributes. Formally,

a table is a function

T : DðV i1Þ � DðVi2Þ � � � � � DðVilÞ ! R or N

where l � t is the number of crossed categorical attri-

butes V_{ij} and D(V_{ij}) is the domain of attribute

V_{ij}.

Key Points
There are two kinds of tables: frequency tables that dis-

play the count of respondents at the crossing of the

categorical attributes (in N) and magnitude tables that

display information on a numerical attribute at the

crossing of the categorical attributes (inR). For exam-

ple, given some census microdata containing attributes

“Job” and “Town,” one can generate a frequency table

displaying the count of respondents doing each job

type in each town. If the census microdata also contain

the “Salary,” attribute, one can generate a magnitude

table displaying the average salary for each job type

in each town. The number n of cells in a table is

normally much less than the number r of respondent

records in a microdata file. However, tables must satis-

fy several linear constraints: marginal row and column

totals. Additionally, a set of tables is called linked

if they share some of the crossed categorical attributes:

for example “Job” � “Town” is linked to “Job” �
“Gender.”
Cross-references
▶ Inference Control in Statistical Databases

▶Microdata
Tamper-Proof Hardware

▶Trusted Hardware
Tape Libraries

▶ Storage Devices
Tapes

▶ Storage Devices
Task

▶Activity
Taxonomies

▶ Lightweight Ontologies
Taxonomy: Biomedical Health
Informatics

VIPUL KASHYAP

Partners Healthcare System, Wellesley, MA, USA

Synonyms
Health informatics; Healthcare informatics; Biomedi-

cal informatics

Definition
Health informatics or medical informatics is the inter-

section of information science, computer science, and

health care [2]. It deals with the resources, devices,

and methods required to optimize the acquisition, stor-

age, retrieval, and use of information in health and

biomedicine. Health informatics tools include not only

computers but also clinical guidelines, formal medical

terminologies, and information and communication

systems. Subdomains of (bio) medical or health care

informatics include: clinical informatics, nursing

Taxonomy: Biomedical Health Informatics T 2909
informatics, imaging informatics, consumer health in-

formatics, public health informatics, dental informatics,

clinical research informatics, bioinformatics, veterinary

informatics, pharmacy informatics, and healthcare

management informatics. An alternative characteriza-

tion refers to this field as biomedical informatics [1]

takes a broader perspective including the application of

computer and information science, informatics, cogni-

tive science and human computer interaction in the

practice of biological research, biomedical science, med-

icine and healthcare [3].
T

Foundations
This field is now characterized by means of a taxonomy

comprising of the various subdomains identified

above. The key sub domains are:

1. Clinical Informatics focuses on computer applica-

tions that address medical data (collection, analy-

sis, representation), and is a combination of

information science, computer science, and clinical

science designed to assist in the management and

processing of data, information and knowledge to

support the practice and delivery of clinical care.

Key activities covered by this area include Electron-

ic Medical Records (EMRs), Decision Support Sys-

tems, Medical Data Mining, Hospital Information

Systems and Laboratory Information Systems.

2. Nursing Informatics is the multidisciplinary scientif-

ic endeavor of analyzing, formalizing, and modeling

how nurses collect and manage data, process data

into information and knowledge, make knowledge-

based decisions and inferences for patient care, and

use this empirical and experiential knowledge in

order to broaden the scope and enhance the quality

of their professional practice. The scientific meth-

ods central to nursing informatics are focused on:

(i) Using a discourse about motives for computer-

ized systems, (ii) Analyzing, formalizing and mod-

eling nursing information processing and nursing

knowledge for all components of nursing practice:

clinical practice, management, education and re-

search, (iii) Investigating determinants, conditions,

elements, models and processes in order to design,

and implement as well as test the effectiveness and

efficiency of computerized information, (tele)com-

munication and network systems for nursing prac-

tice, and (iv) Studying the effects of these systems

on nursing practice.
3. Imaging Informatics combines knowledge and cap-

abilities from the fields ofmedicine, medical imaging

(also known as diagnostic radiology), biomedical

informatics and Information Technology. Imaging

informatics includes the mining of information or

knowledge frommedical image databases, the use of

technology to enhance the medical image interpreta-

tion process, and the utility of computer software

to digitize medical imaging. The more commonly

recognized areas of Imaging Informatics include

Picture Archiving and Communications Systems

(PACS), Radiology Information Systems (RIS), and

Computer-Aided Detection and Diagnosis (CAD).

4. Consumer Health Informatics has been defined as a

branch of medical informatics that analyses consu-

mers’ needs for information; studies and imple-

ments methods of making information accessible

to consumers; and models and integrates consu-

mers’ preferences into medical information systems.

5. Public Health Informatics has been defined as the

systematic application of information and comput-

er science and technology to public health practice,

research, and learning. It is distinguished from

healthcare informatics by emphasizing data about

populations rather than that of individuals. The

activities of public health informatics can be broad-

ly divided into the collection, storage, and analysis

of data related to public health.

6. Dental Informatics is the understanding, skills

and tools that enable the sharing and use of infor-

mation to promote oral health and improve

dental practice, research, education, and manage-

ment. It encompasses electronic health records,

CAD/CAM technology, diagnostic digital imaging

and administrative information for all dentistry

disciplines.

7. Clinical Research Informatics is concerned with the

application of informatics theory and methods

to design, conduct and improve clinical research

and disseminate the knowledge gained. It overlaps

considerably with the related rapidly developing

domain of Translational Research Informatics.

Clinical research is defined by the National Insti-

tutes of Health (NIH) as being comprised of studies

and trials in human subjects that fall into the three

sub-categories: (i) Patient-oriented research con-

ducted with human subjects (or on material of

human origin such as tissues, specimens and cog-

nitive phenomena) for which an investigator (or

2910T Taxonomy: Biomedical Health Informatics
colleague) directly interacts with human subjects.

It includes research on mechanisms of human dis-

ease, therapeutic interventions, clinical trials, or

development of new technologies; (ii) Epidemio-

logic and behavioral studies; and (iii) Outcomes

research and health services research.

8. Translational Research Informatics as defined by the

NIH includes two areas of translation. One is the

process of applying discoveries generated during

research in the laboratory, and in preclinical stud-

ies, to the development of trials and studies in

humans. The second area of translation concerns

research aimed at enhancing the adoption of best

practices in the community. Cost-effectiveness of

prevention and treatment strategies is also an im-

portant part of translational science.

9. Bioinformatics and Computational Biology involves

the use of techniques including applied mathemat-

ics, informatics, statistics, computer science, artifi-

cial intelligence, chemistry, and biochemistry to

solve biological problems usually on the molecular

level. The core principle of these techniques is

the use of computing resources in order to solve

problems on scales of magnitude far too great

for human discernment. Research in computation-

al biology often overlaps with systems biology.

Major research efforts in the field include sequence

alignment, gene finding, genome assembly, protein

structure alignment, protein structure prediction,

prediction of gene expression and protein-protein

interactions, and the modeling of evolution.

10. Pharmacy Informatics is the application of compu-

ters to the storage, retrieval and analysis of drug

and prescription information. Pharmacy informa-

ticists work with pharmacy information manage-

ment systems that help the pharmacist make

excellent decisions about patient drug therapies

with respect to medical insurance records, drug

interactions, as well as prescription and patient

information. Pharmacy informatics is the study of

interactions between people, their work processes

and engineered systems within health care with

a focus on pharmaceutical care and improved

patient safety.

Key Applications
This field is characterized by the key aspects and appli-

cations, some of which are discussed in more detail

through cross-referenced encyclopedia entries:
� Systems and architectures for electronic medical

records.

� Health information systems used for billing, sched-

uling and other financial operations.

� Information systems used for biomedical and clin-

ical research.

� Decision support systems in healthcare, including

clinical decision support systems.

� Standards (e.g., DICOM, HL7) and integration

profiles (e.g., Integrating the Healthcare Enter-

prise) to facilitate the exchange of information

between healthcare information systems.

� Information Models such as the HL7/RIM and the

openEHR for storage and representation of clinical

data in a standardized manner.

� Controlled medical vocabularies (CMVs) such as the

Systematized Nomenclature of Medicine, Clinical

Terms (SNOMED CT), Logical Observation Identi-

fiers Names and Codes (LOINC), OpenGALEN

Common Reference Model or the highly complex

UMLS used to allow a standardized way of character-

izing medication, laboratory results, and clinical

findings.

� Use of hand-held or portable devices to assist pro-

viders with data entry/retrieval or medical deci-

sion-making, sometimes called mHealth.
Cross-references
▶Biomedical Data/Content Acquisition, Curation

▶Biomedical Image Data Types and Processing

▶Biomedical Scientific Textual Data Types and

Processing

▶Clinical Data Acquisition, Storage and Management

▶Clinical Data and Information Models

▶Clinical Data Quality and Validation

▶Clinical Decision Support

▶Clinical Document Architecture

▶Clinical Event

▶Clinical Knowledge Repository

▶Clinical Observation

▶Clinical Order

▶Computerized Physician Order Entry

▶Data Privacy and Patient Consent

▶Data, Text, and Web Mining in Healthcare

▶ Electronic Health Record

▶ Enterprise Terminology Services

▶ Evidence Based Medicine

▶ Executable Knowledge

Telic Distinction in Temporal Databases T 2911
▶ Implications of Genomics for Clinical Informatics

▶ Interface Engines in Healthcare

▶Quality and Trust of Information Content and

Credentialing

▶Reference Knowledge

▶ Storage Management

Recommended Reading
1. Biomedical Informatics, http://en.wikipedia.com/wiki/

Biomedical_informatics

2. Health Informatics, http://en.wikipedia.org/wiki/Health_

informatics

3. Shortliffe E.H. and Cimino J.J. eds. Biomedical Informatics:

Computer Applications in Health Care and Biomedicine, 3rd

edn. Springer, New York, 2006.
T

Telic Distinction in Temporal
Databases

VIJAY KHATRI
1, RICHARD T. SNODGRASS

2, PAOLO

TERENZIANI
3

1Indiana University, Bloomington, IN, USA
2University of Arizona, Tucson, AZ, USA
3University of Turin, Turin, Italy

Synonyms
Point-versus period-based semantics

Definition
In the context of temporal databases, telic (atelic) data

are used to store telic (atelic) facts, and the distinction

between telic and atelic data are drawn using the prop-

erties of downward and upward inheritance.

� Downward inheritance. The downward inheritance

property implies that one can infer from temporal

data d that holds at valid time t (where t is a time

period) that d holds in any sub-period (and sub-

point) of t.

� Upward inheritance. The upward inheritance prop-

erty implies that one can infer from temporal data

d that holds at two consecutive or overlapping time

periods t1 and t2 that d holds in the union time

period t1 [t2.

In temporal databases, the semantics of atelic data

implies that both downward and upward inheritance
holds; on the other hand, neither downward nor up-

ward inheritance holds for telic data.

Historical Background
The distinction between telic and atelic facts dates

back to Aristotle’s categories [2] and has had a deep

influence in the Western philosophical and linguistic

tradition. In particular, the distinction between differ-

ent classes of sentences (called aktionsart classes)

according to their linguistic behavior and temporal

properties is at the core of the modern linguistic tradi-

tion (consider, e.g., the milestone categorization by

Vendler [11]). For instance, the upward and downward

inheritance properties were used (without adopting

terminology, which is imported from Shoham [7]

and, more generally, from the artificial intelligence

tradition) by Dowty [4] in order to distinguish be-

tween Vendler’s accomplishments (telic facts) and

states along with processes (atelic facts). Starting

from the pioneering work by Bennet and Partee [3],

several linguistic approaches have pointed out that the

traditional point-based semantics, in which facts can

be evaluated at each time point, properly applies only

to atelic facts, while a period-based semantics is needed

in order to properly cope with telic facts. Starting from

Allen’s milestone approach [1], the telic/atelic dichoto-

my has also played a major role in the area of artificial

intelligence. In the field of temporal databases, the point-

based vs. period-based dichotomy was initially related

to representation and query evaluation issues (rather

than to data semantics); later the connection was made

between Aristotle’s categories and the telic/atelic data

semantics [9,10]. It is the emphasis on data semantics

that renders “telic” and “atelic” the preferred term.

Foundations
The distinction between telic and atelic data regards

the time when facts hold or occur, i.e., their valid time.

The following discussion focuses on the temporal

semantics of data and queries, independent of the rep-

resentation that is used for time. Moreover, while in

several database approaches the semantics of data is

not distinguished from the semantics of the query,

this presentation follows the logical tradition, stating

that data has its own semantics independently of

any query language and operators just in the same

way in which a knowledge base of logical formulæ

have their own semantics – usually expressed in

model-theoretic terms.

http://en.wikipedia.com/wiki/Biomedical_informatics
http://en.wikipedia.com/wiki/Biomedical_informatics
http://en.wikipedia.org/wiki/Health_informatics
http://en.wikipedia.org/wiki/Health_informatics

2912T Telic Distinction in Temporal Databases
Data Semantics

In the linguistic literature, most approaches classify

facts (or sentences describing facts) according to their

temporal properties. In particular, most approaches dis-

tinguish between telic and atelic facts, and prior research

(see, e.g., [3]) points out that, while the point-based

semantics is useful to cope with atelic facts, it is

not suitable for telic ones, for which a period-based

semantics is needed.

Point-based semantics of data: The data in a tempo-

ral relation is interpreted as a sequence of states (with

each state a conventional relation, i.e., a set of tuples)

indexed by points in time. Each state is independent

of every other state.

Such temporal relations can be encoded in many

different ways (data language). For example the

following are three different encodings of the same

information, within a point-based semantics, of John

being married to Mary in the states indexed by the

times 1, 2, 7, 8, and 9:

ðiÞ < John; Maryjjf1; 2; 7; 8; 9g >2 R

ðiiÞ < John; Maryjjf½1� 2�; ½7� 9�g >2 R

ðiiiÞ < John; Maryjj½1� 2� >2 R and

< John;Maryjj½7� 9� >2 R

Independently of the representation, the point-

based semantics implies that the fact denoted by

<John, Mary> includes 5 individual states as

follows:

1! f< John; Mary >g
2! f< John;Mary >g
7! f< John;Mary >g
8! f< John;Mary >g
9! f< John;Mary >g

Notice that the point-based semantics naturally

applies to atelic facts, since both downward and up-

ward inheritance are naturally supported.

Period-based semantics of data: Each tuple in a

temporal relation is associated with a multiset of time

periods, which are the temporal extents in which the

fact described by the tuple occur. In this case, time

periods are atomic primitive entities in the sense that

they cannot be decomposed. Note, however, that time

periods can overlap, unlike time points.
For example, let <John || {[10–20]}> represent the

fact that John started to build a house at time 10 and

finished at time 20. If a period-based semantics is

adopted, the period [10–20] is interpreted as an atomic

(indivisible) one.

½10; 20� ! f< John >g

Note that a period-based semantics does not imply

that John built the house in [12–15], or at the time

point 12, or at any other time period other than

[10–20]. As a consequence, the period-based semantics

is naturally suited to cope with telic facts, for which

(by definition) neither downward nor upward inheri-

tance hold.

Although several query and data representation

languages include time periods, most temporal data-

base approaches adopt, explicitly or implicitly, the

point-based semantics, interpreting a temporal data-

base as a set of conventional databases, each one hold-

ing at a specific snapshot of time. This is the approach

followed, e.g., by the Bitemporal Conceptual Data

Model (BCDM) [5], a model that has been proven to

capture the semantic core of many prior approaches in

the temporal database literature, including the TSQL2

“consensus” approach [8]. While point-based seman-

tics works perfectly when coping with atelic data, the

problem with using it to cope with telic fact is illu-

strated by the following example.
Example

Phone calls are durative telic facts. For instance, if John

made a call to Mary from time 10 to time 12, he didn’t

make it from 10 to 11. Similarly, two consecutive calls,

one from 10 to 12 (inclusive) and the other from 13 to

15 (inclusive), are clearly different from a single call

from 10 to 15. However, such a distinction cannot

be captured at the semantic level, if the point-based

semantics is used. In fact, the point-based semantics

for the two phone calls of John is as follows:

10! f< John;Mary >g
11! f< John;Mary >g
12! f< John;Mary >g

13! f< John;Mary >g
14! f< John;Mary >g
15! f< John;Mary >g

Telic Distinction in Temporal Databases T 2913

T

Based on point-semantics, there is no way of grasp-

ing that two different calls were made. In other words,

there is a loss of information. Note that such a loss of

information is completely independent of the repre-

sentation language used to model data. For instance,

the above example could be represented as

ðiÞ < John; Maryjjf10; 11; 12; 13; 14; 15g >2 R

ðiiÞ < John;Maryjjf½10� 12�; ½13� 15�gg >2 R

ðiiiÞ < John; Maryjj½10� 12� >2 R and

< John;Maryjj½13� 15� >2 R

But, as long as the point-based semantics is used, the

data semantics is the one elicited above.

On the other hand, independently of the represen-

tation formalism being chosen, the semantics of telic

facts such as phone calls is properly coped with if the

period-based semantics is used. For instance, in the

phone example, the semantics

½10� 12� ! f< John;Mary >g
½13� 15� ! f< John;Mary >g

correctly expresses the distinction between the two

consecutive phone calls.

In an analogous way, period-based semantics is not

suitable tomodel atelic facts. In short, both upward and

downward inheritance holds for them, and the period-

based semantics does not support such properties.

Terenziani and Snodgrass have proposed a two-

sorted data model, in which telic data can be stored

in telic relations (i.e., relations to be interpreted using

a period-based semantics) and atelic data in atelic

relations (i.e., relations to be interpreted using a

point-based semantics) [9].

Query Semantics

It is interesting that the loss of information due to the

treatment of telic data in a point-based (atelic) frame-

work is even more evident when queries are consid-

ered. Results of queries should depend only on the

data semantics, not on the data representation. For

instance, considering the phone example above (and

independently of the chosen representation), queries

about the number or duration of phone calls would

not provide the desired answers. For instance, the

number of calls from John to Mary would be one,

and a call from John to Mary would (incorrectly) be
provided to a query asking for calls lasting for at least

five consecutive units.

In order to cope with a data model supporting both

telic and atelic relations, temporal query languages must

be extended. Specifically, queries must cope with atelic

relations, telic relations, or a combination of both.

Furthermore, linguistic research suggests a further

requirement for telic/atelic query languages: flexibility.

It is widely accepted within the linguistic community

that while basic facts can be classified as telic or atelic,

natural languages provides several ways to switch be-

tween the two classes. For instance, given a telic fact

(such as “John built a house”), the progressive form

(e.g., “John was building a house”) coerces it into an

atelic one, stripping away the culmination (and, in fact,

“John was building a house” does not imply that “John

built a house,” i.e., that he finished it) [6]. For the sake

of expressiveness, it is desirable that a database query

language provides the same flexibility.

Queries About Atelic Data

As already mentioned above, most database approaches

are interpreted (implicitly or explicitly) on the basis of

the point-based semantics. Therefore, the corresponding

algebraic operators already cope with atelic data. As an

example, in BCDM, the union of two relations is simply

obtained by taking the tuples of both relations, and

“merging” the valid time of value equivalent tuples

performing the union of the time points in their valid

time. This definition is perfectly consistent with the

“snapshot-by-snapshot” view enforced by the underly-

ing point-based (atelic) semantics.

However, the algebrae in the literature also contain

operators which contrast with such a “snapshot-by-

snapshot” underlying semantics. Typical examples are

temporal selection operators. For instance, whenever a

duration is asked for (e.g., “retrieve all persons married

for at least n consecutive time units”), the query

implicitly relies on a telic view of data, in which snap-

shots are not taken into account independently of

each others.

Queries About Telic Data

Algebraic operators on telic data can be easily defined

by paralleling the atelic definitions, and considering

that, in the telic case, the basic temporal primitives

are not time points, but time periods [9]. For instance,

telic union is similar to atelic one, except that the

2914T Telos
merging of valid times of value-equivalent tuples is

performed by making the union of multisets of time

periods, considered as primitive entities, e.g.,

f½10� 12�; ½13� 15�g [f½10� 14�; ½13� 18�g
¼ f½10� 12�; ½13� 15�; ½10� 14�; ½13� 18�g

Note that temporal selection operators perfectly fit

with the telic environment. On the other hand, alge-

braic operators that intuitively involve a snapshot-by-

snapshot view of data (e.g., Cartesian product, involv-

ing a snapshot-by-snapshot intersection between valid

times) have an awkward interpretation in the telic

context; for this reason, difference and “standard”

Cartesian product have not been defined in the telic

algebra in [9].
Queries Combining Telic and Atelic Data

In general, if a two-sorted data model is used, queries

combining relations of both kinds are needed. In gen-

eral, such queries involve the (explicit or implicit)

coercion of some of the relations, to make the sort of

the relations consistent with the types of the operators

being used. For instance, the following query utilizes

the example atelic relation modeling marriages and the

telic one considering phone calls: Who was being

married when John was calling Mary?

In such a case, the English clause “when” demands

for an atelic interpretation: the result can be obtained

by first coercing the relation about phone calls into an

atelic relation, and then by getting the temporal inter-

section through the application of the atelic Cartesian

product.

On the other hand, the query “list the marriage

ceremonies that had a duration of more than 3

hours” requires a coercion of marriages into a telic

relation, so that the whole valid time is considered as

(a set of) time periods (instead as a set of independent

points, as in the atelic interpretation), and the telic

temporal selection operator can be applied.

In general, two coercion operators need to be pro-

vided [9]. Coercion from telic to atelic is easy: each

timeperiod constituting the (semantics of the) valid time

is converted into the set of time points it contains,

e.g., to-atelic({[10–12],[13–15]}) = {10,11,12,13,14,15}.

Of course, since multisets of time periods are more

expressive than sets of time points, such a conver-

sion causes a loss of information. On the other

hand, coercion from atelic to telic demands the

formation of time periods out of sets of points: the
output is the set of maximal convex time periods

exactly covering the input set of time points, e.g.,

to-telic({10,11,12,13,14, 15}) = {[10–15]}.

Key Applications
Most applications involve differentiating between telic

and atelic data.

Cross-references
▶Atelic Data

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Temporal Query Languages

Recommended Reading
1. Allen J.F. Towards a general theory of action and time. Artif.

Intell., 23:123–154, 1984.

2. Aristotle. The Categories, on Interpretation. Prior Analytics.

Harvard University Press, Cambridge, MA, 1938.

3. Bennet M. and Partee B. Tense and Discourse Location in

Situation Semantics. Indiana University Linguistics Club,

Bloomington, 1978.

4. Dowty D. The effects of the aspectual class on the temporal

structure of discourse, tense and aspect in discourse. Linguist.

Philos., 9(1):37–61, 1986.

5. Jensen C.S. and Snodgrass R.T. Semantics of time-varying

Iinformation. Inf. Syst., 21(4):311–352, 1996.

6. Moens M. and Steedman M. Temporal ontology and temporal

reference. Comput. Linguist., 14(2):15–28, 1998.

7. Shoham Y. Temporal logics in AI: semantical and ontological

considerations. Artif. Intell., 33:89–104, 1987.

8. Snodgrass R.T. (ed.). The Temporal Query Language TSQL2.

Kluwer, Norwell, MA, 1995.

9. Terenziani P. and Snodgrass R.T. Reconciling point-based and

interval-based semantics in temporal relational databases: a

proper treatment of the Telic/Atelic distinction. IEEE Trans.

Knowl. Data Eng., 16(4):540–551, 2004.

10. Terenziani P., Snodgrass R.T., Bottrighi A., Torchio M., and

Molino G. Extending temporal databases to deal with Telic/

Atelic medical data. Artif. Intell. Med., 39(2):113–126, 2007.

11. Vendler Z. Verbs and times. In Linguistics in Philosophy. Cornell

University Press, New York, NY, 1967, pp. 97–121.
Telos

MANOLIS KOUBARAKIS

University of Athens, Athens, Greece

Definition
Telos (From the Greek word t�loςτΘ which means

end; the object aimed at in an effort; purpose.) is a

Telos T 2915

T

knowledge representation language designed especially

to support the development of information systems.

Telos is based on the premise that information system

development is knowledge-intensive and that the main

design goal of any language intended for the task

should be to formally represent the relevant knowledge.

Telos is founded on core concepts from data modeling

and knowledge representation, and shares ideas with

semantic networks and frame systems, semantic and

object-oriented data models, logic programming and

deductive databases. The main features of Telos include:

a structurally object-oriented frameworkwhich supports

aggregation, generalization and classification; a novel

treatment of attributes as first class citizens in the lan-

guage; a powerful way of defining meta-classes; an ex-

plicit representation of time; and facilities for specifying

integrity constraints and deductive rules.

Historical Background
The research on Telos follows the paradigm of a num-

ber of software engineering projects initiated around

the 1990s with the premise that software development

is knowledge-intensive and that the primary responsi-

bility of any language intended to support this task is

to be able to formally represent the relevant knowledge.

Thus, Telos was designed as a knowledge representa-

tion language that is intended to support software

engineers in the development of information systems

throughout the software lifecycle.

Telos has evolved from RML (a requirements mod-

eling language developed in Sol Greenspan’s Ph.D. the-

sis), and later CML (presented in the Master thesis of

Martin Stanley at the University of Toronto). The main

difference between RML and CML is that CML adopts a

more sophisticated model for representing knowledge,

and supports the representation of temporal knowledge

and the definition of meta-classes. Telos is essentially a

“cleaned-up” and improved version of CML which was

originally defined and implemented in the Master thesis

of Manolis Koubarakis at the University of Toronto. The

original paper on Telos is [7]. Ontological and semanti-

cal issues for Telos are discussed in [10]. The history of

knowledge representation languages for information

systems development related to Telos is surveyed in

[3]. An important dialect of Telos is O-Telos defined

in the Ph.D. thesis of Manfred Jeusfeld at the University

of Passau, and implemented in the ConceptBase system

[4]. Since ConceptBase is the most mature implementa-

tion of Telos available today, this entry uses the

ConceptBase syntax for Telos.
Foundations
The main (and essentially the only) concept of Telos

is the proposition. Propositions are used to model any

aspect of the application domain. Propositions have

unique identities and are distinguished into individuals

and attributes. Individuals are intended to represent

entities in the application domain (concrete ones

such as John Doe, or abstract ones such as the class

of all persons). Attributes represent binary relation-

ships between entities (concrete or abstract). Two

special kinds of attribute propositions exist: instan-

tiation propositions and specialization propositions.

The proposition abstraction gives great flexibility to

Telos users. Everything in the application domain that

is represented by a proposition (e.g., an entity or a

relationship) immediately becomes a first-class citizen

of the knowledge base.

Propositions

Every proposition p consists of an identifier, a source,

a label and a destination, denoted by the functions

id(p), from(p), label(p) and to(p). For exam-

ple, the following are propositions:

P1: [. . ., Martin, . . .]

P2: [. . ., "21 Elm Avenue," . . .]

P3: [Martin, homeAddress, "21 Elm

Avenue"]

P4: [. . ., Person, . . .]

P5: [. . ., GeographicLocation, . . .]

P6: [Person, address,

GeographicLocation]

Propositions in Telos are what objects are in object-

oriented formalisms but also what statements are in

logic-based formalisms. Thus, an application can use

the above propositions to represent the following

pieces of knowledge:

� P1: There is somebody called Martin.

� P2: There is something called “21 Elm Avenue.”

� P3: Martin lives in 21, Elm Avenue.

� P4: There is an abstract concept, the class of all

persons.

� P5: There is an abstract concept, the class of all

geographic locations.

� P6: Persons have addresses that are geographic

locations.

P1, P2, P4 and P5 are individual propositions

while P3 and P6 are attribute propositions. The

source and destination components of an individual

2916T Telos
proposition are not important, thus they are shown

as “. . .”. Notice that while P1 and P2 represent concr-

ete individuals, P4 represents an abstract one, the

class of all persons. Similarly, P3 represents a concr-

ete relationship (relating Martin with his address)

while P6 represents an abstract one (relating the

class of all persons with the class of all geographic

locations).

Following are some examples of special

propositions:

P7: [P1, *instanceOf, P4]

P8: [P3, *instanceOf, P6]

P9: [. . ., Employee, . . .]

P10:[P9, *isA, P4]

P7 and P8 are instantiation propositions. P7 represents

the fact that Martin is a member of the class of all

persons. P8 represents the fact that the concrete rela-

tionship relating Martin with his address is an instance

of the abstract relationship relating the class of all

persons with the class of all geographic locations. Fi-

nally, P10 is a specialization proposition asserting that

every employee is a person.

A graphical view of some of the above propositions

is given in Fig. 1.

Organizing Propositions

Propositions (individual or attribute ones) can be

organized along three dimensions: decomposition/

aggregation, instantiation/classification and specializa-

tion/generalization.
Telos. Figure 1. A graphical view of a set of Telos propositio
The aggregation dimension enables one to see an

entity of the application domain as a collection of

propositions with a common proposition as source.

For example, individual Martin can be seen to be the

following aggregation:

{Martin,

[Martin, age, 35],

[Martin, homeAddress, "21 Elm

Avenue"],

[Martin, workAddress, "10 King’s

College Road"] }

The classification dimension calls for each proposition

to be an instance of one or more generic propositions

or classes. Classes are themselves propositions, and

therefore instances of other, more abstract classes. For

example, Person is a class and Martin is an instance

of this class. Similarly,

[Person, address, GeographicLocation]

is a class and

[Martin, homeAddress, "21 Elm Avenue"]

is an instance of this class.

With respect to the classification dimension, pro-

positions can be distinguished into:

� Tokens: propositions having no instances and

intended to represent concrete entities in the appli-

cation domain.

� Simple classes: propositions having only tokens as

instances.
ns.

Telos T 2917

T

� Meta-classes: propositions having only simple

classes as instances.

� Meta-meta-classes: propositions having only meta-

classes as instances.

� . . .

Thus, classification in Telos defines an unbounded linear

order of planes of ever more abstract propositions.

Implementations restrict this unbounded hierarchy

(e.g., ConceptBase restricts it to four levels: tokens to

meta-meta-classes). There are also o-classes with

instances along more than one plane:

� Proposition. Contains all propositions as

instances.

� Class. Contains all classes as instances.

� Token. Contains those individuals that may never

have instances themselves.

� SimpleClass. Contains individuals that may have

instances which are tokens.

� MetaClass. Contains individuals that may have

simple classes as instances.

� MetametaClass. Contains individuals that may

have meta-classes as instances.

� . . .

Classification in Telos is a form of weak typing:

the classes of which a structured object is an instance

determine the kinds of attributes it can have optionally,

and the properties it must satisfy. For example, by

virtue of being an instance of Person, Martin

can have attributes that are instances of the attribute

class

[Person,address,GeographicLocation].

These zero or more attributes can have arbitrary labels,

e.g., homeAddress and workAddress, but their

values must be instances of GeographicLocation.

Finally, classes in Telos can be specialized along gener-

alization or ISA hierarchies. For example, Person

may have subclasses such as Professor, Student,

and TeachingAssistant. Classes may form a par-

tial order, rather than a tree (i.e., multiple inheritance is

supported). Non-token attributes of a class are inherited

by more specialized ones and can be refined. Inheritance

in Telos is strict rather than default.
Interacting with Telos Knowledge Bases

A few examples of Telos are now given. The example

application considered is the development of an
information system to support organizing internation-

al scientific conferences. The knowledge to be repre-

sented in this case is about entities such as papers,

authors, conferences etc.

The original definition of Telos in [7] defines the

operations TELL, UNTELL, RETELL and ASK for

interacting with a Telos knowledge base. These opera-

tions can be used to add new knowledge, discard

existing knowledge, update existing knowledge and

query a knowledge base, respectively. Implementations

such as ConceptBase have followed the original

definition and offer these (and other) operations.

The above operations have Telos statements such as

the following as their means of interaction with a

knowledge base:

Individual p133 in Token, Paper with

author

firstAuthor: Stanley;

secondAuthor: LaSalle;

thirdAuthor: Wong

title

called: "The language Telos"

end

The above statement introduces an individual with

name p133. The in clause specifies the classes

of which p133 is an instance (in this case, the prede-

fined class Token and the application class Paper).

The with clause introduces p133’s attributes. The first

attribute of p133 has label firstAuthor and is

an instance of an attribute class which has source

Paper and label author (the latter is deno-

ted by the attribute category author). Before introdu-

cing individual paper p133, one might have

defined the class of all papers using the following

statement:

Individual Paper in SimpleClass with

attribute

author: Person;

referee: Person;

title: String;

pages: Integer

end

A class definition prescribes the attributes that can

be associated with its instances: p133 can have

author, referee, title and page attributes

as seen previously, because it is an instance of class

Paper that has these attribute classes. Moreover,

2918T Telos
[p133,firstAuthor,Stanley]

is an instance of attribute class

[Paper,author,Person]

in exactly the same sense that p133 is an instance of

Paper.

Once Paper has been defined, one can introduce

specializations such as InvitedPaper using the isA

clause of class definitions:

Individual AcceptedPaper in

SimpleClass isA Paper with

attribute

session: ConfProgrammeSession

end

AcceptedPaper inherits all attributes from Paper

and adds a session attribute, to indicate the

programme session during which the accepted paper

will be presented.

Metaclasses

Metaclasses are a very powerful concept for modeling

power and extensibility in Telos. It is the metaclass

mechanism combined with its other features that

makes Telos a powerful modeling language (one might

wonder about this, since Telos offers only very simple

primitives). From a modeling point of view, one can use

Telos metaclasses in the following situations:

� To define concrete attributes of classes e.g., cardi-

nality of a class. This is exactly the same to what a

simple class does for its instances (tokens).

� To group together semantically similar classes of a

domain in a generic way. For example, in the conf-

erence organization example, the classes Paper,

Announcement, Letter, Memo could be grou-

ped under the metaclass DocumentClass.

� To define concepts that are built-in in other frame-

works e.g., necessary attributes, single-valued attri-

butes etc.

� To do other forms of meta-level logical reasoning

(again, for language expressibility).

The conference organization example is now revisited

and defined:

DocumentClass in MetaClass with

attribute

source: AgentClass;

content: SimpleClass;
destination: AgentClass;

cardinality: Integer

end

The class Paper can now be defined as follows:

Paper in DocumentClass with

source

author: Person;

content

title: String;

abstract: String

cardinality

how_many: 120

end

Note that attribute categories such as source intro-

duced in metaclass DocumentClass are then used to

define attributes for the instance class Paper (this

mechanism is the same along the instantiation

hierarchy).

Integrity Constraints and Deductive Rules

Telos borrows the notions of integrity constraints

and deductive rules from logic-based formalisms such

as deductive databases. Integrity constraints are formu-

las that express conditions that knowledge bases

should satisfy. They are used to express rich language

or application semantics that cannot possibly be

expressed only by the structural framework of Telos.

Deductive rules are formulas that can be used to derive

new knowledge. Integrity constraints and deductive

rules in Telos are expressed in appropriately defined

assertional languages that are subsets of first-order

logic [4,7].

Integrity constraints and rules are defined as attri-

butes of Telos classes that are instances of the built-in

object Class. For example, the following Telos state-

ment defines well-understood constraints and rules

regarding employees, their managers and their respec-

tive salaries.

Class Employee with

rule

BossRule: $ forall e/Employee

m/Manager(exists d/Department

(e dept d) and (d head m))

==> (e boss m) $

constraint

SalaryBound: $ forall e/Employee

b/Manager x,y/Integer(e boss b)

Telos T 2919

T

and (e salary x) and (b salary y)

==> x <= y $

end

Language Extensibility Through Metaclasses and

Integrity Constraints

In Telos, one can use integrity constraints together with

the metaclass mechanism to define concepts that are

built-in in other representational frameworks. For

example, in many object-oriented models one can

constrain an attribute to be single-valued using some

built-in construct of the model. In Telos, one can do this

by using only the primitive mechanisms of the language

as follows. First, one defines the class Single: (The

syntax of this statement is from the original paper of

Telos [7] (O-Telos allows one to specify the same thing

in a slightly more complex way).)

Class Single

components [Class, single, Class]

in AttributeClass, MetaClass with

integrityConstraint

: $ forall u/Single

p,q/Proposition(p in u) and

(q in u) and from(p)=from(q)

==> p=q $

end

Then, one uses attribute class Single in the definition

of class Paper:

Individual Paper in SimpleClass with

attribute

author: Person;

referee: Person

single

title: String;

pages: Integer

end

Now in every instance of Paper, a title attribute is

constrained to be single-valued due to the integrity

constrain and the instantiation relationships intro-

duced by the above Telos statements.

Query Languages for Telos

The papers [4,7,11] give various query languages

for Telos knowledge bases ranging from ones based

purely on first-order logic [7] to ones exploiting the

structurally object-oriented features of the language as

well [4,11].
The paper [8] presents work on a knowledge base

management system based on Telos.

Temporal Knowledge in Telos

The original paper of Telos [7] presents a powerful

framework for representing and reasoning about tem-

poral knowledge. In Telos, the history of an application

domain is modeled by augmenting propositions with a

history time i.e., an interval representing the time dur-

ing which these facts are true in the application do-

main. Historical knowledge in Telos is allowed to be

incomplete and a modification of Allen’s interval alge-

bra [1] is used to capture the relevant knowledge.

A knowledge base records essentially the beliefs of

the system, which may be distinct from the actual state

of the world at that time. So, for example, the title of

a paper might have been changed in March, but the

knowledge base is only told of it in May. Or one may

make a correction to some previously told fact. Just

like it represents the full history of an application

domain, Telos also records the full history of its beliefs.

For this reason, Telos represents belief times; these are

intervals associated with every proposition in the

knowledge base, which commence at the time when

the operation responsible for the creation of the

corresponding proposition was committed.

For efficiency reasons, implementations of Telos

such as ConceptBase [4] have restricted the kinds of

temporal knowledge that can be represented.

Telos and RDF

Telos is probably the pre-Web knowledge representa-

tion language most closely related to the Resource De-

scription Framework (RDF) and the RDF Vocabulary

Description Language or RDF Schema proposed by the

W3C for representing knowledge about Web resources

(see e.g., http://www.w3.org/TR/rdf-primer/). This re-

lationship has been exploited by the prominent RDF

query language RQL defined by ICS-FORTH [6] but

also in the O-Telos-RDF proposal [9].

Key Applications
Telos was designed as a knowledge representation lan-

guage that is intended to support software engineers in

the development of information systems throughout

the software lifecycle [7]. The strengths of the language

made it the choice of many prominent research pro-

jects in Europe and North America including DAIDA

[5], ITHACA [2] and others.

http://www.w3.org/TR/rdf-primer/

2920T Temporal Access Control
URL to Code
The most mature implementation of Telos is the Con-

ceptBase system available at http://conceptbase.cc/.

Cross-references
▶Meta Model

▶Object Data Models

▶RDF Schema

▶ Semantic Data Models

Recommended Reading
1. Allen J. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

2. Constantopoulos P., Jarke M., Mylopoulos J., and Vassiliou Y.

The software information base: A server for reuse. VLDB J.,

4(1):1–43, 1995.

3. Greenspan S.J., Mylopoulos J., and Borgida A. On formal

requirements modeling languages: RML revisited. In Proc.

16th Int. Conf. on Software Eng., 1994, pp. 135–147.

4. Jarke M., Gallersdörfer R., Jeusfeld M.A., and Staudt M.

ConceptBase – A deductive object base for meta data manage-

ment. J. Intell. Inf. Syst., 4(2):167–192, 1995.

5. Jarke M., Mylopoulos J., Schmidt J.W., and Vassiliou Y. DAIDA:

An environment for evolving information systems. ACM Trans.

Inf. Syst., 10(1):1–50, 1992.

6. Karvounarakis G., Alexaki S., Christophides V., Plexousakis D.,

and Scholl M. RQL: A declarative query language for RDF. In

Proc. 11th Int. World Wide Web Conference, 2002.

7. Mylopoulos J., Borgida A., Jarke M., and Koubarakis M. Telos: A

language for representing knowledge about information sys-

tems. ACM Trans. Inf. Syst., 8(4):325–362, 1990.

8. Mylopoulos J., Chaudhri V.K., Plexousakis D., Shrufi A., and

Topaloglou T. Building knowledge base management systems.

VLDB J., 5(4):238–263, 1996.

9. Nejdl W., Dhraief H., and Wolpers M. O-Telos-RDF: A resource

description format with enhanced meta-modeling functionalities

based on O-Telos. In Proc. Workshop on Knowledge Markup and

Semantic Annotation at the 1st Int. Conf. on Knowledge Capture,

2001.

10. Plexousakis D. Semantical and ontological consideration in

Telos: A language for knowledge representation. Comput. Intell.,

9:41–72, 1993.

11. Staudt M., Nissen H.W., and Jeusfeld M.A. Query by class, rule

and concept. Appl. Intell., 4(2):133–156, 1994.
Temporal Access Control

YUE ZHANG, JAMES B. D. JOSHI

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
Time-based access control
Definition
Temporal access control refers to access control service

that restricts granting of authorization based on time.

The authorization may be given to a subject for a

particular interval or duration of time or based on

the temporal characteristics of the objects being acces-

sed. Such a need arises from the fact that a subject’s

need to access a resource and the sensitivity (and

hence the protection requirement) of the objects

being accessed may change with time.

Historical Background
Work related to temporal access control has only a brief

history and goes back to early 1990s. In many real-

world situations, access to information and resources

may have to be restricted based on time as the subject

and object characteristics may change and so can the

need for the subject to access the object. For example, in

a hospital, the head of the hospital may need to grant

the permissions related to a part-time doctor only

during certain time intervals. Similarly, an external

auditor may need to be given access to sensitive com-

pany data for a specific duration only.

Bertino et al.’s Temporal Authorization Model

(TAM) is the first known access control model to

support the time-based access control requirements

in a discretionary access control (DAC) model [2].

TAM associates a periodicity constraint with each au-

thorization indicating the valid time instants of the

authorization. TAM also defines three derivation

rules that allow an authorization to be derived based

on another authorization. The TAM model, however,

is limited to specifying the temporal interval for an

entire authorization and does not consider the tempo-

ral characteristics of data/objects [1]. For example,

there may be a need for be an authorization such as

“a subject s is allowed to read object o one month after

it has been created/written.” Furthermore, the states of

an object can change with time and access to such

different object-states may need to be carefully speci-

fied. Atluri et al. propose a Temporal and Derived Data

Authorization Model (TDAM) for a Web information

portal [1]. An information portal mainly aims to pro-

vide access to data from different sources and hence the

temporal characteristics of such data need to be prop-

erly captured in an access control policy [1]. TDAM

uses a logic formula to capture time-related conditions

to specify authorization rules and address the consis-

tency issues.

http://conceptbase.cc/

Temporal Access Control T 2921

T

Another significant work related to temporal access

control can be seen within the context of the Role

Based Access Control (RBAC) model. Bertino et al.

proposed the Temporal Role Based Access Control

Model (TRBAC) model by extending the existing

RBAC model [3]. The TRBAC model supports the

periodicity/interval constraints on the role enabling/

disabling and uses triggers to define dependencies that

may exist among basic role related events such as

“enable role” and “disable role.”

One limitation of the TRBAC model is that it only

supports specification of a set of temporal intervals

on the role enabling/disabling events. For example,

the user-role and the role-permission assignments are

not time-constrained in TRBAC, neither are the role

activations. Joshi et al. proposed a General Temporal

RBAC (GTRBAC) model to allow specification of

more fine-grained temporal access control policies [5].

The GTRBAC model allows the interval and duration

constraints on user-role assignment, role-permission

assignment, and role enabling events. It also defines

the duration and cardinality constraints on role activa-

tion. GTRBAC uses constraint enabling events to trig-

ger the duration constraints and uses run-time requests

to allow dynamic changes in the authorization states by

administrators and users. GTRBAC uses triggers, first

introduced in the TRBACmodel, to support the depen-

dencies among events. The other features of the

GTRBAC include the temporal hybrid hierarchy and

Separation of Duty (SoD) constraints.

More recently, work on access control approaches

based on the location context and the integration of

temporal and location based access control has

emerged. Such work includes the GEO-RBAC model,

the spatial-temporal access control model [4], the

spatial-temporal RBAC model [7], the LRBAC model

[6], and the location and time-based RBAC (LoT-

RBAC) model.

Foundations
In this section, the existing time-based access control

models mentioned above are reviewed in more detail,

namely TAM, TDAM, the TRBAC model, and the

GTRBAC model. The major features of each model

are discussed below.

TAM: Temporal Authorization Model

TAM models the temporal context as a periodicity

constraint. A periodicity constraint is of the form
<[begin, end], P>; here, P represents a recurring set

of intervals and the entire expression indicates every

time instant in P between “begin” and “end.” For

example, “[1/1/1994, 1], Monday” indicates every

Monday starting 1/1/1994. The model uses the symbol

∞ in place of P to indicate all time instants. The

temporal authorization in TAM associates such a peri-

odicity constraint with a normal discretionary autho-

rization. The authorization is valid at any time instant

specified in the periodicity constraint. At any given

time instant, if there are two authorization rules that

try to grant and deny an operation on the same object,

a conflict is said to occur. In such a case, the model uses

the “denials-take-precedence” principle to favor nega-

tive authorizations.

It is possible that several authorizations have tem-

poral dependencies among them. For example, suppose

user u1 grants a permission p to u2 (authorization A1),

and u2 further grants p to u3 (authorization A2). It is

easy to see that A2 can only be valid after A1 becomes

valid. Therefore, a requirement such as “u2 is allowed

to grant p to u3 whenever he/she acquires p from u1,”

can be specified as a derivation rule “A2 WHENEVER

A1.” TAM uses three such derivation rules to capture

various relationships among different authorizations.

The derivation rules are of the form “[begin, end], P,

A <op>, A”, where, A is an authorization, A is a

boolean expression on authorizations, and <op> is

one of the following: WHENEVER, ASLONGAS,

UPON. A is true at time instant t, if A evaluates to

true by substituting each authorization in it by true if

it is valid at t, and by false if not valid. For example,

A = ¬ (A1 and A2) is true at time t if either or both of

A1 and A2 is false at time t. ([begin, end], P, AWHEN-

EVER A) specifies that one can derive A for each

instant in P(P)\{[tb, te]} (here, P(P) is the set of all

time instants in P) for which A is valid. ([begin, end], P,

A ASLONGAS A) specifies that one can derive A for

each instant in P(P)\{[tb, te]} such that A is valid

for each time instant in P(P) that is greater than or

equal to tb and lesser than or equal to te. ([begin, end],

P, A UPON A) specifies that A holds true for each

instants in P(P)\{[tb, te]} if there exists an instant

t’eP(P) that is greater than or equal to tb and lesser

than or equal to te such that A is valid at time t’ in. The

difference between WHENEVER and ASLONGAS is

that the former only evaluates the authorization state

for a time instant while the latter evaluates the history

of the authorization states in a given time interval. The

2922T Temporal Access Control
difference between ASLONGAS and UPON is that the

former evaluates the authorization state for the entire

time interval in the history while the latter only evaluates

the authorization states at a time instant in the history.

Given a set of initial authorizations and rules, the

derived authorizations may depend on the order in

which the rules are evaluated. This is due to the exis-

tence of both positive and negative authorizations and

the denials-take-precedence rule. To analyze this prob-

lem, the authors define the unique set of valid author-

izations using the notion of critical set and propose

a Critical Set Detection (CSD) algorithm to verify that

a given set is critical [2].

TDAM: Temporal and Derived data Authorization Model

The TDAM model, as mentioned earlier, focuses on

the temporal characteristics of data/objects. This is

achieved by associating a formula t instead of a sim-

ple temporal interval to each authorization. At any

time instant, if t is evaluated to be true, then the

corresponding authorization is valid. By carefully

designing the formula t, the model can support speci-

fication of a fine-grained temporal access control poli-

cy. It is possible to use the temporal context of a single

data item by making it a variable in t. For example,

assume a company maintains a database including the

current and future predicted price for some goods;

now, let each price of a data item d be associated with

a time interval [tb, te] to indicate the temporal interval

the specified price is predicted for. It is also possible to

restrict a subject to read the current price only by

specifying t as “tb� t �te” where t is the current time.

Similarly, the temporal dependency can also be indi-

cated by t. For example, consider the policy “a subject

s is allowed to read object o one month after it has

been created/written.” Such a requirement can be spe-

cified by including t as “t � tw + 1 month” where tw
indicates the time when the object o is created/written

and t is the current time.

TRBAC: Temporal Role Based Access Control Model

The TRBACmodel allows the specification of temporal

constraints to specify when a role can be enabled or

disabled, and triggers to capture possible temporal

dependencies among role events. The TRBAC model

also uses periodic time expression instead of simple

time interval to represent the periodicity constraint. In

RBAC, the users can acquire the permissions only by

activating enabled roles within a session; the model
associates the periodic time expressions with role

enabling/disabling events to define periodicity

constraints.

Triggers constitute an important part of the TRBAC

model, and they are used to capture temporal depen-

dencies among RBAC authorization states. A trigger

simply specifies that if some events occur and/or some

role status predicates are evaluated to true then another

event can occur, with a possible time delay. For exam-

ple, assume that a hospital requires that when a part-

time doctor is on duty a part-time nurse can also be

allowed to log on to help the part-time doctor. Here,

the trigger “enable part-time doctor! enable part-time

nurse” can be used to capture such a requirement.

Bertino et al. introduces a soft notion of safety to

formally characterize the efficiency and practicality

of the model. In essence, because of triggers and

other periodicity constraints, ambiguous semantics

can be generated. They propose an efficient graph

based analysis technique to identify such ambiguous

policies so that a unique execution model can be

guaranteed by eliminating any ambiguous specifi-

cation. When such a unique execution model is

ensured the policy base is said to be safe. Conflicts

could also occur because of the opposing enable and

disable role events. The TRBAC model uses denial-

takes-precedence in conjunction with priority to resolve

such conflicts.

GTRBAC: Generalized Temporal Role Based Access

Control Model

Joshi et al. have proposed the GTRBAC model by

extending the TRBAC model to incorporate more

comprehensive set of periodicity and duration con-

straints and time-based activation constraints. The

GTRBAC model introduces the separate notion of

role enabling and role activation, and introduces role

states. An enabled role indicates that a valid user can

activate it, whereas a disabled role indicates that the

role is not available for use. A role in active state

indicates that at least one user has activated it. Such a

distinction makes the semantics and implementation

of any RBAC compatible system much clearer. Besides

events related to user-role assignment, permission-role

assignment and role enabling, the GTRBAC model

also includes role activation/deactivation events. The

model associates the temporal constraints with every

possible event in the system. In particular, it uses the

periodicity constraint to constrain the validity of role

Temporal Access Control T 2923

T

enabling events, user-role assignment events as well

as the permission-role assignment events. As the role

activation events are initiated by the users at their

discretion, GTRBAC does not associate temporal

constraints with activation events. Besides the periodic

temporal constraints, GTRBAC also supports duration

constraints. A duration constraint specifies how long

should an event be valid for once it occurs. For

example, one duration constraint could specify that

once a role r has been enabled it should be in the

enabled state for 2 hours. Note that the duration

constraint has a non-deterministic start time and

requires some other actions to initiate the start of the

duration. For example, consider a duration constraint

(2 hours, enable r). Here, when the “enable r” event

occurs because of a trigger, the event becomes valid for

2 hours because of this constraint. At times, one

may need to also enable duration or activation

constraints – GTRBAC uses constraint enabling events

to facilitate that.

The GTRBACmodel also supports the temporal and

cardinality constraints on role activation. Cardinality

constraints have often been mentioned in the litera-

ture but have not been addressed much in the existing

models. A cardinality constraint simply limits the num-

ber of activations (applies for assignments aswell) within

a given period of time. For example, GTRBAC supports

limiting the total number of activations of a role or

the maximum concurrent number of activations of

a role in a given interval or duration. Furthermore,

GTRBAC allows the activation constraint to be applied

to all the activations of a role (per-role constraint) or

applied to each activation of a role by a particular user

(per-user constraint). The model uses the trigger frame-

work introduced in the TRBAC model. In addition

to these, the GTRBAC model also extends work on

role hierarchy and constraints, and introduces hybrid

hierarchy and time-based SoD constraints.

The GTRBAC model uses three conflict types

(Type-1, Type-2, and Type-3) to categorize the differ-

ent types of conflicting situations that may arise

and provides a resolution technique using a combina-

tion of the following approaches: (i) priority-based,

(ii) denial-takes precedence, and (iii) more specific

constraint takes precedence.

Suroop et al. have recently proposed the LoTRBAC

model by extending the GTRBAC model to address

both time and location for security of mobile

applications.
Key Applications
Temporal access control models are suitable for the

applications where temporal constraints and temporal

dependencies among authorizations are important

protection requirements. One example is workflow

systems that often have timing constraints on tasks

and their dependencies. In particular, TAM is suitable

for the system implementing the discretionary access

control policies. TDAM is suitable for access control

for data dissemination systems such as a web informa-

tion portal where data have different states at different

times. TRBAC and GTRBAC are suitable for large scale

systems that have very fine-grained time-based access

requirements.
Future Directions
With the development of networking and mobile tech-

nologies, context based access control is becoming

very crucial. Time is very crucial context information,

as is location. Hence, the work on temporal access

control have provided a basis for looking at the intri-

cacies of the context parameters that need to be used

to restrict authorization decisions. In addition to

context-based access, content-based access control is

also becoming significant issues because of the grow-

ing need to dynamically identify content and make

authorization decisions based on its semantics. Again,

the work on temporal access control has provided

a basis for capture the dynamic feature of the object

content. Authorization models that capture context

and content parameters using temporal access control

are being pursued to develop more fine-grained access

control models.
Cross-references
▶Role Based Access Control

Recommended Reading
1. Atluri V. and Gal A. An authorization model for temporal and

derived data: securing information portals. ACMTrans. Inf. Syst.

Secur., 5(1):62–94, 2002.

2. Bertino E., Bettini C., Ferrari E., and Samarati P. An

access control model supporting periodicity constraints and

temporal reasoning. ACM Trans. Database Syst., 23(3):

231–285, 1998.

3. Bertino E., Bonatti P.A., and Ferrari E. TRBAC: a temporal role-

based access control model. ACM Trans. Inf. Syst. Secur.,

4(3):191–233, 2001.

4. Fu S. and Xu C.-Z. A coordinated spatio-temporal access control

model for mobile computing in coalition environments. In Proc.

2924T Temporal Aggregation
19th IEEE Int. Parallel and Distributed Processing Sym. – Work-

shop 17, vol. 18, 2005, p.289.2.

5. Joshi J.B.D., Bertino E., Latif U., and Ghafoor A. A generalized

temporal role-based access control model. IEEE Trans. Knowl.

Data Eng., 17(1):4–23, 2005.

6. Ray I., Kumar M., and Yu L. LRBAC: a location-aware role-

based access control model. In Proc. 2nd Int. Conf. on Informa-

tion Systems Security, 2006, pp. 147–161.

7. Ray I. and Toahchoodee M. A spatio-temporal role-based access

control model. In Proc. 21st Annual IFIP WG 11.3 Working

Conf. on Data and Applications Security, 2007, pp. 420–431.
Temporal Aggregation

JOHANN GAMPER
1, MICHAEL BÖHLEN

1, CHRISTIAN S.

JENSEN
2

1Free University of Bozen-Bolzano, Bolzano, Italy
2Aalborg University, Aalborg, Denmark

Definition
In database management, aggregation denotes the pro-

cess of consolidating or summarizing a database in-

stance; this is typically done by creating so-called

aggregation groups of elements in the argument data-

base instance and then applying an aggregate function

to each group, thus obtaining an aggregate value for

each group that is then associated with each element

in the group. In a relational database context, the

instances are relations and the elements are tuples.

Aggregation groups are then typically formed by par-

titioning the tuples based on the values of one or more

attributes so that tuples with identical values for these

attributes are assigned to the same group. An aggregate

function, e.g., sum, avg, or min, is then applied to

another attribute to obtain a single value for each

group that is assigned to each tuple in the group as a

value of a new attribute. Relational projection is used

for eliminating detail from aggregation results.

In temporal relational aggregation, the arguments

are temporal relations, and the tuples can also be

grouped according to their timestamp values. In tem-

poral grouping, groups of values from the time domain

are formed. Then an argument tuple is assigned to each

group that overlaps with the tuple’s timestamp, this

way obtaining groups of tuples. When aggregate func-

tions are applied to the groups of tuples, a temporal

relation results. Different kinds of temporal groupings

are possible: instantaneous temporal aggregation
where the time line is partitioned into time instants/

points; moving-window (or cumulative) temporal ag-

gregation where additionally a time period is placed

around a time instant to determine the aggregation

groups; and span aggregation where the time line is

partitioned into user-defined time periods.

Historical Background
Aggregate functions assist with the summarization of

large volumes of data, and they were introduced in

early relational database management systems such as

System R and INGRES. During the intensive research

activities in temporal databases in the 1980s, aggregates

were incorporated in temporal query languages, e.g., the

Time Relational model [1], TSQL [8], TQuel [9], and a

proposal by Tansel [10]. The earliest proposal aimed at

the efficient processing of (instantaneous) temporal

aggregates is due to Tuma [12]. Following Tuma’s pio-

neering work, research concentrated on the develop-

ment of efficient main-memory algorithms for the

evaluation of instantaneous temporal aggregates as the

most important form of temporal aggregation [6,7].

With the diffusion of data warehouses and OLAP,

disk-based index structures for the incremental com-

putation and maintenance of temporal aggregates

were investigated by Yang and Widom [14] and ex-

tended by Zhang et al. [15] to include non-temporal

range predicates. The high memory requirements of

the latter approach were addressed by Tao et al. [11],

and approximate solutions for temporal aggregation

were proposed. More recently, Vega Lopez et al. [13]

formalized temporal aggregation in a uniform frame-

work that enables the analysis and comparison of

the different forms of temporal aggregation based on

various mechanisms for defining aggregation groups.

In a similar vein, Böhlen et al. [3] develop a new

framework that generalizes existing forms of temporal

aggregation by decoupling the partitioning of the

time line from the specification of the aggregation

groups.

It has been observed that expressing queries on

temporal databases is often difficult with SQL, in par-

ticular for aggregation. As a result, temporal query

languages often include support for temporal aggrega-

tion. A recent paper [2] studies the support for

temporal aggregation in different types of temporal

extensions to SQL. A subset of the temporal aggregates

considered in the entry are also found in non-relation-

al query languages, e.g., tXQuery [5].

Temporal Aggregation T 2925

T

Foundations
A discrete time domain consisting of a totally ordered

set of time instants/points is assumed together with an

interval-based, valid-time data model, i.e., an interval

timestamp is assigned to each tuple that captures the

time when the corresponding fact is true in the modeled

reality. As a running example, the temporal relation

CheckOut in Fig. 1 is used, which records rentals of

video tapes, e.g., customer C101 rents tape T1234

from time 1 to 3 at cost 4.

Defining Temporal Aggregation

Various forms of temporal aggregation that differ in

how the temporal grouping is accomplished have been

studied. In instantaneous temporal aggregation (ITA)

the time line is partitioned into time instants and an

aggregation group is associated with each time instant

t that contains all tuples with a timestamp that inter-

sects with t. Then the aggregate functions are evaluated

on each group, producing a single aggregate value at

each time t. Finally, identical aggregate results for con-

secutive time instants are coalesced into so-called con-

stant intervals that are maximal intervals over which all

result values remain constant. In some approaches, the

aggregate results in the same constant interval must

also have the same lineage, meaning that they are

produced from the same set of argument tuples. The

following query, Q1, and its result in Fig. 2a illustrate

ITA:What is the number of tapes that have been checked

out?Without the lineage requirement, the result tuples

(1,[17,18]) and (1,[19,20]) would have been coalesced

into (1,[17,20]). While, conceptually, the time line is

partitioned into time instants, which yields the most

detailed result, the result tuples are consolidated so

that only one tuple is reported for each constant inter-

val. A main drawback is that the result relation is

typically larger than the argument relation and can be

up to twice the size of the argument relation.

With moving-window temporal aggregation

(MWTA) (first introduced in TSQL [8] and later also

termed cumulative temporal aggregation [9,14]), a time
Temporal Aggregation. Figure 1. Tabular representation an
window is used to determine the aggregation groups.

For each time instant t, an aggregation group is defined

as the set of argument tuples that hold in the interval

[t�w, t], where w � 0 is called a window offset. In

some work [13], a pair of offsets w and w 0 is used,
yielding a window [t�w, t+w 0] for determining the

aggregation groups. After computing the aggregate

functions for each aggregation group, coalescing is

applied similarly to how it is done for ITA to obtain

result tuples over maximal time intervals. The follow-

ing query,Q2, and its result in Fig. 2b illustrate MWTA:

What is the number of tapes that have been checked out

in the last three days? To answer this query, a window is

moved along the time line, computing at each time

point an aggregate value over the set of tuples that are

valid at some point during the last three days. While

both ITA and MWTA partition the time line into time

instants, the important difference is in how the aggre-

gation groups for each time instant are defined.

Next, for span temporal aggregation (STA), the time

line is first partitioned into predefined intervals that

are defined independently of the argument relation.

For each such interval, an aggregation group is then

given as the set of all argument tuples that overlap the

interval. A result tuple is produced for each interval by

evaluating an aggregate function over the corresponding

aggregation group. The following query, Q3, and its

result in Fig. 2c illustrate STA: What is the weekly

number of tapes that have been checked out? The time

span is here defined as a period of seven days. Unlike in

ITA and MWTA, in STA the timestamps of the result

tuples are specified by the application and are indepen-

dent of the argument data. Most approaches consider

only regular time spans expressed in terms of granula-

rities, e.g., years, months, and days.

The multi-dimensional temporal aggregation

(MDTA) [3] extends existing approaches to temporal

aggregation, by decoupling the definition of result

groups and aggregation groups. A result group specifies

the part of a result tuple that is independent of

the actual aggregation (corresponds to the group by
d graphical representation of temporal relation CheckOut.

Temporal Aggregation. Figure 2. Results of different forms of temporal aggregation.

2926T Temporal Aggregation
attributes in SQL). Each result group has an associated

aggregation group, namely the set of tuples from which

the aggregated value is computed. In general, the group-

ing attributes of the tuples in an aggregation group

might differ from the grouping attributes of the result

group. For the specification of the result groups, two

different semantics are supported: constant-interval se-

mantics that covers ITA and MWTA and fixed-interval

semantics that covers STA. The fixed-interval semantics

supports the partitioning of the time line into arbitrary,

possibly overlapping time intervals. The following

query, Q4, and its result in Fig. 2d illustrate some of

the new features of MDTA: For each week, list the

number of expensive and the number of cheap checkouts

during the preceding week? (expensive being defined as

a cost equal or greater than 4 and cheap as a cost equal

or smaller than 2). The result groups are composed of a

single temporal attribute that partitions the time line,

the tuples in the associated aggregation groups do not

have to overlap the timestamp of the result group, and

two aggregates over different aggregation groups are

computed for each result group.

Temporal Aggregation Processing Techniques

The efficient computation of temporal aggregation poses

new challenges, most importantly the computation of

the time intervals of the result tuples that depend on the

argument tuples and thus are not known in advance.

Two Scans The earliest proposal for computing ITA

was presented by Tuma [12] and requires two scans of

the argument relation – one for computing the con-

stant intervals and one for computing the aggregate

values over these intervals. The algorithm has a worst

case running time of O(mn) for m result tuples and

n argument tuples.
Following Tuma’s pioneering work, research con-

centrated on algorithms that construct main-memory

data structures that allow to perform both steps at

once, thus requiring only one scan of the argument

relation.

Aggregation Tree The aggregation tree algorithm for

ITA by Kline and Snodgrass [6] incrementally con-

structs a tree structure in main memory while scanning

the argument relation. The tree stores a hierarchy of

intervals and partial aggregation results. The intervals

at the leaf nodes encode the constant intervals. Accu-

mulating the partial results in a depth-first traversal of

the tree yields the result tuples in chronological order.

Figure 3a shows the tree for Query Q1 after scanning

the first two argument tuples. The path from the root

to the leaf with time interval [3,3] yields the result

tuple (2,[3,3]). The algorithm is constrained by the

size of the available main memory, and it has a worst

case time complexity of O(n2) for n argument tuples

since the tree is not balanced.

An improvement, although with the same worst

case complexity, is the k-ordered aggregation tree [6],

which requires the argument tuples to be chronological-

ly ordered to some degree. This allows to reduce the

memory requirements by garbage collecting old nodes

that will not be affected by any future tuples. Gao et al.

[4] describe a number of parallel temporal aggregation

algorithms that are all based on the aggregation tree.

Balanced Tree Moon et al. [7] propose the balanced

tree algorithm for the main memory evaluation of ITA

queries involving sum, count, and avg. As the argument

tuples are scanned, their start and end times are stored

in a balanced tree together with two values for each

aggregate function being computed, namely the partial

Temporal Aggregation. Figure 3. Different forms of tree structures for temporal aggregation.

Temporal Aggregation T 2927

T

aggregate result over all tuples that start and end here,

respectively. An in-order traversal of the tree combines

these values to compute the result relation. Whenever a

node, v, is visited, a result tuple is produced over the

interval that is formed by the time point of the previ-

ously visited node and the time point immediately

preceding v. Figure 3b shows the balanced tree for

Query Q1. The aggregate value of the result tuple

(2,[3,3]) is determined as 1 + (1� 0) = 2. Although the

balanced tree requires less memory than the aggregation

tree, it is constrained by the amount of availablememory.

For themin and max functions a merge-sort like algo-

rithm is proposed. Both algorithms have O(n log n)

time complexity for n argument tuples. To overcome

the memory limitation, a bucket algorithm is pro-

posed, which partitiones the argument relation along

the time line and keeps long-lived tuples in a meta-

array. Aggregation is then performed on each bucket

in isolation.

SB-Tree Yang and Widom [14] propose a disk-based

index structure, the SB-tree, together with algorithms

for the incremental computation and maintenance of

ITA and MWTA queries. It combines features from the

segment tree and the B-tree and stores a hierarchy of

time intervals associated with partially computed

aggregates. To find the value of an aggregate at a time

instant t, the tree is traversed from the root to the leaf

that contains t and the partial aggregate values asso-

ciated with the time intervals that contain t are com-

bined. Figure 3c shows the SB-tree for Query Q1. The

value at time 8 results from adding 0 and 1 (associated

with [10,11] and [7,11], respectively). The time com-

plexity of answering an ITA query at a single time point

is O(h), where h is the height of the tree, and O(h + r)

for retrieving the result over a time interval, where r is

the number of leaves that intersect with the given time

interval. The same paper extends the basic SB-tree to
compute MWTA. For a fixed window offset w, the

timestamps of the argument tuples are extended by

w to account for the tuples’ contributions to the results

at later time points. For arbitrary window offsets, a

pair of SB-trees is required.

MVSB-Tree With the SB-tree, aggregate queries are

always applied to an entire argument relation. The

multi-version SB-tree (MVSB-tree) by Zhang et al. [15]

tackles this problem and supports temporal aggrega-

tion coupled with non-temporal range predicates that

select the tuples over which an aggregate is computed.

The MVSB-tree is logically a sequence of SB-trees, one

for each timestamp. The main drawbacks of this ap-

proach are: the tree might be larger than the argument

relation, the range restriction is limited to a single non-

timestamp attribute, and the temporal evolution of the

aggregate values cannot be computed. Tao et al. [11]

present two approximate solutions that address the

high memory requirements of the MVSB-tree. They

use an MVB-tree and a combination of B- and R-trees,

respectively. These achieve linear space complexity in

the size of the argument relation and logarithmic query

time complexity.

MDTA Böhlen et al. [3] provide two memory-based

algorithms for the evaluation of MDTA queries.

The algorithm for fixed-interval semantics keeps in

a group table the result groups that are extended with

an additional column for each aggregate being com-

puted. As the argument relation is scanned, all aggre-

gate values to which a tuple contributes are updated.

The group table contains then the result relation. The

memory requirements only depend on the size of

the result relation. With an index on the group table,

the average runtime is n log m for n argument tuples

and m result groups, the worst case being O(nm) when

each argument tuple contributes to each result tuple.

2928T Temporal Aggregation
The algorithm for constant-interval semantics process-

es the argument tuples in chronological order and

computes the result tuples as time proceeds. An end-

point tree maintains partial aggregate results that are

computed over all argument tuples that are currently

valid, and they are indexed by the tuples’ end points.

Figure 3d shows the endpoint tree for Query Q1

after processing the first two argument tuples. When

the third argument tuple is read, the result tuples

(2,[3,3]) and (1,[4,5]) are generated by accumulating

all partial aggregate values; the nodes are then removed

from the tree. The size of the tree is determined by the

maximal number of overlapping tuples, no. The aver-

age time complexity of the algorithm is nno. The

worst-case complexity is O(n2), when the start and

end points of all argument tuples are different and all

tuples overlap.
Key Applications
Temporal aggregation is used widely in different

data-intensive applications, which become more and

more important with the increasing availability of

huge volumes of data in many application domains,

e.g., medical, environmental, scientific, or financial

applications. Prominent examples of specific applicati-

ons include data warehousing and stream processing.

Time variance is one of four salient characteristics

of a data warehouse, and there is general consensus

that a data warehouse is likely to contain several years

of time-referenced data. Temporal aggregation is a key

operation for the analysis of such data repositories.

Similarly, data streams are inherently temporal, and

the computation of aggregation functions is by far the

most important operation on such data. Many of the

ideas, methods, and technologies from temporal aggre-

gation have been and will be adopted for stream

processing.
Future Directions
Future research work is possible in various directions.

First, it may be of interest to study new forms of

temporal aggregation. For example, a temporal aggre-

gation operator that combines the best features of

ITA and STA may be attractive. This operator should

follow a data-driven approach that approximates the

precision of ITA while allowing to limit the size of the

result. Second, it is relevant to study efficient evalua-

tion algorithms for more complex aggregate functions
beyond the five standard functions for which most

research has been done so far. Third, the results

obtained so far can be adapted for and applied in

related fields, including spatio-temporal databases

where uncertainty is inherent as well as data streaming

applications.

Cross-references
▶Bi-Temporal Indexing

▶Query Processing (in relational databases)

▶Temporal Coalescing

▶Temporal Data Mining

▶Temporal Database

▶Temporal Query Languages

▶Temporal Query Processing
Recommended Reading
1. Ben-Zvi J. The Time Relational Model. Ph.D. thesis, Computer

Science Department, UCLA, 1982.

2. Böhlen M.H., Gamper J., and Jensen C.S. How would you like

to aggregate your temporal data? In Proc. 13th Int. Symp. on

Temporal Representation and Reasoning, 2006, pp. 121–136.

3. Böhlen M.H., Gamper J., and Jensen C.S. Multi-dimensional

aggregation for temporal data. In Advances in Database Tech-

nology, Proc. 10th Int. Conf. on Extending Database Techno-

logy, 2006, pp. 257–275.

4. Gao D., Gendrano J.A.G., Moon B., Snodgrass R.T., Park M.,

Huang B.C., and Rodrigue J.M. Main memory-based algorithms

for efficient parallel aggregation for temporal databases. Distrib.

Parallel Dat., 16(2):123–163, 2004.

5. Gao D. and Snodgrass R.T. Temporal slicing in the evaluation of

XML queries. In Proc. 29th Int. Conf. on Very Large Data Bases,

2003, pp. 632–643.

6. Kline N. and Snodgrass R.T. Computing temporal aggregates.

In Int. Conf. on Data Engineering, 1995, pp. 222–231.

7. Moon B., Vega Lopez I.F., and Immanuel V. Efficient algorithms

for large-scale temporal aggregation. IEEE Trans. Knowl. Data

Eng., 15(3):744–759, 2003.

8. Navathe S.B. and Ahmed R. A temporal relational model and a

query language. Inf. Sci., 49(1–3):147–175, 1989.

9. Snodgrass R.T., Gomez S., and McKenzie L.E. Aggregates in the

temporal query language TQuel. IEEE Trans. Knowl. Data Eng.,

5(5):826–842, 1993.

10. Tansel A.U. A statistical interface to historical relational data-

bases. In Proc. Int. Conf. on Data Engineering, 1987, pp. 538–

546.

11. Tao Y., Papadias D., and Faloutsos C. Approximate temporal

aggregation. In Proc. 20th Int. Conf. on Data Engineering, 2004,

pp. 190–201.

12. Tuma P.A. Implementing Historical Aggregates in TempIS. M.Sc.

thesis, Wayne State University, 1992.

13. Vega Lopez I.F., Snodgrass R.T., and Moon B. Spatiotemporal

aggregate computation: a survey. IEEE Trans. Knowl. Data Eng.,

17(2):271–286, 2005.

Temporal Algebras T 2929
14. Yang J. and Widom J. Incremental computation and mainte-

nance of temporal aggregates. VLDB J., 12(3):262–283, 2003.

15. Zhang D., Markowetz A., Tsotras V., Gunopulos D., and

Seeger B. Efficient computation of temporal aggregates with

range predicates. In Proc. 20th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2001,

pp. 237–245.
T

Temporal Algebras

ABDULLAH UZ TANSEL

Baruch College – CUNY New York, NY, USA

Synonyms
Historical algebras; Valid-time algebras; Transaction-

Time algebras; Bitemporal algebras

Definition
Temporal algebra is a generic term for an algebra defined

for a data model that organizes temporal data. A tempo-

ral data model may support Valid-time (the time over

which a data value is valid), Transaction-time (time

when a data value is recorded in the database), or both

(Bitemporal). So an algebra can be defined for each case,

a Valid-time relational algebra, a Transaction-time rela-

tional algebra, or a Bitemporal relational algebra, respec-

tively. Temporal algebras include the temporal versions

of relational algebra operations in addition to new

operations for manipulating temporal data like Time-

slice, Rollback, Temporal Coalesce, temporal restructur-

ing operations, and others. For a Temporal algebra, it is

desirable to be closed (common algebras are closed), a

consistent extension of the relational algebra and to

reduce to relational algebra when only current data are

considered.
Historical Background
Temporal algebraic languages first appeared as exten-

sions to the relational algebra in early 1980s, mostly

Valid–time or Transaction-time algebras, followed by

Bitemporal algebras. These extensions differed accord-

ing to their operations and how temporal data are

represented. McKenzie and Snodgrass surveyed tem-

poral algebras and identified desirable criteria that are

needed in a temporal algebra [10]. However, some of

these criteria are conflicting.
Foundations

Temporal Algebra Basics

Let T represent the time domain which has a linear

order under “�”. A time point (instant) is any element

of T. A period is a consecutive sequence of time points.

A temporal element is a set of disjoint maximal periods

[6], and a temporal set is any set of time points. Any of

these time constructs can be used to timestamp data

values. A Bitemporal atom, <Valid-Time, Transaction-

time, Data> asserts that data are valid during Valid-

time and is recorded during Transaction-time. Either

Valid-time or Transaction-time may be omitted and

the result is a Valid-time Atom, or a Transaction-time

atom, respectively.

A temporal relational algebra is closely related to

how the temporal data (temporal atoms) are repre-

sented, i.e., the type of timestamps used, where they are

attached (relations, tuples, or attribute values), and

whether temporal atoms are kept atomic or broken

into their components. In other words, time specifica-

tion may be explicit or implicit. This in turn deter-

mines possible evaluation (semantics) of temporal

algebra expressions. There are two commonly adopted

approaches: (i) Snapshot (Point or Sequenced [1])

evaluation that manipulates the snapshot relation

at each time point, like Temporal Logic [6,11,17];

(ii) Traditional (Nonsequenced [1]) evaluation that

manipulates the entire temporal relation much like

the traditional relational algebra. It is also possible

to mix these approaches.The syntax and the operations

of a temporal algebra are designed to accommodate

a desired type of evaluation. Moreover, specifying

temporal algebra operations at an attribute level, in-

stead of tuples keeps the tuple structure intact after the

operation is executed, so preserving the rest of a tem-

poral relation that is beyond the scope of operation

applied.

Let Q(A, B, C), R(A, D) and S(A, D) be temporal

relations in attribute timestamping, whose attribute

values are sets of temporal atoms except attribute A

which has constant values. It is possibly a temporal

grouping identifier [4] (or a temporal key). For the

sake of simplicity, attributes B, C, and D are assumed

to have one temporal atom in each tuple, i.e., they are

already flattened. Qt stands for the snapshot of tempo-

ral relation Q at time t. Temporal Algebras generally

include temporal equivalents of traditional relational

algebra operations. The five basic Temporal Algebra

2930T Temporal Algebras
operations, [t, -t, pt, st, and �t in snapshot evaluation

are [2,4,5]:

� R [t St is Rt [St for all t in T

� R -t St is Rt – St for all t in T

� ptA1,A2,...,An (R) is pA1,A2,...,An (Rt) for all t in T

� st
F (R) is sF(Rt) for all t in T; Formula F includes

traditional predicates and temporal predicates like

Before, After, Overlaps, etc

� R �t Q is Rt � Qt for all t in T

An important issue in Snapshot Evaluation is the

homogeneity of the temporal relations. A temporal

relation is homogenous if each tuple is defined on the

same time, i.e., in a tuple, all the attributes have the

same time reference [6]. If attributes in a tuple have

different time references then a snapshot may have null

values leading to complications. Thus, a Temporal

Algebra may be homogenous, depending on the rela-

tions scheme on which it is defined.

In Temporal Algebras that use traditional evalua-

tion, [t, -t, pt, st, and �t may be defined exactly the

same as the relational algebra operations or they have

temporal semantics incorporated in their definitions.

The temporal set operations may specially be defined

by considering the overlapping timestamps in tuples.

Two temporal tuples are value equivalent if their value

components are the same, but their timestamps may

be different. Let {(a1,<[2/07,11/07), d1>)} and {(a1,

<[6/07,8/07), d1>)} be tuples in R and S, respectively.

These two tuples are value equivalent. In case of RUt S,

value equivalent tuples are combined into one if their

timestamps overlap. Considering the former tuples the

result is {(a1,<[2/07,11/07), d1>)}. In case of R –t S,

the common portion of the timestamps for the value

equivalent tuples is removed from the tuples of R. For

the above tuples the result is {a1, <[2/07,6/07), d1>),

(a1, <[8/07,11/07), d1>)}. Existence of value equiva-

lent tuples makes query specification more complex

but, query evaluation is less costly. On the other

hand, eliminating them is also more costly. Temporal

Coalescing operation combines value equivalent tuples

into one tuple [2]. Temporal algebras may include

aggregates.

The definition of Temporal Projection (pt) is

straightforward. However, it may generate value equiv-

alent tuples much like the traditional projection oper-

ation creates duplicate tuples. Moreover, the projection

operation may also be used to discard the time of a

relation if it is explicitly specified. In the case of
implicit time specification, it needs to be converted

to an explicit specification before applying the projec-

tion operation. The formula F in the Selection opera-

tion (st
F(Q)) may include time points, the end points

of periods, and periods in temporal elements, or tem-

poral predicates like Before, After, Overlaps, etc. It is

possible to simulate the temporal predicates by condi-

tions referring to time points or end points of periods.

Other temporal algebra operations such as Tempo-

ral Set Intersection or Temporal Join are similarly

defined. There are different versions of Temporal

Join. Intersection join is computed over the common

time of operand relations (see the entry on temporal

joins). For instance, if {(a1, <[1/07, 5/07), b1>, <[1/

07, 4/07), c1>)} is a tuple in Q, the natural join (Q ffl
R) contains the tuple {(a1, <[1/07, 5/07), b1>, <[1/

07, 4/07), c1>, <[2/07,11/07), d1>)}. If this were an

intersection natural join, times of the attributes in this

tuple would be restricted to their common time period

[2/07, 4/07). It is also possible to define temporal outer

joins [11].

Temporal algebra operations are defined indepen-

dent of time granularities. However, if operand rela-

tions are defined on different time granularities, a

granularity conversion is required as part of processing

the operation.

Algebras for Tuple Timestamping

In tuple timestamping relations are augmented with

one column to represent time points, periods or tem-

poral elements, or two columns to represent periods.

Relation Q is represented as Q1(A, B, From, To) and

Q2(A, C, From, To) where From and To are the end

points of periods. Similarly, R(A, D, From, To) and

S(A, D, From, To) correspond to the relations R and S,

respectively. The tuple of Q given above is represented

as the following tuples: (a1, b1, 1/07, 5/07) in Q1 and

(a1, c1, 1/07, 4/07) in Q2. For accessing time points

within a period snapshot evaluation may be used

[6,17] or in case of Traditional Evaluation, attributes

representing the end points of periods may be specified

in operations. Another path followed is to define tem-

poral expansion and contraction operations [9]. A

period is expanded to all the time points included in

it by temporal expansion and temporal contraction

does the opposite, converts a sequence of time points

to a period. Relation instances indexed by time points

are used to define a temporal algebra by Clifford,

Croker, and Tuzhilin [17].

Temporal Algebras T 2931

T

Algebras for Attribute Timestamping

Timestamps are attached to attributes and N1NF rela-

tions are used and the entire history of an object is

represented as a set of temporal atoms in one tuple.

These temporal relations are called temporally grouped

in contrast to temporally ungrouped relations that are

based on tuple timestamping [17]. Naturally, tempo-

rally grouped algebras are more expressive than tem-

porally ungrouped algebras and the former is more

complex than the latter [17]. A temporal algebra that

is based on snapshot evaluation and allows set theoret-

ic operations on temporal elements is given in [6]. For

the algebra expression e, the construct [[e]] returns the

time over which e’s result is defined [6] and it can

further be used in algebraic expressions. An algebra,

based on time points and lifespans, that uses snapshot

evaluation is proposed in [3,5]. The nest and unnest

operations for the transformations between 1NF and

N1NF relations and operations which form and break

temporal atoms are included in a temporal algebra

[5,12,13]. N1NF Temporal relations and their algebras

may or may not be homogonous [6,12,13].

Valid-time and Transaction-time Algebras

Most of the algebras mentioned above are Valid-time

Relational Algebras. A Valid-time Relational Algebra

includes additionally a Slice operation (ςτΘ) that is a
redundant, but very useful operation. Let R be a Valid-

time Relation and t be a time point (period, temporal

element, or temporal set). Then, ςτΘt (R) cuts a slice

from R, the values that are valid over time t and returns

them as a relation [1,5,12,13]. Common usage of the

Slice operation is to express the “when” predicate in

natural languages. Slice may also be incorporated into

the selection operation or the specification of a relation

to restrict the time of a temporal relation by a temporal

element, i.e., R[t] [6]. Slice may be applied at an

attribute level to synchronize time of one attribute by

another attribute [5,12,13]. For instance, ςτΘB,C (Q)

restricts the time of attribute B by the time of attribute

C. Applying the Slice operation on all the attributes by

the same time specification returns a snapshot at the

specified time.

A Transaction-time relational algebra includes a

Rollback operation (t), another form of Slice for roll-

ing back to the values recorded at a designated time.

Let R be a Transaction-time relation and t be a time

point (period, temporal element, or temporal set).

Then, tt (R) cuts a slice from R, the values that were
recorded over time t and returns them as a relation

[1,5,8]. Note the duality between the Valid-time rela-

tional algebra and the Transaction-time relational

algebra; each has the same set of operations and an

appropriate version of the slice operation.
Bitemporal Relational Algebras

Bitemporal algebra operations are more complicated

than temporal algebras that support one time dimen-

sion only [1,8,15]. A Bitemporal algebra includes both

forms of the Slice operation in addition to other alge-

braic operations. A Bitemporal query has a context

that may or may not imply a Rollback operation [15].

However, once a Rollback operation is applied on

a Bitemporal relation, Valid-time algebra operations

can be applied on the result. It is also possible to

apply Bitemporal Algebra operations on a bitemporal

relation before applying a Rollback operation. In this

case, the entire temporal relation is the context of

the algebraic operations. In coalescing Bitemporal

tuples, starting with Valid-time or Transaction-time

may result in different coalesced tuples [8]. For the

data maintenance queries, Valid-time needs to be coa-

lesced within the Transaction-time.
Key Applications
Use of temporal algebra includes query language design

[14], temporal relational completeness [16,17], and query

optimization [14]. Some Relational algebra identities di-

rectly apply to temporal relational algebra whereas other

identities donot hold due to the composite representation

or semantics of temporal data [10]. Naturally, identities

for the new temporal algebra operations and their inter-

action with the operations borrowed from the relational

algebra need to be explored as well [5,7].

Cross-references
▶Bitemporal Interval

▶BitemporalRelation

▶NonsequencedSemantics

▶RelationalAlgebra

▶RelationalModel

▶ SequencedSemantics

▶ SnapshotEquivalence

▶TemporalAggregates

▶TemporalCoalescing

▶TemporalConceptualModels

▶TemporalDataModels

2932T Temporal Assignment
▶TemporalElement

▶TemporalQueryLanguages

▶TemporalExpression

▶TemporalHomogeneity

▶Temporal Joins

▶TemporalObject-OrientedDatabases

▶TemporalProjection

▶TemporalQueryOptimization

▶TemporalQueryProcessing

▶TimeDomain

▶Time Interval

▶TimePeriod

▶TimeSlice

▶TransactionTime

▶ValueEquivalence

▶ValidTime
Recommended Reading
1. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):407–456,

2000.

2. Böhlen M.H., Snodgrass R.T., and Soo M.D. Coalescing in tem-

poral databases. In Proc. 22th Int. Conf. on Very Large Data

Bases, 1996, pp. 180–191.

3. Clifford J. and Croker A. The historical relational data model

(HRDM) and algebra based on lifespans. In Proc. 3th Int. Conf.

on Data Engineering, 1987, pp. 528–537.

4. Clifford J., Croker A., and Tuzhilin A. On completeness

of historical data models. ACM Trans. Database Syst., 19

(1):64–116, 1993.

5. Clifford J. and Tansel A.U. On an algebra for historical relational

databases: two views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1985, pp. 247–265.

6. Gadia S.K. A homogeneous relational model and query

languages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, 1988.

7. Gadia S.K. and Nair S.S. Algebraic identities and query optimi-

zation in a parametric model for relational temporal databases.

IEEE Trans. Knowl. Data Eng., 10(5):793–807, 1998.

8. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

1994.

9. Lorentzos N.A. and Johnson R.G. Extending relational algebra to

manipulate temporal data. Inf. Syst., 13(3):289–296, 1988.

10. McKenzie E. and Snodgrass R.T. Evaluation of relational algebras

incorporating the time dimension in databases. ACM Comput.

Surv., 23(4):501–543, 1991.

11. Soo M.D., Jensen C., and Snodgrass R.T. 1An algebra for TSQL2.

In TSQL2 Temporal Query Language, R.T. (ed.). R.T. Snodgrass

(ed.). Kluwer Academic, Norwell, MA, 1995, pp. 505–546.

12. Tansel A.U. Adding time dimension to relational model and

extending relational algebra. Inf. Syst., 11(4):343–355, 1986.

13. Tansel A.U. Temporal relational data model. IEEE Trans. Knowl.

Database Eng., 9(3):464–479, 1997.
14. Tansel A.U., Arkun M.E., and Ozsoyoglu G. Time-by-example

query language for historical databases. IEEE Trans. Softw. Eng.,

15(4):464–478, 1989.

15. Tansel A.U. and Eren-Atay C. Nested bitemporal relational alge-

bra. In Proc. 21st Int. Symp. on Computer and Information

Sciences, 2006, pp. 622–633.

16. Tansel A.U. and Tin E. Expressive power of temporal relational

query languages. IEEE Trans. Knowl. Data Eng., 9(1):120–134,

1997.

17. Tuzhilin A. and Clifford J. A temporal relational algebra as basis

for temporal relational completeness. In Proc. 16th Int. Conf. on

Very Large Data Bases, 1990, pp. 13–23.
Temporal Assignment

▶Temporal Projection
Temporal Association Mining

▶Temporal Data Mining
Temporal Coalescing

MICHAEL BÖHLEN

Free University of Bozen-Bolzano, Bolzano, Italy

Definition
Temporal coalescing is a unary operator applicable

to temporal databases that is similar to duplicate elim-

ination in conventional databases. Temporal coalescing

merges value-equivalent tuples, i.e., tuples with over-

lapping or adjacent timestamps and matching explicit

attribute values. Tuples in a temporal relation that

agree on the explicit attribute values and that have

adjacent or overlapping timestamps are candidates

for temporal coalescing. The result of operators may

change if a relation is coalesced before applying the

operator. For instance, an operator that counts the

number of tuples in a relation or an operator that

selects all tuples with a timestamp spanning at least

3 months are sensitive to temporal coalescing.

Historical Background
Early temporal relational models implicitly assumed that

the relations were coalesced. Ben Zvi’s Time Relational

Model [13, Chap. 8], Clifford and Croker’s Historical

Temporal Coalescing T 2933

T

Relational DataModel (HRDM) [13, Chap. 1], Navathe’s

Temporal Relational Model (TRM) [13, Chap. 4], and

the data models defined by Gadia [13, pp. 28–66], Sade-

ghi [9] and Tansel [13, Chap. 7] all have this property.

The term coalesced was coined by Snodgrass in his

description of the data model underlying TQuel,

which also requires temporal coalescing [10]. Later

data models, such as those associated with HSQL [13,

Chap. 5] and TSQL2 [11], explicitly required coalesced

relations. The query languages associated with these

data models generally did not include explicit con-

structs for temporal coalescing. HSQL is the exception;

it includes a COALESCE ON clause within the select

statement, and a COALESCED optional modifier imme-

diately following SELECT [13, Chap. 5]. Some query

languages that do not require coalesced rela-

tions provide constructs to explicitly specify temporal

coalescing; VT-SQL [8] and ATSQL [2] are examples.

Navathe and Ahmed defined the first temporal

coalescing algebraic operator; they called this COM-

PRESS [13, Chap. 4]. Sarda defined an operator called

COALESCE [13, Chap. 5], Lorentzos’ FOLD operator

includes temporal coalescing [13, Chap. 3], Leung’s sec-

ond variant of a temporal select join operator TSJ2
[13, Chap. 14] can be used to effect temporal coalesc-

ing, and TSQL2’s representational algebra also includ-

ed a coalesce operator [11].

In terms of performance and expressiveness

Leung and Pirahesh provided amapping of the coalesce

operation into recursive SQL [6, p. 329]. Lorentzos and

Johnson provided a translation of his FOLD operator

into Quel [7, p. 295]. Böhlen et al. [3] show how

to express temporal coalescing in terms of standard

SQL and compare different implementations. SQL-

based solutions to coalescing have also been proposed

by Snodgrass [12] and Zhou et al. [14].

Foundations
Temporal databases support the recording and retriev-

al of time-varying information [13] and associate with

each tuple in a temporal relation one or more
Temporal Coalescing. Figure 1. Uncoalesced (Bonus1) and
timestamps that denote some time periods. The discus-

sion assumes that each tuple is associated with a valid

time attribute VT. This attribute is called the time-

stamp of the tuple. The timestamps are half open

time periods: the start point is included but the end

point is not. The non-timestamp attributes are referred

to as the explicit attributes.

In a temporal database, tuples are uncoalesced when

they have identical attribute values and their timestamps

are either adjacent in time (“meet” in Allen’s taxonomy

[1]) or have some time in common. Consider the rela-

tions in Fig. 1. The relation records bonus payments

that have been given to employees. Ron received

two 2K bonuses: one for his performance from January

1981 to April 1981 and another one for his perfor-

mance from May 1981 to September 1981. Pam

received a 3K bonus for her performance from April

1981 to May 1981. Bonus1 is uncoalesced since the

tuples for Ron have adjacent timestamps and can be

coalesced. Bonus2 is coalesced. Coalescing Bonus1

yields Bonus2.

As with duplicate elimination in nontemporal data-

bases, the result of some operators in temporal databases

changes if the argument relation is coalesced before

applying the operator [11]. For instance an operator

that counts the number of tuples in a relation or an

operator that selects all tuples with a timestamp span-

ning at least 3 months are sensitive to temporal

coalescing.

In general, two tuples in a valid time relation

are candidates for temporal coalescing if they

have identical explicit attribute values (see value equiv-

alence [10]) and have adjacent or overlapping time-

stamps. Such tuples can arise in many ways. For

example, a projection of a coalesced temporal relation

may produce an uncoalesced result, much as duplicate

tuples may be produced by a duplicate preserving

projection on a duplicate-free nontemporal relation.

In addition, update and insertion operations may not

enforce temporal coalescing, possibly due to efficiency

concerns.
coalesced (Bonus2) valid time relations.

2934T Temporal Coalescing
Thus, whether a relation is coalesced or not makes

a semantic difference. In general, it is not possible

to switch between a coalesced and an uncoalesced repre-

sentation without changing the semantics of programs.

Moreover, as frequently used database operations (pro-

jection, union, insertion, and update) may lead to

potentially uncoalesced relations and because many

(but not all) real world queries require coalesced rela-

tions, a fast implementation is imperative.

Temporal coalescing is potentially more expensive

than duplicate elimination, which relies on an equality

predicate over the attributes. Temporal coalescing also

requires detecting if the timestamps of tuples overlap,

which is an inequality predicate over the timestamp

attribute. Most conventional DBMSs handle inequality

predicates poorly; the typical strategy is to resort to

exhaustive comparison when confronted with such

predicates [5], yielding quadratic complexity (or

worse) for this operation.

Implementing Temporal Coalescing

Temporal coalescing does not add expressive power to

SQL. Assuming that time is linear, i.e., totally ordered,

it is possible to compute a coalesced relation instance

with a single SQL statement (see also [4, p. 291]). The

basic idea is to use a join to determine the first (f) and

last (l) time period of a sequence of value equivalent

tuples with adjacent or overlapping timestamps as

illustrated in Fig. 2.

The SQL code assumes that the time period is

represented by start (S) and end (E) point, respectively.

Besides start and end point there is an explicit attribute

c. This yields a relation with schema R(S, E, c). Two

subqueries are used to ensure that there are no tempo-

ral gaps (for example between l and f ’ is a temporal

gap) and that the sequence is maximal (there is no tuple

with a time period that starts before the start point of f

and that temporally overlaps with f; there is no tuple with

a time period that ends after the end point of l and that

temporally overlaps with l), respectively.
Temporal Coalescing. Figure 2. Illustration of temporal coa
SELECT DISTINCT f.S, l.E, f.c
FROM r AS f, r AS l
WHERE f.S < l.E
AND f.c = l.c
AND NOT EXISTS (SELECT *

FROM r AS m
WHERE m.c = f.c
AND f.S < m.S AND
m.S < l.E

AND NOT EXISTS (SELECT *
FROM r AS a1
WHERE a1.c = f.c
AND a1.S < m.S AND m.S
<= a1.E))

AND NOT EXISTS (SELECT *
FROM r AS a2
WHERE a2.c = f.c
AND (a2.S< f.S AND f.S
<= a2.E OR

a2.S<= l.E AND l.E
< a2.E))

The above SQL statement effectively coalesces a rela-

tion. However, current database systems cannot evalu-

ate this statement efficiently. It is possible to exploit the

fact that only the maximal time periods are relevant.

Rather than inserting a new tuple (and retaining the

old ones) it is possible to update one of the tuples that

was used to derive the new one. This approach can be

implemented by iterating an update statement. The

statement is repeated until the relation does not change

anymore, i.e., until the fixpoint with respect to tempo-

ral coalescing is reached.

repeat

UPDATE r l
SET (l.E) =

(SELECT MAX(h.E)
FROM r h
WHERE l.c = h.c
ANDl.S<h.S ANDl.E>=h.S ANDl.
E<h.E)
lescing.

Temporal Coalescing T 2935

T

WHERE EXISTS (
SELECT *
FROM r h
WHERE l.c = h.c
AND l.S < h.S AND l.E >= h.S AND
l.E < h.E)

until fixpoint(r)

One means to further improve the performance is to

use the DBMS as an enhanced storage manager and to

develop main memory algorithms on top of it. Essen-

tially, this means to load the relation into main mem-

ory, coalesce it manually, and then store it back in the

database. If tuples are fetched ordered primarily by

explicit attribute values and secondarily by start points

it is possible to coalesce a relation with just a single

tuple in main memory. The core of the C code of the

temporal coalescing algorithm is displayed below. It

uses ODBC to access the database.

SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
SQLConnect(hdbc,"Ora10g",
SQL_NTS,"scott",SQL_NTS,"tiger",
SQL_NTS;
SQLAllocHandle(SQL_HANDLE_STMT,
hdbc, &hstmt1)
SQLAllocHandle(SQL_HANDLE_STMT,
hdbc, &hstmt2)

/* initialize buffer curr_tpl (a one
tuple buffer) */
SQLExecDirect(hstmt1, "SELECT S, E, c
FROM r ORDER BY c, S", SQL_NTS))
curr_tpl.S = next_tpl.S;
curr_tpl.E = next_tpl.E;
curr_tpl.c = next_tpl.c;

/* open a cursor to store tuples back
in the DB */
SQLPrepare(hstmt2, "INSERT INTO
r_coal VALUES (?,?,?)", SQL_NTS)

/* main memory temporal coalescing */
while (SQLFetch(hstmt1) !=
SQL_NO_DATA) {/* fetch all tuples */

if (curr_tpl.c == next_tpl.c &&
next_tpl.S <= curr_tpl.E) {

/* value-equivalentand
overlapping*/
if (next_tpl.E>curr_tpl.E)
curr_tpl.E=next_tpl.E;

}else{
/* not value-equivalent or non-
overlapping */
SQLExecute(hstmt2) /* store back
current tuple */
curr_tpl.S = next_tpl.S;
curr_tpl.E = next_tpl.E;
curr_tpl.c = next_tpl.c;

}
}
SQLExecute(hstmt2) /* store back cur-
rent tuple */

Key Applications
Temporal coalescing defines a normal form for tempo-

ral relations and is a crucial and frequently used oper-

ator for applications that do not want to distinguish

between snapshot equivalent relations. Applications

that allow to distinguish between snapshot equivalent

relations have temporal coalescing as an explicit oper-

ator similar to duplicate elimination in existing data-

base systems.
Cross-references
▶ Snapshot Equivalence

▶Temporal Database

▶Temporal Data Model

▶Time Domain

▶Time Interval

▶Time Period

▶Valid Time
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 16(11):832–843, 1983.

2. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):48, 2000.

3. Böhlen M.H., Snodgrass R.T., and Soo M.D. Coalescing in

temporal databases. In Proc. 22th Int. Conf. on Very Large

Data Bases. 1996, pp. 180–191.

4. Celko J. SQL for Smarties: Advanced SQL Programming.

Morgan Kaufmann, 1995.

5. Leung C. and Muntz R. Query Processing for Temporal Data-

bases. In Proc. 6th Int. Conf. on Data Engineering, 1990,

pp. 200–208.

6. Leung T.Y.C. and Pirahesh H. Querying Historical Data in IBM

DB2 C/S DBMS Using Recursive SQL. In J. Clifford, A. Tuzhilin

(eds.). Recent Advances in Temporal Databases, Springer, 1995.

2936T Temporal Compatibility
7. Lorentzos N. and Johnson R. Extending relational algebra to

manipulate temporal data. Inf. Syst., 15(3), 1988.

8. Lorentzos N.A. and Mitsopoulos Y.G. Sql extension for interval

data. IEEE Trans. Knowl. Data Eng., 9(3):480–499, 1997.

9. Sadeghi R., Samson W.B., and Deen S.M. HQL – A Historical

Query Language. Technical report, Dundee College of Technol-

ogy, Dundee, Scotland, September 1987.

10. Snodgrass R.T. The temporal query language TQuel. ACM

Trans. Database Syst., 12(2):247–298, June 1987.

11. Snodgrass R.T. (ed.). The TSQL2 Temporal Query Language.

Kluwer Academic, Boston, 1995.

12. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, 2000.

13. Tansel A., Clifford J., Gadia S., Jajodia S., Segev A., and

Snodgrass R.T. 1Temporal Databases: Theory, Design, and

Implementation.Benjamin/Cummings,Redwood City, California,

1993.

14. Zhou X., Wang F., and Zaniolo C. Efficient Temporal Coalescing

Query Support in Relational Database Systems. In Proc. 17th

Int. Conf. Database and Expert Syst. Appl., 2006, pp. 676–686.
Temporal Compatibility

MICHAEL H. BÖHLEN
1, CHRISTIAN S. JENSEN

2, RICHARD

T. SNODGRASS
3

1Free University of Bozen-Bolzano, Bozen-Bolzano,

Italy
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Definition
Temporal compatibility captures properties of temporal

languages with respect to the nontemporal languages

that they extend. Temporal compatibility, when satis-

fied, ensures a smooth migration of legacy applica-

tions from a non-temporal system to a temporal

system. Temporal compatibility dictates the semantics

of legacy statements and constrains the semantics of

temporal extensions to these statements, as well as

the language design.
Historical Background
Since the very early days of temporal database research,

the compatibility with legacy languages and systems

has been considered, but the first comprehensive inves-

tigation was reported by Bair et al. [2]. Compatibility

issues are common for work done in the context

of systems and commercial languages, such as SQL or
Quel. Theoretical or logic-based approaches usually

do not explore compatibility notions since they tend to

strictly separate temporal from nontemporal structures.

Foundations

Motivation

Most data management applications manage time-

referenced, or temporal, data. However, these applications

typically run on top of relational or object-relational

database management systems (DBMSs), such as DB2,

Oracle, SQL Server, and MySQL, that offer only little

built-in support for temporal data management. Orga-

nizations that manage temporal data may benefit from

doing so using a DBMS with built-in temporal

support. Indeed, it has been shown that using a

temporal DBSM in place of a non-temporal DBMS

may reduce the number of lines of query language

code by a factor of three, with the conceptual com-

plexity of application development decreasing even

further [13].

Then, what hinders an organization from adopting

a temporal DBMS? A key observation is that an organi-

zation is likely to already have a portfolio of data man-

agement applications that run against a non-temporal

DBMS. In fact, the organization is likely to have made

very large investments in its legacy systems, and it

depends on the functioning of these systems for the

day-to-day operation of its business.

It should be as easy as possible for the organization

to migrate to a temporal DBMS. It would be attractive

if all existing applications would simply work without

modification on the temporal DBMS. This would help

protect the organization’s investment in its legacy

applications. The opposite, that of having to rewrite

all legacy applications, is a daunting proposition.

However, this type of compatibility is only the first

step. The next step is to make sure that legacy applica-

tions can coexist with new applications that actually

exploit the enhanced temporal support of the new

DBMS. These applications may query and modify the

same (legacy) tables. It should thus be possible to add a

new temporal dimension to existing tables, without this

affecting the legacy applications that use these tables.

Next, the organization maintains a large invest-

ment in the skill set of its IT staff. In particular, the

staff is skilled at using the legacy query language, typi-

cally SQL. The new, temporal query language should

leverage this investment, by making it easy for the

Temporal Compatibility T 2937
application programmers to write temporal queries

against temporal relations.

Next four specific compatibility properties that

aim to facilitate the migration from a non-temporal

DBMS to a temporal DBMS are considered.

Upward Compatibility

The property of upward compatibility states that all

language statements expressible in the underlying non-

temporal query language must evaluate to the same

result in the temporal query language, when evaluated

on non-temporal data.

Figure 1 illustrates this property. In the figure,

a conventional table is denoted with a rectangle. The

current state of this table is the rectangle in the upper-

right corner. Whenever a modification is made to this

table, the previous state is discarded; hence, at any

time, only the current state is available. The discarded

prior states are denoted with dashed rectangles; the

right-pointing arrows denote the modifications that

took the table from one state to the next.

When a query q is applied to the current state of a

table, a resulting table is computed, shown as the

rectangle in the bottom right corner. While this figure

only concerns queries over single tables, the extension

to queries over multiple tables is clear.

As an example, consider a hypothetical temporal

extension of the conventional query language SQL

[9]. Upward compatibility states that (i) all instances

of tables in SQL are instances of tables in this exten-

sion, (ii) all SQL modifications to tables result in

the same tables when the modifications are eval-

uated according to the semantics of the extension,

and (iii) all SQL queries result in the same tables

when the queries are evaluated according to the

extension.
Temporal Compatibility. Figure 1. Upward compatible

queries.
By requiring that a temporal extension to SQL is

a strict superset (i.e., only adding constructs and se-

mantics), it is relatively easy to ensure that the exten-

sion is upward compatible with SQL. TOSQL [1],

TSQL [10], HSQL [11], IXSQL [7], TempSQL [5],

and TSQL2 [12] were designed to satisfy upward

compatibility.

While upward compatibility is essential in ensuring

a smooth transition to a new temporal DBMS, it does

not address all aspects of migration. It only ensures the

operation of existing legacy applications and does not

address the coexistence of these with new applications

that exploit the improved temporal support of the

DBMS.

Temporal Upward Compatibility

The property of temporal upward compatibility (TUC)

addresses the coexistence of legacy and new applications.

Assume an existing or new application needs support

for the temporal dimension of the data in one or more

of the existing tables that record only the current

state. This is best achieved by changing the snapshot

table to become a temporal table. It is undesirable to be

forced to change the application code that accesses the

snapshot table when that table is made temporal.

TUC states that conventional queries on temporal data

yield the same results as do the same queries on a

conventional database formed by taking a timeslice at

“now.” TUC applies also to modifications, views, asser-

tions, and constraints [2].

Temporal upward compatibility is illustrated in

Fig. 2. When temporal support is added to a table,

the history is preserved and modifications over time

are retained. In the figure, the rightmost dashed state

was the current state when the table was made tempo-

ral. All subsequent modifications, denoted again by
Temporal Compatibility. Figure 2. Temporal upward

compatibility.

T

2938T Temporal Compatibility
arrows, result in states that are retained, and thus

are represented by solid rectangles. Temporal upward

compatibility ensures that the states will have identical

contents to those states resulting from modifications

of the snapshot table. The query q is a conventional

SQL query. Due to temporal upward compatibility, the

semantics of this query must not change if it is applied

to a temporal table. Hence, the query only applies to

the current state, and a snapshot table results.

Most temporal languages were not designed with

TUC in mind, and TOSQL [1], TSQL [10], HSQL

[11], IXSQL [7], and TSQL2 [12] do not satisfy TUC.

The same holds for temporal logics [4]. TempSQL [5]

introduces a concept of different types of users, classical

and system user. TempSQL satisfies TUC for classi-

cal users. ATSQL [3] was designed to satisfy TUC.

Snapshot Reducibility

This third property states that for each conventional

query, there is a corresponding temporal query that,

when applied to a temporal relation, yields the same

result as the original snapshot query when applied

separately to every snapshot state of the temporal

relation.

Graphically, snapshot reducibility implies that for

all conventional query expressions q in the snapshot

model, there must exist a temporal query qt in the

temporal model so that for all dbt and for all c, the

commutativity diagram shown in Fig. 3 holds.

This property requires that each query q (or opera-

tor) in the snapshot model has a counterpart qt in the

temporal model that is snapshot reducible with respect

to the original query q. Observe that qt being snapshot

reducible with respect to q poses no syntactical restric-

tions on qt. It is thus possible for qt to be quite different

from q, and qt might be very involved. This is undesir-

able: the temporal model should be a straightforward

extension of the snapshot model.
Temporal Compatibility. Figure 3. Snapshot reducibility.
Most languages satisfy snapshot reducibility,

but only because corresponding non-temporal and

temporal statements do not have to be syntactically

similar. This allows the languages to formulate for

each nontemporal statement a snapshot reducible tem-

poral statement, possibly a very different and complex

statement.

Sequenced Semantics

This property addresses the shortcoming of snapshot

reducibility: it requires that qt and q be syntactically

identical, modulo an added string.

Figure 4 illustrates this property. This figure depicts

a temporal query, q 0, that, when applied to a temporal

table (the sequence of values across the top of the

figure), results in a temporal table, which is the se-

quence of values across the bottom.

The goal is to ensure that an application programmer

who is familiar with the conventional query language

is able to easily formulate temporal generalizations of

conventional queries using the temporal query language.

This is achieved if a query q can be made temporal by

simply adding a string to it. The syntactical similarity

requirement of sequenced semantics makes this possi-

ble. Specifically, the meaning of q 0 is precisely that of

applying the analogous non-temporal query q on each

value of the argument table (which must be temporal),

producing a state of the result table for each such

application.

Most temporal languages do not offer sequenced

semantics. As an exception, ATSQL [3] prepends the

modifier SEQUENCED, together with the time dimen-

sion (valid time or transaction time, or both), to non-

temporal statements to obtain their snapshot reducible

generalizations. Temporal Logic [4] satisfies sequenced

semantics as well: the original nontemporal statement

yields sequenced semantics when evaluated over a

corresponding temporal relation.

Temporal Compatibility. Figure 4. Sequenced

semantics.

Temporal Compatibility T 2939

T

Key Applications
Temporal compatibility properties such as those covered

here are important for the adoption of temporal database

technology in practice. The properties are important

because temporal technology is likely to most often be

applied in settings where substantial investments have

already been made in database management staff and

applications. The properties aim at facilitating the intro-

duction of temporal database technology in such settings.

Properties such as these are easily as crucial for the

successful adoption of temporal database technology

as is highly sophisticated support for the querying of

time-referenced data.

Given the very significant decrease in code size and

complexity for temporal applications that temporal

database technology offers, it is hoped that other

DBMS vendors will take Oracle’s lead and incorporate

support for temporal databases into their products.

Future Directions
Further studies of compatibility properties are in

order. For example, note that temporal upward com-

patibility addresses the case where existing tables are

snapshot tables that record only the current state.

However, in many cases, the existing tables may already

record temporal data using a variety of ad-hoc formats.

The challenge is then how to migrate such tables to real

temporal tables while maintaining compatibilities.

Next, it is felt that much could be learned from

conducting actual case studies of the migration of real-

world legacy applications to a temporal DBMS.
Cross-references
▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models
▶ Sequenced Semantics

▶ Snapshot Equivalence

▶Temporal Database

▶Temporal Data Models

▶Temporal Element

▶Temporal Query Languages

▶Time Domain

▶Time Interval

▶Time Period

▶Valid Time
Recommended Reading
1. Ariav G. A temporally oriented data model. ACM Trans. Data-

base Syst., 11(4):499–527, December 1986.

2. Bair J., Böhlen M., Jensen C.S., and Snodgrass R.T. Notions of

upward compatibility of temporal query languages. Bus. Inform.

(Wirtschafts Informatik), 39(1):25–34, February 1997.

3. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):407–456,

December 2000.

4. Chomicki J., Toman D., and Böhlen M.H. Querying ATSQL

databases with temporal logic. ACM Trans. Database Syst.,

26(2):145–178, June 2001.

5. Gadia S.K. and Nair S.S. Temporal databases: A prelude to

parametric data. In Temporal Databases: Theory, Design, and

Implementation, A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A.

Segev, R.T. Snodgrass (eds.). Benjamin/Cummings, Redwood

City, CA, USA, 1993, pp. 28–66.

6. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

December1994.

7. Lorentzos N.A. and Mitsopoulos Y.G. SQL extension for

interval data. IEEE Trans. Knowl. Data Eng., 9(3):480–499,

1997.

8. McKenzie E. and Snodgrass R.T. An evaluation of relational

algebras incorporating the time dimension in databases. ACM

Comput. Surv., 23(4):501–543, December 1991.

9. Melton J. and Simon A.R. Understanding the New SQL: A

Complete Guide. Morgan Kaufmann, San Mateo, CA, USA,

1993.

10. Navathe S. and Ahmed R. Temporal extensions to the relational

model and SQL. In Temporal Databases: Theory, Design, and

Implementation, A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A.

Segev, R.T. Snodgrass (eds.). Benjamin/Cummings, Redwood

City, CA, USA, 1993, pp. 92–109.

11. Sarda N. HSQL: A historical query language. In Temporal Data-

bases: Theory, Design, and Implementation, A. Tansel,

J. Clifford, S. Gadia, S. Jajodia, A. Segev, R.T. Snodgrass (eds.).

Benjamin/Cummings, Redwood City, CA, USA, 1993,

pp. 110–140.

12. Snodgrass R.T. The TSQL2 Temporal Query Language. Kluwer,

Boston, USA, 1995.

13. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, San Francisco, CA, USA,

July 1999.

2940T Temporal Conceptual Models
Temporal Conceptual Models

VIJAY KHATRI

Indiana University, Bloomington, IN, USA

Definition
A conceptual model provides a notation and formalism

that can be used to construct a high-level, implemen-

tation-independent description of selected aspects of

the “real world,” termed a miniworld. This process

is called conceptual modeling, and the resulting de-

scription is referred to as a conceptual schema. Concep-

tual modeling is an important part of systems analysis

and design. A temporal conceptual model provides

a notation and formalism with built-in support for

capturing temporal aspects of a miniworld during

conceptual design.

Historical Background
Temporal applications need to represent data semantics

not only related to “what” is important for the appli-

cation, but also related to “when” it is important.

The history of temporal conceptual models can be

viewed in terms of two generations. The first generation

temporal conceptual models, e.g., [2,14], provide sup-

port for only user-defined time; see Fig. 1a for an

example. In contrast to the first generation, the second

generation temporal conceptual models, e.g., [5,9,16],

provide varying degree of support for temporal

aspects; see Fig. 1b for an example. Because the first

generation temporal conceptual models provide sup-

port for representation of only user-defined time, they

may be thought of as “almost” time-agnostic conceptual

models; on the other hand, second generation temporal

conceptual models that support temporal semantics,

e.g., event, state, valid time, transaction time, may be

construed as time-aware conceptual models.

Foundations
To highlight core concepts developed in the research

related to temporal conceptual models, a framework of

linguists is adopted that studies symbols with respect

to three dimensions: syntactics, semantics and prag-

matics [13]. The syntactics dimension includes formal

relation between symbols, the semantics dimension

involves the study of symbols in relation to the desig-

natum (i.e., what the sign refers to) and the pragmatics

dimension includes the relation between symbols and

the interpreter.
In the following, a motivating example is employed

to differentiate between first and second generation

temporal conceptual models. Core concepts related

to temporal conceptual models are described using

syntactics, semantics and pragmatics.

Motivating Example

Figure 1a (first generation temporal conceptual model)

provides an example of an ER schema that requires

preserving the history of “prices” (of PRODUCT). Ad-

ditionally, there is another entity type, CUSTOMER,

whose existence needs to be modeled; the existence

history needs to take into account both when the cus-

tomer exists in the real world (Existence_history) and

when the customer was added to the database (Trans-

action_history). Further, a CUSTOMER “reviews”

PRODUCTs and the Effective_date on which the

PRODUCT was reviewed needs to be captured as well.

Because the first generation conceptual models do not

provide a mechanism to represent temporal concepts,

e.g., valid time, transaction time, event and state, these

are all represented using only user-defined time. For

example, the schema cannot differentiate Existence_his-

tory from Transaction_history, which are both repre-

sented simply as multi-valued attributes (double-lined

ellipse). Additionally, the database analyst needs tomake

ad-hoc decisions related to granularity of a user-defined

attribute such as Transaction_history. Start_date during

implementation. As a result of the lack of a mechanism

for directly mapping theminiworld to its representation,

database designers are left to discover, design, and im-

plement the temporal concepts in an ad-hoc manner.

The second generation temporal conceptual sche-

ma, referred to as the ST USM (geoSpatio-Temporal

Unifying Semantic Model) schema [9] shown in

Fig. 1b employs a textual string to represent temporal

semantics. For example, “Price” is associated with

valid time, which is represented as state (“S”) with

granularity of “min”(ute); further, the transaction

time related to price is not relevant (“–”). The tem-

poral semantics associated with “Price” are therefore

represented by a textual string of valid time state

(“S”), followed by a slash (“/”), followed by the speci-

fication of transaction time (“–”): “S (min)/–”. Be-

cause both the existence (or valid) time and

transaction time need to be recorded for the entity

type, CUSTOMER, the annotation string for CUS-

TOMER is specified as “S(day)/T”. Note that the

granularity of transaction time is not specified

Temporal Conceptual Models. Figure 1. Examples of the two generations of temporal conceptual models.

Temporal Conceptual Models T 2941

T

because it is system-defined. A CUSTOMER

“reviews” a PRODUCT at a certain point in time

(event, E), captured to the granularity of day (“E

(day)/–”).

In summary, while the first generation temporal

conceptual models provide a mechanism to represent

only user-defined time, the second generation temporal

conceptual models provide a mechanism to represent

temporal data semantics. The readers are referred to

Gregersen and Jensen [6] for a survey on various tem-

poral conceptual models of the second generation.

Syntactics

Prior research has employed both graphical (see, for

example, the TimeER Model [6]) and textual (see,

for example, the Temporal Entity Relationship Model,
TERM [11]) syntax to represent the temporal data

semantics.

While some of graphical temporal conceptual

models have changed the semantics of the constructs

of conventional conceptual models (see, for example,

[2]), others have proposed a new formalism for repre-

senting temporal aspects. The Temporal EER (TEER)

Model [3] gave new meaning to extant ER modeling

constructs such as the entity type, the attribute and the

relationship; for example, each entity of an entity type

is associated with a temporal element that represents

the lifespan of the entity, i.e., the semantics of an entity

type in a conventional conceptual model was changed.

On the other hand, most of the graphical temporal

conceptual models propose new constructs that repre-

sent the temporal aspects.

Temporal Conceptual Models. Figure 2. Internal

representation of human knowledge. (Adapted from HAM

Model [1].)

2942T Temporal Conceptual Models
Prior research has employed two ways to graphi-

cally represent temporal aspects using new constructs;

they are referred to as augmented (see, for example, the

TimeER Model [6] and ST USM [9]) and standalone

(see, for example, the Relationships, Attributes, Keys

and Entities (RAKE) Model [4]). The augmented

approaches construe second generation conceptual

schemas as “constrained” first generation schemas.

For example, ST USM employs a “shorthand” for

temporal semantics that is represented as annotations

(see, for example, Fig. 1b); however, the semantics of a

second generation schema (ST USM schema) can be

“unwrapped” using a first generation schema (USM

schema) and a set of constraints. The readers are re-

ferred to [9] for examples of and procedure for

“unwrapping” of the semantics of an annotated sche-

ma. In contrast, the standalone approaches suggest new

constructs for representing the temporal aspects. The

augmented approaches provide a mechanism for cap-

turing temporal data semantics at the second level of

abstraction; such approaches deliberately defer elicita-

tion of the temporal data semantics (“when”) from

the first level of abstraction that focuses on “what” is

important for the application. In contrast, the standa-

lone approaches provide a single level of abstraction for

representing both “what” and “when.”

Having outlined different syntax adopted by vari-

ous conceptual models, the temporal semantics that

need to be captured in a temporal conceptual model

are described next.

Semantics

Based on [8], definitions of different temporal aspects

that need to be represented in a temporal conceptual

model are outlined below.

An event occurs at a point in time, that is, it has no

duration (for example, a special promotion for a prod-

uct is scheduled on Christmas Eve this year (2007–12–

24)), while a state has duration (for example, a certain

price for a product is valid from 5:07 P.M. on 2005–11–

11 to 5:46 P.M. on 2007–1–11).

Facts can interact with time in two orthogonal

ways, resulting in transaction time and valid time.

Transaction time links a fact to the time that it becomes

current in the database, and implies the storage of

versions of data. The data semantics of transaction

time associated with a fact require that the fact can

exist in certain time periods in the past until now

(state). Valid time is used to record the time at which
a particular fact is true in the real world and implies the

storage of histories related to facts. The data semantics

of valid time associated with a fact imply that the fact

can exist at certain points in time (events) or in certain

time periods (states), in the past, the present, or the

future.

Granularities, which are intrinsic to temporal data,

provide a mechanism to hide details that are not

known or not pertinent for an application. Day,

minute, and second are examples of temporal granula-

rities related to the Gregorian calendar. The price

history for a manufacturing application may, for exam-

ple, be associated with a temporal granularity of “day,”

while the representation of price history for a stock

market application may require a temporal granularity

of “minute” or even “second.”

Pragmatics

Prior research suggests that “effective exchange of in-

formation between people and machines is easier if the

data structures that are used to organize the informa-

tion in the machine correspond in a natural way to

the conceptual structures people use to organize the

same information” [12]. Three criteria play a role in

how an “interpreter” (users) interacts with “symbols”

(conceptual schema): (i) “internal” representation;

(ii) snapshot reducibility; (iii) upward compatibility.

While snapshot reducibility and upward compatibility

may be rooted in syntactics and semantics, they affect

the pragmatic goal, comprehension.

Internal Representation All human knowledge is

stored as abstract conceptual propositions. Based on

propositions, Anderson and Bower’s [1] Human Asso-

ciative Model (HAM) represents information in the

long-term memory as shown in Fig. 2. A proposition

Temporal Conceptual Models T 2943
is an assertion about the real world that is composed

of a fact and context (associated with the fact). A subject

and predicate correspond with a topic and a comment

about the topic. For some applications, the context in

which the fact is true can be the key to reasoning about

the miniworld. This context in turn, is composed of

time and location associated with the fact. Note that the

“context” element is orthogonal to the “fact” element

and specifies the temporal reality for which the fact is

true. (This entry does not cover spatial aspects; see [9]

for details on a spatio-temporal conceptual model.) An

augmented approach that segregates “what” from

“when” corresponds with the way humans naturally

organize temporal information and should, thus, sup-

port comprehension of the schema.

Snapshot Reducibility Snapshot reducibility implies

a “natural” generalization of the syntax and semantics

of extant conventional conceptual models, e.g., the

ER Model [2], for incorporating the temporal
Temporal Conceptual Models. Table 1. Summary of a sam

models

Syntactics Semantics

Syntax

User-
defined
time

Valid time
and

transaction
time

Event
and
state Gra

First Generation

ER
Model
[2]

� “What”:
Graphical
� “When”:
NA

Yes No No No

Second Generation

TERM
[11]

� “What”:
Textual
� “When”:
Textual

Yes Valid time
only

Both Yes

TERC+
[16]

� “What”:
Graphical
� “When”:
Graphical

Yes Valid time
only

Both No

TimeER
[5]

� “What”:
Graphical
� “When”:
Textual

Yes Both Both No

ST USM
[9]

� “What”:
Graphical
� “When”:
Textual

Yes Both Both Yes
extension. Snapshot reducibility ensures that the se-

mantics of a temporal model are understandable “in

terms of” the semantics of the conventional conceptual

model. Here, the overall objective is to help ensure

minimum additional investment in a database analyst

training.

For example, in a “conventional” conceptual model

a key attribute uniquely identifies an entity (at a point

in time). A temporal key implies uniqueness at each

point in time. As may be evident, the semantics of a

temporal key here are implied by the semantics of a key

in a “conventional” conceptual model.

Upward Compatibility Upward compatibility refers

to the ability to render a conventional conceptual

schema temporal without impacting or negating that

legacy schema, thus, protecting investments in the

existing schemas. It also implies that both the legacy

schemas and the temporal schemas can co-exist. Up-

ward compatibility requires that the syntax and
ple of first and second generation temporal conceptual

Pragmatics

nularity

Consideration of
internal

representation
Upward

compatibility
Snapshot
reducibility

NA NA NA

No No No

No Yes Yes

No Yes Yes

Yes Yes Yes

T

2944T Temporal Conceptual Models
semantics of the traditional conceptual model remain

unaltered. An augmented approach that extends con-

ventional conceptual models would ensure upward

compatibility.
Summary

Because one of the important roles of conceptual mod-

eling is to support user-database analyst interaction,

the linguistics-based framework of evaluation is

broader: it not only includes syntactics and semantics

but also includes cognitive aspects in conceptual design

(pragmatics). Table 1 summarizes the evaluation of a

first generation and a few second generation temporal

conceptual models.
Key Applications
There are several applications of this research, both for

researchers and practitioners. (i) A temporal concep-

tual model can help support elicitation and represen-

tation of temporal data semantics during conceptual

design. (ii) A temporal conceptual schema can, thus,

be the basis for the logical schema and the database.

(iii) A temporal conceptual modeling approach can be

used as the basis for developing a design-support envi-

ronment. Such a design support environment can be

integrated with tools such as ERWin. (http://www.ca.

com/us/products/product.aspx?id=260)
Future Directions
Future research should explore how the temporal sche-

ma can be used as the canonical model for information

integration of distributed temporal databases. A tem-

poral conceptual model should also be extended to

incorporate schema versioning.

While an initial user study has been conducted

[10], future research should further evaluate temporal

conceptual modeling using, e.g., protocol analysis.

Studies that address how problem solving occurs

focus on “opening up the black box” that lies between

problem-solving inputs and outputs; that is, such

studies investigate what happens during individual

problem solving (isomorphic approach) rather than

simply observing the effects of certain stimuli averaged

over a number of cases, as in traditional studies (para-

morphic approach) [7]. The most common approach to

opening up the black box is to examine the character-

istics of the problem-solving process using protocol

analysis.
Experimental Results
To evaluate the augmented temporal conceptual design

approach, a user experiment [10] views conceptual

schema comprehension in terms of matching the

external problem representation (i.e., conceptual sche-

ma) with internal task representation, based on the

theory of HAM and the theory of cognitive fit [15].

The study suggests that the similarity between anno-

tated schemas (external representation) and the HAM

model of internal memory results in cognitive fit, thus,

facilitating comprehension of the schemas.
Cross-references
▶Now in Temporal Databases

▶ Schema Versioning

▶ Sequenced Semantics

▶ Supporting Transaction Time Databases

▶Temporal Data Models

▶Temporal Granularity
Recommended Reading
1. Anderson J.R. and Bower G.H. Human Associative Memory.

Washington, D.C.: V. H. Winston & Sons, 1973.

2. Chen P.P. The entity-relationship model – toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

3. Elmasri R., Wuu G., and Kouramajian V. A temporal model and

query language for EER databases. In Temporal Databases: The-

ory, Design and Implementation, A. Tansel (ed.). Benjamin/

Cummings, Menlo Park, CA, 1993, pp. 212–229.

4. Ferg S. Modeling the time dimension in an entity-relationship

diagram. In Proc. 4th Int. Conf. on Entity-Relationship Ap-

proach, 1985, pp. 280–286.

5. Gregersen H. and Jensen C. Conceptual Modeling of Time-

Varying Information. TIMECENTER Technical Report TR-35,

September 10, 1998.

6. Gregersen H. and Jensen C.S. Temporal entity-relationship mod-

els-A survey. IEEE Trans. Knowl. Data Eng., 11(3):464–497, 1999.

7. Hoffman P.J. The paramorphic representation of clinical judg-

ment. Psychol. Bull., 57(2):116–131, 1960.

8. Jensen C.S., Dyreson C.E., Bohlen M., Clifford J., Elmasri R.,

Gadia S.K., Grandi F., Hayes P., Jajodia S., Kafer W., Kline N.,

Lorentzos N., Mitsopoulos Y., Montanari A., Nonen D., Peresi E.,

Pernici B., Roddick J.F., Sarda N.L., Scalas M.R., Segev A.,

Snodgrass R.T., Soo M.D., Tansel A., Tiberio R., and Wieder-

hold G. A consensus glossary of temporal database concepts –

February 1998 Version. In Temporal Databases: Research and

Practice, O. Etzion, S. Jajodia, and S. Sripada (eds.). Springer

Berlin, 1998.

9. Khatri V., Ram S., and Snodgrass R.T. Augmenting a conceptual

model with geospatiotemporal annotations. IEEE Trans. Knowl.

Data Eng., 16(11):1324–1338, 2004.

10. Khatri V., Vessey I., Ram S., and Ramesh V. Cognitive fit between

conceptual schemas and internal problem representations: the

http://www.ca.com/us/products/product.aspx?id=260
http://www.ca.com/us/products/product.aspx?id=260

Temporal Constraints. Table 1. Consistency for

conjunctions of temporal constraints

Case Temporal constraints Integers Rationals

1. After, Before, Equal,
Inequal, AoE, BoE

O(v + e) O(v + e)

2. Addition O(ve) O(v + e)

3. Inequal, Difference NP-complete O(v3)

Temporal Constraints T 2945
case of geospatio-temporal conceptual schema comprehension.

IEEE Trans. Profession. Commun., 49(2):109–127, 2006.

11. Klopprogge M.R. TERM: an approach to include the time di-

mension in the entity relationship model. In Proc. 2nd Int. Conf.

on Entity-Relationship Approach, 1981, pp. 473–508.

12. Moens M. and Steedman M. Temporal ontology and temporal

reference. Comput. Linguist., 14(2):15–28, 1988.

13. Morris C.W. Foundations of the theory of signs. In Int. Encyclo-

pedia of Unified Science, vol. 1, 2nd edn. University of Chicago

Press, 1955.

14. Ram S. Intelligent database design using the unifying semantic

model. Inform. Manage., 29(4):191–206, 1995.

15. Vessey I. Cognitive fit: a theory-based analysis of graphs vs.

tables literature, Decision Sci., 22(2):219–240, 1991.

16. Zimanyi E., Parent C., Spaccapietra S., and Pirotte A. TERC+: a

temporal conceptual model. In Proc. Int. Symp. Digital Media

Information Base, 1997.
T

Temporal Constraints

PETER REVESZ

University of Nebraska-Lincoln, Lincoln, NE, USA

Definition
Temporal Constraints describe relationships among

variables that refer somehow to time. A set of temporal

constraints can be stored in a temporal database, which

is queried by temporal queries during problem solving.

For example, a set of temporal constraints may form

some requirements, all of which must be satisfied dur-

ing some scheduling problem.

Most interesting temporal constraints derive from

references to time in natural language. Such references

typically compare two time points, two sets of time

points, or two time intervals. The literature on temporal

constraints and this entry focuses on the study of these

types of comparative or binary constraints.

Historical Background
The seminal work on temporal intervals is by Allen [1].

Difference Bounded Matrices (see the Section on Sci-

entific Fundamentals) were introduced by Dill [3]. A

graph representation of difference constraints and effi-

cient constraint satisfaction problem-based solutions

for consistency of difference constraints were presented

by Dechter et al. [2]. A graph representation of gap-

order constraints and an efficient algebra on them is

presented by Revesz [11]. A graph representation of

set order constraints and algebra on them is described

in [12]. Addition constraints are considered in [12].
The complexity of deciding the consistency of con-

junctions of integer addition constraints in Table 1 is

from [9].

Periodicity constraint within query languages are

considered by Kabanza et al. [4] and Toman and

Chomicki [15]. Constraint databases [12,8] were

introduced by Kanellakis et al. [5] with a general

framework for constraints that includes temporal

constraints. Indefinite temporal constraint databases

were introduced by Koubarakis [6]. Linear cardinality

constraints on sets were considered by Kuncak et al.

[7] and Revesz [13].

Deciding the consistency of conjunctions of ratio-

nal (or real) difference and inequality constraints

was proven tractable by Koubarakis, but theO(v3) com-

plexity result in Table 1 is from Péron and Halbwachs

[10]. The NP-completeness result in Table 1 follows

from [14].

Foundations
Temporal constraints on time points express temporal

relationships between two time points, which are called

also time instances. More precisely, let x and y be

integer or rational variables or constants representing

time points, and let b be an integer constant. Then

some common temporal constraints on time points

include the following:

After : x > y

Before : x < y

Equal : x ¼ y

Inequal : x 6¼ y

After or Equal ðAoEÞ : x � y

Before or Equal ðBoEÞ : x � y

After by at least b ðGap�OrderÞ :
x � y � b where b � 0

Difference : x � y � b

Potential : x � y � b

Addition :
x
 y � b

Scheduling_Requirements

Second_Event First_Event After_By

0 e1 5

0 e2 2

e1 e3 �2
e1 e5 �9
e2 e1 �6
e3 e2 3

e3 e4 �3
e4 e3 �5
e5 e4 3

e5 e6 3

e6 0 1

2946T Temporal Constraints
In the above table, the first six constraints are called

qualitative constraints, and the last four constraints

are called metric constraints because they involve a

measure b of time units. For example, “a copyright

form needs to be filled out before publication” can

be expressed as tcopyright < tpublication, where tcopyright is

the time point when the copyright form is filled

out and tpublication is the time point when the paper

is printed. This constraint could be just one of the

requirements in a complex scheduling problem, for

example, the process of publishing in a book a

collection of research papers. Another temporal

constraint may express that “the publication must

be at least 30 days after the time of submission,”

which can be expressed by the constraint tpublication �
tsubmission � 30.

Temporal constraints on sets of time points express

temporal relationships between two sets of time points.

The domain of a set X is usually assumed to be the

finite and infinite subsets of the integers. Common

temporal constraints between sets of time points in-

clude the following:

Equal : X ¼ Y

Inequal : X 6¼ Y

Contains ðSet OrderÞ : X � Y

Disjoint : X \ Y ¼ ;
Overlap with b elements :

jX \ Y j ¼ b

where X and Y are set variables or constants, ; is

the empty set, b is an integer constant, and jj is the
cardinality operator. For example, “The Database

Systems class and the Geographic Information Systems

class cannot be at the same time” can be expressed as

TDatabase \ TGIS = ;, where TDatabase is the set of time

points (measured in hour units) the Database

System class meets, and TGIS is the set of time points

the Geographic Information Systems class meets.

Temporal constraints on time intervals express tem-

poral relationships between two time intervals. These

types of temporal constraints are known as Allen’s

Relations [Allen’s Relations] because they were studied

first by J. F. Allen [1].

Other types of temporal constraints: The various

other types of temporal constraints can be grouped

as follows:

� n-ary temporal constraints. These generalize the

binary temporal constraints to n number of
variables that refer to time. While temporal data-

bases typically use binary constraints, constraint

databases [5] use n-ary constraints [Constraint

Databases], for example linear and polynomial

constraints on n time point variables.

� Temporal periodicity constraints. Periodicity con-

straints [4,15] occur in natural language in phrases

such as “every Monday.” These constraints are

discussed separately in [Temporal Periodicity

Constraints].

� Indefinite temporal constraints. The nature of a

temporal constraint can be two types: definite

and indefinite. Definite constraints describe events

precisely, while indefinite constraints describe

events less precisely leaving several possibilities.

For example, “Ed had fever between 1 P.M. and

9 P.M. but at no other times” is a definite constraint

because it relays each time instance whether Ed

had a fever or not. On the other hand, “Ed had

fever for some time during 1 P.M. and 9 P.M.” is

an indefinite constraint because it allows the

possibility that Ed had fever at 5 P.M. and at no

other times, or another possibility that he had

fever between 1 P.M. and 4 P.M. and at no other

times. Hence it does not relay whether Ed had

fever at 5 P.M. Conjunctions of temporal con-

straints can be represented in a number of ways.

Consider a scheduling problem where one needs to

schedule the events e1,...,e6. Suppose that there are

some scheduling requirements of the form “some

(second) event occurs after another (first) event

by at least b days.” For example, each row of the

following table, which is a temporal database rela-

tion, represents one such scheduling constraint.

Temporal Constraints T 2947
Many queries are easier to evaluate on some

alternative representation of the above temporal

database relation. Some alternative representations

that may be used within a temporal database system

are given below.

Conjunctions of Constraints

Let x1,...,x6 represent,respectively, the times when

events e1,...,e6 occur. Then the Scheduling_Require-

ments relation can be represented also by the following

conjunction of difference constraints:

0� x1 � 5;

0� x2 � 2;

x1 � x3 � �2; x1 � x5 � �9; x2 � x1 � �6; x3�
x2 � 3; x3 � x4 � �3; x4 � x3 � �5; x5 � x4 � 3;

x5 � x6 � 3;

x6 � 0 � 1

Labeled Directed Graphs

In general, the graph contains n + 1 vertices represent-

ing all the n variables and 0. For each difference con-

straint of the form xi� xj� b, the graph contains also a

directed edge from the vertex representing xj to the

vertex representing xi. The directed edge is labeled by b.

Difference Bound Matrices

Conjunctions of difference constraints can be repre-

sented also by difference bound matrices (DBMs) of size

(n + 1) � (n + 1), where n is the number of variables.

For each difference constraint of the form xi � xj � b,

the DBM contains the value b in its (j, i)th entry.

The default value is �1. For example, above set

of difference constraints can be represented by the

following DBM:
0 x1 x2 x3 x4 x5 x6

0 �1 �1 �1 �1 �1 �1 1

x1 5 �1 � 6 �1 �1 �1 �1
x2 2 �1 �1 3 �1 �1 �1
x3 �1 � 2 �1 �1 � 5 �1 �1
x4 �1 �1 �1 � 3 �1 3 �1
x5 �1 � 9 �1 �1 �1 �1 �1
x6 �1 �1 �1 �1 �1 3 �1

T

A major question about temporal constraint formu-

las is whether they are consistent or satisfiable. A formula
is consistent or satisfiable if and only if it has at least

one substitution for the variables that makes the for-

mula true. Otherwise, it is called inconsistent or unsa-

tisfiable. For example, if the conjunction of difference

constraints that describe the Scheduling_Requirements

table is inconsistent, then there is no schedule of

the events e1,...,e6 such that all the requirements

are satisfied.

Table 1 summarizes some computational complex-

ity results, in terms of v the number of vertices and

e the number of edges in the graph representation.

Most complexity results translate deciding the

consistency to classical problems on graphs with effi-

cient and well-known solutions. Decher et al. [2] pro-

vides a translation to constraint satisfaction problems,

which use efficient search heuristics for large sets

of constraints. Many operations on DBMs can be de-

fined. These operators include conjunction or merge

of DBMs, variable elimination or projection of a vari-

able from a DBM, testing implication of a DBM by

a disjunction of DBMs, and transitive closure of a

DBM [12].

Temporal Constraints on Time Intervals.

In general, deciding the consistency of a conjunc-

tion of temporal constraints on intervals is NP-

complete. Many computational complexity results for

temporal constraints on time intervals follow from the

complexity results for temporal constraint on time

points. In particular, any conjunction of pointisable

temporal constraints on time intervals can be translat-

ed to a conjunction of temporal constraints on time

points. After the translation, the consistency can be

tested as before.
Key Applications
Temporal constraints are used in scheduling, planning,

and temporal database querying [Temporal Databases

Queries]. Temporal database queries usually take the

form of SQL or Datalog combined with temporal

constraints. Examples include Datalog with gap-order

constraints [11] and Datalog with periodicity con-

straints [15].
Future Directions
There are still many open problems on the use of

temporal constraints in temporal database query lan-

guages. An important problem is finding efficient

indexing methods for conjunctions of temporal

2948T Temporal Data Mining
constraints. The combination of temporal constraints

with spatial constraints is an interesting area within

spatiotemporal databases [Spatiotemporal Databases]

and constraint databases [12].
Cross-references
▶Database Query Languages

▶ Indexing

▶Temporal Dependencies

▶Temporal Integrity Constraints

▶Temporal Periodicity

Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

2. Dechter R., Meiri I., and Pearl J. Temporal constraint networks.

Artif. Intell., 49(1-3):61–95, 1991.

3. Dill D.L. Timing assumptions and verification of finite-state

concurrent systems. In Proc. Automatic Verification Methods

for Finite State Systems, 1989, pp. 197–212.

4. Kabanza F., Stevenne J.-M., and Wolper P. Handling infinite

temporal data. J. Comput. Syst. Sci., 51(1):1–25, 1995.

5. Kanellakis P.C., Kuper G.M., and Revesz P. Constraint query

languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

6. Koubarakis M. The complexity of query evaluation in

indefinite temporal constraint databases. Theor. Comput. Sci.,

171(1-2):25–60, 1997.

7. Kuncak V., Nguyen H.H., and Rinard M.C. An algorithm

for deciding BAPA: Boolean Algebra with Presburger Arithme-

tic. In Proc. 20th Int. Conf. on Automated Deduction, 2005,

pp. 260–277.

8. Kuper G.M., Libkin L., and Paredaens J. (eds.). Constraint

Databases. Springer, Berlin Heidelberg New York, 2000.

9. Lahiri S.K. and Musuvathi M. An efficient decision procedure

for UTVPI constraints. In Proc. 5th Int. Workshop on Frontiers

of Combining Systems, 2005, pp. 168–183.

10. Péron M. and Halbwachs N. An abstract domain extending

difference-bound matrices with disequality constraints. In

Proc. 8th Int. Conf. on Verification, Model Checking, and Ab-

stract Interpretation, 2007, pp. 268–282.

11. Revesz P. A closed-form evaluation for Datalog queries with

integer (gap)-order constraints. Theor. Comput. Sci., 116

(1):117–49, 1993.

12. Revesz P. Introduction to Constraint Databases. Springer, Berlin

Heidelberg New York, 2002.

13. Revesz P. Quantifier-elimination for the first-order theory of

Boolean algebras with linear cardinality constraints. In Proc.

8th Conf. on Advances in Databases and Information Systems,

2004, pp. 1–21.

14. Rosenkrantz D.J. and Hunt H.B. Processing conjunctive

predicates and queries. In Proc. 6th Int. Conf. on Very Data

Bases, 1980, pp. 64–72.

15. Toman D. and Chomicki J. Datalog with integer periodicity

constraints. J. Logic Program., 35(3):263–290, 1998.
Temporal Data Mining

NIKOS MAMOULIS

University of Hong Kong, Hong Kong, China

Synonyms
Time series data mining; Sequence data mining;

Temporal association mining
Definition
Temporal data mining refers to the extraction of im-

plicit, non-trivial, and potentially useful abstract infor-

mation from large collections of temporal data.

Temporal data are sequences of a primary data type,

most commonly numerical or categorical values and

sometimes multivariate or composite information.

Examples of temporal data are regular time series

(e.g., stock ticks, EEG), event sequences (e.g., sensor

readings, packet traces, medical records, weblog data),

and temporal databases (e.g., relations with time-

stamped tuples, databases with versioning). The com-

mon factor of all these sequence types is the total

ordering of their elements. They differ on the type of

primary information, the regularity of the elements in

the sequence, and on whether there is explicit temporal

information associated to each element (e.g., time-

stamps). There are several mining tasks that can

be applied on temporal data, most of which direc-

tly extend from the corresponding mining tasks on

general data types. These tasks include classification

and regression (i.e., generation of predictive data mod-

els), clustering (i.e., generation of descriptive data

models), temporal association analysis between events

(i.e., causality relationships), and extraction of temporal

patterns (local descriptive models for temporal data).
Historical Background
Analysis of time series data has been an old problem

in statistics [4], the main application being forecasting

for different applications (stock market, weather, etc.)

Classic statistical models for this purpose include auto-

regression and hidden Markov models. The term tem-

poral data mining came along as early as the birth

of data mining in the beginning of the 1990s. Soon

after association rules mining in large databases [1]

has been established as a core research problem, several

researchers became interested in association analysis in

Temporal Data Mining T 2949
long sequences and large temporal databases (see [12]

for a survey). One big challenge in temporal data

mining is the large volume of the data, which make

traditional autoregression analysis techniques inapplica-

ble. Another challenge is the nature of the data which is

not limited to numerical-valued time series, but

includes sequences of discrete, categorical, and compos-

ite values (e.g., sets). This introduces new, interesting

types of patterns, like causality relationships between

events in time, partial periodic patterns, and calendric

patterns.
Foundations
Classic data mining tasks, like classification, clustering,

and association analysis can naturally be applied on

large collections of temporal data. Special to temporal

databases, are the extraction of patterns that are fre-

quent during specific temporal intervals and the iden-

tification of temporal relationships between values or

events in large sequences. In the following, the above

problems are discussed in more detail.
T

Classification and Clustering

Classification of time series is often performed by

nearest neighbor (NN) classifiers [13]. Given a time

series~s of unknown label and a database D of labeled

samples, such a classifier (i) searches in D for the k

most similar time series to~s and (ii) gives~s the most

popular label in the set of k returned time series. This

process involves two challenges: definition of an

appropriate similarity function to be used by the NN

classifier and scalability of classification. The dissimi-

larity (distance) between two time series is typically

quantified by their Euclidean distance or the dynamic

time warping (DTW) distance. Like classification, clus-

tering of time series can be performed by applying an

off-the-shelf clustering algorithm [7] (e.g., k-means),

after defining an appropriate distance (i.e., dissimilari-

ty) function.

For sequences of categorical data, Hidden Markov

Models (HMM) can be used to capture the behavior of

the data. HMM can be used for classification as fol-

lows. For each class label, a probabilistic state transi-

tion model that captures the probabilities of seeing

one symbol (state) after the current one can be built.

Then a sequence is given the label determined by the

HMM that describes its behavior best.
Prediction

For continuous-valued sequences, like time series, regres-

sion is an alternative to classification. Regression does not

use a fixed set of class labels to describe each sequence, but

models sequences as functions, which are more appropri-

ate for predicting the values in the future. Autoregression

is a special type of regression, where future values are

predicted as a linear combination of recent previous

values, assuming that the series exhibits a periodic behav-

ior. Formally, an autoregressive model of order p for a

time series~s ¼ fs1; s2;:::g can be described as follows:

si ¼ ei þ
Xp
j¼1

fj si�j ;

where fj(1 � j � p) are the parameters of autoregres-

sion, and ei is an error term. The error terms are

assumed to be independent identically-distributed

random variables (i.i.d.) that follow a zero-mean nor-

mal distribution. The main trend of a time series is

commonly described by a moving average function,

which is a smoothed abstraction of the same length.

Formally, the moving average of order q for a time

series~s ¼ fs1; s2;:::g can be described as follows:

MAð~sÞi ¼ ei þ
Xq
j¼1

cj ei�j ;

where cj(1 � j � q) are the parameters of the model.

By combining the above two concepts, a time series~s

can be described by an autoregressive moving average

(ARMA) model:

si ¼ ei þ
Xp
j¼1

fj si�j þ
Xq
j¼1

cj ei�j ;

Autoregressive integrated moving average (ARIMA) is

a more generalized model, obtained by integrating an

ARMA model. In long time series, periodic behaviors

tend to be local, so a common practice is to segment

the series into pieces with constant behavior and gen-

erate an autoregression model at each piece.

Association Analysis and Extraction of Sequence

Patterns

Agrawal and Srikant [3] proposed one of the first

methods for association analysis in timestamped trans-

actional databases. A transactional database records

timestamped customer transactions (e.g., sets of books

2950T Temporal Data Mining
bought at a time) in a store (e.g., bookstore) and the

objective of the analysis is to discover causality relation-

ships between sets of items bought by customers. An

example of such a sequential pattern (taken from the

paper) is “5% of customers bought ‘Foundation,’ then

‘Foundation and Empire,’ and then ‘Second Founda-

tion,’ ” which can be represented by {(Foundation),

(Foundation and Empire),(Second Foundation)}. In

general, sequential patterns are total orders of sets of

items bought in the same transaction. For example,

{(Foundation,Life),(Second Foundation)} models the

buying of “Foundation” and “Life” at a single transac-

tion followed by “Second Foundation” at another

transaction. The patterns can be extracted by dividing

the database that records the transaction history of the

bookstore into groups, one per customer, and then

treat each group as an ordered sequence. For example,

the transactional database shown in Fig. 1a is trans-

formed to the grouped table of Fig. 1b.

The algorithm for extracting sequential patterns

from the transformed database is reminiscent to the

Apriori algorithm for frequent itemsets in transaction-

al databases [2]. It takes as input a minimum support

threshold min-sup and operates in multiple passes. In

the first pass, the items that have been bought by at

least min-sup of the customers are put to a frequent

items set L1. Then, orderings of pairs of items in L1
form a candidate set C2 of level-2 sequential patterns,

the supports of which are counted during the second

pass of the transformed database and the frequent ones

form L2. A sequence adds to the support of a pattern if

the pattern is contained in it. For example, the se-

quence {(A, C),(B, E),(F)} of customer C2 in Fig. 1

adds to the support of pattern {(A),(F)}. In general,

after Lk has been formed, the algorithm generates and

counts candidate patterns of k + 1 items. These
Temporal Data Mining. Figure 1. Transformation of a times
candidates are generated by joining pairs (s1, s2) of

frequent k-sequences, such that the subsequence

obtained by dropping the first item of s1 is identical to

the one obtained by dropping the last item of s2. For

example, {(A, B),(C)} and {(B), (C, D)} generate {(A,

B), (C, D)}. Candidates resulting from the join phase

are pruned if they have a subsequence that is not

frequent.

Agrawal and Srikant also considered adding con-

straints when counting the supports of sequential pat-

terns. For example, if “Foundation and Empire” is

bought 3 years after “Foundation,” these two books

may be considered unrelated. In addition, they consid-

ered relaxing the rigid definition of a transaction by

unifying transactions of the same customer that took

place close in time. For example, if a customer buys a

new book minutes after her previous transaction, this

book should be included in the previous transaction

(i.e., the customer may have forgotten to include it in

her basket before). Parallel to Agrawal and Srikant,

Mannila et al. [9] studied the extraction of frequent

causality patterns (called episodes) in long event

sequences. The main differences of this work are

(i) the input is a single very long sequence of events

(e.g., a stream of sensor indications), (ii) patterns

are instantiated by temporal sliding windows along

this stream of events, and (iii) patterns can contain

sequential modules (e.g., A after B) or parallel modules

(e.g., A and B in any order). An example of such an

episode is “C first, then A and B in any order, then D”.

To compute frequent episodes Mannila et al. [9] pro-

posed adaptations of the classic Apriori technique [2].

A more efficient technique for mining sequential pat-

terns was later proposed by Zaki [14].

Han et al. [6] studied the problem of mining partial

periodic patterns in long event sequences. In many
tamped transactional database.

Temporal Data Mining T 2951

T

applications, the associations between events follow a

periodic behavior. For instance, the actions of people

follow habitual patterns on a daily basis (i.e., “wake-up,”

then “have breakfast,” then “go to work,” etc.). Given a

long event sequence (e.g., the actions of a person over a

year) and a time period (e.g., 24 h), the objective is to

identify patterns of events that have high support over

all the periodic time intervals (e.g., days). For this pur-

pose, all subsequences corresponding to the activities of

each periodic interval can be extracted from the long

sequence, and a sequential pattern mining algorithm [3]

can be applied. Based on this idea, an efficient technique

for periodic pattern mining, which is facilitated by the

use of a sophisticated prefix tree data structure, was

proposed by Han et al. [6]. In some applications, the

time period every when the patterns are repeated

is unknown and has to be discovered from the data.

Towards this direction, Cao et al. [5] present a data

structure that automatically identifies the periodicity

and discovers the patterns at only a small number of

passes over the data sequence.

Temporal, Cyclic, and Calendric Association Rules

An association rule in a transactional database may not

be strong (according to specific support and confide-

nce thresholds) in the whole database, but only when

considering the transactions in a specified time interval

(e.g., during the winter of 2005). An association rule

bound to a time interval, where it is strong, is termed

temporal association rule [12]. Identification of such a

rule can be performed by starting from short time inter-

vals and progressively extending them to the maximum

possible length where the rule remains strong.

Özden et al. [10] noticed that association rules in

transactional databases (e.g., people who buy turkey they

also buy pumpkins) may hold only in particular tempo-

ral intervals (e.g., during the last week of November every

year). These are termed cyclic association rules, because

they are valid periodically, at a specific subinterval of

a cycle (e.g., year). Such rules can be discovered by

identifying the periodic intervals of fixed granularity

(e.g., week of the year), which support the associations.

Cyclic rules are assumed to be supported at exact

intervals (e.g., the last day of January), and at every

cycle (e.g., every year). In practice, a rule may be

supported with some mismatch threshold (e.g., the

last weekday of January) and only at the majority of

cycles (e.g., 80% of the cycles). Accordingly, the
“cyclic” rule concept was extended by Ramaswamy

et al. [11] to the more flexible calendric association

rule. A calendar is defined by a set of time intervals

(e.g., the last 3 days of January, every year). For a

calendric rule to be strong, it should have enough

support and confidence in at least min-sup% of the

time units included in the calendar. An algerbra for

defining calendars and a method for discovering calen-

dric association rules referring to them can be found in

Ref. [11].

Li et al. [8] proposed a more generalized frame-

work for calendric association rules. Instead of search-

ing based on a predetermined calendar, they

automatically identify the rules and their supporting

calendars, taken from a hierarchy of calendar concepts.

The hierarchy is expressed by a relation of temporal

generalizations of varying granularity, e.g., R(year,

month, day). A possible calendric pattern is expressed

by setting to each attribute, either a specific value of

its domain, or a wildcard value “∗.” For example,

pattern (∗, Jan, 30) means the 30th of January each

year, while (2005, ∗, 30) means the the 30th day of

each month in year 2005. By defining containment

relationships between such patterns (e.g., (∗, ∗, 30)

contains all the intervals of (2005, ∗, 30)) and observ-

ing that itemset supports for them can be computed

constructively (e.g., the support of an itemset in (∗,∗,

30) can be computed using its support in all (y, ∗, 30)

for any year y), Li et al. [8] systematically explore the

space of all calendric patterns using the Apriori princi-

ple to prune space (e.g., an itemset is not frequent in

(∗, ∗, 30) if it is infrequent in all (y, ∗, 30) for every

year y).
Key Applications

Weather Forecasting

Temporal causality relationships between events can as-

sist the prediction of weather phenomena. In fact, such

patterns have been used for this purpose since the an-

cient years (e.g., “if swallows fly low, it is going to rain

soon”).
Market Basket Analysis

Extension of classic association analysis to consider

temporal information finds application in market anal-

ysis. Examples include, temporal relationships between

2952T Temporal Data Models
products that are purchased within the same period by

customers (“5% of customers bought ‘Foundation,’

then ‘Foundation and Empire’ ”) and calendric associa-

tion rules (e.g., turkey is bought together with pumpkin

during the last week of November, every year).

Stock Market Prediction

Time-series classification and regression is often used

by financial analysts to predict the future behavior of

stocks. The structure of the time series can be com-

pared with external factors (such as pieces of news) to

derive more complex associations that result in better

accuracy in prediction.

Web Data Mining

The World Wide Web can be viewed as a huge graph

where nodes correspond to web pages (or web sites)

and edges correspond to links between them. Users

navigate through the web defining sequences of page

visits, which are tracked in weblogs. By analyzing these

sequences one can identify frequent sequential patterns

between web pages or even classify users based on their

behavior (sequences of sites they visit and sequences of

data they download).

Cross-references
▶Association rules

▶ Spatial and Spatio-Temporal Data Models and

Languages

▶Temporal Periodicity

▶Time Series Query
Recommended Reading
1. Agrawal R., Imielinski T., and Swami A.N. Mining association

rules between sets of items in large databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1993,

pp. 207–216.

2. Agrawal R. and Srikant R. Fast algorithms for mining association

rules in large databases. In Proc. 20th Int. Conf. on Very Large

Data Bases, 1994, pp. 487–499.

3. Agrawal R. and Srikant R. Mining sequential patterns. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 3–14.

4. Box G.E.P. and Jenkins G. Time Series Analysis, Forecasting and

Control. Holden-Day, 1990.

5. Cao H., Cheung D.W., and Mamoulis N. Discovering partial

periodic patterns in discrete data sequences. In Advances in

Knowledge Discovery and Data Mining, 8th Pacific-Asia Conf.,

2004, pp. 653–658.

6. Han J., Dong G., and Yin Y. Efficient mining of partial periodic

patterns in time series database. In Proc. 15th Int. Conf. on Data

Engineering, 1999, pp. 106–115.
7. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

8. Li Y., Ning P., Wang X.S., and Jajodia S. Discovering

calendar-based temporal association rules. Data Knowl. Eng.,

44(2):193–218, 2003.
9. Mannila H., Toivonen H., and Verkamo A.I. Discovery of

frequent episodes in event sequences. Data Min. Knowl. Discov.,

1(3):259–289, 1997.

10. Özden B., Ramaswamy S., and Silberschatz A. Cyclic association

rules. In Proc. 14th Int. Conf. on Data Engineering, 1998,

pp. 412–421.

11. Ramaswamy S., Mahajan S., and Silberschatz A. On the discov-

ery of interesting patterns in association rules. In Proc. 24th Int.

Conf. on Very Large Data Bases, 1998, pp. 368–379.

12. Roddick J.F. and Spiliopoulou M. A survey of temporal knowl-

edge discovery paradigms and methods. IEEE Trans. Knowl.

Data Eng., 14(4):750–767, 2002.

13. Wei L. and Keogh E.J. Semi-supervised time series classification.

In Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2006, pp. 748–753.

14. Zaki M.J. Spade: an efficient algorithm for mining frequent

sequences. Mach. Learn., 42(1/2):31–60, 2001.
Temporal Data Models

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Valid-time data model; Transaction-time data model;

Bitemporal data model; Historical data model

Definition
A “data model” consists of two components, namely

a set of objects and a language for querying those

objects [4]. In a temporal data model the objects vary

over time, and the operations in some sense “know”

about time. Focus has been on the design of data

models where the time references capture valid time,

or transaction time, or a combination of both (for

bitemporal data).

Historical Background
Almost all real-world databases contain time-referenced

data. Few interesting databases are entirely stagnant,

and when the modeled reality changes, the database

must be updated. Usually at least the start time of cur-

rently valid data are captured, though most databases

also retain previous data.

Temporal Data Models T 2953

T

Two decades of research into temporal databases

have unequivocally shown that a time-referencing table,

containing certain kinds of time-valued columns that

capture one or more temporal aspects of data recorded

in other columns, is completely different from this

table, without the time-valued columns. Effectively

designing, querying, and modifying time-referencing

tables requires a different set of approaches and tech-

niques. It is possible to handle such data within stan-

dard data models, generally at the expense of high

data redundancy, awkward modeling, and unfriendly

query languages. An alternative is a data model, prob-

ably an extension of an extant, non-temporal data

model, that explicitly incorporates time, making it

easier to express queries, modifications, and integrity

constraints.

As an example, consider a primary key of the

following relation, which records the current positions

of employees, identified by their social security num-

bers: EMP(EmpID, POSITION). The primary key is

obviously EmpID. Now add STARTTIME and STOP-

TIME attributes. While a primary key of (EmpID,

STARTTIME) seems to work, such a primary key will

not prevent overlapping periods, which would allow

an employee to have two positions at a point of time,

which is problematic. Stating the primary key con-

straint properly requires a complex assertion contain-

ing a dozen lines of code with multiple sub-queries [3].

Referential integrity is even more challenging.

The last two decades have seen the introduction

of a great many temporal data models, not just in

the context of relational data, as in the above example,

but also with object-oriented, logic-based, and semi-

structured data.

Foundations

Levels of Abstraction

Temporal data models exist at three abstraction levels:

the conceptual level, in which the data models are gen-

erally extensions of the Entity-Relationship Model,

the logical level, in which the data models are generally

extensions of the relational data model or of an object-

oriented data model, and, infrequently, the physical

level, in which the data model details how the data

are to be stored. In terms of prevalence, models at the

logical level are by far the most numerous. However, it

has been shown that several of the models that were

originally proposed as logical data models are actually
equivalent to the BCDM logical model, and should

more properly be viewed as physical data models [2].

This entry is restricted to logical models, focusing on

the objects that are subject to querying rather than

the query languages. First examined is the association

of time with data, as this is at the core of temporal

data management.

Temporal Aspects of Data

A database models and records information about a

part of reality, termed the modeled reality. Aspects

of the modeled reality are represented in the database

by a variety of structures, termed database entities.

In general, times are associated with database entities.

The term “fact” is used for any (logical) statement

that can meaningfully be assigned a truth value, i.e.,

true or false.

The facts recorded by database entities are of fun-

damental interest, and a fundamental temporal aspect

may be associated with these: the valid time of a fact is

the times when the fact is true in the modeled reality.

While all facts have a valid time by definition, the valid

time of a fact may not necessarily be recorded in the

database. For example, the valid time may not be

known, or recording it may not be relevant. Valid

time may be used for the capture of more applica-

tion-specific temporal aspects. Briefly, an application-

specific aspect of a fact may be captured as the valid

time of another, related fact.

Next, the transaction time of a database entity is the

time when the entity is current in the database. Like

valid time, this is an important temporal aspect. Trans-

action time is the basis for supporting accountability

and “traceability” requirements. Note that transaction

time, unlike valid time, may be associated with any

database entity, not only with facts. As for valid time,

the transaction-time aspect of a database entity may or

may not be captured in the database. The transaction-

time aspect of a database entity has a duration: from

insertion to deletion. As a consequence of the seman-

tics of transaction time, deleting an entity does not

physically remove the entity from the database; rather,

the entity remains in the database, but ceases to be part

of the database’s current state.

Observe that the transaction time of a database

fact, say f, is the valid time of the related fact, “f is

current in the database.” This would indicate that

supporting transaction time as a separate aspect is

redundant. However, both valid and transaction time

2954T Temporal Data Models
are aspects of the content of all databases, and record-

ing both of these is essential in many applications. In

addition, transaction time, due to its special semantics,

is particularly well-behaved and may be supplied auto-

matically by the DBMS. Specifically, the transaction

times of a fact stored in the database is bounded

by the time the database was created at one end of

the time line and by the current time at the other end.

The above discussion suggests why temporal data

models generally offer built-in support for one or both

of valid and transaction time.
Representation of Time

The valid and transaction time values of database enti-

ties are drawn from some appropriate time domain.

There is no single answer to how to perceive time in

reality and how to represent time in a database, and

different time domains may be distinguished with

respect to several orthogonal characteristics. First, the

time domain may or may not stretch infinitely into the

past and future. Second, time may be perceived as

discrete, dense, or continuous. Some feel that time is

really continuous; others contend that time is discrete

and that continuity is just a convenient abstraction

that makes it easier to reason mathematically about

certain discrete phenomena. In databases, a finite and

discrete time domain is typically assumed, e.g., in the

SQL standards. Third, a variety of different structures

have been imposed on time. Most often, time is

assumed to be totally ordered.

Much research has been conducted on the seman-

tics and representation of time, from quite theoretical

topics, such as temporal logic and infinite periodic

time sequences, to more applied questions such as

how to represent time values in minimal space. Sub-

stantial research has been conducted that concerns the

use of different time granularities and calendars in

general, as well as the issues surrounding the support

for indeterminate time values. Also, there is a signifi-

cant body of research on time data types, e.g., time

instants, time intervals (or “periods”), and temporal

elements.
Temporal Data Models. Figure 1. Point model.
Data Model Objects

The management of temporal aspects has been

achieved by building time into the data model objects.

Here, the relational model is assumed, with a focus on

valid time. One approach is to timestamp tuples with
time instants, or points. Then a fact is represented by

one tuple for each time point during which the fact

is valid. An example instance for the EMP relation

example is shown in Fig. 1.

A distinguishing feature of this approach is that

(syntactically) different relations have different informa-

tion content. Next, timestamps are atomic values that

can be easily compared. Assuming a totally ordered time

domain, the standard set of comparison predicates, =, 6¼,
<, >, �, and �, is sufficient to conveniently compare

timestamps. The conceptual simplicity of time points

comes at a cost, though. The model offers little support

for capturing, e.g., that employee 2 was assigned to Sales

during two contiguous periods [4,5] and [6,7], instead

of during a single contiguous period [4,7].

It is important to note that the point model is not

meant for physical representation, as for all but the

most trivial time domains, the space needed when

using the point model is prohibitive. The combination

of conceptual simplicity and low computational com-

plexity has made the point model popular for theoreti-

cal studies.

Another type of data model uses time periods as

timestamps. This type of model associates each fact

with a period that captures the valid time of the fact.

Multiple tuples are needed if a fact is valid over disjoint

periods. Figure 2 illustrates the approach.

The notion of snapshot equivalence, which reflects

a point-based view of data, establishes a correspon-

dence between the point-based and period-based mod-

els. Imagine that the last two tuples in the relation in

Fig. 2 were replaced with the single tuple (2, Sales,

[4,7]) to obtain a new relation. The resulting two

relations are different, but snapshot equivalent.

Temporal Data Models T 2955
Specifically, the new relation is a coalesced version of

the original relation.

In some data models, the relations are taken to con-

tain the exact same information. These models adopt a

point-based view and are only period-based in the weak

sense that they use time periods as convenient represen-

tations of (convex) sets of time points. It then also makes

sense for such models to require that their relation

instances be coalesced. This requirement ensures that

relation instances that are syntactically different are

also semantically different, and vice versa. In such

models, the relation in Fig. 2 is not allowed.

In an inherently period-based model, periods carry

meaning beyond denoting a set of points. In some

situations, it may make a difference whether an em-

ployee holds a position for two short, but consecutive

time periods versus for one long time period. Period-

based models do not enforce coalescing and capture

this distinction naturally.

Next, a frequently mentioned shortcoming of per-

iods is that they are not closed under all set operations,

e.g., subtraction. This has led to the proposal that

temporal elements be used as timestamps instead.

These are finite unions of periods.

With temporal elements, the same two semantics as

for periods are possible, although models that use

temporal elements seem to prefer the point-based

semantics. Figure 3a and Figure 3b uses temporal

elements to capture the example assuming the peri-

od-based semantics and point-based semantics,
Temporal Data Models. Figure 3. Temporal element model

Temporal Data Models. Figure 2. Period (or interval)

model.

T

respectively. (As [4,5] [[6,7] = [4,7], this latter period

could have been used instead of [4,5] [[6,7].)

Note that the instance in Fig. 3b exemplifies the

instances used by the point-based bitemporal conceptu-

al data model (BCDM) when restricted to valid time.

This model has been used for TSQL2. The BCDM time-

stamps facts with values that are sets of time points. This

is equivalent to temporal elements because the BCDM

adopts a discrete and bounded time domain.

Because value-equivalent tuples are not allowed (this

corresponds to the enforcement of coalesced relations as

discussed earlier), the full history of a fact is contained in

exactly one tuple, and one tuple contains the full history

of exactly one fact. In addition, relation instances that are

syntactically different have different information con-

tent, and vice versa. This design decision reflects the

point-based underpinnings of the BCDM.

With temporal elements, the full history of a fact is

contained in a single tuple, but the information in a

relation that pertains to some real-world object may still

be spread across several tuples. To capture all information

about a real-world object in a single tuple, attribute value

timestamping has been introduced. This is illustrated

in Fig. 4, which displays the sample instance using a

typical attribute-value timestamped data model.

The instance records information about employees

and thus holds one tuple for each employee, with a

tuple containing all information about an employee.

An obvious consequence is that the information about

a position cannot be contained in a single tuple. An-

other observation is that a single tuple may record

multiple facts. In the example, the first tuple records

two facts: the position type for employee 1 for the two

positions, Sales and Engineering.

It should also be noted that different groupings

into tuples are possible for this attribute-value time-

stamping model. Figure 5 groups the relation instance

in Fig. 4 on the POSITION attribute, indicating that it

is now the positions, not the employees, that are the

objects in focus.
.

Temporal Data Models. Figure 4. Attribute-value

timestamped model.

Temporal Data Models. Figure 5. Attribute-value

timestamped model, grouped on POSITION.

Temporal Data Models. Figure 6. Attribute-value

timestamped model, temporally grouped.

2956T Temporal Data Models
Data models that timestamp attribute values may

be temporally grouped. In a temporally grouped

model, all aspects of a real-world object may be cap-

tured by a single tuple [1].

At first sight, that attribute-value timestamped

model given above is temporally grouped. However,

with a temporally grouped model, a real-world object

is allowed to change the value for its key attribute. In

the example, this means that the instance in Fig. 6

should be possible. Now observe that when grouping

this instance on EmpID or POSITION, or both, it is not

possible to get back to the original instance. Thus,

temporally grouped tuples are not well supported.

Clifford et al. [1] explore the notion of temporally

grouped models in considerable depth.

Query Languages

Having covered the objects that are subject to query-

ing, the last major aspect of a logical data model is the

query language associated with the objects. Such lan-

guages come in several variants.

Some are intended for internal use inside a tempo-

rally enhanced database management system. These

are typically algebraic query languages. However, alge-

braic languages have also been invented for more the-

oretical purposes. For example, an algebra may be used

for defining the semantics of a temporal SQL exten-

sion. A key point is that an algebra is much simpler

than is such an extension. Little is needed in terms of
language design; only a formal definition of each oper-

ator is needed.

Other query languages are targeted at application

programmers and are thus typically intended to re-

place SQL. The vast majority of these are SQL exten-

sions. Finally, languages have been proposed for

the purpose of conducting theoretical studies, e.g., of

expressive power.

Key Applications
Virtually all databases contain temporal information,

and so virtually all database applications would benefit

from the availability of data models that provide natu-

ral support for such time-varying information.

Future Directions
Rather than come up with a new temporal data model,

it now seems better to extend, in an upward-consistent

manner, existing non-temporal models to accommo-

date time-varying data.

Cross-references
▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶ Probabilistic Temporal Databases

▶ Supporting Transaction Time Databases

▶Temporal Access Control

▶Temporal Compatibility

▶Temporal Concepts in Philosophy

▶Temporal Conceptual Models

▶Temporal Constraints

▶Temporal Database

▶Temporal Indeterminacy

▶Temporal Logical Models

▶Temporal Object-Oriented Databases

▶Temporal Query Languages

▶Temporal XML

▶Transaction Time

▶Valid Time

Temporal Database T 2957
Recommended Reading
1. Clifford J., Croker A., and Tuzhilin A. On completeness of

historical relational query languages. ACM Trans. Database

Syst., 19(1):64–16, March 1994.

2. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

December 1994.

3. Snodgrass R.T. Developing Time-Oriented Database App-

lications in SQL, Morgan Kaufmann, San Francisco, CA,

July 1999.

4. Tsichritzis D.C. and Lochovsky F.H. Data Models. Software

Series. Prentice-Hall, 1982.
Temporal Data Warehousing

▶Data Warehouse Maintenance, Evolution and

Versioning
T

Temporal Database

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Historical database; Time-oriented database

Definition
A temporal database is a collection of time-referenced

data. In such a database, the time references capture

some temporal aspect of the data; put differently, the

data are timestamped. Two temporal aspects are prev-

alent. The time references may capture either the past

and current states of the database, yielding a transac-

tion-time database; they may capture states of the

reality being modeled by the data, yielding a valid-

time database; or they may capture both aspects of

the data, yielding a bitemporal database.
Historical Background
“Time” is a fundamental concept that pervades all

aspects of daily life. As one indicator, a recent study

by Oxford University Press found that the word “time”

is the most commonly used noun in the English
language. The nouns “year” and “day” rank third and

fifth in the study.

Moving to a database context, the capture and

representation of time-varying information go back

literally thousands of years. The Egyptians and Syrians

carved records into stone walls and pyramids of inven-

tories of grain over many years. But it has been only in

the last few decades that the advent of increasingly

inexpensive and voluminous digital storage has en-

abled the computerized management of increasingly

large volumes of time-referenced data.

Temporal databases have been the subject of

intense study since the early 1980s. A series of bib-

liographies on temporal databases enumerates the

thousands of refereed papers that have been written

on the subject (the series started with Boulour’s paper

[3]; the most recent in the series is by Wu et al. [17]).

There have also been more specialized bibliographies

[2,9,13].

The first temporal database conference was held in

Sofie Antipolis, France in 1987 [1]. Two workshops,

the Temporal Database Workshop in Arlington, Texas

in 1993 and in Zürich, Switzerland in 1995 [8], were

held subsequently. The premier conferences on the

topic are the International Symposium on Temporal

Representation and Reasoning (TIME) (held annually

since 1994), the International Symposium on Spatial

and Temporal Databases (SSTD) (held biannually),

and the Spatio-Temporal Database Management

(STDBM) series (three up through 2006).

A seminal book collecting important results to date

in this field appeared in 1993 [16]. Several surveys have

been written on the topic [4–7, 10–12, 14, 15]. Tempo-

ral databases were covered in detail in an advanced

database textbook [18].

Foundations
Time impacts all aspects of database technology, includ-

ing database design (at the conceptual, logical, and

physical levels) and the technologies utilized by a data-

base management system, such as query and modifica-

tion languages, indexing techniques and data structures

query optimization and query evaluation techniques,

and transaction processing.

The entries related to temporal databases go into

more detail about these aspects. The following pro-

vides an organization on those entries (which are indi-

cated in italics).

2958T Temporal Database
General Concepts

� Philosophers have thought hard about time (tem-

poral concepts in philosophy).

� Two general temporal aspects of data attract special

attention: valid time and transaction time.

� The time domain can be differentiated along several

aspects: its structure, e.g., linear or branching; dis-

crete versus continuous; bounded or infinite.

� Just as multiple versions of data may be stored,

independently, the schemas can be versioned

(schema versioning).

� The concept of “now” is important (now in tempo-

ral databases).

Temporal Data Models

� Temporal conceptual models generally extend an

existing conceptual model, such as one of the var-

iants of the Entity-Relationship model.

� Temporal logical models generally extend the rela-

tional model or an object-oriented model (temporal

object-oriented models) or XML (temporal XML).

� Data can be associatedwith time in several ways: with

time points (point-stamped temporal models) or

time periods (period-stamped temporal models);

these may capture valid and/or transaction time;

and the associations of the data with the time values

may carry probabilities (temporal probabilistic

models).

� The time values associated with the data are char-

acterized by their temporal granularity, and they

may possess temporal indeterminacy and temporal

periodicity.

� Data models incorporate temporal constraints,

temporal integrity constraints, and temporal

dependencies.
Temporal Query Languages

� Most temporal query languages are based on the

relational algebra or calculus. Not surprisingly,

much attention has been given to the design of

user-level temporal query languages, notably SQL-

based temporal query languages. For such languages,

different notions of temporal compatibility have

been an important design consideration.

� Qualitative temporal reasoning and temporal logic in

database query languages provide expressive query

facilities.
� Temporal vacuuming provides a way to control the

growth of an otherwise append-only transaction-

time database.

� TSQL2 and its successor SQL/Temporal provided a

way for many in the temporal database community

to coordinate their efforts in temporal query lan-

guage design and implementation.

� Temporal query processing involves disparate archi-

tectures, from temporal strata outside the conven-

tional DBMS to adding native temporal support

within a DBMS.

� Supporting transaction time in an efficient manner

in the context of transactions is challenging and

generally requires changes to the kernel of a DBMS.

� Temporal algebras extend the conventional relation-

al algebra. Some specific operators (e.g., temporal

aggregation, temporal coalescing, temporal joins)

have received special attention.

� Temporal storage structures and indexing techni-

ques have also received a great deal of attention

(temporal indexing).

� Temporal visual languages have also been designed

that present graphical user interfaces, as contrasted

with the textual form of the temporal query lan-

guages mentioned previously.

Temporal Applications

� Temporal access control uses temporal concepts in

database security.

� Temporal data mining has recently received a lot of

attention.

� Time series has also been an active area of research.

� Other applications include temporal constraint sat-

isfaction, support for planning systems, and natural

language disambiguation.

The concepts of temporal databases are also making

their way into research on data warehousing, OLAP,

and data streams.

Key Applications
As storage costs decrease, more databases are retaining

historical data. The dual of such a decrease is that the

cost of deletion is effectively increasing, as the applica-

tion then has to explicitly make the decision on what to

retain and what to delete, and the DBMS has to revisit

the data on disk in order to move it. Some have

asserted that it may be simpler to simply disallow

deletion (except for purging of unneeded records,

Temporal Database T 2959
termed temporal vacuuming) within a DBMS, render-

ing all databases by default temporal databases.

Commercial products are starting to include tem-

poral support. Most notably, the Oracle database man-

agement system has included temporal support from

its 9i version. Lumigent’s LogExplorer product pro-

vides an analysis tool for Microsoft SQLServer logs,

to allow one to view how rows change over time (a

nonsequenced transaction-time query) and then to

selectively back out and replay changes, on both rela-

tional data and the schema (it effectively treats the

schema as a transaction-versioned schema). aTempo’s

Time Navigator is a data replication tool for DB2,

Oracle, Microsoft SQL Server, and Sybase that extracts

information from a database to build a slice repository,

thereby enabling image-based restoration of a past

slice; these are transaction time-slice queries. IBM’s

DataPropagator can use data replication of a DB2 log

to create both before and after images of every row

modification to create a transaction-time database that

can be later queried.
T

Future Directions
While much progress has been made in all of the

above listed areas, temporal database concepts and

technologies have yet to achieve the desired levels of

simplification and comprehensibility. While many of

the subtleties of temporal data and access and storage

thereof have been investigated, in many cases quite

thoroughly, a synthesis is still needed of these con-

cepts and technologies into forms that are usable by

novices.

Given the simplifications of data management

afforded by built-in support of time in database man-

agement systems, it is hoped that DBMS vendors will

continue to enhance the temporal support in their

products.
Cross-references
▶Bi-Temporal Indexing

▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶ Probabilistic Temporal Databases

▶Qualitative Temporal Reasoning

▶ Schema Versioning

▶ SQL-Based Temporal Query Languages
▶ Supporting Transaction Time Databases

▶Temporal Access Control

▶Temporal Aggregation

▶Temporal Algebras

▶Temporal Coalescing

▶Temporal Compatibility

▶Temporal Concepts in Philosophy

▶Temporal Conceptual Models

▶Temporal Constraints

▶Temporal Database

▶Temporal Data Mining

▶Temporal Data Models

▶Temporal Dependencies

▶Temporal Granularity

▶Temporal Indeterminacy

▶Temporal Integrity Constraints

▶Temporal Joins

▶Temporal Logic in Database Query Languages

▶Temporal Logical Models

▶Temporal Object-Oriented Databases

▶Temporal Periodicity

▶Temporal Query Languages

▶Temporal Query Processing

▶Temporal Strata

▶Temporal Vacuuming

▶Temporal Visual Languages

▶Temporal XML

▶Time Domain

▶Time Series

▶TSQL2
Recommended Reading
1. Rolland C., Bodart F., and Leonard M. (eds.). In Proc. Conf. on

Temporal Aspects in Information Systems. North-Holland/

Elsevier, 1987.

2. Al-Tara K.K., Snodgrass R.T., and Soo M.D. A bibliography on

spatio- temporal databases. Int. J. Geogr. Inf. Syst., 8(1):95–103,

January–February 1994.

3. Boulour A., Anderson T.L., Dekeyser L.J., and Wong H.K.T. The

role of time in information processing: a survey. ACM SIGMOD

Rec., 12(3):27–50,April 1982.

4. Böhlen M.H., Gamper J., and Jensen C.S. Temporal databases. In

Handbook of Database Technology, J. Hammer, M. Schneider

(eds.). Computer and Information Science Series. Chapman and

Hall, to appear.

5. BöhlenM.H. and Jensen C.S. Temporal data model and query

language concepts. In Vol. 4.Encyclopedia of Information Sys-

tems, Academic, New York, NY, USA, 2003, pp. 437–453.

6. Chomicki J. Temporal query languages: A survey. In Proc. 1st

Int. Conf. on Temporal Logic, 1994, pp. 506–534.

2960T Temporal Dependencies
7. Chomicki J. and Toman D. Temporal databases. In Handbook of

Time in Artificial Intelligence, M.’ Fisher et al. (eds.). Elsevier,

Amsterdam, The Netherlands, 2005.

8. Clifford J. and Tuzhilin A. (eds.). In Proc. International Work-

shop on Temporal Databases: Recent Advances in Temporal

Databases, 1995.

9. Grandi F. Introducing an annotated bibliography on temporal

and evolution aspects in the World Wide Web. ACM SIGMOD

Rec., 33(2):84–86, June 2004.

10. Jensen C.S. and Snodgrass R.T. Temporal data management.

IEEE Trans. Knowl. Data Eng., 11(1):36–44, January/February

1999.

11. López I.F.V., Snodgrass R.T., and Moon B. Spatiotemporal ag-

gregate computation: A survey. IEEE Trans. Knowl. Data Eng.,

17(2):271–286, February 2005.

12. Özsoyoǧlu G. and Snodgrass R.T., Temporal and real-time data-

bases: A survey. IEEE Trans. Knowl. Data Eng., 7(4):513–532,

August 1995.

13. Roddick J.F. and Spiliopoulou M. A bibliography of temporal,

spatial and spatio-temporal data mining research. SIGKDD

Explor., 1(1):34–38, January 1999.

14. Snodgrass R.T. Temporal databases: Status and research direc-

tions. ACM SIGMOD Rec., 19(4):83–89, December 1990.

15. Snodgrass R.T. Temporal databases. In Proc. Int. Conf. on GIS:

From Space to Territory, 1992, pp, 22–61.

16. Tansel A., Clifford J., Gadia S., Jajodia S., Segev A., and Snod-

grass R.T. (eds.). Temporal databases: Theory, design, and

implementation. Database Systems and Applications Series.

Benjamin/Cummings, Redwood City, CA, USA, March 1993,

pp. 633+xx.

17. Wu Y., Jagodia S., and Wang X.S. Temporal database bibliogra-

phy update. In Temporal Databases – Research and Practice.

D. Etzion, S. Jajodla and S. Sripada (eds.). Springer, Berlin,

1998, pp. 338–367.

18. Zaniolo C., Ceri S., Faloutsos C., Snodgrass R.T., Subrahmanian

V.S., and Zicari R. Advanced Database Systems. Morgan

Kaufmann, San Francisco, CA, 1997.
Temporal Dependencies

JEF WIJSEN

University of Mons-Hainaut, Mons, Belgium

Definition
Static integrity constraints involve only the current

database state. Temporal integrity constraints involve

current, past, and future database states; they can be

expressed by essentially unrestricted sentences in tem-

poral logic. Certain syntactically restricted classes of

temporal constraints have been studied in their own

right for considerations of feasibility or practicality;
they are usually called temporal dependencies. Most

temporal dependencies proposed in the literature are

dynamic versions of static functional dependencies.

Historical Background
Static dependencies (functional, multivalued, join,

and other dependencies) have been investigated in

depth since the early years of the relational model.

Classical problems about dependencies concern logical

implication and axiomatization. The study of a partic-

ular dependency class is often motivated by its practi-

cal importance in databases. This is undeniably the

case for the notion of functional dependency (FD),

which is fundamental in database design. A dynamic

version of functional dependencies was first proposed

by Vianu [7]. Since the mid 1990’s, several other tem-

poral variants of the notion of FD have been

introduced.

Foundations
This section gives an overview of several temporal

dependency classes proposed in the literature. With

the exception of the notion of dynamic algebraic depen-

dency (DAD) [2], all temporal dependencies here pre-

sented can be seen as special cases of the notion of

constraint-generating dependency (CGD) [1]. The for-

malism of CGD, presented near the end, thus allows to

compare and contrast different temporal dependency

classes.

Functional Dependencies Over Temporal Databases

Since the semantics of temporal versions of FDs will be

explained in terms of static FDs, the standard notion of

FD is recalled next. All the following definitions are

relative to a fixed set U = {A1,...,An} of attributes.

Definition A tuple overU is a set t = {A1 : c1,...,An : cn},

where each ci is a constant. If X � U, then t[X] denotes

the restriction of t to X. A relation over U is a finite set of

tuples over U.

A functional dependency (FD) over U is an expres-

sion X! Y where X,Y � U. A relation I over U satisfies

the FD X! Y if for all tuples s,t 2 I, if s[X] = t[X], then

s[Y] = t[Y].

When evaluating FDs over temporal relations, one

may want to treat timestamp attributes different from

other attributes. To illustrate this, consider the temporal

relation EmpInterval with its obvious meaning.

Temporal Dependencies T 2961
EmpInterval
Name Sex Sal Project From To

Ed M 10K Pulse 1 3

Ed M 10K Wizard 2 3

Ed M 12K Wizard 4 4

‘ old a ‘ new a
Nǎme Sěx Měrit Sǎl Nâme Sêx Mêrit Sâl

John
Smith

M Poor 10K John
Smith

M Good 12K

An Todd F Fair 10K An Todd F Good 12K

Ed Duval M Fair 10K Ed Duval M Fair 10K
An employee has a unique sex and a unique salary,

but can work for several projects. The salary, unlike

the sex, may change over time. The relation EmpIn-

terval is “legal” with respect to these company rules,

because for any time point i, the snapshot relation

{t[Name, Sex,Sal, Project] j t 2 EmpInterval, t(From)

� i � t(To)} satisfies Name !Sex and Name ! Sal.

Note that the relation EmpInterval violates the FD

Name ! Sal, because the last two tuples agree on

Name but disagree on Sal. However, since these tuples

have disjoint periods of validity, they do not go against

the company rules.

Hence, the intended meaning of an FD expressed

over a temporal relation may be that the FD must be

satisfied at every snapshot. To indicate that Name

!Sal has to be evaluated on snapshots, Jensen et al.

[6] use the notation Name !T Sal. The FD Name

!Sex needs no change, because the sex of an employee

should be unique not only at each snapshot, but also

over time.

Chomicki and Toman [3] note that no special

syntax is needed if tuples are timestamped by time

points. For example, given the following point-

stamped temporal relation, one can simply impose

the classical FDs Name!Sex and Name, T!Sal.

EmpPoint
Name Sex Sal Project T

Ed M 10K Pulse 1

Ed M 10K Pulse 2

Ed M 10K Pulse 3

Ed M 10K Wizard 2

Ed M 10K Wizard 3

Ed M 12K Wizard 4

T

Vianu’s Dynamic Functional Dependency [7]

Consider an employee table with attributes Name, Sex,

Merit, and Sal, with their obvious meanings. The
primary key is Name. Assume an annual companywide

update of merits and salaries. In the relation shown

next, every tuple is followed by its updated version.

Old values appear in columns with a caron (∨), new

values in columns with a caret (∧). For example, John

Smith’s salary increased from 10 to 12K. Such a rela-

tion that juxtaposes old and new values is called action

relation.
The company’s policy that “Each new salary is

determined solely by new merit and old salary” can be

expressed by the classical FD Sǎl, Mêrit !Sâl on the

above action relation. In particular, since John Smith

and An Todd agree on old salary and new merit, they

must have the same new salary. Such FDs on action

relations were introduced by Vianu [7] and called

dynamic functional dependencies.
Definition For each Ai 2 U, assume that Ǎi and

Âi are new distinct attributes. Define Ǔ = {Ǎ1,...,

Ǎn} and Û = {Â1,...,Ân}. For t = {A1 : c1,...,An : cn},

define:

�t ¼ �A1 : c1;:::;�An : cn
� �

; a tuple over �U ; and

t̂ ¼ Â1 : c1;:::;Ân : cn
� �

; a tuple over Û

A Vianu dynamic functional dependency (VDFD)

over U is an FD X ! Y over �UÛ such that for each

A 2 Y , XA contains at least one attribute from Ǔ and

one attribute from Û.

An update over U is a triple hI, m, Ji, where I and J

are relations over U and m is a bijective mapping from I

to J. The update hI, m, Ji satisfies the VDFD X ! Y if

the action relation {ť [ŝj t 2 I, s = m(t)} satisfies the FD
X! Y.

The notion of VDFD directly extends to sequences

of database updates. The interaction between dynamic

VDFDs and static FDs is studied in [7].

Name City Merit Sal From To

Ed Paris Poor 10K 1 2

Ed London { 10K 3 4

2962T Temporal Dependencies
Temporal Extensions of Functional Dependency

Proposed by Wijsen [9, 10, 11, 12]

Instead of extending each tuple with its updated ver-

sion, as is the case for VDFDs, one can take the union

of the old relation and the new relation:
The company’s policy that “Every change in merit

(promotion or demotion) gives rise to a salary change,” is

expressed by Name, Sal!� Merit and means that the

FD Name, Sal !Merit must be satisfied by the union

of the old and the new relation. In particular, since

Ed Duval’s salary did not change, his merit cannot have

changed either. Likewise, “The sex of an employee can-

not change” is expressed byName!� Sex. The construct

!� naturally generalizes to database histories that in-

volve more than two database states.

Definition AWijsen dynamic functional dependency

(WDFD) over U is an expression of the form X!� Y ,

where X, Y � U.

A database history is a sequence hI1,I2,I3,...i, where
each Ii is a relation over U. This history satisfies X!� Y if

for every i 2 {1,2,...}, Ii [Ii+1 satisfies X! Y.

Although Ii+1 can be thought of as the result of an

update performed on Ii, there is no need to model a

one-one relationship between the tuples of both rela-

tions, as was the case for VDFDs. VDFDs and WDFDs

capture different types of constraints, even in the pres-

ence of some attribute that serves as a time-invariant

tuple-identifier. This difference will be illustrated

later on in the discussion of constraint-generating

dependencies.

In practice, database histories will be be stored in

relations with timestamped tuples. Like FDs, WDFDs

can result in predictable (i.e., redundant) values. For

example, if the following relation has to satisfy Name,

Sal!� Merit , then the value for the placeholder { must

be equal to “Poor.”Wijsen [9] develops temporal variants

of 3NF to avoid data redundancy caused by WDFDs.

WDFDs can be naturally generalized as follows:

instead of interpreting FDs over unions of successive

database states, the syntax of FD is extended with a
binary relation on the time domain, called time acces-

sibility relation, that indicates which tuple pairs must

satisfy the FD.

Definition A time accessibility relation (TAR) is a

subset of {(i,j) j 1 � i � j}. A generalized WDFD over

U is an expression X!aY , where X,Y � U and a is a

TAR. This generalized WDFD is satisfied by database

history hI1,I2,I3,...i if for all (i,j) 2 a, s 2 Ii, t 2 Ij, if

s[X] = t[X], then s[Y] = t[Y].

If the TAR Next is defined by Next ={(1,1),(1,2),

(2,2),(2,3),(3,3),(3,4),...}, then X!NextY and X!� Y

are equivalent. TARs can also capture the notion of

time granularity. For example, MonthTAR can be

defined as the TAR containing (i, j) whenever i � j

and time points i, j belong to the same month. Then,

Name!MonthTAR Sal expresses that the salary of an

employee cannot change within a month.

The temporal functional dependencies proposed

in [11] extend this formalism with a notion of identity,

denoted by l, similar to object-identity. The identity

is time-invariant and allows to relate old and new

versions of the same object. For example, Emp:

l!NextName means that the name of an employee

object cannot change from one time to the next.

Trend dependencies [10,12] extend generalized

WDFDs in still another way by allowing both equali-

ties and inequalities. They can be seen as a temporal

extension of the concept of order dependency intro-

duced by Ginsburg and Hull [4]. For example,

(Name,=) !Next(Sal,�) expresses that the salary of

an employee cannot decrease. Technically, it is

satisfied by a database history hI1,I2,I3,...i if for all

(i, j) 2 Next, if s 2 Ii and t 2 Ij and s(Name) = t

(Name), then s(Sal) � t(Sal).
Wang et al.’s Temporal Functional Dependency [8]

The dynamic versions of FDs introduced by Vianu and

Wijsen can impose constraints on tuples valid

at successive time points. Wang et al.’s notion of tem-

poral functional dependency (TFD) concentrates on

temporal granularity and compares tuples valid during

the same granule of some temporal granularity. The

Name Sal T : Month

Ed 10K Nov-2007

Ed 11K Dec-2007

Ed 12K Jan-2008

Name Position T : Year

Temporal Dependencies T 2963
main idea is captured by the following definitions that

are simplified versions of the ones found in [8].

Definition Assume a linear time domain (D, <). Every

nonempty subset of D is called a granule. Two distinct

granules G1 and G2 are said to be non-interleaved if each

point of either granule is smaller than all points of the

other granule (i.e., either 8d1 2 G18d2 2 G2(d1 < d2) or

8d1 2 G18d2 2 G2(d2 < d1)). A granularity is a set G of
pairwise non-interleaved granules.

Other granularity notions found in the literature

often assume that granules are indexed by integers.

Such index has been omitted here to simplify the

formalism.

Common granularities are Month and Year. If

granularity G is associated with temporal relation I,

then all tuples of I must be timestamped by granules

of G. For example, all tuples in the following rela-

tion are timestamped by months. Practical labels, like

Nov-2007, are used to denote granules of time points.

EmpMonth
Name Sal Position T : Month

Ed 10K Lecturer Nov-2007

Ed 11K Lecturer Dec-2007

Ed 12K Professor Jan-2008

Ed Lecturer 2007

Ed Professor 2008

T

Definition Assume a set U = {A1,...,An} of attributes

and a timestamp attribute T =2 U. A timestamped tuple

with granularity G (or simply G-tuple) over U is a set

{A1: c1,...,An : cn,T : G}, where each ci is a constant

and G 2 G. If t = {A1 : c1,...,An : cn,T : G}, then define

t[U] ¼ {A1 : c1,...,An : cn} and t(T) = G. A timestamped

relation with granularity G (or simply G-relation) over
U is a finite set of G-tuples over U.

The TFD Name!MonthSal expresses that the salary

of an employee cannot change within a month. Like-

wise, Name!YearPosition expresses that the position of

an employee cannot change within a year. Both depen-

dencies are satisfied by the relation EmpMonth shown

above. To check Name!YearPosition, it suffices to verify

whether for each year, the FD Name !Position is

satisfied by the set of tuples whose timestamps fall in

that year. For example, for the year 2007, the relation

{t[Name, Sal, Position] j t 2EmpMonth,t(T) � 2007}

must satisfy Name !Position. This is captured by the

following definition.
Definition A temporal functional dependency (TFD)

over U is an expression X!HY , where X,Y� U andH is

a granularity. A G-relation I over U satisfies X!HY if for

each granule H 2 H, the relation {t[U] j t 2 I,t(T)�H}

satisfies the FD X! Y .

Wang et al. extend classical normalization theory to

deal with data redundancy caused by TFDs. For

example, since positions cannot change within a year,

Ed must necessarily occupy the same position in

Nov-2007 and Dec-2007. To avoid this redundancy,

the information on positions must be moved into a

new relation with time granularity Year, as shown

above. After this decomposition, Ed’s position in

2007 is only stored once.
Constraint-Generating Dependencies [1]

Classical dependency theory assumes that each attri-

bute of a relation takes its values in some uninterpreted

domain of constants, which means that data values can

only be compared for equality and disequality. The

notion of constraint-generating dependency (CGD)

builds upon the observation that, in practice, certain

attributes take their values in specific domains, such

as the integers or the reals, on which predicates and

functions, such as� and +, are defined. CGDs can thus

constrain data values by formulas in the first-order

theory of the underlying domain.

A constraint-generating k-dependency takes the fol-

lowing form in tuple relational calculus:

8t18t2:::8tkððR1ðt1Þ^ ::: ^ Rkðt kÞ ^ C½t1;:::; t k�Þ
¼)C 0½t1;:::; t k�Þ

where C and C 0 are arbitrary constraint formulas

relating the values of various attributes in the tuples

t1,...,tk.

CGDs naturally arise in temporal databases: time-

stamp attributes take their values from a linearly

2964T Temporal Dependencies
ordered time domain, possibly equipped with arithme-

tic. Baudinet et al. [1] specifically mention that the

study of CGDs was inspired by the work of Jensen

and Snodgrass on temporal specialization and general-

ization [5]. For example, assume a relation R with two

temporal attributes, denoted VT and TT. Every tuple

t 2 R stores information about some event, where

t(TT) is the (transaction) time when the event was

recorded in the database, and t(VT) is the (valid)

time when the event happened in the real world. The

following CGD expresses that every event should be

recorded within c time units after its occurrence:

8tðRðtÞ¼)ðtðVTÞ < tðTTÞ ^ tðTTÞ � tðVTÞ þ cÞÞ:
Given appropriate first-order theories for the underly-

ing domains, CGDs can capture the different tem-

poral dependencies introduced above. Assume a

point-stamped temporal relation Emp(Name, Merit,

Sal,VT) with its obvious meaning. Assume that Name

provides a unique and time-invariant identity for each

employee. Then, the VDFD Sǎl,M̂erit !Ŝal can be

simulated by the following constraint-generating

4-dependency. In this formula, the tuples s and

s0 concern the same employee in successive database

states (likewise for t and t0).

8s8s08t8t 0

EmpðsÞ^Empðs0Þ
^sðNameÞ¼ s0ðNameÞ
^s0ðVTÞ¼ sðVTÞþ1
^EmpðtÞ^Empðt 0Þ
^ tðNameÞ¼ t 0ðNameÞ
^ t 0ðVTÞ¼ tðVTÞþ1
^sðSalÞ¼ tðSalÞ
^s0ðMeritÞ¼ t 0ðMeritÞ
^sðVTÞ¼ tðVTÞ

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

) s0ðSalÞ¼
t 0ðSalÞÞ

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

The WDFD Name, Sal!� Merit can be expressed as a

constraint-generating 2-dependency:

8t8t 0

EmpðtÞ^Empðt 0Þ
^tðNameÞ¼ t 0ðNameÞ
^tðSalÞ¼ t 0ðSalÞ
^ðt 0ðVTÞ¼ tðVTÞ_ t 0ðVTÞ

¼ tðVTÞþ1Þ

0
BBBBBBB@

1
CCCCCCCA
) tðMeritÞ¼

t 0ðMeritÞ

0
BBBBBBB@

1
CCCCCCCA
Assume a binary predicate Month on the time

domain such that Month(t1, t2) is true if t1 and t2
are two time instants within the same month.

Then, Name!MonthSal can be expressed as a con-

straint-generating 2-dependency:

8t8t 0
EmpðtÞ^Empðt 0Þ
^ tðNameÞ¼ t 0ðNameÞ
^MonthðtðVTÞ; t 0ðVTÞÞ

0
B@

1
CA) tðSalÞ¼

t 0ðSalÞ

0
B@

1
CA

Dynamic Algebraic Dependencies [2]

Consider a database schema containing Emp(Name,

Merit, Sal) and WorksFor(Name, Project). A company

rule states that “The Pulse project only recruits employ-

ees whose merit has been good at some past time.” The

relational algebra expression E0 shown below gets the

workers of the Pulse project; the expression F0 gets

the good workers. In a consistent database history,

if the tuple t is in the answer to E0 on the current

database state, then t is in the answer to F0 on some

(strict) past database state.

E0 ¼ pNameðsProject¼‘‘Pulse}WorksForÞ
F0 ¼ pNameðsMerit¼‘‘Good00EmpÞ

Definition A relational algebra query E is defined as

usual using the named relational algebra operators {s,p,
⋈,r,[,�}. A dynamic algebraic dependency (DAD) is

an expression of the form EF, where E and F are relation-

al algebra queries over the same database schema and

with the same output schema. A finite database history

hI0,I1,...,Ini, where I0 ¼ {}, satisfies the DAD EF if

for each i 2 {1,...,n}, for each t 2 E(Ii) , there exists

j 2 {1,...,i � 1} such that t 2 F(Ij).

The preceding definition uses relational algebra.

Nevertheless, every DAD EF can be translated into

temporal first-order logic in a straightforward way.

Let Nowð~xÞ and Pastð~xÞ be safe relational calculus

queries equivalent to E and F respectively, with the

same free variables ~x. Then the DAD EF is equivalent

to the closed formula:

8~xðNowð~xÞ) ¨Pastð~xÞÞ:

It seems that the expressive power of DADs relative

to other dynamic constraints has not been studied in

depth. Notice that the simple DAD 8x(R(x)) ♦S(x))

Name Sex Sal Project Day Month Year

Ed M 10K Pulse 29-Aug-2007 Aug-2007 2007

Ed M 10K Pulse 30-Aug-2007 Aug-2007 2007

Ed M 10K Pulse 31-Aug-2007 Aug-2007 2007

Ed M 10K Wizard 30-Aug-2007 Aug-2007 2007

Ed M 10K Wizard 31-Aug-2007 Aug-2007 2007

Ed M 12K Wizard 1-Sep-2007 Sep-2007 2007

Temporal Dependencies T 2965

T

is tuple-generating, in the sense that tuples in R require

the existence of past tuples in S. The other temporal

dependencies presented in this entry are not tuple-

generating.

Bidoit and De Amo [2] study the existence of an

operational specification that can yield all and only the

database histories that are consistent. The operational

specification assumes that all database updates are

performed through a fixed set of update methods,

called transactions. These transactions are specified in

a transaction language that provides syntax for concat-

enation and repetition of elementary updates (insert a

tuple, delete a tuple, erase all tuples).

Key Applications
An important motivation for the study of FDs in

database courses is schema design. The notion of

FD is a prerequisite for understanding the principles

of “good” database design (3NF and BCNF). In the

same line, the study of temporal functional de-

pendencies has been motivated by potential applica-

tions in temporal database design. It seems, however,

that one can go a long way in temporal database

design by practicing classical, non-temporal normaliza-

tion theory. As suggested in [3,8], one can put time-

stamp attributes on a par with ordinary attributes, write

down classical FDs, and apply a standard 3NF decom-

position. For example, assume a database schema

{Name, Sex, Sal, Project, Day, Month, Year}.

The following FDs apply:

Name ! Sex

Name;Month ! Sal

Day ! Month

Month ! Year

The latter two FDs capture the relationships that exist

between days, months, and years. The standard

3NF synthesis algorithm finds the following
decomposition – the last two components may be

omitted for obvious reasons:

fName; Project ;Dayg
fName; Sexg
fName; Sal;Monthg
fDay;Monthg
fMonth;Yearg

This decomposition, resulting from standard normaliza-

tion, is also “good” from a temporal perspective.

In general, the “naive” approach seems to prevent data

redundancy in all situations where relationships between

granularities can be captured by FDs. It is nevertheless

true that FDs cannot capture, for example, the relation-

ship between weeks and months. In particular, Week

!Month does not hold since certain weeks contain

days of two months. In situations where FDs fall short

in specifying relationships among time granularities,

there may be a need to timestamp by new, artificial time

granularities in order to avoid data redundancy [8].
Cross-references
▶Temporal Granularity

▶Temporal Integrity Constraints
Recommended Reading
1. Baudinet M., Chomicki J., and Wolper P. Constraint-generating

dependencies. J. Comput. Syst. Sci., 59(1):94–115, 1999.

2. Bidoit N. and de Amo S. A first step towards implementing

dynamic algebraic dependences. Theor. Comput. Sci., 190

(2):115–149, 1998.

3. Chomicki J. and Toman D. Temporal databases. In M. Fisher,

D.M. Gabbay, L. Vila (eds.). Handbook of Temporal Reasoning

in Artificial Intelligence. Elsevier Science, 2005.

4. Ginsburg S. and Hull R. Order dependency in the relational

model. Theor. Comput. Sci., 26:149–195, 1983.

5. Jensen C.S. and Snodgrass R.T. Temporal specialization and

generalization. IEEE Trans. Knowl. Data Eng., 6(6):954–974,

1994.

2966T Temporal Domain
6. Jensen C.S., Snodgrass R.T., and Soo M.D. Extending existing

dependency theory to temporal databases. IEEE Trans. Knowl.

Data Eng., 8(4):563–582, 1996.

7. Vianu V. Dynamic functional dependencies and database aging.

J. ACM, 34(1):28–59, 1987.

8. Wang X.S., Bettini C., Brodsky A., and Jajodia S. Logical design

for temporal databases with multiple granularities. ACM Trans.

Database Syst., 22(2):115–170, 1997.

9. Wijsen J. Design of temporal relational databases based on

dynamic and temporal functional dependencies. In Temporal

Databases. J. Clifford A. Tuzhilin (eds.). Springer, Berlin, 1995,

pp. 61–76.

10. Wijsen J. Reasoning about qualitative trends in databases. Inf.

Syst., 23(7):463–487, 1998.

11. Wijsen J. Temporal FDs on complex objects. ACM Trans. Data-

base Syst., 24(1):127–176, 1999.

12. Wijsen J. Trends in databases: Reasoning and mining. IEEE

Trans. Knowl. Data Eng., 13(3):426–438, 2001.
Temporal Domain

▶ Lifespan

▶Time Domain
Temporal Element

CHRISTIAN S. JENSEN
1, RICHARD SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Time period set

Definition
A temporal element is a finite union of n-dimensional

time intervals. Special cases of temporal elements in-

clude valid-time elements, transaction-time elements,

and bitemporal elements, which are finite unions of

valid-time intervals, transaction-time intervals, and

bitemporal intervals, respectively.

Key Points
Assuming an n-dimensional time domain, an interval

is the product of n convex subsets drawn from each of

the constituent dimensions.

Given a finite, one-dimensional time domain, a

temporal element may be defined equivalently as a
subset of the time domain. If the time domain is

unbounded and thus infinite, some subsets of the

time domain are not temporal elements. These subsets

cannot be enumerated in finite space. For non-discrete

time domains, the same observation applies.

Temporal elements are often used as timestamps.

Unlike time periods, they are closed under the set

theoretic operations of union, intersection, and com-

plement, which is a very desirable property when for-

mulating temporal database queries.

The term “temporal element” has been used to

denote the concept of a valid-time interval. However,

“temporal” is generally used as generic modifier, so

more specific modifiers are adopted here for

specific kinds of temporal elements. The term “time

period set” is an early term for a temporal element.

The adopted term has been used much more

frequently.
Cross-references
▶Bitemporal Interval

▶Temporal Database

▶Time Interval

▶Time Period

▶Transaction Time

▶Time Domain

▶Temporal Query Languages

▶Valid Time
Recommended Reading
1. Gadia S.K. Temporal element as a primitive for time in

temporal databases and its application in query optimization.

In Proc. 13th ACM Annual Conf. on Computer Science, 1986,

p. 413.

2. Gadia S.K. A homogeneous relational model and query

languages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, December 1988.

3. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

In Temporal Databases: Research and Practice, O. Etzion, S.

Jajodia, S. Sripada (eds.), Springer-Verlag, Berlin, 1998,

pp. 367–405.
Temporal Evolution

▶History in Temporal Databases

Temporal Generalization T 2967
Temporal Expression

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
A temporal expression is a syntactic construct used, e.g.,

in a query that evaluates to a temporal value, i.e., an

instant, a time period, a time interval, or a temporal

element.
T

Key Points
Advanced by Gadia [1], a temporal expression is a

convenient temporal query language construct.

First, any temporal element is considered a tempo-

ral expression. As Gadia uses a discrete and bounded

time domain, any subset of the time domain is then a

temporal expression. Next, an attribute value of a tuple

in Gadia’s data model is a function from the time

domain to some value domain. Likewise, the attribute

values of a tuple are valid during some temporal ele-

ment. To illustrate, consider an (ungrouped) relation

with attributes Name and Position. An example

tuple in this relation is:

ðh½4;17� Billi;
h½4;8�Assistant ;
½9;13� Associate; ½14;17�FulliÞ

Now let X be an expression that returns a function

from the time domain to some value domain, such as

an attribute value, a tuple, or a relation. Then the

temporal expression [[X]] returns the domain of X.

Using the example from above, the temporal expres-

sion [[Position]] evaluates to [4,17] and the tempo-

ral expression [[Position <> Associate]] evaluates

to [4,8] [[14,17].

The terms “Boolean expression” and “relational

expression” may be used for clearly identifying expres-

sions that evaluate to Boolean values and relations.
Cross-references
▶ SQL-Based Temporal Query Languages

▶Temporal Database

▶Temporal Element

▶Time Instant
▶Time Interval

▶Time Period

Recommended Reading
1. Gadia S.K. A homogeneous relational model and query lan-

guages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, December 1988.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.), Springer-Verlag, Berlin, 1998, pp. 367–405.
Temporal Generalization

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition

Temporal generalization comes in three guises. Con-

sider a temporal database in which data items are

timestamped with valid and transaction time. Tempo-

ral generalization occurs when weakening constraints

hitherto applied to the timestamps. Used in this sense,

temporal generalization is the opposite of temporal

specialization.

Next, a temporal relation is generalized when new

timestamps are being associated with its tuples. In

larger information systems where data items flow be-

tween multiple temporal relations, items may accumu-

late timestamps by keeping their previous timestamps

and gaining new timestamps as they are entered into

new temporal relations. Thus, a tuple in a particular

relation has multiple timestamps: a valid timestamp, a

primary transaction timestamp, which records when

the tuple was stored in this relation, one or more

inherited transaction timestamps that record when

the tuple was stored in previous relations, and one or

more additional timestamps that record when the

tuple was manipulated elsewhere in the system.

Finally, a more involved notion of temporal gener-

alization occurs when a derived relation inherits

the transaction timestamps from the relation(s) it is

derived from.

By describing the temporal generalization that occurs

in an information system, important semantics are

2968T Temporal Granularity
captured that may be utilized for a variety of purposes.

For example, a temporal relation may be queried, with

specific restrictions, from a temporal relation that

receives tuples with some delay from that relation.

Another use is to increase the efficiency of query

processing.

Key Points
The first notion of temporal generalization is simply

the opposite of temporal specialization.

As an example of the second notion of temporal

generalization, consider the following complex yet real-

istic scenario of a collection of temporal relations main-

tained by the transportation department of a state

government. An employee relation is maintained on

the workstation of each manager in this department,

recording schedules, budgets, and salary levels for the

employees under that manager. For the entire depart-

ment, a single personnel relation is maintained on

the administrative computer under the data processing

group, which also maintains a financial relation. The

bank, responsible for salary payments, maintains

an accounts relation. Data items in the form of time-

stamped tuples move from the employee relation to the

personnel relation and then to the financial relation

and ultimately to the accounts relation, accumulating

transaction timestamps each time they enter a new

database. Each timestamp has a relationship with the

other transaction timestamps and with the valid time-

stamp. These can be stated in the schema and utilized

during querying to ensure accurate results.

As an example of the third notion of temporal gen-

eralization, consider process control in a manufacturing

plant. Values from sensors that capture process charac-

teristics such as pressure and temperature may be stored

in temporal relations. This data may subsequently be

processed further to derive new data that capture rele-

vant aspects of the process being monitored at a higher

level of abstraction. The original data, from which

the new data was derived, may be stored together with

the new data, to capture the lineage, or provenance, of

that data. As a result, the new data inherits timestamps

from the original data.

Cross-references
▶Data Stream

▶Temporal Database

▶Temporal Specialization
▶Transaction Time

▶Valid Time

Recommended Reading
1. Jensen C.S. and Snodgrass R.T. Temporal specialization and gen-

eralization. IEEE Trans. Knowl. Data Eng., 5(6):954–974,

December 1994.
Temporal Granularity

CLAUDIO BETTINI
1, X. SEAN WANG

2, SUSHIL JAJODIA
3

1Università degli Studi di Milano, Milan, Italy
2University of Vermont, Burlington, VT, USA
3George Mason University, Fairfax, VA, USA

Synonyms
Time granularity; Temporal type

Definition
In the context of databases, a temporal granularity

can be used to specify the temporal qualification of a

set of data, similar to its use in the temporal qualifica-

tion of statements in natural languages. For example,

in a relational database, the timestamp associated

with an attribute value or a tuple may be interpreted

as associating that data with one or more granules of a

given temporal granularity (e.g., one or more days). As

opposed to using instants from a system-specific time

domain, the use of user-defined granularities enables

both more compact representations and temporal qua-

lifications at different levels of abstraction. Temporal

granularities include very common ones like hours,

days, weeks, months, and years, as well as the evolution

and specialization of these granularities for specific

contexts or applications: trading days, banking days,

academic semesters, etc.. Intuitively, a temporal granu-

larity is defined by grouping sets of instants from a

time domain into so-called granules in a rather flexible

way with some mild conditions. For example, the

granularity business days is defined as the infinite set

of granules, each including the time instants compos-

ing one working day. A label, for example a date for a

day granule, is often used to refer to a particular

granule of a granularity. Answering queries in terms

of a granularity different from the one used to store

Temporal Granularity T 2969

T

data in a database is not simply a matter of syntactic

granularity conversion, but it involves subtle semantics

issues.

Historical Background
Temporal granularities have always had a relevant

role in the qualification of statements in natural lan-

guages, and they still play a major role according

to a 2006 study by Oxford University. The study

includes words “day,” “week,” “month,” and “year”

among the 25 most common nouns in the English

language. Temporal granularities have also been used

for a long time in computer applications, including

personal information management, project manage-

ment, scheduling, and more. Interestingly, in many

situations, their use is limited to a very few common

ones, their semantics is often simplified and sometimes

confusing, and their management is hard-coded in

applications with ad-hoc solutions. The database com-

munity seems to be a major driver in formalizing

temporal granularities. One of the earliest formaliza-

tions was proposed in [5]. At the same time the AI

community was investigating formalisms to represent

calendar unit systems [9,10]. In the early 1990s, the

relevant role played by time granularity and calendars

in temporal databases, as well as the need to devise

algorithms to manage granular data, became widely

recognized by the research community, and some sig-

nificant progress has been made [4, 11, 13, 15]. Some

support for granularities was also included in the de-

sign of the temporal query language TSQL2. A com-

prehensive formal framework for time granularities to

be applied in several areas of database research

emerged in the mid-1990s, and has been progressively

refined in the following years through the investigation

of its applications in data mining, temporal database

design, query processing, and temporal constraint

reasoning [3]. This framework is based on a set-theo-

retic approach (partly inspired by [5]) and on an

algebraic representation, and it includes techniques to

compute basic as well as more complex operations on

granules and granularities. The basic notions found a

large consensus in the database community [1]. The

use of logic to specify formal properties and to reason

about granularities as defined in the above framework

was investigated in [6]. Programming oriented support

for integrating multiple calendars was provided in

[12]. In the logic community, an independent line of
research on representation and reasoning with multi-

ple granularities investigated classical and non-classical

logic extensions based on multi-layered time domains,

with applications to the specification of real-time reac-

tive systems. This approach is extensively described in

[8]. More recently, the use of automata to represent

granularities and to perform basic operations on them

has been proposed [7]. This work, partly inspired by

previously proposed string-based representation of

granularities [15], has the benefit of providing compact

representation of granularities. Moreover, decision

procedures for some basic problems, such as granula-

rity equivalence and minimization, can be applied

directly on that representation.
Foundations
What follows is an illustration of the main formal defi-

nitions of temporal granularities and their relationships

according to the set-theoretic, algebraic approach.
Definitions

A temporal granularity can be intuitively described as

a sequence of time granules, each one consisting of a

set of time instants. A granule can be composed of

a single instant, a set of contiguous instants (time-

interval), or even a set of non-contiguous instants. For

example, the September 2008 business-month,

defined as the collection of all the business days in

September 2008, can be used as a granule. When used

to describe a phenomena or, in general, when used to

timestamp a set of data, a granule is perceived as a non-

decomposable temporal entity. A formal definition of

temporal granularity is the following.

Assume a time domain T as a set of totally ordered

time instants. A granularity is a mapping G from the

integers (the index set) to the subsets of the time

domain such that:

(1) If i< j and G(i) and G(j) are non-empty, then each

element inG(i) is less than all the elements in G(j).

(2) IIf i< k< j and G(i) and G(j) are non-empty, then

G(k) is non-empty.

Each non-empty set G(i) in the above definition

is called granule.

The first condition in the granularity definition

states that granules in a granularity do not overlap and

that their index order is the same as their time domain

2970T Temporal Granularity
order. The second condition states that the subset of

the index set for the granules is contiguous. Based

on the above definition, while the time domain can be

discrete, dense, or continuous, a granularity defines a

countable set of granules; each granule is identified by

an integer. The index set can thereby provide an “encod-

ing” of the granularity in a computer. Two granules G(i)

and G(j) are contiguous if there does not exist t 2 T such
that 8s 2 G(i)(s < t) and 8s 2 G(j)(s > t). Indepen-

dently, there may be a “textual representation” of each

non-empty granule, termed its label, that is used for

input and output. This representation is generally a

string that is more descriptive than the granule’s index.

An associated mapping, the label mapping, defines for

each label a unique corresponding index. This mapping

can be quite complex, dealing with different languages

and character sets, or can be omitted if integers are used

directly to refer to granules. For example, “August 2008”

and “September 2008” are two labels each referring

to the set of time instants (a granule) corresponding to

that month.

A granularity is bounded if there exist lower

and upper bounds k1 and k2 in the index set such

that G(i) = ; for all i with i < k1 or k2 < i.

The usual collections days, months, weeks and

years are granularities. The granularity describing all

years starting from 2000 can be defined as a mapping

that takes an arbitrary index i to the subset of the time

domain corresponding to the year 2000, i þ 1 to the

one corresponding to the year 2001, and so on, with all

indexes less than i mapped to the empty set. The years

from 2006 to 2010 can also be represented as a granu-

larity G, with G(2006) identifying the subset of

the time domain corresponding to the year 2006,

G(2007) to 2007, and so on, with G(i) = ; for each

i < 2006 and i >2010.

The union of all the granules in a granularity G

is called the image of G. For example, the image of

business-days-since-2000 is the set of time

instants included in each granule representing a busi-

ness-day, starting from the first one in 2000. The single

interval of the time domain starting with the great-

est lower bound of the image of a granularity G and

ending with the least upper bound (�1 and þ1 are

considered valid lower/upper bounds) is called the

extent of G. Note that many commonly used granula-

rities (e.g., days, months, years) have their image

equal to their extent, since each granule is formed by a

set of contiguous elements of the time domain and
each pair of contiguous indexes is mapped to contigu-

ous granules.

Granularity Relationships

In the following, some commonly used relationships

between granularities are given.

A granularity G groups into a granularity H,

denoted G ⊴ H, if for each index j there exists

a (possibly infinite) subset S of the integers such that

H(j) = [i2SG(i). For example, days groups into

weeks, but weeks does not group into months.

A granularity G is finer than a granularity H,

denoted G H, if for each index i, there exists an

index j such that G(i) � H(j). If G ⪯ H, then H is

coarser than G (H � G).

For example, business-days is finer than weeks,

while business-days does not group into weeks;

business-days is finer than years, while weeks is

not.

A granularity G groups periodically into a granu-

larity H if:

1) G ⊴ H.

2) There exist n, m 2 Zþ, where n is less than

the number of non-empty granules of H,

such that for all i 2 Z, if H(i) = [kr=0G(jr) and
H(i þ n) 6¼ ;, then H(i þ n) = [kr=0G(jr þ m).

The groups periodically into relationship is a special

case of groups into characterized by a periodic repeti-

tion of the “grouping pattern” of granules of G into

granules of H. Its definition may appear complicated,

but it is actually quite simple. Since G groups into H,

any non-empty granule H(i) is the union of some

granules of G; for instance, assume it is the union of

the granules G(a1), G(a2),...,G(ak). The periodicity

property (condition 2 in the definition) ensures that

the nth granule after H(i), i.e., H(i þ n), if non-empty,

is the union of G(a1 þ m), G(a2 þ m),...,G(ak þ m).

This results in a periodic “pattern” of the composition

of n granules of H in terms of granules of G. The

pattern repeats along the time domain by “shifting”

each granule of H by m granules of G. Many common

granularities are in this kind of relationship. For exam-

ple, days groups periodically into business-days,

withm = 7 and n = 5, and also groups periodically into

weeks, with m = 7 and n = 1; months groups periodi-

cally into years with m = 12 and n = 1, and days

groups periodically into years with m = 14,697 and

n = 400. Alternatively, the relationship can also be

Temporal Granularity T 2971

T

described, by saying, for example, years is periodic

(or 1-periodic) with respect to months, and years is

periodic (or 400-periodic) with respect to days. In

general, this relationship guarantees that granularity

H can be finitely described in terms of granules of G.

More details can be found in [3].

Given a granularity order relationship g-rel and a

set of granularities, a granularity G in the set is a

bottom granularity with respect to g-rel, if G g-rel H

for each granularity H in the set.

For example, given the set of all granularities de-

fined over the time domain (R;�), and the granula-

rity relationship ⪯ (finer than), the granularity

corresponding to the empty mapping is the bottom

granularity with respect to ⪯. Given the set of all

granularities defined over the time domain (Z;�),
and the granularity relationship ⊴ (groups into),

the granularity mapping each index into the

corresponding instant (same integer number as the

index) is a bottom granularity with respect to ⊴.

An example of a set of granularities without a bottom

(with respect to ⪯ or ⊴) is {weeks, months}.

Calendars are typically used to describe events

or time-related properties over the same span of

time using different granularities. For example, the

Gregorian calendar comprises the granularities days,

months, and years. Considering the notion of

bottom granularity, a formal definition of calendar

follows.

A calendar is a set of granularities that includes a

bottom granularity with respect to ⊴ (groups into).

Defining New Granularities through Algebraic

Operators

In principle, every granularity in a calendar can be

defined in terms of the bottom granularity, possibly

specifying the composition of granules through the

relationships defined above. Several proposals have

appeared in the literature for a set of algebraic opera-

tors with the goal of facilitating the definition of new

granularities in terms of existing ones. These algebras

are evaluated with respect to expressiveness, user

friendliness, and ability to compute operations on

granularities directly on the algebraic representation.

Some of the operations that are useful in applications

are inter-granule conversions; for example, to compute

which day of the week was the k-th day of a particular

year, or which interval of days was r-th week of that

year, as well as conversions involving different
calendars. In the following, the main operators of one

of the most expressive calendar algebras [3] are briefly

described. Two operators form the backbone of

the algebra:

1. The grouping operator systematically combines a

few granules of the source granularity into one

granule in the target granularity. For example,

given granularity days, granularity weeks can be

generated by combining 7 granules (corresponding

to Monday – Sunday) week = Group7(day) if we

assume that day(1) corresponds to Monday, i.e.,

the first day of a week.

2. The altering-tick operator deletes or adds granules

from a given granularity (via the help of a second

granularity) to form a new one. For example, as-

sume each 30 days are grouped into a granule,

forming a granularity 30-day-groups. Then, an

extra day can be added for each January, March,

and so on, while two days are dropped from Febru-

ary. The February in leap years can be similarly

changed to have an extra day, hence properly repre-

senting month.

Other auxiliary operators include:

– Shift shifts the index forward or backward a few

granules (e.g., the granule used to be labeled 1 may

be re-labeled 10) in order to provide proper align-

ment for further operations.

– Combine combines all the granules of one granu-

larity that fall into (using finer-than relationship)

a second granularity. For example, by combining

all the business days in a week, business-week

is obtained.

– Subset generates a new granularity by selecting an

interval of granules from a given granularity. For

example, choosing the days between year 2000 and

2010, leads to a granularity that only contains days

in these years.

– Select generates new granularities by selecting gran-

ules from the first operand in terms of their rela-

tionship with the granules of the second operand.

For example, selecting the first day of each week

gives the Mondays granularity.

More details, including other operators, conditions of

applicability, as well as comparison with other algebra

proposals can be found in [3]. The algebra directly

supports the inter-granule and inter-calendar conver-

sions mentioned above. Some more complex

2972T Temporal Granularity
operations on granularities (e.g., temporal constraint

propagation in terms of multiple granularities) and the

verification of formal properties (e.g., equivalence of

algebraic granularity representations) require a conver-

sion in terms of a given bottom granularity. An effi-

cient automatic procedure for this conversion has been

devised and implemented [2]. The automaton-based

approach may be a valid alternative for the verification

of formal properties.

Key Applications
Temporal granularities are currently used in several

applications, but in most cases their use is limited to

very few standard granularities, supported by system

calendar libraries and ad-hoc solutions are used to

manipulate data associated with them. This approach

often leads to unclear semantics, hidden mistakes,

low interoperability, and does not take advantage of

user-defined granularities and complex operations.

The impact of a formal framework for temporal

granularities has been deeply investigated for a num-

ber of application areas among which logical design

of temporal databases, querying databases in terms

of arbitrary granularities, data mining, integrity con-

straint satisfaction, workflows [3]. For example,

when temporal dependencies in terms of granulari-

ties can be identified in the data (e.g., “salaries of

employees do not change within a fiscal year”),

specific techniques have been devised for the logical

design of temporal databases that can lead to signif-

icant benefits. In query processing, it has been

shown how to support the retrieval of data in

terms of temporal granularities different from the

ones associated to the data stored in the database,

provided that assumptions on the data semantics are

formalized, possibly as part of the database schema.

Time distance constraints in terms of granularities

(e.g., Event2 should occur within two business days

after the occurrence of Event1) have been extensively

studied, and algorithms proposed to check for con-

sistency and solutions. Applications include the

specification of classes of frequent patterns to be

identified in time series, the specification of integrity

contraints in databases, and the specification of con-

straints on activities durations and on temporal dis-

tance between specific events in workflows.

Temporal granularities also have several applica-

tions in other areas like natural language processing,

temporal reasoning in AI, including scheduling and
planning, and in computer logic, where they have

been mainly considered for program specification

and verification.

Future applications may include advanced personal

information management (PIM). Time and location-

aware devices coupled with advanced calendar applica-

tions, supporting user-defined granularities, may offer

innovative personalized scheduling and alerting

systems.

Experimental Results
Several systems and software packages dealing with

temporal granularities have been developed, among

which MultiCal, Calendar algebra implementation,

GSTP Project, and TauZaman. Information about

these systems can be easily found online.

Cross-references
▶Temporal Constraints

▶Temporal Data Mining

▶Temporal Dependencies

▶Temporal Periodicity

▶Time Domain

▶TSQL2

▶Time Instant

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice. O. Etzion, S. Jajodia, S. Sripada

(eds.), 1998, pp. 406–413.

2. Bettini C., Mascetti S., and Wang X. Supporting temporal

reasoning by mapping calendar expressions to minimal periodic

sets. J. Artif. Intell. Res., 28:299–348, 2007.

3. Bettini C., Wang X.S., and Jajodia S. Time Granularities in

Databases, Data Mining, and Temporal Reasoning. Springer,

Berlin Heidelberg New York, 2000.

4. Chandra R., Segev A., and Stonebraker M. Implementing

calendars and temporal rules in next generation databases. In

Proc. 10th Int. Conf. on Data Engineering, 1994, pp. 264–273.

5. Clifford J. and Rao A. A simple, general structure for temporal

domains. In Proc. IFIP TC 8/WG 8.1 Working Conf. on Tempo-

ral Aspects in Inf. Syst., 1987, pp. 23–30.

6. Combi C., Franceschet M., and Peron A. Representing and

reasoning about temporal granularities. J. Logic Comput.,

14(1):51–77, 2004.

7. Dal Lago U., Montanari A., and Puppis G. Compact and

tractable automaton-based representations of time granularities.

Theor. Comput. Sci., 373(1–2):115–141, 2007.

8. Euzenat J. and Montanari A. Time granularity. In M. Fisher, D.

Gabbay, L. Vila (eds.). Handbook of Temporal Reasoning in

Artificial Intelligence. Elsevier, 2005.

Temporal Indeterminacy T 2973
9. Ladkin P. The completness of a natural system for reasoning

with time intervals. In Proc. 10th Int. Joint Conf. on AI, 1987,

pp. 462–467.

10. Leban B., McDonald D., and Forster D. A representation

for collections of temporal intervals. In Proc. 5th National

Conf. on AI, 1986, pp. 367–371.

11. Lorentzos N.A. DBMS support for nonmetric measurement

systems. IEEE Trans. Knowl. Data Eng., 6(6):945–953, 1994.

12. Urgun B., Dyreson C.E., Snodgrass R.T., Miller J.K., Kline N.,

Soo M.D., and Jensen C.S. Integrating multiple calendars using

tau-ZAMAN. Software Pract. Exp., 37(3):267–308, 2007.

13. Wang X., Jajodia S., and Subrahmanian V.S. Temporal modules:

an approach toward federated temporal databases. Inf. Sci.,

82:103–128, 1995.

14. Weiderhold G., Jajodia S., and Litwin W. Integrating temporal

data in a heterogeneous environment. In Temporal Databases:

Theory, Design, and Implementation, Benjamin/Cummings,

1993, pp. 563–579.

15. Wijsen J. A string-based model for infinite granularities.

In Spatial and Temporal Granularity: Papers from the AAAI

Workshop. AAAI Technical Report WS-00-08, AAAI, 2000,

pp. 9–16.
T

Temporal Homogeneity

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
Assume a temporal relation where the attribute values

of tuples are (partial) functions from some time

domain to value domains. A tuple in such a relation

is temporally homogeneous if the domains of all its

attribute values are identical. A temporal relation is

temporally homogeneous if all its tuples are temporally

homogeneous. Likewise, a temporal database is tem-

porally homogeneous if all its relations are temporally

homogeneous.

In addition to being specific to a type of object

(tuple, relation, database), homogeneity is also specific

to a time dimension when the time domain is multi-

dimensional, as in “temporally homogeneous in the

valid-time dimension” or “temporally homogeneous

in the transaction-time dimension.”
Key Points
The motivation for homogeneity arises from the fact

that no timeslices of a homogeneous relation produce

null values. Therefore, a homogeneous relational model
is the temporal counterpart of the snapshot relational

model without nulls. Certain data models assume tem-

poral homogeneity, while other models do not.

A tuple-timestamped temporal relation may be

viewed as a specific attribute-value timestamped rela-

tion. An attribute value a of a tuple with timestamp

t is represented by a function that maps each value in

t to a. Thus, models that employ tuple timestamping

are necessarily temporally homogeneous.

Cross-references
▶ Lifespan

▶ SQL-Based Temporal Query Languages

▶Temporal Database

▶Time Domain

▶Transaction Time

▶Valid Time

Recommended Reading
1. Gadia S.K. A homogeneous relational model and query lan-

guages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, December 1988.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version. In

Temporal Databases: Research and Practice, O. Etzion,

S. Jajodia, S. Sripada (eds.), Springer-Verlag, Berlin, 1998,

pp. 367–405.
Temporal Indeterminacy

CURTIS DYRESON

Utah State University, Logan, UT, USA

Synonyms
Fuzzy time; Imprecise time

Definition
Temporal indeterminacy refers to “don’t know when”

information, or more precisely, “don’t know exactly

when.” The modifier ‘temporally indeterminate’ indi-

cates that the modified object has an associated time,

but that the time is not known precisely. The time

when an event happens, when a time interval begins

or ends, or even the duration of a period may be

indeterminate. For example, the event of a car accident

might be “sometime last week,” the interval an airplane

flight takes may be from “Friday to Saturday,” or the

duration a graduate student takes to write a disserta-

tion may be “four to fifteen years.”

2974T Temporal Indeterminacy
The adjective ‘temporal’ allows parallel kinds of

indeterminacy to be defined, such as spatial indetermi-

nacy. There is a subtle difference between indetermi-

nate and imprecise. In this context, indeterminate is

a more general term than imprecise since precision is

commonly associated with making measurements.

Typically, a precise measurement is preferred to an

imprecise one. Imprecise time measurements, howev-

er, are just one source of temporally indeterminate

information.

Historical Background
Despite the wealth of research on adding incomplete

information to databases, there are few efforts that

address incomplete temporal information [6]. Much

of the previous research in incomplete information

databases has concentrated on issues related to null

values, the applicability of fuzzy set theory, and the

integration of various combinations of probabilistic

reasoning, temporal reasoning, and planning.

In the earliest work on temporal indeterminacy, an

indeterminate instant was modeled with a set of possi-

ble chronons [12]. Dutta next introduced a fuzzy set

approach to handle events that can be interpreted to

have multiple occurrences [5]. For example the event

“Margaret’s salary is high” may occur at various times

as Margaret’s salary fluctuates to reflect promotions

and demotions. The meaning of “high” is incomplete,

it is not a crisp predicate. In Dutta’s model all the

possibilities for high are represented in a generalized

event and the user selects some subset according to his

or her interpretation of “high.” Generalized bitemporal

elements were defined somewhat differently in a later

paper by Kouramajian and Elmasri [11]. Bitemporal

elements combine transaction time and valid time in

the same temporal element, and can include a non-

contiguous (i.e., indeterminate) set of noncontiguous

possible times. Gadia et al. proposed an interesting

model that intertwines support for value and temporal

incompleteness [8]. By combining the different kinds

of incomplete information, a wide spectrum of attri-

bute values are simultaneously modeled, including

values that are completely known, values that are un-

known but are known to have occurred, values that are

known if they occurred, and values that are unknown

even if they occurred. Dyreson and Snodgrass pro-

posed using probabilistic events to model temporal

indeterminacy. In their model a time is represented as
a probability distribution [7]. Probabilistic times were

also comprehensively addressed by Dekhtyar et al. [4].

Reasoning with incomplete information can be com-

putationally expensive. Koubarakis was the first to focus

attention on the issue of cost [9,10]. He showed that by

restricting the kinds of constraints allowed in represent-

ing the indeterminacy, polynomial time algorithms can

be obtained. Koubarakis proposed a temporal data

model with global and local inequality constraints on

the occurrence time of an event. Another constraint-

based temporal reasoner is LaTeR, which has been suc-

cessfully implemented [2]. LaTeR similarly restricts the

kinds of constraints allowed (to conjunctions of linear

inequalities), but this class of constraints includes

many of the important temporal predicates [3].

Temporal indeterminacy has also been addressed in

non-relational contexts, for instance in object-oriented

databases [1].

Foundations
There are (at least) three possible sources of indeter-

minacy in a statement with respect to time: (i) a

discrepancy between the granularity of the temporal

qualification and the occurrence time; (ii) an under-

specification of the occurrence time when the granula-

rities of the temporal qualification and the occurrence

time coincide; and (iii) relative times.

As a first approximation, a statement is temporally

indeterminate if the granularity of its reference to time

(in the examples, the granularity of days) is coarser

than the granularity of the time at which the denoted

event(s) occur. Temporal indeterminacy as well as rel-

ativity of reference to time is mainly a qualification of a

statement rather than of the event it denotes (that is,

temporal indeterminacy characterizes the relationship

between the granularity of the time reference of a

statement and the granularity of an event’s occurrence

time). It does not depend on the time at which the

statement is evaluated. The crucial and critical point is

the determination of the time granularity of the event

occurrence time.

Generally, a statement whose reference to time has

a granularity (e.g., days) which is temporally determi-

nate with respect to every coarser granularity (e.g.,

months) and temporally indeterminate with respect

to every finer granularity (e.g., seconds). But this gen-

eral rule has exceptions since it does not take into

account information about the denoted occurrence

Temporal Indeterminacy T 2975

T

time. In particular, for a macro-event there exists a

(finest) granularity at which its occurrence time can

be specified, but with respect to finer granularities, the

event as a whole does not make sense, and must, if

possible, be decomposed into a set of components.

But not all cases of temporally indeterminate infor-

mation involve a discrepancy between the granularity

of the reference to time and the granularity of the

occurrence time. Consider the sentence: “The shop

remained open on a Sunday in April 1990 all day

long.” ‘Days’ is the granularity of both the time refer-

ence and the occurrence time. Nevertheless, this state-

ment is temporally indeterminate because the precise

day in which the shop remained open is unknown (it is

known only that it is one of the Sundays in April 1990).

Statements that contain a relative reference to time

are also temporally indeterminate, but the reverse does

not hold: temporally-indeterminate statements can

contain relative as well as absolute references to time.

The statements “Jack was killed sometime in 1990” and

“Michelle was born yesterday” contain absolute and

relative references to time, respectively, but they are

both temporally indeterminate.

The following example illustrates how temporal

indeterminacy can be represented in a relational data-

base. Consider the employment relation shown in

Fig. 1 which is cobbled together from the (somewhat

hazy) memories of several employees. Each tuple

shows a worker’s name, salary, department, and time

employed (i.e., the valid time). The first tuple repre-

sents Joe’s employment in Shoes. It is temporally inde-

terminate since the exact day when Joe stopped

working in Shoes is not known precisely; the ending

valid time is recorded as sometime in January 2005 and

represented as the indeterminate event “1 Jan
2005~31 Jan 2005.” Joe then went to work in

Admin, which is also temporally indeterminate. Joe

started working in Admin “After leaving Shoes”

which is a temporal constraint on an indeterminate
Temporal Indeterminacy. Figure 1. A relation with tempora
time. The third tuple represents Sue’s employment

history. She began working in Shoes sometime in the

first half of January 2005 (“1 Jan 2005~15 Jan
2005”) with a uniform probability for each day in

that range (which is more information than is known

about Joe’s termination in Shoes, the probability is

missing from that indeterminate event). Finally, Eve

began working in Admin on some Monday in January

2005, but it is not known which Monday.

Querying temporal indeterminacy is more chal-

lenging than representing it. The two chief challenges

are efficiency and expressiveness. Consider a query to

find out who was employed on January 10, 2005 as

expressed in a temporal version of SQL (e.g., TSQL2)

below.

SELECT Name
FROM Employee E
WHERE VALID(E) overlaps “10 Jan 2005”

There are two well-defined limits on querying

incomplete information: the definite and the possible.

The definite answer includes only information that is

known. On a tuple-by-tuple basis, determining which

employment tuple definitely overlaps January 10, 2005

is straightforward: none definitely do. In contrast, every

tuple possibly overlaps that day. It is efficient to com-

pute both bounds on a tuple-by-tuple basis, but not

very expressive. It would be more expressive to be able

to find other answers that lie between the bounds.

Probabilistic approaches seek to refine the set of

potential answers by reasoning with probabilities.

For instance, can it be computed who was probably

employed (exceeding a probability of 0.5)? The proba-

bility that Sue began working before January 10, 2005

is 0.67 (the probability mass is uniformly distributed

among all the possibilities). Since the probability mass

function for Joe’s termination in Shoes is missing, he

can not be included in the employees who were proba-

bly employed.
l indeterminacy.

2976T Temporal Information Retrieval
Most of the existing approaches have focused on

improving the efficiency of computing probabilistic

answers; the usability of probabilistic approaches has

not yet been determined. It might be very difficult

for users to interpret and use probabilities (should

a user interpret “probably” as exceeding 0.75 or 0.5)

so other approaches (e.g., fuzzy set approaches) may

be needed to improve usability. A second research

issue concerns reasoning with intra-tuple constraints.

The definite answer given above is inaccurate. Even

though it is not known exactly when Joe stopped

working in Shoes or started working in Admin, it

is known that he was employed in one or the other

on January 10, 2005. The intra-tuple constraint in

the second tuple represents this knowledge. Though

intra-tuple constraints provide greater reasoning

power, reasoning with them often has high compu-

tational complexity. Research continues in defining

classes of constraints that are meaningful and com-

putationally feasible. Finally, temporal indeterminacy

has yet to be considered in new kinds of queries (e.g.,

roll-up in data warehouses and top-k queries) and

new temporal query languages (e.g., tXQuery and

TOWL).
Key Applications
The most common kinds of temporal indeterminacy

are valid-time indeterminacy and user-defined time

indeterminacy. Transaction-time indeterminacy is

rarer because transaction times are always known ex-

actly. Temporal indeterminacy can occur in logistics,

especially in planning scenarios where project comple-

tion dates are typically inexact. In some scientific fields

it is quite rare to know an exact time, for instance,

archeology is replete with probabilistic times generated

by radio-carbon dating, tree-ring analyses, and by the

layering of artifacts and sediments. Indeterminacy can

arise even when precise clocks are employed. In a

network of road sensors, an “icy road” has an indeter-

minate lifetime as the change from non-icy to icy is

gradual rather than instantaneous; “icy road” has a

fuzzy starting and ending time.
Cross-references
▶ Probabilistic Temporal Databases

▶Qualitative Temporal Reasoning

▶Temporal Constraints

▶Temporal Granularity
Recommended Reading
1. Biazzo V., Giugno R., Lukasiewicz T., and Subrahmanian V.S.

Temporal probabilistic object bases. IEEE Trans. Knowl. Data

Eng., 15(4):921–939, 2003.

2. Brusoni V., Console L., Terenziani P., and Pernici B. Extending

temporal relational databases to deal with imprecise and quali-

tative temporal information. In Proc. Int. Workshop on Tempo-

ral Databases, 1995, pp. 3–22.

3. Brusoni V., Console L., Terenziani P., and Pernici B. Qualitative

and quantitative temporal constraints and relational databases:

theory, architecture, and applications. IEEE Trans. Knowl.

Data Eng., 11(6):948–968, 1999.

4. Dekhtyar A., Ross R., and Subrahmanian V.S. Probabilistic

temporal databases, I: algebra. ACM Trans. Database Syst.,

26(1):41–95, 2001.

5. Dutta S. Generalized events in temporal databases. In Proc. 5th

Int. Conf. on Data Engineering, 1989, pp. 118–126.

6. Dyreson C. A bibliography on uncertainty management in in-

formation systems. In Uncertainty Management in Information

Systems: From Needs to Solutions. Kluwer Academic, Norwell,

MA, 1997, pp. 415–458.

7. Dyreson C. and Snodgrass R.T. Supporting valid-time indeter-

minacy. ACM Trans. Database Syst., 23(1):1–57, 1998.

8. Gadia S.K., Nair S.S., and Poon Y.-C. Incomplete information in

relational temporal databases. In Proc. 18th Int. Conf. on Very

Large Data Bases, 1992, pp. 395–406.

9. Koubarakis M. Representation and querying in temporal data-

bases: The power of temporal constraints. In Proc. 9th Int. Conf.

on Data Engineering, 1993, pp. 327–334.

10. Koubarakis M. The complexity of query evaluation in indefi-

nite temporal constraint databases. Theor. Comput. Sci.,

171(1–2):25–60, 1997.

11. Kouramajian V. and Elmasri R. A generalized temporal model.

In Proc. Uncertainty in Databases and Deductive Systems Work-

shop, 1994.

12. Snodgrass R.T. Monitoring Distributed Systems: A Relational

Approach. PhD thesis, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA, 1982.
Temporal Information Retrieval

▶Time and Information Retrieval
Temporal Integrity Constraints

JEF WIJSEN

University of Mons-Hainaut, Mons, Belgium

Synonyms
Dynamic integrity constraints

Operator Meaning

●p

rp
sp

ep

Property p was true at the previous time
instant.
Property p was true sometime in the past.
Property p will be true at the next time
instant.
Property pwill be true sometime in the future.

Temporal Integrity Constraints T 2977

T

Definition
Temporal integrity constraints are integrity constraints

formulated over temporal databases. They can express

dynamic properties by referring to data valid at differ-

ent time points. This is to be contrasted with databases

that do not store past or future information: if integrity

constraints can only refer to data valid at the current

time, they can only express static properties. Languages

for expressing temporal integrity constraints extend

first-order logic with explicit timestamps or with tem-

poral connectives. An important question is how to

check and enforce such temporal integrity constraints

efficiently.

Historical Background
The use of first-order temporal logic for expressing

temporal integrity constraints dates back to the early

1980s (see for example [2]). Since the late 1980s, prog-

ress has been made in the problem of checking tempo-

ral integrity [3, 9, 11] without having to store the entire

database history. This entry deals with general tempo-

ral integrity constraints.

Foundations
Integrity constraints, whether they are temporal or not,

are an important component of each database schema.

They express properties that, ideally, must be satisfied

by the stored data at all times. If a database satisfies all

the integrity constraints, it is called consistent. Integrity

constraints are commonly expressed in a declarative

way using logic. Declarative integrity constraints gen-

erally do not specify how to keep the database consis-

tent when data are inserted, deleted, and modified. An

important task is to develop efficient procedures for

checking and enforcing such constraints.

Temporal databases store past, current, and future

information by associating time to database facts.

An integrity constraint can be called “temporal” if it is

expressed over a temporal database. By relating facts

valid at different points in time, temporal integrity con-

straints can put restrictions on how the data can change

over time. This is to be contrasted with databases that do

not store past or future facts: if integrity constraints can

only refer to a single database state, they cannot capture

time-varying properties of data.

1. Defining Temporal Integrity

While temporal integrity constraints can in principle

be expressed as Boolean queries in whichever temporal
query language, it turns out that temporal logic on

timepoint-stamped data are the prevailing formalism

for defining and studying temporal integrity.

1.1 Temporal, Transition, and Static Constraints Since

first-order logic is the lingua franca for expressing

non-temporal integrity constraints, it is natural to

express temporal integrity constraints in temporal

extensions of first-order logic. Such temporalized

logics refer to time either through variables with a

type of time points, or by temporal modal operators,

such as:
Satisfaction of such constraints by a temporal da-

tabase can be checked if the question “Does (did/will)

R(a1,...,am) hold at t ?” can be answered for any fact R

(a1,...,am) and time instant t. Alternatively, one can

equip facts with time and ask: “Is R(a1,...,am j t)
true?”. Thus, one can abstract from the concrete tem-

poral database representation, which may well contain

interval-stamped facts [7]. Every time point t gives rise

to a (database) state containing all facts true at t.

The following examples assume a time granularity

of days. The facts WorksFor(John Smith, Pulse) and

Earns(John Smith, 20K), true on 10 August 2007,

express that John worked for the Pulse project and

earned a salary of 20K at that date. The alternative

encoding is WorksFor(John Smith, Pulse j 10 Aug

2007) and Earns(John Smith, 20K j 10 Aug 2007).

Although temporal integrity constraints can gener-

ally refer to any number of database states, many

natural constraints involve only one or two states. In

particular, transition constraints only refer to the cur-

rent and the previous state; static constraints refer only

to the current state.

The first-order temporal logic (FOTL) formulas

(1)–(4) hereafter illustrate different types of integrity

constraints. The constraint “An employee who is

dropped from the Pulse project cannot work for that

project later on” can be formulated in FOTL as follows:

2978T Temporal Integrity Constraints
:9xðWorksFor x;Pulseð Þ ^ rð:WorksFor x;Pulseð Þ^
�WorksFor x;Pulseð ÞÞÞ

ð1Þ
This constraint can be most easily understood by

noticing that the subformula ♦(¬WorksFor(x, Pulse)

∧●WorksFor(x, Pulse)) is true in the current database

state for every employee x who was dropped from the

Pulse project sometime in the past (this subformula will

recur in the discussion of integrity checking later on).

This constraint can be equivalently formulated in a two-

sorted logic, using two temporal variables t1 and t2:

:9x9t19t2ð t1 < t2ð Þ ^WorksFor x;Pulsejt2ð Þ
^ :WorksFor x; Pulsejt1ð Þ ^WorksFor x; Pulsejt1 � 1ÞÞð

The constraint “Today’s salary cannot be less than yes-

terday’s” is a transition constraint, and can be formu-

lated as follows:

:9x9y9z Earns x; yð Þ ^ � Earns x; zð Þ ^ y < zð Þð Þ ð2Þ

Finally, static constraints are illustrated. The most fun-

damental static constraints in the relational data model

are primary keys and foreign keys. The constraint “No

employee has two salaries” implies that employee names

uniquely identify Earns-tuples in any database state; it

corresponds to a standard primary key. The constraint

“Every employee in the WorksFor relation has a salary”

means that in any database state, the first column of

WorksFor is a foreign key that references (the primary

key of) Earns. These constraints can be formulated in

FOTL without using temporal connectives:

8x8y8z Earns x; yð Þ ^ Earns x; zð Þ ! y ¼ zð Þ ð3Þ
8x8y WorksFor x; yð Þ ! 9zEarns x; zð Þð Þ ð4Þ

Formulas (3) and (4) show a nice thing about using

FOTL for expressing temporal integrity: static con-

straints read as non-temporal constraints expressed in

first-order logic.

1.2 Different Notions of Consistency The syntax and

semantics of the temporal logic used in the previous

section are defined next. Different notions of temporal

constraint satisfaction are discussed.

Assume a countably infinite set dom of constants.

In the following syntax, R is any relation name and

each si is a variable or a constant:
C;C 0 ::¼ R s1;:::;smð Þjs1 ¼ s2

jC ^ C 0j:Cj9x Cð ÞjsCjeCj�CjrC

The connectives ● and ♦ are called past operators; s and

e are future operators. A past formula is a formula

without future operators; a future formula is a for-

mula without past operators. Other modal operators,

like the past operator since and the future operator

until, can be added to increase expressiveness. The set

of time points is assumed to be infinite, discrete and

linearly ordered with a smallest element. Thus, the

time scale can be depicted as follows:

Discreteness of time is needed in the interpretation

of the operators s and �. Formulas are interpreted

relative to an infinite sequence H =hH0, H1, H2,...i,
where each Hi is a finite set of facts formed from

relation names and constants of dom. Intuitively, Hi

contains the facts true at time ti. Such a sequence H is

called an infinite (database) history and each Hi a

(database) state. The following rules define inductively

what it means for a closed formula C to be satisfied by

H, denoted H⊨inf C.

Note that the truth of each subformula is expressed

relative to a single “reference” time point i (along with

H). This characteristic allows efficient techniques for

integrity checking [6] and seems crucial to the success

of temporal logic. Finally:

H �inf C iff H ; j �inf C for each j � 0

Consistency of infinite database histories is of theo-

retical interest. In practice, only a finite prefix of H

will be known at any one time. Consider, for example,

the situation where H0 is the initial database state, and

for each i � 0, the state Hiþ1 results from applying an

update to Hi. Since every update can be followed by

Temporal Integrity Constraints T 2979

T

another one, there is no last state in this sequence.

However, at any one time, only some finite history

hH0,...,Hni up to the most recent update is known,

and it is of practical importance to detect con-

straint violations in such a finite history. It is rea-

sonable to raise a constraint violation when the

finite history obtained so far cannot possibly be

extended to an infinite consistent history. For ex-

ample, the constraints

:9x Hire xð Þ ^ :} Promote xð Þ ^ }Retire xð Þð Þð Þ
:9x Retire xð Þ ^ }Retire xð Þð Þ

express that all hired people are promoted before they

retire, and that no one can retire twice. Then, the finite

history h{Hire(Ed)},{Hire(An)},{Retire(Ed)}i is incon-
sistent, because of the absence of Promote(Ed) in

the second state. It is assumed here that the database

history is append-only and that the past cannot be

modified.

Two different notions, denoted ⊨pot and ⊨fin, of

satisfaction for finite histories are as follows:

1. hH0,...,Hni ⊨potC if hH0,...,Hni can be extended to

an infinite historyH =hH0,...,Hn,Hnþ1,...i such that
H ⊨inf C.

2. hH0,...,Hni ⊨finC if hH0,...,Hni can be extended to

an infinite historyH =hH0,...,Hn, Hn+1,...i such that

H, i ⊨inf C for each i 2{0, 1,...,n}.
Obviously, the first concept, called potential satisfac-

tion, is stronger than the second one: hH0,...,Hni⊨potC

implies hH0,...,Hni ⊨finC. Potential satisfaction is the

more natural concept. However, Chomicki [3] shows

how to construct a constraint C, using only past opera-

tors (● and ♦), for which ⊨pot is undecidable. On the

other hand, ⊨fin is decidable for constraints C that use

only past operators, because the extra states Hnþ1,
Hnþ2,... do not matter in that case. It also seems that

for most practical past formulas, ⊨pot and ⊨fin coin-

cide [6]. Chomicki and Niwiński [4] define restricted

classes of future formulas for which ⊨pot is decidable.

1.3 Expressiveness of Temporal Constraints The only

assumption about time used in the constraints shown

so far, is that the time domain is discrete and linearly

ordered. Many temporal constraints that occur in

practice need additional structure on the time domain,

such as granularity. The constraint “The salary of an

employee cannot change within a month” assumes a
grouping of time instants into months. It can be

expressed in a two-sorted temporal logic extended

with a built-in predicate month(t1, t2) which is true if

t1 and t2 belong to the same month:

:9x9y19y29t19t2ðmonth t1; t2ð Þ ^ Earns x; y1jt1ð Þ
^ Earns x; y2jt2ð Þ ^ y1 6¼ y2Þ:

Arithmetic on the time domain may be needed to

capture constraints involving time distances, dura-

tions, and periodicity. For example, the time domain

0, 1, 2,... may be partitioned into weeks by

the predicate week(t1, t2) defined by: week(t1, t2) if

t1∖7 = t2∖7, where ∖ is the integer division operator. If

0� t2� t1� 7, then one can say that t2 is within a week

from t1 (even though week(t1, t2) may not hold).

Temporal databases may provide two temporal

dimensions for valid time and transaction time. Valid

time, used in the preceding examples, indicates when

data are true in the real world. Transaction time

records the history of the database itself. If both time

dimensions are supported, then constraints can explic-

itly refer to both the history of the domain of discourse

and the system’s knowledge about that history [10].

Such types of constraints cannot be expressed in form-

alisms with only one notion of time.

Temporal logics have been extended in different

ways to increase their expressive power. Such exten-

sions include fixpoint operators and second-order

quantification over sets of timepoints. On the other

hand, several important problems, such as potential

constraint satisfaction, are undecidable for FOTL and

have motivated the study of syntactic restrictions to

achieve decidability [4].

This entry focuses on temporal integrity of data-

bases that use (temporal extensions of) the relational

data model. Other data models have also been extend-

ed to deal with temporal integrity; time-based cardi-

nality constraints in the Entity-Relationship model are

an example.
1.4 Constraints on Interval-stamped Temporal Data

All constraints discussed so far make abstraction of

the concrete representation of temporal data in a (re-

lational) database. They only assume that the database

can tell whether a given fact holds at a given point in

time. The notion of finite database history (let alone

infinite history) is an abstract concept: in practice, all

2980T Temporal Integrity Constraints
information can be represented in a single database in

which facts are timestamped by time intervals to indi-

cate their period of validity. An interval-stamped rela-

tion is shown below.
Emp Sal FromTo

John Smith 10K [1 May 2007, 31 Dec 2007]

John Smith 11K [1 Jan 2008, 31 Dec 2008]
Following [10], constraints over such interval-stamped

relations can be expressed in first-order logic extended

with a type for time intervals and with Allen’s interval

relations. The following constraint, stating that “Sal-

aries of employees cannot decrease,” uses temporal vari-

ables i1, i2 that range over time intervals:

8x8y8z8i18i2ðEarns x; yji1ð Þ ^ Earns x; zji2ð Þ
^ before i1; i2ð Þ) y � zÞ:

Nevertheless, it seems that many temporal integrity con-

straints can be most conveniently expressed under an

abstract, point-stamped representation. This is definitely

true for static integrity constraints, like primary and

foreign keys. Formalisms based on interval-stamped

relations may therefore provide operators like timeslice

or unfold to switch to a point-stamped representation.

Such “snapshotting” also underlies the sequenced

semantics [8], which states that static constraints

must hold independently at every point in time.

On the other hand, there are some constraints that

concern only the concrete interval-stamped represen-

tation itself. For example, the interval-stamped rela-

tion Earns shown below satisfies constraint (3), but

may be illegal if there is a constraint stating that tem-

poral tuples need to be coalesced whenever possible.
Emp Sal FromTo

John Smith 10K [1 May 2007, 30 Sep 2007]

John Smith 10K [1 Oct 2007, 31 Dec 2007]

John Smith 11K [1 Jan 2008, 31 Dec 2008]
2. Checking and Enforcing Temporal Integrity

Consider a database history to which a new state is

added whenever the database is updated. Consistency

is checked whenever a tentative update reaches the

database. If the update would result in an inconsistent
database history, it is rejected; otherwise the new data-

base state is added to the database history. This scenar-

io functions well if the entire database history is

available for checking consistency. However, more effi-

cient methods have been developed that allow checking

temporal integrity without having to store the whole

database history.

To check integrity after an update, there is generally

no need to inspect the entire database history. In par-

ticular, static constraints can be checked by inspecting

only the new database state; transition constraints can

be checked by inspecting the previous and the new

database state. Techniques for temporal integrity

checking aim at reducing the amount of historical

data that needs to be considered after a database up-

date. In “history-less” constraint checking [3,9,11], all

information that is needed for checking temporal in-

tegrity is stored, in a space-efficient way, in the current

database state. The past states are then no longer need-

ed for the purpose of integrity checking (though they

may be needed for answering queries).

The idea is similar to Temporal Vacuuming and can

be formalized as follows. For a given database schema

S, let FIN_HISTORIES(S) denote the set of finite da-

tabase histories over S and STATES(S) the set of states

over S. Given a database schema S and a set C of

temporal constraints, the aim is to compute a schema

T and a computable function E : FIN_HISTORIES(S)

! STATES(T), called history encoding, with the follow-

ing properties:

� for every H 2 FIN_HISTORIES(S), the consistency

ofH with respect to Cmust be decidable from E(H)

and C. This can be achieved by computing a new set

C0 of (non-temporal) first-order constraints over T

such that for every H 2 FIN_HISTORIES(S),

H⊨tempC if and only if E(H)⊨C0, where ⊨temp is

the desired notion of temporal satisfaction (see the

section on “Different Notions of Consistency”).

Intuitively, the function E encodes, in a non-

temporal database state over the schema T, all in-

formation needed for temporal integrity checking.

� E must allow an incremental computation when

new database states are added: for every hH0,...,

Hni 2 FIN_HISTORIES(S), the result E(hH0,...,

Hni) must be computable from E(hH0,...,Hn�1i)
and Hn. In turn, E(hH0,...,Hn�1i) must be

computable from E(hH0,...,Hn�2i) and Hn�1. And
so on.

Temporal Integrity Constraints T 2981

T

Formally, there must be a computable function

D : STATES(T) � STATES(S) ! STATES(T) and

an initial database state Jinit 2 STATES(T) such

that E(hH0i) = D(Jinit, H0) and for every n > 0,

E(hH0,...,Hni) = D(E(hH0,...,Hn�1i), Hn). The

state Jinit is needed to get the computation off

the ground.

Note that the history encoding is fully determined

by the quartet (T, Jinit, D,C0), which only depends on

S and C (and not on any database history).

Such history encoding was developed by Chomicki

[3] for constraints expressed in Past FOTL (including

the sincemodal operator). Importantly, in that encod-

ing, the size of E(H) is polynomially bounded in the

number of distinct constants occurring in H, irrespec-

tive of the length of H. Chomicki’s bounded history

encoding can be illustrated by constraint (1), which

states that an employee cannot work for the Pulse

project if he was dropped from that project in the

past. The trick is to maintain an auxiliary relation

(call it DroppedFromPulse, part of the new schema T)

that stores names of employees who were dropped

from the Pulse project in the past. Thus,DroppedFrom-

Pulse(x) will be true in the current state for every

employee name x that satisfies ♦(¬WorksFor(x, Pulse)

∧●WorksFor(x, Pulse)) in the current state. Then, con-

straint (1) can be checked by checking ¬∃x(WorksFor

(x, Pulse) ∧DroppedFromPulse(x)), which, syntactical-

ly, is a static constraint. Note incidentally that the label

“static” is tricky here, because the constraint refers to

past information stored in the current database state.

Since history-less constraint checking must not rely

on past database states, the auxiliary relation Dropped-

FromPulse must be maintained incrementally (the

function D): whenever an employee named x is

dropped from the Pulse project (i.e., whenever the

tuple WorksFor(x, Pulse) is deleted), the name x must

be added to the DroppedFromPulse relation. In this

way, one remembers who has been dropped from

Pulse, but forgets when.

History-less constraint checking thus reduces dy-

namic to static constraint checking, at the expense of

storing in auxiliary relations (over the schema T) his-

torical data needed for checking future integrity.

Whenever a new database state is created as the result

of an update, the auxiliary relations are updated as

needed (using the function D). This technique is suited
for implementation in active database systems [5,11]: a
tentative database update will trigger an abort if it

violates consistency; otherwise the update is accepted

and will trigger further updates that maintain the

auxiliary relations.

The approach described above is characterized by

ad hoc updates. A different approach is operational:

the database can only be updated through a predefined

set of update methods (also called transactions). These

transactions are specified in a transaction language that

provides syntax for embedding elementary updates

(insertions and deletions of tuples) in program control

structures. Restrictions may be imposed on the possi-

ble execution orders of these transactions. Bidoit and

de Amo [1] define dynamic dependencies in a declara-

tive way, and then investigate transaction schemes that

can generate all and only the database histories that are

consistent.

Although it is convenient to use an abstract tempo-

ral representation for specifying temporal constraints,

consistency checks must obviously be performed on

concrete representations. Techniques for checking stat-

ic constraints, like primary and foreign keys, need

to be revised if one moves from non-temporal to

interval-timestamped relations [8]. Primary keys can

be enforced on a non-temporal relation by means of

a unique-index construct. On the other hand, two

distinct tuples in an interval-timestamped relation

can agree on the primary key without violating consis-

tency. For example, the consistent temporal relation

shown earlier contains two tuples with the same

name John Smith.

Key Applications
Temporal data and integrity constraints naturally

occur in many database applications. Transition con-

straints apply wherever the legality of new values after

an update depends on the old values, which happens

to be very common. History-less constraint checking

seems particularly suited in applications where tempo-

ral conditions need to be checked, but where there

is no need for issuing general queries against past

database states. This may be the case in monitor and

control applications [12].
Cross-references
▶ Interval-based Temporal Models

▶ Point-stamped Temporal Models

▶Temporal Constraints

2982T Temporal Joins
▶Temporal Dependencies

▶Temporal Logic in Database Query Languages

▶Temporal Vacuuming
Recommended Reading
1. Bidoit N. and de Amo S. A first step towards implementing

dynamic algebraic dependences. Theor. Comput. Sci., 190(2):

115–149, 1998.

2. de Castilho J.M.V., Casanova M.A., and Furtado A.L. A temporal

framework for database specifications. In Proc. 8th Int. Conf. on

Very Data Bases, 1982, 280–291.

3. Chomicki J. Efficient checking of temporal integrity constraints

using bounded history encoding. ACM Trans. Database Syst.,

20(2):149–186, 1995.

4. Chomicki J. and Niwinski D. On the feasibility of checking

temporal integrity constraints. J. Comput. Syst. Sci., 51(3):

523–535, 1995.

5. Chomicki J. and Toman D. Implementing temporal integrity

constraints using an active DBMS. IEEE Trans. Knowl. Data

Eng., 7(4):566–582, 1995.

6. Chomicki J. and Toman D. Temporal logic in information

systems. In Logics for Databases and Information Systems.

J. Chomicki and G. Saake (eds.). Kluwer, Dordecht, 1998,

pp. 31–70.

7. Chomicki J. and Toman D. Temporal databases. In M. Fisher, D.

M. Gabbay, and L. Vila (eds.). Handbook of Temporal Reasoning

in Artificial Intelligence. Elsevier Science, 2005.

8. Li W., Snodgrass R.T., Deng S., Gattu V.K., and Kasthurirangan

A. Efficient sequenced integrity constraint checking. In Proc.

17th Int. Conf. on Data Engineering, 2001, pp. 131–140.

9. Lipeck U.W. and Saake G. Monitoring dynamic integrity con-

straints based on temporal logic. Inf. Syst., 12(3):255–269, 1987.

10. Plexousakis D. Integrity constraint and rule maintenance in

temporal deductive knowledge bases. In Proc. 19th Int. Conf.

on Very Large Data Bases, 1993, pp. 146–157.

11. Sistla A.P. and Wolfson O. Temporal conditions and integrity

constraints in active database systems. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1995, pp. 269–280.

12. Sistla A.P. and Wolfson O. Temporal triggers in active databases.

IEEE Trans. Knowl. Data Eng., 7(3):471–486, 1995.
Temporal Joins

DENGFENG GAO

IBM Silicon Valley Lab, San Jose, CA, USA

Definition
A temporal join is a join operation on two temporal

relations, in which each tuple has additional attributes

indicating a time interval. The temporal join predicates

include conventional join predicates as well as a
temporal constraint that requires the overlap of the

intervals of the two joined tuples. The result of a

temporal join is a temporal relation.

Besides binary temporal joins that operate on

two temporal relations, there are n-ary temporal joins

that operate on more than two temporal relations.

Besides temporal overlapping, there are other temporal

conditions such as “before” and “after” [1]. This entry

will concentrate on the binary temporal joins with

overlapping temporal condition since most of the pre-

vious work has focused on this kind of joins.
Historical Background
In the past, temporal join operators have been defined

in different temporal datamodels; at times the essentially

same operators have even been given different names

when defined in different data models. Further, the

existing join algorithmshave also been constructedwith-

in the contexts of different data models. Temporal join

operators were first defined by Clifford and Croker [4].

Latermany papers studiedmore temporal join operators

and the evaluation algorithms. To enable the comparison

of join definitions and implementations across data

models, Gao et al. [7] proposed a taxonomy of temporal

joins and then use this taxonomy to classify all previously

defined temporal joins.
Foundations
Starting from the core set of conventional relational

joins that have long been accepted as “standard” [11]:

Cartesian product (whose “join predicate” is the con-

stant expression TRUE), theta-join, equijoin, natural

join, left and right outerjoin, and full outerjoin, a

temporal counterpart that is a natural, temporal gen-

eralization of the set can be defined. The semantics of

the temporal join operators are defined as follows.

To be specific, the definitions are based on a single

data model that is used most widely in temporal data

management implementations, namely the one that

timestamps each tuple with an interval. Assume that

the time-line is partitioned into minimal-duration

intervals, termed chronons [5]. The intervals are

denoted by inclusive starting and ending chronons.

Two temporal relational schemas, R and S, are

defined as follows.

R ¼ ðA1;:::;An;Ts;TeÞ
S ¼ ðB1;:::;Bm;Ts;TeÞ

Temporal Joins T 2983
The Ai, 1 � i � n, and Bi, 1 � i � m, are the explicit

attributes that are found in corresponding snapshot

schemas, and Ts and Te are the timestamp start and

end attributes, recording when the information

recorded by the explicit attributes holds (or held or

will hold) true. T will be used as a shorthand for the

interval [Ts, Te], and A and B will be used as a short-

hand for {A1,...,An} and {B1,...,Bn}, respectively. Also,

r and s are defined to be instances of R and S,

respectively.

Consider the following two temporal relations. The

relations show the canonical example of employees, the

departments they work for, and the managers who

supervise those departments.
Employee

EmpName Dept T

Ron Ship [1,5]

George Ship [5,9]

Ron Mail [6,10]

Manages

Dept MgrName T

Load Ed [3,8]

Ship Jim [7,15]

Employee � T Manages

EmpName Dept Dept MgrName T

Ron Ship Load Ed [3,5]

George Ship Load Ed [5,8]

George Ship Ship Jim [7,9]

Ron Mail Load Ed [6,8]

Ron Mail Ship Jim [7,10]

T

Tuples in the relations represent facts about the

modeled reality. For example, the first tuple in the

Employee relation represents the fact that Ron worked

for the Shipping department from time 1 to time 5,

inclusive. Notice that none of the attributes, including

the timestamp attributes T, are set-valued – the rela-

tion schemas are in 1NF.

Cartesian Product

The temporal Cartesian product is a conventional Car-

tesian product with a predicate on the timestamp

attributes. To define it, two auxiliary definitions are

needed.

First, intersect (U,V), where U and V are inter-

vals, returns TRUE if there exists a chronon t such

that t 2 U ∧ t 2 V , and FALSE otherwise. Second,

overlap (U,V) returns the maximum interval contained

in its two argument intervals. If no non-empty inter-

vals exist, the function returns. To state this
more precisely, let first and last return the smallest

and largest of two argument chronons, respectively.

Also let Us and Ue denote the starting and ending

chronons of U, and similarly for V.

overlapðU ;V Þ¼
½lastðUs; VsÞ; firstðUe ;VeÞ� if lastðUs; VsÞ

� firstðUe; VeÞ
; otherwise:

8><
>:
The temporal Cartesian product, r � Ts, of two

temporal relations r and s is defined as follows.

r � Ts ={z(n+m+2)j∃x 2 r ∃y 2 s (intersect (x[T],

y[T])∧z[A] = x[A]∧z[B] = y[B]∧
z[T] = overlap(x[T],y[T]) ∧ z[T] 6¼f)}

The first line of the definition ensures that matching

tuples x and y have overlapping timestamps and sets

the explicit attribute values of the result tuple z to the

concatenation of the explicit attribute values of x and y.

The second line computes the timestamp of z and

ensures that it is non-empty. The intersect predicate is

included only for later reference – it may be omitted

without changing the meaning of the definition.

Consider the query “Show the names of employees

and managers where the employee worked for the

company while the manager managed some depart-

ment in the company.” This can be satisfied using the

temporal Cartesian product.
The overlap function is necessary and sufficient to

ensure snapshot reducibility, as will be discussed in

detail later. Basically, the temporal Cartesian product

acts as though it is a conventional Cartesian pro-

duct applied independently at each point in time.

When operating on interval-stamped data, this seman-

tics corresponds to an intersection: the result will be

2984T Temporal Joins
valid during those times when contributing tuples from

both input relations are valid.

Theta-Join

Like the conventional theta-join, the temporal theta-

join supports an unrestricted predicate P on the explic-

it attributes of its input arguments. The temporal

theta-join, r ⋈P
Ts, of two relations r and s selects

those tuples from r �Ts that satisfy predicate P(r[A],s

[B]). Let s denote the standard selection operator.

The temporal theta-join, r ⋈P
Ts, of two temporal

relations r and s is defined as follows.

r fflT
Ps ¼ sPðr½A�;s½B�Þðr�TsÞ

Equijoin

Like snapshot equijoin, the temporal equijoin operator

enforces equality matching between specified subsets

of the explicit attributes of the input relations.

The temporal equijoin on two temporal relations r

and s on attributes A0� A and B0� B is defined as the

theta-join with predicate P � r[A0] = s[B0]:

r fflT
r½A0 �¼s½B0 �s :

Natural Join

The temporal natural join bears the same relationship

to the temporal equijoin as does their snapshot coun-

terparts. Namely, the temporal natural join is simply a

temporal equijoin on identically named explicit attri-

butes, followed by a subsequent projection operation.

To define this join, the relation schemas are aug-

mented with explicit join attributes, Ci, 1 � i � k,

which are abbreviated by C.

R ¼ ðA1;:::;An;C1;:::;Ck;Ts;TeÞ
S ¼ ðB1;:::;Bm;C1;:::;Ck;Ts;TeÞ

The temporal natural join of r and s, r ⋈Ts, is defined

as follows.

r ⋈ Ts ={z(n+m+k+2)j∃x 2 r∃y 2 s(x[C] = y[C]∧
z[A] = x[A] ∧ z[B] = x[B] ∧ z[C] = y[C]∧
z[T] = overlap(x[T],y[T]) ∧ z[T] 6¼f)}
The first two lines ensure that tuples x and y agree on

the values of the join attributes C and set the explicit

attribute of the result tuple z to the concatenation of

the non-join attributes A and B and a single copy of

the join attributes, C. The third line computes the
timestamp of z as the overlap of the timestamps of

x and y, and ensures that x[T] and y[T] actually

overlap.

The temporal natural join plays the same impor-

tant role in reconstructing normalized temporal rela-

tions as does the snapshot natural join for normalized

snapshot relations [10]. Most previous work in tempo-

ral join evaluation has addressed, either implicitly or

explicitly, the implementation of the temporal natural

join (or the closely related temporal equijoin).
Outerjoins and Outer Cartesian Products

Like the snapshot outerjoin, temporal outerjoins and

Cartesian products retain dangling tuples, i.e., tuples

that do not participate in the join. However, in a

temporal database, a tuple may dangle over a portion

of its time interval and be covered over others; this

situation must be accounted for in a temporal out-

erjoin or Cartesian product.

The temporal outerjoin may be defined as the

union of two subjoins, analogous to the snapshot out-

erjoin. The two subjoins are the temporal left outerjoin

and the temporal right outerjoin. As the left and right

outerjoins are symmetric, only the left outerjoin is

defined here.

Two auxiliary functions are needed. The coalesce

function collapses value-equivalent tuples – tuples

with mutually equal non-timestamp attribute values

[9] – in a temporal relation into a single tuple with the

same non-timestamp attribute values and a timestamp

that is the finite union of intervals that precisely

contains the chronons in the timestamps of the

value-equivalent tuples. *(Finite unions of time inter-

vals are termed temporal elements [6].)* The definition

of coalesce uses the function chronons that returns the

set of chronons contained in the argument interval.

coalesce(r) ={z(n+2)j∃x 2 r(z[A] = x[A]) chronons

(x[T]) � z[T]∧
8x002 r (x[A] = x00[A]) (chronons(x00[T]) �

z[T])))∧
8t 2 z[T]∃x00 2 r(z[A] = x00[A] ∧ t 2 chronons

(x00[T]))}

The first two lines of the definition coalesce all value-

equivalent tuples in relation r. The third line ensures

that no spurious chronons are generated.

Now a function expand is defined that returns the set

ofmaximal intervals contained in an argument temporal

Temporal Joins. Table 1. Temporal join operators

Operator
Initial
Citation

Taxonomy
Operator Restrictions

Y-JOIN [2] Theta-join None

EQUIJOIN [2] Equijoin None

NATURAL-JOIN [2] Natural Join None

TIME-JOIN [2] Cartesian
Product

1

T-join [8] Cartesian
Product

None

Cartesian
product

[3] Outer
Cartesian
Product

None

TE-JOIN [13] Equijoin 2

TE-OUTERJOIN [13] Left
Outerjoin

2

EVENT-JOIN [13] Outerjoin 2

Valid-Time
Theta-Join

[14] Theta-join None

Valid-Time
Left Join

[14] Left
Outerjoin

None

GTE-Join [15] Equijoin 2, 3

Restrictions:

1 = restricts also the valid time of the result tuples

2 = matching only on surrogate attributes

3 = includes also intersection predicates with an argument surro-

gate range and a time range

Temporal Joins T 2985

T

element, T. Prior to defining expand an auxiliary func-

tion intervals is defined that returns the set of intervals

contained in an argument temporal element.

intervals(T) ={[ts,te]jts 2 T ∧ te 2 T∧
8t 2 chronons([ts,te])(t 2 T)}

The first two conditions ensures that the beginning

and ending chronons of the interval are elements of T.

The third condition ensures that the interval is contig-

uous within T.

Using intervals, expand is defined as follows.

expand(T) ={[ts,te]j[ts,te] 2 intervals(T)∧
¬∃[ts0,te0] 2 intervals(T)(chronons([ts,te]) �

chronons([ts
0,te0]))}

The first line ensures that a member of the result is an

interval contained in T. The second line ensures that

the interval is indeed maximal.

The temporal left outerjoin is now ready to be

defined. Let R and S be defined as for the temporal

equijoin. A0� A and B 0� B are used as the explicit join

attributes.

The temporal left outerjoin, r r[A0]=s[B 0]s of two

temporal relations r and s is defined as follows.

r r[A0]=s[B0] s ={z
(n+m+2)j∃x 2 coalesce(r)∃y 2 coa-

lesce(s)

(x[A0] = y[B0] ∧ z[A] = x[A] ∧ z[T] 6¼ f∧
((z[B] = y[B] ∧ z[T] 2 {expand(x[T] \ y[T])})∨
(z[B] = null ∧ z[T] 2 {expand(x[T]) � expand

(y[T])})))∨
∃x 2 coalesce(r)8y 2 coalesce(s)

(x[A0] 6¼ y[B0]) z[A] = x[A] ∧ z[B] = null∧
z[T] 2 expand(x[T]) ∧ z[T] 6¼ f)}

The first four lines of the definition handle the case

where, for a tuple x deriving from the left argument, a

tuple y with matching explicit join attribute values is

found. For those time intervals of x that are not shared

with y, tuples with null values in the attributes of y are

generated. The final three lines of the definition handle

the case where no matching tuple y is found. Tuples

with null values in the attributes of y are generated.

The temporal outerjoin may be defined as simply

the union of the temporal left and the temporal right

outerjoins (the union operator eliminates the duplicate

equijoin tuples). Similarly, a temporal outer Cartesian

product is a temporal outerjoin without the equijoin

condition (A0 = B0 = f).
Table 1 summarizes how previous work is repre-

sented in the taxonomy. For each operator defined in

previous work, the table lists the defining publication,

researchers, the corresponding taxonomy operator,

and any restrictions assumed by the original operators.

In early work, Clifford [4] indicated that an IN-

TERSECTION-JOIN should be defined that represents

the categorized non-outer joins and Cartesian pro-

ducts, and he proposed that an UNION-JOIN be de-

fined for the outer variants.
Reducibility

The following shows how the temporal operators re-

duce to snapshot operators. Reducibility guarantees

that the semantics of snapshot operator is preserved

in its more complex, temporal counterpart.

For example, the semantics of the temporal natural

join reduces to the semantics of the snapshot natural

join in that the result of first joining two temporal

Temporal Joins. Figure 1. Reducibility of temporal natural join to snapshot natural join.

2986T Temporal Joins
relations and then transforming the result to a snapshot

relation yields a result that is the same as that obtained

by first transforming the arguments to snapshot

relations and then joining the snapshot relations. This

commutativity diagram is shown in Fig. 1 and stated

formally in the first equality of the following theorem.

The timeslice operation t T takes a temporal rela-

tion r as argument and a chronon t as parameter. It

returns the corresponding snapshot relation, i.e., with

the schema of r, but without the timestamp attributes,

that contains (the non-timestamp portion of) all

tuples x from r for which t belongs to x[T]. It follows

from the next theorem that the temporal joins defined

here reduce to their snapshot counterparts.
Theorem 1

Let t denote a chronon and let r and s be relation

instances of the proper types for the operators they

are applied to. Then the following hold for all t:

tTt ðr fflTsÞ ¼ tTt ðrÞ ffl tTt ðsÞ
tTt ðr �TsÞ ¼ tTt ðrÞ � tTt ðsÞ
tTt ðr fflT

PsÞ ¼ tTt ðrÞ ffl P tTt ðsÞ
tTt ðr

u fflTsÞ ¼ tTt ðrÞ

u ffl tTt ðsÞ
tTt ðr ffl uTsÞ ¼ tTt ðrÞ ffl u tTt ðsÞ

Due to the space limit, the proof of this theorem

is not provided here. The details can be found in the

related paper [7].
Evaluation Algorithms Algorithms for temporal join

evaluation are necessarily more complex than their snap-

shot counterparts. Whereas snapshot evaluation algori-

thms match input tuples on their explicit join attributes,
temporal join evaluation algorithms typically must in

addition ensure that temporal restrictions are met. Fur-

thermore, this problem is exacerbated in twoways. Time-

stamps are typically complex data types, e.g., intervals,

requiring inequality predicates, which conventional

query processors are not optimized to handle. Also, a

temporal database is usually larger than a corresponding

snapshot database due to the versioning of tuples.

There are two categories of evaluation algorithms.

Index-based algorithms use an auxiliary access path,

i.e., a data structure that identifies tuples or their loca-

tions using a join-attribute value. Non-index-based

algorithms do not employ auxiliary access paths. The

large number of temporal indexes have been proposed

in the literature [12]. Gao et al. [7] provided a taxono-

my of non-index-based temporal join algorithms.
Key Applications
Temporal joins are used to model relationships between

temporal relations with respect to the temporal dimen-

sions. Datawarehouses usually need to store and analyze

historical data. Temporal joins can be used (alone or

together with other temporal relational operators) to

perform the analysis on historical data.
Cross-references
▶Bi-Temporal Indexing

▶Temporal Algebras

▶Temporal Data Models

▶Temporal Database

▶Temporal Query Processing

Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, November 1983.

Temporal Logic in Database Query Languages T 2987
2. Clifford J. and Croker A. The historical relational data model

(HRDM) and algebra based on lifespans. In Proc. 3th Int. Conf.

on Data Engineering, 1987, pp. 528–537.

3. Clifford J. and Croker A. The historical relational data model

(HRDM) revisited. In Temporal Databases: Theory, Design,

and Implementation, Chap. 1, A. Tansel, J. Clifford, S. Gadia,

S. Jajodia, A. Segev, R.T. Snodgrass (eds.). Benjamin/Cummings,

1993, pp. 6–27.

4. Clifford J. and Tansel A.U. On an algebra for historical relational

databases: two views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1985, pp. 1–8.

5. Dyreson C.E. and Snodgrass R.T. Timestamp semantics and

representation. Inf. Syst., 18(3):143–166, 1993.

6. Gadia S.K. A homogeneous relational model and query

languages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, 1988.

7. Gao D., Snodgrass R.T., Jensen C.S., and Soo M.D. Join

operations in temporal databases. VLDB J., 14(1):2–29, 2005.

8. Gunadhi H. and Segev A. Query processing algorithms

for temporal intersection joins. In Proc. 7th Int. Conf. on Data

Engineering, 1991, pp. 336–3.

9. Jensen C.S. (ed.) The consensus glossary of temporal database

concepts – February 1998 version. In Temporal Databases:

Research and Practice. O. Etzion, S. Jajodia, S. Sripadi (eds.).

Springer, Berlin Heidelberg New York, 1998, pp. 367–405.

10. Jensen C.S., Snodgrass R.T., and Soo M.D. Extending existing

dependency theory to temporal databases. IEEE Trans. Knowl.

Data Eng., 8(4):563–582, August 1996.

11. Mishra P. and Eich M. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, March 1992.

12. Salzberg B. and Tsotras V.J. Comparison of access methods

for time-evolving data. ACM Comput. Surv., 31(2):158–221,

June 1999.

13. Segev A. and Gunadhi H. Event-join optimization in temporal

relational databases. In Proc. 15th Int. Conf. on Very Large Data

Bases, 1989, pp. 205–215.

14. Soo M.D., Jensen C.S., and Snodgrass R.T. 1An algebra

for TSQL2. In the TSQL2 Temporal Query Language, Chap.

27, R.T. Snodgrass (ed.). Kluwer, Hingham, MA, 1995,

pp. 505–546.

15. Zhang D., Tsotras V.J., and Seeger B. Efficient temporal join pro-

cessing using indices. In Proc. 18th Int. Conf. onData Engineering,

2002, pp. 103.
T

Temporal Layer

▶Temporal Strata
Temporal Logic

▶Time in Philosophical Logic
Temporal Logic in Database Query
Languages

JAN CHOMICKI
1, DAVID TOMAN

2

1State University of New York at Buffalo, Buffalo,

NY, USA
2University of Waterloo, Waterloo, ON, Canada

Definition
The term “temporal logic” is used in the area of formal

logic, to describe systems for representing and reasoning

about propositions and predicates whose truth depends

on time. These systems are developed around a set of

temporal connectives, such as sometime in the future or

until, that provide implicit references to time instants.

First-order temporal logic is a variant of temporal logic

that allows first-order predicate (relational) symbols,

variables and quantifiers, in addition to temporal con-

nectives. This logic can be used as a natural temporal

query language for point-stamped temporal databases.

A query (a temporal logic formula) is evaluated with

respect to an evaluation point (time instant). Each

such point determines a specific database snapshot

that can be viewed as a relational database. Thus,

the evaluation of temporal logic queries resembles the

evaluation of first-order (relational calculus) queries

equipped with an additional capability to “move” the

evaluation point using temporal connectives. In this

way, it becomes possible to refer in a single query

to multiple snapshots of a given temporal database.

The answer to a temporal logic query evaluated with

respect to all time instants forms a point-stamped

temporal relation.
Historical Background
Temporal logic was developed (originally under

the name of tense logic by Arthur Prior in the late

1950s), for representing and reasoning about natural

languages. It was introduced to computer science by

Amir Pnueli [8] as a tool for formal verification of

software systems. The first proposal for using a tempo-

ral logic in the database context was by Sernadas [9].

Subsequently, de Castilho et al. [3] initiated the

study of temporal-logic integrity constraints in rela-

tional databases. Tuzhilin and Clifford [12] considered

temporal logic as a query language for temporal

databases.

2988T Temporal Logic in Database Query Languages
Foundations
Temporal Logic is a variant of modal logic, tailored to

expressing statements whose truth is relative to an

underlying time domain which is commonly a linearly

ordered set of time instants. The modalities are

expressed using natural-language statements of the

form sometime in the future, always in the future, etc.

and are captured in the syntax of the logic using tem-

poral connectives.

Temporal logics are usually rooted in propositional

logic. However, for the purposes of querying (single-

dimensional, valid time) point-stamped temporal

databases, linear-time first-order temporal logic

(FOTL), an extension of first-order logic (relational

calculus) with temporal connectives, is used. More for-

mally, given a relational schema r (of a snapshot of a

point-stamped temporal database), the syntax of FOTL

queries is defined as follows:

Q ::¼ rðxi1 ;:::; xik Þ j xi ¼ xj j Q ^ Q j :Q j
9x:Q j Q since Q j Q until Q

for r 2 r. The additional since and until connectives

are the temporal connectives. The connectives comp-

letely encapsulate the structure of time: FOTL only

refers to time implicitly using these connectives. In

contrast, temporal relational calculus (TRC) uses

explicit temporal variables and attributes to refer to

time. Note that there are no restrictions on the nesting

of the temporal connectives, the Boolean connectives,

and the quantifiers.

The meaning of all temporal logic formulas is de-

fined relative to a particular time instant called the

evaluation point. Intuitively, the evaluation point can

be viewed as representing the current instant or now.

The standard first-order parts of FOTL formulas are

then evaluated in the snapshot of the temporal data-

base determined by the evaluation point. The temporal

connectives make it possible to change the evaluation

point, i.e., to “move” it to the past or to the future. In

this way the combination of first-order constructs

and temporal connectives allows to ask queries that

refer to multiple snapshots of the temporal database.

For example the query Q1 since Q2 asks for all answers

that make Q2 true sometime in the past and Q1 true

between then and now. Similarly, queries about

the future are formulated using the until connective.

More formally, answers to FOTL queries are defined

using a satisfaction relation that, for a given FOTL
query, links a temporal database and an evaluation

point (time instant) with the valuations that make

the given query true with respect to the snapshot of

that database at that particular evaluation point. This

definition, given below, extends the standard definition

of satisfaction for first-order logic.

Definition [FOTL Semantics] Let DB be a point-

stamped temporal database with a data domain D,

a point-based time domain TP , and a (snapshot)

schema r.
The satisfaction relation DB; y; t � Q, where Q is

an FOTL formula, y a valuation, and t 2 TP , is defi-

ned inductively with respect to the structure of the

formula Q: as shown in Figure 2. where r
DBðtÞ
j is the

instance of the relation rj in the snapshot DB(t) of

the database DB at the instant t.

The answer to an FOTL query Q over DB is the set

of tuples:

QðDBÞ :¼ fðt ; yðx1Þ;:::; yðxkÞÞ : DB; y; t � Qg;

where x1,...,xk are the free variables of Q.

Note that answers to FOTL queries are (valid-time)

point-stamped temporal relations.

Other commonly used temporal connectives, such

as e (sometime in the future), u (always in the future),

r (sometime in the past), and j (always in the past) can

be defined in terms of since and until as follows:

eX1 :¼ true until X1 rX1 :¼ true since X1

uX1 :¼ :e:X1 jX1 :¼ :r:X1

For a discrete linear order, the s (next) and d (previ-

ous) operators are defined as follows:

sX1 :¼ false until X1 dX1 :¼ false since X1

The connectives since, r, j, and d are called past

temporal connectives (as they refer to the past) and

until, e, u, and s future temporal connectives.

Example. The sensor information about who

enters or exits a room is kept in the relations Entry

(Fig.1a) and Exit (Fig.1b). Consider the queryQa: “For

every time instant, who is in the room Bell 224 at that

instant?” It can be written in temporal logic as:

9r: ð:Exitðr; pÞÞ since Entryðr; pÞð Þ ^ r ¼ 00Bell 22400

The answer to Qa in the given database is presented in

Fig.1c, under the assumption that time instants corre-

spond to minutes.

Temporal Logic in Database Query Languages. Figure 1. The Entry, the Exit, and the Who is in Bell 224 relations.

Temporal Logic in Database Query Languages. Figure 2. The satisfaction relation for FOTL.

Temporal Logic in Database Query Languages T 2989

T

Extensions

Several natural extensions of FOTL are obtained by

modifying various components of the language:

Multiple temporal contexts (multi-dimensional

TLs). Standard temporal logics use a single evaluation

point to relativize the truth of formulas with respect to

time. However, there is no principled reason to not use

more than one evaluation point simultaneously. The

logics taking this path are calledmultidimensional tem-

poral logics or, more precisely, n-dimensional temporal

logics (for n � 1). The satisfaction relation is extended,

for a particular n, in a natural way, as follows:

DB; y; t1;:::;tn � Q

where t1,...,tn are the evaluation points. In a similar

fashion the definitions of temporal connectives are ex-

tended to this setting. Two-dimensional connectives,

for example, seem to be the natural basis for temporal

logic-style query language for the bitemporal data

model. Unfortunately, there is no consensus on the

selection of two-dimensional temporal operators.

An interesting variant of this extension are interval

temporal logics that associate truth with intervals – these,

however, can be considered pairs of time points [5,13].

More complex time domains. While most temporal

logics assume that the time domain is equipped with

a linear order only, in many practical settings the

time domain has additional structure. For example,
there may be a way to refer to duration (the distance of

two time points). The linear-order temporal connectives

are then generalized to metric temporal connectives:

DB; y; t � Q1 since�m Q2 if 9 t2:t� t2 � m

and

DB; y; t2 � Q2

and

ð8t1:t2 < t1 < t implies DB; y; t1 � Q1Þ

DB; y; t � Q1 until�m Q2 if 9 t2:t2 � t � m

and

DB; y; t2 � Q2

and

ð8t1:t2< t1 < t implies DB; y; t1 � Q1Þ
for �2{<,�, = ,� ,>}. Intuitively, these connectives

provide means of placing constraints on how far in the

past/future certain subformulas must be true. The

resulting logic is then the Metric First-order Temporal

Logic, a first-order variant ofMetric Temporal Logic [7].

Example. To demonstrate the expressive power of

Metric Temporal Logic, consider the query Qb: “For

every time instant, who has been in the room Bell 224 at

that instant for at least 2 hours?”:

9r: ðð:Exitðr; pÞÞ since�2:00
Entryðr; pÞÞ ^ r ¼ 00Bell 22400

2990T Temporal Logic in Database Query Languages
More powerful languages for defining temporal connec-

tives. Another extension introduces a more powerful

language for specifying temporal connectives over the

underlying linearly-ordered time domain. Vardi and

Wolper show that temporal logics with connectives de-

fined using first-order formulas cannot express various

natural conditions such as “every other day”. To remedy

this shortcoming, they propose temporal connectives

defined with the help of regular expressions (ETL [15])

or fixpoints (temporal m-calculus [14]). Such exten-

sions carry over straightforwardly to the first-order

setting.

More complex underlying query languages. Last, in-

stead of relational calculus, temporal connectives can be

added to amore powerful language, such as Datalog. The

resulting language is called Templog [2]. With suitable

restrictions, query evaluation in this language is decidable

and the language itself is equivalent to Datalog1S [2].

Expressive Power

The since and until temporal connectives can be

equivalently defined using formulas in the underlying

theory of linear order as follows:

X1 since X2 :¼ 9t2:t0 > t2 ^ X2 ^ 8t1
ðt0 > t1 > t2 ! X1Þ

X1 until X2 :¼ 9t2:t0 < t2 ^ X2 ^ 8t1
ðt0 < t1 < t2 ! X1Þ

where X1 and X2 are placeholders that will be substi-

tuted with other formulas to be evaluated at the time

instants t1 and t2, respectively. This observation indicates

that every FOTL query can be equivalently expressed

in TRC. The explicit translation parallels the inductive

definition of FOTL satisfaction, uniformly para-

meterizing the formulas by t0. In this way, an

atomic formula r(x1,...,xk) (where r is a non-temporal

snapshot relation) becomes R(t0, x1,...,xk) (where R

is a point-timestamped relation), and so on. For a

particular t0, evaluating r(x1,...,xk) in DB(t0), the snap-

shot of the database DB at t0, yields exactly the same

valuations as evaluating R(t0, x1,...,xk) in DB. The

embedding of the temporal connectives uses the defi-

nitions above. For example, the embedding of the since

connective looks as follows:

EmbedðQ1 since Q2Þ ¼ 9t2ðt0 > t2^
8t0ðt2 ¼ t0! EmbedðQ2ÞÞ^
8t1ðt0 > t1 > t2!8t0ðt1 ¼ t0! EmbedðQ1ÞÞÞÞ:
Note that t0 is the only free variable in Embed(Q1),

Embed(Q2), and Embed(Q1 since Q2). Thus, in addi-

tion to applying the (first-order) definition of the

temporal connective, the embedding performs an ad-

ditional renaming of the temporal variable denoting

the evaluation point for the subformulas, because the

only free variable outside of the expanded temporal

connectives must be called t0.

Additional temporal connectives can be defined

using the same approach, as formulas in the underly-

ing theory of the temporal domain. However, for linear

orders – the most common choice for such a theory –

Kamp [6] has shown that all the connectives that are

first-order definable in terms of linear order can be

readily formulated using since and until.

In addition, it is easy to see on the basis of the above

embedding that all FOTL queries (and their subqueries)

define point-stamped temporal relations. This closure

propertymakes FOTL amenable to specifying operators

for temporal relational algebra(s) over the point-

stamped temporal model. On the other hand, many,

if not most, other temporal query languages, in partic-

ular various temporal extensions of SQL, are based on

TRC and use temporal variables and attributes to ex-

plicitly access timestamps. These languages do not

share the above closure property. Surprisingly, and in

contrast to the propositional setting, one can prove

that query languages based on FOTL are strictly weaker

than query languages based on TRC [1,11]. The query

SNAPSHOT EQUALITY: “are there two distinct

time instants at which a unary relation R contains

exactly the same values?”

cannot be expressed in FOTL. On the other hand,

SNAPSHOT EQUALITY can be easily expressed in

TRC as follows:

9t1; t2:t1 < t2 ^ 8x:Rðt1; xÞ , Rðt2; xÞ:

Intuitively, the subformula “8x.R(t1, x) , R(t2, x)”

in the above query requires the simultaneous use of

two distinct evaluation points t1 and t2 in the scope of a

universal quantifier, which is not possible in FOTL.

The result can be rephrased by saying that FOTL and

other temporal query languages closed over the point-

stamped temporal relations fail to achieve (the tempo-

ral variant of) Codd’s completeness. In particular,

there cannot be a temporal relational algebra over the

(single-dimensional) point-stamped temporal model

that can express all TRC queries.

Temporal Logic in Database Query Languages T 2991

T

In addition, this weakness is inherent to other lan-

guages with implicit access to timestamps, provided the

underlying time domain is a linear order. In particular:

1. Adding a finite number of additional temporal

connectives defined in the theory of linear order

(including constants) is not sufficient for expres-

sing SNAPSHOT EQUALITY [11];

2. Introducing multidimensional temporal connectives

[4], while sufficient to express SNAPSHOT EQUAL-

ITY, is still not sufficient to express all TRC queries

[10]. This also means that in the bitemporal model,

the associated query languages cannot simultane-

ously preserve closure with respect to bitemporal

relations and be expressively equivalent to TRC;

3. Using temporal connectives that are defined by fix-

points and/or regular expressions (see the earlier

discussion) is also insufficient to express SNAP-

SHOT EQUALITY. Due to their non-first-order

nature, the resulting query language(s) are incompa-

rable, in terms of their expressive power, to TRC [1].

The only currently known way of achieving first-order

completeness is based on using temporal connectives

defined over a time domain whose structure allows

the definition of pairing and projections (e.g., integer

arithmetic). In this way temporal connectives can use

pairing to simulate an unbounded number of variables

and in turn the full TRC. However, such a solution is

not very appealing, as the timestamps in the interme-

diate temporal relations do not represent time instants,

but rather (encoded) tuples of such instants.

Key Applications
The main application area of FOTL is in the area of

temporal integrity constraints. It is based on the obser-

vation that a sequence of relational database states

resulting from updates may be viewed as a snapshot

temporal database and constrained using Boolean

FOTL formulas. Being able to refer to the past states

of the database, temporal logic constraints generalize

dynamic constraints. Temporal logic is also influential

in the area of design and analysis of temporal query

languages such as temporal relational algebras.

Cross-references
▶Bitemporal Data Model

▶Datalog

▶ Point-Stamped Temporal Models
▶Relational Calculus

▶Temporal Algebras

▶Temporal Integrity Constraints

▶Temporal Query Languages

▶Temporal Relational Calculus

▶Time Domain

▶Time Instant

▶TSQL2

▶Valid Time
Recommended Reading
1. Abiteboul S., Herr L., and Van den Bussche J. Temporal versus

first-order logic to query temporal databases. In Proc. 15th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1996, pp. 49–57.

2. Baudinet M., Chomicki J., and Wolper P. Temporal deductive

databases. In Temporal Databases: Theory, Design, and

Implementation, Chap. 13, A. Tansel, J. Clifford, S. Gadia,

S. Jajodia, A. Segev, R.T. and Snodgrass (eds.). Benjamin/

Cummings, Reading, MA, 1993, pp. 294–320.

3. de Castilho J.M.V., Casanova M.A., and Furtado A.L. A temporal

framework for database specifications. In Proc. 8th Int. Conf. on

Very Data Bases, 1982, pp. 280–291.

4. Gabbay D., Hodkinson I., and Reynolds M. Temporal Logic:

Mathematical Foundations and Computational Aspects. Oxford

University Press, New York, 1994.

5. Goranko V., Montanari A., and Sciavicco G. A road map of

interval temporal logics and duration calculi. J. Appl. Non-

Classical Logics, 14(1–2):9–54, 2004.

6. Kamp J. Tense Logic and the Theory of Linear Order. PhD

Thesis, University of California, Los Angeles, 1968.

7. Koymans R. Specifying real-time properties with metric tempo-

ral logic. Real-Time Systems, 2(4):255–299, 1990.

8. Manna Z. and Pnueli A. The Temporal Logic of Reactive and

Concurrent Systems. Springer-Verlag, Berlin, 1992.

9. Sernadas A. Temporal aspects of logical procedure definition.

Inf. Syst., 5:167–187, 1980.

10. Toman D. On incompleteness of multi-dimensional first-order

temporal logics. In Proc. 10th Int. Symp. Temporal Representa-

tion and Reasoning/4th Int. Conf. Temporal Logic, 2003,

pp. 99–106.

11. Toman D. and Niwinski D. First-order queries over temporal

databases inexpressible in temporal logic. In Advances in Data-

base Technology, Proc. 5th Int. Conf. on Extending Database

Technology, 1996, pp, 307–324.

12. Tuzhilin A. and Clifford J. A temporal relational algebra as a

basis for temporal relational completeness. In Proc. 16th Int.

Conf. on Very Large Data Bases, 1990, pp. 13-23.

13. van Benthem J. The Logic of Time. D. Reidel, 2nd edn., 1991.

14. Vardi M.Y. A temporal fixpoint calculus. In Proc. 15th ACM

SIGACT-SIGPLAN Symp. on Principles of Programming

Languages, 1988, pp. 250–259.

15. Wolper P. Temporal logic can be more expressive. Inf. Contr.,

56:72–99, 1983.

2992T Temporal Logical Models
Temporal Logical Models

ARIE SHOSHANI

Lawrence Berkeley National Laboratory, Berkeley,

CA, USA

Synonyms
Historical data models

Definition
Temporal logical models refer to the logical structure

of data that captures the temporal behavior and opera-

tions over such structures. The term “logical” is used to

distinguish such temporal structures form the physical

storage organization and implementation. For exam-

ple, the behavior of temporal events and operations

over them can be described logically in a way that is

independent of the physical structure (e.g., linked lists)

or indexing of the events. Temporal logical models

include concepts of data values that are collected or

are changed over time, such as continuous physical

phenomena, a series of discrete events, and interval

data over time. The challenge is one of having a single

comprehensive model that captures this diversity

of behavior.

Historical Background
In the 1980s, several researchers focused on dealing with

temporal data, both on the modeling concepts and on

physical organization and indexing of temporal data.
Temporal Logical Models. Figure 1. Continuous behavior o
This led to the temporal database field to be established,

and several books were written or edited on the subject

(for example [4,5,12]). Since then, the subject continues

to appear in specific application domains, or in combi-

nation with other concepts, such as spatio-temporal

databases, and managing streaming data.
Foundations

The Treatment of Time in Database Systems

Time is a natural part of the physical world and an

indispensable part of human activity, yet many database

models treat temporal behavior as an afterthought.

For example, weather (temperature, clouds, and storms)

is a continuous phenomenon in time, yet it is treated as

discrete events per day or per hour. In contrast, some

human activities are fundamentally discrete events, such

as salary which may change annually, but are treated as

continuous concepts, where the salary is the same for the

duration between the discrete events of salary changes.

Themain reason for the inconsistent treatment of time is

that temporal objects and their semantics are not explicit

in the data model. Consider for example, temperature

measurements at some weather station as shown in

Fig. 1. These are represented in conventional database

systems (such as relational data models) as a two-part

concept of time-of-measurement and value-of-measure-

ment attributes, but the fact that the measurements

are taken at evenly spaced intervals (e.g., every half an

hour) and that the temperature represents a continuous
f temperature measurements.

Temporal Logical Models T 2993
phenomenon is not captured. Consequently, if one

asks what the temperature was at 12:35A.M, no such

value exists. Furthermore, the interpolation function

associated with getting this value is unknown. It could

be a simple weighted averaging of the two nearest

values, or a more sophisticated curve interpolation

function.

Temporal Data Behavior

Temporal logical models are models designed to cap-

ture the behavior of temporal data sequences. First,

some examples that illustrate the concepts that need

to be captured by the model are presented.

Example 1: wind velocity. Usually, the measure-

ments of wind velocity are taken by devices at regular

time periods, for example every hour. These are re-

ferred to as “time series.” In this example, the measured

quantity is not a single value, but has a more complex

structure. It measures the direction of the wind and the

velocity of the wind, which can be represented as a

three-dimensional vector. The measured phenomenon

is continuous, of course, but for this application it is

determined by the database designers that a certain

time granularity for queries is desired, such as values

by minutes. Since the values are collected only hourly,

an interpolation function must be provided and asso-

ciated with this time sequence. The behavior is similar

to the temperature behavior shown in Fig. 1, except

that the measured values are three-dimensional vectors

for each time point.

Example 2: bank account. The amount of money in

the bank account changes when transactions take

place. Money can be added or taken out of the account

at irregular times. The value of the account is the same

for the duration of time between transactions. This is

shown in Fig. 2, where the granularity of the time
Temporal Logical Models. Figure 2. Step-wise constant beh
points is in minutes. Note that the days shown should

have precise dates in the database. Another aspect

in this example is that in the case of a deposit of a

check, funds may not be available until the check

clears. Thus, there are two times associated with the

deposit, the time of the transaction, and the time when

funds are made available.

Example 3: hospitalization visits. Hospital visits of

an individual occur typically at irregular times, and

each can last a period of time, usually measured in

days. The value associated with the hospital visit time

sequence is Boolean; that is, only the fact that a visit

took place or did not. This is an example where the

concept of an interval must be represented in the data

model. This is shown in Fig. 3, where the granularity is

a day, and the interval durations span days. Here again,

the days shown will have to have precise dates in

the database.

Example 4: store revenue. Suppose that a store

owner wishes to keep in a database the total revenue

per day. The time sequence is regular, i.e., a time series

(not counting days when the store is closed). The

values per day do not represent continuous phenome-

na, but rather they are discrete in time, collected every

day at the end of that day. This is the same as repre-

senting discrete events, such as the time of an accident,

etc. In general, it does not make sense to apply inter-

polation to such a time sequence. However, if some

data are missing, an interpolation rule could be used to

infer the missing values. This is shown in Fig. 4. This is

a time series, because only the days of business are

shown (Monday – Friday).

In the example above, only a single time sequence is

shown, but there could be a collection of related time

sequences. For example, time sequences of the quantity

of each item sold in a store. For each item, there is a
avior of a bank account.

T

Temporal Logical Models. Figure 3. Interval behavior of hospital visits.

Temporal Logical Models. Figure 4. Discrete behavior of store revenues.

2994T Temporal Logical Models
time sequence. However, all time sequences in this case

have the same behavior, and they are collected in

tandem per day. Such groups of related time sequences

are referred to as “time sequence collections” [11]. As

is discussed later, this concept is important for opera-

tions performed over collections of time sequences.

Behavioral Properties of Temporal Sequences

As is evident from the above examples, there are cer-

tain properties that can be specified to capture the

logical behavior of temporal sequences. If such proper-

ties were supported by database systems, it is only

necessary in such systems to store temporal data as

time-value pairs in the general case, or simply ordered

sequences of values for time series. These properties

are discussed next, along with the possible category

values they can assume.
Time-granularity: value and unit

The time-granularity indicates the time points for

which data values can exist in the model. It is the

smallest unit of time measure between time points in

the time sequence. For example, if deposits and with-

drawals to a bank account can be recorded with a

minute precision, then the time granularity is said

to be a minute. However, in cases where data values

can be interpolated, an interpolation-granularity needs

to be specified as well. For example, the temperatures

shown in Fig. 1 are recorded every half an hour,

and therefore the time granularity is 30 minutes, but

given that values can be interpolated up to a

minute precision, it is necessary to specify that the

interpolation-granularity is a minute. This point is

discussed further below in the section on “interpola-

tion rule.” Note that for regular time sequences (time

Temporal Logical Models T 2995

T

series), it is often necessary to describe the origin of the

time sequence, and the time granularity is relative to

that origin. A formal treatment of time granularity can

be found in [1].

1) Regularity: regular (time series), irregular

As mentioned above time series are regular

sequences. They can be described by specifying the

“time-step” between the time points. The time-step

together with the “life span” (described next) specify

fully the time points for which data values are expected

to be provided. Because of its regular nature, it is not

necessary to store the time points in the databases –

these can be calculated. However, this is a physical

implementation choice of the system, and the time

values can be stored explicitly to provide faster access.

Time series are prevalent in many applications, such as

statistics gathering, stock market, etc.

Irregular time sequences are useful for event data that

occurs in unpredictable patterns, such as bank withdra-

wals, visits to the library, or making a phone call. A

typical phenomena in such sequences, is that most of

the time points have no values associated with them. For

example, suppose that the time granularity for recording

phone calls is aminute. The time sequence of phone calls

will typically be mostly empty (or null). For this reason,

irregular time sequences are usually represented as time-

value pairs in the database.

Life span: begin-time, end-time

The life span indicates for what period of time

the time sequence is valid. The begin-time is always

necessary, and has to be specified with the same preci-

sion of the time granularity. For example, if for the

temperature time series in Fig. 1, the begin-time was

January 1, 1:15 A.M, and the granularity was 30 min-

utes, then the time points will be 1:15 A.M, 1:45 A.M,

2:15 A.M, etc.

The life span end-time can be specified as “open-

ended.” That means that this time series is active.

Behavior type: continuous, step-wise-constant, in-

terval, discrete.

These types were illustrated in the examples of the

previous section. For example 1, on wind velocity, the

type is continuous. For example 2, the amount available

in a bank account, the type is step-wise-constant. For

example 3, of hospital visits, the type is interval.

For example 4, the store revenues per day, the type is

discrete. Note that the interval type can be considered

as a special case of step-wise-constant type having the

Boolean values (0 or 1). Another thing worth noting is
that discrete time sequences cannot be associated with

an interpolation rule. The interpolation rules for the

other types are discussed next.

Interpolation rule: interpolation-granularity, inter-

polation-function.

The interpolation-granularity has to be specified

in order for the underlying system to enforce the data

points for which interpolation can be applied in response

to queries. Note that the interpolation-granularity has to

be in smaller units than the time-granularity, and the

number of interpolation-granularity points in a time-

granularity unit must be an integer. For example, while

temperature in the example of Fig. 1 has time-granulari-

ty of 30 minutes, the interpolation-granularity can be

5 minutes.

The interpolation-function for the step-wise-

constant and interval types are straightforward, and

are implied by the type. But, for a continuous type, an

interpolation-function must be specified. It should

be possible to provide the system with such a function

for each continuous time sequence. If no interpolation-

function is provided, the system can use a default

function.

Value type: binary, numeric, character, multi-

valued, etc.

This property of temporal sequences is no differ-

ent from specifying attribute types in conventional

database systems. The case of a binary type is special to

interval events, and is not always supported by conven-

tional system. Also, multi-valued or multi-component

attributes are special requirements for more sophisticat-

ed time sequences that exist in scientific data, such as the

wind velocity in example 2.

Transaction vs. valid time: transaction, valid

Similar to the bank account in example 2 where the

deposit time was different from the time when funds

are available, there are many examples where temporal

data are recorded in the database before the data values

are valid. This concept was explored extensively in

[13], and referred to as “transaction time” and “valid

time.” Actually, there are situations where the transac-

tion time can occur after the valid time for retroactive

cases. For example, a salary raise can be added to a

database in March of some year, but is retroactive to

January of that year. This concept has led to an exten-

sive literature on representing it as an extension of

query languages, including a temporal extension

to the SQL query language, referred to as TSQL [12].

It is worth noting that other concepts of multiple

2996T Temporal Logical Models
temporal dimensions were also introduced in the liter-

ature, in addition to transaction and valid times.

For example, [3] introduced the concept of “event

time” – times of the events that initiates and terminates

the interval validity, and “availability time” – the

time interval during which facts are available.

If multiple temporal dimensions are needed in the

model, they can be thought of as multiple correlated

time sequences. However, in general, each time dimen-

sion can have different properties. For example, the

transaction time sequence for bank deposits can have a

granularity of a minute, while the valid time for the

available funds can be daily.

Operation over Temporal Data

Because of the inherent time order of temporal data,

operations over them, such as “when,” “preceding,” “fol-

lowing,” etc. are based on the time order. Similarly,

the concept of a “time window” is natural. Various

researchers have developed precise semantics to query

languages by adding temporal operators to existing

query languages, including relational query languages,

such as SQL, relational algebras, such as QUEL, func-

tional query languages, such as DAPLEX, deductive

query languages, such a Datalog, and entity-relationship

languages. Many such examples can be found in the

books on temporal databases [4,5]. In order to explain

the various operators, they are classified into the fol-

lowing four categories.

Predicate Operators Over Time Sequences Predicate

operators refer to either specific times or a time inter-

val. For specific times, the obvious predicates include

“before,” “after,” “when,” etc. But, in addition, there are

operators that refer to the life span, such as “first, and

“last.” For time intervals, operators such as “during” or

“interval” are used. Also, when specifying an interval,

the keyword “now” is used to refer to time sequences

that are active, such as “interval” (Jan 01, 2007, now).

Note that the time values used must be expressed at the

granularity of the time sequence (or the interpolation-

granularity if interpolation is allowed). In some time

sequences, it is useful to use an integer to refer to the

nth time instance, such as t-33 to mean the 33rd time

point in the time sequence. However, this is not in-

cluded in most proposed query languages.

Another purpose of predicate operators is to get

back the time periods where some condition on the
data values hold. For example, suppose that a time

sequences represents temperature at some location.

The query “get periods where temperature >100”

(the units are Prof.F) will return a (Boolean) interval

time sequence, where the temperature was greater than

100. Note that “periods” is treated as a keyword.

Aggregation Operators Over Time Windows The usual

statistical operators supported by database systems

(sum, count, average, min, max) can be applied to a

specific time window (t_begin, t_end), to the entire

time sequence (first, last), or to the combinations

(first, t_end), (t_begin, last). In general, “first” or

“last” can be substituted by an instance number, such

as “t-33” mentioned above. Here, again, the time has to

be specified in the granularity of the time sequence.

Another way to apply operators over windows is to

combine that with the “group by” concept. This is

quite natural for temporal sequence that involve calen-

dar concepts of month, day, minute, second, etc. For

example, suppose that a time sequence represents daily

sales. One can have a query “sum sales by month.” This

is the same as asking for multiple windows, each over

the days in each month.

Aggregation Operators Over Time Sequence

Collections In a typical database, time sequences are

defined over multiple object instances. For example,

one can have in an organization the salary history of all

of its employees. Asking for the “average salary over all

employees” over time requires the average operation to

be applied over the entire collection of time sequences.

This operation is not straight forward if all salary raises

do not occur at the same time. This operation will

generate a time sequence whose time points are the

union of all the time points of the time sequences,

where the average values are performed piecewise on

the resulting intervals.

Similar to the case of aggregation over timewindows,

where the “group by” operation can be applied, it is

possible to group by object instances in this case. For

example, if employees are organized by departments,

one can ask for “average salary over all employees per

department.”

Composition of Time Sequences Composition refers

to algebraic operations over different time sequences.

For example, suppose that in addition to salary history

Temporal Logical Models T 2997

T

recorded for each employee in an organization, the

history of commissions earned is recorded. In order

to obtain “total income,” the salary and the commis-

sion time sequences have to be added for each employ-

ee. This amounts to the temporal extension of

algebraic operations on multiple attributes in non-

temporal query languages.

Combinations of the Above Operators It is concep-

tually reasonable to combine the above operators in

query languages. For example, it should be possible to

have the aggregation and composition operators ap-

plied only to a certain time window, such as getting the

“average salary over all employees for the last three

years.” Furthermore, it should be possible to apply a

temporal operator to the result of another temporal

operator. This requires that the result of operations

over time sequences is either a time sequence or a

scalar. If it is a time sequence, temporal operators can

be applied. If it is a scalar (a single value) it can be

applied as a predicate value. This requirement is con-

sistent with other languages, such as the relational

language, where the operation on relations always gen-

erates a relation or a scalar.

Additional Concepts There are many concepts intro-

duced in the literature that capture other logical

aspects of temporal operations and semantics. This

broad literature cannot be covered here; instead, sever-

al concepts are mentioned next. Temporal specializa-

tion and generalization are explored in [6]. Unified

models for supporting point-based and interval-

based semantics are developed in [2,14]. It is argued

in [8] that temporal data models have to include ex-

plicitly the concept of ordered data, and a formal

framework for that is proposed. A single framework

for supporting both time series and version-based

temporal data are developed in [9]. There are also

many papers that discuss how to efficiently support

temporal operations (such as aggregation), see for

example [7,10]. Finally, in the context of streaming

data, temporal aggregation operations on time win-

dows have in explored – see entries on “stream data

management” and “stream mining.”

Key Applications
Temporal data are ubiquitous. It naturally exists in

applications that have time series data, such as stock
market historical data, or history of transactions in

bank accounts. In addition, it is a basic requirement

of scientific databases collecting data from instruments

or performing simulation over time steps. In the past,

many databases contained only the current (most

updated) data, such as current salary of employees,

current inventories in a store or a warehouse, etc. The

main reason for that was the cost of storage and effi-

ciency of processing queries. One could not afford

keeping all the historical data. More recently, as the

cost of storage is plummeting, and compute engines

are faster and can operate in parallel, historical data are

routinely kept. While it is still worth keeping a version

of current data for some applications for efficiency of

access, many applications now use historical data for

pattern and trend analysis over time, especially in data

warehouse applications.
Future Directions
While a lot of research was done on temporal data, the

concepts and operations over such data are only par-

tially supported, if at all, in commercial and open

source database system. Some support only the con-

cept of date_time (it is complex enough, crossing time

zones and century boundaries), but the support for

properties of time sequences and operations over them

are still not generally available. Building such database

systems is still a challenge.
Cross-references
▶Data Models

▶Data Warehouse

▶Database Design

▶Query Language

▶ Spatial Network Databases

▶ Stream Data Analysis

▶ Stream Mining
Recommended Reading
1. Bettini C, Wang X.S., and Jajodia S., A general framework for

time granularity and its application to temporal reasoning. Ann.

Math. Artif. Intell., 22(1–2):29–58, 1998.

2. Chen C.X., and Zaniolo C. Universal temporal extensions for

database languages. In Proc. 15th Int. Conf. on Data Engineer-

ing, 1999, pp. 428–437.

3. Combi C., and Montanari A. Data models with multiple tempo-

ral dimensions: completing the picture. In Proc. 13th Int. Conf.

on Advanced Information Systems Eng., 2001, pp. 187–202.

2998T Temporal Middleware
4. Etzion O, Jajodia S, and Sripada S.M., (eds.). Temporal Data-

bases: Research and Practice. Springer, Berlin Heidelberg, 1998.

5. Tansel A.U., Clifford J., Gadia S.K., Jajodia S., Segev A., and

Snodgrass R.T. Temporal Databases: Theory, Design, and Imple-

mentation. Benjamin/Cummings, Redwood City, CA, 1993.

6. Jensen C.S., and Snodgrass R.T. Temporal specialization and

generalization. IEEE Trans. Knowl. Data Eng., 6(6):954–974,

1994.

7. Kang S.T., Chung Y.D., and Kim M.-Y., An efficient method for

temporal aggregation with range-condition attributes. Inf. Sci.,

168(1–4):243–265, 2004.

8. Law Y.N., Wang H., and Zaniolo C. Query languages and data

models for database sequences and data streams. In Proc. 30th

Int. Conf. on Very Large Data Bases, 2004, pp. 492–503.

9. Lee J.Y., Elmasri R., and Won J. An integrated temporal data

model incorporating time series concept. Data Knowl. Eng., 24

(3):257–276, 1998.

10. Moon B., López I.F.V., and Immanuel V. Efficient algorithms for

large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng.,

15(3):744–759, 2003.

11. Segev A, and Shoshani A. Logical modeling of temporal data. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1987,

pp. 454–466.

12. Snodgrass R.T. The TSQL2 Temporal Query Language. Kluwer,

Norwell, MA, 1995.

13. Snodgrass R.T., and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, 1986.

14. Terenziani P., and Terenziani R.T. Reconciling point-based and

interval-based semantics in temporal relational databases: a

treatment of the Telic/Atelic distinction. IEEE Trans. Knowl.

Data Eng., 16(5):540–551, 2004.
Temporal Middleware

▶Temporal Strata
Temporal Object-Oriented
Databases

CARLO COMBI

University of Verona, Verona, Italy

Definition
In a strict sense, a temporal object-oriented database is

a database managed by an object-oriented database

system able to explicitly deal with (possibly) several

temporal dimensions of data. The managed temporal

dimensions are usually valid and/or transaction times.

In a wider sense, a temporal object-oriented database

is a collection of data having some temporal aspect and

managed by an object-oriented database system.
Historical Background
Research studies on time, temporal information,

and object-oriented data started at the end of 1980s

and continued in the 1990s. From the seminal work by

Clifford and Croker on objects in time [4], several

different topics have been discussed. Segev and Rose

studied both the modeling issues and the definition of

suitable query languages [12]; Wuu and Dayal showed

how to use an object-oriented data model to prop-

erly represent several temporal aspects of data [14];

Goralwalla et al. studied the adoption and extension

of an object-oriented database system, TIGUKAT, for

managing temporal data, and finally proposed a

framework allowing one to classify and define different

temporal object-oriented data models, according to

the choices adopted for representing time concepts

and for dealing with data having temporal dimensions

[8]. Schema evolution in the context of temporal ob-

ject-oriented databases has been studied by Goralwalla

et al. and by Edelweiss et al. [6,9]. Bertino et al. studied

the problem of formally defining temporal object-

oriented models [1] and, more recently, they proposed

an extension of the ODMG data model, to deal with

temporalities [2]. Since the end of 1990s, research has

focused on access methods and storage structures, and

on temporalities in object relational databases, which,

in contrast to object-oriented databases, extend the

relational model with some object-oriented features

still maintaining all the relational structures and the

related, well studied, systems. As for the first research

direction, for example, Norvag studied storage struc-

tures and indexing techniques for temporal object

databases supporting transaction time [10]. Recently,

some effort has been done on extending object-

relational database systems with some capability to

deal with temporal information; often, as in the case

of the work by Zimanyi and colleagues, studies on

temporalities in object-relational databases are faced

in the context of spatio-temporal databases, where

temporalities have to be considered together with

the presence of spatial information [15]. In these

years, there were few survey papers on temporal

object-oriented databases, even though they were con-

sidered as a part of survey papers on temporal databases

[11,13]. Since the 1990s, temporal object-oriented data-

bases have also been studied in some more application-

oriented research efforts: among them are temporal

object models and languages for multimedia and for

medical data, as, for example, in [5,7].

Temporal Object-Oriented Databases T 2999

T

Foundations
Object-oriented (OO) methodologies and technologies

applied to the database field have some useful features –

abstract data type definition, inheritance, complex

object management – in modeling, managing, and stor-

ing complex information, as that related to time and to

temporal information. Objects and times have, in some

sense, a twofold connection: from a first point of view,

complex, structured types could be suitably defined

and used to manage both complex time concepts and

temporal dimensions of the represented information;

on the other side, object-oriented data models and

languages may be suitably extended with some built-in

temporal features. In the first case, the object-oriented

technology is performed to show that complex concepts,

as those related to time and temporal information, can

be suitably represented and managed through types,

generalization hierarchies, and so on. In the second

case, the focus is slightly different and is on extending

object-oriented models and languages to consider time-

related concepts as first-class citizens: so, for example,

each object, besides an object identifier, will have a life-

span, managed by the system.

Even though different approaches and proposals

in the literature do not completely agree on the mean-

ing of different terms used by the “object-oriented”

community, there is a kind of agreement on the basic

concepts of any object-oriented data model. An object

may represent any entity of the real world, e.g., a

patient, a therapy, a time interval. The main feature

of an object is its identity, which is immutable, persists

during the entire existence of the object, and is usually

provided by the database system through an identifier,

called OID (Object IDentifier). An object is character-

ized by a state, described by properties (attributes and

associations with other objects) and by a behavior,

defined by methods, describing modalities, by which

it is possible to interact with the object itself. Objects

are created as instances of a type; a class is the collection

(also named extent) of all the objects of a given type

stored into the database at a certain moment. A type

describes (i) the structure of properties through attri-

butes and associations, and (ii) the behavior of its

instances through methods applicable to objects

instances of that type.

To introduce the faced topics, a simple clinical data-

base is used, storing data on symptoms and therapies

of patients and will graphically represent its schema

through the well-known UML notation for class
diagrams, adopting the primitive types provided by the

ODMG data model [3].

Time and Abstract Data Types

Through suitable abstract data types (ADTs), it is pos-

sible to represent several and different features of time

primitives; more specifically ADTs can be suitably

used to represent anchored (i.e., time points and time

periods) and unanchored (i.e., durations) temporal

primitives. Usually, any OO database system allows

one to define ADTs, which can be possibly used to

represent complex temporal concepts; moreover, any

database system usually provides several built-in prim-

itive and complex data types, allowing the user to

represent the most usual time concepts.

Considering, for example, the clinical database

depicted in Fig. 1, it is possible to observe different

data types for time; according to the ODMG data

model, the types Date and Timestamp represent time

points corresponding to days and to seconds, respec-

tively, while the type Interval stands for spans of time,

i.e., distances between two time points.

According to this approach, as underlined by

Wuu and Dayal [14], different types of time could be

defined, starting from some general concept of time,

through aggregation and generalization. For example,

the ODMG type Timestamp could be viewed as a spe-

cialization of a supertype Point, having two opera-

tions defined, i.e., those for comparisons (= and >), as

its behavior. Various time types can be defined as

subtypes of Point. The two operations defined for

Point are inherited, and could be suitably redefined for

different subtypes. Indeed, properties of specific order-

ing relationships determine different time structures,

e.g., total vs. partial, or dense vs. discrete. Moreover,

through the basic structured types provided by the

model, it is possible to build new types for time con-

cepts. As an example, it could be important to specify a

type allowing one to represent periods of time; this way,

it is possible to represent in a more compact and pow-

erful way the periods over which a therapy has been

administered, a symptom was holding, a patient was

hospitalized. Thus, in the database schema a new type

Period will be used as part of types Patient, Th_admin,

and Symptom, as depicted in Fig. 2.

ADTs may be used for managing even more com-

plex time concepts [5], allowing one to deal with times

given at different granularities or with indeterminacy

in a uniform way.

Temporal Object-Oriented Databases. Figure 1. Object-oriented schema of the database about patients’ symptoms

and therapies, using ODMG standard time types.

3000T Temporal Object-Oriented Databases
Temporal Object Data Models

Up to this point, the proposed solutions just use ADTs

to represent complex time concepts; the sound associ-

ation of time to objects for representing temporal

data, i.e., time evolving information, according to

the well-known temporal dimensions, such as valid

and/or transaction times, is left to the user. Focusing,

without loss of generality, on valid time, in the given

example the semantics of valid time must be properly

managed by the application designer, to check that

symptoms occurred and therapies were administered

when the patient was alive, that therapies related to

symptoms were administered after that symptoms

appeared, that there are no different objects describing

the same symptom with two overlapping periods, and

so on.

Managing this kind of temporal aspects in object

databases has been the main focus of several research

studies [13]: the main approaches adopted in dealing
with the temporal dimension of data in object-

oriented data models are (i) the direct use of an

object-oriented datamodel (sometimes already extend-

ed to deal with other features as version management),

and (ii) the modeling of the temporal dimensions of

data through ad-hoc data models. The first approach is

based on the idea that the rich (and extensible) type

system usually provided byOO database systems allows

one to represent temporal dimensions of data as re-

quired by different possible application domains. The

second approach, instead, tries to provide the user with

a data model where temporal dimensions are first-class

citizens, avoiding the user the effort of modeling from

scratch temporal features of data for each considered

application domain.

General OO Models Using OO Concepts for Modeling

Temporal Dimensions Among the proposed object-

oriented systems able to deal with temporal

Temporal Object-Oriented Databases. Figure 2. Object-oriented schema of the database about patients’ symptoms

and therapies, introducing the type Period.

Temporal Object-Oriented Databases T 3001

T

information, OODAPLEX and TIGUKAT adopt the

direct use of an object-oriented data model [7,14]. In

these systems suitable data types allow the database

designer to model temporal information. For example,

TIGUKATmodels the valid time at the level of objects

and of collections of objects. More particularly, for

each single application it is possible to use the rich

set of system-supported types, to define the real se-

mantics of valid (or transaction) time.

According to this approach, the example database

schema could be modified, to manage also the valid

time semantics: as depicted in Fig. 3, objects having

the valid time dimension are explicitly managed

through the type VT_Obj, the supertype of all types

representing temporal information, while the type

Sym_History, based on the (template) type T_valid

History is used to manage the set of objects represent-

ing symptoms.
OO Models Having Explicit Constructs for Temporal

Dimensions of Data Besides the direct use of an OO

data model, another approach which has been widely

adopted in dealing with the temporal dimension of

data by object-oriented data models consists of

temporally-oriented extensions, which allow the user

to explicitly model and consider temporal dimensions

of data. As an example of this approach, Fig. 4 depicts

the schema related to patients’ symptoms and thera-

pies: the temporal object-oriented data model under-

lying this schema allows one to manage the valid

time of objects, often referred to as lifespan in the

object-oriented terminology (this aspect is represented

through the stereotype temporal and the operation

lifespan() for all types); moreover, the temporal

model allows the designer to specify that attributes

within types can be time-varying according to different

granularities: for example, the intensity of a symptom

Temporal Object-Oriented Databases. Figure 3. Object-oriented schema of the database about patients’ symptoms

and therapies, modeling temporal dimensions through suitable types.

3002T Temporal Object-Oriented Databases
may change over time. Finally, temporalities can be

represented even for associations, specifying the gran-

ularity to consider for them. Several constraints can

be defined, and implicitly verified, when defining a

temporal object-oriented data model. For example, in

this case, any object attribute could be constrained to

hold over some subinterval of the lifespan of the con-

sidered object: 8o 2 Symptom (o.intensity.VT() � o.

lifespan()), where VT() returns the overall period over

which the (varying) values of a temporal attribute

have been specified. In a similar way, a temporal rela-

tionship is allowed only when both the related objects

exist. As for the inheritance, objects could be allowed

to move from some supertype to a subtype during

their existence; the constraint here is that their lifespan

as instances of a subtype must be a subinterval of their
lifespan as instances of a supertype: 8o 2 Patient

(o.lifespan() � ((Person)o).lifespan())

Temporal Object Query Languages

According to the approaches for object-oriented data

models dealing with temporal information, even when

querying temporal data, it is possible to either adopt a

generic object-oriented query language and use direct-

ly its constructs for temporal data or extend an (atem-

poral) query language with some ad-hoc keywords and

clauses to deal with temporal data in a more powerful

and expressive way [3,5,12]. For both the approaches,

the main focus is on querying data: data definition

and data manipulation are usually performed through

the object-oriented language provided by the database

system [5].

Temporal Object-Oriented Databases. Figure 4. The temporal object-oriented schema of the database about patients

symptoms and therapies.

Temporal Object-Oriented Databases T 3003
Temporal Object-Oriented Database Systems

Usually, temporal object-oriented database systems,

offering a temporal data model and a temporal query

language, are realized on top of object-oriented data-

base systems, through a software layer able to translate

temporalities in data and queries into suitable data

structures and statements of the underlying OO system

[5]. According to this point of view, only recently some

studies have considered technical aspects at the physi-

cal data level; among them it is worth mentioning here

the indexing of time objects and storage architectures

for transaction time object databases [10].
T

Key Applications
Clinical database systems are among the applications of

temporal object-oriented databases, i.e., the real world

databases where the structural complexity of data needs

for the object-oriented technology. Indeed, clinical da-

tabase systems have to manage temporal data, often

with multimedia features, and complex relationships

among data, due both to the healthcare organization

and to the medical and clinical knowledge. Attention in

this field has been paid on the management of clinical

data given at different granularities and with indeter-

minacy [5,7]. Another interesting application domain
’

is that of video database systems, where temporal

aspects of object technology have been studied for the

management of temporal aspects of videos. Complex

temporal queries have been studied in this context,

involving spatio-temporal constrains between moving

objects.

Future Directions
New and more intriguing topics have attracted the

attention of the temporal database community in

these last years; however, the results obtained for tem-

poral object-oriented databases could be properly

used in different contexts, such as that of temporal

object-relational databases, which seem to attract also

the attention of the main companies developing com-

mercial database systems, and that of semi-structured

temporal databases, where several OO concepts could

be studied and extended to deal with temporalities for

partially structured information (as that represented

through XML data).

Cross-references
▶Object-Oriented Data Model

▶Object Query Language

▶Object-Relational Data Model

▶ Spatio-temporal Data Models

3004T Temporal Periodicity
▶Temporal Granularity

▶Temporal Indeterminacy

▶Temporal Query Languages
Recommended Reading
1. Bertino E., Ferrari E., and Guerrini G. A formal temporal object-

oriented data model. In Advances in Database Technology,

Proc. 5th Int. Conf. on Extending Database Technology, 1996,

pp. 342–356.

2. Bertino E., Ferrari E., Guerrini G., and Merlo I. T-ODMG: an

ODMG compliant temporal object model supporting multiple

granularity management. Inf. Syst., 28(8):885–927, 2003.

3. Cattel R.G.G. and Barry D.K. (eds.). The Object Data Standard:

ODMG 3.0. Morgan Kaufmann, Los Altos, CA, 2000.

4. Clifford J. and Croker A. Objects in time. IEEE Data Eng. Bull.,

11(4):11–18, 1988.

5. Combi C., Cucchi C., and Pinciroli F. Applying object-oriented

technologies in modeling and querying temporally-oriented

clinical databases dealing with temporal granularity and indeter-

minacy. IEEE Trans. Inf. Tech. Biomed., 1:100–127, 1997.

6. Galante R.M., dos Santos C.S., Edelweiss N., and Moreira A.F.

Temporal and versioning model for schema evolution in object-

oriented databases. Data Knowl. Eng., 53(2):99–128, 2005.

7. Goralwalla I.A., Özsu M.T., and Szafron D. Modeling medical

trials in pharmacoeconomics using a temporal object model.

Comput. Biol. Med., 27:369–387, 1997.

8. Goralwalla I.A., Özsu M.T., and Szafron D. An object-oriented

framework for temporal data models. In Temporal Databases:

Research and Practice. O. Etzion, S. Jajodia, S. Sripada (eds.),

Springer, 1998, pp. 1–35.

9. Goralwalla I.A., Szafron D., Özsu M.T., and Peters R.J. A tempo-

ral approach to managing schema evolution in object database

systems. Data Knowl. Eng., 28(1):73–105, 1998.

10. Nørvåg K. The vagabond approach to logging and recovery in

transaction-time temporal object database systems. IEEE Trans.

Knowl. Data Eng., 16(4):504–518, 2004.

11. Ozsoyoglu G. and Snodgrass R.T. Temporal and real-time data-

bases: a survey. IEEE Trans. Knowl. Data Eng., 7(4):513–32,

1995.

12. Rose E. and Segev A. TOOSQL – A Temporal Object-Oriented

Query Language. In Proc. 12th Int. Conf. on Entity-Relationship

Approach, 1993, pp. 122–136.

13. Snodgrass R.T. Temporal Object-Oriented Databases: A Critical

Comparison. In Modern Database Systems: The Object Model,

Interoperability and Beyond. W. Kim (ed.). Addison-Wesley,

1995, pp. 386–408.

14. Wuu G.T.J. and Dayal U. A Uniform Model for Temporal and

Versioned Object-oriented Databases. In Temporal Databases.

A.U. Tansel, J. Clifford, S.K. Godia, A. Segev, R. Snodgrass (eds.),

1993, pp. 230–247.

15. Zimányi E. and Minout M. Implementing conceptual spatio-

temporal schemas in object-relational dbmss. In OTM Work-

shops (2). LNCS, Vol. 4278, R. Meersman, Z. Tari, P. Herrero

(eds.), 2006, pp. 1648–1657.
Temporal Periodicity

PAOLO TERENZIANI

University of Turin, Turin, Italy

Definition
Informally, periodic events are events that repeat regu-

larly in time (e.g., each Tuesday), and temporal period-

icity is their temporal periodic pattern of repetition.

A pattern is periodic if it can be represented by specify-

ing a finite portion of it, and the duration of each

repetition. For instance, supposing that day 1 is a

Monday, the pair <‘day 2,’ ‘7 days’> may implicitly

represent all Tuesdays.

A useful generalization of periodic patterns are

eventually periodic ones, i.e., patterns that can be

expressed by the union of a periodic pattern and a

finite non-periodic one.

The above notion of periodic events can be further

extended. For instance, Tuzhilin and Clifford [14] dis-

tinguish between “strongly” periodic events, that occur

at equally distant moments in time (e.g., a class, sched-

uled to meet once a week, on Wednesday at 11A.M),

“nearly periodic” events, occurring at regular periods,

but not necessarily at equally distant moments of time

(e.g., a meeting, that has to be held once a week, but

not necessarily on the same day), and “intermittent”

events, such that if one of them occurred then the next

one will follow some time in the future, but it is not

clear when (e.g., a person visiting “periodically” a

pub). Most of the approaches discussed in the follow-

ing cope only with “strongly” periodic events.

Finally, it is worth highlighting that “(periodic)

temporal granularity,” “calendar,” and “calendric

system” are notions closely related to temporal

periodicity.

Historical Background
Temporal periodicity is pervasive of the world all

around us. Many natural and artificial phenomena

take place at periodic time, and temporal periodicity

seems to be an intrinsic part of the way humans

approach reality. Many real-world applications, inclu-

ding process control, data access control, data broad-

casting, planning, scheduling, multimedia, active

databases, banking, law and so on need to deal with

periodic events. The problem of how to store and query

Temporal Periodicity T 3005

T

periodic data has been widely studied in the fields of

databases, logic, and artificial intelligence.

In all such areas it is widely agreed that, since many

different data conventions exist, a pre-defined set of

periodicities would not suffice. For instance, Snod-

grass and Soo [12] have emphasized that the use of a

calendar depends on the cultural, legal, and even busi-

ness orientation of the users, and listed many exam-

ples of different calendric systems. As a consequence,

many approaches to user-defined temporal periodicity

have been proposed. The core issue is the definition of

expressive formal languages to represent and query

user-defined temporal periodicity. In particular, an

implicit representation [2] is needed, since it allows

one to cope with data holding at periodic times in a

compact way instead of explicitly listing all the

instances (extensions) of the given periodicity (e.g.,

all “days” in a possibly infinite frame of time). Addi-

tionally, also the set-theoretic operations (intersection,

union, difference) on definable periodicities can be

provided (e.g., in order to make the formalism a suit-

able candidate to represent periodic data in temporal

databases). Operationally, also mapping functions be-

tween periodicities are an important issue to be taken

into account.

Within the database community, the problem of

providing an implicit treatment of temporal periodici-

ty has been intensively investigated since the late 1980s.

Roughly speaking, such approaches can be divided

into three mainstreams (the terminology is deri-

ved from Baudinette et al. [2] and Niezette and

Stevenne [9]):

(1) Deductive rule-based approaches, using deductive

rules. For instance, Chomicki and Imielinsky [4]

dealt with periodicity via the introduction of the

successor function in Datalog;

(2) Constraint-based approaches, using mathematical

formulae and constraints (e.g., [6]);

(3) Symbolic approaches, providing symbolic formal

languages to cope with temporal periodicity in

a compositional (and hopefully natural and

commonsense) way (consider, e.g., [9,8]).

Tuzhilin and Clifford [14] have proposed a compre-

hensive survey of many works in such mainstreams,

considering also several approaches in the areas of

logics and of artificial intelligence.
Foundations
In the following, the main features of the three main-

streams mentioned above are analyzed.

Deductive Rule-Based Approaches

Probably the first milestone among deductive rule-

based approaches is the seminal work by Chomicki

and Imielinski [4], who used Datalog1S to represent

temporal periodicity. Datalog1S is the extension to

Datalog with the successor function. In their approach,

one temporal parameter is added to Datalog1S predi-

cates, to represent time. For instance, in their ap-

proach, the schedule of backups in a distributed

system can be represented by the following rules:

backup Tþ 24;Xð Þ backup T;Xð Þ

backup T;Yð Þ dependent X;Yð Þ; backup T;Xð Þ

The first rule states that a backup on amachine should be

taken every 24 hours. The second rules requires that all

backups should be taken simultaneously on all depen-

dent machines (e.g., sharing files). Of course, Datalog1S
programs may have infinite least Herbrand models, so

that infinite query answers may be generated. Howev-

er, in their later works Chomicki and Imielinski have

provided a finite representation of them.

Another influential rule-based approach is based

on the adoption of Templog, an extension of logic

programming based on temporal logic. In this lan-

guage, predicates can vary with time, but the time

point they refer to is defined implicitly by temporal

operators rather than by an explicit temporal argu-

ment [2]. Specifically, three temporal operators are

used in Templog: next, which refers to the next time

instant, always, which refers to the present and all the

future time instants, and eventually, which refers to the

present or to some future time instant.

Constraint-Based Approaches

While deductive rule-based approaches rely on deduc-

tive database theory, the approaches of the other

mainstreams apply to relational (or object-oriented)

databases.

Kabanzaet al. [6]havedefineda constraint-based for-

malism based on the concept of linear repeating points

(henceforth lpr’s). A lrp is a set of points {x(n)}

defined by an expression of the form x(n) = c + kn

3006T Temporal Periodicity
where k and c are integer constants and n ranges over

the integers.

A generalized tuple of temporal arity k is a tuple

with k temporal attributes, each one represented by a

lrp, possibly including constraints expressed by linear

equalities or disequalities between temporal attributes.

Semantically, a generalized tuple denotes a (possibly

infinite) set of (ordinary) tuples, one tuple for each

value of the temporal attributes satisfying the lrp’s

definitions and the constraints. For instance, the

generalized tuple

a1;:::; anj 5þ 4n1; 7þ 4n2½ �LX1 ¼ X2 � 2ð Þ

(with data part a1,...,an) represents the infinite set of

tuples with temporal attributes X1 and X2, such that

X1 = 5 + 4n1, X2 = 7 + 4n2, X1 = X2–2, for some

integers n1 and n2, i.e.,

. . . a1;:::;anj½1; 3ð �f Þ; a1;:::;anj 5; 7½ �ð Þ;
a1;:::;anj 9; 10½ �ð Þ;:::g

A generalized relation is a finite set of generalized tuples

of the same schema.

In Kabanza et al. [6], the algebraic operations (e.g.,

intersection) have been defined over generalized rela-

tions as mathematical manipulations of the formulae

coding lrp’s.

A comparative analysis of deductive rule-based and

constraint-based approaches has been provided, e.g.,

by Baudinet et al. [2], showing that they have the same

data expressiveness (i.e., the set of temporal databases

that can be expressed in such languages is the same).

Specifically, as concerns the temporal component,

they express eventually periodic sets of points (which

are, indeed, points that can be defined by Presburger

Arithmetics – see below). In such an approach, the

query expressiveness and the computational complexi-

ty of such formalisms have also been studied.

Symbolic Approaches

In constraint-based approaches, temporal periodicity

is represented through mathematical formulae. Several

authors have suggested that, although expressive, such

approaches do not cope with temporal periodicity in a

“commonsense” (in the sense of “human-oriented”)

way, arguing in favor of a symbolic representation, in

which complex periodicities can be compositionally

built in terms of simpler ones (see, e.g., the discussions

in [9,13]). A milestone in the area of symbolic
approaches to temporal periodicity is the early ap-

proach by Leban et al. [8]. In Leban’s approach, collec-

tions are the core notion. A collection is a structured

set of intervals (elsewhere called periods). A base col-

lection, partitioning the whole timeline (e.g., the col-

lection of seconds), is used as the basis of the

construction. A new partition P’ of the timeline (called

calendar in Leban’s terminology) can be built from

another partition P as follow:

P0 ¼< P; s0; . . . sn�1 >

where s0,...,sn-1 are natural numbers greater than 0.

Intuitively, s0,...,sn-1 define the number of periods

of P whose unions yield periods of P0, intending

that the union operation has to be repeated cyclically.

For example, Weeks = {Days;7} defines weeks as

aggregations of seven days. Analogously, months

(not considering leap years for the sake of brevity)

can be defined by the expression Months = {Days;

31,28,31,30,31,30,31,31,30,31,30,31}.

Two classes of operators, dicing and slicing, are

defined in order to operate on collections.

The dicing operators provide means to further

divide each period in a collection within another col-

lection. For example, given the definitions of Days and

Weeks, Day:during:Weeks breaks up weeks into the

collection of days they contain. Other dicing operators

are allowed (taken from a subset of Allen’s relations

[1]). Slicing operators provide a way of selecting per-

iods from collections. For instance, in the expression

2/Day:during:Weeks the slicing operator “2/” is used in

order to select the second day in each week. Different

types of slicing operators are provided (e.g., -n/selects

the n-th last interval from each collection).

Collection expressions can be arbitrarily built by

using a combination of these operators (see, e.g., The

examples in Figure 1).

While Leban’s approach was mainly aimed to rep-

resent periodicity within knowledge bases (i.e., in arti-

ficial intelligence contexts), later on it has played an

increasingly important role also in the area of temporal

databases. Recently, Terenziani [8] has defined a tem-

poral extension to relational databases, in which the

valid time of periodic tuples can be modeled through

(an extension of) Leban’s language, and symbolic ma-

nipulation is used in order to perform algebraic opera-

tions on the temporal relations.

Another early symbolic approach which has been

widely used within the database and artificial

Temporal Periodicity. Figure 1. Operators in Leban’s language.

Temporal Periodicity T 3007

T

intelligence areas is the one by Niezette and Stevenne

[9], who provided a formalism as well as the algebraic

operations on it, mostly as an upper layer built upon

linear repeating points [6]. A comparison between such

a formalism and Leban’s one, as well as an analysis of

the relationships between the periodicities defined by

such languages and periodic granularities has been

provided by Bettini and De Sibi [3]. A recent influen-

tial symbolic approach, based on the notion of period-

ic granularities, has been proposed by Ning et al. [10].

An important issue concerns the formal analysis of

the expressiveness (and of the semantics) of the im-

plicit representation formalisms proposed to cope with

temporal periodicity. Presburger Arithmetics, i.e., the

first-order theory of addition and ordering over inte-

gers, is a natural reference to evaluate the expressive-

ness (and semantics) of such languages, because of its

simplicity, decidability, and expressiveness, since it

turns out that all sets definable in Presburger Arith-

metics are finite, periodic, or eventually periodic.

A recent comparison of the expressiveness of several

constraint-based and symbolic approaches, based on

Presburger Arithmetics, has been provided by Egidi

and Terenziani [15].

While the above-mentioned approaches in [9,6,13]

mainly focused on extending the relational model to

cope with temporal periodicity, Kurt and Ozsoyoglu

[7] devoted more attention to the definition of a peri-

odic temporal object oriented SQL. They defined the

temporal type of periodic elements to model strictly

periodic and also eventually periodic events. Periodic

elements consist of both an aperiodic part and a

periodic part, represented by the repetition pattern

and the period of repetition. They also defined the

set-theoretic operations of union, intersection, com-

plement and difference, which are closed with respect

to periodic elements.

Moreover, in the last years, periodicity has also

started to be studied in the context of moving objects.
In particular, Revesz and Cai [11] have taken into

account also periodic (called cyclic periodic) and even-

tually periodic (called acyclic periodic) movements of

objects. They have proposed an extended relational

data model in which objects are approximated by

unions of parametric rectangles. Movement is coped

with by modeling the x and y dimensions of rectangles

through functions of the form f(t mod p), where

t denotes time, p the repetition period, and mod the

module function. Revesz and Cai have also defined the

algebraic operations on the data model.

Key Applications
Temporal periodicity plays an important role in many

application areas, including process control, data ac-

cess control, office automation, data broadcasting,

planning, scheduling, multimedia, active databases,

banking, and so on. Languages to specify user-defined

periodicities in the queries have been already supported

by many approaches, including commercial ones. For

instance, Oracle provides a language to specify period-

icity in the queries to time series (e.g., to ask for the

values of IBM at the stock exchange each Monday).

Even more interestingly, such languages can be used

in the data, in order to express (finite and infinite)

periodic valid times in an implicit and compact way.

However, such a move involves an in-depth revision

and extension of “standard” database theory and tech-

nology, which have been partly addressed within the

temporal database research community, but have not

yet been fully implemented in commercial products.

Cross-references
▶Allen’s Relations

▶Calendar

▶Calendric System

▶Temporal Granularity

▶Time Series Query

▶Valid Time

3008T Temporal Projection
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

2. Baudinet M., Chomicki J., and Wolper P. Temporal deductive

databases. In Temporal Databases, A. Tansel, J. Clifford,

S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.).

Benjamin/Cummings, 1993, pp. 294–320.

3. Bettini C. and De Sibi R. Symbolic representation of user-

defined time granularities. Ann. Math. Artif. Intell.,

30(1–4):53–92, 2000.

4. Chomicki J. and Imielinsky T. Temporal deductive databases

and infinite objects. In Proc. 7th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 1988,

pp. 61–73.

5. Egidi L. and Terenziani P. A mathematical framework for the

semantics of symbolic languages representing periodic time.

Ann. Math. Artif. Intell., 46:317–347, 2006.

6. Kabanza F., Stevenne J.-M., and Wolper P. Handling infinite

temporal data. In Proc. 9th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1990, pp. 392–403.

7. Kurt A. and Ozsoyoglu M. Modelling and querying peri-

odic temporal databases. In Proc. 6th Int. Conf. and Work-

shop on Database and Expert Systems Applications, 1995,

pp. 124–133.

8. Leban B., McDonald D.D., and Forster D.R. A representation

for collections of temporal intervals. In Proc. 5th National Conf.

on AI, 1986, pp. 367–371.

9. Niezette M. and Stevenne J.-M. An efficient symbolic represen-

tation of periodic time. In Proc. Int. Conf. on Information and

Knowledge Management, 1992.

10. Ning P., Wang X.S., and Jajodia S. An algebraic representation

of calendars. Ann. Math. Artif. Intell., 36(1–2):5–38, 2002.

11. Revesz P. and Cai M. Efficient querying and animation of peri-

odic spatio-temporal databases. Ann. Math. Artif. Intell.,

36(4):437–457, 2002.

12. Snodgrass R.T. and Soo M.D. 1Supporting multiple calendars.

In The TSQL2 Temporal Query Language, R.T. (ed.).

R.T. Snodgrass (ed.). Kluwer, Norwell, MA, 1995, pp. 103–121.

13. Terenziani P. Symbolic user-defined periodicity in temporal

relational databases. IEEE Trans. Knowl. Data Eng., 15(2):

489–509, 2003.

14. Tuzhilin A. and Clifford J. On periodicity in temporal databases.

Inf. Syst., 20(8):619–639, 1995.
Temporal Projection

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Temporal assignment
Definition
In a query or update statement, temporal projection

pairs the computed facts with their associated times,

usually derived from the associated times of the under-

lying facts.

The generic notion of temporal projection may be

applied to various specific time dimensions. For exam-

ple, valid-time projection associates with derived facts

the times at which they are valid, usually based on the

valid times of the underlying facts.
Key Points
While almost all temporal query languages support

temporal projection, the flexibility of that support

varies greatly.

In some languages, temporal projection is implicit

and is based the intersection of the times of the under-

lying facts. Other languages have special constructs to

specify temporal projection.

The term “temporal projection” has been used

extensively in the literature. It derives from the

retrieve clause in Quel as well as the SELECT clause

in SQL, which both serve the purpose of the relational

algebra operator (generalized) projection, in addition

to allowing the specification of derived attribute

values.

The related concept called “temporal assignment”

roughly speaking is a function that maps a set of time

values to a set of values of an attribute. One purpose

of a temporal assignment would be to indicate when

different values of the attribute are valid.
Cross-references
▶ Projection

▶ SQL

▶ SQL-Based Temporal Query Languages

▶Temporal Database

▶Temporal Query Languages

▶TSQL2

▶Valid Time
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

In Temporal Databases: Research and Practice, O. Etzion, S.

Jajodia, S. Sripada (eds.), Springer-Verlag, Berlin, 1998,

pp. 367–405.

Temporal Query Languages T 3009
Temporal Query Languages

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1University of Aalborg, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Historical query languages

Definition
A temporal query language is a database query lan-

guage that offers some form of built-in support for the

querying and modification of time-referenced data, as

well as enabling the specification of assertions and

constraints on such data. A temporal query language

is usually quite closely associated with a temporal data

model that defines the underlying data structures to

which the language applies.
T

Historical Background
When the relational data model was proposed by Codd,

he also proposed two query languages: the relational

calculus and the relational algebra. Similarly, temporal

data models are closely coupled with temporal query

languages.

Most databases store time-referenced, or tempo-

ral, data. The ISO standard Structured Query Lan-

guage SQL [4] is often the language of choice when

developing applications that utilize the information

captured in such databases. In spite of this, users

realize that temporal data management is often chal-

lenging with SQL. To understand some of the diffi-

culties, it is instructive to attempt to formulate the

following straightforward, realistic queries, asser-

tions, and modifications in SQL. An intermediate

SQL programmer can express all of them in SQL for

a database without time-referenced data in perhaps 5

minutes. However, even SQL experts find these same

queries challenging to do in several hours when the

data are time-referenced [6].

� An Employee table has three attributes: Name,
Manager, and Dept. Temporal information is
retained by adding a fourth attribute, When, of
data type PERIOD. Attribute Manager is a foreign
key for Employee.Name. This means that at each
point in time, the Manager value of a tuple also
occurs as a Name value (probably in a different
tuple). This cannot be expressed via SQL’s for-
eign-key constraint, which fails to take time into
account. Formulating this constraint as an assertion
is challenging.

� Consider the query “List those employees who are

not managers.” This can easily be expressed in SQL,

using EXCEPT or NOT EXISTS, on the original,
non-temporal relation with three attributes. Things
are just a little harder with the When attribute; a
WHERE predicate is required to extract the current
employees. To formulate the query “List those
employees who were not managers, and indicate
when,” EXCEPT and NOT EXISTS do not work
because they do not consider time. This simple
temporal query is hard to formulate, even for SQL
experts.

� Consider the query “Give the number of employees

in each department.” Again, this is a simple

SQL query using the COUNT aggregate when for-
mulated on non-temporal data. To formulate the
query on temporal data, i.e., “Give the history of

the number of employees in each department,” is

very difficult without built-in temporal support in

the language.

� The modification “Change the manager of the

Tools department for 2004 to Bob” is difficult in

SQL because only a portion of many validity peri-

ods are to be changed, with the information outside

of 2004 being retained.

Most users know only too well that while SQL is an

extremely powerful language for writing queries on the

current state, the language provides much less help

when writing temporal queries, modifications, and

assertions and constraints.

Hence there is a need for query languages that

explicitly “understand” time and offer built-in support

for the management of temporal data. Fortunately, the

outcomes of several decades of research in temporal

query languages demonstrate that it is indeed possible

to build support for temporal data management into

query languages so that statements such as the above

are easily formulated.
Foundations
Structure may be applied to the plethora of temporal

query languages by categorizing these languages

according to different concerns.

3010T Temporal Query Languages
Language Extension Approaches

One attempt at bringing structure to the diverse col-

lection of temporal query languages associates these

languages with four approaches that emphasize how

temporal support is being added to a non-temporal

query language [1].

Abstract Data Types for Time From a design and im-

plementation perspective, the simplest approach to

improving the temporal data management capabilities

of an existing query language is to introduce time data

types with associated predicates and functions. This

approach is common for query languages associated

with temporal object-oriented databases [7].

Data types for time points, time intervals (periods),

and for durations of time may be envisioned, as may

data types for temporal elements, i.e., finite unions of

time intervals. The predicates associated with time-in-

terval data types are often inspired by Allen’s 13 interval

relationships. With reference to these, different sets of

practical proposals for predicates have been proposed.

However, while being relatively easy to achieve, the

introduction of appropriate time data types results

only in modest improvements of the temporal data

management capabilities of the query language.

Use of Point Timestamps An interval timestamp asso-

ciated with a tuple in a temporal relational data model is

often intended to capture the fact that the information

recorded by the tuple is valid at each time point

contained in the interval. This way, the interval is simply

a compact representation of a set of time points. Thus,

the same information can be captured by a single tuple

timestamped with an interval and a set of identical

tuples, each timestamped with a different time point

from the interval (with no time points missing).

One attraction of intervals is that their representing is

of fixed size. Another is that they appear to be very

intuitive to most users — the notion of an interval is

conceptually very natural, and people use it frequently in

their daily thinking and interactions. In some respects, the

most straightforward and simplest means of capturing

temporal aspects is to use interval-valued timestamps.

However, the observation has also been advanced

that the difficulty in formulating temporal queries on

relations with interval-timestamped tuples stem exactly

from the intervals – Allen has shown that there are 13

possible relations between a pair of intervals. It has been

argued that a language such as SQL is unprepared to
support something (an interval) that represents some-

thing (a convex set of time points) that it is not.

Based on this view, it is reasonable to equip an SQL

extended with interval-valued timestamps with the

ability to unfold and fold timestamps. The unfold func-

tion maps an interval-stamped tuple (or set of tuples) to

the corresponding set of point-stamped tuples (set of

tuples), and the fold function collapses a set of point-

stamped tuples into the corresponding interval-stamped

tuple(s). This way, it is possible to manipulate both

point- and interval-stamped relations in the same lan-

guage. If deemed advantageouswhen formulating a state-

ment, one can effectively avoid the intervals by first

unfolding all argument relations. Then the statement is

formulated on the point-stamped relations. At the end,

the result can be folded back into an interval-stamped

format that lends itself to presentation to humans.

A more radical approach to designing a temporal

query language is to completely abandon interval time-

stamps and use only point timestamps. This yields a

very clean and simple design, although it appears that

database modification and the presentation of query

results to humans must still rely on intervals and thus

are “outside” the approach.

The strength of this approach lies in its generaliza-

tion of queries on non-temporal relations to

corresponding queries on corresponding temporal

relations. The idea is to extend the non-temporal

query with equality constraints on the timestamp at-

tribute of the temporal relation, to separate different

temporal database states during query evaluation,

thereby naturally supporting sequenced semantics.

Syntactic Defaults This approach introduces what may

be termed syntactic defaults along with the introduction

of temporal abstract data types, the purpose being to

make the formulation of common temporal queries

more convenient. Common defaults concern the access

to the current state of a temporal relation and the

handling of temporal generalizations of common non-

temporal queries, e.g., joins. The temporal generalization

of a non-temporal join is one where two tuples join if

their timestamps intersect and where the timestamp of

the result tuple is the intersection of the timestamps.

Essentially, the non-temporal query is computed for

each point in time, and the results of these queries are

consolidated into a single result. The nature of the con-

solidation depends on the data type of the timestamps; if

intervals are used, the consolidation involves coalescing.

Temporal Query Languages T 3011

T

The most comprehensive approach based on syn-

tactic defaults is the TSQL2 language [5], but many of

the earlier query languages that the creators of this

language were attempting to consolidate also follow

this approach. As an example, TSQL2 includes a de-

fault valid clause that computes the intersection of the

valid times of the tuples in the argument relations

mentioned in a statement’s from clause, which is then

returned in the result. So as explained above, the time-

stamp of a tuple that results from joining two relations

is the intersection of the timestamps of the two argu-

ment tuples that produce the tuple. When there is only

one argument relation, the valid clause produces the

original timestamps.

Such defaults are very effective in enabling the

concise formulation of common queries, but they

also tend to complicate the semantics of the resulting

temporal query language.

Semantic Defaults The use of semantic defaults is

motivated in part by the difficulties in systematically

extending a large and unorthogonal language such as

SQLwith syntactic defaults that are easy to understand

and that do not interact in unintended ways. With this

approach, so-called statement modifiers are added to a

non-temporal query language, e.g., SQL, in order to

obtain built-in temporal support [8].

It was argued earlier that statements that are easily

formulated in SQL on non-temporal relations can be

very difficult to formulate on temporal relations. The

basic idea is then tomake it easy to systematically formu-

late temporal queries from non-temporal queries. With

statementmodifiers, a temporal query is then formulated

by first formulating the “corresponding” non-temporal

query (i.e., assuming that there are no timestamp attri-

butes on the argument relations) and then applying a

statement modifier to this query.

For example, to formulate a temporal join, the first

step is to formulate the corresponding non-temporal

join. Next, a modifier is placed in front of this query to

indicate that the non-temporal query is to be rendered

temporal by computing it at each time point. The

modifier ensures that the argument timestamps overlap

and that the resulting timestamp is the intersection of

the argument intervals. The attraction of using state-

ment modifiers is that these may be placed in front of

any non-temporal query to render that query temporal.

Statement modifiers are capable of specifying the

semantics of the temporal queries unambiguously,
independently of the syntactic complexity of the

queries that the modifiers are applied to. This renders

semantic defaults scalable across the constructs of the

language being extended. With modifiers, the users

thus need not worry about which predicates are needed

on timestamps and how to express timestamps to be

associated with result tuples. Further, the use of state-

ment modifiers makes it possible to give more meaning

to interval timestamps; they need no longer be simply

compact representations of convex sets of time points.

Additional Characterizations of Temporal Query

Languages

Several additional dimensions exist on which temporal

query languages can be characterized. One is abstract-

ness: is the query language at an abstract level or at a

concrete level. Examples of the former are Temporal

Relational Calculus and First-order Temporal Logic; an

example of the latter is TSQL2.

Another dimension is level: is the query language at

a logical or a physical level? A physical query language

assumes a specific representation whereas a logical

query language admits several representations. Exam-

ples of the former are examined in McKenzie’s survey

of relational algebras [3]; an example of the latter is the

collection of algebraic operators defined on the Bitem-

poral Conceptual Data Model [2], which can be

mapped to at least five representational models.

A third dimension is whether the query language

supports a period-stamped temporal model or a point-

stamped temporal model.

Other entries (indicated in italics) examine the long

and deep research into temporal query languages in a

more detailed fashion. Qualitative temporal reasoning

and temporal logic in database query languages provide

expressive query facilities. Temporal vacuuming pro-

vides a way to control the growth of a database.

TSQL2 and its successor SQL/Temporal provided a

way for many in the temporal database community

to coordinate their efforts in temporal query language

design and implementation. Temporal query processing

involves disparate architectures, from temporal strata

outside the conventional DBMS to adding native tem-

poral support within the DBMS. Supporting transac-

tion time generally requires changes within the

kernel of a DBMS. Temporal algebras extend the con-

ventional relational algebra. Some specific operators

(e.g., temporal aggregation, temporal coalescing, tempo-

ral joins) have received special attention. Finally, the

3012T Temporal Query Processing
Oracle database management system includes support

for valid and transaction time, both individually and in

concert, in its extension of.

Future Directions
Given the substantial decrease in code size (a factor of

three [6]) and dramatic decrease in conceptual com-

plexity of temporal applications that temporal query

languages offer, it is hoped that DBMS vendors will

continue to incorporate temporal language constructs

into their products.

Cross-references
▶Abstract Versus Concrete Temporal Query

Languages

▶Allen’s Relations

▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Qualitative Temporal Reasoning

▶ Schema Versioning

▶ Sequenced Semantics

▶ Supporting Transaction Time Databases

▶Temporal Aggregation

▶Temporal Algebras

▶Temporal Coalescing

▶Temporal Database

▶Temporal Data Models

▶Temporal Joins

▶Temporal Logic in Database Query Languages

▶Temporal Object-Oriented Databases

▶Temporal Query Processing

▶Temporal Strata

▶Temporal Upward Compatibility

▶Temporal Vacuuming

▶Temporal Visual Languages

▶Temporal XML

▶TSQL2

Recommended Reading
1. Böhlen M.H., Gamper J., and Jensen C.S. How would you like to

aggregate your temporal data?. In Proc. 10th Int. Symp. Tempo-

ral Representation and Reasoning/4th Int. Conf. Temporal

Logic, 2006, pp. 121–136.

2. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

December 1994.

3. McKenzie E. and Snodgrass R.T. An evaluation of relational

algebras incorporating the time dimension in databases. ACM

Comput. Surv., 23(4):501–543, December 1991.
4. Melton J. and Simon A.R. Understanding the New SQL: A

Complete Guide. Morgan Kaufmann, San Mateo, CA, 1993.

5. Snodgrass R.T. (ed.). The TSQL2 Temporal Query Language.

Kluwer, Boston, MA, USA, 1995.

6. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, San Francisco, CA, USA, 1999.

7. Snodgrass R.T. Temporal Object Oriented Databases: A Critical,

Comparison, Chapter 19 in Modern Database System: The Ob-

ject Model, Interoperability and Beyond, W. Kim, editor,

Addison-Wesley/ACM Press, 1995, pp. 386–408.

8. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal State-

ment Modifiers, ACM Transactions on Database Sytems, 25(4):

407–456.
Temporal Query Processing

MICHAEL BÖHLEN

Free University of Bolzano-Bozen, Bolzano, Italy

Definition
Temporal query processing refers to the techniques

used by database management system to process tempo-

ral statements. This ranges from the implementation

of query execution plans to the design of system archi-

tectures. This entry surveys different system architec-

tures. It is possible to identify three general system

architectures that have been used to systematically offer

temporal query processing functionality to applications

[6]: The layered approach uses an off-the-shelf database

system and extends it by implementing the missing

functionality in a layer between the database system

and the applications. The monolithic approach inte-

grates the necessary application-specific extensions

directly into the database system. The extensible

approach relies on a database system that allows to

plug user-defined extensions into the database system.

Historical Background
In order to deploy systems that offer support for tem-

poral query processing new systems must be designed

and implemented. Temporal extensions of database

systems are quite different from other database system

extensions. On the one hand, the complexity of the

newly added types, often an interval, is usually quite

low. Therefore, existing access structures and query

processing techniques are often deemed sufficient to

manage temporal information [7,8,11]. On the other

hand the temporal aspect is ubiquitous and affects

all parts of a database system. This is quite different

Temporal Query Processing T 3013
if extensions for multimedia, geographical or spatio-

temporal data are considered. Such extensions deal

with complex objects, for example, objects with com-

plex boundaries, moving points, or movies, but their

impact on the various components of a database sys-

tem is limited.

A first overview of temporal database system imple-

mentations appeared in 1996 [2]. While the system

architecture was not the focus, the overview describes

the approached followed by the systems. Most systems

follow the layered approach, including ChronoLog,

ARCADIA, TimeDB, VT-SQL, and Tiger. A comprehen-

sive study of a layered query processing architecture

was done by Slivinskas et al. [10]. The authors use the

Volcano extensible query optimizer to optimize and

process queries. A monolithic approach is pursued by

HDBMS, TDBMS, T-REQUIEM, and T-squaredDBMS.

A successful implementation of an index structure for

temporal data has been done with the help of Informix’s

datablade technology [1].
Foundations
Figure 1 provides an overview of the different archi-

tectures that have been used to systematically provide

temporal database functionality: the layered, mono-

lithic, and extensible architectures. The gray parts

denote the temporal extensions. The architecture bal-

ances initial investments, functionality, performance

and lock-ins.
Functionalities

The different operators in a temporal database sys-

tem have different characteristics with respect to

query processing.
Temporal Query Processing. Figure 1. Illustration of archite
Temporal selection, temporal projection and tem-

poral union resemble their non-temporal counterparts

and they do not require dedicated new database func-

tionality. Note though that this only holds if the opera-

tors may return uncoalesced relation instances [3] and

if no special values, such as now, are required. If the

operators must returned coalesced relations or if now

must be supported the support offered by conventional

database systems is lacking.

Temporal Cartesian product (and temporal joins)

are also well supported by standard database systems.

In many cases existing index structures can be used to

index interval timestamps [7].

Temporal difference is more subtle and not well-

supported by traditional database systems. It is possi-

ble to formulate temporal difference in, e.g., SQL, but

it is cumbersome to do so. Algebraic formulations and

efficient implementations have been studied by Dunn

et al. [4].

Temporal aggregation is even worse than temporal

difference. Formulating a temporal aggregation in SQL

is a challenge for even advanced SQL programmers and

yields a statement that current database systems cannot

evaluate efficiently [11].

Temporal coalescing and temporal integrity

constraints [11] are other examples of operations that

current database system do not handle efficiently. Tem-

poral coalescing is an algebraic operator and a declara-

tive SQL implementation is inefficient.

The Layered Architecture

A common approach to design an extended database

systems with new data types and operations for time-

referenced data are to use an off-the-shelf database sys-

tem and implement a layer on top providing data types
ctural choices for temporal database systems

T

3014T Temporal Query Processing
and services for temporal applications. The database

system with such a component is then used by different

applications having similar data type and operation

requirements. Database systems enhanced in this way

exploit the standard data types and data model, often

the relational model, as a basis. They define new data

types and possibly a new layer that provides application

specific support for data definition and query language,

query processing and optimization, indexing, and trans-

actionmanagement. Applications are written against the

extended interface.

The layered approach has the advantage of using

standard components. There is a clear separation of

responsibilities: application-specific development can

be performed and supported independent of the

database system development. Improvements in the

database system component are directly available in

the whole system with almost no additional effort.

On the other hand, the flexibility is limited. Develop-

ment not foreseen in the database system component

has to be implemented bypassing the database system.

The more effort is put into such an application-specific

data management extension, the more difficult it

gets to change the system and take advantage of data-

base system improvements. Also (legacy) applications

might access the database system over different inter-

faces. For such applications accessing the extended

database system through a special purpose layer is

not always an option.

The reuse of a standard database system is an

advantage but at the same time also a constraint. The

layer translates and delegates temporal requests to

sequences of nontemporal request. If some of the

functionality of the database systems should be extend-

ed or changed, e.g., a refined transaction processing

for transaction time, this cannot be done easily with a

layered approach. For the advanced temporal func-

tionality the layered architecture might not offer satis-

factory performance.

The Monolithic Architecture

Many systems that use a monolithic architecture have

originally been designed as stand-alone applications

without database functionality. The designers of a

monolithic architecture then extend their system with

database system functionality. They add query func-

tionality, transaction management, and multi-user

capabilities, thereby gradually creating a specialized

database system. The data management aspects
traditionally associated with database system and the

application-specific functionality are integrated into

one component.

Instead of adding general database system func-

tionality to an application it is also possible to incor-

porate the desired application domain semantics into

the database system. Typically, this is done by database

companies who have complete control over and

knowledge of their source code or by open source

communities.

Because of the tight integration of the general

data management aspects and the application specific

functionality, monolithic systems can be optimized for

the specific application domain. This results in good

performance. Standard and specialized index struc-

tures can be combined for good results. Transaction

management can be provided in a uniform way for

standard as well as new data types. However, imple-

menting a monolithic system is difficult and a big

(initial) effort, since all aspects of a database system

have to be taken into account. Another drawback

is that enterprises tend to be reluctant to replace their

database system, which increases the threshold for

the adoption of the temporal functionality. With

monolithic systems, there is is a high risk of vendor

lock-ins.

The Extensible Architecture

Extensible database systems can be extended with

application-specificmodules. Traditional database fun-

ctionality like indexing, query optimization, and trans-

action management is supported for new data types

and functions in a seamless fashion.

The first extensible system prototypes have been

developed to support non-standard database system

applications like geographical, multimedia or engi-

neering information systems. Research on extensible

systems has been carried out in several projects, e.g.,

Ingres [12], Postgres[13], and Volcano [5]. These pro-

jects addressed, among other, data model extensions,

storage and indexing of complex objects as well as

transaction management and query optimization

in the presence of complex objects. Today a number

of commercial approaches are available, e.g., data-

blades from Informix, cartridges from Oracle, and

extenders from DB2. A limitation is that the extensions

only permit extension that were foreseen initially.

A comprehensive temporal support might require sup-

port that goes beyond data types and access structures.

Temporal Relational Calculus T 3015
The SQL99 standard [9] specifies new data

types and type constructors in order to better support

advanced applications.

The extensible architecture balances the advantages

and disadvantages of the layered and monolithic

architectures, respectively. There is a better potential

to implement advanced temporal functionality with

a satisfactory performance than in the layered architec-

ture. However, functionality not foreseen by the

extensible database system might still be difficult to

implement.
Key Applications
All applications that want to provide systematic sup-

port for time-varying information must choose one of

the basic system architectures. The chosen architecture

balances (initial) investments, future lock-ins, and

performance.
Future Directions
The architecture determines the initially required

effort to provide support for time-varying informa-

tion and may limit functionality and performance.

Changing from one architecture to another is not

supported. Such transitions would be important to

support the graceful evolution of temporal database

applications.
T

Cross-references
▶Temporal Data Model

▶Temporal Database

▶Temporal Strata

Recommended Reading
1. Bliujute R., Saltenis S., Slivinskas G., and Jensen C.S. Developing

a datablade for a new index. In Proc. 15th Int. Conf. on Data

Engineering, 1999, pp. 314–323.

2. Böhlen M.H. Temporal database system implementations. ACM

SIGMOD Rec., 24(4):16, December 1995.

3. Böhlen M.H., Snodgrass R.T., and Soo M.D. Coalescing

in temporal databases. In Proc. 22th Int. Conf. on Very Large

Data Bases, 1996, pp. 180–191

4. Dunn J., Davey S., Descour A., and Snodgrass R.T. Sequenced

subset operators: definition and implementation. In Proc. 18th

Int. Conf. on Data Engineering, 2002, pp. 81–92.

5. Graefe G. and McKenna W.J. The volcano optimizer generator:

extensibility and efficient search. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 209-218.

6. Koubarakis M., Sellis T.K., Frank A.U., Grumbach S.,

Güting R.H., Jensen C.S., Lorentzos N.A., Manolopoulos Y.,
Nardelli E., Pernici B., Schek H., Scholl M., Theodoulidis B.,

and Tryfona N. (eds.). Spatio-Temporal Databases: The

CHOROCHRONOS Approach. Springer, Berlin, 2003.

7. Kriegel H.-P., Pötke M., and Seidl T. Managing intervals

efficiently in object-relational databases. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000, pp. 407-418.

8. Leung T.Y.C. andMuntz R.R. Stream processing: temporal query

processing and optimization. In Tansel A., Clifford J., Gadia S.,

Jajodia S., Segev A., Snodgrass R.T. (eds.). Temporal Databases:

Theory, Design, and Implementation, Benjamin/Cummings,

1993, pp. 329-355.

9. Melton J. and Simon A.R. Understanding the New SQL:

A Complete Guide. Morgan Kaufmann, Los Altos, CA, 1993.

10. Slivinskas G., Jensen C.S., and Snodgrass R.T. Adaptable

query optimization and evaluation in temporal middleware.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2001, pp. 127–138.

11. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, Los Altos, CA, 1999.

12. Stonebraker M. (ed.). The INGRES Papers: Anatomy of

a Relational Database System. Addison-Wesley, Reading,

MA, 1986.

13. The Postgresql Global. POSTGRESQL developer’s guide.
Temporal Relation

▶Bitemporal Relation
Temporal Relational Calculus

JAN CHOMICKI
1, DAVID TOMAN

2

1State University of New York at Buffalo, Buffalo,

NY, USA
2University of Waterloo, Waterloo, ON, Canada

Synonyms
Two-sorted first-order logic
Definition
Temporal Relational Calculus (TRC) is a temporal

query language extending the relational calculus. In

addition to data variables and quantifiers ranging

over a data domain (a universe of uninterpreted con-

stants), temporal relational calculus allows temporal

variables and quantifiers ranging over an appropriate

time domain [1].

3016T Temporal Relational Calculus
Key Points
A natural temporal extension of the relational calculus

allows explicit variables and quantification over a given

time domain, in addition to the variables and quanti-

fiers over a data domain of uninterpreted constants. The

language is simply the two-sorted version (variables and

constants are temporal or non-temporal) of first-order

logic over a data domain D and a time domain T.

The syntax of the two-sorted first-order language

over a database schema r ={R1,...,Rk} is defined by the

grammar rule:

Q ::¼Rðt i; xi1 ;:::; xik Þ j t i < t j j xi ¼ xj j
Q ^ Q j :Q j 9xi:Q j 9t i:Q

In the grammar, ti’s are used to denote temporal

variables and xi’s to denote data (non-temporal) vari-

ables. The atomic formulae ti < tj provide means to

refer to the underlying ordering of the time domain.

Note that the schema r contains schemas of time-

stamped temporal relations.

Given a point-timestamped database DB and a

two-sorted valuation y, the semantics of a TRC query

Q is defined in the standard way (similarly to the

semantics of relational calculus) using the satisfaction

relation DB, y⊨Q:

DB; y⊨Rjðt i; xi1 ;:::; xik Þ if Rj 2 r and ðyðtiÞ;
yðxi1Þ;:::; yðxik ÞÞ 2 RDB

j

DB; y⊨t i < t j if yðt iÞ < yðt jÞ
DB; y⊨xi ¼ xj if yðxiÞ ¼ yðxjÞ
DB; y⊨Q1 ^ Q2 ifDB; y⊨Q1 and

DB; y⊨Q2

DB; y⊨:Q1 if notDB; y⊨Q1

DB; y⊨9t i:Q1 if there is s 2 T such

thatDB; y½t i 7! s�⊨Q1

DB; y⊨9xi:Q1 if there is a 2 D such

that DB; y½xi 7! a�⊨Q1

where Rj
DB is the interpretation of the predicate sym-

bol Rj in the database DB.

The answer to a query Q over DB is the set Q(DB)

of valuations that make Q true in DB. Namely,

Q(DB) :={yjFV (Q) : DB, y ⊨Q} where yjFV (Q) is the

restriction of the valuation y to the free variables of Q.

In many cases, the definition of TRC imposes addi-

tional restrictions on valid TRC queries:

Restrictions on free variables: Often the number of

free temporal variables in TRC queries can be restricted

to guarantee closure over the underlying data model

(e.g., a single-dimensional timestamp data model or
the bitemporal model). Note that this restriction

applies only to queries, not to subformulas of queries.

Range restrictions: Another common restriction is to

require queries to be range restricted to guarantee

domain independence. In the case of TRC (and many

other abstract query languages), these restrictions de-

pend crucially on the chosen concrete encoding of tem-

poral databases. For example, no range restrictions are

needed for temporal variables when queries are evalu-

ated over interval-based database encodings, because

the complement of an interval can be finitely repre-

sented by intervals.

The schemas of atomic relations, Rjðt i; xi1 ;:::; xik Þ, typi-
cally contain a single temporal attribute/variable, often

in fixed (e.g., first) position: This arrangement simply

reflects the choice of the underlying temporal data

model to be the single-dimensional valid time model.

However, TRC can be similarly defined for multidi-

mensional temporal data models (such as the bitem-

poral model) or for models without a predefined

number of temporal attributes by appropriately mod-

ifying or relaxing the requirements on the structure of

relation schemas.

An interesting observation is that a variant of TRC,

in which temporal variables range over intervals and

that utilizes Allen’s interval relations as basic compar-

isons between interval values, is equivalent to TRC

over two-dimensional temporal relations, with the

two temporal attributes standing for interval

endpoints.
Cross-references
▶Abstract Versus Concrete Temporal Query Languages

▶Point-Stamped Temporal Models

▶Relational Calculus

▶Relational Model

▶Temporal Logic in Database Query Languages

▶Temporal Query Languages

▶Temporal Relation

▶Time Domain

▶Time Instant

▶TSQL2

▶Valid Time
Recommended Reading
1. Chomicki J. and Toman D. Temporal databases. In Handbook of

Temporal Reasoning in Artificial Intelligence. M. Fischer, D.

Gabbay, and L. Villa Foundations of Artificial Intelligence.

Elsevier, New York, NY, USA, 2005, pp. 429–467.

Temporal Specialization T 3017
Temporal Restriction

▶Temporal Specialization
Temporal Semi-Structured Data

▶Temporal XML
Temporal Specialization

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Temporal restriction
Temporal Specialization. Figure 1. Temporal Specialization

timestamp relative to the transaction timestamp. Adapted fro
Definition
Temporal specialization denotes the restriction of the

interrelationships between otherwise independent

(implicit or explicit) timestamps in temporal relations.

An example is a relation where tuples are always

inserted after the facts they record were valid in reality.

In such a relation, the transaction time of a tuple

would always be after the valid time. Temporal special-

ization may be applied to relation schemas, relation

instances, and individual tuples.
Key Points
Data models exist where relations are required to be

specialized, and temporal specializations often consti-

tute important semantics about temporal relations that

may be utilized for, e.g., improving the efficiency of

query processing.

Temporal specialization encompasses several kinds

of specialization. One is based on the relationships
based on isolated events – restrictions on the valid

m Jensen and Snodgrass (1994).

T

3018T Temporal Strata
between isolated events, and one based on inter-event

relationships. Two additional kinds consider intervals

instead of events, and one is based on the so-

called completeness of the capture of the past database

states.

The taxonomy based on isolated events, illustrated

in Fig. 1, considers the relationship between a single

valid time and a single transaction time. For example,

in a retroactive relation, an item is valid before it is

operated on (inserted, deleted, or modified) in the

database. In a degenerate relation, there is no time

delay between sampling a value and storing it in the

database. The valid and transaction timestamps for the

value are identical.

The interevent-based taxonomy is based on the

interrelationships among multiple event timestamped

items, and includes non-decreasing, non-increasing,

and sequential. Regularity is captured through the

categories of transaction time event regular, valid

time event regular, and temporal event regular, and

strict versions of these. The interinterval-based taxon-

omy uses Allen’s relations.

To understand the last kind of specialization, which

concerns the completeness of the capture of past states,

recall that a standard transaction — time database

captures all previously current states – each time a

database modification occurs, a new previously current

state is created. In contrast a valid-time database cap-

tures only the current database state. In-between these

extremes, one may envision a spectrum of databases

with incomplete support for transaction time. For

example, consider a web archive that takes a snapshot

of a collection of web sites at regular intervals, e.g.,

every week. If a site was updated several times during

the same week, states would be missing from the data-

base. Such incomplete databases are considered specia-

lizations of more complete ones.

Concerning the synonym, the chosen term is more

widely used than the alternative term. The chosen term

indicates that specialization is done with respect to the

temporal aspects of the data items being timestamped.

It is natural to apply the term temporal generalization

to the opposite of temporal specialization. “Temporal

restriction” has no obvious opposite term.

Cross-references
▶Allen’s Relations

▶Bitemporal Relation

▶Temporal Database
▶Temporal Generalization

▶Transaction Time

▶Valid Time
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia, S.

Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.

2. Jensen C.S. and Snodgrass R.T. Specialized temporal relations.

In Proc. 8th Int. Conf. on Data Engineering, 1992, pp. 594–603.

3. Jensen C.S. and Snodgrass R.T. Temporal specialization and

generalization. IEEE Trans. Knowl. Data Eng., 5(6):954–974,

1994.
Temporal Strata

KRISTIAN TORP

Aalborg University, Aalborg, Denmark

Synonyms
Temporal layer; Layered architecture; Temporal mid-

dleware; Wrapper

Definition
A temporal stratum is an architecture for implement-

ing a temporal DBMS. The stratum is a software layer

that sits on top of an existing DBMS. The layer trans-

lates a query written in a temporal query language into

one or more queries in a conventional query language

(typically SQL). The translated queries can then be

executed by the underlying DBMS. The DBMS returns

the result of the query/queries to the user directly

or via the stratum. The core idea of the stratum is to

provide new temporal query functionality to the users

without changing the underlying DBMS. A temporal

stratum can be implemented as a simple translator

(temporal SQL to standard SQL) or as an advanced

software component that also does part of the query

processing and optimization. In the latter case, the

temporal stratum can implement query processing

algorithms that take the special nature of temporal

data into consideration. Examples are algorithms for

temporal join, temporal coalescing, and temporal

aggregation.

Temporal Strata T 3019

T

Historical Background
Applications that store and query multiple versions of

data have existed for a very long time. These applica-

tions have been implemented using, for example, trig-

gers and log-like tables. Supporting multiple versions

of data can be time consuming to build and computa-

tionally intensive to execute, since the major DBMS

vendors only have limited temporal support. See [8]

for details.

Parallel to the work in the software industry the

research community has proposed a large number of

temporal data models and temporal query languages.

For an overview see [7]. However, most of this research

is not supported by implementations. A notable excep-

tion to this is the Postgres DBMS that has built-in

support for transaction time [6]. Postgres has later

evolved into the popular open-source DBMS Post-

greSQL that does not have transaction-time support.

Most recently, the Immortal DB research prototype [2]

has looked at how to built-in temporal support in the

Microsoft SQL Server DBMS.

The DBMS vendors have not been interested in

implementing the major changes to the core of their

DBMSs that are needed to add temporal support to the

existing DBMSs. In addition, the proposal to add tem-

poral support to SQL3, called “SQL/Temporal” part 7

of the ISO SQL3 standard, has had very limited sup-

port. The temporal database research community has

therefore been faced with a challenge of how to experi-

mentally validate their proposals for new temporal

data models and temporal query languages since it is

a daunting task to build a temporal DBMS from

scratch.

To meet this challenge it has been proposed to

implement a temporal DBMS as a software layer on

top of an existing DBMS. This has been termed a

temporal stratum approach. Some of the first propo-

sals for a temporal stratum mainly consider translating
Temporal Strata. Figure 1. (a) The Bitemporal Table emp (b)
a query in a temporal query language to one or more

queries in SQL [9].

The temporal database research community has

shown that some temporal queries are very inefficient

to execute in plain SQL, either formulated directly in

SQL or translated via a simple temporal stratum from

a temporal query language to SQL. For this reason it

has be researched how to make the temporal stratum

approach more advanced such that it uses the under-

lying DBMS when this is efficient and does the query

execution in the layer when the underlying DBMS is

found to be inefficient [5,4].

Scientific Fundamentals
A bitemporal database supports both valid time and

transaction time. In the following it is assumed that all

tables have bitemporal support. Figure 1a shows the

bitemporal table emp. The table has two explicit col-
umns, name and dept, and four implicit timestamp
columns: VTS, VTE, TTS, and TTE. The first row in the
table says that Jim was in the New York department
from the third (assuming the month of September 2007)
and is still there, indicated by the variable now. This

information was also entered on the third and is still

considered to be the best valid information, indicated

by the variable uc that means until changed.

It is straightforward to implement a bitemporal

table in a conventional DBMS. The implicit attributes

are simply made explicit. For the emp table an SQL table
with six columns are created. This is shown in Fig. 1b.

Existing DBMSs do not support variables and there-

fore the temporal stratum has to convert the variables

now and uc to values in the domain of columns VTE
and TTE. It has been shown that it is the most convenient
to use the maximum value (9999-12-31) in the date
domain for both now and uc [10].

Primary key and unique key constraints are quite

complicated to implement in a temporal stratum.
SQL Implementation.

3020T Temporal Strata
A temporal query language such as ATSQL [1] has to

be temporal upwards compatible, i.e., all non-tempo-

ral SQL statements have to work as before. For primary

keys this means that a primary key on a bitemporal

table cannot be directly mapped to a primary key in the

underlying DBMS. As an example, if the emp only has
to store the current version of where employees are, the
name column can be used as a primary key. However,
since emp has bitemporal support there are now three
rows in the example table where the name is “Joe.” Due
to space constraints, an example is not listed here.
Please see [8] for a concrete example.

To look at how modifications are handled in a tem-

poral stratum, first consider the temporal insert state-

ment shown in Fig. 2a. This is a temporal upward

compatible insert statement (it looks like a standard

SQL statement). The mapping to SQL is shown in

Fig. 2b. The columns vts and tts are set to the
current date (fourth of September 2007). The now and

uc variables are set to the maximum date. The result is
the second row in Fig. 1a.

At time 11 Joe is updated from being in the LA

department to the UK department. The temporal up-

wards compatible update statement for this is shown in

Fig. 3a. This update statement is mapped to an SQL

update of the existing row and two SQL insert
Temporal Strata. Figure 2. (a) Temporal Insert (b) Mapping

Temporal Strata. Figure 3. (a) temporal update (b) mapping
statements. The update ends the current belief by

updating the TTE column to the current date. The
first SQL insert statement stores for how long it was
believed that Joe was in the LA department. The second
SQL insert statement stores the new belief that Joe is in
the UK department. The temporal update corresponds
to the updated second row plus the third and fourth row
in Fig. 1a. A delete statement is mapped like the SQL

update statement and the first SQL insert statement in

Fig. 3b. In Fig. 1a a temporal insert of Sam at time 12

and a temporal delete of Sam at time 14 are shown as

rows number 5 and 6. Note that the SQL delete state-

ment is never used for mapping temporal modification

statements. For a complete coverage of implementing

temporal modification statements in a temporal stra-

tum, please see [10].

It is possible to see past states of the database. In

particular the following will look at the emp table as of
the 13th. This is called a time slicing, i.e., the database
is rewound to 13th to see the content of the database as
of this date.

The ATSQL query in Fig. 4a is a sequenced query

that selects the explicit attribute and the valid-time

attributes (vts and vte). The equivalent SQL query
translated by a temporal stratum is shown in Fig. 4b.

The result of the query is shown in Fig. 4c (using now
to SQL.

to SQL.

Temporal Strata. Figure 4. Transaction-time slicing.

Temporal Strata. Figure 5. Visual representation of the

content in Fig. 4c.

Temporal Strata. Figure 6. Temporal aggregation

Temporal Strata T 3021

T

instead of the maximum date). The temporal SQL

query is only slightly simpler than the equivalent stan-

dard SQL query.

To see the benefits of a temporal stratum it is

necessary to look at more complicated queries. In the

following, the focus is on temporal aggregation

queries. Alternative complicated queries are temporal

join or temporal coalescing.

Assume that a boss wants to see how many employ-

ees a company has had over (valid) time looking at the

database as of the 13th. The result shown in Fig. 4c is

used as an input for this query. For convenience it is

assumed that this timeslice query is converted to a view

call empAt13.
The content of the database is illustrated in Fig. 5,

where the vertical dotted lines indicates the time where

the result has to be split. The temporal query that

expresses this is shown in Fig. 6a and the result of the

query is shown in Fig. 6b. Note that the result is not

coalesced.

To execute this query the temporal stratum has to

find the constant periods, i.e., the periods where the

count is the same. Here the temporal stratum can do

either direct conversion to standard SQL or do part of

the query processing in the stratum. The direct con-

verted query is listed in Fig. 7. The standard SQL is
very complicated compared to the equivalent temporal

SQL query in Fig. 6a. The benefit for the user should be

obvious. In line 1 of Fig. 7, the count and the valid-

time start and end associated with the count are select-

ed. In line 2 the view empat13 from Fig. 4b is used. In

addition, the const_period is introduced in lines
2–39. In line 40, only those periods that overlap the
group currently being considered are included. In line
41, the groups are formed based on the valid-time start
and valid-time end. Finally, in line 42 the output is
listed in the valid-time start order.

The next question is then the efficiency of executing

the query in the underlying DBMS or doing part of the

query processing in the temporal stratum. It has been

experimentally shown that for temporal aggregation, it

can be up to ten times more efficient to do part of the

query processing in a temporal stratum [5].

A different approach to adding temporal support

to an existing DBMS is to use an extensible DBMS such

as IBM Informix, Oracle, or DB2. This is the approach

taken in [11]. Here temporal support is added to IBM

Informix. Compared to a stratum approach it is not

possible in the extension approach to use a new tem-

poral SQL. The temporal extension are accessed by the

user via new operators or function calls.

Key Applications
There is no support for valid-time or transaction-time

in existing DBMSs. However, in Oracle 10g there is a

flashback option [3] that allows a user to see the state

Temporal Strata. Figure 7. Temporal aggregation in standard SQL.

Temporal Strata. Figure 8. A flashback in the Oracle DBMS.

3022T Temporal Strata
of the entire database or a single table as of a previous

instance in time. As an example, the flashback query in

Fig. 8 will get the state of the emp table as of the 1st of
September 2007 at 08.00 in the morning. The result can
be used for further querying.

Future Directions
The Sarbanes-Oxley Act is a US federal law that

requires companies to retain all of there data for a
period of five or more years. This law may spur addi-

tional research with temporal databases and in partic-

ular temporal database architecture such as a temporal

stratum.

Cross-references
▶Databases

▶ Supporting Transaction Time

▶Temporal Data Model

Temporal Vacuuming T 3023
▶Temporal Query Languages

▶Temporal Query Processing

Recommended Reading
1. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):407–456,

2000.

2. Lomet D., Barga R., Mokbel M.F., Shegalov G., Wang R., and

Zhu Y. Transaction time support inside a database engine. In

Proc. 22nd Int. Conf. on Data Engineering, 2006.

3. Oracle Corp. Oracle Flashback Technology. http://www.oracle.

com/technology/deploy/availability/htdocs/Flashback_Over

view.htm, as of 4.9.2007.

4. Slivinskas G. and Jensen C.S. Enhancing an extensible query

optimizer with support for multiple equivalence types. In Proc.

5th East European Conf. Advances in Databases and Informa-

tion Systems, 2001, pp. 55–69.

5. Slivinskas G., Jensen C.S., and Snodgrass R.T. Adaptable

query optimization and evaluation in temporal middleware. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2001,

pp. 127–138.

6. Stonebraker M. and Rowe L.A. The design of POSTGRES. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1986,

pp. 340–355.

7. Snodgrass R.T. The TSQL2 Temporal Query Language. Kluwer

Academic, Dordrecht, 1995.

8. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, 1999.

9. Torp K., Jensen C.S., and Snodgrass R.T. Stratum approaches to

temporal DBMS implementation. In Proc. Int. Conf. on Data-

base Eng. and Applications, 1998, pp. 4–13.

10. Torp K., Jensen C.S., and Snodgrass R.T. Effective timestamping

in databases. VLDB J., 8(3–4):267–288, 2000.

11. Yang J., Ying H.C., and Widom J. TIP: a temporal extension to

informix. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000.
T

Temporal Structure

▶Time Domain
Temporal Type

▶Temporal Granularity
Temporal Upward Compatibility

▶Current Semantics
Temporal Vacuuming

JOHN F. RODDICK
1, DAVID TOMAN

2

1Flinders University, Adelaide, SA, Australia
2University of Waterloo, Waterloo, ON, Canada

Synonyms
Data expiration

Definition
Transaction-time temporal databases are inherently

append-only resulting, over time, in a large historical

sequence of database states. Data vacuuming allows for

a strategic, and irrevocable, deletion of obsolete data.

Historical Background
The term vacuuming was first used in relation to data-

bases in the Postgres database system as a mechanism

for moving old data to archival storage [10]. Itwas later

refined by Jensen and Mark in the context of temporal

databases to refer to the removal of obsolete information

[4] and subsequently developed into a comprehensive

and usable adjunct to temporal databases [6,8,11].

Data expiration has also been investigated in the context

of data warehouses by Garcia-Molina et al. [2] and

others [9].

Foundations
In many applications, data about the past needs be

retained for further use. This idea can be formalized, at

least on the conceptual level, in terms of an append-only

transaction-time temporal database or a history. How-

ever, a naive and unrestricted storage of all past data

inevitably leads to unreasonable demands on storage

and subsequently impacts negatively on efficiency of

queries over such histories. Hence techniques that allow

selective removal of no longer needed data have been

developed and, at least in prototype systems, deployed.

The parts of the historical data that are to be

retained/deleted are specified in terms of vacuuming

specifications. These specifications state, for example,

that data beyond certain absolute or relative time point

is obsolete (as opposed to merely superceded) and thus

can be removed. For example, the regulation

" “Taxation data must be retained for the last 5 years”

can be considered a specification of what data indivi-

duals must retain concerning their taxation returns

and what can be discarded. However, one must be

http://www.oracle.com/technology/deploy/availability/htdocs/Flashback_Overview.htm
http://www.oracle.com/technology/deploy/availability/htdocs/Flashback_Overview.htm
http://www.oracle.com/technology/deploy/availability/htdocs/Flashback_Overview.htm

3024T Temporal Vacuuming
careful when designing such specifications as once a

part of the history is deleted, it can no longer be

reconstructed from the remaining data. Consider the

alternative regulation

" “Taxation data must be retained for past years, except

for the last year.”

While this specification seems to suggest that the data

of the last year can be discarded, doing so would lead to

a problem in the following year (as this year’s return

won’t be the last one any more). Hence, this specifica-

tion is intuitively not well formed and must be

avoided. Vacuuming specifications can be alternatively

phrased in terms of what may be deleted, rather than

what should be retained. For example, rather than

" “Taxation data must be retained for the last 5 years”

it would be better to rephrase it as

" “Taxation data over 5 years old may be deleted.”

The reason for this is that vacuuming specifications

indicate specific deletion actions and there is thus less

chance of misinterpretation.

Another issue with vacuuming specifications

relates to the granularity of data that is removed from

the history. For example, if data items (such as tax

receipts) are temporally correlated with other items

that may appear in different, perhaps much older,

parts of the history (such as investments), those parts

of the history may have to be retained as well. Such

considerations must be taken into account when de-

ciding whether the specifications are allowed to refer to

the complete history or whether selective vacuuming

of individual data items is permitted. In both cases,

issues of data integrity need to be considered.

Formal Vacuuming Specifications

A transparent way to understand the above issues is to

consider the result of applying a vacuuming specifica-

tion to a history (i.e., the retained data) to be a view

defined on the original history.

Definition. Let H =hS0,S1,...,Ski be a history. The

instances Si represent the state of the data at time i

and all states share a common fixed schema. TH and

DH are used to denote the active temporal and data

domains of H, respectively. A vacuuming specification

is a function (a view) E : H ! H 0, where H 0 is called
the residual history (with some, potentially different

but fixed schema).
The idea behind this approach is that the instance

of the view represents the result of applying the

vacuuming specification to the original history and it

is this instance that has to be maintained in the system.

While such view(s) usually map histories to other

histories (sometimes called the residual histories), in

principle, there is no restriction on the schema of these

views nor on the language that defines the view. This

approach allows us to address the two main questions

concerning a vacuuming specification:

� Is a given specification well formed? The first

question relates to anomalies such as the one out-

lined in the introductory example. Since only the

instance of the view and not the original history

itself is stored, a new instance of the view must be

definable in terms of the current instance of the

view E(H) whenever a new state of the history S is

created by progression of time. This condition can

be formalized by requiring:

EðH ; SÞ ¼ DðEðHÞ; SÞ

for some function (query) D where H;S is the ex-

tension of H with a new state S. To start this

process, a constant, ;, is technically needed to rep-

resent the instance of the view in the beginning

(i.e., for an empty initial history). The condition

above essentially states that the view Emust be self-

maintainable in terms of the pair (;,D). The pair

(;,D) is called a realization of E.
� What queries does a specification support? The

second question concerns which queries can be

correctly answered over the residual histories.

Again, for a query Q to be answerable, it must be

the case that

QðHÞ ¼ Q0ðEðHÞÞ

for some function (query) Q 0 and all histories H.

Q 0 is a reformulation of Q with respect to E. This

requirement states that queries preserved by the

vacuuming process are exactly those that can be

answered only using the view E.
In addition, for the approach to be practical, the con-

struction of D and ; from E and of Q 0 from Q and E,

respectively, must be effective.

Definition. A vacuuming specification represented

by a self-maintainable view E is a faithful history

encoding for a query Q if Q is answerable using the

view E.

Temporal Vacuuming T 3025

T

Given a vacuuming specification E over a history H

that is self-maintainable using (;,D) and a query Q 0

that answers Q using E; the triple (;,D,Q 0) is then

called the expiration operator of Q for H.

Space/Storage Requirements

Understanding vacuuming specifications in terms

of self-maintainable materialized views also provides

a natural tool for comparing different specifications

with respect to how well they remove unnecessary

data. This can be measured by studying the size of

the instances of E with respect to several parameters

of H:

� The size of the history itself, jHj,
� The size of the active data domain, jDHj, and
� The length of the history, jTHj.
In particular, the dependency of jE(H)j on jTHj is
important as the progression of time is often

the major factor in the size of H. It is easy to see

that vacuuming specification with a linear bound in

terms of TT always exists: it is, e.g., the identity used

to define both E and Q 0. However, such a specification

is not very useful and better results can be proba-

bly achieved using standard compression algorithms.

Therefore the main interest is in two main cases

defined in terms of jTHj:
1. Specifications bounded by O(1), and

2. Specifications bounded by O(log(jTHj)).
In the first case the vacuuming specification provides a

bounded encoding of a history. Note that in both cases,

the size of E(H) will still depend on the other para-

meters, e.g., jDHj. This, however, must be expected, as

intuitively, the more H refers to different constants

(individuals), the larger E(H) is likely to be (for exam-

ple, to store the names of the individuals).

Vacuuming in Valid-Time Databases. In contrast

to transaction-time temporal databases (or histories),

valid-time temporal databases allow arbitrary updates

of the temporal data. Hence information about future

can be recorded and data about the past can be mod-

ified and/or deleted. This way, vacuuming specifica-

tions reduce to appropriate updates of the valid time

temporal database.

Moreover, when allowing arbitrary updates of the

database, it is easy to show that the only faithful history

encodings are those that are lossless (in the sense that H

can be reconstructed from the instance of E).
Example. Consider a valid time temporal database H

with a schema {R} and a query Q asking “return the

contents of the last state of R recorded in H.” Then, for a

vacuuming specification E to be a faithful encoding of

H (w.r.t. Q), it must be possible to answer Q using only

the instance of E after updating of H. Now consider a

sequence of updates of the form “delete the last state of

R in H.” These updates, combined with Q, can recon-

struct the contents of R for an arbitrary state of H. This

can only be possible if E is lossless.

This, however, means that any such encoding must

occupy roughly the same storage as the original data-

base, making vacuuming useless. Similar results can be

shown even for valid time databases in which updates

are restricted to insertions.

Approaches to Vacuuming

The ability to vacuum data from a history depends on

the expressive power of the query language in which

queries over the history are formulated and on the num-

ber of the actual queries. For example, allowing an arbi-

trary number of ad-hoc queries precludes any possibility

effective vacuuming of data, as finite relational struc-

tures can be completely characterized by first-order

queries. Thus, for common temporal query languages,

this observation leaves us with two essential options:

1. An administrative solution is adopted and a given

history is vacuumed using a set of policies indepen-

dent of queries. Ad-hoc querying of the history can

be allowed in this case. However, queries that try to

access already expired values (i.e., for which the

view is not faithful history encoding) have to fail

in a predefined manner, perhaps by informing the

application that the returned answer may be only

approximate, or

2. A query driven data expiration technique is used.

Such a technique, however, can only work for a

fixed set of queries known in advance.

Administrative Approaches to Vacuuming

One approach to vacuuming data histories, and, in

turn, to defining expiration operators, can be based

on vacuuming specifications that define query/applica-

tion-independent policies. However, when data are

removed from a history in such a way, the system

should be able to characterize queries whose answers

are not affected. A particular way to provide vacuum-

ing specifications (such as through the ideas of Skyt

et al. [6,8]) is using deletion (r) and keep (k)

3026T Temporal Vacuuming
expressions. These would be invoked from time to

time, perhaps by a vacuuming daemon. The complete

specification may contain both deletion and keep spe-

cifications. For example:

rðEmpDepÞ : sTTend�NOW�1yrðEmpDepÞ
k(EmpDep) : sEmpStatus=0Retain0(EmpDep)
rðEmpDepÞ : sVTend�NOW�7yrsðEmpDepÞ
This specification states that unless the Employee

has a status of “Retain,” all corrected data should be

vacuumed after 1 year and all superceded data

vacuumed after 7 years. For safety, keep specifications

always override delete specifications (note that the

ordering of the individual deletion and keep expres-

sions is significant).

Vacuuming in Practice. Vacuuming specifications

are generally given as either part of the relation definition

or as a stand-alone vacuuming specification. In TSQL2,

for example, a CREATE TABLE command such as:

CREATE TABLE EmpDep (

Name CHAR(30) NOT NULL,

Dept CHAR(30) NOT NULL,

AS TRANSACTION YEAR(2) TO DAY

VACUUM NOBIND (DATE ‘now - 7 days’);

specifies inter alia that only queries referencing data

valid within the last 7 days are permissible [3] while

CREATE TABLE EmpDep (...)

VACUUM DATE ‘12 Sep 2007’;

specifies that only query referencing any data entered on

or after 12 September 2007 are permissible. The VACUUM

clause provides a specification of what temporal range

constitutes a valid query with the NOBIND keyword

allowing DATE to be the date that the query was executed

(as opposed to the date that the table was created).
Temporal Vacuuming. Figure 1. Space bounds for residual
An alternative is to allow tuple-level expiration of

data. In this case, the expiration date of data are spe-

cified on insert. For example, in the work of Schmidt

et al. [5] users might enter:

INSERT INTO EmpDep

VALUES (‘Plato’, ‘Literature’, ...)

EXPIRES TIMESTAMP ‘2007-09-12 23:59:59’;

to indicate that the tuple may be vacuumed after the

date specified.

Application/Query-Driven Approaches

There are many applications that collect data over time

but for which there are no natural or a priori given

vacuuming specifications. However, it is still impor-

tant to control the size of the past data needed. Hence,

it is a natural question whether appropriate specifica-

tions can be derived from the (queries in the) applica-

tions themselves (this requires an a priori fixed finite set

of queries – in the case of ad-hoc querying such a

specification cannot exist. Formally, given a query lan-

guage L, a computable mapping of queries Q 2 L to

triples (;,D,Q 0), such that (;,D,Q 0) is an expiration

operator for Q over H, has to be constructed. Figure 1

summarizes the results known for various temporal

query languages and provides references to the actual

techniques and proofs.

Key Applications
The major application domains for vacuuming are

historical databases (that, being append only, need a

mechanism to limit their size), logs (particularly those

collected for more than one purpose with different

statutes and business processes), monitoring applica-

tions (with rollback requirements) and garbage collec-

tion (in programming languages). Also, as data streams

are essentially histories, the techniques and results
histories.

Temporal Visual Languages T 3027

T

developed for vacuuming and data expiration can be

applied to query processing over data streams. In par-

ticular, expiration operators for a given query yield

immediately a synopsis for the same query in a stream-

ing setting. This observation also allows the transfer of

the space complexity bounds.

Future Directions
Most approaches have concentrated on specifying what

data to retain for given queries to continue to be

answered perfectly. There are two other possibilities:

� Given a particular vacuuming specification and a

query that is not supported fully by this specifica-

tion, can the degree can this query be answered by

the residual history be determined? Some sugges-

tions are given by Skyt and Jensen [7] who propose

that queries that may return results affected by

vacuuming should also provide suggestions for an

alternative, similar query.

� Given a requirement that certain queries should

not be answered (e.g., for legal reasons), what

would be the vacuuming specifications that would

guarantee this, in particular in the conjunction

with the issue of approximate answers above?

Both of these are areas for further research. Finally,

most vacuuming research assumes a static schema

definition (or at least, an overarching applicable sche-

ma definition). Having the versioning of schema while

also handling the vacuuming of data is also an open

problem.

Cross-references
▶ Point-Stamped Temporal Models

▶Query Rewriting Using Views

▶ Schema Versioning

▶ Self-Maintenance of Views

▶ Synopses for Data Streams

▶Temporal Query Languages

Recommended Reading
1. Chomicki J. Efficient checking of temporal integrity constraints

using bounded history encoding. ACM Trans. Database Syst.,

20(2):149–186, 1995.

2. Garcia-Molina H., Labio W., and Yang J. Expiring data in a

warehouse. In Proc. 24th Int. Conf. on Very Large Data Bases,

1998, pp. 500–511.

3. Jensen C. Vacuuming. In The TSQL2 Temporal Query Language,

Chapter 23, R. Snodgrass (ed.). Kluwer, New York, 1995,

pp. 451–462.
4. Jensen C.S. and Mark L. A framework for vacuuming temporal

databases. Tech. Rep. CS-TR-2516, University of Maryland at

College Park, 1990.

5. Schmidt A., Jensen C., and Saltenis S. Expiration times for data

management. In Proc. 22nd Int. Conf. on Data Engineering,

2006, p. 36.

6. Skyt J. Specification-Based Techniques for the Reduction of

Temporal and Multidimensional Data. Ph.D thesis, Aalborg

University, Aalborg, Denmark, 2001.

7. Skyt J. and Jensen C.S. Vacuuming temporal databases. Time-

Center technical report TR-32, Aalborg University, 1998.

8. Skyt J., Jensen C.S., and Mark L. A foundation for vacuuming

temporal databases. Data Knowl. Eng., 44(1):1–29, 2003.

9. Skyt J., Jensen C.S., and Pedersen T.B. Specification-based data

reduction in dimensional data warehouses. In Proc. 18th Int.

Conf. on Data Engineering, 2002, p. 278.

10. Stonebraker M. and Rowe L. The design of POSTGRES. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1986,

pp. 340–355.

11. Toman D. Expiration of historical databases. In Proc. 8th

Int. Symp. Temporal Representation and Reasoning, 2001,

pp. 128–135.

12. Toman D. Logical data expiration for fixpoint extensions of

temporal logics. In Proc. 8th Int. Symp. Advances in Spatial

and Temporal Databases, 2003, pp. 380–393.

13. Toman D. On incompleteness of multi-dimensional first-

order temporal logics. In Proc. 10th Int. Symp. Temporal Repre-

sentation and Reasoning/4th Int. Conf. Temporal Logic, 2003,

pp. 99–106.

14. Toman D. On construction of holistic synopses under the dupli-

cate semantics of streaming queries. In Proc. 14th Int. Symp.

Temporal Representation and Reasoning, 2007, pp. 150–162.
Temporal Value

▶History in Temporal Databases
Temporal Visual Interfaces

▶Temporal Visual Languages
Temporal Visual Languages

ULRICH SCHIEL
1, SONIA FERNANDES SILVA2

1Federal University of Campina Grande,

Campina Grande, Brazil
2Etruria Telematica Srl, Siena, Italy

Synonyms
Temporal visual queries; Temporal visual interfaces

3028T Temporal Visual Languages
Definition
Database technology has evolved in order to be typically

oriented towards a large set of non-expert users. While

attempting to meet this need, textual query languages,

such as SQL, have been replaced by visual query lan-

guages, which are based on visual representations of the

database and direct manipulation mechanisms. More-

over, data characterized by the temporal dimension play

an important role in modern database applications.

Temporal Visual Languages are user-oriented langua-

ges that meet the specific requirements of querying

and visualizing temporal data in an interactive and

easy-to-use visual form.

Historical Background
The availability of graphical devices at low cost and the

advent of the direct manipulation paradigm [10] have

given rise in the last years to a large diffusion of visual

user interfaces. Regarding the database area, data-

bases are designed, created, and possibly modified by

experts, but there are different kinds of users whose job

requires access to databases, specifically for extracting

information. However, traditional query languages for

databases, such as SQL, are not very approachable for

these users, for both their intrinsic syntactical com-

plexity and the lack of a global view of the data of

interest together with their interrelationships. Thus,

visual interfaces for databases, in particular, the so-

called Visual Query Systems (VQS) [4], have arisen

as an evolution of the traditional query languages.

VQS include both a language to express queries in a

visual form and a query strategy. They are oriented to a

wide spectrum of users who generally ignore the inner

structure of the accessed database and are character-

ized by several notable features, such as the availability

of interactive visual mechanisms that facilitate the

typical process of query formulation and refinement,

without requiring users to have a previous knowledge

of the database schema and to learn the syntax and

semantics of a query language.

Moreover, it has been pointed out that modern

database applications deal with temporal data such as

banking, medical records, airline reservations, finan-

cial data, decision support systems, etc. Several propo-

sals of temporal query languages have been carried out

in the past years, where special clauses and predicates

are added to the original language in order to deal with

the temporal aspects. These languages increase the

usability problems of the originating query languages,
including quite complex syntax and a steep learning

curve. For instance, considering specifically the tempo-

ral relational languages, the user must be familiar with

concepts such as tuple and attribute time-stamping,

temporal joins, as well as syntax and semantics of

temporal predicates. As efforts were made to find

new visual query mechanisms for accessing conven-

tional databases, this should also be done for temporal

databases.

In order to address this need, some proposals of

temporal visual query languages have arisen in the last

years. Initial proposals have mainly concentrated on the

activity of query formulation, where temporal visual

operators are interactively applied over diagrammatic

representations of the database schemas exhibiting tem-

poral features. However, most of these visual languages

are not provided with formal syntax and semantics [13]

and do not address the visual interaction with the query

result. Trying to overcome this limitation, a variety of

techniques for visualizing time-oriented data have been

proposed [12], but they do not support query capabil-

ities for extracting further information. In recent years,

research efforts have been made in order to develop

temporal visual interfaces in which the end-user could

apply visual mechanisms for querying and visualizing

temporal data in a single structure.

Foundations
Elements in temporal databases such as objects and

their attributes may be temporal, meaning that the

history of the successive values of a property is

recorded or that the history of an object as a whole

may be kept in the database. The valid time of a data

element may be a single instant, a time interval or a set

of disjoint time intervals.

The process of visual query formulation can be

seen as constituted by three phases [13]: the user selects

the part of the database he wants to operate on (loca-

tion phase); then, he defines the relations/restrictions

within the selected part in order to produce the query

result (manipulation phase); finally, he operates on the

query result (visualization phase). The same phases

apply to a visual temporal query formulation.

In the location phase the goal is the precise defini-

tion of the fragment of the database schema involved

in the query, known as query subschema. Many app-

roaches of temporal visual languages adopt the visual-

ization of the database schemas as Entity-Relationship

(ER) diagrams extended with temporal entities

Temporal Visual Languages T 3029
(classes) and temporal relationships. Following this

approach, the selection of the subschema of interest

may be done by selecting the classes, attributes, and

relationships of interest [10], including the temporal

ones. As an evolution of this ER-based approach

a direct manipulation strategy has been proposed

in [13], which adopts a “graphical notebook” meta-

phor for interacting with the database schema. Usabil-

ity tests showed that this approach was enjoyed by the

users, since they prefer to interact with something

more familiar.

In the manipulation phase, the query subschema

can be manipulated in several ways, according to the

available query operators on which the detailed condi-

tions of the query must be specified. A database query

has two orthogonal components: selection and projec-

tion. In an analogy to a SQL SELECT-FROM-WHERE

statement, the SELECT clause gives the data projection

of the query result, the FROM clause states the query

subschema of the location phase and the WHERE

clause establishes the selection conditions on the data-

base in order to retrieve the required data. Temporal

queries encompass the possible combinations of cur-

rent/temporal selection and current/temporal projec-

tion over time and data, resulting into nine different

combinations beginning from data selection/data pro-

jection up to mixed selection/mixed projection [13].

For instance a query ‘when did the employee Joseph

move from department 1 to department 2, and what

salary did he get at the new job? ’ is a data selection
Temporal Visual Languages. Figure 1. Point/Interval relatio
(Joseph and the two departments) and mixed projec-

tion (date of movement – time; new salary – data).

The question in temporal query processing is

how to relate the (temporal-) data of the query to

(temporal-) data of the database. This relationship

is stated by comparing time-spans of the data life-

time that has been specified in the query with the

corresponding lifetimes of objects or attributes in the

database. This comparison may include special forms

for expressing temporal restrictions or relations be-

tween the query and the database.

Temporal visual languages can use a set of visual

representations for time and temporal relations,

depending on the type of request: snapshot or slice

[14]. Snapshot queries deal with facts that were valid

at a particular time instant, whereas slices queries

return facts that were valid over some period of time.

Regarding snapshot queries, instants are visually repre-

sented as circles or small vertical bars. If p is a time

instant (point) of the query and t is the valid time of an

object (or attribute), the temporal relations between

them can be visually represented as icons (Fig. 1).

Regarding slice queries, the temporal relations be-

tween time intervals are based on Allen’s Calculus of

temporal intervals [3], which gives a complete set of

possible relations between two (temporal) intervals. If

both the database time tv and the query time p are

intervals, the relational primitives of Allen can be visu-

ally represented as icons (Fig. 2). Instead of using icons

for expressing temporal relations, a more intuitive
ns as icons [5].

T

Temporal Visual Languages. Figure 2. Interval icons.

Temporal Visual Languages. Figure 3. Mobile slider [13].

3030T Temporal Visual Languages
form of expressing such relations is to visually repre-

sent intervals as horizontal slide bars in order to dyna-

mically specify the predicates of Allen. For instance,

Silva et al. [13] have proposed a mobile slider, as

illustrated in Fig. 3.

However, one of the most difficult problems in

designing a temporal visual language is to achieve

both high expressive power and ease-of-use. For exam-

ple, the two representations illustrated above cannot

deal with situations involving more than two intervals.

In this case, the logical expressions between temporal

relations (involving conjunctions and disjunctions)

should be addressed in this manipulation phase.

Some proposals address such a need by adopting visual

metaphors for complex representation of temporal

relations [6, 8] in a temporal query formulation. Con-

sidering that the endpoints may be imprecise or vari-

able, Chittaro and Combi [6] propose three alternative
visual representations of flexible temporal intervals

in order to deal with variable endpoints. Hibino

and Rudensteiner [8] propose a bar with alternative

endpoints, e.g., for specifying the temporal relation

between two intervals starting at the same time but

without restriction on the end, giving rise the logical

expression begins(A,B) ∨ equals(A,B) ∨ begins(B,A).

Moreover, other complex temporal relations such

as temporal patterns should be also addressed. For

instance, users might be interested in data related to

events of arbitrary duration or events separated by

arbitrary time gaps. The temporal visual language de-

fined in [7] address such a need by presenting visual

metaphors for expressing event-based queries, where

constraints on events and inter-event time-spans are

visually specified in different ways.

Finally in the visualization phase, the historical data

retrieved from the query result is visualized for

Temporal Visual Languages. Figure 4. History with “TimeBox” [9].

Temporal Visual Languages T 3031

T

interactive exploration and analysis. The most widely

known visualization technique of time-oriented data

are the interactive timeline [12], where the time is

regarded as an ordinal axis in a bi-dimensional (2D)

visualization and data are located at different positions

along this time axis. Timelines and other visualization

techniques can be categorized according to the generic

criteria that address ontologies about the time, such

as the temporal primitives that make up the time

axis (time points and intervals), the temporal order

(linear, cyclic or branching), etc. For instance, timeline

visualization takes advantage of the linear orderednature

of time. An additional criterion is if time-oriented visu-

alization supports the snapshot or slice views [12]. Other

relevant criterion is the data tied to time axis [2], such as

the data type which indicates if the data are abstract or

spatial; the number of involved variables (univariate or

multivariate) related to the data (temporal attributes

and relationships); and its abstraction level (e.g., raw

vs. aggregated data).

It is worth noting that for an effective exploration

of data, visual techniques must be integrated with

suitable interaction techniques, following the principle

of visualization information mantra, defined in [11]:

overview first, zoom and filter, then details-on-demand,

where visual tools exploring the dynamic query ap-

proach [1] are well-known implementations of this

principle. This means that starting from an overview of

a large dataset, one may zoom and filter this overview to

extract a data subset. Then, more details can be obtained

from the selected data subset. In dynamic queries, the

manipulation and visualization phases proceed iterative-

ly in a visual query formulation. This means that, after

visualization of a preliminary result, the user may inter-

act with this result in order to refine the query.

Within this context, the visualization phase in tem-

poral visual languages focuses on visual query and

exploration of temporal trends and patterns within
historical results from a preliminary query by using

suitable interactive visualization techniques. When ex-

ploring such data, suitable interaction techniques such

as the direct manipulation and brushing can be

integrated with visual query capabilities. For instance,

TimeSearcher [9] allow users to visually query and

explore patterns in time-series data by using visual

widgets for data filtering called “TimeBoxes.” Time-

Boxes are rectangular query locators that specify the

region(s) in which the users are interested. They are

placed and directly manipulated on a 2D timeline,

with the region boundaries providing the query para-

meters, as illustrated in Fig. 4. The extent of the Time-

box on the time (x) axis specifies the time period of

interest, while the extent on the value (y) axis specifies

a constraint on the range of data values of interest.

In this case, a query is dynamically created by drawing

a box on the timeline. Multiple timeboxes can be

combined to specify conjunctive queries. Only data

sets that match all of the constraints implied by the

timeboxes are visualized.

Key Applications
Temporal Visual Languages may be integrated with

Spatial Visual Languages for Geographic Information

Systems. Other typical applications are virtual reality,

moving objects, or multimedia systems, such as video

and audio data. It can be also an important concern in

Visual Analytics.

In the medical field, there are many different appli-

cations needing temporality of patient records, images,

examination events, and so on.

The classic application fields of Temporal Databases

are systems of planning data, or systems of historic data,

such as banking account, economic data, meteorological

data, business histories, and many others. Also in Deci-

sion Support Systems, such as OLAP – Online Analyti-

cal Processing, time is the most important dimension.

3032T Temporal Visual Queries
Another promising application is related to the

document management, which is based on time-

changing texts, such as legal data or instructional

texts. For instance, a judgment support system based

on jurisprudence must consider the temporal context

of past judgments.
Cross-references
▶Data Visualization

▶ Lifespan

▶Temporal Database

▶Temporal Query Languages

▶TSQL2

▶Visual Interaction

▶Visual Interfaces

▶Visual Query Language
Recommended Reading
1. Ahlberg C. and Shneiderman B. Visual information seeking:

tight coupling of dynamic query filters with starfield displays.

In Proc. SIGCHI Conf. on Human Factors in Computing Sys-

tems, 1994, pp. 313–317.

2. Aigner W. et al. Visualizing time-oriented data – A systematic

view. Comput. Graph., 31(3):401–409, 2007.

3. Allen J.F. Maintaining knowledge about temporal interval.

Commun. ACM, 26(1):832–843, 1983.

4. Catarci T . et al. Visual query systems: analysis and comparison.

J. Vis. Lang. Comput., 8(2):215–260, 1997.

5. Cavalcanti V.M.B., Schiel U., and Baptista C.S. Querying spatio-

temporal databases using a visual environment. In Proc. Work-

ing Conf. on Advanced Visual Interfaces, 2006, pp. 412–419.

6. Chittaro L. and Combi C. Representation of temporal intervals

and relations: information visualization aspects and their evalu-

ation. In Proc. 8th Int. Symp. Temporal Representation and

Reasoning, 2001, pp. 13–20.

7. Fails J.A., Karlson A., and Shahamat L. Visual Query of

Multi-Dimensional Temporal Data. http://www.cs.umd.edu/

class/spring2005/cmsc838s/assignment-projects/visual-query-of-

temporal-data/Final-Paper-06.pdf.

8. Hibino S. and Rundensteiner E.A. User interface evaluation of a

direct manipulation temporal query language. In Proc. 5th ACM

Int. Conf. on Multimedia, 1997, pp. 99–107.

9. Hochheiser H. and Shneiderman B. Dynamic query tools for

time series data sets, timebox widgets for interactive exploration.

Inf. Vis., 3(1):1–18, 2004.

10. Shneiderman B. Direct manipulation, a step beyond program-

ming languages. IEEE Comput., 16(8):57–69, 1983.

11. Shneiderman B. The eyes have it: a task by data type taxonomy

for information visualizations. In Proc. IEEE Symp. on Visual

Languages, 1996, pp. 336–343.

12. Silva S.F. and Catarci T. Visualization of linear time-oriented

data: a survey. In Proc. 1st Int. Conf. on Web Information

Systems Eng., 2000, pp. 310–319.
13. Silva S.F., Catarci T., and Schiel U. Formalizing visual interaction

with historical databases. Inf. Syst., 27(7):487–521, 2002.

14. Silva S.F., Schiel U., and Catarci T. Visual query operators for

temporal databases. In Proc. 4th Int. Workshop Temporal Rep-

resentation and Reasoning, 1997, pp. 46–53.
Temporal Visual Queries

▶Temporal Visual Languages
Temporal XML

CURTIS DYRESON
1, FABIO GRANDI

2

1Utah State University, Logan, UT, USA
2University of Bologna, Bologna, Italy

Synonyms
Temporal semi-structured data

Definition
Temporal XML is a timestamped instance of an XML

datamodel or,more literally, anXMLdocument inwhich

specially-interpreted timestamps are present. In general,

an XML data model instance is a tree or graph in which

each node corresponds to an element, attribute, or value,

and each edge represents the lexical nesting of the child in

the parent’s content. In temporal XML, a timestamp is

added to some nodes or edges in the instance. The time-

stamp represents the lifetime of the node or edge in one

or more temporal dimensions, usually valid time or

transaction time. As an example, Fig. 1 shows a fragment

of a temporal XML data model. The bibliographic data

in the figure contains information about publishers,

books, and authors. The figure also has timestamps

that represent when each piece of data was entered

into the data collection (i.e., the timestamps represent

the transaction-time lifetime of each element). The bib-

liography began on Dec 21. 2001, and remains current

(until now). Information about the Butterfly Books

publisher was entered on Jan 1, 2004, and it started

publishing a book by Jane Austen on Feb 2, 2004. The

title of that book was originally misspelled, but was

corrected on May 29, 2005. Alternatively, temporal

XML is literally an XML document or data collection

in which specially-interpreted timestamps, formatted

http://www.cs.umd.edu/class/spring2005/cmsc838s/assignment-projects/visual-query-of-temporal-data/Final-Paper-06.pdf.
http://www.cs.umd.edu/class/spring2005/cmsc838s/assignment-projects/visual-query-of-temporal-data/Final-Paper-06.pdf.
http://www.cs.umd.edu/class/spring2005/cmsc838s/assignment-projects/visual-query-of-temporal-data/Final-Paper-06.pdf.

Temporal XML. Figure 1. A temporal XML fragment.

Temporal XML T 3033

T

in XML, are included. Such a document yields a tem-

poral XML data model instance when parsed.

Historical Background
XML is becoming an important language for data -

representation and exchange, especially in web appli-

cations. XML is used to “mark-up” a data collection

or document adding meaning and structure. The

mark-up consists of elements inserted into the data.

Usually an XML document is modeled as a tree in

which each interior node corresponds to an element

in the document and each leaf to a text value, attribute,

or empty element. Temporal XML adds timestamps

to the nodes and/or edges in the data model instance.

The timestamps represent the lifetime of the nodes

(edges).

Grandi has created a good bibliography of research

in this area [8]. Chawathe et al. were the first to study

time in an XML-like setting [2]. They encoded times in

edge labels in a semi-structured database and extended

the Lorel query language with temporal constructs.

Dyreson et al. extended their research with collapsing

and coalescing operators [5]. Grandi and Mandreoli

presented techniques for adding explicit valid-time

timestamps in an XML document [9]. Amagasa et al.

next developed a temporal extension of the XML data

model [1]. Following that, a range of temporal XML

topics was investigated, from storage issues and

indexing [3,11,12,13,14] to querying [6,7,12]. The

timestamping of XML documents (or parts thereof)

has also been considered in the more general context of
versioning of XML documents [11,15]. Finally,

schemes for validating and representing times in

XML documents have also been considered [4,10].

Foundations
It is important to distinguish between “the representa-

tion in XML of a time” and “temporal XML.” Times

are common in many XML documents, especially

documents that record the history of an enterprise.

There is nothing special about the representation or

modeling of these times. They would be modeled just

the same as any other snippet of XML, e.g., represented

within a <time> element. Temporal XML, on the

other hand, is different. It models both the compo-

nents within a document or data collection and their

lifetimes. An instructive way to think about the differ-

ence is that temporal XML weds metadata in the form

of timestamps to data contained in a document, i.e.,

to the elements or parts of the document that are

annotated by the timestamps. Research in temporal

XML builds on earlier research in temporal (relational)

databases. Though many of the concepts and ideas

carry over to temporal XML research, the ideas have

to be adapted to the tree-like model of XML.

Many temporal XML data models impose a

transaction-time constraint on the times along every

path in a model instance: the timestamp of a child

must be during (inclusive) the timestamp of its parent

[1,4]. Said differently, no child may outlive its parent

in transaction time. The reason for this constraint is

that every snapshot of a temporal data model instance

3034T Temporal XML
must be a single, complete, valid non-temporal XML

data model instance. A non-temporal instance has

a single root. But if in a temporal instance a child

outlives its parent then, in some snapshot(s), the

child represents a second root since it has no parent,

thus violating a model property. In valid time it is

more common to relax this constraint and model a

temporal data collection as a sequence of forests where

a child that outlives its parent is interpreted to mean

that the child is the root in some snapshot(s) of some

tree in the forest [10]. For instance, the valid time of

Jane Austen’s book Pride and Prejudice would extend

from its time of publication (1813) to now, far exceed-

ing the lifetime of its publication by Butterfly Books.

Another interesting situation is when a child moves

among parents over time (for instance, in the data

collection shown in Fig. 1 if the book Pride and Preju-

dice were published by two different publishers).

A directed graph data model is better suited to model-

ing such movement as a node (e.g., the book) can

have multiple incoming edges (e.g., an edge from

each publisher) [5]. Various constraints have been

proposed for relationships among the timestamps on

nodes and edges in the graph.

Timestamps on nodes/edges in a data model in-

stance changes query evaluation. At the core of all

XML query languages (and different from SQL or

relational query languages) are path expressions that

navigate to nodes in a data model instance. In a tem-

poral data model instance, a query has to account

for the timestamps along each path that it explores.

In general, a node is only available during the intersec-

tion of times on every node and edge in the path to it

(though a node in a graph data model can be reached

along multiple paths). Temporal XML queries can

be evaluated using a sequenced semantics [7], that

is, simultaneously evaluated in every snapshot or non-

sequenced [6,14] where differences between versions

can be extracted and paths between versions are directly

supported by the data model.

Key Applications
Temporal XML can be used to model an evolving

document or data collection. In many situations,

“old” documents or document versions are still of

use. For instance, in an industrial domain an airplane

parts manufacturer has to retain part plan histories

to produce parts for older planes, while in the legal
domain a tax firm has to keep a complete history of

tax laws for audits. Currently, the de facto method

for storing old documents is an archive. An archive

is a warehouse for deleted or modified documents.

Archives can be site-specific or built for a number of

sites, e.g., the Internet Archive. But the method to

retrieve documents from an archive varies widely

from site to site, which is problematic because then

queries also have to vary. Moreover, archives typically

only support retrievals of entire document versions,

not a full range of temporal queries or version histories

of individual elements. In contrast, temporal XML

provides a basis for supporting a full range of temporal

queries. Temporal XML can also be explicitly used

to represent, store or view historical data, including

structured data, or to encode multi-version docu-

ments. Multi-version documents are compact repre-

sentations of XML documents which maintain their

identity through modifications and amendments.

A temporally consistent individual version or range

of consecutive versions (timeslice) can be extracted

by means of a temporal query. Temporal XML has

also been proposed as a medium of communication

with temporal relational databases in the context of

traditional enterprise applications.

Future Directions
The future of temporal XML is tied to the continued

growth of XML as an important medium for data

storage and exchange. Currently, many sites pro-

mote XML by publishing data formatted in XML

(e.g., genomic and proteomic data can be obtained in

three, different XML formats from the National Center

for Biotechnology Information (NCBI)). Building a

temporal XML data collection by accumulating snap-

shots gathered from these sites is vital to answering

queries such as “What new data has emerged over

the past six months?” As search engines become

more XML-aware, they could also benefit enormously

from making time a relevant component in ranking

resources, e.g., a search for “mp3 players” should lower

the ranking of discontinued products. The growth of

the Semantic Web may lead to XML being supplanted

by new languages for knowledge representation such as

the Ontology Web Language (OWL). Temporal exten-

sions of these languages will not be far behind. OWL

already has one such extension: the Time-determined

Ontology Web Language (TOWL).

Term Processing T 3035
Cross-references
▶Temporal Database

▶Temporal Queries

▶XML
T

Recommended Reading
1. Amagasa T., Yoshikawa M., and Uemura S. A data model

for temporal XML documents. In Proc. 11th Int. Conf. Database

and Expert Syst. Appl., 2000, pp. 334–344.

2. Chawathe S.S., Abiteboul S., and Widom J. Representing and

querying changes in semistructured data. In Proc. 14th Int. Conf.

on Data Engineering, 1998, pp. 4–13.

3. Chien S.-Y., Tsotras V.J., and Zaniolo C. Efficient schemes

for managing multiversion XML documents. VLDB J.,

11(4):332–353, 2002s.

4. Currim F., Currim S., Dyreson C., and Snodgrass R.T. A tale

of two schemas: creating a temporal XML schema from a

snapshot schema with t XSchema. In Advances in Database

Technology, Proc. 9th Int. Conf. on Extending Database Tech-

nology, 2004, pp. 348–365.

5. Dyreson C., Böhlen M.H., and Jensen C.S. Capturing and

querying multiple aspects of semistructured data. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 290–301.

6. Dyreson C.E. Observing transaction-time semantics with

TTXPath. In Proc. 2nd Int. Conf. on Web Information Systems

Eng., 2001, pp. 193–202.

7. Gao D. and Snodgrass R.T. Temporal slicing in the evaluation

of XML queries. In Proc. 29th Int. Conf. on Very Large Data

Bases, 2003, pp. 632–643.

8. Grandi F. Introducing an annotated bibliography on temporal

and evolution aspects in the World Wide Web. ACM SIGMOD

Rec., 33(2):84–86, 2004.

9. Grandi F. and Mandreoli F. The valid web: an XML/XSL infra-

structure for temporal management of web documents.

In Proc. 1st Int. Conf. Advances in Information Systems, 2000,

pp. 294–303.

10. Grandi F., Mandreoli F., and Tiberio P. Temporal modelling

and management of normative documents in XML format.

Data Knowl. Eng., 54(3):327–254, 2005.

11. Mitakos T., Gergatsoulis M., Stavrakas Y., and Ioannidis E.V.

Representing time-dependent information in multi-

dimensional XML. J. Comput. Inf. Technol., 9(3):233–238,

2001.

12. Rizzolo F. and Vaisman A.A. Temporal XML: modeling,

indexing and query processing. VLDB J., 2007.

13. Wang F. and Zaniolo C. X-BiT: An XML-based Bitemporal

Data Model. In Proc. 13th Int. Conf. on Entity-Relationship

Approach, 2004, pp. 810–824.

14. Wang F. and Zaniolo C. An XML-based approach to publishing

and querying the history of databases. World Wide Web,

8(3):233–259, 2005.

15. Wong R.K., Lam F., and Orgun M.A. Modelling and manipulat-

ing multidimensional data in semistructured databases. World

Wide Web, 4(1–2):79–99, 2001.
Temporally Indeterminate
Databases

▶ Probabilistic Temporal Databases
Temporally Uncertain Databases

▶ Probabilistic Temporal Databases
Temporally Weak

▶ Snapshot Equivalence

▶Weak Equivalence
Term Expansion

▶Query Expansion for Information Retrieval
Term Expansion Models

▶Query Expansion Models
Term Frequency by Inverse
Document Frequency

▶TF*IDF
Term Frequency Normalization

▶Document Length Normalization
Term Processing

▶ Lexical Analysis of Textual Data

3036T Term Proximity
Term Proximity

VASSILIS PLACHOURAS

Yahoo! Research Barcelona, Spain

Synonyms
Lexical affinities; Lexical relations

Definition
Term proximity is a form of term dependence based

on the distance of terms in a document. A retrieval

system using term proximity assigns a higher score

to documents in which the query terms appear close

to each other.

Key Points
Term proximity is a feature that partially captures the

dependence of terms in documents. Information

retrievals models are often based on the assumption

that terms occur independently of other terms in a

document. This assumption is only an approximation

to allow the simple mathematical development of

retrieval models. There have been, however, several

efforts to introduce dependence of terms [4]. Most of

the efforts to use term proximity in the past did not

result in substantial improvements. Metzler and Croft

[2] argued that this can be attributed to the small size

of the test collections used in the past, as well as to the

fact that previous models required estimating term

dependencies for both the classes of relevant and

non-relevant documents.

Metzler and Croft [2] proposed a model based on

Markov Random Fields for term dependence using term

proximity. They modeled full independence, sequential

dependence that is equivalent to phrase search, and

full dependence, where the dependence between any

pair of query terms is computed. Mishne and de Rijke

[3] also proposed a model in which every n-gram of the

query is considered as a phrase, and it is evaluated on an

index consisting of single terms. Their results show

that improvements in early precision are obtained in

the setting of Web search. In both models, term proxim-

ity is based on lexical relations [1]. Terms are said to be

in a lexical relation if they appear often within a certain

number of tokens of each other.

Cross-references
▶ Information Retrieval Models

▶N-Gram Models
Recommended Reading
1. Maarek Y.S. and Smadja F.Z. Full text indexing based on lexical

relations an application: software libraries. In Proc. 12th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1989, pp. 198–206.

2. Metzler D. and Croft B. A Markov random field model for

term dependencies. In Proc. 31st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2005, pp. 472–479.

3. Mishne G. and de Rijke M. Boosting Web retrieval through

query operations. In Proc. 27th European Conf. on IR Research,

2005, pp. 502–516.

4. Yu C.T., Buckley C., Lam K., and Salton G. A generalized

term dependence model in information retrieval. Inform.

Technol. R&D, 2:129–154, 1983.
Term Statistics for Structured Text
Retrieval

MOUNIA LALMAS

Queen Mary, University of London, London, UK

Synonyms
Within-element term frequency; Inverse element

frequency

Definition
Classical ranking algorithms in information retrieval

make use of term statistics, the most common (and

basic) ones being within-document term frequency, tf,

and document frequency, df. tf is the number of occur-

rences of a term in a document and is used to reflect

how well a term captures the topic of a document,

whereas df is the number of documents in which a

term appears and is used to reflect how well a term

discriminates between relevant and non-relevant

documents. df is also commonly referred to as inverse

document frequency, idf, since it is inversely related to

the importance of a term. Both tf and idf are obtained

at indexing time. Ranking algorithms for structured

text retrieval, and more precisely XML retrieval, re-

quire similar terms statistics, but with respect to

elements.

Key Points
To calculate term statistics for elements, one could

simply replace documents by elements and calculate

so-called within-element term frequency, etf, and

Term Weighting T 3037

T

inverse element frequency, ief. This however raises an

issue because of the nested nature of XML documents

in particular. For instance, suppose that a section ele-

ment is composed of two paragraph elements. The fact

that a term appears in the paragraph necessitates that it

also appears in the section. This overlap can be taken

into account when calculating the ief value of a term.

In structured retrieval, in contrast to “flat” docu-

ment retrieval, there are no a priori fixed retrieval

units. The whole document, a part of it (e.g., one of

its section), or a part of a part (e.g., a paragraph in the

section), all constitute potential answers to queries.

The simplest approach to allow the retrieval of ele-

ments at any level of granularity is to index all

elements. Each element thus corresponds to a docu-

ment, and etf and ief for each element are calculated

based on the concatenation of the text of the element

and that of its descendants (e.g., [4]).

With respect to the calculation of the inverse element

frequency, ief, the above approach ignores the issue of

nested elements. Indeed, the ief value of a term will

consider both the element that contains that term and

all elements that do so in virtue of being ancestors of

that element. Alternatively, ief can be estimated across

elements of the same type (e.g., [3]) or across docu-

ments (e.g., [1]). The former greatly reduces the im-

pact of nested elements on the ief value of a term, but

does not eliminate it as elements of the same type can

be nested within each other. This approach can be

extended to consider the actual path of an element,

leading to so-called inverted path frequency. For exam-

ple, in [2], this is defined as the combination of the ief

values (as above calculated) with respect to each of the

element types forming the path. The latter case, i.e.,

calculating ief across documents, is the same as using

inverse document frequency, which completely elimi-

nates the effect of nested elements.

Cross-references
▶XML Retrieval

▶ Indexing Units

▶ Structure Weight

▶Relationships in Structured Text Retrieval
Recommended Reading
1. Clarke C.L.A. Controlling overlap in content-oriented XML

retrieval. In Proc. 31st Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 2005,

pp. 441–448.
2. Grabs G. and Schek H.-S. ETH Zürich at INEX: flexible

information retrieval from XML with PowerDB-XML. In Proc.

1st Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2002, pp. 141–148.

3. Mass Y. and MandelbrodM. Component ranking and automatic

query refinement for XML retrieval. In Proc. 4th Int. Workshop

of the Initiative for the Evaluation of XML Retrieval, 2005,

pp. 73–84.

4. Sigurbjörnsson B., Kamps J., and de Rijke M. An element-based

approach to XML retrieval. In Proc. 2nd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2003, pp. 19–26.
Term Weighting

IBRAHIM ABU EL-KHAIR

Minia University, Minia, Egypt

Definition
Term weighting is a procedure that takes place during

the text indexing process in order to assess the value of

each term to the document. Term weighting is the

assignment of numerical values to terms that represent

their importance in a document in order to improve

retrieval effectiveness [8]. Essentially it considers the

relative importance of individual words in an informa-

tion retrieval system, which can improve system effec-

tiveness, since not all the terms in a given document

collection are of equal importance. Weighing the terms

is the means that enables the retrieval system to deter-

mine the importance of a given term in a certain

document or a query. It is a crucial component of

any information retrieval system, a component that

has shown great potential for improving the retrieval

effectiveness of an information retrieval system [7].

Historical Background
The use of word frequency dates back to G. K. Zipf and

his well known law [14] for word distribution. The law

indicates that there is a correlation between the fre-

quency of a word and its rank, and their product is a

constant.

r�f ¼ c

where: r is the rank of the word

f is the frequency of the word

c is a parameter/constant that depends on the text

being analyzed.

3038T Term Weighting
Zipf indicates that this law is a way to express the

within-document frequency weighting.

The use of word frequency as an indication of its

significance in a given document was established al-

most 10 years later based on observations made by

Luhn [4] when he was conducting an explanatory

research on creating automatic abstracts in scientific

documents. Based on these observations, Luhn pro-

posed that the frequency of word occurrence in a

document can be considered a useful measure of the

word’s significance in that document. The premise is

that the author of a certain document repeats certain

words as he/she presents his/her argument elaborating

the subject of the document.

Looking at the word distribution in any given doc-

ument shows that there are significant words and in-

significant words. Luhn used Zipf ’s law as his null

hypothesis [14] to enable him to specify two cut-off

points to exclude all insignificant words, an upper

point and a lower point. The upper cut-off eliminated

the commonwords, and the lower point eliminated the

rare words; both of which he considered extraneous in

the document content. After Luhn excluded words

above and below these two cut off points, the most

useful range of words remained.

The 1960’s saw several key developments in the

field of information retrieval in general and the most

notable were related to the development of the SMART

system by Gerard Salton and his students, first at

Harvard University and later at Cornell University.

This system utilized weights for index terms based on

their frequency [10]. The probabilistic approach to

retrieval, with term weights based on probability of

relevance, appeared in 1960 and since then it has

been tested heavily with many variations [12].

The decade of the 1970’s saw a breakthrough

in the calculation of term weights used in retrieval

systems. By then, it was confirmed that the signif-

icance of a certain term in a given document is

determined using the term frequency of that term in

the document. Sparck Jones [11] argued that the term

frequency by itself is not sufficient enough to mea-

sure the importance of a term in a collection of

documents. She suggested correlating the term fre-

quency with its relative collection frequency, making

the collection frequency a variable in retrieval. A sig-

nificant development in the probabilistic based retriev-

al was also achieved in 1976 by Robertson and

Sparck Jones [6].
Foundations
Storing, organizing, and retrieving information are the

main functions of an information retrieval system.

With the vast amounts of electronic information now

available it is very hard to find the ideal information

retrieval system that enables users to get what they

want from a specific collection of documents. A con-

siderable amount of research has addressed improve-

ment in the effectiveness of retrieval systems, most of

which is focused on finding appropriate indexing tech-

niques. The indexing process in any retrieval system

deals with assigning a set of index terms that represents

the content of each document within a collection.

Choosing the proper index terms is a primary issue

in information retrieval systems, as they should be

indicative of the content of a given document.

One of the most important procedures in the

indexing process is assigning a value, or weight, to an

index term in a document. It is a crucial component of

any retrieval system, and one that has shown great

potential for improving retrieval effectiveness [7]. By

assigning a numerical value to a term representing its

importance in the document, retrieval effectiveness

can be improved [8]. Term weighting indicates how

important each individual word is to the document

and within the document collection.

The process of assigning term weights is affected by

three major factors: term frequency, inverse document

frequency, and document length.

Term Frequency

Following Luhn’s observations [4], it is known that the

significance of a certain term in a given document can

be represented by the term frequency of that term in

the document. Simply, if there is a document in which

the word “database” occurs a hundred times, that

document would potentially be more useful in re-

sponse to a query containing “database” as a query

term than a document in which the word appears

only one or two times. Of course, the use of this factor

alone in calculating the term weights in a collection of

documents does not guarantee adequate retrieval per-

formance. For example, there are very common words,

sometimes referred to as stop words, which appear in

the text but carry little meaning, serving only a syntac-

tic function but not indicating subject matter [3]. They

have a very high frequency and tend to diminish the

impact of frequency differences among less common

words, affecting the weighting process [2].

Term Weighting T 3039

T

Inverse Document Frequency

The term frequency indicates the importance of the

term in a given document, but knowing the term

importance in a collection of documents is also signif-

icant. Term frequency was criticized as a method of

determining term significance because in its simplest

form, it treats all terms equally based on raw count,

which does not take into account the term’s discrimi-

nating power. To resolve this problem Sparck Jones

[11] suggested the use of the relative collection fre-

quency or inverse document frequency (IDF), making

the frequency of the term in the collection as a whole a

variable in retrieval. IDF places greater emphasis on the

value of a term as a means of distinguishing one

document from another than on its value as an indica-

tion of the content of the document itself.

Document Length

With the presence of long documents in the document

collection handled by any retrieval system, it became

harder to determine the importance of a term based

only on the term frequency or the inverse document

frequency or both. Even though the combination of

them is a good weighting function, it overlooks the

document length factor. Longer documents will have

higher term frequencies because the terms tend to be

repeated several times in the document, and thus will

be high in the ranking during the retrieval process.

Long documents are also likely to contain more unique

terms which may affect the retrieval as well. More

terms in a given document increases the possibility of

matching between this document and multiple queries

[7]. Applying a good normalization technique reduces

the effect of long documents and makes the weighting

function more effective. Another element to be taken

into consideration with the document length factor is

the removal of stop words, which changes the docu-

ment length and subsequently affects the weighting

process [2].

Term Weighting Schemes

The following is a brief and basic explanation of

some of the major term weighting schemes available.

It should be noted that each scheme has many varia-

tions and modifications that are not discussed.

TF*IDF A weighting function that depends on the

term frequency (TF) in a given document calculated

with its relative collection frequency or inverse
document frequency (IDF). The term frequency

emphasizes term significance in a given document,

and inverse document frequency emphasizes term sig-

nificance in the collection as a whole (TF*IDF).

BM25 A weighting function based on the traditional

Probabilistic Retrieval Model. The basic principle is that

a specific document could be judged relevant to a

specific query, based on the assumption that the

terms are distributed differently and independently in

relevant and non relevant documents. The weight of a

given term is calculated on the basis of the presence or

absence of query terms in each document in the col-

lection. Terms that have appeared in previously re-

trieved relevant documents for a given query should

be given a higher weight than if they had not appeared

in those relevant documents [12].

Language Modeling Language modeling (LM) is an

extension of the probabilistic retrieval approach. It is a

probabilistic mechanism for generating text, first ap-

plied by Andrei Markov at the beginning of the twen-

tieth century to model letter sequences in works of

Russian literature. It was also used by Claude Shannon

in his models of letter sequences and word sequences,

which he used to illustrate the implications of coding

and information theory. At the end of the 1970’s, LM

was used successfully in speech recognition, which was

its main application for many years [1]. In 1998 Ponte

and Croft [5] were the first to apply language modeling

to information retrieval. Their approach was to infer a

language model for each document and estimate the

probability of generating the query according to each

of these models, and then rank the documents accord-

ing to these probabilities. The results indicated an

improvement in retrieval over the traditional TF*IDF,

and there was further improvement when they used a

smoothing function with their new approach.

Key Applications
Term weighting is a key process in any information

retrieval system. It is the means that enables the system

to determine the importance of any term in a certain

document or a query.

Experimental Results
Experimentation in information retrieval has been an

active area for over 40 years, and much of this research

3040T Term-Document Matching Function
has focused on term weighting. Different schemes and

variations with different retrieval models have been

tested in order to find weighting schemes that perform

effectively. In general, the schemes above and their

variations have been tested extensively and evaluated

(see the corresponding references). Many other weigh-

ting schemes were developed and used but without

becoming widely adopted, either because the results

were not effective enough or because of the complexity

of the calculations or both. The Term Discrimina-

tion Value (TDV) model of indexing [9] is an example

which is now seldom used because of its complexity

and weak results.

Until the 1990s, experiments in the field of infor-

mation retrieval in general and term weighting in

particular were conducted on relatively small collec-

tions. With the beginning of TREC (http://trec.nist.

gov) (Text REtrieval Conference) in 1992, large test

collections became available for use by the IR commu-

nity, making the results of experiments more credible

and generalizable. Research in term weighting bene-

fited, establishing the effectiveness of term weighting

schemes such as BM25.

Cross-references
▶BM25

▶ Information Retrieval

▶ Language Models

▶ Lexical Analysis of Textual Data

▶TF*IDF

▶Text Indexing Techniques
Recommended Reading
1. Hiemstra D. and de Vries A. Relating the New Language Models

of Information Retrieval to the Traditional Retrieval Models

(No. TR-CTIT-00-09). Centre for Telematics and Informat-

ion Technology (CTIT), University of Twente, Amsterdam,

Netherlands, 2000.

2. Korfhage R.R. Information Storage and Retrieval. John Wiley,

New York, 1997.

3. Lancaster F.W. Indexing and Abstracting in Theory and Practice

(2nd edn.). University of Illinois, Graduate School of Library

and Information Science, Champaign, IL, 1998.

4. Luhn H.P. The automatic creation of literature abstracts. IBM J.

Res. Dev., 2(2):159–165, 1958.

5. Ponte J.M. and Croft W.B. A language modeling approach to

information retrieval. In Proc. 21st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1998, pp. 275–281.

6. Robertson S.E. and Sparck-Jones K. Relevance weighting of

search terms. J. Am. Soc. Inf. Sci., 27(3):129–146, 1976.
7. Salton G. and Buckley C. Term-weighting approaches in auto-

matic text retrieval. Inf. Process. Manage., 24(4):513–523, 1988.

8. Salton G. and McGill M. Introduction to Modern Information

Retrieval. McGraw-Hill Book Company, New York, NY, 1983.

9. Salton G., Yang, C.S., and Yu, C.T. A theory of term importance

in automatic text analysis. J. Am. Soc. Inf. Sci. Technol.,

26(1):33–44, 1975.

10. Singhal A. Modern information retrieval: a brief overview. Bull.

IEEE Comput. Soc. Tech. Comm. Data Eng., 24(4):35–43, 2001.

11. Sparck Jones K. A statistical interpretation of term specificity

and its application in retrieval. J. Doc., 28:11–20, 1972.

12. Sparck Jones K., Walker S., and Robertson S.E. A probabilistic

model of information retrieval: development and comparative

experiments: Part I. Inf. Process. Manage., 36:779–808, 2000.

13. van Rijsbergen C.J. Information Retrieval (2nd edn.).

Butterworths, London, 1979.

14. Zipf G.K. Human Behavior and Principle of Least Effort. Addi-

son Wesley, Cambridge, MA, 1949.
Term-Document Matching Function

▶ Information Retrieval Models
Terminologic Languages

▶Description Logics
Terminological Database

▶ Electronic Dictionary
Test Collection

BEN CARTERETTE

University of Massachusetts Amherst, Amherst, USA

Synonyms
Corpus

Definition
A test collection is a standard set of data used to

measure search engine performance. It comprises a

set of queries, ideally randomly sampled from some

space, a set of documents to be searched, and a set of

judgments indicating the relevance of each document

to each query in the set.

Text Categorization T 3041
Key Points
The use of test collections for performance evaluation

began with Cleverdon and Mills [1] and is today

known as the Cranfield methodology. Test collections

today are much larger than Cleverdon’s Cranfield col-

lection, consisting of millions of documents and tens

of thousands of relevance judgments. The advantage of

having standardized test collections is that experimen-

tal results can be compared across research groups and

over time.

The National Institute of Standards and Technolo-

gy (NIST), through their annual Text REtrieval Con-

ferences (TREC), has led the way in providing test

collections for information retrieval research. NIST

has assembled large-scale test collections for many

different retrieval tasks and types of documents and

made these available to researchers so that the state of

the art in retrieval can be constantly improved.

Cross-references
▶Document Databases

Recommended Reading
1. Voorhees E.M. and Harman D.K. (eds.). TREC: Experiment and

Evaluation in Information Retrieval. MIT, Cambridge, MA,

USA, 2005.
Text Analytics

▶Web Information Extraction
T

Text Categorization

DOU SHEN

Microsoft Corporation, Redmond, WA, USA

Synonyms
Text classification

Definition
Text classification is to automatically assign textual

documents (such as documents in plain text and Web

pages) into some predefined categories based their

content. Formally speaking, text classification works

on an instance space X where each instance is a docu-

ment d and a fixed set of classes C = {C1,C2,...,CjCj}
where jCj is the number of classes. Given a training set

Dl of training documents hd,Cii where hd,Cii 2 X � C,

using a learning method or learning algorithm, the

goal of document classification is to learn a classifier

or classification function g that maps instances to

classes: g : X! C [7].

Historical Background
Text classification, which is to classify documents into

some predefined categories, provides an effective way

to organize documents. Text classification dates back

to the early 1960s, but only in the early 1990s did it

become a major subfield of the information systems

discipline. Recently, with the explosive growth of on-

line textual data, text classification attracts more and

more attention. A knowledge engineering approach

is one of the most popular solutions before the late

1980s, which relies on manually defined rules encoding

expert knowledge on how to classify documents under

the given categories. After that, machine learning based

methods became pervasive. These methods automati-

cally build some automatic text classifiers by learning

from a set of manually classified documents. The fol-

lowing sections will focus on machine learning based

methods.

Foundations
Text categorization consists of several important

components including document representation, di-

mensionality reduction, classification algorithms and

performance evaluation, which are to be introduced

in the followings sections. Readers are referred to [11]

for more details.

Document Representation

Documents or Web pages cannot be directly inter-

preted by a classifier. Therefore, a proper representa-

tion approach is necessary to represent documents.

Generally, a document d is usually represented as a

vector of term weights d = hw1,w2,...,wjV ji, where V is

the set of terms (sometimes called features) that occur

at least once in the training document set Dl. This way

is known as Vector Space Model (VSM) [7]. Different

representation approaches vary in two issues: (i) dif-

ferent ways of understanding what a term is;

(ii) different ways of computing term weights. For

issue (i), a straightforward way is to identify terms

with words. This is often called either the set-of-

words or the bag-of-words approach to document

3042T Text Categorization
representation, depending on whether weights are bi-

nary or not [11]. Although some previous work has

found that representations more sophisticated than

this are not significantly more effective [1], researchers

still struggle to find better ways in the following four

directions: (i) Represent a document by phrases [6];

(ii) Use the senses of words to represent a document

[4]; (ii) Augment document representation by hidden

concepts in a document; (iv) Employ language models,

such as n-gram models [9], multigram models. For

issue (ii), the weight can be binary (1 denoting pres-

ence and 0 absence of the term in the document) or

nonbinary. For the nonbinary value of a term t, it can

be either the Term Frequency (TF) of the term in a

document or TFDIF as computed according to the

following equation where N(t,d) is the number of

times the word t appears in d, jDj is the size of the

corpus, nt,D is the number of documents in D contain-

ing the word t:

wt ¼ Nðt ; dÞ�logðjDj=nt ;DÞ
Sometimes, the document vectors are normalized by

cosine normalization [11]. Using either binary or non-

binary values, either normalized or the original values

depends on the classifier learning algorithm.

Generally, the bag-of-words representation is built

based on the text in each document alone. However, it

is not uncommon that some documents have certain

relationships among them so that the text in one doc-

ument can help enrich the text of its related documents

to improve the classification results. The relationships

among documents are quite obvious in the context of

Web-page classification. For example, in [2], Glover

et al. enrich Web pages by considering inbound links

and words surrounding them. They come to the con-

clusion that the full-text of a Web page is not good

enough for representing the Web pages for classifica-

tion. They create virtual documents by incorporating

anchor text and extended anchor text. The experimen-

tal results demonstrate that the virtual documents,

especially when constructed through extended anchor

text are of great help. In [13], the authors enhance the

notion of virtual documents by complementing hyper-

links with implicit links which are extracted from

query logs. Besides utilizing the links among docu-

ments, there are also works enriching documents by

inserting features extracted from an existing knowl-

edge base.
Dimensionality Reduction

In document classification, it is unavoidable to face

the problem of high dimensionality. The original fea-

ture space consisting of the unique terms that occur

in a moderate-sized document collection can reach

hundreds of thousands of terms. Such high dimension-

ality prohibits the application of many classification

algorithms such as neural networks and Bayes belief

models [15]. Furthermore, some features in the native

space do not contribute much to the document classi-

fication. Therefore, it is beneficial to conduct di-

mensionality reduction (DR). DR techniques consist

of two groups, term selection and term generation.

Term selection methods select a subset of terms from

the native space while term generation methods obtain

new features by combining or transforming the ori-

ginal ones. The methods belonging to the former

group include Document Frequency (DF), Mutual In-

formation (MI), Chi-Square and so on. The latter

group of methods include Term Clustering, and Latent

Semantic Indexing (LSI). A detailed analysis and com-

parison of these methods is presented in [11,15].

Related to feature selection, some works have tried

to remove noise from documents. It is easy to imagine

that some text in a document, especially in a Web page,

is not related to the main topic of the documents.

When judging the category of a document, only the

main topic of the document should be considered and

the irrelevant text should be removed. These works are

different from conventional feature selection in that

they process each document independently and the

resultant feature space can still have high dimensional-

ity. For example, in [5], Kolcz et al. use summarization

as a feature selection method and apply a simple ex-

traction-based technique with several heuristic rules.

Different from Kolcz et al’s work on pure-text docu-

ment classification, [12] proposes to improve the Web-

page classification performance by removing the noise

through some summarization techniques.

Classification Algorithms

During the past few decades, a large number of cate-

gorization algorithms have been proposed for docu-

ment classification such as naı̈ve bayes [8], k-nearest

neighbor, decision trees, regression models, neural net-

works, support vector machines [3], boosting and rule

learning algorithms. The authors of [14] made a thor-

ough comparison among these classifiers. In this

Text Categorization T 3043

T

section, two widely used text classification algorithms,

Naive Bayes (NB) and Support Vector Machine (SVM)

are briefly introduced.

Naı̈ve Bayesian Classifier (NB) The Naı̈ve Bayesian

Classifier (NB) is a simple but effective text classifica-

tion algorithm which has been shown to perform very

well in practice [8]. The basic idea of NB is to use the

joint probabilities of words and categories to estimate

the probabilities of categories given a document. As

described in [8], most researchers employ NB method

by applying Bayes’ rule:

PðCj jdi; ŷÞ ¼ PðCj jŷÞ
QjV j

k¼1PðwkjCj ; ŷÞNðwk ;diÞ

PjCj
r¼1PðCr jŷÞ

QjV j
k¼1PðwkjCr ; ŷÞNðwk ;diÞ

where PðCj jŷÞ can be calculated by counting the fre-

quency with each category Cj occurring in the training

data; jCj is the number of categories; p(wijCj) stands

for probability that word wi occurs in class Cj which

may be small in training data, so the Laplace smooth-

ing is chosen to estimate it; N(wk,di) is the number

of occurrences of a word wk in di; jV j is the number of

words in the training data.

Support Vector Machine (SVM) SVM is well founded

in terms of computational learning theory and has

been successfully applied to text categorization [3].

SVM operates by finding a hyper-surface in the space

of possible inputs. The hyper-surface attempts to split

the positive examples from the negative examples by

maximizing the distance between the nearest of the

positive and negative examples to the hyper-surface.

Intuitively, this makes the classification correct for

testing data that is near but not identical to the training

data. There are various ways to train SVMs. The

SVMlight system provided by Joachims [3] is one of

the widely adopted and efficient implementations.

Performance Measures

Precision, recall and F1-measure are the most popular

measures to evaluate the performance of document

classification [10]. Precision (P) is the proportion of

actual positive class members returned by the system

among all predicted positive class members returned

by the system. Recall (R) is the proportion of predicted

positive members among all actual positive class mem-

bers in the data. F1 is the harmonic average of preci-

sion and recall as shown below:
F1 ¼ 2� P � R=ðP þ RÞ
To evaluate the average performance across multiple

categories, there are two conventional methods: micro-

average and macro-average. Micro-average gives equal

weight to every document; while macro-average

gives equal weight to every category, regardless of its

frequency [14].

Key Applications
Text classification has many applications [9], including

email classification, text genre classification, topic

identification, subjective sentiment classification and

Web query classification.

Data Sets
There are several open data sets for text categorization.

See the following for details:

20 Newsgroups: http://kdd.ics.uci.edu/databases/

20newsgroups/20newsgroups.html

Reuters-21578: http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html

RCV1: http://www.daviddlewis.com/resources/

testcollections/rcv1

Enron Email Dataset: http://www.cs.cmu.edu/ enron/

Query Classification Dataset: http://www.sigkdd.

org/kddcup/index.php?section=2005&method=data

Cross-references
▶Classification

▶ Information Retrieval (IR)

▶Text Clustering

Recommended Reading
1. Dumais S., Platt J., Heckerman D., and Sahami M. Inductive

learning algorithms and representations for text categorization.

In Proc. Int. Conf. on Information and Knowledge Mangement,

1998, pp. 148–155.

2. Glover E.J., Tsioutsiouliklis K., Lawrence S., Pennock D.M., and

Flake G.W. Using web structure for classifying and describing

web pages. In Proc. 11th Int. Conf. World Wide Web Confer-

ence. 2002, pp. 562–569.

3. Joachims T. Text categorization with support vector machines:

learning with many relevant features. In Proc. 10th European

Conf. on Machine Learning, 1998, pp. 137–142.

4. Kehagias A., Petridis V., Kaburlasos V.G., and Fragkou P. A

comparison of word- and sense-based text categorization

using several classification algorithms. J. Intell. Inf. Syst.,

21(3):227–247, 2003.

5. Kolcz A., Prabakarmurthi V., and Kalita J.K. String match

and text extraction: summarization as feature selection for

http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://www.daviddlewis.com/resources/testcollections/rcv1
http://www.daviddlewis.com/resources/testcollections/rcv1
http://www.cs.cmu.edu/ enron/
http://www.sigkdd.org/kddcup/index.php?section=2005&method=data
http://www.sigkdd.org/kddcup/index.php?section=2005&method=data

3044T Text Classification
text categorization, In CIKM’01: Proc. 10th ACM Int. Conf. on

Information and Knowledge Management, 2001, pp. 365–370.

6. Lewis D.D. Representation quality in text classification: An

introduction and experiment. In Proc. Workshop on Speech

and Natural Language, 1990, pp. 288–295.

7. Manning C.D., Raghavan P., and SchÜZe H. Introduction

To Information Retrieval. Cambridge University Press, 2007.

8. Mccallum A. and Nigam K. A comparison of event models for

naive bayes text classication. In Proc. AAAI-98 Workshop on

Learning for Text Categorization, 1998.

9. Peng F., Schuurmans D., and Wang S. Augmenting naive

bayes classifiers with statistical language models. Inf. Retr.,

7(3–4):317–345, 2004.

10. Rijsbergen C.V. Information Retrieval, 2nd edn. Butterworths,

London, 1979.

11. Sebastiani F. Machine learning in automated text categorization

ACM Comput. Surv., 34(1):1–47, 2002.

12. Shen D., Chen Z., Yang Q., Zeng H.-J., Zhang B., Lu Y.,

and Ma W.-Y. Web-page classification through summarization.

In Proc. 30th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2004, pp. 242–249.

13. Shen D., Sun J.-T., Yang Q., and Chen Z. A comparison of

implicit and explicit links for web page classification. In Proc.

15th Int. World Wide Web Conference, 2006, pp. 643–650.

14. Yang Y. An evaluation of statistical approaches to text cate-

gorization. Inf. Retr., 1(1–2):69–90,1999.

15. Yang Y. and Pedersen J.O. A comparative study on feature

selection in text categorization. In Proc. 14th Int. Conf. on

Machine Learning, 1997, pp. 412–420.
Text Classification

▶Text Categorization
Text Clustering

HUA LI

Microsoft Research Asia, Beijing, China

Definition
Text clustering is to automatically group textual docu-

ments (for example, documents in plain text, web pages,

emails and etc) into clusters based on their content

similarity. The problem of text clustering can be defined

as follows. Given a set of n documents noted asDS and a

pre-defined cluster number K (usually set by users),DS

is clustered into K document clustersDS1;DS2;:::;DSk ,

(i:e; fDS1;DS2;:::;DSkg ¼ DS) so that the documents

in a same document cluster are similar to one
another while documents from different clusters are

dissimilar [14].
Historical Background
Text clustering was initially developed to improve the

performance of search engines through pre-clustering

the entire corpus [2]. Text clustering later has also been

investigated as a post-retrieval document browsing

technique [1,2,7].
Foundations
Text clustering consists of several important compo-

nents including document representation, text cluster-

ing algorithms and performance measurements. The

readers should refer to [6,8,13] for more details.

Document Representation

The original representation of textual documents (like

plain texts, web pages, emails and etc) could not be

interpreted by text clustering algorithms directly. A

proper document representation method is necessary

for any text clustering algorithms. Vector Space Model

[6] is generally used to represent a document d as a

vector of term weights d ¼< w1;w2;:::;wjV j >; where

V is the set of terms (also named as features some-

times) that occur at least once in the document set DS.

Different representation approaches vary in two issues:

(i) different ways of understanding what a term is; (ii)

different ways of computing term weights. For issue

(i), a straightforward way is to identify terms with

words. This is often called either the set-of-words or

the bag-of-words approach to document representa-

tion, depending on whether weights are binary or not

[11]. Some previous work has found that representa-

tions more sophisticated than this are not significantly

more effective [5]. For issue (ii), the weight can be

binary (1 denoting the presence and 0 absence of the

term in the document) or non-binary. For the non-

binary value, it can be either the Term Frequency (TF)

of the term in a document or TFIDF as computed

according to the following equation where N(t, d)

is the number of the times the word t appears in

d, jDj is the size of the document corpus, nt ;D is

the number of documents in D containing the term t:

wt ¼ Nðt ; dÞ � logðjDj=nt ;DÞ
Cosine normalization is sometimes used to normalize

the document vectors [11]. It would depend on the

Text Clustering T 3045
text clustering algorithms to choose proper term

weight strategies.
Text Clustering Algorithms

Two categories can be used to organize all various

clustering algorithms (most of the general clustering

algorithms could be applied to text clustering tasks)

developed in the past a few years: hierarchical and

parititional approaches. The hierarchical algorithms

generate successive clusters in a nested sequence. The

partitional ones produce all clusters at one time.

In the following section, three popular cluster-

ing algorithms would be briefly introduced for read-

ers to get primary impressions of basic clustering

algorithms. Single-Link clustering [3] is one basic

approach among hierarchical clustering algorithms

category (http://en.wikipedia.org/wiki/Cluster_analy-

sis). K-Means clustering [9] is one of the typical parti-

tional algorithms which minimizes square error to

generate clusters. Co-clustering [4] is a graphic theory

based partitional clustering approach which is very

popular in recent years. For more clustering algo-

rithms, the readers can refer to [6].
T

Single-Link Clustering In the Single-Link clustering,

the distance between two clusters is defined as the

minimum of the distances of all linkages drawn from

the two clusters, where the linkage is the criterion to

determine the distance of pairs of patterns/points be-

tween two clusters while patterns/points are associated

with them. One shortcoming of the Single-Link clus-

tering is that it would suffer from a chaining effect [10]

which has a tendency to produce clusters that are

straggly or elongated [6].

The three main steps of Single-Link Clustering

algorithm are as follows [6]:

1. With each pattern/point in its own cluster, con-

struct a list of inter-pattern/point distances for all

distinctN ordered pairs of patterns/points, and sort

this list in ascending order.

2. Step through the sorted list of distances, forming

for each distinct dissimilarity value dk a graph on

the patterns where pairs of patterns closer than dk
are connected by a graph edge.

a If all the patterns are members of a connected

graph, stop.

b Otherwise, repeat 2.
3. The output of the algorithm is a nested hierarchy of

graphs which can be cut at a desired dissimilarity

level to form a clustering. The clusters would be

identified by simply connected components in the

corresponding graph.

K-Means Clustering K-Means clustering algorithm is

one of the simple but very efficient clustering algo-

rithms, which allows it to run through large datasets.

The main advantages of K-Means are (i) simplicity

and efficiency; (ii) does not yield the same result with

different run as the resulting clusters depend on the initial

random assignments. The main disadvantage is that as

it minimizes intra-cluster variance, K-means does not

ensure the result has a global minimum of variance

(http://en.wikipedia.org/wiki/Cluster_analysis).

K-Means algorithm is to cluster n objects (here

textual documents) based on attributes (the document

representation as vector space model) into K (K < n)

partitions. It assigns each object to the cluster which

has the nearest center. The center is defined as the

average of all the objects in the cluster, which starts

from a set of random initial centers. It assumes that the

object attributes form a vector space and the objective

for the algorithm to achieve is to minimize total intra-

cluster variance or, the squared error function (http://

en.wikipedia.org/wiki/Cluster_analysis):

V ¼
Xk
i¼1

X
xj2Si ðxj � miÞ2

where Si; i ¼ 1; 2;:::;k are K clusters and mi is the center
of cluster Si.

The main steps of K-Means clustering algorithm

are as follows [9]:

1. Setup the cluster number K;

2. Randomly generate K clusters and calculate the

cluster centers, or directly generate K random

points as cluster centers;

3. Assign each other points to the nearest cluster center;

4. Recalculate the new cluster centers after new points

are clustered into the clusters;

5. Repeat 3 and 4 until some convergence criterion is

met;

Co-Clustering In Co-Clustering method, the docu-

ment collection would be modeled as a bipartite

graph between document and words. That makes the

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Cluster_analysis

3046T Text Compression
clustering problem could be posed as a graph parti-

tioning problem. Then Co-Clustering is developed as a

spectral algorithm which could simultaneously yield a

clustering of documents and words based on this doc-

ument and word graph. The Co-Clustering algorithm

uses the second left and right singular vectors of an

appropriately scaled word-document matrix to yield

good bipartitionings [4].

Performance Measurements

There are generally two types of measurements used to

evaluate the performance of different text clustering

algorithms. One is internal quality measure and the

other is external quality measure. The authors of [12]

had made a thorough introduction of various clustering

algorithms measurements. The readers could refer to

their work for more details. Here a brief introduction

for both internal and external quality measurements

would be introduced in the following.

Internal Quality Measure The internal quality mea-

sure is used to compare different sets of clusters with-

out referring to external knowledge (like human

labeled/known classes/categories). One approach of

this kind of internal quality measurement is to calcu-

late the “overall similarity” based on the pair-wise

similarity of documents in a cluster [12].

External Quality Measure The external quality mea-

sure as naming is to leverage external knowledge as

known classes (categories) to make comparisons with

the generated clusters from the clustering algorithms.

Entropy [12] is one external measure which provides a

measure of “goodness” for un-nested clusters or for the

clusters at one level of a hierarchical clustering. F-

measure is another good example of external quality

measure, which is more oriented toward measuring the

effectiveness of a hierarchical clustering.

The readers should be aware that there are still

many other different quality measures than those

ones introduced here. The more important thing is

that the performance of different clustering algorithms

could vary substantially depending on which measure

is applied [12].

Key Applications
Text clustering has many applications, including search

results clustering, topic detection and tracking, email

clustering, and etc.
Cross-references
▶Document Clustering

▶ Information Retrieval

▶Text Classification

Recommended Reading
1. Croft W.B. Organizing and Searching Large Files of Documents.

Ph.D. Thesis, University of Cambridge, 1978.

2. Cutting D.R., Karger D.R., Pedersen J.O., and Tukey J.W. Scatter/

gather: a cluster-based approach to browsing large document

collections. In Proc. 15th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1992,

pp. 318–329.

3. DayW.H. and Edelsbrunner H. Efficient algorithms for agglom-

erative hierarchical clustering methods. J. Classification, 1:1–24,

1984.

4. Dhillon I.S. Co-clustering documents and words using bipartite

spectral graph partitioning, UT CS Technical Report #TR. De-

partment of Computer Sciences, University of Texas, Austin,

TX, 2001.

5. Dumais S., Platt J., Heckerman D. and Sahami M. Inductive

learning algorithms and representations for text categorization.

In Proc. 7th Int. Conf. on Information and Knowledge Manage-

ment, 1998, pp. 148–155.

6. Jain A.K., Murty M.N., and Flynn P.J. Data clustering: a review.

ACM Comput. Surv., 31(3):264–323, 1999.

7. Leouski A.V., and Croft W.B. An evaluation of techniques for

clustering search results. Technical Report IR-76. Department of

Computer Science, University of Massachusetts, Amherst, 1996.

8. Lewis D.D. Representation quality in text classification: an in-

troduction and experiment. In Proc. Workshop on Speech and

Natural Language, 1990, pp. 288–295.

9. MacQueen J.B. Some methods for classification and analysis

of multivariate observations. In Proc. 5th Berkeley Symp. on

Mathematical Statistics and Probability, 1967, pp. 281–297.

10. NAGY G. State of the art in pattern recognition. Proc. IEEE.,

56:836–862, 1968.

11. Sebastiani F. Machine learning in automated text categorization.

ACM Comput Surv., 34(1):147, 2002.

12. Steinbach M., Karypis G., and Kumar V. A comparison of docu-

ment clustering techniques. Technique Report, University of

Minnesota – Computer Science and Engineering, 2000.

13. van Rijsbergen C.J. Information Retrieval, 2nd edn. Butter-

worths, London, 1979.

14. Yoo I. and Hu X.H. A comprehensive comparison study of docu-

ment clustering for a biomedical distal library Medline. In Proc.

ACM/IEEE Joint Conf. on Digital Libraries, 2006, pp. 220–229.
Text Compression

PAOLO FERRAGINA, IGOR NITTO

University of Pisa, Pisa, Italy

Synonyms
Lossless data compression

Text Compression T 3047

T

Definition
Text Compression involves changing the representation

of a file so that the (binary) compressed output takes

less space to store, or less time to transmit, but still the

original file can be reconstructed exactly from its com-

pressed representation.

Key Points
The benefit of compressing texts in computer

applications is threefold: it reduces the amount of

memory to store a text, it reduces the time for trans-

mitting the text over a computer network and, re-

cently, it has been deployed to speed up algorithmic

computations because they can better exploit the

memory hierarchy available in modern PCs by reduc-

ing the disk access time, by increasing virtually the

bandwidth and size of disk (or memory, cache), and

by coming at a negligible cost because of the signifi-

cant speed of current CPUs.

A text in uncompressed format, also called raw or

plain text, is a sequence of symbols drawn from an

alphabet S and represented in dlog2jSje bits each. Text
compressors aim at storing a text in space less than its

raw encoding by exploiting the redundancies possibly

contained in it. Such redundancies might occur in the

form of repetitions or frequently occurring patterns,

which are not unlikely in texts generated by humans.

Text compression is a lossless process because it allows

restoring the original text from its compressed form by

means of a proper decompression algorithm. Most of

current approaches in text compression [4] can be

classified into: symbolwise, dictionary-based and trans-

form-based.

Symbolwise compressors encode the text one-

symbol at time, by emitting a (variable length) code-

word per individual symbol. They are further divided

into two sub-families: statistical and symbol-ranking.

Statistical compressors include some of the best com-

pressors currently known, like PPM and DMC. They rely

on two basic tools for the encoding task: a statistical

model of the text and a statistical encoder. The statisti-

cal model serves to predict the probability of the next

symbol given the previous portion of the text. If the

prediction is conditioned on the last k occurred sym-

bols, for some fixed constant k (typically ranging from

5 to 10), the model is said of order k. The model can be

static, semi-static, or dynamic, according to the way the

symbol probabilities are estimated from the scanning

of the input text. The static construction assumes a

fixed probability distribution for every input text. This
is the simplest form of model construction but, since

the model is independent of the input, it may poorly

predict its symbols. The semi-static construction

avoids this limitation by building the model via a

preliminary scan of the input text. Unfortunately, a

semi-static model must be passed to the decompressor

as a part of the compressed file, thus increasing its size.

As a result, statistical models are typically dynamic in

that they are constructed adaptively as the input text

is processed. This shares with the semi-static approach

the advantage of being tailored on the input, but it

additionally avoids the need of passing the model

to the decompressor. The probability distribution

provided by the model, whichever construction process

is adopted, is eventually passed to the statistical encoder

that determines the bit codeword associated to the next

symbol. The principle used by all statistical encoding

methods is to assign shorter codewords (even fraction

of bits) to most probable symbols in order to minimize

the average length of a codeword (this is typically called

the golden rule). This is the essence of Huffman and

Arithmetic encodings, also known as entropy encoders

for their dependence on the entropy of symbols fre-

quencies, a theoretical lower-bound on the number of

bits emitted by any statistical encoder. The concatena-

tion of all generated codewords gives the final com-

pressed file of a statistical compressor.

Symbol-ranking compressors are still based on sta-

tistical prediction but, rather than estimating the prob-

ability distribution of the next symbol, they maintain

the alphabet in a dynamic list, where symbols are

sorted by decreasing likelihood of occurrence. Each

symbol of the text is encoded with its rank in the list.

If the prediction process is accurate enough, the distri-

bution of ranks will be skewed around small values,

and the resulting sequence will be well compressible

through a statistical encoder. Symbol-ranking techni-

ques have been rarely used as “stand-alone” compres-

sion methods but, like the well-known Move-To-Front

(MTF) and Inversion Frequency encodings, they are

often employed as a fundamental stage of more sophis-

ticated compressors like the Wheeler-Burrows Trans-

form (BWT), below.

While symbolwise compressors can encode only

one symbol at a time, dictionary-based compressors

can represent a group of symbols with one unique

codeword. These compressors maintain a dictionary

of strings, called phrases, each one identified by a

distinct codeword. The input text is parsed into dictio-

nary phrases which are then replaced by their

3048T Text Data Mining
corresponding (shorter) codewords. As for statistical

models, dictionary construction schemes can also be

classified into static, semi-static and dynamic; but the

most significant difference is that, in the semi-static

case, deciding which phrases to include in the dictio-

nary is computationally difficult: in fact, computing

the dictionary that maximizes compression is an NP-

hard problem. An example of static dictionary is the

Run-Length-Encoding method (RLE), in which the

phrases are all possible runs of equal symbols, typically

adopted in FAX transmissions and as a fundamental

stage of the BWT-based compressors. An example of

semi-static dictionary is the Huffword compressor, in

which the dictionary is formed by all tokens extracted

from an input text and phrases are Huffman-encoded

according to their frequency of occurrence. Examples

of dynamic-dictionary methods are the well-known

LZ77 and LZ78 compressors which are implemented

in many commercial softwares like winzip, pkzip,

ARJ, the .GIF image format, etc..

The last class of compression algorithms consid-

ered is the one that transforms the input text in order

to make it easier to compress by simpler coding

schemes. The transformation must be reversible, loss-

less (e.g., a permutation of the input symbols), and

efficiently computable and invertible. One notable ex-

ample is the Burrows-Wheeler transform (BWT),

which can be built and inverted in time linear in the

length of the input text. The output of the BWT is a

string in which symbols following the same context are

grouped together, giving raise to clusters of nearly

identical symbols. This feature makes redundancy in

the input more accessible to simple coding schemes.

The famous compression utility bzip2, currently

available on most Linux distributions, is indeed based

on the BWT and uses a proper combination of MTF, RLE

and a statistical encoder to significantly squeeze the

BWT-output. Besides its usage in pure text compres-

sion, the BWT has three other remarkable properties: it

can be used to design a compression booster [1], that is,

a tool for improving the performance of other com-

pressors in a well-defined and measurable way; it can

be used to derive novel and powerful transform-based

compressors for various other data types [2,3], like

XML, dictionaries and graphs (just to cite a few); and

it is at the core of modern Compressed Full-text

Indexes [3], that is, compressed representations of

the input string which are efficiently searchable via

arbitrary patterns.
Cross-references
▶Data Compression in Sensor Networks

▶ Indexing Compressed Text

▶XML Compression
Recommended Reading
1. Ferragina P., Giancarlo R., Manzini G., Sciortino M. Boosting

textual compression in optimal linear time. J. ACM, 52(4):

688–713, 2005.

2. Ferragina P., Luccio F., Manzini G., Muthukrishnan S. Compres-

sing and searching XML data via two zips. In Proc. 15th Int.

World Wide Web Conference, 2006, pp. 751–760.

3. Navarro G., Mäkinen V. Compressed full-text indexes. ACM

Comput. Surv., 39(1), Article no. 2, 2007.

4. Salomon D., Data Compression: The Complete Reference,

4th edn., Springer, London 2007.
Text Data Mining

▶Data, Text, and Web Mining in Healthcare

▶Text Mining
Text Databases

▶Document Databases
Text Extraction

▶Biomedical Scientific Textual Data Types and

Processing
Text Generation

LI ZHANG
1, JIAN-TAO SUN

2

1Peking University, Beijing, China
2Microsoft Research Asia, Beijing, China

Synonyms
Natural language generation (NLG)

Text Generation. Figure 1. A classical architecture for

text generation.

Text Generation T 3049

T

Definition
Text generation is a subfield of natural language pro-

cessing. It leverages knowledge in computational lin-

guistics and artificial intelligence to automatically

generate natural language texts, which can satisfy cer-

tain communicative requirements.

Historical Background
Research work in the text generation field first

appeared in the 1970s. Goldman’s work on natural

language generation from a deep conceptual base

appeared in [2]. In the 1980s, more significant work

was contributed in this field: McDonald saw text gener-

ation as a decision making problem [6], Appelt on

language planning (1981), McKeown [8]. In the 1990s,

a generic architecture for text generation was discussed,

Reiter [10], Hovy [3]. Still today, variations on the

generic architecture is a still a widely discussed question,

Mellish et al. [9].

Foundations
Text Generation, or Natural language generation (NLG),

is usually compared with another subfield of natural

language processing – natural language understanding

(NLU), which is generally considered as the inverse

process of the former. Because in a highly abstract level,

NLG task synthesizes machine representation of infor-

mation into natural language texts, while NLU task

parses and maps natural language texts into machine

representations. However, upon inspection at a more

concrete level, they can hardly be seen as “opposite,”

because they are very different in problem sets, and by

internal representations.

Text Generation System Architecture

Input and Output The input of text generation system

is information represented in non-linguistic format,

such as numerical, symbolical, graphical, etc. The out-

put is understandable natural language in text format,

such as messages, documents, reports, etc.

Architectures

The Generic Architecture Despite difference in ap-

plication backgrounds and realization details, many of

the current text generation systems followed a general

architecture, which is known as the Pipelined Architec-

ture or Consensus Architecture, usually described as in

Fig. 1([11]; Edward Hovy also had a similar represen-

tation for this architecture).
As seen in the Fig. 1, the “Pipelined Architecture”

describes a general strategy of tackling text generation

problem from macro to micro, from inner struc-

ture organization to outer surface realization. Thus,

language components such as paragraphs, sentences,

and words will be coherently arranged together to meet

certain communicative requirements.

The following are the detailed descriptions of the

above stages:

Stage 1: Document Planning

Also known as Text Planning, Discourse Planning

or Macro Planning). This includes:

� Content determination: Also know as content se-

lection and organization, which is to discover and

determine the major topics the text should cover,

given a set of communicative goals and representa-

tions of information or knowledge.

� Document structuring: Determining the overall

structure of the text/document. This structure cate-

gorizes and organizes sentence-leveled language

components into clusters. The relationship

3050T Text Generation
between different components inside a cluster can

be explanatory, descriptive, comparative, causal,

sequential, etc.

Stage 2: Micro Planning

Also know as Sentence Planning. This is to convert a

document plan into a sequence of sentence or phrase

specifications, including:

� Aggregation: To combine several linguistic struc-

tures (e.g., sentences, paragraphs) into a single

and coherent structure. An example: Tomorrow

will be cold. Tomorrow will be windy.
!Tomorrow will be cold and windy.
� Lexicalization: To choose appropriate words from

possible lexicalizations based on the communica-

tive background. Examples: (i) buy, purchase, take,

etc, (ii) a lot of, large amounts of, etc.

� Referring expression generation: To choose or in-

troduce different means of reference for sentences,

such as pronouns (pronominalization). There is

usually more than one way to identify a specific

object, for example: “Shakespeare, ” “the poet and

playwright, ” “the Englishman, ”and “he/him” can

all point to the same object. Example: Andrew

wanted to sing at the birthday party.
!He wanted to sing at the birthday party.

!The boy wanted to sing at the birthday party.
Stage 3: Surface realization

Also know as Speech Synthesis. This is to finally syn-

thesize the text according the text specifications made

in the previous stages.

� Structure realization: To mark up the text’s surface

structure, such as an empty line, or the boundaries

between paragraphs, etc.

� Linguistic realization: To smooth the text by insert-

ing function words, reorder word sequences, and

select appropriate inflections and tenses of words, etc.

Other Architectures: Although the Pipelined Archi-

tecture provides a considerably articulate routine for

text generation, it also provides predetermined restric-

tions for each stage in the process. Thus, the flexibility

it can provide is limited, and is especially true for those

sub-tasks in micro planning and surface realization

stages. For example, the need for lexical selection can

happen at any stage of the process. Thus, variations of

the generic architecture and other methodologies have
been discussed by many researchers (a recent discus-

sion, Chris Mellish et al. [9]).
Key Applications
1. Routine documentation or information genera-

tion: examples of information are weather forecast

descriptions, transportation schedules, accounting

spreadsheets, expert system knowledge bases, etc.

Examples of documentation are technical reports

and manuals, business letters, medical records,

doctor prescriptions, etc.

2. Literary writing: such as stories, poems, lyrics, cou-

plets, etc. (Chinese couplet writer: generating a

couplet sentence according to a given one. http://

duilian.msra.cn).
Cross-references
▶Text Summarization

▶Text Representation

▶Text Normalization

▶Text Segmentation

▶Text Analytics

▶Text semantic Explanation
Recommended Reading
1. Dale R. Introduction to the special issue on natural language

generation. Comput. Linguistics, 24 (3):346–353, 1998.

2. Goldman N.M. Computer Generation of Natural Language

from a Deep Conceptual Base. Ph.D. thesis, Stanford University,

CA, 1974.

3. Hovy E.H. Language generation, Chapter 4. In Survey of the

State of the Art in Human Language Technology, G.B.Varile, A.

Zampolli (eds.). Cambridge University Press, Cambridge, 1997,

pp. 139–163.

4. Hovy E.H. Natural language generation. Entry for MIT Encyclo-

pedia of Computer Science. MIT Press, Cambridge, MA, 1998,

pp.585–588

5. Hovy E.H. Language generation. Entry for Encyclopedia of

Cognitive Science, article 86. McMillan, London, 2000.

6. McDonald D.D. Natural Language Production as a Process of

Decision Making Under Constraint. Ph.D. thesis, MIT Artificial

Intelligence Laboratory, Cambridge, MA, 1980.

7. McDonald D.D. 1Natural language generation, Chapter 7. In

Handbook of Natural Language Processing, Dale, R. H.

Moisl, H. (eds.). Somers Marcel Dekker, New York, NY, 2000,

pp. 147–180.

8. McKeown K.R. Text Generation: Using Discourse Strategies

and Focus Constraints to Generate Natural Language Text.

Cambridge University Press, Cambridge, 1985.

9. Mellish C, et al. A reference architecture for natural language

generation systems. Nat. Lang. Eng., 12(1):1–34, 2006.

http://duilian.msra.cn
http://duilian.msra.cn

Text Index Compression T 3051
10. Reiter E. Has a consensus NL generation architecture appeared

and is it psycholinguistically plausible? In Proc. 7th Int. Conf. on

Natural Language Generation, 1994, pp. 163–170.

11. Reiter E. and Dale R. Building Natural Language Generation

Systems. Cambridge University Press, Cambridge, 2000.
Text Index Compression

GONZALO NAVARRO

University of Chile, Santiago, Chile

Synonyms
Inverted index; List; File compression
T

Definition
Text index compression is the problem of designing a

reduced-space data structure that provides fast search of

a text collection, seen as a set of documents. In Infor-

mation Retrieval (IR) the searches to support are usually

for whole words or phrases, either to retrieve the list

of all documents where they appear (full-text searching)

or to retrieve a ranked list of the documents where

those words or phrases are most relevant according to

some criterion (relevance ranking). As inverted indexes

(sometimes also called inverted lists or inverted files)

are by far the most popular type of text index in IR,

this entry focuses on different techniques to compress

inverted indexes, depending on whether they are orien-

ted to full-text searching or to relevance ranking.

Historical Background
Text indexing techniques have been known at least

since the 1960’s (see, for example, the book Automatic

Information Organization and Retrieval, 1968, by

Gerard Salton, one of the pioneers in the area). Initially

departing from the analog manual indexing process,

where a short list of keywords was associated to each

document from a collection, the increase in computa-

tional and storage capabilities quickly led to the so-

called “full-text model”, where every text word would

be searchable (except for a few so-called “stopwords”,

which are too frequent and do not carry any meaning

nor discriminative power, e.g., articles and preposi-

tions). The so-called “inverted indexes” (or inverted

lists, or inverted files), which are also modeled upon the

traditional inverted index found at the end of books,
have been since then the canonical model for indexing

text collections. Most of the indexes used nowadays in

Information Retrieval (IR) are variants of the inverted

index. These mainly differ depending on the precise

type of task that is to be carried out: Sometimes the

application needs to find all the documents (and even

exact positions within them) where some search terms

appear; sometimes only a few “good” documents are

wanted because the end user is a human.

Depending on the type of inverted index, it might

take as little as 10% of extra space over the text size, or as

much as 100% and even more. Nowadays the space, at

least in secondary storage media, is extremely cheap and

virtually unlimited. However, there are also extremely

large text collections (for example the Web) where pay-

ing a significant amount of extra space for the index is

not irrelevant. However, the most compelling reason to

reduce the index size is the large gaps in the memory

hierarchy: It is several orders of magnitude faster to

transfer data from the main memory than from second-

ary storage. Hence, a reduction in space translates into

an almost proportional increase in throughput at query

processing, as the extra processing time for decompres-

sion is almost negligible. In networked environments,

which are also becoming common to cope with the large

demands in storage space and processing power, the

same considerations apply with respect to network

transfer time. For decades, CPU speeds have been

increasing at an exponential rate, whereas disk speeds

have not improvedmuch.Moreover, newmemory levels

(caches) have appeared between the CPU and the main

computer memory. This has only made it more and

more attractive to design text indexes that fit in little

space, even at the expense of needingmore sophisticated

decompression mechanisms. See [14,15] for a recent

exhaustive coverage of the topic.

Foundations
An inverted index is formed by two main parts:

1. Vocabulary. Is the set of all the different words in the

collection. The definition of what is a word may

depend on the application. Not only does it involve

delimiting them, but also determining which nor-

malization processes will be carried out on them,

e.g., upper/lower case conversion, removal of stop-

words, stemming, etc. Once defined, the word

becomes the unit of retrieval: one can search for

words or for sequences of words (phrases), but not

3052T Text Index Compression
for, say, a part of the word (although there are some

exceptions in text retrieval systems offering extend-

ed functionalities which are not covered here,

see e.g., [3]).

2. Postings. Is a list of “occurrences” of each vocabu-

lary word in the collection. Depending on the ap-

plication, the index might store the list of

document identifiers where the word appears, or

the list of exact positions (byte offsets or word

offsets), or the list of document identifiers plus a

“weight” associated to it, which computes accord-

ing to some formula the importance of the word in

that document, or the list of word positions plus

data on the field where the word appears, or even

color or font size of each occurrence.

For concreteness, this entry will assume that a policy

for defining and normalizing words has been fixed, and

will focus on the two most important type of posting

lists: one storing exact word positions within docu-

ments (useful for full-text retrieval), and another stor-

ing document identifiers and weights (useful for

relevance ranking). Because of the different processing

needs, these lists might be stored in different orders.

This is relevant because ordering is the key to inverted

list compression.

A widely accepted statistical rule in IR [6] estab-

lishes that the vocabulary grows sublinearly with the

collection size, more precisely as v = O(nb) for some

0 < b < 1 that depends on the collection. Different

experiments show that b is actually around 0.5 [3],

which means in practice that, even for very large col-

lections, it is feasible to maintain the vocabulary in the

main memory of the computer. For this reason, most

of the efforts in index compression have focused on

compressing the postings.
Inverted Indexes for Full-Text Retrieval

In full-text retrieval, queries are words or phrases and

the task is to find all the documents where the word

or phrase appears, possibly giving also the position(s)

of the occurrences within each retrieved document.

The most convenient index organization for word

queries is a scheme storing basically all the answers to

all the v possible queries: For each vocabulary word,

the list of all the documents where it appears is stored

in increasing order of document identifier. If exact

occurrence positions are desired, and one does not

want to sequentially scan the retrieved documents in
order to find them, then the index must also store all

the occurrence positions of each word within each

document, also in increasing order. Because of the

other types of queries that are usually necessary to

support, it is usually advantageous to store the list of

document identifiers contiguously and separated from

the list of positions, so that the document identifiers

alone can be retrieved with fewer disk accesses.

The important point is that the postings consist of

lists of increasing numbers (document identifiers or

occurrence positions). Moreover, for word queries,

those lists are accessed from the beginning to the end.

An obvious idea is to encode the differences between

consecutive entries in the list. The longer the list, the

smallest the differences between consecutive values.

Because the number of occurrences of vocabulary

words is usually highly skewed [3] (following a Zipf–

Mandelbrot distribution [8]), there will be very long

(and thus very compressible) lists and many short lists,

where the long lists will contain a significant fraction of

the whole data. Hence, a technique that represents

those differences in a way that smaller numbers use a

shorter representation should achieve compression.

This requires that a different amount of bits is used

to represent different numbers, as opposed to the clas-

sical data representation where a fixed number of bits is

allocated for every possible number.

A first idea would be to use exactly the bits that the

number uses, for example the binary representation of

9 is 10012, and hence one would like to represent it

using 4 bits. The problem, of course, is that one cannot

decode the individual numbers from the concatena-

tion of their representations if one uses this method.

For example, 10011101 could be 9,1,5 or 9,13. A large

part of the research in inverted index compression

refers to the design of self-delimiting codes, which

(i) can be uniquely decoded from the concatenation

of the codes, (ii) give shorter codes to smaller numbers,

(iii) preferably can be efficiently decoded.

Several self-delimiting coding schemes are de-

scribed in the book Managing Gigabytes [14], one

of the best references on text index compression. Let

x> 0 be a number to encode and jxj the number of bits

needed to code it (i.e., the highest bit set in the binary

representation of x is at position jxj). Some of the most

famous codes are described next.

1. Elias’ g-code emits jxj� 1 0’s followed by the

jxj bits representing x. For example, the code for

Text Index Compression T 3053

T

x = 23 = 101112 is 0000 10111 (which are here

artificially separated in two parts). To decode the

first number from a bit stream, one finds the next 1,

and if one skipped ‘ � 1 0’s before it, on reads the

next ‘ bits starting from that 1. Those ‘ bits form x.

This works because the representation of x always

starts with a 1 (i.e., its most significant bit). Elias’ g
representation of x takes 2jxj� 1 = 1 + 2blog2xc
bits. The representations of the first numbers are as

follows: 1 = 12! 1, 2 = 102! 010, 3 = 112! 011,

4 = 1002! 00100,...

2. Elias’ d-code first codes jxj using Elias’ g-code, and
then emits the jxj� 1 least significant bits of x (as

one knows that the most significant bit is a 1). For

example, the code for x = 23 = 101112, jxj = 5 =

1012, is 00 101 0111. The length of the d-code of x is
2jjxjj� 1 + jxj� 1 = 1 + 2blog2(1 + blog2xc)c +
blog2xc. These codes are theoretically appealing be-

cause the space they require is log2 x + O(log log x),

which is asymptotically the same as just writing x.

For example, it is not hard to prove that, using this

scheme to encode all the word offsets of the occur-

rences, the whole index needs nH0 + O(n log log n)

bits, where n is the number of words in the text

collection and H0 is its zero-order entropy seen as a

sequence of words [9]. Thus the space is similar to

that obtained when compressing the text using a

good word-based zero-order compressor [4].

3. Rice codes are parameterized by a value r. The

lowest r bits of x are represented in binary form

(even if jxj < r), preceded by the unary representa-

tion of bx ∕ 2rc. A different r value (the one yielding

least space) can be chosen for each inverted list. An

extension are Golomb codes, where instead of the

quotient and remainder of the division by 2r, any

divisor d can be used. These are usually reported to

achieve the least space consumption [14].

There are many other self-delimiting codes, such as

Fibonacci codes [7], variable-byte codes [13], Dense

codes [4], Simple codes [2], and many others. Some

tradea slight loss in space for a largegain indecoding time.
Searching for Phrases Using Inverted Indexes

The described encodings of inverted lists must be

decoded from the beginning, which as explained is

appropriate to answer queries consisting of a single

word. Phrase queries, however, are more complicated

to deal with. If the index stores only document
identifiers, all it can do is to intersect the list of

documents of the different words, and then it is neces-

sary to sequentially search the candidate documents

for the exact phrases. If the index, instead, stores oc-

currence positions, it can look for the consecutive

occurrences of the involved words within the same

document. (This is especially convenient if the index

stores word offsets rather than byte offsets of occur-

rences. Storing byte offsets, on the other hand, is more

convenient to highlight the occurrences in the text.)

In both cases, a list intersection-like capability is

necessary. Incidentally, note that another popular op-

eration in inverted indexes is the conjunctive query,

that is, find the documents where all the query words

appear. Those are obviously solved by intersecting the

lists of document identifiers as explained. Disjunctive

queries (find the documents where some of the words

appear) are solved by merging lists of document iden-

tifiers. Although there is not an especially clever way

of merging lists other than traversing them all sequen-

tially, much research has been done on the problem

of efficiently intersection increasing lists of numbers.

Although sequential intersection is an option as well,

one can do better when one list is much shorter than

the other, as it is frequently the case of the highly

skewed length distributions that arise in natural lan-

guage text collections [8].

Describing those techniques is not in the scope of this

entry. A recent example of this research, which indeed

takes compression into account, can be seen in [12]. In

all cases the main idea is that one can search the longer

list for the elements in the shorter list. This implies that

some degree of random access is necessary in the

encoded lists. For this sake, the natural choice [14] is to

insert some absolute list values at regular intervals in the

compressed list data, so that the search can be first

carried out on those sampled values and only one

chunk between consecutive samples must be decom-

pressed. There is also some recent research on how

those absolute values should be physically organized

[5], as it turns out to be more convenient to store all

the samples in contiguous form.

Note that, independently of the encoding tech-

nique used, the success of the compression depends

on what is indexed. If one indexes the occurrences of all

the text words, the space used by the index will be at

best around 40% of that of the original (uncom-

pressed) text, which can be reduced to around 20%

by removing the stopwords. If only document

3054T Text Index Compression
identifiers are recorded, the space can be typically

10–20% depending on the size of the documents.

A technique to achieve even less space, at the expense

of higher time to solve queries, is called block addres-

sing [10]. The idea is to cut the text into blocks, so that

the index stores the blocks where each word appears.

The index is used to filter out some blocks upon

queries, and the others have to be sequentially tra-

versed. Hence, the block size yields a space/time trade-

off, where reasonable performance on moderate-sized

collections can be achieved with as little as 5% of index

space overhead.

Finally, it is interesting to mention that there exist

compressed indexes for what is (also) called “full-text

searching”, in the sense that the text is seen as a se-

quence of symbols and the index is able of retrieving

any text substring (not only words or phrases) [9].

Those indexes were classically much larger than the

text, and recent developments have shown that they

can be compressed to sizes competitive to those of

inverted indexes for word and phrase retrieval. Their

search times are still larger than those for inverted

indexes, although research is being carried out on

applying them over a text regarded as a sequence of

words (not letters). In this case they can also search

only for words and phrases, but their space becomes

even better than using inverted indexes, and perfor-

mance for phrase searching is competitive.

Inverted Indexes for Relevance Ranking

Inverted indexes are also used to rank documents by

“relevance” to a given query, so as to return a small set

of those ranking higher. There are many formulas for

computing relevance [3], yet the most popular ones

build on two components: one is the term frequency

tfw,d, which is the number of times word w appears in

document d, and the other is the inverse document

frequency idfw , which is the logarithm of the inverse

of the fraction of the documents where wordw appears.

Note that, while idfw is just one value per vocabulary

word (and hence easy to maintain in main memory

with the vocabulary), there is one tfw, d value per

entry in the inverted index: For each word, the index

stores the documents where it appears and the asso-

ciated term frequency for each.

Because the relevance formula gives more weight to

terms with higher term frequency, it is sensible to store

the document identifiers of each word by decreasing
term frequency value, rather than by increasing docu-

ment identifier. This enables efficient algorithms that

examine only a short prefix of the inverted lists [11].

The problem is that, although the decreasing term

frequencies can be stored differentially, this is not

possible anymore with the document identifiers

accompanying them. Fortunately, because of Zipf–

Mandelbrot law [8], it turns out that many of the

term frequencies are small values, and therefore there

are long runs of equal term frequencies, especially at

the tail of the lists. Within those runs, one can still

reorder the documents by increasing document iden-

tifier and encode them differentially. Recently, it has

been shown that reducing the precision of the exact

term frequency values is not only advantageous for

compression purposes (which is obvious) but also

for retrieval effectiveness [1].

Key Applications
Any application managing natural language text col-

lections that have to be searched, and which are mas-

sive enough to discard sequential search as a solution,

needs some kind of index. Index compression not only

saves space, but more importantly, disk and network

transfer time. A canonical example application areWeb

search engines.

Future Directions
Inverted index technology, even including compres-

sion, is rather mature. Still, it faces enormous efficiency

challenges, especially those coming from Web search

engines. The most active research fields related to

inverted index compression are on encodings that per-

mit fast decoding (e.g., [2]), and the interactions be-

tween information discarded to boost compression and

the resulting retrieval quality of the index (e.g., [1]).

The possibility of applying “true full-text indexes” [9]

to natural language text is also extremely interesting,

as it brings in radically new compression methods as

well as algorithms for solving phrase queries. Yet,

this trend is rather preliminary, and much research is

needed to compete with inverted indexes in secondary

memory scenarios.

Other challenges in inverted indexes, only mildly

related to compression, are distributed indexes (how to

split the collection and/or the indexes across multiple

machines to boost performance), dynamic indexes

(how to efficiently update the index when the

Text Indexing and Retrieval T 3055
collection changes), and extensions (how to cope with

more complex queries, for example allowing approxi-

mate searches).
Experimental Results
Experiments can be found in the most recent cited

papers, as most of them are of practical nature.
URL to Code
Probably the best known public domain implementa-

tion of compressed indexes was theMG System (http://

www.cs.mu.oz.au/mg), closely related to the book

Managing Gigabytes [14]. This system is now almost

10 years old, and is being replaced by its successor,

Zettair (http://www.seg.rmit.edu.au/zettair).
Cross-references
▶ Inverted Indexes
T

Recommended Reading
1. Anh V. and Moffat A. Simplified similarity scoring using term

ranks. In Proc. 31st Annual Int. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 2005, pp. 226–233.

2. Anh V. and Moffat A. Improved word-aligned binary compres-

sion for text indexing., IEEE Trans. Knowl. Data Eng., 18(6):

857–861, 2006.

3. Baeza-Yates R. and Ribeiro-Neto B. Modern Information Re-

trieval. Addison-Wesley, Reading, MA, 1999.

4. Brisaboa N., Fariña A., Navarro G., and Paramá J. Lightweight

natural language text compression., Inf. Retriev., 10:1–33, 2007.

5. Culpepper S. and Moffat A. Compact set representation for

information retrieval. In Proc. 14th Int. Symp. String Processing

and Information Retrieval, 2007, pp. 137–148.

6. Heaps H. Information Retrieval – Computational and Theoreti-

cal Aspects. Academic Press, New York, 1978.

7. Kautz W. Fibonacci codes for synchronization control. IEEE

Trans. Inf. Theor., 11:284–292, 1965.

8. Mandelbrot B. An informational theory of the statistical struc-

ture of language. In Proc. Symp. on Applications of Communi-

cation Theory, 1952, pp. 486–500.

9. Navarro G. and Mäkinen V. Compressed full-text indexes. ACM

Comput. Surv., 39(1):article 2, 2007.

10. Navarro G., Moura E., Neubert M., Ziviani N., and Baeza-

Yates R. Adding compression to block addressing inverted

indexes.. Inf. Retriev., 3(1):49–77, 2000.

11. Persin M., Zobel J., and Sacks-Davis R. Filtered document re-

trieval with frequency-sorted indexes. J. Am. Soc. Inf. Sci., 47

(10):749–764, 1996.

12. Sanders P. and Transier F. Intersection in integer inverted

indices. In Proc. Workshop on Algorithm Engineering and

Experiments, 2007.
13. Scholer F., Williams H., Yiannis J., and Zobel J. Compression of

inverted indexes for fast query evaluation. In Proc. 25th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2002, pp. 222–229.

14. Witten I., Moffat A., and Bell T. Managing Gigabytes. 2nd edn.

Van Nostrand Reinhold, New York, 1999.

15. Zobel J. and Moffat A. Inverted files for text search engines.

ACM Comput. Surv., 38(2), 2006.
Text Indexing and Retrieval

HAODA HUANG, BENYU ZHANG

Microsoft Research Asia, Beijing, China

Synonyms
Document index and retrieval

Definition
Text indexing is a preprocessing step for text retrieval.

During the text indexing process, texts are collected,

parsed and stored to facilitate fast and accurate text

retrieval. Text retrieval (also called document retrieval)

is a branch of information retrieval in which the infor-

mation is stored primarily in the form of text. Text

retrieval is defined as the matching of some stated

user query against a set of texts. As the result of text

retrieval, texts are ranked and presented to the user

according to their relevance with user query. User

queries can range from a few words to multi-sentence

full descriptions, which represent the user’s informa-

tion need.

Historical Background
Text indexing is the most fundamental part of a

retrieval system. Over the past two decades, the corpus

size of typical retrieval system has increased dramati-

cally. The Text REtrieval Conference (TREC) (http://

trec.nist.gov/) that started in 1992 only provides docu-

ment collection consisting of less than 1 million texts

in the 1990s. Today, the largest TREC test collection,

named GOV2, is a 2004 crawl of the.gov top-level

domain. GOV2 consists of approximately 25 million

web pages (428GB of text). Moreover, a web search

engine is believed to have far more items in its index.

For example, in 2005, Yahoo claimed to have more

than 20 billion items in its index, which is several

http://www.cs.mu.oz.au/mg
http://www.cs.mu.oz.au/mg
http://www.seg.rmit.edu.au/zettair
http://trec.nist.gov/
http://trec.nist.gov/

3056T Text Indexing and Retrieval
orders larger than GOV2. The retrieval system is often

required to return relevant document/text for a user

query in a few seconds. Without an index, it is impos-

sible for a retrieval system to achieve this task.

There are many indexing techniques. Among them,

inverted index, suffix array, and signature are three

typical examples. Signature files were popular in the

1980s, but since this scheme is inferior to inverted files

in terms of speed, size and functionality, it is used less

nowadays. Suffix trees are faster for phrase searches,

but they are not easy to build and maintain. Finally,

due to its simplicity and efficiency, inverted index

is currently the most popular indexing scheme and is

used for many applications.

Text retrieval is the core part of a retrieval sys-

tem. There have been several decades of research on

text retrieval, which has resulted in a fruitful range

of beautiful, effective text retrieval models, such as

Boolean model, vector model, and probabilistic model.

The Boolean model is one of the earliest models.

Despite its simplicity, the Boolean retrieval model

was popular among many large commercial informa-

tion providers until the early 1990s. A noticeable ad-

vantage of the Boolean model is that in Boolean

models, queries are represented in the form of a

Boolean expression of terms, that is, an expression in

which terms are combined with the operators AND,

OR, and NOT. Many users prefer the Boolean query

model because Boolean queries are precise and offer

users greater control and transparency over the re-

trieved text. But the Boolean model also suffers from

some major drawbacks. For example, the Boolean

model judges a document to be either relevant or

non-relevant in respect to a given query without any

notion of grading scale, which does not achieve good

performance in practice.

Different from the Boolean model, the vector

model largely uses free text queries, which consist of

one or more words but do not use operators to build

up the query expressions. Query and documents are

presented as a weighted vector over a fixed dictionary,

and the documents are ranked by their Cos similarity

with query. The vector model is better than Boolean

model in that it is able to deal with cases in which

documents only partially match the query. The famous

tf-idf scheme for the vector model is very influential in

the research of text retrieval.

Besides the simple Boolean model and vector

model, probabilistic models have achieved great
success regarding the text retrieval task. Probabilistic

models are mainly guided by Probability Ranking Pri-

nciple (PRP): “If a reference retrieval system’s response

to each request is a ranking of the documents in

the collection in order of decreasing probability of

relevance to the user who submitted the request,

where the probabilities are estimated as accurately as

possible on the basis of whatever data have been made

available to the system for this purpose, the overall

effectiveness of the system to its user will be the best

that is obtainable on the basis of those data.”

The Binary Independence Retrieval (BIR) model

is one of the earliest probabilistic models for text

retrieval. The model has other names, such as the

Okapi model and the classical probabilistic model.

Similar to the Boolean model, the BIR model docu-

ments are represented as binary vectors indexed over a

fixed vocabulary. The representation ignores the num-

ber of times the term occurs, and is only able to

capture whether or not a term occurs in a document.

The 2-Poisson model was proposed to overcome this

limitation. Under this model, documents are repre-

sented as vectors of term frequencies. Probabilistic

models are not only solid from theoretical perspective,

but also perform well in practice. An empirical, hand-

crafted approximation of the 2-Poisson model, called

BM25, showed good performance over many data

collections. It was first introduced at TREC in 1995,

and is still a strong baseline for current text retrieval

research.

The probabilistic language model, which was first

applied to speech recognition and machine translation,

has also been successfully applied to information

retrieval in 1998 [4]. Since then, research to improving

the language model has been an active area. Also,

the probabilistic language model is a state-of-the-art

text retrieval models for its robust, highly effective

performance in the practice.

In all these models, documents are represented as a

bag of words, where the exact ordering of the terms in

a document is ignored but the number of occurrences

of each term is material.

There are other models that go beyond the bag

of words assumption, such as the Markov Random

Field model, n-Gram language models, and the Indri

Inference network model. The Markov Random Field

model [2,3] for information retrieval, which was

proposed in 2005 and improved in 2007, is demon-

strated to be consistently and significantly better than

Text Indexing and Retrieval T 3057

T

probabilistic language model in several document

collections, which shows that it is beneficial to incor-

porate dependency and features into text retrieval

model.

Foundations
Among many text indexing schemes, the inverted

index is the most popular. It could well support

bag of words based text retrieval methods, like the

tf-idf vector model, the BM25 model, and probabili-

stic language model. The process of building an

inverted index is briefly described here. The major

steps include:

1. Collecting the interested texts to form the text

collection. For example, if the interested texts are

the web pages on the internet, web pages should

be crawled to form the text collection.

2. Tokenizing the text, which turns each document

into a list of tokens. Generally, a text is represented

as a continuous character stream. In this step, text

is parsed and segmented into terms, digits, and

email address and punctuations, such as “,”, “.”, “!”,

“?” and “-”, are removed.

3. Doing linguistic preprocessing, which typically

includes removing stemming and stop words, and

then producing a list of indexing terms. Stemming

refers to the process of reducing terms to their

stems or root variants. For example, “computer,”

“computing,” “compute” are reduced to “comput.”

For English, the most popular stemmer is Martin

Porter’s stemming algorithm. Stop words removal

eliminates stop words from the documents. Com-

mon stop words include “a,” “the,” “of,” “is” etc.

4. Creating the inverted index, whichmainly consists of

a dictionary and postings. The dictionary includes

all the terms and the number of times they appear in

the text collection. The postings include the text in

which the terms appear. Thus the postings of a query

could be obtained through the intersection operator

of the query terms’ postings.

With the support of the inverted index, many

text retrieval models could be implemented efficiently.

Here, the tf-idf vector model and probabilistic lan-

guage model are taken as examples:

In the tf-idf vector model, either the query or

document is represented as the weighted vector, with

each component calculated as the product of term

frequency (TF) and inverse document frequency
(IDF) of the corresponding term. Term frequency is

the number of times the term appears in a query or a

document. The inverse document frequency of the

term t is defined as

idf ðtÞ ¼ log
N

nt

� �

where N is the total number of texts in the

collection and nt is the number of documents

with term t. The query vector is represented as

q ¼ ðtfaðt1Þ � idf ðt1Þ; tfaðt2Þ � idf ðt2Þ;:::; tfaðtnÞ � idf ðtnÞÞ,
and the document vector is represented as

d ¼ ðtfdðt1Þ � idf ðt1Þ; tfdðt2Þ � idf ðt2Þ;:::; tfdðtnÞ � idf ðtnÞÞ.
Then, documents are ranked by their Cos similarity

with the query. The Cos similarity between the query

and document is calculated as below:

simðq; dÞ ¼
Pn

i¼1 qi � diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 q

2
i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 d

2
i

q

The TF and IDF together discriminate along two

dimensions – informativeness (IDF) and aboutness

(TF). The IDF component is used to discriminate

between informative and non-informative query terms.

Terms with high IDF occur rarely in the collection,

and thus are considered more informative. The incor-

poration of TF component is based on the intuition

that documents that contain more mentions of a term

are more “about” this term.

The probabilistic language model for information

retrieval is based upon the idea that a document is a

good match to a query if the document model is likely

to generate the query. Therefore, language model

documents are ranked by query generation probability

pðq dj Þ. There are several variant realizations for the

language model. Among them, the query likelihood

model [4] is the original and basic method for using

language models in IR. The most common way to

evaluate query generation probability pðq dj Þ is using
the multinomial unigram language model. Under this

model, pðq dj Þ is approximated as

pðq dj Þ ¼
Y
w2q

pðw dj Þ

Due to the data sparseness, the generation probability of

query term absent in the document will be zero. Gener-

ally a smoothing technique is applied to overcome this

problem. Please refer [6] for more details.

3058T Text Indexing Techniques
Key Applications
Text retrieval has many applications. It is used in digi-

tal libraries to help people quickly find desired books

or articles. It could also be used in desktop search

to help people instantly find documents, such as

e-mail or other files, in a computer. Moreover, it is

the fundamental basis of all internet search engines.

Future Directions
Most past research on text retrieval is based on the

bag of words assumption, which has resulted in very

fruitful models. These models have achieved rather

good performance in the past, but appear to have

reached a plateau; thus, their improvement has dwin-

dled for several years. Recently, some text retrieval

models (for example, Markov Random Field model

for information retrieval) have tried to go beyond the

bag of words assumption, and have achieved consistent

and significant improvement. This indicates that it

would be beneficial to incorporate dependency and

features of documents into the text retrieval model;

thus, more dedicated models may be developed in the

future to improve retrieval performance further.

Data Sets
For testing the effectiveness of text indexing and retri-

eval strategies, TREC text datasets (http://trec.nist.gov/)

are commonly used in the research community.
Cross-references
▶ Indexing

▶ Information Retrieval

▶ Inverse Document Frequency

▶Term Frequency

Recommended Reading
1. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval. Cambridge University Press, Cambridge,

MA, 2008.

2. Metzler D. and Croft W.B. A Markov random field model for

term dependencies. In Proc. 31st Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 2005,

pp. 472–479.

3. Metzler D.A. Beyond bags of words: effectively modeling

dependence and features in information retrieval, Ph.D. thesis,

University of Massachussetts, 2007.

4. Ponte J. and Croft W.B. A language modeling approach to

information retrieval. In Proc. 21st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1998, pp. 275–281.
5. Ricardo B.-Y. and Berthier R.-N. Modern Information Retrieval.

Addison Wesley Longman, New York, NY, 1999.

6. Zhai C. and Lafferty J. A study of smoothing methods

for language models applied to ad hoc information retrieval.

In Proc. 24th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2001, pp. 334–342.
Text Indexing Techniques

EDLENO SILVA DE MOURA

Federal University of Amazonas, Manaus, Brazil

Definition
Text indexing is the act of processing a text in order

to extract statistics considered important for represent-

ing the information available and/or to allow fast

search on its content. Text indexing operations can be

performed not only on natural language texts, but

virtually on any type of textual information, such as

source code of computer programs, DNA or protein

databases and textual data stored in traditional data-

base systems.
Historical Background
Efforts for indexing electronic texts are found in liter-

ature since the beginning of computational systems.

For example, descriptions of Electronic Information

Search Systems that are able to index and search text

can be found in the early of 1950s [3].

In a seminal work, Gerard Salton wrote, in 1968, a

book containing the basis for the modern information

retrieval systems [5], including a description of a

model largely adopted up to now for indexing texts,

known as Vector SpaceModel. Other successful models

for indexing texts were proposed since then, such as,

for instance, Probabilistic Models and Language Mod-

els, which are discussed in detail in [2].

Text indexing operations have also received atten-

tion in the last decades as a basic operation in a large

variety of applications. They are used in several basic

algorithms related to data management, such as data

integration and data disambiguation. Bioinformatics

is another area where text indexing has been largely

applied. In these cases, biological databases containing

data such as DNA or protein information are indexed

as texts in order to provide fast access to their content.

http://trec.nist.gov/

Text Indexing Techniques T 3059

T

Foundations
The implementation of text indexing operations

requires data structures for allowing fast access to the

indexed information. The most used data structure

for this purpose is known as inverted index or inverted

file. An inverted index is a data structure composed of:

(i) a vocabulary that contains all the distinct words

indexed found in the text and (ii), for each word t of

the vocabulary, a list that contains statistics about the

occurrences of t in the text. Such list is known as

the inverted list of t.

Inverted indexes allow fast search for statistics

related to the distinct words found in a text. They are

designed for using words as the search unit, which

restricts their use in applications where words are not

clearly defined or in applications where the system

does not use words as the search unit. The statistics

stored in an inverted index may vary according to the

target application. Two non-exclusive alternatives usu-

ally found in literature are to record the position of all

word occurrences in the text and to record general

statistics about the word occurences in text units.

Indexing all the word occurrences is useful in applica-

tions where positional information should be taken

into account, such as when it is necessary to allow

search for phrases or proximity queries. Inverted in-

dexes that store word statistics are usually deployed in

systems that adopt information retrieval models, such

as the Vector Space Model, and in this case the text is

divided into units of information, usually doucments.

For instance, in web search engines, these units are the

pages crawled from the web, while the whole set of

pages compose the indexed text.

A third alternative to produce inverted indexes with

intermediate space overhead and allow search for

phrases and positional queries is to use a scheme

known as block addressing [4]. Block addressing is a

technique to reduce the space requirements of an

inverted index. It was first proposed in a system called

Glimpse [4]. The idea is that the text is logically divided

into blocks, and the occurrences do not point to exact

word positions but only to the blocks where the word

appears. Space is saved because there are less blocks than

text positions (and hence the pointers are shorter), and

also because all the occurrences of a given word in a

single text block are referenced only once.

Searching in a block addressing index is similar to

search in a full inverted one. The pattern is searched in
the vocabulary and a list of blocks where the pattern

appears is retrieved. However, to obtain the exact pat-

tern positions in the text, a sequential search over the

qualifying blocks becomes necessary. The index is

therefore used as a filter to avoid a sequential search

over some blocks, while the others need to be checked.

Hence, the reduction in space requirements is obtained

at the expense of higher search costs.

The use of a block addressing scheme when

indexing texts results in a tradeoff between index size

and the computational costs for processing queries.

The larger are the block units, the smaller is the final

index overhead in terms of space. On the other hand,

the larger are the block units, the larger are the por-

tions of text that should be sequentially traversed when

searching for a pattern in the text.

Although this combination of sequential search

and index seems to produce less efficient search sys-

tems at first, block addressing indexes may achieve

interesting combinations of cost for search time and

space overhead. Block addressing was analyzed in [1],

where it is analytically proved and experimentally ver-

ified that a block addressing index may yield sub-linear

space overhead and, at the same time, sub-linear query

time. Traditional inverted indexes pointing to words or

documents achieve only the second goal. Empirical

experiments performed in [?] indicate that in practice,

O(n0.85) space and query time can be obtained for

exact queries in natural language texts.

Other data structures also adopted for indexing

texts with the goal of allowing fast access to them are

signature files and suffix trees [2,7]. Signature files

are indexes that use a hash function to map the

words found in a text to bit masks. The text is divided

into blocks, and each block b is indexed by storing

the result of a bit-wise OR operation over all the

masks of the words that occur in b. This final mask

represents the block in the signature file index. The

search operation is performed through a bit-wise AND

between the searched word and each block mask in the

collection. Potential matches are reported whenever

the bit-wise AND operation results in a number

equal to the mask of the searched word. Note that

false matches may arise, and thus the matched blocks

should be inspected for confirming the occurrence of

the word or not. Therefore, the signature file works as a

filter for reducing the amount of text traversed in

search operations.

Text Indexing Techniques. Table 1. Suffixes found in the

text fragment “abadabadaba”

Suffix Suffix ID

“abadabadaba” 1

“badabadaba” 2

“adabadaba” 3

“dabadaba” 4

“abadaba” 5

“badaba” 6

“adaba” 7

“daba” 8

“aba” 9

“ba” 10

“a” 11

Text Indexing Techniques. Figure 1. Suffix tree for the

text fragment “abadabadaba”.

3060T Text Indexing Techniques
The search in signature files is usually less efficient

than the search when using inverted indexes. Further,

inverted indexes support a larger set of search operations

than signature files. For typical document indexing

applications, signature files do not perform well com-

pared to inverted indexes, being much larger and they

are more expensive to build and update [8]. Thus, the

use of inverted indexes in text indexing operations is

more frequent than the use of signature files.

Another approach for indexing text databases

regards the text as a long string. Suffix trees can index

the text as a set of symbols according to the desired

granularity of the search operations. For instance, by

using suffix trees, it is possible to take all the characters

of the text as index entries. This flexibility allows

indexing texts that are written in languages where the

words are not clearly separated from each other, such

as it happens in some Asian languages, or even in texts

where the concept of word does not exist, such as in

DNA or protein databases.

Each position in the text is called a suffix. A suffix is

defined by a starting position and extends to the right

as far as needed or to the end of the text. Depending on

the character sequences that are to be searched, the

user must define the index points, i.e., which positions

of the text will be indexed. In text databases, it is

customary to index only word beginnings, but in

many applications for text indexing it is necessary to

index all the characters of the text. Suffix trees are data

structures designed for indexing text using the suffix

model, thus considering each entry point indexed in

the text as a suffix of the whole text. In the suffix trees,

each distinct path from the root to a leaf represents a

unique suffix. For instance, consider the text fragment:

“abadabadaba”, which contains the suffixes described

in Table 1.

Each suffix found in this example finishes with an

implicit special symbol, marking the end of the text.

Figure 1 describes the suffix tree for storing all the

eleven suffixes of this text fragment. The circles in the

trees contain internal nodes and their numbers indi-

cate the position in the text where their children differ

from each other. The square nodes are the leaves of the

suffix tree and their numbers represent suffix ids (suf-

fixes are usually represented by their position in the

text). The letters marking each node in the tree indi-

cate the value found on the positions where the node

differ from their siblings nodes. The “eof” represents

the end of the text is this example.
For instance, in the root node, the number 1 indi-

cates that the suffixes are different in their first

position. At this position, the suffixes may have value

‘a’, ‘b’ or ‘c’. When searching for a suffix starting

with an ‘a’, then the left most sub-tree should be

taken in order to continue the search. In this case, the

next comparison position to continue the search is

position 2. The search continues until the current

search position is longer than the search pattern,

which means all the patterns in the sub-tree contain

the search key; or until the current position in the

search key does not match any child of the current

node, which means the search key is not in the text.

Using this structure, it is possible to perform a

variety of complex search operations at a relatively

Text Mining T 3061
low computational cost. One of the drawbacks of using

a suffix tree is the space required to store the index. If

the space is a restriction, a more compact structure

known as suffix array can be adopted. A suffix array is

an array of pointers to each suffix indexed in the text.

This array is sorted in the alphabetical order of the

suffixes it represents and can then be used to perform

search tasks. The use of suffix arrays increases the cost

of search operations when compared to suffix trees.

For instance, a given search pattern can be found in a

suffix array at cost O(log(n)), where n is the number of

suffixes in the text, while the cost for searching a simple

pattern in a suffix tree is O(m), where m is the size of

the searched pattern, and is not affected by the number

of suffix in the text.

A practical problem when using suffix trees or

suffix arrays is the cost to build and maintain the

indexes. Further, when searching for words inverted

indexes are usually faster than suffix trees and suffix

arrays. Exceptions may occur when it is necessary to

process complex queries, such as regular expression

patterns and search for word fragments.
T

Key Applications
Text indexing techniques have important practical

applications, being of great importance in the con-

struction of Web Search Engines, Web Directories

and Enterprise Search systems. These techniques are

also useful for allowing fast search on DNA or protein

databases, which can also be treated as texts. In these

cases, the text indexing techniques are adopted to

accelerate more complex operations performed over

the databases, such as the comparison of DNA frag-

ments allowing small differences between them. Text

indexing operations have also played an important role

in several algorithms related to data management, such

as data integration and data disambiguation.
Cross-references
▶ Inverted Files

▶ IR Retrieval Models

▶ Suffix Trees

▶Text Retrieval
Recommended Reading
1. Baeza-Yates R. and Navarro G. Block-addressing indices for

approximate text retrieval. J. American Soc. for Inf. Sci., 51(1):

69–82, 2000.
2. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. Addison Wesley, Reading, MA, 1999.

3. Luhn H.P. A statistical approach to mechanized encoding

and searching of literary information. IBM Journal of Research

and Development, 1(4):309–317, October 1957.

4. Manber U. and Wu S. GLIMPSE: A tool to search through entire

file systems. In Proc. USENIX Winter 1994 Technical Conf.,

1994, pp. 23–32.

5. Salton G. Automatic Information Organization and Retrieval.

McGraw-Hill, New York, NY, 1968.

6. Salton G., Won A., and Yang C.S. A vector space model for

automatic indexing.Inf. Retriev. Lang. Process., 18(11):613–620,

November 1975.

7. Witten I., Moffat A., and Bell T. Managing Gigabytes, 2nd edn.

Morgan Kaufmann, Los Altos, CA, 1999.

8. Zobel J., Moffat A., and Ramamohanarao K. Inverted files versus

signature files for text indexing ACM Trans. Database Syst.,

23(4):453–490, December 1998.
Text Mining

YANLI CAI
1, JIAN-TAO SUN

2

1Shanghai Jiao Tong University, Shanghai, China
2Microsoft Research Asia, Beijing, China

Synonyms
Knowledge discovery in text (KDT)
Definition
Text mining is the art of data mining from text

data collections. The goal is to discover knowledge

(or information, patterns) from text data, which are

unstructured or semi-structured. It is a subfield of

Data Mining (DM), which is also known as Knowledge

Discovery in Databases (KDD). KDD is to discover

knowledge from various data sources, including text

data, relational databases, Web data, user log data,

etc. Text Mining is also related to other research

fields, including Machine Learning (ML), Information

Retrieval (IR), Natural Language Processing (NLP),

Information Extraction (IE), Statistics, Pattern Recog-

nition (PR), Artificial Intelligence (AI), etc.
Historical Background
The phrase of Knowledge Discovery in Databases

(KDD) was first used at 1st KDD workshop in 1989.

Marti Hearst [4] first used the term of text data

3062T Text Mining
mining (TDM) and differentiated it with other con-

cepts such as information retrieval and natural lan-

guage processing.

Foundations
Typical steps of knowledge discovery in databases can

be found in [7] by Usama Fayyad et al. The process of

knowledge discovery in text data collections is similar,

as shown in Fig. 1. Given one collection of text data

as input, the goal is to extract patterns/knowledge

from them. As the first step, data selection is to select

proper data that will be processed and analyzed in the

following steps. In the data preprocessing step, the task is

to filter out noisy information and do some preliminary

processes to facilitate the following steps, e.g., extracting

name entities from the text data or part-of-speech tag-

ging of the text data. In the data transformation step, the

text data are converted to the format that is easy to be

processed by mining algorithms, e.g., the format of

vectors, sequences or inverted index tables. Text mining

is to apply mining algorithms to find candidate patterns.

In the interpretation/evaluation step, the candidate pat-

terns produced in the former step are evaluated and

the interesting ones are outputted as final knowledge.
Text Mining. Figure 1. Steps of knowledge discovery

from text data.
Text preprocessing strongly affects the success of

the outcome of text mining. Tokenization, or splitting

the input into words, is an important first step that

seems easy but is fraught with small decisions: how to

deal with apostrophes and hyphens, capitalization,

punctuation, numbers, alphanumeric strings, whether

the amount of white space is significant, whether to

impose a maximum length on tokens, what to do

with non-printing characters, and so on [9]. It may

be beneficial to perform some rudimentary morpho-

logical analysis on the tokens such as removing suffixes

or representing them as words separate from the stem.

Tokens may be standardized by using a dictionary to

map different, but equivalent, variants of a term into a

single canonical form. Once the input is tokenized,

some level of syntactic processing is usually required.

One operation is to remove stop words. Another is

to identify common phrases and map them into sin-

gle features. Tokenizing a document and discarding

all sequential information yields the “bag of words.”

Additional linguistic preprocessing may also be needed

[1]. Part-of-speech tagging (POS) determines the part

of speech tag for each word, e.g., noun, verb, adjective.

Text chunking aims at grouping adjacent words of a

sentence. Word Sense Disambiguation (WSD) tries to

resolve the ambiguity for individual words or phrases.

Parsing produces a full parse tree for a sentence, which

can identify the relation of each word in the sentence to

all the others, and typically also its function in the

sentence, e.g., subject, object.

Various statistical techniques and learning meth-

ods have been employed in text mining, including

Naive-Bayes methods, support vector machines (SVM),

decision trees, hidden Markov models (HMM), neural

networks, etc. Major ways in which text is mined [1,9]

are discussed in the following subsections.

Text Classification

Text classification is the assignment of text documents

to predefined categories according to their contents.

The pre-defined categories are symbolic labels with no

additional semantics. When classifying a document,

no information is used except for the document’s con-

tent itself. A large number of feature selection and

machine learning techniques have been applied to

text classification. Typical approaches extract features

from each document, and use the feature vectors as

input to a scheme that learns how to classify docu-

ments. Using words as features and word occurrence

Text Mining T 3063

T

frequencies as feature values, a model is built for each

category. The documents in that category are positive

examples and the remaining documents are negative

ones. The model predicts whether or not that category

is assigned to a new document based on the words in it,

and their occurrence counts. Given a new document,

each model is applied to determine which categories

to assign. Automatic text classification has many prac-

tical applications, including indexing for document

retrieval, automatically extracting metadata, word sense

disambiguation by detecting the topics a document

covers, and organizing and maintaining large catalogues

of Web resources.

Text Clustering

Text clustering is unsupervised learning in which

there is no predefined category or class, but groups

of documents that belong together are sought. Clus-

tering schemes not require training data to be pre-

classified, and the algorithms themselves are generally

far more computation-intensive than supervised

schemes. Usually the quality of clustering is consid-

ered better if the contents of the documents within

one cluster are more similar and between the clusters

more dissimilar.

Information Extraction

Information extraction is used to refer to the task

of filling templates from natural language input,

one of the principal subfields of text mining. A tem-

plate is a composite structure with slots that are filled

by individual pieces of structured information. A com-

monly-cited domain is that of terrorist events,

where the template may include slots for the perpetra-

tor, the victim, type of event, where and when it

occurred, etc.

Machine learning has been applied to the informa-

tion extraction task by seeking pattern-match rules

that extract fillers for slots in the template. The rules

can be expressed in pattern-action form, and the pat-

terns comprise constraints on words in the surround-

ing context and the slot-filler itself. These constraints

involve the words included, their part-of speech tags,

and their semantic classes. An application of infor-

mation extraction is extracting information from job

ads such as those posted on Internet newsgroups.

The extracted information by information extrac-

tion can also be used in a subsequent step to learn

rules that characterize the content of the text itself.
Document Summarization

A text summarizer strives to produce a condensed

representation of its input, intended for human con-

sumption. Useful distinctions can be made between

different kinds of summaries: an extract picks certain

key sentences scattered throughout the document. In

contrast, an abstract contains material that is not pres-

ent in the input, or at least expresses it in a different

way. An indicative summary’s main purpose is to

suggest the contents of the article without giving

away details of the article content. It can serve to entice

the user into retrieving the full form [5]. Book jackets,

card catalog entries and movie trailers are examples of

indicative summaries. An informative summary is

meant to represent the original document. Therefore

it must contain all the pertinent information necessary

to convey the core information and omit ancillary in-

formation. Another distinction is between a generic

summary, aimed at a broad readership, and a topic-

focused one, tailored to the requirements of a parti-

cular group of users. Summaries may also be produced

from a single document or multiple documents [3].

In single-document summarization, features like word

frequency, key phrases, sentence position, sentence

length and uppercase words are used. Multi-document

summarization extracts a single summary frommultiple

documents, and is used in the domain of news articles.

It departs from single-document summarization since

the problem involves multiple sources of information

that overlap and supplement each other, being contra-

dictory at occasions. So the key tasks are not only

identifying and coping with redundancy across docu-

ments, but also recognizing novelty and ensuring that

the final summary is both coherent and complete.

Key Phrase Extraction

Keywords and key phrases are attached to documents

to give a brief indication of what they are about.

Key phrases are a useful form of metadata because

they condense documents into a few pithy phrases

that can be interpreted individually and independent-

ly of each other. In key phase extraction, all the

phrases that occur in the document are listed and

information retrieval heuristics are used to select

those that seem to characterize it best. Most key

phrases are noun phrases, and syntactic techniques

may be used to identify these and ensure that the set

of candidates contains only noun phrases. The heur-

istics used for selection range from simple ones such

3064T Text Mining
as the position of the phrase’s first occurrence in the

document to more complex ones such as the occur-

rence frequency of the phrase in the document versus

its occurrence frequency in a corpus of other docu-

ments in the subject area.
Topic Detection and Tracking (TDT)

Topic Detection and Tracking (TDT) [8] refers to a

variety of automatic techniques for discovering and

threading together topically related material in streams

of data such as newswire and broadcast news. The TDT

research applications keep track of topics or events

of interest, in a constantly expanding collection of

multimedia stories. There are five research applications

defined in the TDT Program. Story Segmentation

detects changes between topically cohesive sections.

Topic Tracking keeps track of stories similar to a

set of example stories. Topic Detection builds clusters

of stories that discuss the same topic. First Story

Detection detects if a story is the first story of a new,

unknown topic. Link Detection detects whether or not

two stories are topically linked. Shared resources, such

as TDT corpora, language resources and evaluation

software, provide the necessary tools to build a TDT

application. The TDT corpora consist of broadcast

news and newswire texts sampled daily during most

of 1998. The Linguistic DataConsortium (LDC) exhaus-

tively annotated the corpora by identifying which stories

discuss a predefined set of topics.
Opinion Mining

Opinion mining [8] refers to the research work of

mining user opinion data. It is also known as senti-

ment analysis. Typical research problems include:

(i) subjectivity/objectivity classification is to identify

if the text data contains user opinion; (ii) sentiment

classification is to predict the polarity of user sentiment

(e.g., positive or negative); (iii) opinion summarization

is to provide a condensed representation for a set of user

opinion texts; (iv) opinion anti-spamming is to detect

if the opinion data are written by review spammers.

Key Applications

Bioinformatics

Bioinformatics is the study of the information content

and information flow in biological systems and pro-

cesses [6]. Text mining can be applied to bioinformatics
literatures for named entity recognition and relationship

extraction. Named entity recognition identifies entities

such as drugs, receptors, enzymes, toxins, genes and their

features (box, chain, sequence, subunit, etc.). Relation

extraction detects the relationship between a pair of

entities such as the relationship between genes, protein,

or other biological entities.
Email Spam Filtering

The explosive growth of unsolicited emails, more com-

monly known as spam, has been undermining con-

stantly the usability of emails. One solution is provided

by spam filters. Some spam filters use black lists and

hand-crafted rules, which are not easy to adapt to

new types of spam. On the other hand, the success

of machine learning methods in text classification pro-

vides the possibility to compete with rule-based filters

and quickly adapt to new types of spam. Many spam

filters based on machine learning are using Naive-

Bayes classifiers. A prominent example is Mozilla’s

email client. Different classifier methods such as SVM

are also used.

Business Intelligence

Business intelligence (BI) is a broad category of appli-

cations and technologies for gathering, storing, analyz-

ing, and providing access to data to help enterprise

users make better business decisions. BI applications

include decision support systems, query and repor-

ting, online analytical processing, statistical analysis,

forecasting, and data mining. People express their

opinions and post reviews of products on the Web.

Opinion mining [3] identifies whether users like or

dislike a product and products summary from the

reviews. Opinion mining can help manufactures to

identify problems in their products, and also provides

valuable information for placing advertisements in

Web pages.
URL to Code
Tools for basic processes of text mining: http://nlp.

stanford.edu/links/statnlp.html

Cross-references
▶Biomedical Scientific Textual Data Types and

Processing

▶Data Cleaning

▶Data Mining

http://nlp.stanford.edu/links/statnlp.html
http://nlp.stanford.edu/links/statnlp.html

Text Mining of Biological Resources T 3065
▶ Information Extraction

▶ Information Retrieval

▶Opinion Mining

▶Text Categorization

▶Text Clustering

▶Text Summarization
Recommended Reading
1. Andreas H., Andreas N., and Gerhard P. A brief survey of

text mining. J. Computat. Linguistics Lang. Technol., 20(1):

19–62, 2005.

2. Bing L. Web Data Mining: Exploring Hyperlinks, Contents and

Usage Data. Springer, Berlin, 2007, pp. 411–447.

3. Dipanjan D. and Martins A.F.T. A Survey on Automatic

Text Summarization. Literature Survey for the Language

and Statistics II course at Carnegie Mellon University,

November, 2007.

4. Hearst M. Untangling text data mining. In Proc. 27th Annual

Meeting of the Assoc. for Computational Linguistics, 1999.

5. Informative and indicative summarization. Available at: http://

www1.cs.columbia.edu/~min/papers/sigirDuc01/node2.html

6. Liebman M. Bioinformatics: an editorial perspective. Available

at: (http://www.netsci.org/Science/Bioinform/feature01.html)

7. Usama F., Gregory P.-S., and Padhraic S. From data mining to

knowledge discovery in databases. AI Mag., 17(3):37–54, 1996.

8. Wayne C.L. Multilingual topic detection and tracking: successful

research enabled by corpora and evaluation. In Proc. Conf. on

Language Resources and Evaluation, 2000.

9. Witten I.H. Text mining. In Practical Handbook of Internet

Computing, M.P. Singh (eds.). Chapman and Hall/CRC Press,

Boca Raton, FL, 2005, pp. 14-1–14-22.
T

Text Mining of Biological Resources

PADMINI SRINIVASAN

The University of Iowa, Iowa City, IA, USA

Synonyms
Knowledge discovery from biological resources;

Hypothesis generation and exploration from bio-

logical resources; Literature-based discovery from

biological resources

Definition
Textmining is about automatically or semi-automatically

exploring hypotheses or new ideas from a set of

resources. The mined hypotheses require further tests

with methods native to the discipline, in this case with

scientific methods in biomedicine. An overall goal in

text mining is to support the intellectual activities of
biomedical scientists as they explore new ideas using a

collection of resources. Text mining is similar to data

mining. But instead of mining a collection of well-

structured data, text mining operates off semi-

structured text collections. Current text mining efforts

in biomedicine increasingly involve more structured

data sources such as the Entrez Gene database main-

tained by the National Library of Medicine (NLM).

There is some diversity of opinion on the kinds

of research that fall within the realm of text mining.

As an example, some include text classification,

which is about building models to predict one or

more topical categories for a text. Still others include

information extraction goals such as in research on

identifying named entities, definitions and expansions

of abbreviations in texts. Some go so far as to include

text retrieval, i.e., research on finding documents

relevant to a user query. Despite these diverse view-

points, there is wide agreement that a core focus of

text mining is on hypothesis generation and explora-

tion based upon implicit connections present in the

sources. Consistent with this viewpoint, Blagosklonny

and Pardee [1] refer to text mining as conceptual

biology, a field that fuels hypothesis-driven biomedical

exploration. These hypotheses typically postulate rela-

tionships between at least two entities (or more gener-

ally concepts). The emphasis is also on novelty at least

in the context of the mined sources. Note also that

novelty itself eludes definition as it is difficult to pin-

point when and how an idea acquires the status of

being known.

Historical Background
The motivation underlying biomedical text mining

with its focus on hypothesis generation and explora-

tion is that it is difficult for any one scientist or even a

group of collaborators to keep abreast with research

developments. This difficulty becomes compounded

many times given the increasing importance of inter-

disciplinary perspectives to solve biomedical problems.

Another motivation comes from the serendipitous na-

ture of many scientific discoveries. Serendipity may be

influenced by several intangibles, such as researcher

intuition, prior experience and knowledge, including

also the ability to creatively scan and combine the

literature of multiple disciplines. With the biomedical

literature growing at an astounding pace, there is a

definite need for text mining tools to assist bioscien-

tists gauge new ideas against prior research.

http://www1.cs.columbia.edu/~min/papers/sigirDuc01/node2.html
http://www1.cs.columbia.edu/~min/papers/sigirDuc01/node2.html
http://www.netsci.org/Science/Bioinform/feature01.html

3066T Text Mining of Biological Resources
Text mining has its origins in the work of Swanson

conducted during the mid 1980’s. In 1986, Swanson

mined the MEDLINE bibliographic database and

proposed that fish oils may be used to treat Raynaud’s

disease [13]. Swanson observed from the literature that

Raynauds is exacerbated by platelet aggregability, vaso-

constriction, and blood viscosity. He also observed that

fish oils reduce these phenomena. Combining these

observations he postulated that fish oilsmay be beneficial

for persons with Raynauds which was later corroborated

by other scientists. The decade from themid-1980’s to the

mid-1990’s is marked by a series of papers by Swanson

and his collaborator Smalheiser on using text mining to

propose a variety of other hypotheses such as connections

between estrogen and Alzheimer’s disease [10]. These

papers created a fertile for textmining research, especially

in the context of MEDLINE. Remarkably, it was only in

the mid-1990’s that other researchers became seriously

attracted to biomedical text mining. The first few papers

were on automating several of the text mining steps in

Swanson and Smalheiser’s methodology [5,11]. Since

then researchers have proposed other hypotheses such

as viruses that may be used as bioweapons [14], possible

therapeutic uses for substances such as thalidomide [16]

and for turmeric (Curcumin Longa) [12], possible func-

tional connections between genes as well as between

genes and diseases [9]. Now past the 20 year mark, the

text mining field is a fertile ground for research and

development. It is mature to the point that several annual

workshops affiliated with major conferences have been

established. There is also a Journal of Biomedical Discov-

ery and Collaboration that is dedicated to the field and

finally there are recent reviews as for example on bio-

medical text mining tools [15].

Foundations

Resources

A central aspect to text mining in biomedicine is the

use of MEDLINE, the bibliographic database produced

by the National Library of Medicine. MEDLINE

records contain a variety of fixed and variable length

fields such as publication date, title, abstract, authors

and author affiliations, chemical terms and subject

representations in the form of assigned phrases.

Phrases assigned to a record are selected from the

MeSH (Medical Subject Headings) controlled vocabu-

lary by trained indexers. Text mining systems
sometimes differ in the MEDLINE field(s) used.

Some methods use the free-text fields such as title

and abstract [5] while others are based on controlled

vocabulary fields such as MeSH and chemical terms

(e.g., [11]). Systems using controlled vocabularies have

the advantage of more precise vocabulary. But they

take the risk of missing important information that

may be present in the free-text alone. Systems using the

free-text fields usually involve procedures for informa-

tion extraction to identify key concepts that occur in

the texts such as gene, protein, disease and drug name.

In this regard research on natural language processing

in the biomedical domain has had a huge influence on

text mining. This direction is of increasing importance

as other forms of textual collections such as patient

records are brought into the fold of text mining.

Many text mining approaches also avail of allied

vocabulary resources such as the UMLS (Unified Med-

ical Language System) also produced by the NLM. The

UMLS offers a rich variety of conceptual and linguistic

details and it also offers interconnections between

the many general and specialized vocabularies arising

from different subfields of biomedicine. Other core

resources seen, especially in applications targeting bio-

informatics, are Entrez Gene [3] and Gene Ontology

[4]. Information about annotation links between GO

terms and genes frequently accompanied by the MED-

LINE records providing supporting evidence, are uti-

lized in text mining. Beyond these core resources

several others have been used for text mining such as

DIP, the Database of Interacting Proteins [2].

Methods

There is a growing variety of text mining methods,

orientations and applications. In general, methods ap-

pear to be selected or designed to fit the problem at

hand. And since the space of text mining problems is

broad (and growing), there is an almost bewildering

array of text mining solutions. While this situation

offers almost free rein to researchers and developers,

it also makes it challenging to determine what methods

(or aspects about methods) are most successful or

most appropriate for a given problem or in a specific

domain. Seemingly similar problems are sometimes

addressed using significantly different approaches

while certain approaches exhibit broader appeal.

Two established text mining approaches derive

from Swanson and Smalheiser’s early research. These

Text Mining of Biological Resources T 3067
are generally referred to as open discovery and closed

discovery. The open discovery process is initiated with

a single concept (A) and the goal is to identify one or

more concepts (C) that are connected but only indi-

rectly with A, i.e., through other intermediate con-

cepts. In closed discovery, two concepts A and C are

provided as input and the idea is to seek out novel

connections between them.

Figure 1 displays these strategies. An example of

open discovery represented by the figure is where the

starting A concept is a specific drug and the user is

interested in novel connections with C concepts repre-

senting diseases. Moreover, the intermediate (B) con-

cepts could be constrained to concepts of particular

types such as functions of different kinds, molecular,

tissue etc. Or, they may be constrained to concepts

designating genes already known to be associated

with the disease. The novelty aspect is satisfied by

ensuring that the A drug and the identified C disease

have not yet been studied together. A typical approach

implemented to satisfy this requirement is that the A-B

concept(s) and B concept(s)-C connections should be

found in disjoint portions of the literature collection or

that the A-C connection is not recorded in an appro-

priate knowledge source. For closed discovery an ex-

ample illustrated by the figure is where the user inputs

both a specific drug (A) and a disease (C). The algo-

rithm then looks for new connections, i.e., B concepts

that tie the two together. Now it may be the case that

no connections between the drug and the disease are
Text Mining of Biological Resources. Figure 1. Open

and closed discovery.

T

known thus far or it may be that some connections are

known and other novel ones are being sought. In all of

these it can be seen that investigator participation is of

value not only to specify the inputs but also to specify

the kinds of outputs and to constrain the intermediate

connection types of interest. Typically when multiple

novel C concepts are discovered through open discov-

ery or multiple B concepts discovered with closed these

are ranked by some estimate of confidence.

Many variations of these two basic strategies have

been explored. One type of variation extends the transi-

tive nature of these methods to allow for implicit con-

nections ranging over longer distances, i.e., with longer

connecting path lengths. For example in G2D [7]

researchers start by connecting a disease to its pathologi-

cal conditions and then to their co-occurring chemical

terms inMEDLINE. These are in turn connected through

co-occurrence with terms representing protein function

from Gene Ontology (GO). These GO terms are then

used to identify RefSeq [8] sequences through annotation

links. Homology is then used to connect these with

candidate sequences that are then constrained to those

mapping to the same chromosomal region where the

disease is mapped. Another key distinguishing feature

across implementations of these text mining algorithms

is that confidence estimates may be made in different

ways. There is certainly variability in the particular

confidence estimation functions used. But more gen-

erally, some utilize weights along the single best path

while others utilize some function (such as a mean or

median) computed over all the connecting paths. Still

others, inspired by association rules, adopt the dual

notions of confidence and support while several utilize

symmetric measures exploiting concept co-occurrence

based statistics.

Besides open and closed discovery, there are other

text mining methods that rely on exploring graph

properties. A graph may be constructed where the

nodes represent biomedical objects and the links rep-

resent their interconnections. For example, gene net-

works have been studied by many researchers. Here

links between pairs of genes may be directed to indicate

influence of one gene over another and weighted by

some estimate of degree of influence. Or, these may be

undirected with link weight being a function of co-

appearance in MEDLINE records. Such graphs may

be studied for their structural properties including

to identify core groups of objects (here genes).

3068T Text Mining of Biological Resources
Unexpected members of such groups may suggest

ideas and lead to specific hypotheses and further

research.

A recent trend is to embed text mining functions in

systems designed with larger scope. iHOP is an exam-

ple of such a system [6]. In such systems hypothesis

generation becomes one of several sub goals. Wide

ranging functions are offered by such systems such as

easy connections between records of different data-

bases and knowledge sources, literature retrieval and

ranking as well as syntactic analysis of the text sen-

tences to extract entities and relationships.
Key Applications
For pointers to current text mining applications the

reader may explore sources such as the Application

Notes sections of Bioinformatics (Data and Text

Mining subsection); the Software and Database sec-

tions of BMC Bioinformatics; the Web Server issue of

Nucleic Acid Research and similar sections of other

biomedical journals.
Future Directions
Biomedical text mining is at a highly creative age with

its scientific basis still in infancy. The area has been

heavily influenced by research and development in

several fields such as text retrieval, machine learning

and computational linguistics. The rapid growth in

terms of research papers is a strong indicator of its

perceived potential.

There are several open problems in text mining.

Certainly the relative merits of alternative methods,

their generalizability and criteria for gauging relevance

to specific application contexts are still open. There is

also a need to obtain a deeper understanding of what is

meant by a novel idea or hypothesis, as this is a key

motivation for text mining research. Methods for eval-

uating text mining systems is also an open problem.

Evaluations tend to be somewhat subjective and non

standardized. A common strategy is to see if the algo-

rithms can discover knowledge that is already recorded

in sources such as the Database of Interacting Proteins

[2]. Another strategy is to obtain the opinion of do-

main specialists on the connections found. Both stra-

tegies have their limitations. Also important is research

on how to successfully integrate text mining systems

into the work patterns of bioscientists. This will require
a better understanding of research strategies used by

bioscientists. Overall it remains to be seen how well

text mining will address the needs of the biomedical

research community. For the moment, at the very least,

it is clear that text mining has significantly extended

the frontiers of text based applications in biomedicine.
Cross-references
▶Data Mining

▶NLP Techniques for Biomedical Text Analysis and

Mining

▶Text Mining
Recommended Reading
1. Blagosklonny M.V. and Pardee A.B. Unearthing the gems. Na-

ture, 416, 373, 2002.

2. Database of Interacting Proteins: http://dip.doe-mbi.ucla.edu/

3. Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

4. Gene Ontology: http://www.geneontology.org/

5. Gordon M.D. and Lindsay R.K. Toward discovery support sys-

tems: A replication, reexamination, and extension of Swansons

work on literature-based discovery of a connection between

Raynauds and fish oil. J. Am. Soc. Inf. Sci., 47, 116–128, 1996.

6. iHOP: http://www.ihop-net.org/UniPub/iHOP/

7. Perez-Iratxeta C., Bork P., and Andrade M.A. Association of

genes to genetically inherited diseases using data mining. Nat.

Gene., 31(3):316–319, 2002.

8. RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq/

9. Seki K. and Mostafa J. Discovering implicit associations be-

tween genes and hereditary diseases. Pacific Symp. Biocomput.,

12:316–327, 2007.

10. Smalheiser N.R. and Swanson D.R. Linking estrogen to

Alzheimers disease: an informatics approach. Neurology,

47:809–810, 1996.

11. Srinivasan P. Text mining: generating hypotheses from MED-

LINE. J. Am. Soc. Inf. Sci. Technol., 55:396–413, 2004.

12. Srinivasan P. and Libbus B. Mining MEDLINE for Implicit

Links between Dietary Substances and Diseases. Bioinformatics,

20 (Suppl 1):I290–I296, August 2004.

13. Swanson D.R. Fish oil, Raynauds syndrome, and undiscovered

public knowledge. Persp. Biol. Med., 30:7–18, 1986.

14. Swanson D.R., Smalheiser N.R., and Bookstein A. Informa-

tion discovery from complementary literatures: categorizing

viruses as potential weapons. J. Am. Soc. Inf. Sci. Technol.,

52:797–812, 2001.

15. Weeber M., Kors J.A., and Mons B.Online tools to support

literature-based discovery in the life sciences. Brief. Bioinform.,

6(3):277–286, 2005; doi:10.1093/bib/6.3.277

16. Weeber M., Vos R., Klein H., de Jong-Van den Berg L.T.W.,

Aronson A., and Molema G. Generating hypotheses by dis-

covering implicit associations in the literature: a case report for

new potential therapeutic uses for Thalidomide. J. Am. Med.

Inform. Assoc., 10:252–259, 2003.

http://dip.doe-mbi.ucla.edu/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://www.geneontology.org/
http://www.ihop-net.org/UniPub/iHOP/
http://www.ncbi.nlm.nih.gov/RefSeq/

Text Representation T 3069
Text Representation

JUN YAN

Microsoft Research Asia, Haidian, China

Definition
Text representation is one of the fundamental pro-

blems in text mining and Information Retrieval (IR).

It aims to numerically represent the unstructured text

documents to make them mathematically computable.

For a given set of text documents D = {di, i=1, 2,...,n},

where each di stands for a document, the problem of

text representation is to represent each di of D as a

point si in a numerical space S, where the distance/

similarity between each pair of points in space S is well

defined.
T

Historical Background
Mining the unstructured text data has attracted much

attention of researchers in different areas due to its

great industrial and commercial application potentials.

A fundamental problem of text mining is how to repre-

sent the text documents to make them mathematically

computable. Various text representation strategies have

been proposed in the past decades for different applica-

tion purposes such as text categorization, novelty detec-

tion and Information Retrieval (IR) [5]. This entry

focuses on the text representation strategies specifically

for IR applications.

Nowadays, the most commonly used text repre-

sentation model in the area of Information retrieval is

called as the Vector Space Model (VSM) [4,5]. It aims

representing each text document by a numerical vec-

tor such that the similarity between vectors (docu-

ments) can be computed by different kernels. A

simple and commonly used kernel is their normalized

inner product, which is also known as the Cosine

similarity. One of the commonly used VSM is the

Bag of Words model (BOW). It uses all words

appeared in the given document set D as the index

of the document vectors. Under the BOWmodel, dif-

ferent term weighting schema give different text repre-

sentation results. The simplest case of BOW is the

Boolean model. It utilizes the binary vectors to repre-

sent text documents. In other words, if a term appears

in a document, there has a “1” in the position, which

corresponds to this term, in the document vector.
Otherwise, the term weight is “0”. As an extension of

the Boolean model, Term Frequency Inversed Docu-

ment Frequency (TFIDF) model was proposed. It uses

real values which capture the term distribution among

documents to weight terms in each document vector.

However, there are many limitations in the traditional

BOW text representation model. For example, (i)

BOW ignores the within document term correlation

such as the order of terms in a given document; (ii) the

polysemy and synonymy problems can greatly decrease

the IR performance in the TFIDF text representation

model; and (iii) the TFIDF model cannot capture the

semantics of documents for IR.

To solve the limitations of BOW model, various

advanced text representation strategies have been pro-

posed. The N-gram statistical language models [2]

were proposed to capture the term correlation within

document. However, the exponentially increasing data

dimension with the increase of N limits the application

of N-gram models. The Latent Semantic Indexing

(LSI) [3] was proposed to reduce the polysemy and

synonym problems. At the same time, LSI can also

represent the semantics of text documents through

the linear combination of terms, which is computed

by the Singular Value Decomposition (SVD). However,

the high complexity of SVD [1] make LSI seldom used

in real IR tasks. In addition, some external resources

such as the Wordnet and Wikipedia are recently used

for solving the polysemy and synonym problems in

text representation. Since the effectiveness of these

external resources for text representation can only

be learned in research papers and there still has no

evidence to show their power in real IR applications,

this article will not introduce their details. Motivated

by the LSI, the Probabilistic Latent Semantic Indexing

(PLSI) [6] is also proposed for representing the seman-

tics of text documents. However, it is still limited

by the computation complexity due to the increasing

scale of Web data. As a summary, though various app-

roaches have been proposed for solving the limitations

of BOW, the BOW with TFIDF term weighting schema

is still one of the most commonly used text represen-

tation strategies in real IR applications.

Beyond VSM, many propose to represent text docu-

ments in other formats instead of vectors or represent

text documents through their meta-information. For

instance, the text documents can be represented

through neural network, through graphs and in tensor

3070T Text Representation
space model. The text documents in Web pages can be

semantically represented by the search queries which

have clicked these pages, the social bookmarks which

have annotated these pages. However, most of them are

used for solving specific text mining problems or used

to enhance performance of some special IR tasks. In the

next Section of this article, the details for text represen-

tation in two parts will be given, which are the tradi-

tional BOW text representation model with TFIDF term

weighting schema and the semantic text representation

through LSI.

Foundations
In the bag of words (BOW) model, a text document

is represented as a collection of unordered terms.

Given the document collection D={di, i=1, 2,...,n},

suppose there are m unique terms appeared in this

collection (The stop words removal and stemming

will be introduced later). Mathematically, this corpus

of documents can be represented by a m by n matrix

S 2 Rm�n. Each text document is denoted by a column

vector si; i ¼ 1; 2;:::;n and each term is denoted

by a row vector. The jth entry of si is denoted by

sji; j ¼ 1; 2;:::;m. As an example, suppose the docu-

ment collection D implies two documents,

d1: He investigates the text representation approaches.

d2: What is the meaning of text representation app-

roach for text documents?

There are a list of 13 unique terms, which are,

“He, investigates, the, text, representation, appro-

aches, What, is, meaning, of, approach, for, documents”.

The list of terms roughly represents the two docu-

ments by a 13 by 2 matrix. The problem is how to

weight each entry of this matrix. Considering the sim-

ple Boolean model first. If a term appears in a docu-

ment, its corresponding weight is 1; otherwise, it is 0.

The transform of the matrix for the collection D is,

ST ¼ 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 1 1 1 1

� �

where the order of term index is the same as the term

list given above, i.e., the first term is “He” and the last

term is “documents.” There are three obvious pro-

blems in this text representation strategy: (i) not all

terms have the physical meaning in representing text

documents such as “the,” “is” etc; (ii) some terms such

as “approach” and “approaches” are actually the same;
and (iii) the importance of all the terms is treated as

the same in this strategy. Can the difference of the term

importance be reflected in text representation? The

answers for these three questions correspond to three

key steps in text representation, which are stop words

removal, stemming and TFIDF indexing.

The stop words (or stopwords) is the name of

the terms that should be filtered out before text

documents indexing or natural language processing.

There has no fixed stop words list for all text pro-

cessing applications. Generally the stop words list

will include the terms like “a,” “the,” “an,” etc. After

removing the stop words, a stemming procedure is

applied before the TFIDF indexing. The stemming aims

at reducing inflected words to their stem. For example,

“approaches” is stemmed to “approach,” “investigates” is

stemmed to “investigate” and “representation” is

stemmed to “represent.” Thus in the above example, the

list of terms is reduced to,

“He, investigate, text, represent, approach, what,

mean, document.”

Thus the two documents d1 and d2: can be represented

by an 8 by 2 matrix. The transpose of it is,

ST ¼ 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1

� �

Until now, the problems (i) and (ii) have been solved.

The last problem is how to tell the importance of differ-

ent terms in text representation. One of the commonly

used approaches is called as the TFIDF indexing. The

TFIDF aims to assign a weight to each term according to

a document in a collection or corpus. In other words,

TFIDF aims to assign different weights for all entries sji
in matrix S. An intuition is that the more times a term

appears in a document, the more important is this

term to this document. Thus the weight should in-

crease proportionally to the number of times a term

appears in the document. On the other hand, if a

word appears in many documents in the corpus, the

discriminative power of the term will be weak. Thus

the weight is offset by the frequency of the word in the

corpus. The former step is called the Term Frequency

(TF). It can be counted directly from the documents.

As an example, the TF of term stext” in d2 is 2. A

normalizing factor is always used for calculating the

TF of a term in a document. Since in d2 there are 7

terms after stop words removal and stemming. Among

Text Representation T 3071

T

them, 2 of them are “text.” Thus the TF for term “text”

in d2 is 2/7. The latter step is called the Inverse Docu-

ment Frequency (IDF). It is a log function. The IDF

for term t is,

log
n

#document involve term t

Thus the TFIDF weighting schema can be as simple as

TF*IDF. There are various variations of TFIDF text

indexing. The major differences are how to normalize

and smooth the weighting equation.

In the BOWmodel, the TFIDF indexing gives a way

to weight the terms for text documents. However, this

kind of term frequency based approaches cannot dis-

cover the semantics of the text documents. In the

following several paragraphs, the Latent Semantic

Indexing (LSI) is briefly introduced, which aims to

discover the text semantics through linear combina-

tion of term weights. As introduced above, the term by

document matrix is a sparse matrix whose rows corre-

spond to terms and columns correspond to docu-

ments. LSI aims to transform the matrix S into a

reduced matrix which can reflect the relation between

the documents and some concepts. Thus the terms and

documents are indirectly related through the concepts.

Mathematically, LSI aims to find a projection

matrix W 2 Rm�p such that the linear projection

yi ¼ WTsi 2 Rp; i ¼ 1; 2;::::;n can reflect the p se-

mantic concepts implied by document di, where

p<<m. In other words, LSI assumes that the linear

combination of terms can reflect the concepts in text

documents. W 2 Rm�p can give p different linear

combinations for term weights vector si. Through

the linear projection matrix W, the text document

di which is represented by m terms’ weights in vector

si is represented by p concepts’ weights in vector yi. The

problem left is how to get the projection matrix W,

i.e., how to get the weights for the linear combina-

tion of terms, from the matrix S. The calculating of

W can be formulated from different perspectives. For

example, it can be formulated as optimization problem

through the essential relationship between LSI and

Principal Component Analysis (PCA). It can also be

formulated as the best low rank matrix approxima-

tion problem. Intuitively, LSI is computed through

the matrix decomposition. Given the term by docu-

ment matrix S, where sji stands for the weight of term

j in document i. Assume that there exists a
decomposition of matrix S=USVT, where U and V are

orthogonal matrices and S is a diagonal matrix. This

matrix decomposition is called as the Singular Value

Decomposition (SVD). If preserve only the first p col-

umns of U, it is the projection matrix W 2 Rm�p for

LSI. For details for LSI please refer to [3].

Key Applications
The text representation is the fundamental work for IR

and text mining. Besides IR, it can also be used for text

categorization, text clustering, topic detection and

novelty detection etc.

Future Directions
The future directions of text representation problem

can be roughly classified into two categories. The first

is the large scale computation and the second is the

semantic text representation. For the former, the goal

is to make the text representation strategies which have

high cost to be usable in real IR tasks. For example, one

can develop the distributed infrastructure for N-gram

model which can be used to enrich the BOWmodel if

the computation of N-gram model is efficient enough.

One can develop the incremental approximation or

distributed computation algorithms for large scale

LSI which can discover the semantic of documents in

large scale IR systems. For the latter, besides LSI and

PLSI, some semantic Web related research works give

good information sources about how to discover the

semantics of text documents.

Data Sets
For testing the effectiveness of text representation stra-

tegies, there are many commonly used text datasets in

different scales. As some examples, the Reuters-21578

(http://www.daviddlewis.com/resources/testcollections/

reuters21578/), RCV1 (http://jmlr.csail.mit.edu/papers/

volume5/lewis04a/lewis04a.pdf), 20 Newsgroup (http://

people.csail.mit.edu/jrennie/20Newsgroups/), Open Di

rectory Project (ODP) (http://rdf.dmoz.org/) and the

TREC text datasets (http://trec.nist.gov/data.html) are

all commonly used for text mining or IR research.

Cross-references
▶ Stemming Algorithms

▶Term Statistics

▶Term Weighting

▶Text Analytics

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lewis04a.pdf
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lewis04a.pdf
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://rdf.dmoz.org/
http://trec.nist.gov/data.html

3072T Text Retrieval
▶Text Indexing & Retrieval

▶Text Indexing Techniques

▶Text Normalization

▶Text Representation

▶Text Semantic Explanation

▶Tfxidf

Recommended Reading
1. Alter O., Brown PO., and Botstein D. Singular value decom-

position for genome-wide expression data processing and

modeling. In Proc. Natl. Acad. Sci. USA., 97:10101–10106.

2. Daniel J. and James H.M. Speech and Language Processing: An

introduction to Natural Language Processing, Computational

Linguistics, and Speech Processing. Prentice-Hall, Englewood

Cliffs, NJ, 2000.

3. Deerwester S., Dumais S.T., Landauer T.K., Furnas G.W., and

Harshman R.A. Indexing by latent semantic analysis. J. Soc. Inf.

Sci., 41(6):391–407.

4. Gerard S.A. Theory of Indexing. Society for Industrial

Mathematics, Philadelphia, PA, 1987.

5. Gerard S. and Michael J. Introduction to Modern Information

Retrieval. McGraw-Hill, New York, 1983.

6. Thomas H. Probabilistic latent semantic indexing. In Proc.

22nd Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1999, pp. 50–57.
Text Retrieval

▶ Information Retrieval
Text Segmentation

HAODA HUANG, BENYU ZHANG

Microsoft Research Asia, Beijing, China

Synonyms
Document segmentation
Definition
Text segmentation is a precursor to text retrieval, auto-

matic summarization, information retrieval (IR); lan-

guage modeling (LM) and natural language processing

(NLP). In written texts, text segmentation is the pro-

cess of identifying the boundaries between words,

phrases, or some other linguistic meaningful units,

such as sentences or topics. The term separated from

such processing is useful to help humans reading texts,
and are mainly used to assist computers to do some

artificial processes as fundamental units, such as NLP,

and IR.

Historical Background
Natural language processing (NLP) is an important

research field. Its primary problem is how to segment

text correctly. Various segmentation methods have

emerged in the past decades for different kinds of

language and applications. Text segmentation is

language dependent (different language has its own

special problems, which would be introduced later),

corpus dependent, character-set dependent, and appli-

cation dependent. Most existing text segmentation

systems are language specific and corpus dependent.

This entry mainly focuses on traditional English

and some Chinese text segmentation strategies. To do

such segmentations, there are two major approaches:

(i) Manually analyzing the characters of text to get

some heuristic approaches; (ii) Doing annotations for

the sample corpus with boundary information, then

adopting some machine learning (ML) methods to

learn from annotated corpus, and finally doing auto-

matic text segmentation.

The problem of word segmentation (also known as

tokenization), which is the process of dividing the

sequence of characters into words by locating words

boundaries, does not appear to be difficult for written

languages that have explicit word boundary markers,

such as English in which words are separated by white

spaces. When such clues are not consistently retained

in written languages, such as Chinese, in which sen-

tences can be considered to be a character string, doing

word segmentation should be the most important and

essential part of text segmentation. On the contrary,

sentence segmentation (which also can be referred to

as sentence boundary detection, sentence boundary

disambiguation (SBD), or sentence boundary recogni-

tion) is more difficult in English text segmentation,

which must disambiguate punctuations that might

denote sentence boundaries.

Based on previous analysis, for English text seg-

mentation, words can be isolated by white spaces. So,

the main problem of this kind of segmentation is

how to recognize the boundaries of sentences, which

involves resolving the use of ambiguous punctuation,

such as periods, commas, and semicolons. Some

recognizable tokens contain ambiguous punctuation,

Text Segmentation T 3073

T

such as numbers (e.g., 1,236.78), dates (e.g., 02/05/96),

acronyms (e.g., AT&T), and abbreviations (e.g., U.S.).

Some example sentences containing ambiguous punc-

tuations follow:

1. Clairson International Corp. said it expects to report

a net loss for its second quarter ended March 26 and

doesn’t expect to meet analysts’ profit estimates of

$3.0 to $4 million, or 1,276 cents a share to 1,279

cents a share, for its year ending Sept. 24. (From the

Wall Street Journal (1988))

2. The contemporary viewer may simply ogle the vast

wooded vistas rising up from Saguenay River and Lac

St. Jean, standing in for the St. Lawrence River.

(From the Wall Street Journal (1991))

3. The firm said it plans to sublease its current head-

quarters at 55 Water St. A spokesman declined to

elaborate. (From the Wall Street Journal (1987))

As can be seen, periods have been used three different

ways in the first example - within a decimal ($3.0), in

abbreviations (Corp. and Sept.), and at the end of the

sentence. A comma is used in a number (1,276 and

1,279). Consider the second and third examples in

which “St.” appears three times. The first two instances

of “St.” do not denote the boundary of the sentence,

whereas the last one delimits the sentence. At the same

time, it is also essential to do word segmentation in

English text segmentation. It is necessary to recognize

whether a period within a number ($3.0) should be a

part of decimal or the end of a sentence – that is,

should $3.0 be parsed as a word “/$3.0/” or be parsed

as “/$3/. /0/ ”. The comma used in the number (1,276

and 1,279) also should be recognized as a part of

number rather than a break of a sentence – that is,

whether “1,276” should be broken to “/1,276/” rather

than “/1/, /276/”. Taking the third and first example

sentences above, the first two “St.” should be segment-

ed to “/St./”. Though the last “St.” is also supposed to

be segmented to “/St./”, one must always realize that

this period also stands for the end of sentence.

If there were a dictionary containing all kinds of

words and including all the acronyms and abbrevia-

tions, it would be much easier to recognize words

and do tokenization. In actuality, however, acronyms

and abbreviations are emerging continuously and

will never stop. In order to solve this problem,

many approaches have been proposed. There are

mainly two approaches: First, manual analysis often
uses regular expression grammars and lexicon to

solve those problems. The systems based on such

methods are always called rule-based systems. In

such systems, Lexicon is used to obtain the informa-

tion of words, such as capitalization, spelling, and

suffixes, to determine whether a word followed with

a period should be a common word or a boundary

signal of a sentence. Regular expressions are estab-

lished for detecting special kinds of words, such as

numbers and dates. Another way of performing sen-

tence boundary disambiguation (SBD) is to use ma-

chine learning (ML) techniques, such as decision tree

classifier, maximum entropy modeling, and neural

network. The most essential information for Machine

Learning systems to obtain are good features, such as

word spelling, suffix, capitalization, and word classes.

The difficulty is how to obtain a well annotated

sample corpus with labels of word boundaries and

sentence boundaries.

For Chinese text segmentation, sentences are al-

ways isolated by non-ambiguous punctuations, but

words are character strings without explicit boundary

markers. So, the main problem of Chinese text seg-

mentation is how to recognize the boundaries of

words. All the same, Word Sense Disambiguation is

the primary issue in word segmentation. Three types of

ambiguity string are present in Chinese text segmenta-

tion: overlapping ambiguity string, combinatorial am-

biguity string, and hybrid ambiguity string. To solve

those problems, various approaches have been pro-

posed. The most typical solution is using forwards

maximum matching (FMM) and backwards maxi-

mum matching (BMM) based on a dictionary.

Except for these two typical languages, there are

still other types of languages with many different fea-

tures of written text. Many more difficulties for each

language have appeared.

In addition to language-dependent word segmen-

tation and sentence segmentation, there is another

segmentation that has emerged: topic segmentation,

since a document always contains several topics

and even one topic may have different aspects. Topic

segmentation is much harder than word and sentence

segmentation due to difficulties in detecting semantic

units and dividing them into topics. Many approaches

have been tried to deal with such problems [1,4].

Applications based on topic segmentation are

Translation (MT), Natural Language Processing,

3074T Text Segmentation
abundant, such as document summarization, text pro-

cessing, and NLP.

Foundations
Using regular expression grammars and lexicon to

solve ambiguous punctuation is classic and to some

extend useful. Different regular expressions have been

defined for all kinds of tokens containing ambiguous

punctuation. First, lexicon is used to find if a token

exists in the dictionary or not. If it does not exist, a

regular expression is used.

1. Numbers. Take “123,456.789%” as an example.

The regular expression should be ((0–9]+,)*[0–9]

+(.(0–9]+)*%? (ab means matching a, and then

matching b.

a + means one or more a would be matched.

a* means zero or more a would be matched.

a? means zero or one a would be matched.). Once

this expression is used to recognize numbers, per-

iods, commas and percent within a number, those

ambiguous punctuations will not be parsed falsely

as a boundary of a sentence.

2. Dates, such as “05/11/95”. Heuristic regular expres-

sion would be [0–9][0–9]/[0–9][0–9]/[0–9][0–9].

3. Acronyms and Abbreviations, typically “U.S.,

St., Ash., and Corp.” Regular Expression [A–Z]

+[A–Za-z0–9]*.([A–Za–z0–9].)* will be used to

find those acronyms and abbreviations. It should

be noted that when an acronym or abbreviation is

located at the end of a sentence, after the expression

mentioned above has been used to parse such kind

of sentences, an error would occur. For example,

the sentence “The firm said it plans to sublease its

current headquarters at 55 Water St. A spokesman

declined to elaborate.” would be parsed to one sen-

tence, although it should actually be split into two

sentences “/The firm said it plans to sublease its

current headquarters at 55 Water St./” and “/A

spokesman declined to elaborate./”.

Three typical kinds of tokens have been presented

above. There are still many other types of words con-

taining ambiguous punctuations. Many more regular

expressions are required to deal with all of them. The

set of expressions would be extremely huge. It is im-

portant to mention that these typical kinds of tokens

are language dependent. This implies that different

regular expression sets for each language would need

to be established, which is a labor consuming
enterprise. Also, the expressions are usually corpus

related, which makes those rules unable to be ported

across domains.

Because there are so many limitations in using regu-

lar expressions to segment words and sentences, as

mentioned above, machine learning (ML) techniques

have been taken into this field. These techniques can

be retrained quickly for a new domain, a new corpus, a

new language only if a well-annotated sample corpus

has been given. Some systems also use part-of-speech

(POS) information to improve performance [3].

In order to discuss how to deal with Chinese text

segmentation, first, three kinds of ambiguity string

should be introduced. (i) Overlapping Ambiguity

String. It is defined as follows: ABC can be segmented

into A/BC and AB/C, such as “和/平等” could be

segmented into“和/平等” and “和平等” in different

situations. In sentence “独立/自主/和/平等/独立/

的/原则” and “讨论/战争/与/和平/等/问题”, the

segmentation of “和平等” is different. (ii) Combina-

torial Ambiguity String. It is defined as follows: AB

can be segmented into AB and A/B, such as “马上”

should be segmented into “马上” in sentence “马上/

过来” and should be “马/上” in sentence “他/骑/在/

马/上”. (iii) Hybrid Ambiguity String. It combines

overlapping and combinatorial ambiguity. To figure

out the first kind of ambiguity string problem, for-

wards maximum matching (FMM) and backwards

maximum matching (BMM) are used to segment sen-

tence separately. Such as sentence “独立/自主/和/平

等/独立/的/原则”, with FMM, it should be segment-

ed into “独立/自主/和平/等/独立/的/原则”; with

BMM, it should be “独立/自主/和/平等/独立/的/

原则”. When the result of segmentation with FMM and

BMM is different, syntax, semantic, pragmatic infor-

mation will be added to determine which segmenta-

tion should be chosen. To solve the combinatorial

ambiguity string problem, FMM and Backwards Mini-

mum Matching are adopted. For example with FMM,

the sentence “他骑在马上” should be segmented into

“他/骑/在/马上”; with BMM, it should be “他/骑/

在/马/上”. The following processing is the same as

overlapping ambiguity string segmentation.

Key Applications
Text segmentation is an important aspect in develop-

ing text processing applications, such as Informa-

tion Extraction, Document Summarization, Machine

Text Semantic Representation T 3075
Information Retrieval, Language Modeling, and

Speech Recognition.
Future Directions
There are roughly two directions for text segmentation

in the future. One is text segmentation based on spe-

cific language. Another is its use in other fields, such as

the rich transcription field. For the former, there are

more than 200 languages in the world. Each has its own

difficulties in doing text segmentation, such as word

segmentation in Chinese text segmentation. These

problems are do not have ideal solutions. For the

latter, sentence boundary disambiguation (SBD) has

attracted increased attention recently as a way to im-

prove speech recognition output for better readability

and downstream natural language processing and

some subsequent tasks, such as speech translation

and speech summarization.
Data Sets
Two main data sets are typically used for testing, eval-

uation and development in large amount of text seg-

mentation and text processing tasks: Brown Corpus

and the Wall Street Journal (WSJ) corpus – containing

the Penn Treebank (Marcus, Marcinkiewicz, and San-

torini, 1993). Texts in those corpora are all split into

documents, paragraphs, and sentences and are anno-

tated with POS information. The above information is

necessary to develop and evaluate text segmentation

systems.

Other data sets on Rich Transcription can be used

to perform sentence boundary disambiguation, such as

the Rich Transcription data sets provided by National

Institute of Standards and Technology (NIST).
T

Cross-references
▶Column Segmentation

▶Text Retrieval

▶Text Summarization

▶Text Representation
Recommended Reading
1. Beeferman D., Berger A., and Lafferty J. Statistical models for

text segmentation. Mach. Learn., 34(1–3):177–210, 1999.

2. Grefenstette G. and Tapanainen P. What is a word, what is a

sentence? Problems of tokenization. In Proc. 3rd Conf. on

Computational Lexicography and Text Research, 1994, pp. 7–10.
3. Mikheev A. Tagging sentence boundaries. In Proc. 1st Conf. on

North American Chapter of the Association for Computational

Linguistics, 2000, pp. 264–271.

4. Reynar J.C. and Marcus M.P. Topic segmentation: algorithms

and applications. Ph.D. Thesis, University of Pennsylvania,

Philadelphia, PA, 1998.
Text Semantic Representation

JUN YAN, JIAN HU

Microsoft Research Asia, Haidian, China

Definition
The classical text representation strategies aim to nu-

merically represent the unstructured text documents to

make them mathematically computable. With the rapid

growth of information retrieval and text data mining

research, the semantic text representation is attracting

more and more attention. The problem is how to rep-

resent the text documents by explicit or implicit seman-

tics instead of word occurrence in the document. The

goals of semantic text representation are to improve

the text clustering, classification, information retrieval

and other text mining problems’ performance.
Historical Background
In the past decades, semantic text representation

has attracted much attention in the area of informa-

tion retrieval and text data mining research. There have

different ways for categorizing various semantic text

representation strategies. This entry generally classifies

the previous efforts for this problem into two cate-

gories: explicit semantic text representation and im-

plicit semantic text representation.

The explicit semantic text representation aims to

represent text documents by explicit readable sen-

tences, key phrases or keywords, which can semantically

describe the main topic of the given text documents.

The related approaches can be further classified into

automatic approaches and manual approaches. From

the automatic approaches’ perspective, the Text Summa-

rization technologies aim at learning one or more sen-

tences to represent a given text document; the

Information Extraction technologies aim at extracting

one or more key phrases for describing the semantic of a

given text document. In addition, many previous works

propose to annotate the Web pages, which is a special

type of text documents, by search engine click through

3076T Text Semantic Representation
logs. With the rapid growth of Semantic Web (http://

infomesh.net/2001/swintro/#furtherReading) in recent

years, the automatic web page annotation and ontology

learning, etc can all be utilized for automatically repre-

sent Web pages semantically. As some examples, the

WordNet and Wikipedia have both been utilized for

semantically enhance the text representation for various

applications. From the manual approaches’ perspective,

there are many commercial systems target at semantic

text representation by key phrases or key words. Two of

the most representative examples of these commercial

systems are delicious and flicker. Both of them aim to

semantically represent the Web pages through manually

assigned social annotation to a large number of Web

pages.

To date, the work on integrating semantic back-

ground knowledge into text representation is quite

few and the results are not good enough. Buenaga

Rodriguez et al. and Urena Loez et al. successfully

integrated the WordNet resource for a document cate-

gorization task. They improved classification results of

Rocchio and Widrow-Hoff algorithms on Reuters cor-

pus. In contrast some work utilized WordNet in a

supervised scenario without employing WordNet rela-

tions such as hypernyms and associative relations.

Meanwhile, they built the term vectors manually.

Dave et al. has utilized WordNet synsets as features

for document representation and subsequent cluster-

ing. That work did not perform word sense disambig-

uation and found that WordNet synsets decreased

clustering performance in the experiments. Hotho

et al. integrated WordNet knowledge into text clus-

tering, and investigated word sense disambiguation

strategies and feature weighting schema through con-

sidering the hypernym relations from WordNet. The

experimental results on Reuters corpus show improve-

ments compared with the best baseline. However,

considering the few word usage contexts provided by

WordNet, the word sense disambiguation effect is quite

limited. Meanwhile, the enrichment strategy which

appends or replaces document terms with their hyper-

nym and synonym is overly simple. To solve the limita-

tions of many previous work, Hu et al. proposed to

enhance the text representation by Wikipedia.

On the other side, one of the most classical implicit

semantic text representation approaches is known

as the Latent Semantic Indexing (LSI) [2]. Nowadays,

the most commonly used text representation model is

called as the Vector Space Model (VSM) [3]. It aims to
represent each text document by a numerical vector

such that the similarity between vectors (documents)

can be computed by different kernels. Latent Semantic

Indexing (LSI) was originally proposed for dealing

with the problem of synonymy and polysemy in the

vector space model. In VSM, LSI represents the seman-

tics of text documents through the linear combination

of terms, which is computed by the Singular Value

Decomposition (SVD) [1]. The reason why LSI is

known as the implicit semantic text representation

strategy is that the linear combination of keywords,

which are semantics of the text documents, cannot be

explained intuitively. A variety of tests and applications

have been developed to validate its power in text rep-

resentation. Special interests have been paid to inves-

tigate its ability in improving the IR performance.

Besides general IR tasks, LSI has also been successfully

applied for the cross-language retrieval and distribu-

ted information retrieval tasks. However, classical LSI

suffers from the high computational cost involved in

the Singular Value Decomposition (SVD), especially

when applied to large scale text corpus. To avoid the

costly computation, it has been proposed to use other

strategies such as Semi-Discrete matrix Decomposition

(SDD) and Concept Indexing (CI) instead of LSI for

implicitly and semantically representing text docu-

ments. There are many variances of the classical LSI,

the Probabilistic Latent Semantic Indexing (PLSI) [4]

and the Supervised LSI are some of the examples.

Foundations
This entry mainly introduces one classical algorithm in

each algorithm category. In the explicit semantic text

representation category, the Wikipedia for text enrich-

ment is introduced. On the other hand, in the implicit

semantic text representation category, the traditional

latent semantic indexing is introduced.

Wikipedia is a dynamic and fast growing resource –

articles about newsworthy events are often added within

few days of their occurrence. Each article in Wikipedia

describes a single topic; its title is a succinct, well-formed

phrase that resembles a term in a conventional thesau-

rus. Meanwhile, each article must belong to at least

one category of Wikipedia. Hyperlinks between articles

keep many of the same semantic relations as defined in

international standard for thesauri, such as equivalence

relation (synonymy), hierarchical relation (hypernym)

and associative relation. However, as an open resource,

it inevitable includes much noise. To make it a clean

http://infomesh.net/2001/swintro/#furtherReading
http://infomesh.net/2001/swintro/#furtherReading

Text Semantic Representation T 3077

T

and easy-to-use as a thesaurus, a recent work proposed

by Hu et al. first preprocess theWikipedia data to collect

Wikipedia concepts, and then explicitly derive relation-

ships betweenWikipedia based on the structural knowl-

edge of Wikipedia.

Each title of a Wikipedia article describes a topic,

and they are denoted as a concept. After process the

Synonymy, Polysemy and Hypernymy, since each

Wikipedia article contains a lot of hyperlinks, which

express relatedness between them, The cosine similari-

ty of article pairs in Wikipedia may reflect the related-

ness between the two concepts. However the drawback

of this measurement is the same as that of BOW

approach, since it only considers terms appeared in

text documents which have no semantic information.

Another method to measure the relatedness between a

pair of Wikipedia articles is to compare the similarity

between outlinked categories of the two articles. It can

be observed that if two articles share some out-linked

categories, the concepts described in these two articles

are most likely related. To get an overall relatedness

of two Wikipedia concepts, the above two measures

are linearly combined.

As introduced above, to represent text documents

semantically, many previous approaches enriched text

representation with external resources such as Word-

Net and ODP. The same to them, for the Wikipedia,

first, the algorithm generates new features for each

document in the dataset. The features can be synonym

or hypernym for document terms or expanded fea-

tures for terms, sentences and documents. Second,

the generated new features replace or append to origi-

nal document representation and construct new vector

representation.

On the other hand, the classical LSI due to its effec-

tiveness in the area of text data mining and informa-

tion retrieval research. More details about other related

approaches please refer to the recommended readings.

In the bag of words (BOW) model, a text document

is represented as a collection of unordered terms. Given

the document collection D = {di, i = 1, 2,...,n}, suppose

there are m unique terms appeared in this collection.

Mathematically, this corpus of documents can be repre-

sented by a m by n matrix. S 2 Rm�n Each text docu-

ment is denoted by a column vector si; i ¼ 1; 2;:::;n

and each term is denoted by a row vector. The jth

entry of si is denoted by sji; j ¼ 1; 2;:::;m.

Mathematically, LSI aims to find a projection

matrix W 2 Rm�p such that the linear projection
yi ¼ WTsi 2 Rp; i ¼ 1; 2;:::;n can reflect the p semantic

concepts implied by document di, where p < < m. In

other words, LSI assumes that the linear combination

of terms can reflect the concepts in text documents.

W 2 Rm�p can give p different linear combinations

for term weights vector si. Through the linear projec-

tion matrix W, the text document di which is repre-

sented by m terms?’ weights in vector si is represented

by p concepts?’ weights in vector yi. The problem left is

how to get the projection matrix W, i.e., how to get

the weights for the linear combination of terms, from

the matrix S. The calculating of W can be formulated

from different perspectives. For example, it can be

formulated as optimization problem through the es-

sential relationship between LSI and Principal Compo-

nent Analysis (PCA). It can also be formulated as the

best low rank matrix approximation problem. Intui-

tively, LSI is computed through the matrix decompo-

sition. Given the term by document matrix S, where sji
stands for the weight of term j in document i. Assume

that there exists a decomposition of matrix S = USVT,

where U and V are orthogonal matrices and S is a

diagonal matrix. This matrix decomposition is called

as the Singular Value Decomposition (SVD). If pre-

serve only the first p columns of U, it is the projection

matrix W 2 Rm�p for LSI.
Key Applications
The semantic text representation has various different

applications. Generally speaking, it is very important

for the traditional text clustering, text categorization

and information retrieval tasks. As some detailed

examples, the LSI is generally used for relevance

based information retrieval and text clustering. Docu-

ments summarization can be used for search results

snippet generation. Key word extraction can be used as

a component of the ontology learning of semantic

Web. The social annotation is a fundamental work

for semantic Web. As a summary, the semantic text

representation is a fundamental problem for text

mining and analysis.
Future Directions
The future directions of semantic text representation

problem can be roughly classified into threefold. The

first is how to develop novel semantic text representa-

tion approaches by designing novel algorithms and

leveraging other meta-information. In more details,

3078T Text Streaming Model
the Wordnet was first proposed to enhance the seman-

tic text representation. Simultaneously, the search en-

gine click-through log was proposed to enhance the

text representation. Recently, the Wikipedia and social

annotation were widely studied as the meta-informa-

tion of text documents for semantic text representa-

tion. The remaining problem is whether other better

data sources for text enrichment will be found. The

second is the scalability issue for current strategies. For

example, the SVD computation for LSI is highly ex-

pensive. A big problem is how to design scalable algo-

rithm for LSI to deal with large scale data. The

advanced algorithm could be approximated LSI, paral-

lel computation and incremental computation etc. The

third direction is how to apply the semantic text rep-

resentation strategies for pushing the progress of se-

mantic Web and other applications of semantic text

representation. For example, one problem is how to

enhance the text clustering or classification by seman-

tic text representation.

Data Sets
For testing the effectiveness of semantic text rep-

resentation strategies, there are many commonly used

text datasets in different scales. As some examples, the

Reuters-21578 (http://www.daviddlewis.com/resources/

testcollections/reuters21578/), RCV1 (http://jmlr.csail.

mit.edu/papers/volume5/lewis04a/lewis04a.pdf), 20

Newsgroup (http://people.csail.mit.edu/jrennie/20News,

groups/), Open Directory Project (ODP) (http://rdf.

dmoz.org/) and the TREC text datasets (http://trec.nist.

gov/data.html) are all commonly used for text mining or

IR research.

Cross-references
▶ Semantic Web

▶Text Categorization

▶Text Retrieval
Recommended Reading
1. Alter O., Brown PO., and Botstein D. Singular value decom-

position for genome-wide expression data processing and mod-

eling. In Proc. Natl. Acad. Sci. USA., 97:10101–10106.

2. Deerwester S., Dumais S.T., Landauer T.K., Furnas G.W., and

Harshman R.A. Indexing by latent semantic analysis. J. Soc. Inf.

Sci., 41(6):391–407.

3. Gerard S. and Michael J. Introduction to Modern Information

Retrieval. McGraw-Hill Companies, 1983.

4. Thomas H. Probabilistic latent semantic indexing. In Proc. 22nd

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 1999, pp. 50–57.
Text Streaming Model

NING LIU

Microsoft Research Asia, Beijing, China

Definition
Text streaming model (TSM) is one of the fundamental

problems in streaming model and text mining. It aims

to process a sequence of text data that comes at a rate. In

this model, text data does not take the form of arriving

in multiple, continuous, rapid, time-varying data

streams. Input text streaming D1, D2, ... arrives sequen-

tially, one by one, and the aim of TSM is to analysis the

streaming text data.

Historical Background
Mining the streaming data has attracted much atten-

tion of researchers in different areas due to its great

industrial and commercial application potentials. Spe-

cifically, text streaming data models are of interest to

the machine learning and data mining community.

The world wide web has many text data, such as web

pages, news-feeds, emails and blogs. And most of them

are classical text streaming data. Then, how to model

text streaming data is important.

Traditional text data model is Vector Space Model

(VSM). One of the commonly used VSM is the Bag of

Words model (BOW), which index the document as a

set of terms. This set of terms defines a space such that

each distinct term represents the entries in that space.

Since VSM represents the documents as a set of terms,

this space can be viewed as a “document space.” A

numeric weight can then be assigned to each term in

a given document, representing an estimate of the

usefulness of the given term as a descriptor of the

given documents. The weights assigned to the terms

in a given documents can then be interpreted as the

coordinates of the document in the documents space.

Then, Term Frequency Inversed Document Frequency

(TFIDF) model was proposed. It uses real values,

which capture the term distribution among documents

to weight terms in each document vector. Moreover,

the N-gram statistical language model was proposed to

model text data with VSM.

However, there are two challenges in the traditional

VSM for text streaming data.

1. Update the data automatically

2. Do analyses of updated streaming data in accept-

able time

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lewis04a.pdf
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lewis04a.pdf
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://rdf.dmoz.org/
http://rdf.dmoz.org/
http://trec.nist.gov/data.html
http://trec.nist.gov/data.html

Text Summarization T 3079

T

Foundations
In the bag of words (BOW) model, a text document

is represented as a collection of unordered terms. Given

the document collection D = {di, i = 1, 2,...,n},

suppose there are m unique terms appeared in this

collection (stop words removal and stemming are

introduced later). Mathematically, this corpus of docu-

ments can be represented by am by nmatrix S 2 Rm�n.
Each text document is denoted by a column vector

si; i ¼ 1; 2;:::;n and each term is denoted by a row vec-

tor. The jth entry of si is denoted by sji; j ¼ 1; 2;:::;m. As

an example, suppose the document collection D

implies two documents,

– d1: He investigates the text representation

approaches.

– d2: What is the meaning of text representation

approach for text documents?

There is a list of 13 unique terms, which are,

" “He, investigates, the, text, representation, approaches,

What, is, meaning, of, approach, for, documents.”

Thus, one roughly represents the two documents by a

13 by 2 matrix. Consider the simple Boolean model

first. In other words, if a term appears in a document,

its corresponding weight is 1; otherwise, it is 0. The

transform of the matrix for collection D is,

ST2 ¼
1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 1 1 1 1

� �

where the order of term index is the same as the term

list given above, i.e., the first term is “He” and the last

term is “documents.”

For text streaming data, a new text is coming,

– d3: Text mining is important in IR.

Now, the term list of d1and d2 should be changed. The

problem is how the model streaming text data, which is

how to update the indexing matrix.

STs ¼ ST2 0 0

0 s3i 0

� �
Key Applications
The streaming text model is the fundamental work for

IR and text mining. Besides IR, it can also be used for

news categorization and RSS clustering etc.
Data Sets
For testing the effectiveness of text representation stra-

tegies, there are many commonly used text datasets in

different scales. As some examples, the Reuters-21578,

RCV1, 20 Newsgroup, Open Directory Project (ODP)

and the TREC text datasets are all commonly used for

streaming text model.

Recommended Reading
1. Abadi D., Carney D., Çetintemel U., Cherniack M., Convey C.,

Erwin C., Galvez E., Hatoun M., Maskey A., Rasin A., Singer A.,

Stonebraker M., Tatbul N., Xing Y., Yan R., and Zdonik S.

Aurora: a data stream management system. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2003, pp. 666.

2. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 1–16.
Text Summarization

DOU SHEN

Microsoft Corporation, Redmond, WA, USA

Synonyms
Document summarization

Definition
Text summarization is the process of distilling the

most important information from a text to produce

an abridged version for a particular task and user [9].

Historical Background
With more and more digitalized text being available,

especially with the development of the Internet, people

are being overwhelmed with data. How to help people

effectively and efficiently capture the information

from the data becomes extremely important. Many

techniques have been proposed for this goal and text

summarization is one of them.

Text summarization in some form has been in

existence since the 1950s [8]. Two main influences

have dominated the research in this area, as summar-

ized by Mani in [10]. Work in library science, office

automation, and information retrieval has resulted in a

focus on methods for producing extracts from scien-

tific papers, including the use of “shallow” linguistic

analysis and the use of term statistics. The other

3080T Text Summarization
influence has been research in artificial intelligence,

which has explored “deeper” knowledge-based meth-

ods for condensing information. While there are a

number of problems remaining to be solved, the field

has seen quite a lot of progress, especially in the last

decade, on extraction-based methods. This progress

has been greatly accelerated by the rather spectacular

advances in shallow natural language processing, and

the use of machine learning methods which train

summarization systems from text corpora consisting

of source documents and their summaries. In the fol-

lowing sections, a brief introduction of different kinds

of text summarization will be introduced, which is

followed by an overview of the existing algorithms.

Foundations
Text summarization can be categorized along two

different dimensions: abstract-based and extract-

based. An extract-summary consists of sentences

extracted from the document while an abstract-sum-

mary may employ words and phrases that do not

appear in the original document but that are seman-

tically meaningful [9]. The summarization task can

also be categorized as either generic or query-orient-

ed. A query-oriented summary presents the informa-

tion that is most relevant to the given queries, while a

generic summary gives an overall sense of the docu-

ments content [4]. In addition to single document

summarization, which has been first studied in this

field for years, researchers have started to work on

multi-document summarization whose goal is to gen-

erate a summary from multiple documents that cover

related information.

Most current text summarizers are extractive, since

extraction is widely used, such as the snippets generated

by search engines, while it is much easier than abstract-

ing. Therefore, this entry focuses on extraction. For

extractive summarizers (either for single-document

summarization or multi-document summarization),

they usually need to solve three problems: (i) Content

selection, that is what should be selected from the text to

form the summaries, which are most in the form of

sentences or phrases; (ii) Information ordering, that

is how to order the extracted sentences or phrases;

(iii) Sentence realization, that is what kind of clean up

to perform on the extracted sentences or phrases so

they form a coherent summary. It is clear that the first

problem is the critical one for extractive summarizers.
The algorithms for this problem can be categorized as

either unsupervised methods, or supervised methods.

Unsupervised methods do not need any training data

(pairs of a texts and the corresponding summaries).

They calculate the importance of a sentence by consider-

ing the position of the sentence, the contained terms

or phrases, the discourse centrality and so on. Supervised

methods rely on a set of training data, which designs

some features to capture the importance of sentences

and a model can be learned from the training data to

predict the importance of sentences. With this model,

the most important sentences can be selected to form a

summary.

Extractive Summarization Algorithms

Unsupervised Methods The simplest and straightfor-

ward way to select sentences is based on the sentences’

locations. Generally speaking, certain locations of the

text (titles, headings, the first sentence in each para-

graph, etc.) tend to contain important information.

Therefore, by simply taking sentences in these loca-

tions, a summary can be constructed, which forms a

strong baseline, even better than other methods [2].

Besides locations of sentences, the importance of a

sentence is indicated by cue phrases. For example, once

a sentence contains the phrases like “To sum up,” “In

summary,” it ismore likely to be extracted as an summary

sentence. On the contrary, some other phrases like

“specifically,” “in details” indicate that the sentence

is not “abstract” enough to be a summary sentence.

In [15], Teufel and Moens manually built a list of

1,423 cure phrases in a genre of scientific texts and

each cue phrase has a (positive or negative) “goodness

score,” also assigned manually.

There are also some methods calculating the

importance of sentences based term importance and

the term importance can be estimated by its frequency.

The system of Luhn [8] is an typical example of this

kind. In Luhn’s method, every sentence is assigned

with a significance factor, and the sentences with the

highest significance factor are selected to form the

summary. In order to compute the significance factor

of a sentence, it is necessary to build a “significant

words pool” which is defined as those words whose

frequency is between high-frequency cutoff and low-

frequency cutoff that can be tuned to alter the char-

acteristics of the summarization system. After this is

done, the significant factor of a sentence can be

Text Summarization T 3081

T

computed in the following way: (i) set a limit L for the

distance at which any two significant words could be

considered as being significantly related. (ii) find out a

portion in the sentence that is bracketed by significant

words not more than L non-significant words apart.

(iii) count the number of significant words contained

in the portion and divide the square of this number

by the total number of words within the portion.

In the above mentioned unsupervised methods,

the sentences in a text are treated independently. In

the following part, several more unsupervised methods

are introduced, which exploit the relationship among

sentences to some extent. The first one, as presented

in [5], organizes the sentences in a text into a matrix

and then apply a technique named Latent Semantic

Analysis (LSA) [1] to derive the importance of sen-

tences. A brief overview of LSA can make it easier to

understand the LSA-based summarization method.

LSA is based on singular value decomposition (SVD),

a mathematical matrix decomposition technique that

is applicable to text corpora as known by people. Given

an m*n matrix A = [A1, A2,...,An], with each column

vector Ai representing the weighted term-frequency

vector of sentence i in the document under consider-

ation, the SVD is defined as:

A ¼ USVT

where U = [uij] is an m*n column-orthonormal

matrix whose columns are called left singular vectors;

S = diag (s1,s1,...,sn) is an n � n diagonal matrix

whose diagonal elements are non-negative singular

values sorted in descending order. V = [vij] is an

n � n othonormal matrix whose columns are called

right singular vectors.

As noted in [1], LSA is applicable in summariza-

tion for two reasons. First, LSA is capable of capturing

and modeling interrelationships among terms by

semantically clustering terms and sentences. Second,

LSA can capture the salient and recurring word com-

bination pattern in a document which describes a

certain topic or concept. In LSA, concepts are repre-

sented by one of the singular vectors where the magni-

tude of the corresponding singular value indicates the

importance of this pattern within the document. Any

sentence containing this word combination pattern

will be projected along this singular vector. The sen-

tence that best represents this pattern will have the

largest index value with this vector. Therefore, a
summary can be constructed by collecting the sen-

tences having largest index values over all concepts.

In [12], Mihalcea explicitly models the relationship

among sentences by building a graph. In the graph,

each node corresponds to a sentence and the weight

of the edge linking two nodes is the similarity between

the corresponding sentences. The direction of the edges

can be decided by the appearance order of the

sentences. After constructing the graph, Mihalcea

employed some graph-based ranking algorithms like

HITS and PageRank to decide the importance of a

vertex (sentence) which can take into account the

global information recursively computed from the en-

tire graph. Finally, the sentences with highest ranking

scores are selected to form a summary.

The third kind of summarization methods of

exploiting sentence relationship is based on coherence

relations. One example for the coherence relations is

RST (rhetorical structure theory) relations. The RST

relations are often expressed in terms of a satellite and

a nucleus and nucleus sentences are more likely to be

a summary sentence. More details of using RST for

summarization can be found in [11].
Supervised Methods In the above mentioned unsu-

pervised methods, each method estimates the impor-

tance of sentences based on some evidences from a

certain aspect and then generate summaries based on

the estimated importance. Therefore, a proper combina-

tion of these evidences may improve the generated sum-

maries. Some supervised machine learning methods

have been exploited for this goal. Among these methods,

most of them treat the summarization task as a two-

class classification problem at the sentence level, where

the summary sentences are positive samples while the

non-summary sentences are negative samples. After

representing each sentence by a vector of features, a

classification function such as Naive Bayes and Support

Vector Machine can be trained [6]. Then for a new text,

the trained classification function can be applied on each

sentence in the text and decide whether it is a summary

sentence. Although such methods are effective in most

cases, they assume that the sentences are independent

and classify each sentence individually without lever-

aging the relation among the sentences.

In order to address this shortcoming, some meth-

ods based on Hidden Markov Model (HMM) are

exploited [3]. In Conroy et al.’s work [3], there are

3082T Text Summarization
two kinds of states, where one kind corresponds

to the summary states and the other corresponds to

non-summary states. The observations are sentences

that are represented by a vector of three features. Given

the training data, the state-transition probabilities and

the state-specific observation probabilities can be esti-

mated by the Baum-Welch algorithm or an EM algo-

rithm. Given a new document, the probability that a

sentence corresponds to a summary state can be calcu-

lated. Finally, the trained model can be used to select

the most likely summary sentences.

It is clear that such approaches can handle the posi-

tional dependence and feature dependence when the

feature space is small by taking some special assump-

tions. However, theHMMbasedmethods have two open

problems. Firstly, when the feature space is large and

the features are not independent or are even overlapping

in appearance, the training process will become intra-

ctable. Therefore this approach cannot fully exploit the

potential useful features for the summarization task due

to the computational inefficiency. Secondly, the HMM

based methods set the HMM parameters to maximize

the likelihood of the observation sequence. By doing so,

the approach fails to predict the sequence labels given the

observation sequences in many situations because they

inappropriately use a generative joint-model in order to

solve a discriminative conditional problem when obser-

vations are given. In [14], the authors use Conditional

Random Fields (CRF) to replace HMM for text summa-

rization which avoids these problems.

Evaluation

For extractive summarization methods, there are two

popular evaluation measurements. The first one is by

Precision, Recall and F1 which are widely used in

Information Retrieval. For each document, the manu-

ally extracted sentences are considered as the reference

summary (denoted by Sref). This approach compares

the candidate summary (denoted by Scand) with the

reference summary and computes the precision, recall

and F1 values as shown in the following equation:

p ¼ jSref
T
Scand j

Scand
r ¼ jSref

T
Scand j

Sref
F1 ¼ 2pr

p þ r

A second evaluation method is by the ROUGE toolkit,

which is based on N-gram statistics [7]. This tool is

adopted by DUC for automatic summarization evalu-

ation that was found to highly correlate with human

evaluations.
Key Applications
Text summarization has been applied inmany fields. For

example, the snippets generated by search engines such

as Google, Live Search are successful examples. Another

example is to generate summaries for hand-held devices,

whose screens are usually small [10]. Besides these, text

summarization has also been used as a preprocessing

step for some text mining tasks such as Web-page clas-

sification, which is expected to catch themain content of

the Web pages while removing the noises [13].
Data Sets
Document Understanding Conferences (2001–2007)

provide an open data source for different kinds of

summarization tasks: http://duc.nist.gov/. More useful

URLs are at http://www.summarization.com/.
Cross-references
▶Text Mining

▶Text Generation

▶Text Classification

▶ Summarization

▶Topic Detection and Tracking
Recommended Reading
1. Berry M.W., Dumais S.T., and O’Brien G.W. Using linear

algebra for intelligent information retrieval. SIAM Rev., 37(4):

573–595, 1995.

2. Brandowa R., Mitzeb K., and Rauc L.F. Automatic condensation

of electronic publications by sentence selection. Inform. Process.

Manage., 41(6):675–685, 1995.

3. Conroy J.M. and O’leary D.P. Text summarization via hidden

markov models. In Proc. 24th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2001,

pp. 406–407.

4. Goldstein J., Kantrowitz M., Mittal V., and Carbonell J.

Summarizing text documents: sentence selection and evaluation

metrics. In Proc. 22nd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1999,

pp. 121–128.

5. Gong Y. and Liu X. Generic text summarization using relevance

measure and latent semantic analysis. In Proc. 24th Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2001, pp. 19–25.

6. Kupiec J., Pedersen J., and Chen F. A trainable document

summarizer. In Proc. 18th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1995,

pp. 68–73.

7. Lin C.-Y. and Hovy E. Automatic evaluation of summaries using

n-gram co-occurrence statistics. In Proc. Human Lang. Tech.

Conf. of the North American Chapter of Assoc. Comput. Lin-

guistics, 2003, pp. 71–78.

http://duc.nist.gov/
http://www.summarization.com/

Text Visualization T 3083
8. Luhn H.P. The automatic creation of literature abstracts. IBM J.

Res. Dev., 2(2), 1958.

9. Mani I. Advances in Automatic Text Summarization. MIT,

Cambridge, MA, USA, 1999.

10. Mani I. Recent developments in text summarization. In Proc.

10th Int. Conf. on Information and Knowledge Management,

2001, pp. 529–531.

11. Marcu D. From discourse structures to text summaries. In Proc.

ACL Workshop on Intelligent Scalable Text Summarization,

1997, pp. 82–88.

12. Mihalcea R. Language independent extractive summarization.

In Proc. 20th National Conf. on AI and 17th Innovative Appli-

cations of AI Conf., 2005, pp. 1688–1689.

13. Shen D., Chen Z., Yang Q., Zeng H.-J., Zhang B., Lu Y., and

Ma W.-Y. Web-page classification through summarization. In

Proc. 30th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2004, pp. 242–249.

14. Shen D., Sun J.-T., Li H., Yang Q., and Chen Z. Document

summarization using conditional random fields. In Proc. 20th

Int. Joint Conf. on AI, 2007, pp. 2862–2867.

15. Teufel S. and Moens M. Sentence extraction as a classification

task. In Proc. ACLWorkshop on Intelligent Text Summarization.

1997, pp. 58–65.
T

Text Visualization

HAODA HUANG, BENYU ZHANG

Microsoft Research Asia, Beijing, China

Synonyms
Document visualization

Definition
Text visualization is a subarea of information visuali-

zation. The definition of information visualization is as

follows: The use of computer-supported, interactive,

visual representations of abstract data to amplify cog-

nition [2]. Thus, the definition of text visualization is

analogous: The use of computer-supported, interac-

tive, visual representations of abstract text to amplify

cognition. A more comprehensive and user-friendly

definition is similar: The visual representation of text

and its relationships.

Historical Background
In the early years, information such as texts and pic-

tures were organized linearly: they were put in order

and searched from beginning to end. But this is obvi-

ously not the most efficient way to organize informa-

tion. It is well known that “A picture is worth a
thousand words.” People like to see news along with

pictures, music, and even videos, rather than see purely

raw text. Various technologies are also developed to

help people graphically and visually represent their

ideas, problems, challenges, solutions, and results.

Today, information is not only presented one-dimen-

sionally as in previous centuries, but also presented

in two and more dimensions to help people under-

stand the underlying idea clearly and thoroughly.

Putting the right data in the right location and right

format will greatly facilitate people seeking and under-

standing the information.

The history of text visualization is not very long.

It started in the 1980s, when bandwidth and storage

was very expensive. At that time, it was a luxury to

play with advanced and real-time interactive graphics

and visual effects. But with the rapid developments

during the past several years, the standard PC platform

provides high performance for processing videos

and graphics and can present many advanced visual

effects to users now. The 3D graphic interface has

gradually dominated the gaming area, and 2D and

3D information visualization will become the main-

stream of search engine retrieval and many other

services.

Today, people are not satisfied with simply interact-

ing with information in one dimension. Instead, they

are more willing to search and manipulate their ideas

and contents in multiple dimensions. This is becoming

the main trend today and is also presenting a great

challenge to traditional information organizations,

such as libraries and museums. They are required to

develop advanced 2D and 3D text visualization technol-

ogies to maintain their market share.

Foundations
Text visualization is about representing the underlying

structure of a text or a group of texts. Text visualization

offers several benefits for users. With text visualization,

for example, users could have a view of texts in differ-

ent levels of abstraction, could have a better view of the

relationships between texts, and could have a high-

level view of the topics in the text collection.

Generally, the ideas of many text visualization algo-

rithms are borrowed from data analysis research areas

while accounting for the specific properties of texts.

These properties include the following [6,8]: “(i) High

data dimensionality when using typical bag-of-words

representation, where each word and each phrase

3084T Text Visualization
represents on dimension in the data space. (ii) High

redundancy, meaning that many dimensions can be

easily merged into one dimension without losing

much information. This is caused by the two proper-

ties of words, namely synonymy (different surface

word forms having the same meaning – e.g., singer,

vocalist) and hyponymy (one word denotes a subclass

of an another – e.g., breakfast, is a subclass of a meal).

(iii) Ambiguity between words in the cases where

the same surface form of the word has different mean-

ings (homonomy – e.g., the word “bank” can mean

“river bank” or “financial institution”) or in the cases

where the same form has related meaning (polysemy –

e.g., “bank” can mean “blood bank” or “financial

institution”). (iv) Frequency of words (and phrases)

follows power distribution. Appropriate weighting

schemas (e.g., most popular being TFIDF) are used

to normalize importance of the words to be able to

work with the standard data analytic techniques.”

Meanwhile, there are many types of texts, such as

web documents, emails and news group postings, lit-

erature, and legal documents. In developing a text

visualization algorithm or a system for a special type

of text, the properties of the type of text also needs to

be considered. For example, to visualize news articles,

[8] have considered the following properties in their

approach: (i) shorter documents; (ii) written by pro-

fessionals; (iii) low number of mistakes; (iv) having

good rhetorical structure; (v) rich information about

people, companies, or phrase; and (vi) single docu-

ments as pieces of larger stories spanning over several

documents.

Many text visualization algorithms adopt bag-of-

words text representation, where text is viewed as a bin

of independent words with term dependencies and

with any other positional information of terms ig-

nored. This simplification appears to be reasonable,

since in many cases the efficiency of solving relevant

problems does not degrade much. In the bag-of-words

representation, each word is represented as a separate

variable with a numeric weight. This numeric weight is

often calculated using the famous TFIDF weighting

schema: the weight is the multiply of term frequency

and the inverse document frequency. The idea of TFIDF

is very intuitive: if the word appears more times in a

text, it would be more important; and if the word

appears in fewer texts in the text corpus, it would be

more important. In the bag-of-words representation, a
text is represented as high-dimensional sparse vector, so

it cannot be directly visualized. A clustering algorithm

needs to be applied to indentify the relationships be-

tween texts and then to map them into 2D or 3D space.

The cosine similarity measure is widely used to evaluate

relationship between texts. There are also some other

typical ways of text visualization using graphs or trees to

present frequent co-occurrences of words and phrases.

Typical visualization algorithms include graph based

visualization and tiling based visualization as intro-

duced in [4]:

Graph-based visualization has the following algo-

rithm sketch: (i) First, documents are transformed into

the bag-of-words sparse-vectors representation. Words

in the vectors are weighted using TFIDF. (ii) Then,

K-Means clustering algorithm is used to split the docu-

ments into K groups. Each group consists of similar

documents and these are compared using cosine simi-

larity. The K groups form a graph with groups

corresponding to graph nodes and similar groups linked.

Each group is represented by characteristic keywords.

(iii) Finally, simulated annealing is used to draw a graph.

Tiling-based visualization has the following algo-

rithm sketch: (i) First, documents are transformed into

the bag-of-words sparse-vectors representation. Words

in the vectors are weighted using TFIDF. (ii) Then,

hierarchical top-down two-wise K-Means clustering

algorithm is used to build a hierarchy of clusters. The

hierarchy is an artificial equivalent of hierarchical sub-

ject index just like Yahoo. (iii) Finally, the leaf nodes of

the hierarchy (bottom level) are used to visualize the

documents. Each leaf is represented by characteristic

keywords and each hierarchical splits the rectangular

area into two sub-areas recursively.

Key Applications
WebSom [7] gives self-organizing Maps for Internet

Exploration. An ordered map of the information space

is provided: similar documents lie near each other

on the map. The algorithm automatically organizes

the documents onto a two-dimensional grid so that

related documents appear close to each other.

ThemeScape [3] graphically displays images based

on word similarities and themes in text. Themes within

the document spaces appear on the computer screen as

a relief map of natural terrain. The mountains indicate

where themes are dominant, valleys indicate weak

themes. Themes close in content will be close visually

TF*IDF T 3085

T

based on the many relationships within the text spaces.

The algorithm is based on K-means clustering.

ThemeRiver [5] helps users identify time-related

patterns, trends, and relationships across a large collec-

tion of documents. The themes in the collection are

represented by a “river” that flows left to right through

time. The theme currents narrow or widen to indicate

changes in individual theme strength at any point

in time.

The text representation is the fundamental work

for IR and text mining. Besides IR, it can also be used

for text categorization, text clustering, topic detection

and novelty detection etc.

Future Directions
Although there have been many text visualization sys-

tems that have achieved much success in the past, there

still exists many ways to improve them. One is to use

natural language processing tools to do more detailed

analysis or to improve the text summarization. Another

may be to design more and better interaction tools for

users to manipulate the texts. Advanced 2D and 3D

graphics techniques may also be used to make the user

interfaces friendlier.

Cross-references
▶Data Mining

▶ Information Retrieval

▶Text Segmentation

Recommended Reading
1. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. ACM Press, NewYork, NY, 1999.

2. Card S., Mackinlay J., and Shneiderman B. Readings in Infor-

mation Visualization: Using Vision to Think. Academic Press,

1997.

3. Cartia. ThemeScape Product Suite. Available at: http://www.

cartia.com/products/index.html

4. Grobelnik M. Text Visualization Tutorial.

5. Havre S., Hetzler E., Whitney P., and Nowell L. ThemeRiver:

Visualizing thematic changes in large document collections.

IEEE Trans. Vis. Comput. Graph., 8(1):9–20, 2002.

6. Jurafsky D. andMartin J.H. Speech and Language Processing: An

Introduction to Natural Language Processing, Computational

Linguistics and Speech Recognition. Prentice Hall, 2000.

7. Lagus K., Kaski S., and Kohonen T. Mining massive docu-

ment collections by the WEBSOM method. Inf. Sci., 163

(1–3):135–156, 2004.

8. Marko G. and Dunja M. Visualization of news articles. In

SIKDD 2004 at Multiconference IS. Ljubljana, Slovenia, 2004,

pp. 12–15.
Text/Document Summarization

▶ Summarization
Text-based Image Retrieval

▶Annotation-based Image Retrieval
TF*IDF

IBRAHIM ABU EL-KHAIR

Minia University, Minia, Egypt

Synonyms
Term frequency by inverse document frequency

Definition
A weighting function that depends on the term fre-

quency (TF) in a given document calculated with

its relative collection frequency (IDF). This weighting

function is calculated as follows [1] Assuming that term

j occurs in at least one document d (dj ≠ 0), the inverse

document frequency (idf) would be

Log2 N
	
dj

 �þ 1 ¼ log2 N� log2dj

The ratio dj/N is the fraction of documents in the

collection that contain the term. The term frequency-

inverse document frequency weight (TF*IDF) of term j

in document i is defined by multiplying the term

frequency by the inverse document frequency:

Wij ¼ f ij*½log2 N� log2dj �
Where

N: number of documents in the collection

dj: number of documents containing term j

fij: frequency of term j in document i

Wij: is the weight of term j in document i

The use of the logarithm in the formula rather than

the actual values of N and Dk moderates the effect of

increasing the collection size and the effect of a high

term frequency.

http://www.cartia.com/products/index.html
http://www.cartia.com/products/index.html

3086T tgd
Key Points
The significance of a certain term in a given docu-

ment is determined using the term frequency (TF) of

that term in the document. Unfortunately, while term

frequency is a good measure for term significance in

one document, it is not an adequate measure for its

significance in a collection of documents. The use of

this factor alone in calculating the term weights in a

collection of documents does not guarantee adequate

retrieval performance. Some high frequency terms

are not concentrated in a few particular documents,

they are common in the whole collection which

means that all these documents will be retrieved,

affecting the performance of the information retrieval

system.

The solution for this problem [4] is correlating the

term frequency with its relative collection frequency

(IDF), making the collection frequency a variable in

retrieval. The use of collection frequency places a great-

er emphasis on the value of a term as a means of

distinguishing one document from another than its

value as an indication of the content of the document

itself. Combining the two factors, TF and IDF enables

the information retrieval system to exploit the good

features of both. TF emphasizes term significance in a

given document, and IDF emphasizes term signifi-

cance in the collection as a whole; i.e., if the term was

common in a document and rare in the collection

it would be heavily weighted in both schemes. This

way a term can distinguish certain documents from

the remainder of the collection.

Even though this weighting function is a good

indication of the term importance in a given set of

documents it overlooks an important factor which is

the document length. This problem may affect the

weighting process because in real life documents have

different lengths, and longer documents may have

higher frequencies for a given term because it is repeat-

ed several times in the document. This increases the

weight of the term and increases the possibility of

retrieving these documents because of the higher

weight of terms in them. Long documents also may

have more different terms them which may affect the

retrieval as well. More terms in a given document

increases the possibility of matching between this doc-

ument and multiple queries [3]. A possible way to

overcome this problem is to incorporate a normaliza-

tion factor for the document length to reduce its effect
and make the weighting function more effective. A

number of variant formulae for tf*idf weighting are

given in [2].
Cross-references
▶BM25

▶ Information Retrieval

▶Term Weighting

▶Text Indexing Techniques
Recommended Reading
1. Korfhage R.R. Information Storage and Retrieval. Wiley,

New York, USA, 1997.

2. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval. Cambridge University Press, Cambridge,

UK, 2008.

3. Salton G. and Buckley C. Term-weighting approaches in auto-

matic text retrieval. Inf. Process. Manage., 24(4):513–523, 1988.

4. Sparck J.K. A statistical interpretation of term specify and its

application in retrieval. J. Doc., 28:11–20, 1972.
tgd

▶Tuple-Generating Dependencies
Thematic Map

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Thematic map; Data map; Chart

Definition
The graphical representation of quantitative data

or qualitative data for a given geographic area (e.g.,

regional unemployment rate or type of crops grown).

The many different methods that cartographers

apply to create thematic maps are used to define a

thematic map more precisely. The following five are

found most often.

1. Coropleth maps. In coropleth maps the areas of

the map are shaded or patterned in proportion

Third Normal Form T 3087
to the value of the data to be displayed for a

particular area.

2. Dot maps. These maps use equal sized dots to show

the presence of a feature at a particular geographic

location and thus display spatial distributions.

A dot need not be restricted to a single occurrence;

it may indicate any number of entities.

3. Proportional symbol maps. When drawing propor-

tional symbol maps, a cartographer selects a sym-

bol (e.g., a circle or a bar), places it at the spot on

the map to which the data apply and varies the

symbol’s size from place to place in proportion

to the value of the variable that the symbol

represents.

4. Isarithmic maps. These maps use contour lines to

join points of equal value. Examples are barometric

pressure lines in weather maps or elevation above

sea level in topographic maps.

5. Dasymetric maps. These maps divide a geographic

region with contour lines and shade or pattern the

resulting regions in proportion to the value that

applies to the region bounded by a contour line.

Topographic maps that provide reference to geographic

features (political boundaries, roads, lakes, mountains)

are generally not categorized as thematic maps.
T

Key Points
History. Edmund Halley (famous for discovering the

comet bearing his name) is recognized as the author of

the first thematic map. Drawn in 1686, it shows the

direction of trade winds on a world map. Probably the

best known example of using thematic maps for data

analysis is John Snow’s cholera map of 1855, a data

display based on principles still applied in today’s

geographic information systems. These and more

historical notes are summarized in [3]).

Usage. Thematic maps display the spatial distribu-

tion of data for a specific subject or a specific purpose.

They represent information about particular locations

in such a way that spatial patterns emerge. Frequently

thematic maps are used to compare patterns on two or

more maps. Examples are election results, occurrence

of particular types of diseases, usage of agricultural

land, climatic change over time and so on. Major

contributions to thematic mapping come from the

French cartographer Jacques Bertin ([1]). A more

modern treatment of the topic can be found in [2].
Cross-references
▶Data Visualization

▶Chart
Recommended Reading
1. Bertin J. Graphics and Graphic Information-Processing. Walter

de Gruyter, Berlin, New York, 1981.

2. Slocum T.A., McMaster R.B., Kessler F.C., and Howard H.H.,

Thematic Cartography and Geographic Visualization, 2nd edn.

Pearson-Prentice Hall, Upper Saddle River, NJ, 2005.

3. Tufte E.R., The Visual Display of Quantitative Information.

Graphics Press, Cheshire, CT, 1983.
Theme Algebra

▶ Spatial Operations and Map Operations
Thesauri Business Catalogues

▶ Lightweight Ontologies
Thiessen Polygons

▶Voronoi Diagram
Third Normal Form

MARCELO ARENAS

Pontifical Catholic University of Chile, Santiago, Chile

Definition
Let R(A1,...,An) be a relation schema and S a set of

functional dependencies over R(A1,...,An). An attri-

bute Ai (i 2{1,...,n}) is a prime attribute if Ai is an

element of some key of R(A1,...,An). Then specifica-

tion (R, S) is said to be in Third Normal Form (3NF) if

3088T Thread Lifecycle
for every nontrivial functional dependency X ! A

implied by S, it holds that X is a superkey for R or A

is a prime attribute [2].

Key Points
In order to avoid update anomalies in database

schemas containing functional dependencies, 3NF

was introduced by Codd in [2]. This normal form is

defined in terms of the notions of prime attribute and

key as shown above. For example, given a relation

schema R(A, B, C) and a set of functional dependencies

S = {AB! C,C! B}, it holds that (R(A, B, C), S) is in
3NF since AB is a superkey and C is a prime attribute

(given that AC is a key for R). On the other hand,

(S(A, B, C), G) is not in 3NF if G = {A ! B}, since

A is not a superkey for S and B is not a prime attribute.

For every normal form two problems have to be

addressed: how to decide whether a schema is in that

normal form, and how to transform a schema into an

equivalent one in that normal form. On the positive

side, for every relation schema S there exists a database

schema S 0 such that, S 0 is in 3NF and S 0 is a lossless and
dependency preserving decomposition of S. Further-

more, schema S 0 can be generated efficiently by using

the synthesis approach proposed in [1]. On the nega-

tive side, it is expensive to check whether a schema is in

3NF. It was shown by Jou and Fischer that this problem

is NP-complete [3].

Cross-references
▶Boyce-Codd Normal Form

▶ Fourth Normal Form

▶Normal Forms and Normalization

▶ Second Normal Form (2NF)

Recommended Reading
1. Biskup J., Dayal U., and Bernstein P. Synthesizing independent

database schemas. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1979, pp. 143–151.

2. Codd E.F. Further normalization of the data base relational

model. In Proc. Data Base Systems. Prentice-Hall, Englewood

Cliffs, NJ, USA, 1972, pp. 33–64.

3. Jou J. and Fischer P. The complexity of recognizing 3NF relation

schemes. Inf. Process. Lett., 14(4):187–190, 1982.
Thread Lifecycle

▶ Process Life Cycle
Three-Dimensional GIS and
Geological Applications

MARTIN BREUNIG

University of Osnabrueck, Osnabrueck, Germany

Synonyms
Spatial information system; Geoscientific information

system
Definition
An information system for the in-/output, modeling,

management, processing, analyzing and visualization

of geoscientific data including geo-referenced three-

dimensional geometric, topological and attribute data.

The three-dimensional geometric data may consist of

points/vertices (x,y,z-coordinates), curves, surfaces and

polyhedra, respectively. The topological data may con-

sist of nodes, edges, faces and solids, respectively. Typical

attribute data are descriptions of geological strata, i.e.,

properties of strata such as “geological age,” “soil type,”

“main components of the stratum” etc.

The implementation of a three-dimensional GIS

provides data types, spatial access structures includ-

ing geometric/topological algorithms and a spat-

ial or visual query language for the modeling,

management and analysis of geo-referenced three-

dimensional data.
Historical Background
Three-dimensional GIS have two roots in the history

of information systems. The first has its origin in the

field of 3D modeling and visualization. 3D modeling

and visualization systems usually provide a large col-

lection of geometric and topological 3D algorithms.

An example is the Discrete Smooth Interpolation

(D.S.I.) algorithm of Jean-Laurent Mallet and others

[12,13] used for creating and editing triangulated

surfaces. Given an arbitrary mesh with an arbitrary

set of vertices fixed by the user, D.S.I. assigns coordi-

nates to the other nodes of the mesh, enabling the

fixed vertices to be interpolated smoothly [12]. The

second root has its origin in the field of Geographical

Information Systems (GIS). GIS are inherently using

both, spatial and attribute data, in their data manage-

ment. However, standard Geographical Information

Systems usually are not prepared to manage and

Three-Dimensional GIS and Geological Applications T 3089

T

process real 3D data. They only allow the visualization

of 2.5D data representation such as digital elevation

models. However, in this representation every (x,y)-

coordinate may only have one z-coordinate. That is

why Geographical Information Systems cannot be used

to solve 3D geological problems. In particular, polyhe-

dra and solids cannot be treated in Geographical

Information Systems. In today’s Geographical Infor-

mation Systems, the third dimension is only treated as

a thematic attribute such as the height value of an

isoline map.

Relevant work in the field of three-dimensional GIS

has been published by [2,5–7, 13,16,18,–20,22], and by

other authors. For example, theoretical work on three-

dimensional GIS and topological data models has been

worked out by [15]. Literature about spatial database

systems can be found in [8]. Spatial database systems

can be extended for the management of three-

dimensional GIS data. For example, an R-Tree can be

used to access 3D data.

The term “three-dimensional GIS” (3D GIS) is not

yet used in a standardized way. Unfortunately, the term

“3D GIS” or “3D city model” is often used for infor-

mation systems that only deal with surface and face

data, but not with polyhedra and solids. Correctly,

such information systems should be called “2.5D

GIS,” because they only allow to represent surfaces

with the following property, valid for all of their points

P(x, y, z): z = f (x, y). i.e., every point (x, y) of the

surface has a different z-value.

First standardization efforts for the exchange of

data between 3D GIS have been undertaken by the

Open Geospatial Consortium [14] within the Geogra-

phy Markup Language (GML).

Foundations
Spatial planning processes and the study of geoscientific

processes often require three-dimensional information.

This digital information must be modeled, managed,

visualized and analyzed. A three-dimensional GIS is an

information system that accomplishes these require-

ments. To work adequately, it needs 3D data types, 3D

spatial access structures, and 3D geometric and topolog-

ical algorithms tomanage and process three-dimension-

al data of these applications. Furthermore, a user

interface with a query language is required. A spatial

database system may be embedded into a 3D GIS to

support these requirements.
In a 3D GIS, objects of different dimension d

(0 � d � 3) have to be processed. The 3D geometry

of a geological object can be composed of sets of

points, lines, surfaces and volumes, respectively. As a

reference model for 3D geometric data types in three-

dimensional GIS, Simplicial Complexes may be used:

points, polylines, triangle nets and tetrahedron nets in

three-dimensional space. They are often used in geo-

logical applications, because they well approximate 3D

solids and surfaces formed by nature.

In a 3D topology model of a 3D GIS, the compo-

nents of the objects are interpreted as a mesh of nodes,

edges, faces, and solids that describes both the inter-

ior structure of the geological objects and their mut-

ual neighborhood relationships in 3D space. As a

reference model for 3D topological data types in

three-dimensional GIS, cellular complexes [4,13] and

Generalized Maps [10,11,13] respectively, may be used.

They provide a general topological model treating 2D,

2.5D and 3D objects in a uniform way. Furthermore,

they are based on the clear mathematical theory of

algebraic topology.

To access 3D data, existing spatial access structures

such as the R-Tree [9] or R*-Tree [3] may be applied.

The spatial access structures can also be used internally

within the processing of geometric 3D algorithms

as a first filter step to compute on approximated

geometries – 3D boxes are used most – to achieve

better performance, for example to support the inter-

section of very large geometries such as sets of tetra-

hedron nets. For the analysis of 3D data, 3D GIS are

using geometric and topological algorithms, e.g., for

computing the distance between two objects, the inter-

section between two polyhedra, or the neighbor objects

of a given geological object.

Three-dimensional GIS are subject of current

research [1,21]. Concepts and prototypical software

considering aspects of three-dimensional GIS such as

architectural issues, spatial data modeling with con-

straints, efficient spatial data access and geological

applications have been described in detail by many

authors of the GIS and database communities (see

Recommended Reading). First 3D GIS prototype sys-

tems are already used in some application domains of

three-dimensional GIS such as geology, geophysics,

archaeology, and early diagnosis of natural disasters.

Also database vendors are integrating first simple 3D

data types and operations in their products.

3090T Three-Dimensional GIS and Geological Applications
Key Applications
One of the most relevant applications of three-

dimensional GIS is geology. In geology, the starting

point of the examinations is the present condition

of the earth’s structure. Hence the three-dimensional

geometric analysis of recent geological strata and solids

is the key for further investigations concerning the

interaction of former geological structures and pro-

cesses [19]. Furthermore, consistent geometric 3D

models and the use of GIS are the precondition for

the production of digital geological maps. For exam-

ple, the 3D models can be intersected with digital

elevation models to improve maps or to define bound-

ary conditions for 3D models. The computational ex-

pense of GIS, however, is high, because the third

dimension is included.

Some of the relevant data in geological applications

are sections, stratigraphic boundaries, and faults. Sec-

tions describe a mostly vertical intersection through

the geological structure of an examination area, i.e., an

estimation of the geological surfaces and solids includ-

ing geological faults. A cross section through the series

of sediments consists of a set of stratigraphic lines.

Their geometry is mostly given by a point set in

three-dimensional space.

The geometry of stratigraphic boundaries is based

on stratigraphic lines in the sections where the stratum
Three-Dimensional GIS and Geological Applications. Figure

Rhine Basin, managed by a three-dimensional GIS (figure con

with the GOCAD Software, Nancy, now distributed by Paradig
occurs. The stratigraphic surfaces are spread between

the cross sections. Triangle nets in three-dimensional

space can result from the triangulation of the surfaces

between the point sets of the cross sections. Con-

cerning topology, on each cross section the underlying

and hanging stratum of each stratigraphic line can be

identified.

Faults are modeled as surfaces, along which

the tectonic deformation of the sediments took

place. Usually the geometry of a fault consists of a

triangle net in three-dimensional space. The modeling

of strata and faults from cross section to cross section

is an interpolation of new geometries from the

sections.

Figure 1 shows an example of geological data

managed by a three-dimensional GIS. During the

modeling process of geologically defined geometries,

a large amount of data are accumulated. Thus the

handling of three-dimensional data in a spatial data-

base system [8] is recommended for 3D GIS. for

example, the efficient spatial access on a large set of

geological objects is necessary to compute intersec-

tions between single strata and faults with different

thematic attributes, respectively. Therefore, the imple-

mentation of efficient three-dimensional geometric

algorithms has to be provided by the three-dimension-

al GIS. Checking the consistency of geometric
1. Example of geological data in the Lower

structed in the group of Agemar Siehl, University of Bonn,

m, UK).

Three-Phase Commit T 3091
3D models is essential for the geometric 3D recon-

struction of geological structures and geological

processes [19].
Cross-references
▶Digital Elevation Models

▶Geography Markup Language

▶ Simplicial Complex

▶ Spatial Network Databases
T

Recommended Reading
1. Abdul-Rahman A., Zlatanova S., and Coors V. (eds.). Innova-

tions in 3D Geoinformation Systems, Lecture Notes in Geoin-

formation and Cartography, Springer, Heidelberg, 2006.

2. Balovnev O., Bode T., Breunig M., Cremers A.B., Müller W.,

Pogodaev G., Shumilov S., Siebeck J., Siehl A., and Thomsen A.

The story of the GeoToolKit – an object-oriented geodatabase

kernel system. Geoinformatica, 8(1):5–47, 2004.

3. Beckmann N., Kriegel H.-P., Schneider R., and Seeger B. The R*-

tree: an efficient and robust access method for points and rec-

tangles. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1990, pp. 322–331.

4. Brisson E. Representing geometric structures in d dimensions:

topology and order. In Proc. 5th Annual Symp. on Computa-

tional Geometry, 1989, pp. 218–227.

5. Coors V. and Zipf A (eds.). 3D-Geoinformationssysteme, Grun-

dlagen und Anwendungen. Wichmann – Hüthig, Heidelberg,

2004.

6. GOCAD. http://www.gocad.org.

7. Götze H.J. and Lahmeyer B. Application of three-dimensional

interactive modelling in gravity and magnetics. Geophysics,

53(8), 1988, pp. 1096–1108.

8. Güting R.H. Anintroductiontospatialdatabasesystems.VLDBJ.,

3(4):357–399, 1994.

9. Guttman A. R-Trees: a dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

10. Lienhardt P. Subdivision of n-dimensional spaces and

n-dimensional generalized maps. In Proc. 5th Annual Symp.

on Computational Geometry, 1989, pp. 228–236.

11. Lienhardt P. N-dimensional generalized combinatorial maps

and cellular quasi-manifolds. J. Comp. Geom. App., 4(3):

275–324, 1994.

12. Lévy B. and Mallet J.-L. Discrete Smooth Interpolation: Con-

strained Discrete Fairing for Arbitrary Meshes, ISA-GOCAD

(Inria Lorraine/CNRS), ENSG, Vandoeuvre Nancy, http://www.

earthdecision.com/news/white_papers/DSI.pdf.

13. Mallet J.L. Geomodelling. Oxford University Press, New York,

NY, 2002.

14. OGC. http://www.opengeospatial.org.

15. Pigot S. A topological model for a 3D spatial information sys-

tem. In Proc. 5th Int. Symp. on Spatial Data Handling, 1992,

pp. 344–360.

16. Raper J. (Ed.). Three dimensional applications in geographical

information systems. Taylor & Francis, London, 1989.
17. Samet H. The design and analysis of spatial data structures,

Addison-Wesley, Reading, 1990.

18. Schaeben H., Apel M., v.d. Boogart G., Kroner U. GIS 2D, 3D,

4D, nD. Informatik-Spektrum, 26(3), 2003, pp. 173–179.

19. Siehl A. Construction of geological maps based on digital spatial

models. Geol. Jb. A., 104:253–261, 1988.

20. Turner A.K. (ed.) Three-dimensional modeling with geoscienti-

fic information systems, Kluwer Academic, Dordrecht, 1991.

21. van Oosterom P., Zlatanova S., Penninga F., and Fendel E. (eds.)

Advances in 3D geoinformation systems, Lecture Notes in

Geoinformation and Cartography. Springer, Heidelberg, 2007.

22. Vinken R. Digital geoscientific maps – a research project of

the DFG. In Proc. Int. Colloquium at Dinkelsbühl, Geolog.

Jahrbuch A104, 1988, pp. 7–20.
Three-Dimensional Similarity Search

▶ Feature-Based 3D Object Retrieval
Three-Phase Commit

YOUSEF J. AL-HOUMAILY
1, GEORGE SAMARAS

2

1Institute of Public Administration, Riyadh,

Saudi Arabia
2University of Cyprus, Nicosia, Cyprus

Definition
Three-phase commit (3PC) is a synchronization pro-

tocol that ensures global atomicity of distributed trans-

actions while alleviating the blocking aspect of 2PC

(Two-Phase Commit) in the events of site failures.

That is, 3PC never requires operational sites to wait

(i.e., block) until a failed site has recovered.

Historical Background
3PC was one of the first attempts to resolve the blocking

aspects of 2PC [6]. The main purpose of the protocol is

to allow operational sites to continue transaction pro-

cessing and reach agreement about the final status of

transactions in spite of the presence of site failures. 3PC

can tolerate any number of site failures (except for total

sites’ failures), assuming a highly reliable network (i.e., a

network that never causes operational sites to be parti-

tioned into more than one set of communicating sites,

implying a network that never fails).

http://www.gocad.org
http://www.earthdecision.com/news/white_papers/DSI.pdf
http://www.earthdecision.com/news/white_papers/DSI.pdf
http://www.opengeospatial.org

3092T Three-Phase Commit
Foundations
In 2PC, a participant is blocked if it fails to communi-

cate with the coordinator of a transaction while in a

prepared-to-commit state. Blocking means that the

participant cannot determine the final status of the

transaction in the presence of a failure, rendering all

resources held by the prepared-to-commit transaction

at its site unusable by any other transaction until the

final status of the transaction is resolved, i.e., the

transaction is either committed or aborted. Blocking

is inevitable in 2PC and it may occur either because of

(i) a communication (link) failure or (ii) a coordina-

tor’s system crash. These two types of failures lead

to blocking, in 2PC, even under the assumption that

all participants remain operational and can communi-

cate collaboratively to resolve the status of the

prepared-to-commit transaction. For example, if a co-

ordinator fails after all participating sites in a transac-

tion’s execution have entered their prepared-to-

commit states; the participants (collectively) can nei-

ther commit nor abort the transaction. This is because

the operational participants cannot be sure whether

the coordinator had received all their votes and made

a commit final decision just before it failed or it had

received only some votes and did not have the chance

to make the final decision before its failure and the

transaction will be aborted by the coordinator when it
Three-Phase Commit. Figure 1. The three-phase commit pr
recovers. Thus, the participants are blocked until the

coordinator recovers.

The negative impact of blocking on the (i) overall

system performance and (ii) availability of critical data

on other transactions motivated the design of non-

blocking atomic commit protocols (ACPs). In 3PC, an

extra (buffering) phase is inserted between the two

phases of 2PC to capture all the participants’ inten-

tions to commit, as shown in Fig. 1.

Dynamics of Three-Phase Commit

The basic idea behind the insertion of the buffering

phase is to place the two (possible) reachable final

states (i.e., the commit and the abort states) for a trans-

action apart from each other such that they cannot be

reached from the same state. That is, if a final state can

be reached from the current state of a site, then, the

reachable final state can be either the commit or the

abort state but not both. In 2PC, when a participant is

in a prepared-to-commit state, both final states can be

reached. Hence, if the coordinator fails, the participant

cannot determine the final state for the transaction

without any possible conflict in its decision with the

coordinator. For this reason, the protocol is blocking.

On the contrary and as shown in Fig. 1, the commit

final state for a site (whether it is the coordinator or a

participant), in 3PC, cannot be reached from the same
otocol.

Three-Phase Commit T 3093

T

state as the abort final state. In the former case, the

commit state can be reached from the pre-commit state

whereas, in the latter case, the abort state can be

reached from the prepared state.

When a site is in a pre-commit state, it means that

each of the other sites is at least in a prepared-to-

commit state (Notice that the other sites might lag in

their states because of system’s delays such as queuing

and network delays.). Thus, the pre-commit state is

called a committable state since it implies that all parti-

cipants have voted “yes” and the coordinator agreed on

the commitment of the transaction. In 3PC, a non-

committable state, i.e., a state that does not imply that

all the participants have voted “yes,” is not placed

adjacent to a commit state. This is not the case in

2PC as the prepared state, which non-committable, is

placed adjacent to a commit state.

The insertion of the buffering state makes the struc-

ture of 3PC to satisfy the two necessary and sufficient

conditions for the construction of synchronous non-

blocking ACPs within one state transaction, i.e., a struc-

ture where neither the coordinator nor any participant

leads each other by more than one state transition

during its execution of the protocol. That is, 3PC is

synchronous within one state transaction that (i) does

not contain a state that is adjacent to both a commit

and an abort state, and (ii) it does not contain a non-

committable state that is adjacent to a commit state.

Based on the above, if the coordinator of a transac-

tion fails at any point during the execution of the

protocol, the operational participants can collectively

and deterministically decide the final status of the

transaction. The decision is commit if any of the par-

ticipants is in at least a pre-commit state (because it is

not possible for the coordinator to have decided to

abort). Otherwise, the decision is abort (because it

could be possible for the coordinator to have decided

to abort but not to commit). To reach an agreement on

the final status of a transaction, there is a need for a

termination protocol which is invoked when the coor-

dinator fails.

Recovery in Three-Phase Commit

When a participant times out while waiting for a

message from the coordinator, it means that the coor-

dinator must have failed (or it is perceived as a coordi-

nator failure). In this case, the participant initiates an

election protocol to determine a new coordinator. One

way to determine the new coordinator is based on sites’
identification numbers such that the participant with

the highest (or the lowest) number becomes the new

coordinator. Once a new coordinator is elected, the

participants exchange status information about

the transaction. If the new coordinator finds the trans-

action in at least a pre-commit state at any participant,

it commits (in its local log) the transaction; otherwise,

it aborts the transaction. Then, this new coordinator

proceeds to complete the 3PC for the transaction in all

the other participants. If the new coordinator fails, the

election process is repeated again.

When a participant starts recovering from a failure,

it needs to determine the status of each prepared or pre-

committed transaction as recorded in its log. Notice that

a recovering participant cannot commit a transaction

even if the participant is in a pre-commit state with

respect to the transaction. This is because the operation-

al sites might have decided to abort the transaction after

the participant had failed if none of them was in a

pre-commit state. In this case, the participant must

ask the other sites about the final status of the

transaction.

A final note on 3PC is about total sites’ failure

where there is a need to determine the last participant

to have failed. This is because such participant is the

only one which can decide the status of the transaction

for the other participants. Determining the last partic-

ipant that has failed could be implemented by main-

taining an “UP” list at each participating site. This list

contains the identities of operational participants as

seen by the participant that is maintaining the list and

is stored (in a non-forced or asynchronous manner)

onto the stable log of the participant. Thus, the “UP”

lists allow a set of participants to determine, upon their

recovery from the total failure, whether they contain

among themselves the last participant to have failed,

reducing the number of participants that needs to

recover before the transaction status can be resolved.

Alternatively, all participants should recover and be-

come operational again before the status of the trans-

action can be resolved.

Non-Blocking Commit Protocol Variants

As discussed above, blocking occurs in 2PC when the

coordinator of a transaction crashes while the transac-

tion is in its prepared-to-commit state at a participating

site. In such a case, the participant is blocked until the

coordinator of the transaction recovers. In general, all

ACPs are susceptible to blocking. They just differ in the

3094T Three-Phase Commit
size of the window during which a site might be

blocked and the type of failures that cause their block-

ing. Several ACPs have been designed to eliminate

some of the blocking aspects of 2PC, besides 3PC, by

adding extra coordination messages and forced log

writes. These protocols can be classified into whether

they preserve the prepared-to-commit state, such as

cooperative 2PC, or allow unilateral or heuristic deci-

sions in the presence of unbearable delays, such as

IBM’s presumed nothing (IBM-PrN).

The cooperative 2PC (1981) reduces the likelihood

of blocking in case of a coordinator’s failure. In the

cooperative 2PC, the identities of all participants are

included in the prepare-to-commit message so that

each participant becomes aware of the other partici-

pants. In the case of a coordinator’s or a communica-

tion’s failure, a participant does not block waiting until

it reestablishes communication with the coordinator.

Instead, it inquires the other operational participants

in the transaction’s execution about the final decision

and if any of them has already received the final deci-

sion prior to the failure, it informs the inquiring par-

ticipant accordingly.

The IBM-PrN (1990) is a 2PC variant that allows

blocked participants to unilaterally commit or abort

a transaction and detects atomicity violations due to

conflicting heuristic decisions. In the event of atom-

icity violations, it reports any damage on transactions

and data, simplifying the task of identifying problems

that must be fixed. Generalized presumed abort (1994)

is another IBM protocol that behaves like IBM-PrN

when complete confidence in the final outcome and

recognition of heuristic decisions is required and

behaves like PrA during normal processing. Recent
Three-Phase Commit. Figure 2. Some significant steps in the
efforts to enhance commit protocols with heuristic

decision processing resulted in the allow-heuristics pre-

sumed nothing (1996) commit protocol.

Other Atomic Commit Protocol Variants and

Optimizations

Figure 2 shows some of the significant steps in the

evolution of ACPs including the two most notable

2PC variants which are presumed abort (PrA) and

presumed commit (PrC) [2]. The new PrC (NPrC)

(1993) and rooted PrC (RPrC) (1997) protocols were

proposed to reduce the log complexity of PrC further

at the cost of slower recovery in the presence of failures.

NPrC eliminates the initiation log record at the coor-

dinator’s site whereas RPrC eliminates the initiation

log record at each cascaded coordinator when the tree-

of-processes (or multi-level transaction execution)

model is used.

In contrast to PrA and PrC variants, other 2PC

variants have been proposed for specific environments.

The common characteristic of these protocols is that

they exploit the semantics of the communication net-

works, the database management systems and/or the

transactions to enhance the performance of 2PC. For

example, the linear 2PC (L2PC) reduces message com-

plexity at the expense of time complexity compared to

2PC by assuming token-ring like networks. In L2PC,

the participants are linearly ordered with the coordi-

nator being the first in the linear order. The coordina-

tor initiates the voting and each participant sends its

“yes” vote to its successor in the linear order. The last

participant in the order makes the decision and sends

it to its predecessor and so on. In this way, L2PC

maintains the same log complexity as 2PC, reduces
evolution of ACPs.

Three-Phase Commit T 3095

T

the message complexity of 2PC from “3” to “2n” while

increasing the time complexity of 2PC from “3” to

“2n” rounds, where n is the number of participants.

In contrast to L2PC, decentralized 2PC (D2PC) reduces

time complexity at the expense of message complexity

which is n2 + nmessages. In D2PC, the interconnecting

communication network is assumed to be fully

connected and efficiently supports the broadcasting

of messages. In D2PC, two rounds of messages are

required for each individual participant to make a

final decision. During the first round, the coordinator

broadcasts its vote (implicitly initiating commit pro-

cessing) whereas, during the second one, all the parti-

cipants broadcast their votes. Thus, each participant

receives the votes of all the other participants, as well as

the coordinator, and thereby, is able to independently

conclude the final decision. By reducing the time com-

plexity to two rounds, it becomes less likely for a partici-

pant, in D2PL, to be blocked during commit processing

in the case of a coordinator’s failure.

There are four transaction type specific 2PC proto-

cols, all of which, when applicable, improve both the

message and time complexities of 2PC by eliminating

the explicit voting phase of 2PC. The unsolicited-vote

protocol (UV) (1979) shortens the voting phase of 2PC

assuming that each participant knows when it has

executed the last operation for a transaction. In this

way, a participant sends its vote on its own initiative

once it recognizes that it has executed the last opera-

tion for the transaction. When the coordinator receives

the votes of the participants, it proceeds with the

decision phase. The early prepare protocol (EP)

(1990) combines UV with PrC without assuming that

a participant can recognize the last operation of a

transaction. Every operation is, therefore, treated as if

it is the last operation executing at the participant and

its acknowledgment is interpreted as a “yes” vote. This

means that a participant has to force write its log each

time it executes an operation so that it can preserve the

global atomicity of the transaction after a system crash.

In contrast to EP which reduces time and message

complexities at the expense of log complexity, the

coordinator log (CL) and implicit yes-vote (IYV) proto-

cols do not require force writing the log records, at the

participants’ sites, after the execution of each opera-

tion. Instead, they replicate the participants’ logs at the

coordinators’ site. Hence, reducing log complexity

compared to EP at the expense, however, of slower

recovery. In CL, a participant does not maintain a
local stable log and, therefore, it has to contact all

coordinators in the system in order to recover after a

failure. Moreover, a participant may need to contact

the coordinator of a transaction during normal proces-

sing to maintain write-ahead logging (WAL) or to undo

the effects of an aborting transaction. This is because

the log of a participant is scattered across the coordi-

nators’ sites. In contrast, the log of a participant in IYV

is partially replicated across the coordinators’ sites.

That is, only the redo records are replicated at the

coordinators’ sites while the undo records are stored

locally. Thus, a participant, in IYV, never communi-

cates with any coordinator to maintain WAL or to

undo the effects of aborting transactions. Thus, in

IYV, the replicated records are used only to recover a

participant after a system’s crash. Furthermore, IYV is

based on PrA while CL is derived from PrC.

Existing 2PC variants are incompatible with each

other and need to be made to interoperate in order to

be integrated in (heterogeneous) multidatabase sys-

tems and the Internet. Thus, the continued research

for more efficient ACPs has expanded to include the

investigation of integrated ACPs. Efforts in this direc-

tion include the Harmony prototype system that inte-

grates centralized participants that use centralized

(asymmetric) ACPs with centralized participants that

use decentralized (symmetric) ACPs (1991), the inte-

gration of distributed participants that use symmetric

ACPs with distributed participants that use asymmetric

ACPs (1994), and the presumed any protocol (1996)

that integrates participants that use 2PC, PrA, or PrC.

Besides that, recent efforts are targeted towards under-

standing the sources of incompatibilities [1] and the

integration of ACPs in an adaptive manner to achieve

higher system performance [8].

Several optimizations have been proposed that can

reduce the costs associated with ACPs [5,2]. These

include the read-only, last agent, group commit, sharing

the log, flattening the transaction tree and optimistic

optimizations. The read-only optimizations can be

considered as the most significant ones, given that

read-only transactions are the majority in any general

database system. In fact, the performance gains allowed

by the traditional read-only optimization provided the

argument in favor of PrA to become the current choice

of ACPs in the ISO OSI-TP (1998) and X/Open DTP

(1996) distributed transaction processing standards,

and commercial systems. The basic idea behind the

read-only optimizations is that a read-only participant,

3096T Three-Phase Commit
a participant that has not performed any updates on

behalf of a transaction, can be excluded from the

decision phase of the transaction. This is because it

does not matter whether the transaction is finally

committed or aborted at a read-only participant to

ensure the transaction’s atomicity. In the traditional

read-only optimization [4], a read-only participant

votes “read-only” instead of a “yes” and immediately

releases all the resources held by the transaction with-

out writing any log records. A “read-only” vote allows

a coordinator to recognize and discard the read-only

participant from the rest of the protocol. The unsolic-

ited update-vote (1997) is another read-only optimiza-

tion that further reduces the costs associated with read-

only participants. Not only that, but it incurs the same

costs when used with both PrA and PrC, supporting

the arguments for PrC to be also included in the

standards.

The last agent optimization has been implemented

by a number of commercial systems to reduce the cost

of commit processing in the presence of a single remote

participant. In this optimization, a coordinator first

prepares itself and the nearby participants for commit-

ment (fast first phase), and then delegates the respon-

sibility of making the final decision to the remote

participant. This eliminates the voting phase involving

the remote participant. This same idea of delegating

part of commitment (i.e., transferring the commit

responsibilities) from one site to another has been

also used to reduce blocking, for example, in open

commit protocols (1990) and IYV with a commit

coordinator (1996).

The group commit optimization has been also

implemented by a number of commercial products to

reduce log complexity. In the context of centralized

database systems, a commit record pertaining to a

transaction is not forced on an individual basis. In-

stead, a single force write to the log is performed when

a number of transactions are to be committed or when

a timer has expired. In the context of distributed data-

base systems, this technique is used at the participants’

sites only for the commit records of transactions dur-

ing commit processing. The lazy commit optimization

is a generalization of the group commit in which not

only the commit records at the participants are forced

in a group fashion, but all log records are lazily forced

written onto stable storage during commit processing.

Thus, the cost of a single access to the stable log is

amortized among several transactions. The sharing of
log between the transaction manager and data man-

agers [5] at a site is another optimization that takes

advantage of the sequential nature of the log to elimi-

nate the need of force writing the log by the data

managers.

The flattening of the transaction tree optimization is

targeted for the tree-of-processes transaction model

and is a big performance winner in distributed trans-

actions that contain deep trees. It can reduce both the

message and log complexities of an ACP by transform-

ing the transaction execution tree of any depth into a

two-level commit tree at commit initiation time. In

this way, the root coordinator sends coordination mes-

sages directly to, and receives messages directly from,

any participant. Thus, avoiding propagation delays

and sequential forcing of log records. Restructuring-

the-commit-tree-around-update-participants (RCT-

UP) is an enhancement to the flattening technique

that flattens only update participants (participants

that have executed update operations on behave

of the transaction), thereby, connecting them directly

to the coordinator while leaving read-only participants

connected in a multi-level manner. This is to reduce

the effects of the communication delays on the overall

system performance in systems that do not support

simultaneous message multicasting to all participants.

Another optimization is optimistic (OPT) (1997)

which can enhance the overall system performance by

reducing blocking arising out of locks held by prepared

transactions. OPT shares the same assumption as PrC,

that is, transactions tend to commit when they reach

their commit points. Under this assumption, OPT

allows a transaction to borrow data that have been

modified by another transaction that has entered a

prepared-to-commit state and has not committed. A

borrower is aborted if the lending transaction is finally

aborted.

Key Applications
3PC has never been implemented in any commercial

database system due to its cost, during normal trans-

action processing, compared to the other ACPs. This is

besides its implementation complexity and, especially,

the complexity of its termination protocol. Even with

the added implementation complexity and cost, 3PC

does not completely eliminate blocking since it is still

susceptible to blocking in case of network partitioning.

In fact there is no ACP that is non-blocking in the case

of site as well as communication failures. This is an

Time Aggregated Graphs T 3097
inherent characteristic of the Byzantine Generals Prob-

lem, the more general problem of atomic commitment.

However, the protocol remains an instrumental theo-

retical result for understanding the behavior of

ACPs and the limitations in solving the atomic com-

mitment problem.

Cross-references
▶Atomicity

▶Distributed Database Systems

▶Distributed Recovery

▶Distributed Transaction Management

Recommended Reading
1. Al-Houmaily Y. Incompatibility dimensions and integration of

atomic commit protocols. Int. Arab J. Inf. Technol., 5(4):2008.

2. Chrysanthis P.K., Samaras G., and Al-Houmaily Y. Recovery and

performance of atomic commit processing in distributed data-

base systems, Chapter 13. In Recovery Mechanisms in Database

Systems, V. Kumar, M. Hsu (eds.). Prentice Hall, Upper Saddle

River, NJ, 1998, pp. 370–416.

3. Lamport L., Shostak R., and Pease M. The byzantine generals

problem. ACM Trans. Programming Lang. Syst., 4(3):382–401,

1982.

4. Mohan C., Lindsay B., and Obermarck R. Transaction Manage-

ment in the R* Distributed Data Base Management System.

ACM Trans. Database Syst., 11(4):378–396, 1986.

5. Samaras G., Britton K., Citron A., and Mohan C. Two-phase

commit optimizations in a commercial distributed environ-

ment. Distrib. Parall. Databases, 3(4):325–361, 1995.

6. Skeen D. Non-blocking Commit Protocols. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1981, pp. 133–142.

7. Skeen D. and Stonebraker M. A Formal model of crash recovery

in a distributed system. IEEE Trans. Softw. Eng., 9(3):219–228,

1983.

8. Yu W. and Pu C. A Dynamic two-phase commit protocol for

adaptive composite services. Int. J. Web Serv. Res., 4(1), 2007.
T

Thresholding

▶ Image Segmentation
Tight Coupling

SERGUEI MANKOVSKII

CA Labs, CA Inc., Thornhill, ON, Canada

Synonyms
Strong coupling
Definition
Tight coupling indicates strong dependency between

software components. The dependency is strong in the

sense that two or more components have multiple and

complex dependencies between internal states, data

and functions of the components.

Key Points
Tight coupling often achieves high performance charac-

teristics at the expense of flexibility and ease of mainte-

nance. It is often justified for systems that are going to be

used as a black box, with no expectation of ongoing

maintenance or upgrade. The smaller a systems is, the

more congruent its function is, the more likely it would

justify tight coupling as a design principle. This is why

one can find tight coupling in the components of larger

systems. In this situation a number of tightly coupled

components might be interacting using loosely coupled

approach. This type of systems leads to robust designs

where maintainability and flexibility is achieved by sim-

ply replacing one ormore components. At the same time,

each component performs in the best possible way be-

cause of tight coupling inside of it. This is the idea behind

Service Oriented Architectures (SOA). This way SOA

achieves balance between performance and flexibility.

However it is not of the case for other architectures

and because of that it is often beneficial to evaluate trade-

offs of both approaches during system design.

Cross-references
▶ Loose Coupling

▶ SOA

▶Tight Coupling
Time Aggregated Graphs

BETSY GEORGE, SHASHI SHEKHAR

University of Minnesota, Minnesota, Minneapolis,

MN, USA

Synonyms
Spatio-temporal graphs; Time-dependent graphs;

Time-dependent networks

Definition
A time aggregated graph [1,2] is a model that can be

used to represent a spatio-temporal network. The

topology and the attributes in a spatio-temporal

3098T Time and Information Retrieval
network are typically time-dependent. Time aggre-

gated graphs aggregate the time-dependent attributes

over edges and nodes. This model facilitates the com-

putation of path queries on a network accounting for

the time-dependence of network parameters.

Key Points
Graphs have been extensively used to model spatial

networks; weights assigned to nodes and edges are

used to encode additional information. For example,

the travel time between two intersections in a road

network can be represented by the weight of the edge

connecting the nodes that represent the intersections.

In a real world scenario, it is not uncommon for these

network parameters to be time-dependent. A time

aggregated graph is a model that can capture the

time-dependence of network parameters. In addition,

the model captures the possibility of edges and nodes

being absent during certain instants of time.

The model represents the time-variance of attri-

butes by modeling them as time series.

Spatio-temporal networks have critical applica-

tions in domains such as transportation science.

Developing storage efficient models for such networks

that support the design of efficient query processing

algorithms is important. Time aggregated graphs pro-

vide a means to model spatio-temporal networks and

formulate algorithms that honor the time dependence

of spatial networks.

Cross-references
▶ Spatio-Temporal Graphs

▶ Spatio-Temporal Networks

Recommended Reading
1. George B. and Shekhar S. Time-aggregated graphs for modeling

spatio-temporal networks – an extended abstract. In Proc. Work-

shops at Int. Conf. on Conceptual Modeling, 2006, pp. 85–93.

2. George B. Kim S. and Shekhar S. Spatio-temporal network

databases and routing algorithms: a summary of results. In

Proc. 10th Int. Symp. Advances in Spatial and Temporal Data-

bases, 2007, pp. 460–477.
Time and Information Retrieval

OMAR ALONSO, MICHAEL GERTZ

University of California at Davis, Davis, CA, USA

Synonyms
Temporal information retrieval
Definition
Traditional information retrieval (IR) is concerned

with models, algorithms, and architectures for the

retrieval and ranking of documents from a document

collection based on their relevance to search queries.

In temporal information retrieval, expressions (words

or phrases) that relate to instants in time, events, time

periods, or other temporal descriptions are extracted

from documents and handled in a special way to rank

(and optionally group) the documents returned for a

search query. Thus, in temporal information retrieval,

temporal expressions extracted from documents play

a special role in the overall relevance and in the orga-

nization and exploration of search results along

timelines.

Historical Background
Research on using time information for retrieval and

browsing activities is fairly recent. From a search per-

spective, there is previous work on placing search

results in a timeline to facilitate the exploration of

information [2,3,10]. A general overview of the basic

idea of search result clustering using temporal docu-

ment annotations obtained through a named-entity

extraction approach has been outlined by Alonso and

Gertz [4].

Research on temporal annotations has gained a lot

of attention lately, and it is covered in great depth in

the book edited by Mani et al. [8]. The work also

includes discussions about tense and structural analy-

sis and temporal reasoning techniques. The special

issue on temporal information processing shows a

wide range of current research directions and applica-

tions like question-answering and summarization [9].

News in particular have been the preferred infor-

mation source for most of the related work in temporal

information retrieval. Swan and Allan combine

news topic detection and tracking with timelines as a

browsing interface [14]. Automatic assignment of doc-

ument event-time periods and automatic tagging

of news messages using entity extraction is presented

by Schilder and Habel in [11]. Their work also presents

a temporal tagger along with its evaluation. There is

very interesting work on adding time to applications

like news for presenting temporal summaries as intro-

duced by Allan et al. [1]. The work by Shaparenko et al.

[12] concentrates on analyzing the development

of a document collection over time and identifying

temporal pattern. The work by Koen and Bender

in Time Frames is one approach to augment news

Time and Information Retrieval T 3099

T

articles by extracting time information [7]. Recently,

new research has emerged for future retrieval pro-

posed by Baeza-Yates [5] where the idea of exploiting

temporal information is developed for searching the

future.

Foundations

Overview and Motivation

Time is an important dimension of any information

space and can be very useful in information retrieval.

Time and time measurements can help in outlining a

particular historical period or establishing the context

of a document. As an alternative to document ranking

techniques like those based on popularity, time can be

valuable for placing search results in a timeline for

document exploration purposes. Current information

retrieval systems and applications, however, do not

take advantage of all the time information available

within documents to provide better search results and

thus to improve the user experience.

A quick look at any of the current search engines

and information retrieval systems shows that the tem-

poral viewpoint is restricted to sorting the search

result represented in a hit list by date only. The date

attribute is mainly the creation or last modified date

of a Web page or document. In some cases it can be

misleading, because the timestamp provided by a Web

server or any other document management system

may not be accurate. Other search applications pro-

vide a range date search as part of the advanced search

options. Still, the search results are filtered based on

the date attribute. For search purposes, the time axis

is mainly constructed using that type of document

metadata.

Even simple queries against Web search engines

show that oftentimes organizing the documents in a

hit list along some timeline can be helpful. For exam-

ple, a query for “soccer world cup” against search

engines now returns mostly pointers to documents

that cover the recent event in Germany. But every

soccer fan knows that this event happens every four

years. Another example is “Iraq war;” here, results are

primarily related to the latest events with little from the

1990’s war. Clearly, it would be useful if a tool on top of

a traditional retrieval system is more aware of the

temporal information embedded in the documents

and allows the user to have search results presented

in different ways based on the temporal information.

For this, it is essential to extract temporal information
from documents and associate documents with points

in time along well-defined timelines.

Time and Timelines

As the basis for associating points in time with docu-

ments, it is customary to assume a discrete representa-

tion of time based on the Gregorian Calendar, with a

single day being an atomic time interval called a

chronon. A base timeline, denoted Td, is an interval of

consecutive day chronons. For example, the sequence

“March 12, 2002; March 13, 2002; March 14, 2002” is a

contiguous subsequence of chronons in Td. Contigu-

ous sequences of chronons can be grouped into larger

units called granules, such as weeks, months, years, or

decades. A grouping based on a granule results in a

more coarse-grained timeline, such as Tw based on

weeks, Tm based on months, or Ty based on years.

Examples of week chronons in Tw are “3rd week of

2005” or “last week of 2006.” Depending on the type

of underlying calendar, base timeline, and grouping of

chronons, timelines of different time granularity can be

constructed. Chronons from two timelines then can

also be compared. For example, “March 18, 2002”

(chronon in Td) lies before “December 2006” (chronon

in Tm). Timelines constructed in this way then serve as

the basis to have temporal expressions in documents

refer to chronons in one or more timelines.

Temporal Expressions

There is quite a lot of temporal information in any

corpus of documents. For example, financial news tend

to be rich in describing near future events; resume

documents contain several references to the past in a

very precise way; and project documentation involves

phase milestones that are captured in time. However,

what types of temporal information (besides a simple

document timestamp) are there and how do they relate

to timelines?

In general, with the textual content of a document,

a set of temporal entities can be associated. A temporal

entity describes a point in time, event, or time period

at a conceptual level. The identification of such entities

involves a linguistic analysis of the document, where

approaches based on named-entity extraction deter-

mine so-called temporal expressions. A temporal ex-

pression is basically a sequence of tokens that

represent an instance of a temporal entity. Contrary

to other entities such as names and places, temporal

entities can be represented as temporal expressions that

are sequences of not necessarily contiguous tokens or

3100T Time and Information Retrieval
words. Expressions can be mapped to temporal entities

that are defined in some time ontology. Similar to the

approach by Schilder and Habel [11], this discussion

distinguishes between explicit, implicit, and relative

temporal expressions. Explicit temporal expressions di-

rectly describe entries in some timeline, such as an exact

date or year. For example, the token sequences “Decem-

ber 2004” or “September 12, 2005” in a document are

explicit temporal expressions and can be mapped di-

rectly to chronons in a timeline (here Tm and Td,

respectively).

Depending on the underlying time ontology and cap-

abilities of the named-entity extraction approach, even

apparently imprecise temporal information, such as

names of holidays or events can be anchored in a timeline.

For example, the token sequence “Columbus Day 2006”

in the text of a document can be mapped to the expres-

sion “October 12, 2006,” or the sequence “Labor Day

2008” can be mapped to “September 1, 2008.” Such

types of temporal expressions whose mapping to entities

relies on the capability of the underlying time ontology

are called implicit temporal expressions.

Relative temporal expressions represent temporal

entities that can only be anchored in a timeline in

reference to another explicit or implicit, already an-

chored temporal expression (which, in the worst case,

is the document timestamp). For example, the expres-

sion “today” alone cannot be anchored in any timeline.

However, it can be anchored if the document is known

to have a creation date. This date therefore can be used

as a reference for that expression, which then can be

mapped to a chronon. There are many instances of

relative temporal expressions, such as the names of

weekdays (e.g., “on Thursday”) or months (e.g., “in

July”) or references to such points in time like “next

week” or “last Friday.”

Given a document collection D, the temporal

expressions that have been determined for each docu-

ment d 2 D can be represented in the form of a tem-

poral document profile. For example, a profile then

records for each type of expression the token sequence,

position of the sequence in the document d, and the

chronon to which the expression has been mapped.

With a document, several expressions of different types

and corresponding chronons (in different timelines)

can be associated. The same expression and chronon

can even appear several times in the same document,

but then at different positions in the document. Each
document at least has one explicit temporal expres-

sion, which is assumed to be the document timestamp.

Next, an extraction approach for temporal expressions

using existing tools is outlined.

Temporal Processing Pipeline

Given a document collection D, the identification

of the temporal expressions in each document d 2 D
is realized through a document processing pipeline,

which includes a sequence of operations as follows.

The first step is to extract the timestamp from the

document. This can be the creation or last modified

date for a file. In case of aWeb page, one can rely on the

information provided by the Web server. The second

step is to run a part of speech tagger (POS tagger) on

every document. A POS tagger returns the document

with parts of speech assigned to each word/token

like noun, verb etc. The tagger also tags sentence deli-

miters that later are needed for extracting the temporal

expressions. The third step is to run a temporal expres-

sion tagger on the POS-tagged version of the docu-

ment, which recognizes the extents and normalized

values of temporal expressions [6]. This step extracts

temporal expressions based on the TimeML standard

and produces an XML document. The TimeML speci-

fication for temporal annotations seems to be a suit-

able approach here, because it has emerged as the

standard markup language for events and temporal

expressions in natural language [15]. The resulting

XML document is the original document annotated

by various information about the temporal expressions

that have been determined for the original document.

This information then can be used to construct the

temporal document profile for the document, which,

in turn, can be used for different time-centric docu-

ment information retrieval and exploration

approaches.

Document Retrieval

A fundamental property of any information retrieval

system is the ability to help users find documents that

satisfy their information needs. At a first glance, this

looks pretty obvious but it is not, because users are not

very expressive in describing what information they

want. Furthermore, the information needs they specify

can be ambiguous, making the retrieval task even

harder. A user will judge whether or not a query result

satisfies her information needs based on whether she

Time and Information Retrieval T 3101

T

considers the result to the search query relevant. The

central idea underlying a temporal information re-

trieval approach is to utilize the temporal expressions

that have been determined for each document in a

given document collection D in order to group and/

or rank search results based on the temporal informa-

tion embedded in the documents. By using this ap-

proach, time plays a central role in the overall quality

of the search results. Assume a standard information

retrieval or search application that returns a hit list of n

documents Lq = hd1,...,dni for a search query q. The

search application retrieves the result based on the

relevance of the documents with respect to q using

traditional metrics based on tf/idf and the distance of

the query terms to the first token of temporal expres-

sions in the documents. After all, tense happens at the

sentence level so it is important to detect these

“boundaries” with respect to the query q. There are

several ways in which the temporal expressions in the

documents in Lq can be used to group the documents

using temporal aspects. In the following, only the

general idea of these approaches is illustrated. For

example, the following algorithm outlines how the

usage of temporal expressions can help to group search

results based on the temporal expressions determined

from the documents in Lq.

1. Determine the document hit list Lq = hd1,...,dni that
satisfies the search query q, sorted by relevance of

the documents.

2. Determine the temporal expressions T = {te1,...,tem}

for all the n documents in the hit list. Note that a

document di 2 Lq can have several temporal expres-

sions, represented in di’s temporal document

profile.

3. Choose a type of time granule g (e.g., year or

month). Sort the temporal expressions in T using

that granule as key. For example, the expression

“September 1, 2007” then comes before the expres-

sion “August 2007,” assuming a descending order.

4. For each granule of type g (e.g., a particular year or

month), take all those documents from Lq that

contain a temporal expression covered by that

granule. Rank these documents using the distance

between the query terms in q to the temporal

expressions.

5. Display document groups using the granule type g

as label in a timeline fashion in descending order.
For example, if the granule type year has been

chosen, for each year, there is a group of documents

that contain a temporal expression related to that

year (perhaps at a finer level of granularity). Note

that instances of the granule type are based on a

timeline.

If a document d 2 Lq contains several temporal expres-

sions, this document can end up in different groups

and at a different rank in each group. In general, the

above approach organizes documents from a hit list

along a timeline based on a time granule type. A group

of documents related to a particular instant of a gran-

ule then can be organized further, i.e., based on a more

fine-grained time granule.
Key Applications
Recently, exploratory search system have emerged as a

specialization of information exploration to support

serendipity, learning, and investigation, and, more gen-

erally, to allow users to browse available information.

For such systems, taking advantage of temporal expres-

sions embedded in the documents leads to a much

richer framework for exploration. This is an important

ingredient for the information forager who is trying to

see the profit in terms of the interaction cost required to

gain useful information from an information source.

Users tend to prefer sources, in this case search engines,

that are richer in good results. These good results in-

volve adding important nuggets such as temporal infor-

mation and relationships. The news domain is another

area where search, presentation, and filtering can be

greatly improved by using more temporal information.

As an example, financial news about a company’s Q4

earnings has a very precise meaning in a time-related

context. Exploring and analyzing news by these types of

temporal expressions can be very useful for particular

application domains, for example, in the area of finan-

cial analysis.
Timeline-Based Exploration

Current interfaces to search engines typically present

search results sorted by the relevance of documents

from a document collection to a search query. For

this, the freshness of the information is considered an

important part of the quality of the result. Temporal

attributes in Web pages or documents such as date,

3102T Time and Information Retrieval
however, are just viewed as some structured criteria to

sort the result in descending order of relevance. At the

time of this writing there is a new experimental feature

for timelines as part of Google (view:timeline).

Another exploratory search prototype outlined in

the following is a Web-based application that uses the

SIMILE timeline toolkit for visualization and explora-

tion purposes [13], here with respect to a document

collection of journal articles from DBLP (http://

www.informatik.uni-trier.de/~ley/db/). The

interface is organized as follows. The main section

takes half of the screen and contains the search box

and the timeline. The timeline consists of two bands

that represent different time scales (types of granules):

decade and year. Both bands are synchronized such

that panning one band also scrolls the other. The

lower band (decade) is much smaller since the goal

is to show the activity in a decade. The upper band

shows all articles in a given year. Figure 1 shows the
Time and Information Retrieval. Figure 1. Exploring researc
exploratory search interface in action for the query

“compiler” against the collection. The system retrieves

all journal articles that contain the term “compiler” in

the title and returns a hit list clustered by year (in which

the article appeared). Search results are anchored in the

timeline, that is, documents (or rather the embedded

temporal expressions) are linked to instants in time. If

more than one article falls within a year, the order of the

documents in such a group is based on each docu-

ment’s relevance to the query. Obviously, such an in-

formation exploration and visualization approach and

tool on top of a more traditional search application can

be extremely valuable in the context of temporal infor-

mation retrieval.

Future Directions
Evaluations of the impact of temporal attributes for

search and retrieval are needed to asses the importance

of these techniques. This, of course, can only be
h articles using the SIMILE timeline toolkit.

http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/

Time Domain T 3103
applied to those applications where the usage of time

information has some (expected) benefit.
Cross-references
▶Document Clustering

▶ Information Extraction

▶ Information Retreival

▶ Structured Document Retrieval

▶Web Search Relevance Ranking
T

Recommended Reading
1. Allan J., Gupta R., and Khandelwal V. Temporal summaries of

news topics. In Proc. 24th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2001,

pp. 10–18.

2. Allen R.B. A focus-context browser for multiple timelines.

In Proc. ACM/IEEE Joint Conf. on Digital Libraries, 2005,

pp. 260–261.

3. Alonso O., Baeza-Yates R., and Gertz M. Exploratory search

using timelines. In Proc. SIGCHI 2007 Workshop on Explorato-

ry Search and HCI Workshop, 2007.

4. Alonso O. and Gertz M. Clustering of search results using

temporal attributes. In Proc. 32nd Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2006, pp. 597–598.

5. Baeza-Yates R. Searching the future. In ACM SIGIR 2005

Workshop on Mathematical/Formal Methods in Information

Retrieval, 2005.

6. GUTime. Available at: http://complingone.georgetown.edu/

~linguist

7. Koen D.B. and Bender W. Time frames: temporal augmentation

of the news. IBM Syst. J., 39(3–4):597–616, 2000.

8. Mani I., Pustejovsky J., and Gaizauskas R. (eds.). The

Language of Time. Oxford University Press, New York, NY,

USA, 2005.

9. Mani I., Pustejovsky J., and Sundheim B. Introduction to the

Special Issue on Temporal Information Processing. ACM Trans.

Asian Lang. Inform. Process., 3(1):1–10, March 2004.

10. Ringel M., Cutrell E., Dumais S.T., and Horvitz E. Milestones in

time: the value of landmarks in retrieving information from

personal stores. In Proc. IFIP TC13 Int. Conf. on Human-

Computer Interaction, 2003, pp. 184–191.

11. Schilder F. and Habel C. From temporal expressions to temporal

information: semantic tagging of news messages. In Proc. ACL

2001 Workshop on Temporal and Spatial Information Proces-

sing, 2001.

12. Shaparenko B., Caruana R., Gehrke J., and Joachims T.

Identifying temporal patterns and key players in document

collections. In Proc. IEEE ICDM Workshop on Temporal

Data Mining: Algorithms, Theory and Applications, 2005, pp.

165-174.

13. SIMILE Timeline toolkit. Available at: http://simile.mit.edu/

timeline/
14. Swan R. and Allan J. Automatic generation of overview

timelines. In Proc. 23rd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2000,

pp. 49–56.

15. TimeML, markup language for temporal and event expressions.

Available at: http://www.timeml.org/
Time Dependent Geometry

▶Moving Object
Time Distance

▶Time Interval

▶Time Span
Time Domain

ANGELO MONTANARI
1, JAN CHOMICKI

2

1University of Udine, Udine, Italy
2State University of New York at Buffalo, Buffalo,

NY, USA

Synonyms
Temporal domain; Temporal structure

Definition
In its full generality, a time domain can be defined as

a set of temporal individuals connected by a set of

temporal relations. Different choices for the temporal

individuals and/or the temporal relations give rise to

different temporal ontologies.

In the database context, the most common tem-

poral ontology takes time instants (equivalently, points

or moments) as the temporal individuals and a linear

order over them as the (unique) temporal relation [5].

In addition, one may distinguish between discrete and

dense, possibly continuous, time domains and between

bounded and unbounded time domains. In the dis-

crete case, one may further consider whether the time

domain is finite or infinite and, in the case of

http://complingone.georgetown.edu/~linguist
http://complingone.georgetown.edu/~linguist
http://simile.mit.edu/timeline/
http://simile.mit.edu/timeline/
http://www.timeml.org/

3104T Time Domain
unbounded domains, one can differentiate between

left-bounded, right-bounded, and totally unbounded

domains. Moreover, besides linear time, one may con-

sider branching time, where the linear order is replaced

with a partial one (a tree or even a directed acyclic

graph), or circular time, which can be used to represent

temporal periodicity.

As for temporal individuals, time instants can be

replaced with time intervals (equivalently, periods or

anchored stretches of time) connected by (a subset of)

Allen’s relations before, meets, overlaps, starts,

during, equal, and finishes, and their inverses or

suitable combinations [7]. As in the case of instant-

based domains, one may distinguish between discrete

and dense domains, bounded and unbounded domains,

linear, branching, and circular domains, and so on.

Finally, as most temporal database applications

deal with both qualitative and quantitative temporal

aspects, instant-based time domains are usually as-

sumed to be isomorphic to specific numerical struc-

tures, such as those of natural, integer, rational, and

real numbers, or to fragments of them, while interval-

based ones are obtained as suitable intervallic con-

structions over them. In such a way, time domains

are endowed with metrical features.

Historical Background
The nature of time and the choice between time instants

and time intervals as the primary objects of a temporal

ontology have been a subject of active philosophical

debate since the times of Zeno and Aristotle. In the

twentieth century, major contributions to the investiga-

tion of time came from a number of disciplines. A

prominent role was played by Prior who extensively

studied various aspects of time, including axiomatic

systems of tense logic based on different time domains.

Nowadays, besides physics, philosophy, and ling-

uistics, there is a considerable interest in temporal struc-

tures in mathematics (theories of linear and branching

orders), artificial intelligence (theories of action and

change, representation of and reasoning with temporal

constraints, planning), and theoretical computer science

(specification and verification of concurrent and

distributed systems, formal analysis of hybrid temporal

systems that feature both discrete and continuous com-

ponents). A comprehensive study and logical analysis of

instant-based and interval-based temporal ontologies,

languages, and logical systems can be found in [2].
As for temporal databases, the choice of the time

domain over which temporal components take their

value is at the core of any application. In most cases, a

discrete, finite, and linearly ordered (instant-based)

time domain is assumed. This is the case, for instance,

with SQL standards [9]. However, there is no single

way to represent time in a database, as witnessed by

the literature in the field. To model when something

happened, time instants are commonly used; validity

of a fact over time is naturally represented by the

(convex) set of time instants at which the fact holds,

the time period of validity in the temporal database

terminology; finally, to capture processes as well as

some kinds of temporal aggregation, time intervals

are needed.

Foundations

Basics

The choice between time instants and time intervals

as the basic time constituents is a fundamental decision

step that all temporal systems have in common. Inmath-

ematics, the choice of time instants, that is, points in

time without duration, is prevalent. Although quite

abstract, such an solution turned out extremely fruitful

and relatively easy to deal with in practice. Incomputer

science, additionalmotivations for this choice come from

the natural description of computations as possibly infi-

nite sequences of instantaneous steps.

The alternative option of taking time intervals, that

is, anchored stretches of time with duration, as temporal

individuals seems to better adhere to the concrete expe-

rience of people. Physical phenomena as well as natural

language expressions involving time can be more easily

described in terms of time intervals instead of time

instants. Nevertheless, the complexity of any systematic

treatment of time intervals prevents many systems from

the adoption of an interval-based ontology.

The instant and the interval ontologies are system-

atically investigated and compared in [2]. The author

identifies the conditions an instant-based (resp., interval-

based) structure must satisfy to be considered as an

adequate model of time. Then, through an axiomatic

encoding of such conditions in an appropriate lang-

uage, he provides a number of (first-order and higher

order) logical theories of both instant-based and

interval-baseddiscrete,dense,andcontinuousstructures.

Finally, he illustrates the strong connections that link the

Time Domain T 3105

T

two timeontologies. Inparticular,he showshow interval-

based temporal structures can be obtained from instant-

based ones through the standard process of interval

formation and how instant-based temporal structures

canbederived frominterval-basedonesbya (non-trivial)

limiting construction.

A metric of time is often introduced to allow one to

deal with time distance and/or duration. In particular,

a time metric is needed to define calendar times, such

as those based on the commonly used Gregorian

calendar.

Temporal Models and Query Languages

The choice of the time domain has an impact on

various components of temporal databases. In partic-

ular, it influences temporal data models and temporal

query languages.

As for temporal data models, almost all of them

adopt an instant-based time ontology. Moreover,

most of them assume the domain to be linear, dis-

crete and finite. However, many variants of this basic

structure have been taken into consideration [8].

Right-unbounded domains have been used to record

information about the future. Dense and continuous

domains have been considered in the context of tem-

poral constraint databases, that allow one to represent

large, or even infinite, sets of values, including time

values, in a compact way. Branching time has been

exploited in applications where several alternatives

have to be considered in the future and/or past evolu-

tion of temporal data.

Many data models distinguish between absolute

(anchored) and relative (unanchored) time values.

Absolute time values denote specific temporal indivi-

duals. In general, they are associated with a time met-

ric, such as that of calendar times. As an example, the

14th of September 2007 is an absolute time value that

denotes a specific element of the domain of days in

the Gregorian calendar. Relative time values specify the

distances between pairs of time instants or the dura-

tions of time intervals. Absolute and relative time

values can also be used in combination. As an example,

the expression 7 days after the 14th of September 2007

denotes the 21st of September 2007.

As for temporal query languages, they typically

assume that time is isomorphic to natural numbers. This

is in agreement with themost common, linear-time dia-

lect of temporal logic. In temporal constraint
databases, however, the use of classical query languages

like relational calculus or algebra accommodates a varie-

ty of time domains, including dense and continuous

ones.

Time Domain and Granularity

Despite its apparent simplicity, the additionof the notion

of time domain to temporal databases presents various

subtleties. The main ones concern the nature of the ele-

mentsof thedomain.Assoonascalendar timescome into

play, indeed, the abstract notion of instant-based time

domainmust be contextualized with respect to a specific

granularity [3,4]. Any given granularity can be viewed

as a suitable abstraction of the real time line that

partitions it into a denumerable sequence of homoge-

neous stretches of time. The elements of the partition,

granules in the temporal database terminology, be-

come the individuals (non-decomposable time units)

of a discrete time domain. With respect to the consid-

ered granularity, these temporal individuals can be

assimilated to time instants. Obviously, if a shift to a

finer granularity takes place, e.g., if one moves from

the domain of months to the domain of days, a single

granule must be replaced with a set of granules. In such

a way, being instantaneous is not more an intrinsic

property of a temporal individual, but it depends on

the time granularity one refers to. A detailed analysis of

the limitations of the temporal database management

of instant-based time domains can be found in [9].

The Association of Time with Data

The association of the elements of the time domain with

data is done by timestamping. A timestamp is a time

value associated with a data object. In the relational

setting, one distinguishes between attribute-time-

stamped data models, where timestamps are associated

with attribute values, and tuple-timestamped data

models, where timestamps are associated with tuples

of values. As a third possibility, a timestamp can be

associated with an entire relation/database.

Timestamps can be single elements as well as sets

of elements of the time domain. Time instants are

usually associated with relevant events, e.g., they can

be used to record the day of the hiring or of the

dismissal of an employee. (Convex) sets of time

instants are associated with facts that hold over time.

As an example, if a person E works for a company C

from the 1st of February 2007 to the 31st of May 2007,

3106T Time Domain
one keeps track of the fact that every day in between

the 1st of February 2007 and the 31st of May 2007,

endpoints included, E is an employee of C.

Time intervals are needed to deal with situations

where validity over an interval cannot be reduced

to validity over its subintervals (including point sub-

intervals) [10]. This is the case with processes that

relate to an interval as a whole, meaning that if a

process consumes a certain interval it cannot possibly

transpire during any proper subinterval thereof. Exam-

ples are the processes of baking a cake or of flying from

Venice to Montreal. This is also the case when validity

of a fact at/over consecutive instants/intervals does not

imply its validity over the whole interval. As an exam-

ple, two consecutive phone calls with the same values

are different from a single phone call over the whole

period. The same happens for some kinds of temporal

aggregation [4]. Finally, the use of time intervals is

common in several areas of AI, including knowledge

representation and qualitative reasoning, e.g., [1].

It is important to avoid any confusion between

this latter use of intervals as timestamps and their use

as compact representations of sets of time points (time

periods in the temporal database literature). Time inter-

vals are indeed often used to obtain succinct represen-

tations of (convex) sets of time instants. In such a case,

validity over a time period is interpreted as validity at

every time instant belonging to it. As an example, the fact

that a person E worked for a company C from the 1st

of February 2007 to the 31st of May 2007 can be repre-

sented by the tuple (E, C, [2007/02/01, 2007/05/31])

meaning that E worked for C every day in the closed

interval [2007/02/01, 2007/05/31].

Key Applications
As already pointed out, the time domain is an essential

component of any temporal data model, and thus its

addition to SQL standards does not come as a surprise.

In SQL, time domains are encoded via temporal

data types (they have been introduced in SQL-92 and

preserved in SQL:1999). In SQL-92, five (anchored) time

instant data types, three basic forms and two variations,

are supported (DATE, TIME, TIMESTAMP, TIME

WITH TIME ZONE, TIMESTAMP WITH TIME

ZONE). In addition, SQL-92 features two (unanchored)

data types that allow one to model positive (a shift from

an instant to a future one) and negative (a shift from an

instant to a past one) distances between instants. One can

be used to specify distances in terms of years andmonths
(the YEAR-MONTH INTERVAL type), the other to

specify distances in terms of days, hours, minutes, sec-

onds, and fractions of a second (the DAY-TIME INTER-

VAL type). As a matter of fact, the choice of using

the word interval to designate a time distance instead of

a temporal individual – in contrast with the standard

use of this word in computer science – is unfortunate,

because it confuses a derived element of the time domain

(the interval) with a property of it (its duration). An

additional (unanchored) temporal data type, called

PERIOD, was included in the SQL/Temporal proposal

for the SQL3 standard, which was eventually withdrawn.

A period is a convex sets of time instants that can

be succinctly represented as a pair of time instants,

namely, the first and the last instants with respect to the

given order.

SQL also provides predicates, constructors, and

functions for the management of time values. General

predicates, such as the equal-to and less-than predicates,

can be used to compare pairs of comparable values of

any given temporal type; moreover, the specific overlap

predicate can be used to check whether two time periods

overlap. Temporal constructors are expressions that re-

turn a temporal value of a suitable type. It is possible to

distinguish datetime constructors, that return a time

instant of one of the given data types, and interval con-

structors, that return a value of YEAR-MONTH INTER-

VAL or DAY-TIME INTERVAL types. As for functions,

they include the datetime value functions, such as the

CURRENT_DATE function, that return an instant of

the appropriate type, the CAST functions, that convert

a value belonging to a given (temporal or non temporal)

source data type into a value of the target temporal

data type, and the extraction functions, that can be

used to access specific fields of instant or interval time

values.

Future Directions
Despite the strong prevalence of instant-based datamod-

els in current temporal databases, a number of interesting

problems, such as, for instance, that of temporal aggrega-

tion, motivate a systematic study and development of

interval-based data models. Moreover, in both instant-

based and interval-based data models intervals are de-

fined as suitable sets of elements of an instant-based

time domain. The possibility of assuming time intervals

as the primitive temporal constituents of the temporal

domain is still largely unexplored. Such an alternative

deserves a serious investigation.

Time in Philosophical Logic T 3107
Cross-references
▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Temporal Algebras

▶Temporal Constraints

▶Temporal Data Models

▶Temporal Granularity

▶Temporal Indeterminacy

▶Temporal Periodicity

▶Temporal Query Languages
T

Recommended Reading
1. Allen J. and Ferguson G. Actions and events in interval temporal

logic. J. Logic Comput., 4(5):531–579, 1994.

2. van Benthem J. The Logic of Time. A Model-Theoretic Investi-

gation into the Varieties of Temporal Ontology and Temporal

Discourse, 2nd edn. Kluwer, Dordrecht, Holland, 1991.

3. Bettini C., Jajodia S., and Wang X.S. Time Granularities in

Databases, Data Mining, and Temporal Reasoning. Springer,

NJ, USA, 2000.

4. Böhlen M.H., Gamper J., and Jensen C.S. How would you like

to aggregate your temporal data? In Proc. 13th Int. Symp.

Temporal Representation and Reasoning, 2006, pp. 121–136.

5. Chomicki J. and Toman D. Temporal databases. In Chapter 14 of

the Handbook of Temporal Reasoning in Artificial Intelligence,

M. Fisher, D. Gabbay, L. Vila (eds.). Elsevier B.V., Amsterdam,

The Netherlands, 2005, pp. 429–467.

6. Euzenat J. and Montanari A. Time granularity. In Chapter 3 of

the Handbook of Temporal Reasoning in Artificial Intelligence,

M. Fisher, D. Gabbay, L. Vila (eds.). Elsevier B.V., Amsterdam,

The Netherlands, 2005, pp. 59–118.

7. Goranko V., Montanari A., and Sciavicco G. A road map

of interval temporal logics and duration calculi. J. Appl. Non-

Class. Logics, 14(1-2):9–54, 2004.

8. Montanari A. and Pernici B. Temporal reasoning. In Chapter 21

of Temporal Databases: Theory, Design and Implementation,

A. Tansell, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass

(eds.). Database Systems and Applications Series. Benjamin/

Cummings, Redwood City, CA, USA, 1993, pp. 534–562.

9. Snodgrass R.T. Developing time-oriented database applications

in SQL. In Chapter 3 of Instants and Intervals. Morgan

Kauffman, San Francisco, CA, USA, 2000, pp. 24–87.

10. Terenziani P. and Snodgrass R.T. Reconciling point-based

and interval-based semantics in temporal databases: a treatment

of the telic/atelic distinction. IEEE Trans. Knowl. Data Eng.,

16(5):540–551, 2004.
Time Granularity

▶Temporal Granularity
Time in Philosophical Logic

PETER ØHRSTRØM, PER F. V. HASLE

Aalborg University, Aalborg, Denmark

Synonyms
Temporal logic; Logic of time

Definition
The aim of the study of time in philosophical logic is

to provide a conceptual framework for an interdisciplin-

ary study of the nature of time and to formalize and

study various conceptions and systems of time. In addi-

tion, the introduction of time into logic has led to the

development of formal systems, which are particularly

well suited to represent and study temporal phenomena

such as program execution, temporal databases, and

argumentation in natural language.
Historical Background
The philosophy of time is based on a long tradition,

going back to ancient thought. It is an accepted wis-

dom within the field that no attempt to clarify the

concept of time can be more than an accentuation of

some aspects of time at the expense of others. Plato’s

statement that time is the “moving image of eternity”

and Aristotle’s suggestion that “time is the number of

motion with respect to earlier and later” are no excep-

tions (see [17]). According to St. Augustine (354–430)

time cannot be satisfactorily described using just one

single definition or explanation: “What, then, is time?

If no one asks me, I know: if I wish to explain it to one

that asketh, I know not.” [5, p. 40] Time is not defin-

able in terms of other concepts. On the other hand,

according to the Augustinian insight, all human beings

have a tacit knowledge of what time is. In a sense, the

endeavor of the logic of time is to study important

manifestations and structures of this tacit knowledge.

There were many interesting contributions to the

study of time in Scholastic philosophy, e.g., the analysis

of the notions of beginning and ending, the duration of

the present, temporal ampliation, the logic of “while,”

future contingency, and the logic of tenses. Anselm

of Canterbury (ca. 1033–1109), William of Sherwood

(ca. 1200–1270), William of Ockham (ca. 1285–1349),

John Buridan (ca. 1295–1358), and Paul of Venice

(ca. 1369–1429) all contributed significantly to the de-

velopment of the philosophical and logical analysis of

3108T Time in Philosophical Logic
time. With the Renaissance, however, the logical ap-

proach to the study of time fell into disrepute, although

it never disappeared completely from philosophy.

However, the twentieth century has seen a very

important revival of the philosophical study of time.

The most important contribution to the modern phi-

losophy of time was made in the 1950s and 1960s by

A. N. Prior (1914–1969). In his endeavors, A. N. Prior

took great inspiration from ancient and medieval thin-

kers and especially their work on time and logic.

The Aristotelian idea of time as the number of

motion with respect to earlier and later actually unites

two different pictures of time, the dynamic and the

static view. On the one hand, time is linked to motion,

i.e., changes in the world (the flow of time), and on

the other hand time can be conceived as a stationary

order of events represented by numbers. In his works,

A. N. Prior logically analyzed the tension between the

dynamic and the static approach to time, and devel-

oped four possible positions in regard to this tension.

In particular, A. N. Prior used the idea of branching

time to demonstrate that there is a model of time

which is logically consistent with his ideas of free

choice and indeterminism. (See [8, 189 ff.].)

After A. N. Prior’s development of formalised tem-

poral logic, a number of important concepts have been

studied within this framework. In relation to temporal

databases the studies of the topology of time and dis-

cussions regarding time in narratives are particularly

interesting.

Foundations
In the present context, the following four questions

regarding time in philosophical logic seem to be espe-

cially important:

1. What is the relation between dynamic and static

time?

2. What does it mean to treat time as “branching”?

3. What is the relation between punctual and dura-

tional time (i.e., instants and durations)?

4. What is the role of time in storytelling (narratives)?

In the following, a brief introduction to each of these

issues will be given.

Dynamical and Static Time: A-Theory vs. B-Theory

The basic set of concepts for the dynamic understand-

ing of time are past, present, and future. In his very

influential analysis of time the philosopher John Ellis
McTaggart (1866–1925) suggested to call these con-

cepts (i.e., the tenses) the A-concepts. The tenses are

well suited for describing the flow of time, since the

future will become present, and the present will be-

come past, i.e., flow into past. The basic set of concepts

for the static understanding of time are before/after

and “simultaneous with.” Following McTaggart, these

are called the B-concepts, and they seem especially apt

for describing the permanent and temporal order of

events. The two kinds of temporal notions can give rise

to two different approaches to time. First, there is the

dynamic approach (the A-theory) according to which

the essential notions are past, present and future. In

this view, time is seen “from the inside.” Secondly,

there is the static view of time (the B-theory) according

to which time is understood as a set of instants (or

durations) ordered by the before-after relation. Here

time is seen “from the outside.” It may be said to be a

God’s eye-perspective on time.

There is also an ontological difference between the

two theories. According to the A-theory the tenses are

real whereas the B-theorists consider them to be sec-

ondary and unreal. According to the A-theory the Now

is real and objective, whereas the B-theories consider

the Now to be purely subjective.

The debate between proponents of the two theories

received a fresh impetus with A. N. Prior’s formal anal-

ysis of the problem. (See [9, 216 ff.]). According to the

B-theory, time is considered to be a partially ordered

set of instants, and propositions are said to be true or

false at the instants belonging to the set. According to

the A-theory, time is conceived in terms of the opera-

tors P (Past) and F (Future), which are understood as

being relative to a “Now.” A. N. Prior suggested a

distinction between four possible grades of tenselogical

involvement corresponding to four different views of

how to relate the A-notions (past, present and future)

to the B-notions (“earlier than”/“later than,” “simulta-

neous with”):

1. The B-notions are more fundamental than the

A-notions. Therefore, in principle, the A-notions

have to be defined in terms of the B-notions.

2. The B-notions are just as fundamental as the

A-notions. The A-notions cannot be defined in

terms of the B-notions or vice versa. The two sets

of notions have to be treated on a par.

3. The A-notions are more fundamental than the

B-notions. All B-notions can be defined in terms

Time in Philosophical Logic T 3109
of the A-notions and a primitive notion of tempo-

ral possibility.

4. The A-notions are more fundamental than the

B-notions. Therefore, in principle the B-notions

have to be defined in terms of the A-notions. Even

the notion of temporal possibility can be defined

on terms of the A-notions.

A. N. Prior’s four grades of tense-logical involve-

ment represent four different views of time and also

four different foundations of temporal logic. In fact,

theory 1 is the proper B-theory and theory 3 and 4 are

versions of the proper A-theory. Theory 2 is a kind of

intermediate theory.

In theory 1, the tense operators, P (past) and F

(future), can be introduced in the following way:
Time in Philosophical Logic. Figure 1. An Ockhamistic

model of branching time. At every branching point there

will be one possible future which is the true future.

T

Tðt ; FqÞ� def 9t1 : t < t1 ^ Tðt1; qÞ

Tðt ; PqÞ� def 9t1 : t1 < t ^ Tðt1; qÞ
where T(t, q) is read “q is true at t,” and t < t1 is read

“t is before t1.”

In theory 3 and 4, A. N. Prior has shown how

instants can be introduced as maximally consistent

sets of tense-logical propositions and how the before-

after relation can be consistently defined in terms of

tense-logical concepts (i.e., A-notions).

From a B-theoretical viewpoint, at any instant,

an infinite number of propositions, including tensed

ones, will be true about that instant. But from the

A-theoretical point of view, precisely the infinite con-

junction of the propositions in this set is a construction

which, when called an “instant,” makes the B-theoretical

notion of “instant” secondary and derivable.

It should be noted, that whereas the A-theorist

(theory 3 or 4) can translate any B-statement into his

language, many A-statements cannot be translated into

the B-language. For instance, there is no way to trans-

late the A-statement “it is raining now in Aalborg” into

the B-language. The “now” cannot be explained in

terms of the B-language consisting of an ordered set

of instants and the notion of a proposition being true

at an instant. This asymmetry seems to be a rather

strong argument in favor of the A-theory (i.e., A. N.

Prior’s theory 3 or 4).

Linear vs. Branching Time

The idea of formalised branching time was first brought

forward by Saul Kripke in a letter to A. N. Prior in
1958 [8, pp. 189–90]. Kripke’s later development of

the semantics for modal logics is well-known within

computer science. But it has in fact been shown by

Jack Copeland [3] that the kernel of the ideas published

by Kripke were in fact present already in the work of

Meredith and A. N. Prior in 1956.

The difference between A. N. Prior’s theory 3 and 4

is important if time is considered to be branching. In

theory 3, the notion of possibility is primitive. In

theory 4, this notion can be derived from the tenses.

But then it turns out to be very difficult to distinguish

between the possible future, the necessary future and

the “plain” future — e.g., between “possibly tomorrow,”

and “necessarily tomorrow” and just “tomorrow.” In

all obvious models constructed in accordance with

A. N. Prior’s theory 4, “tomorrow” is conflated either

with “possibly tomorrow” or with “necessarily tomor-

row.” On the basis of theory 3, there is no difficulty in

maintaining a difference between the three kinds of

notions discussed. In a theory 3 model, one can refer

not only to what happens in some possible future, ◊ Fq,

and to what happens in all possible futures, □Fq, but

one can also refer to what is going to happen in the

future, Fq, as something different from the possible as

well as the necessary future. A branching time model

with this property is said to be Ockhamistic, whereas a

branching time model in which Fq is identified with

□Fq is said to be Peircean. Graphically, the two kinds

of branching time models can be presented as in Figs. 1

and 2 respectively.

Time in Philosophical Logic. Figure 2. A Peircean model

of branching time. There is no difference between the

status of the possible futures at any branching point.

3110T Time in Philosophical Logic
Punctual vs. Durational Time

The notion of a “duration” is important within the

study of time. Several logicians have tried to formul-

ate a logic of durations. The medieval logician John

Buridan (ca. 1295–1358) regarded the present as a

duration and not as a point in time. One example

which he considered was the sentence: “If a thing is

moving, then it was moving.” In his analysis Buridan

suggested that the logic of tenses can be established in

two different ways based on the durational structure of

time. Either the tenses can be taken absolutely, in the

sense that no part of the present time is said to be

past or future. Or the tenses can be taken in the

relative sense, according to which “the earlier part of

the present time is called past with respect to the later,

and the later part is called future with respect to the

earlier.” Buridan pointed out that if a thing is moving

now, then there is a part of the present during which it

is moving, and hence, it is moving in some part of the

present, which is earlier than some other part of

the present. Therefore, if the thing is moving, then it

was moving (if the past is taken in the relative sense),

i.e., moving(x)) P(moving(x)). For this reason, the

above sentence must be accepted if the past is under-

stood relatively, whereas it has to be rejected if the

past tense is understood absolutely. The reason is that

one could in principle imagine a beginning of a process

of motion. (Details can be found in [8, 43 ff.].)

The first modern logician to formulate a kind of

durational calculus was Walker [15]. Walker suggested
a model according to which time is considered as a

structure (S, <), where S is a non-empty set of periods

(also called “durations” or “intervals”). The “a < b”-

relation is to be considered as “strict” in the sense that

no overlap between a and b is permitted, and the

ordering is assumed to be irreflexive, asymmetrical,

and transitive. In addition, he considered the notion

of overlap, which can be defined as:

ajb � def :ða < b _ b < aÞ
Walker formulated an axiomatic system using the fol-

lowing two axioms:

Definition
(W1)aja
(W2)(a < b ∧ bjc ∧ c < d)) a < d

Using a set-theoretic method, Walker demonstrated

that it is possible to define instants in terms of dura-

tions, thusmaking it possible to view a temporal instant

as a “secondary” construct from the logic of durations.

In 1972 Charles Hamblin [6] independently also

put forth a theory of the logic of durations. He

achieved his results using a different technique involv-

ing the relation:
ameets b � def a < b ^ :ð9c : a < c ^ c < bÞ
A decade later, James Allen [1], in part together with

Patrick Hayes [2], showed that two arbitrary durations

(in linear time) can be related in exactly 13 ways. It has

been shown that all these durational theories are equiv-

alent when seen from an ontological point of view.

They all show that just as durations (temporal inter-

vals) can be set-theoretically constructed from an in-

stant-logic, it is also possible to construct instants

mathematically from durations. In fact, all the dura-

tional theories put forth so far appear to give rise to the

same ontological model.

The theories formulated by Walker, Hamblin, and

Allen can all be said to be B-theoretical. But Buridan’s

studies already suggested that it is possible to take an

A-theoretical approach to durational logic. In modern

durational logic an idea similar to Buridan’s absolute/

relative distinction was introduced in 1980 by Peter

Röper [13] and others (see [8, 312 ff]).

Time and Narratives

A narrative is a text which presupposes a kind of event

structure, i.e., a story. The temporal order of the story

Time in Philosophical Logic T 3111

T

is often called “told time.” In many cases the story can

be represented as a linear sequence of events. However,

even if the event structure of the system is linear, the

discourse structure can be rather complicated, since

the reader (user) can in principle be given access to

the events in any order. The order in which the events

are presented is often referred to as “telling time.”

Keisuke Ohtsura and William F. Brewer [10] have

studied some interesting aspects regarding the relation

between the event structure (told time) and the dis-

course structure (telling time) of a narrative text.

Key Applications
The philosophy of time has typically been carried out for

its own sake. In many cases philosophers and logicians

have seen the study of time as intimately related to

essential aspects of human existence as such. For this

reason, the study of time within philosophical logic has

been motivated by a fundamental interest in the con-

cepts dealing with time themselves and not by the search

for a possible application. Nevertheless, such fundamen-

tal studies of time have turned out to give rise to theories

andmodels which are useful inmany ways. For instance,

A. N. Prior’s analysis of the systematic relation between

the dynamic and the static approach to time led him to

the invention of what is now called hybrid logic (http://

hylo.loria.fr). In general, temporal logic has turned out

to be very useful in artificial intelligence and in other

parts of computer science.

A. N. Prior’s tense logic seems especially relevant

for a proper description of the use of interactive sys-

tems. A description of such systems from a B-logical

point of view alone cannot be satisfactory, since that

would ignore the user’s “nowness” which is essential in

relation to the user’s choices and thus to the very

concept of interactivity. On the other hand, if a con-

ceptual start is made from A. N. Prior’s tense logic (i.e.,

the A-logical point of view), all B-logical notions can

be defined in terms of the A-language.

The need for an A-logical description becomes

even clearer when turning to a temporal analysis of

systems which are non-linear even from a B-logical

perspective, for instance a game-like multimedia sys-

tem. In her studies of narratives and possible-world

semantics, Marie-Laure Ryan [14] has made it clear

that such a system is not to be viewed as a static

representation of a specific state of affairs. Rather, it

contains many different narrative lines which thread
together many different states of affairs. Thus it is

the choices of the user which will send the history in

case on its specific trajectory.

Cross-references
▶Allen’s Relations

▶Now in Temporal Databases

▶Qualitative Temporal Reasoning

▶Temporal Database

▶Temporal Granularity

▶Temporal Logic in Database Query Languages

▶Temporal Logical Models

▶Temporal Object-Oriented Databases

▶Time Domain
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26:832–843, 1983.

2. Allen J.F. and Hayes J.P. A common-sense theory of time. In

Proc. 9th Int. Joint Conf. on AI, 1985, pp. 528–531.

3. Copeland J. Meredith, Prior, and the history of possible world

semantics. Synthese, 150(3):373–397, 2006.

4. Fraser J.T., Haber F.C., and Müller G.H. (eds.). The Study of

Time, Vol. I. Springer, Berlin 1972.

5. Gale R., (ed.). The Philosophy of Time. Prometheus Books,

New Jersey, 1968.

6. Hamblin C.L. Instants and intervals. In J.T. Fraser, F.C. Haber,

G.H. Müller (eds.). The Study of Time, Vol. I. Springer, Berlin

1972, pp. 324–331.

7. Hasle P. and Øhstrøm P. Foundations of Temporal Logic – the

WWW-site for Prior-studies. http://www.prior.aau.dk.

8. Øhrstrøm P. and Hasle P. Temporal Logic. From Ancient Ideas to

Artificial Intelligence. Kluwer Academic, Dordrecht, 1995.

9. Øhrstrøm P. and Hasle P. The flow of time into logic and

computer science. Bull. Eur. Assn. Theor. Comput. Sci.,

(82):191–226, 2004.

10. Ohtsuka K. and Brewer W.F. Discourse organization in the

comprehension of temporal order in narrative texts. Discourse

Processes, 15:317–336, 1992.

11. Prior A.N. Past, Present and Future. Oxford University Press,

Oxford, 1967.

12. Prior A.N. Papers on Time and Tense, 2nd edn. Oxford

University Press, Oxford, 2002.

13. Röper P. Intervals and tenses. J. Phil. Logic, 9:451–469, 1980.

14. Ryan M.-L. Possible Worlds, Artificial Intelligence, and Narra-

tive Theory. Indiana University Press, 1991.

15. Walker A.G. Durées et instants. La Revue Scientifique,

(3266):131 ff., 1947.

16. Whitrow G.J. Reflections on the concept of time. In The Study of

Time, Vol. I. J.T. Fraser, F.C. Haber, G.H. Müller (eds.). Springer,

Berlin, 1972, pp. 1–11.

17. Whitrow G.J. The Natural Philosophy of Time, 2nd edn. Oxford

University Press, Oxford, 1980.

http://hylo.loria.fr
http://hylo.loria.fr
http://www.aau.dk/

3112T Time Instant
Time Instant

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Event; Moment; Time point

Definition
A time instant is a single, atomic time point in the time

domain.

Key Points
Various models of time have been proposed in the

philosophical and logical literature of time. These

view time, among other things, as discrete, dense, or

continuous.

Instants in the dense model of time are isomorphic

to the rational numbers: between any two instants

there is always another. Continuous models of time

are isomorphic to the real numbers, i.e., they are dense

and also, unlike the rational numbers, without “gaps.”

A discrete time domain is isomorphic to (a possibly

bounded subset of) the natural numbers, and a specific

instant of such a domain then corresponds to some

natural number.

The elements of a discrete time domain are often

associated with some fixed duration. For example, a

time domain can be used where the time elements are

specific seconds. Such time elements are often called

chronons. In this way, a discrete time domain can

approximate a dense or continuous time domain.

A time domain may be constructed from another

time domain by mapping its elements to granules. In

this case, multiple instants belong to the same granule,

and the same granule may therefore represent different

instants. For example, given a time domain of seconds,

a time domain of day-long granules can be constructed.

Concerning the synonyms, the term “event” is

already used widely within temporal databases, but

is often given a different meaning, while the term

“moment” may be confused with the distinct terms

“chronon” or “granule.”
Cross-references
▶Chronon

▶ Event
▶Temporal Database

▶Temporal Domain

▶Time Domain

▶Time Granularity

▶Time in Philosophical Logic

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X.S. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399, Springer, Berlin, 1998, pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.
Time Interval

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Duration; Span; Time distance; Time period

Definition
Definition 1:

A time interval is a convex subset of the time do-

main. A time interval may be open or closed (at either

end) and can be defined unambiguously by its two

delimiting time instants. In a system that models the

time domain using granules, an interval may be repre-

sented by a set of contiguous granules.

Definition 2:

An interval is a directed duration of time. A dura-

tion is an amount of time with known length, but no

specific starting or ending instants. For example, the

duration “1 week” is known to have a length of 7 days,

but can refer to any block of seven consecutive days. An

interval is either positive, denoting forward motion of

time, or negative, denoting backwards motion in time.

Key Points
Unfortunately, the term “time interval” is being used

in the literature with two distinct meanings: as the time

between two instants, in the general database research

Time Sequence Query T 3113
literature and beyond, and as a directed duration of

time, in the SQL database language. The term “time

period” is associated with the first definition above.

Definition 1 is recommended for non-SQL-related

scientific work. Definition 2 is recommended for SQL-

related work.

Concerning the synonyms, the unambiguous term

“span” has been used previously in the research litera-

ture, but its use seems to be less widespread than

“interval.” While precise, the term “time distance” is

also less commonly used. A “duration” is generally

considered to be non-directional, i.e., always positive.

Cross-references
▶Temporal Database

▶Temporal Granularity

▶Time Domain

▶Time Instant

▶Time Period

▶Time Span

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X.S. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399, Springer, Berlin, 1998, pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

In Temporal Databases: Research and Practice, O. Etzion,

S. Jajodia, S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin,

1998, pp. 367–405.

3. Lorentzos N.A. and Mitsopoulos Y.G. SQL extension for interval

data. IEEE Trans. Knowl. Data Eng., 9(3):480–499, 1997.
T

Time Period

NIKOS A. LORENTZOS

Agricultural University of Athens, Athens, Greece

Synonyms
Time interval

Definition
If the time domain is a totally ordered set T = {t1, t2,

t3...} then a time period over T is defined as a convex

subset of elements from T.

Example: If T = {d1, d2, d3,...}, where di are consec-

utive dates, then [d10, d20] and [d30, d80] represent two

time periods over T.
Key Points
In the area of temporal databases, a time period over

T is usually defined as a distinct data type. Some

researchers define a time period data type of the form

[tp, tq]. Some others define such a data type of the

form [tp, tq), i.e., its right end is closed.

Note that, initially, the term time interval was

used instead of time period. This was later abandoned

in order to avoid confusion, given that interval is a

reserved word in SQL. Instead, time interval in today

used with a different meaning (see time interval).

Cross-references
▶Absolute Time

▶Chronon

▶ Period-Stamped Temporal Models

▶Time Domain

▶Time Interval

▶Temporal Granularity
Time Period Set

▶Temporal Element
Time Point

▶Time Instant
Time Quantum

▶Chronon
Time Sequence

▶History in Temporal Databases
Time Sequence Query

▶Time Series Query

3114T Time Sequence Search
Time Sequence Search

▶Time Series Query
Time Series

▶History in Temporal Databases
Time Series Data Mining

▶Temporal Data Mining
Time Series Database Querying

▶Query by Humming
Time Series Query

LIKE GAO
1, X. SEAN WANG

2

1Teradata Corporation, San Diego, CA, USA
2University of Vermont, Burlington, VT, USA

Synonyms
Time sequence query; Time series search; Time

sequence search

Definition
A time series query refers to one that finds, from a set

of time series, the time series or subseries that satisfy

a given search criteria. Time series are sequences of data

points spaced at strictly increasing times. The search

criteria are domain specific rules defined with time

series statistics or models, temporal dependencies,

similarity between time series or patterns, etc. In par-

ticular, similarity queries are of great importance for

many real world applications like stock analysis,

weather forecasting, network traffic monitoring, etc.,

which often involve high volumes of time series data

and may use different similarity measures or pattern

descriptions. In many cases, query processing consists
of evaluating these queries in real-time or quasi-real

time by using time series approximation techniques,

indexing methods, incremental computation, and

specialized searching strategies.

Historical Background
Time series queries play a key role in temporal data

mining applications such as time series analysis and

forecasting. It was in the recent years that these applica-

tions with massive time series data became possible due

to the rapidly emerging query processing techniques,

especially those for similarity queries. In 1993, Rakesh

Agrawal et al. [1] proposed an indexing method for

processing similarity queries in sequence databases.

The keywas tomap time series to a lower dimensionality

space by only using the first few Fourier coefficients of

the time series, and building R*-trees to index the time

series. This work laid out a general approach of using

indexes to answer similarity queries with time series. In

1994, Christos Faloutsos et al. [6] extended this work to

subsequence matching and proposed the GEMINI

framework for indexing time series. In 1997, Davood

Rafiei and Alberto Mendelzon [12] proposed a set of

linear transformations on the Fourier series representa-

tion of a time series that can be used as the basis for

similarity queries. Subsequent works have focused on

new dimensionality reduction techniques [2,9,10], new

similarity measures [4,5,14], and queries over streaming

time series [3,7,15].

Foundations

Basic Concepts

A time series x is a sequence of data points spaced at

strictly increasing times. The number of elements in the

sequence is called the length of the time series. The data

points are often real numbers, and therefore x can

often be represented as a vector of real numbers,

xðnÞ ¼ hxt1 ;:::;xtni, where n is the length of x, and

each ti is the timestamp associated with the data

point with ti< ti+1 for i = 1,...,n� 1. The time intervals

between successive data points are usually, but not

always, assumed uniform, and hence ti+1 � ti is

often assumed a constant for i = 1,...,n � 1. When

the specific ti values are irrelevant but only signify

the temporal order, x is also represented as

xðnÞ ¼ hx1;:::; xni. A subsequence of x that consists

of consecutive elements is called a subseries or segment

Time Series Query T 3115

T

of x. Time series normally refer to those finite

sequences of static elements. If the sequence has new

elements continuously appended over time, they are

specially called streaming time series [7].

Raw time series often need pre-processing to fit the

application needs. It is possible to perform the follow-

ing pre-processing to remove irregularities of time

series. Time regulation is to convert a non-uniform

time series to a uniform one with interpolation func-

tions to obtain the elements at uniform time intervals.

Normalization is to make the distance between two

time series invariant to offset shifting and/or ampli-

tude scaling. For example, given time series x, its mean

�x and standard deviation sx, the normalization func-

tion can be either ~x ¼ ðx � �xÞ or ~x ¼ ðx � �xÞ=sx. Lin-
ear trend reduction is to remove the seasonal trend

impact on time series, e.g., ~xti ¼ xti � ða�t i þ bÞ for
all i. To reduce data noise, smoothing techniques such

as moving average can also be applied.

Similarity is the degree of resemblance between

two time series, and the choice of similarity measure

is highly domain dependent. For applications without

value scaling and time shifting concerns, a simple

Lp-norm Distance, of which L1 and L2 are the well

known Manhattan and Euclidean Distances, respec-

tively, is sufficient. For other applications, more robust

similarity measures may be needed, such as scale in-

variant distances (such as correlation), warping dis-

tances that allow an elastic time shifting (such as

DTW or Dynamic Time Warping, Longest Common

Subsequence and Spatial Assembling Distances [3]),

Edit Distance With Real Penalty (ERP) [4], and

model based and histogram based distances. Since

most similarity measures are defined non-negative,

and the smaller the values, the closer the time series,

the notions of similarity and distance are often used

interchangeably.

Example 1 (Lp-norm Distances, a.k.a. Min-

kowski Distance): Given time series x(n) and y(n),

and positive integer p, let

Lpðx; yÞ ¼
ffiXn

i¼1jxi � yijpp

q
:

A special case is given as L1(x, y) = max{jxi � yij,
i = 1,...,n}. Note when p!1, Lp(x, y) = L1(x, y).

Example 2 (DTW Distance): Given time series

x(m) and y(n), then recursively, for all 1 � i � m and

1 � j � n
DTW ðxðiÞ; yðjÞÞ ¼ dðxi; yjÞ þminfDTW ðxði � 1Þ;
yðj � 1ÞÞ;DTW ðxði � 1Þ; yðjÞÞ;
DTW ðxðiÞ; yðj � 1ÞÞg;

where d() is a distance function defined on two ele-

ments xi and yj, and x(i) and y(j) denote the prefixes

of the time series x(m) and y(n) of lengths i and j,

respectively. The base case of the above is when i = j = 1

in which case DTW(x(1),y(1)) = d(x1, y1). When both

i and j are 0, DTW(x(0),y(0)) is defined as 0. Other-

wise, when either i or j is out of range, DTW(x(i),y(j))

is defined as + 1. DTW is usually accompanied with

one of the following global constraints, in regard to the

two prefix lengths i and j.

Sakoe-Chiba Band: The allowed range of i

and j in the definition above satisfies jj � ij� r for

some r � 0.

Itakura Parallelogram: Use the constraint

g(i) � j � i � f (i) for i and j, where f and g are

functions of i such that the allowed region for j�i
given by the constraint shows a parallelogram shape

with two opposing corners at (0,0) and (m,n),

respectively.

Example 3 (Edit Distance With Real Penalty

[4]): Given time series x(m) and y(n), recursively for

all i � m and j � n, let

ERPðxðiÞ; yðjÞÞ ¼

min

ERPðxði � 1Þ; yðj � 1ÞÞ þ dðxi; yjÞ
ERPðxði � 1Þ; yðjÞÞ þ dðxi; gÞ
ERPðxðiÞ; yðj � 1ÞÞ þ dðg ; yjÞ

8><
>:

In the above, g is a constant value (and can be 0), x(i) =

y(j) = hgi (i.e., a time series of length 1) is assumed for

all i � 0 and j � 0, and d(a, b) = ja � bj. The base case
of the above is when both argument time series are of

length 1 in which case ERP(x, y) = d(x1, y1). Intuitively,

the constant g is used to fill a gap referring to an added

element.

Time Series Query

Many forms of time series queries have been proposed

over the years. Among them, one of the mostly used is

similarity search, defined as follows: Given a set of

candidate time series X, a similarity measure D, and

a query series y, (i) find all the series in X whose

distances to y are within a given threshold (near neigh-

bor query), and (ii) find k series in X that are closest to

3116T Time Series Query
y (k-nearest neighbor query). Other queries are also

possible, e.g., all pairs query that finds, in X, all pairs of

series with distance below a given threshold. Besides

similarity search, other types of queries include detect-

ing elastic burst over streaming time series, retrieving

values at any arbitrary time [13], etc. In the following,

time series query refers to similarity search.

The time series query can be either whole series

matching or subseries matching. The former refers to

the query that concerns the whole time series, both

for the query series y and each candidate series x in

X. The latter concerns the subseries of all x in X.

For example, given time series y(l), for each x(n) 2 X,

the latter query may need to consider x(i + 1,i + l) =

hxi+1,...,xi+li for all 0 � i � n � l.

In the above definition, if the query object is a set of

patterns, the query is called pattern matching. A pattern

is an abstract data model of time series, often seen as a

short sequence, representing a class of time series that

have the same properties. For pattern matching, all the

involved time series may be mapped to the space in

which the patterns and the similarity measure are

defined.

Like the notion of time series, time series queries by

default refer to those with static time series. In case of

streaming time series, the queries are often monitoring

the subseries within a sliding widows, and need to be

evaluated periodically or continually to identify the

similar series or those with the given patterns [7,15].

Query Processing: Index-based Methods for Similarity

Search

Due to large volumes of data and the complexity of

similarity measures, directly evaluating time series

queries is both I/O and CPU intensive. There are

many approaches to process these queries efficiently.

Among them, one is to convert time series to other data

types (e.g., strings and DNA sequences), so that the

corresponding search techniques (e.g., string matching

and DNA sequence matching) can be applied. Another

approach is to index time series based on their approx-

imations (or features), which is detailed in the

following.

Time series x of length n can be viewed as a point in

an n-dimensional space. However, spatial access meth-

ods such as kd-tree and R-tree cannot be used to index

the time series directly. The problem is due to the

dimensionality curse – the performance of spatial access

methods degrades rapidly once the dimensionality is
above 16, while n is normally much larger than this

number.

The general solution is to map time series to points

in a lower N-dimensional space (N << n) and then

construct the indexes in this space. The mapped points

are called the time series approximation. Each dimen-

sion of the N-dimensional space represents one char-

acteristic of the time series, such as mean, variance,

slope, peak values, or a Fourier coefficient, at some

coarse levels of time granularity and possibly within

a shifted time window. Further, the domain of the

N-dimensional space can be nominal so the time series

approximation can be represented as a symbolic

sequence [11].

Example 4 (Piecewise Aggregate/Constant

Approximation [14,8]): Time series x of length mN

can be mapped to a point in the N-dimensional space:

�x ¼ ð�x1;:::; �xN Þ where the value in the ith dimension

is the mean over the ith segment of x,

�xi ¼ 1
m

Pmi
j¼mði�1Þþ1xj .

Example 5 (Line Fitting Approximation

[11]): Given an alphabet A{“up”, “down”, “flat”},

define a mapping function sðzÞ 2 A where z is a time-

series of length m. Time series x of length mN can be

mapped to a length-N symbolic sequence, hs(x1,...,xm),
s(xm+1,...,x2m),..., s(x(N�1)m+1,...,xmN)i, e.g., h“up”, “up”,
...,“down”i. Function s can be line fitting and, based on

the slope of the fitting line, decides if the value is “up”

or “down” etc.

A multi-step algorithm can be used to process a

query. Take the k-nearest neighbor search as an exam-

ple. First step: find k-nearest neighbors in the lower-

dimensional index structure. Find the actual distance

between the query series and the kth nearest neighbor.

Second step: use this actual distance as a range query

to find (in the lower-dimensional index) all the data-

base points. Third step: calculate the actual distances

found in step 2 and obtain the actual k-nearest neigh-

bors. An improvement to this algorithm is to incremen-

tally obtain nearest neighbors in the lower-dimensional

approximation, and each time an actual distance

is obtained, it is used to remove some database points

that are returned by the range query (second step

above).

The index-based methods need to guarantee

soundness (no false alarms) and completeness (no

false dismissals) in the query result. Soundness can be

guaranteed by checking the original data as in step 3.

The completeness can be guaranteed only if the chosen

Time Series Query T 3117

T

approximation method has the lower-bounding pro-

perty [6]. That is, given a similarity measure D, for

any candidate time series x and query time series y,

let �x and �y be their lower-dimensional approximations

and D
0
be the distance defined on �x and �y, then D

0ð�y; �xÞ
� D(y, x) must hold for any x and y.

Example 6 (Lower Bounding Approximation

for Euclidian Distance): Method (1): apply an

orthonormal transform (Fourier transform, Wavelet

transform, and SVD) to both query and candidate

time series and ignore many “insignificant” axes after

the transform. The distance defined on the remaining

axes gives the lower bounding approximation for Eu-

clidian Distance [1]. Method (2): apply segmented

mean approximation to both query and candidate

time series. It is easy to see
ffiffiffiffi
mp
p

Lpð�x; �yÞ � Lpðx; yÞ for
all p, while m is the factor of dimensionality reduction,

i.e., x’s length divided by �x’s. Since this lower-bounding

approximation works for all p, one index tree can

be used for all Lp-norm distances [8,14].

Example 7 (Lower Bounding Approximation

for DTW Distance [9]): To derive a lower bounding

approximation for DTW, approximate the candidate

time series x using segmented mean approximation,

and approximate the query time series y as follows.

Let y =hy1,...,ymNi. Define U =hU1,...,UmNi and

L =hL1,...,LmNi where Ui = max(yi�r ,...,yi+r) and Li =

min(yi�r ,...,yi+r) (r is the allowed range for m � n

in Sakoe-Chiba Band or Itakura Parallelogram).

Sequences U and L form a bounding envelope that

encloses y from above and below. Then reduce

U and L to a lower dimension N, define

Û ¼ hÛ 1;:::;ÛN i and L̂ ¼ hL̂1;:::; L̂N i, where

Û i ¼ maxðU ði�1Þmþ1;:::;UimÞ and L̂i ¼ min

ðLði�1Þm;:::;LimÞ, that is, Û and L̂ are piecewise constant

functions that bound U and L, respectively. Let

LB PAAðy; �xÞ ¼

ffi
m
XN
i¼1

ð�xi � Û iÞ2 if �xi > Ûi;

ð�xi � L̂iÞ2 if �xi < L̂i;
0 otherwise:

8<
: ;

vuuut

then LB_PAA(y, �x) � DTW(y, x).

Query Processing: Similarity Search over Streaming

Time Series

These queries are different from those with static time

series, in that (i) having a sliding window or windows

of multiple lengths at the same time; (ii) continuous

monitoring; and (iii) incremental evaluation. In the
following, consider the two problems: Euclidean dis-

tance or correlation monitoring among pairs of

streams, and Euclidean distance or correlation moni-

toring between a stream time series and a time series

database.

The first query problem is, given many streaming

time series, how to find pairs of time series that have

strong (positive or negative) correlations in the last

sliding window [15].

The idea is to use the notion of “basic windows,”

similar to segmented mean application. Instead of

mean, the coefficients of the Fourier transform of

each segment is used to approximate the time

series. Given x =hx1,...,xbi and y =hy1,...,ybi , where b

is the size of the basic window. If xi ¼
PN�1

m¼0 C
x
m fmðiÞ

and yi ¼
PN�1

m¼0 C
y
m fmðiÞ is a family of orthogonal

functions, then the inner product of x and y,

x�y ¼
Xb
i¼1

xiyi

¼
Xb
i¼1
ð
XN�1
m¼0

Cx
m f mðiÞ

XN�1
p¼0

Cy
p f pðiÞÞ

¼
XN�1
m¼0

XN�1
p¼0

Cx
mC

y
pð
Xb
i¼1

f mðiÞf pðiÞÞ:

Note
Pb

i¼1 fmðiÞfpðiÞ does not depend on x and y and

can be pre-computed. From this, the inner product of

two time series can be computed for each sliding win-

dow aligned with the basic windows (i.e., a sliding

window must be the union of some basic windows).

Fourier bases can be used as the f functions, and

discrete Fourier transform (DFT) can compute the

coefficients efficiently in an incremental way.

By only taking a few Fourier coefficients (small N),

the approximate inner products and hence the Euclid-

ean distance can be evaluated efficiently. To compute

correlations, the normalized series of x̂i ¼ ðxi � �xÞ=sx
need only be considered, where �x and sx are the mean

and standard deviation of x over the sliding window.

A step further: since two series are highly correlated

if their DFT coefficients are similar, an indexing struc-

ture can help to store the coefficients and look for

series with high correlation only in series with similar

coefficients.

The second query problem is, given a database of

pattern time series, a streaming time series, and win-

dow size N, how to find the nearest neighbor of the

3118T Time Series Query
streaming time series (using the last N values) in the

database, at each time position [7].

The idea is a batch processing that uses fast Fourier

transform (FFT) and its inverse to calculate the cross

correlation of streaming time series and patterns

at many time positions. Given x =hx1,...,xNi and

y =hy1,...,yNi , the circular cross correlation sequence

is defined as

CirCCorr
x;y
d ¼

XN
i¼1

xðdþi�1Þ mod Nyi; d ¼ 1; 2;:::;N ;

where d is the time lag. Let ẋ and ẏ be the DFT trans-

forms of x and y respectively, then sequence hẋ1ẏ∗1,...,

ẋN ẏN
∗i is the result of DFT transform of CirCCorrx,y.

Here ẏ∗i is the conjugate of ẏi.

With the CirCCorr, calculation of the Euclidean dis-

tances of a number of time positions can be done in a

batchmode. This is faster than calculating the individual

distances, as the batch process has time complexity

O(NlgN), as compared to the direct computing of

O(Nl), where l (l < N) is the number of time positions

covered by one batch processing. So it is profitable to

wait for a few time steps and then find the nearest

neighbors for these time steps all together. The longer

the wait is, the more computation time saved. How-

ever, this causes a lengthening of the response time, i.e.,

a loss of the chance of finding the answer as early as

possible. To overcome this, one may use a certain

model to roughly predict the future values of the

time series and apply the batch processing to compute

all the Euclidean distance (or correlations) of many

future time positions. When the actual values come,

triangular inequality can filter out a lot of time series in

the database that are not the nearest neighbor [7].
Key Applications
Market data analysis and trend predication, network

traffic control, intrusion detection, temporal data

mining.
Data Sets
1. UCR Time Series Classification/Clustering Page:

http://www.cs.ucr.edu/�eamonn/time_series_data/

2. PhysioBank: Physiologic Signal Archives for Bio-

medical Research (including ECG and synthetic

time series with known characteristics): http://

www.physionet.org/physiobank/
URL to Code
1. Above URL 1.

2. ANN: A Library for Approximate Nearest Neighbor

Searching: http://www.cs.umd.edu/�mount/ANN/

Cross-references
▶Curse of Dimensionality

▶Dimensionality Reduction

▶Discrete Wavelet Transform and Wavelet Synopses

▶High Dimensional Indexing

▶ Indexing and Similarity Search

▶Nearest Neighbor Query

▶Range Query

▶R-tree (and Family)

▶ Sequential patterns

▶ Singular Value Decomposition

▶ Stream Similarity Mining

▶Temporal data mining

▶Top-K Selection Queries on Multimedia Datasets
Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A.N. Efficient

similarity search in sequence databases. In Proc. 4th Int.

Conf. on Foundations of Data Organization and Algorithms,

1993, pp. 69–84.

2. Chan K.P. and Fu A.W.-C. Efficient time series matching by

wavelets. In Proc. 15th Int. Conf. on Data Engineering, 1999,

pp. 126–133.

3. Chen Y., Nascimento M.A., Ooi B.C., and Tung A.K.H. Spade:

on shape-based pattern detection in streaming time series.

In Proc. 23rd Int. Conf. on Data Engineering, 2007, pp. 786–795.

4. Chen L. and Ng R. On the marriage of lp-norms and edit

distance. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004, pp. 792–803.

5. Das G., Gunopulos D., and Mannila H. Finding similar time

series. In Principles of Data Mining and Knowledge Discovery,

1st European Symp., 1997, pp. 88–100.

6. Faloutsos C., Ranganathan M., and Manolopoulos Y. Fast sub-

sequence matching in time-series databases, In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1994, pp. 419–429.

7. Gao L. and Wang X.S. Continuous similarity-based queries

on streaming time series. IEEE Trans. Knowl. Data Eng.,

17(10):1320–1332, 2005.

8. Keogh E.J. and Pazzani M.J. Scaling up dynamic time

warping for datamining applications. In Proc. 6th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2000, pp. 285–289.

9. Keogh E.J. and (Ann) Ratanamahatana C. Exact indexing of

dynamic timewarping. Knowl. Inform. Syst., 7(3):358–386, 2005.

10. Korn F., Jagadish H.V., and Faloutsos C. Efficiently supporting

ad hoc queries in large datasets of time sequences. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 289–300.

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.physionet.org/physiobank/
http://www.physionet.org/physiobank/
http://www.cs.umd.edu~mount/ANN/

Time-Dependent Networks T 3119
11. Qu Y., Wang C., Gao L., and Wang X.S. Supporting movement

pattern queries in user-specified scales. IEEE Trans. Knowl. Data

Eng., 15(1):26–42, 2003.

12. Rafiei D. and Mendelzon A. Similarity-based queries for time

series data. In Proc. ACM SIGMOD Int. Conf. on Management

of Data. 1997, pp. 13–25.

13. Revesz P., Chen R., and Ouyang M. Approximate query evalua-

tion using linear constraint databases. In Proc. 8th Int. Symp.

Temporal Representation and Reasoning, 2001, pp. 170–175.

14. Yi B.-K. and Faloutsos C. Fast time sequence indexing for arbi-

trary LP norms. In Proc. 26th Int. Conf. on Very Large Data

Bases, 2000, pp. 385–394.

15. Zhu Y. and Shasha D. Statstream: statistical monitoring of

thousands of data streams in real time. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002, pp. 358–369.
Time Series Search

▶Time Series Query
T

Time Span

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tuscon, AZ, USA

Synonyms
Time interval; Time distance

Definition
A span is a directed duration of time. A duration is an

amount of time with known length, but no specific

starting or ending instants. For example, the duration

“1 week” is known to have a length of 7 days, but can

refer to any block of seven consecutive days. A span is

either positive, denoting forward motion of time, or

negative, denoting backwards motion in time.

Key Points
Concerning the synonyms, the terms “time interval” is

generally understood to denote an anchored span in

the general community of computer science. Only in

the SQL language does “time interval” denote a span.

The term “span,” which has only one definition, is thus

recommended over “time interval” for works not

related to the SQL language. This use is unambiguous.

A “duration” is generally considered to be non-

directional, i.e., always positive. The term “time dis-

tance” is precise, but is longer.
Cross-references
▶ Fixed Span

▶Temporal Database

▶Time Instant

▶Time Interval

▶Variable Span

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and

Wang X.S. A glossary of time granularity concepts. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia,

and S. Sripada (eds.). LNCS 1399, Springer, Berlin, 1998,

pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia, and

S. Sripada (eds.). LNCS 1399, Springer Verlag, Berlin, 1998,

pp. 367–405.
Time Unit

▶Chronon
Time-based Access Control

▶Temporal Access Control
Time-based Window

▶Windows
Time-Constrained Transaction
Management

▶Real-Time Transaction Processing
Time-Dependent Graphs

▶Time Aggregated Graphs
Time-Dependent Networks

▶Time Aggregated Graphs

3120T Time-Line Clock
Time-Line Clock

CURTIS DYRESON

Utah State University, Logan, UT, USA

Synonyms
Clock; Base-line clock; Time-segment clock

Definition
In the discrete model of time, a time-line clock is

defined as a set of physical clocks coupled with some

specification of when each physical clock is authori-

tative. Each chronon in a time-line clock is a chronon

(or a regular division of a chronon) in an identified,

underlying physical clock. The time-line clock switches

from one physical clock to the next at a synchronization

point. A synchronization point correlates two, distinct

physical clock measurements.
Key Points
A time-line clock is the clock for (concrete) times

stored in a temporal database. A time-line clock glues

together a sequence of physical clocks to provide a

consistent, clear semantics for a time-line. Since the

range of most physical clocks is limited, a time-line

clock is usually composed of many physical clocks.

For instance, a tree-ring clock can only be used to

date past events, and the atomic clock can only be

used to date events since the 1950s. Though several

physical clocks might be needed to build a time-line, in

some cases a single physical clock suffices. For instance

SQL2 uses the mean solar day clock – the basis of the

Gregorian calendar – as its time-line clock.
Cross-references
▶Chronon

▶ Physical Clock

▶Time Instant
Recommended Reading
1. Dyreson C.E. and Snodgrass R.T. Timestamp semantics and

representation. Inf. Syst., 18(3):143–166, 1993.

2. Dyreson C.E. and Snodgrass R.T. The baseline clock. The

TSQL2 Temporal Query Language. Kluwer, Norwell, MA,

1995, pp. 73–92.

3. Fraser J.T. Time: The Familiar Stranger. University of

Massachusetts Press, Amherst, MA, 1987, p. 408.
Time-Oriented Database

▶Temporal Database
Time-Segment Clock

▶Time-Line Clock
Timeslice Operator

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Rollback operator; State query

Definition
The valid-timeslice operator may be applied to any

temporal relation that captures valid time. Given also

a valid-time element as a parameter, it returns the

argument relation reduced in the valid-time dimen-

sion to just those time(s) specified by the valid-time

element. The transaction timeslice operator is defined

similarly, with the exception that the argument relation

must capture transaction time.
Key Points
Several types of timeslice operators are possible. Some

may restrict the time parameter to intervals or instants.

Some operators may, given an instant parameter,

return a conventional relation or a transaction-time

relation when applied to a valid-time or a bitemporal

relation, respectively; other operators may always re-

turn a result relation of the same type as the argument

relation.

Oracle supports timeslicing through its flash-

back queries. Such queries can retrieve all the versions of

a row between two transaction times (a key-transaction-

time-range query) and allows tables and databases

toberolledbacktoaprevioustransactiontime,discarding

all changes after that time.

Concerning the synonyms, “rollback operator” is

an early term that has since been abandoned. This

term indicates that the result of a timeslice is a

Topic Detection and Tracking T 3121
relation obtained by moving backwards in time, pre-

sumably from the current transaction time. This kind

of result is less general than those that may be obtained

using a timeslice operator. Specifically, this kind of

result assumes a time parameter that extends from

the beginning of the time domain to some past time

(with respect to the current time). Similarly, “state

query” suggests a less general functionality than what

is actually offered by timeslice operators.

Cross-references
▶Bitemporal Relation

▶Temporal Database

▶Temporal Element

▶Temporal Query Languages

▶Time Instant

▶Time Interval

▶Transaction Time

▶TSQL2

▶Valid Time

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.
TIN

▶Triangulated Irregular Networks
T

Tiny Aggregation (TAG)

▶ In-Network Query Processing
TinyDB

▶ In-Network Query Processing
TinySQL

▶Database Languages for Sensor Networks
t-Norm

▶Triangular Norms
Topic Detection and Tracking

NING LIU

Microsoft Research Asia, Haidian, China

Definition
According to the definition at http://projects.ldc.

upenn.edu/TDT/, Topic Detection and Tracking

(TDT) is a multi-site research project to develop core

technologies for a news understanding systems. Specif-

ically, TDT systems discover the topical structure in

unsegmented streams of news reporting as it appears

across multiple media and in different languages. Some

terms are defined below before the TDT problem is

fully understood (The definitions are borrowed from

Omid Dadgar’s work).

1. Event – An event is something that happens at

some specific time and place, and the unavoidable

consequences. Specific elections, accidents, crimes

and natural disasters are examples of events.

2. Activity – An activity is a connected set of actions

that have a common focus or purpose. Specific

campaigns, investigations, and disaster relief efforts

are examples of activities.

3. Story – A story is a newswire article or a segment of

a news broadcast with a coherent news focus. They

must contain at least two independent, declarative

clauses.

4. Topic – The topic is defined as a seminal event or

activity, along with all directly related events and

activities.

With the definition of topic, the Topic Detection

and Tracking can be known as to investigate the

state of the art in finding and following new events in

a stream of broadcast news stories. According to the

Pilot-study, the original TDT problem consists of three

major tasks: (i) segmenting a stream of data, especially

recognized speech, into distinct stories; (ii) identifying

those news stories that are the first to discuss a new

event occurring in the news; and (iii) given a small

3122T Topic Detection and Tracking
number of sample news stories about an event, finding

all following stories in the data stream.

Historical Background
The TDT study starts from 1996 through a Pilot-study

[2] which aims to explore the approaches and perfor-

mance baselines. After that, it quickly attracted much

attention. Followed by the TDT2, TDT3 etc, increasing

number of research works are focusing on the TDT

problem. TDT2 in 1998 was the first major step in

TDT after the pilot study since it established the foun-

dation for the following works. It addresses the

same three problems, which are segmentation, detec-

tion, and tracking with the original Pilot study.

The evaluation procedures were modified and the

volume and variety of data and the number of tar-

get topics were expanded. TDT2 attacked the probl-

ems introduced by imperfect, machine-generated

transcripts of audio data. The TDT3 was used for the

year 1999, 2000 and 2001 test. The TDT4 and TDT5

are used for the year 2002, 2003 and 2004 test

respectively.

From the algorithms’ perspective, start from the

Pilot-study, many algorithms and applications about

TDT have been proposed [1]. As some examples, in the

Pilot-study, the Dragon approach, UMass approach

and CMU approach were introduced for text segmen-

tation. The same three approaches are used for new

event detection. They are finally utilized for event

tracking. As some recent progresses, Masaki et al. pro-

posed the Topic Detection and Tracking for News

Web Pages by cluster and SuffixTree [4]. He et al.

proposed to conduct the topic detection and Tracking

by topic sensitive language model [5]. Makkonen et al.

proposed to utilizing the temporal information for

topic detection and tracking. In the next section, the

TDT problems is considered as several sub-problems.

Some algorithms are summarized to address the sub-

problems of TDT.

Foundations
According to the Pilot study [1], the TDT problem

has the following several sub-problems (the major

contents of this section is borrowed from the Pilot

study).

The Segmentation Task

The segmentation task is defined to be the task of

segmenting a continuous stream of text (including
transcribed speech) into its constituent stories. To sup-

port this task the story texts from the study corpus will

be concatenated and used as input to a segmenter. This

concatenated text stream will include only the actual

story texts and will exclude external and internal tag

information. The segmentation task is to correctly

locate the boundaries between adjacent stories, for all

stories in the corpus.

The Detection Task

The detection task is characterized by the lack of

knowledge of the event to be detected. In such a case,

one may wish to retrospectively process a corpus of

stories to identify the events discussed therein, or one

may wish to identify new events as they occur, based on

an on-line stream of stories. Both of these alternatives

are supported under the detection task.

Retrospective Event Detection

The retrospective detection task is defined to be the

task of identifying all of the events in a corpus of

stories. Events are defined by their association with

stories, and therefore the task is to group the stories

in the study corpus into clusters, where each cluster

represents an event and where the stories in the cluster

discuss the event. It will be assumed that each story

discusses at most one event. Therefore each story may

be included in at most one cluster.

Online New Event Detection

The on-line new event detection task is defined to

be the task of identifying new events in a stream of

stories. Each story is processed in sequence, and a

decision is made whether or not a new event is dis-

cussed in the story, after processing the story but

before processing any subsequent stories). A decision

is made after each story is processed. The first story

to discuss an event should be flagged YES. If the

story doesn’t discuss any new events, then it should

be flagged NO.

The Tracking Task

The tracking task is defined to be the task of associating

incoming stories with events known to the system. An

event is defined (“known”) by its association with

stories that discuss the event. Thus each target event

is defined by a list of stories that discuss it.

To solve these sub-problems, various algorithms

have been proposed. For the segmentation, as

Topic Detection and Tracking T 3123

T

addressed by the Pilot study, there is a relatively small

but varied body of previous work that has addressed

the problem of text segmentation. This work includes

methods based on semantic word networks, vector

space techniques from information retrieval and deci-

sion tree induction algorithms. As for some classical

algorithms, the Dragon’s approach to segmentation is

to treat a story as an instance of some underlying topic,

and to model an unbroken text stream as an unlabeled

sequence of these topics. In this model, finding story

boundaries is equivalent to finding topic transitions.

Given a text stream, a probability can be attached to

any particular hypothesis about the sequence and seg-

mentation of topics in the following way:

1. Transition from the start state to the first topic,

accumulating a transition probability.

2. Stay in topic for a certain number of words or

sentences, and, given the current topic, accumulate

a selfloop probability and a language model proba-

bility for each.

3. Transition to a new topic, accumulating the transi-

tion probability. Go back to step 2.

A search for the best hypothesis and corresponding

segmentation can be done using standard HMM tech-

niques and standard speech recognition tricks.

After the segmentation work, Event detection is the

problem of identifying stories in several continuous

news streams that pertain to new or previously uniden-

tified events. Using the same Dragon approach as ex-

ample, Dragon’s online and retrospective detection

systems are applications of the clustering technology

used to train background models for the segmenter.

This technology is an implementation of a k-means

clustering algorithm. The next step after event detec-

tion is the event tracking.

The TDTevent tracking task is fundamentally sim-

ilar to the standard routing and filtering tasks of Infor-

mation Retrieval (IR). Given a few sample instances of

stories describing an event (i.e., stories that provide a

description of the event), the task is to identify any and

all subsequent stories describing the same event. Event

tracking is different from those IR tasks in that events

rather than queries are tracked, and in that events have

a temporal locality that more general queries lack.

These differences shift the nature of the problem

slightly but at the same time shift the possible solutions

significantly. The narrowing of the scope of informa-

tion filtering encourages modifications to existing
approaches and invites entirely new approaches that

were not feasible in a more general query centric

setting.

Dragon’s event tracker is an adaptation of its seg-

menter. As discussed there, the segmentation algo-

rithm does segmentation and topic assignment

simultaneously. In general, the topic labels assigned

by the segmenter are not useful for classification, as

they are few in number and do not necessarily corre-

spond to categories a person would find interesting.

However, by supplementing the background topic

models with a language model for a specific event of

interest, and allowing the segmenter to score segments

against this model, it becomes possible for the segmen-

ter to output a notification of an occurrence of that

event in the news stream whenever it assigns that event

model’s label to a story. In this implementation, the

topic models have the role of determining the back-

ground against which the event model must score

sufficiently well to be identified.

Key Applications
TDT techniques have wide range of applications espe-

cially on the Web documents. As for the key applica-

tions, the major goal of TDT is to finding and

following new events in a stream of broadcast news

stories.

Future Directions
The future directions of TDT are in several fold. The

first is to propose more effective algorithms for some

classical problems such as monitoring streams of news

in multiple languages (e.g., Mandarin) and media –

newswire, radio, television, web sites or some future

combination. On the other hand, due to the rapid

growth of World Wide Web, the scale of the data for

topic detection and tracking is getting larger and larg-

er, thus more scalable algorithms are highly desired.

Another direction for exploring is to find new online

applications of the TDT problem.

Data Sets
The most commonly used corpus for TDT study start

from the Pilot-study. And then the TDT2, TDT3,

TDT2000, TDT2001, TDT4 and TDT5 were released.

The details about the datasets, tasks and evaluation

metrics can be found at http://projects.ldc.upenn.

edu/TDT/. LDC is the provider of the corpus for the

second phase of TDT and is currently developing the

3124T Topic Hierarchies
phase three corpus. As an example, some details about

TDT2 are introduced.
Recommended Reading
1. Allan J. Topic Detection and Tracking. Kluwer, Norvell, MA,

2002.

2. Allan J., Carbonell J., Doddington G., Yamron J., and Yang Y.

Topic detection and tracking pilot study final report. In Proc.

DARPA Broadcast News Transcription and Understanding

Workshop, 1998, pp. 194–218.

3. Makkonen J. and Ahonen-Myka H. Utilizing Temporal Expres-

sions in Topic Detection and Tracking. In Proc. 7th European

Conf. Research and Advanced Technology for Digital Libraries,

2003, pp. 393–404.

4. Mori M., Miura T., and Shioya I. Topic detection and tracking

for news web pages. In Proc. 2006 IEEE/WIC/ACM Int. Conf. on

Web Intelligence, 2006, pp. 338–342.

5. Ruifang H., Bing Q., Ting L., and Sheng L. The topic detec-

tion and tracking with topic sensitive language model. In

Proc. Int. Conf. on Mutilingual Information Processing, 2005,

pp. 324–327.
Topic Hierarchies

▶ Lightweight Ontologies
Topic Maps

JAMES CAVERLEE

Texas A&M University, College Station, TX, USA

Definition
Topic Maps provide a standardized way to represent

and interchange knowledge through the modeling of

abstract concepts (called topics), the relationships

among topics (called associations), and the connection

between abstract concepts and real-world resources

(called occurrences). By distinguishing the high-level

topic space from real-world resources, Topic Maps

may be used both as a semantic map among related

concepts (in the topic space) and as a way to describe

real-world resources (through occurrence mapping

from the topic space into the resource space). Topic

Maps have been formally standardized by the interna-

tional standards body ISO.
Historical Background
The pre-cursors of what are now known as Topic Maps

began in the early 1990s with an effort to merge inde-

pendently created and maintained indexes for infor-

mation sharing. This early work motivated the need for

a more general and more useful knowledge description

meta framework. By 1999, the original ISO standard

for Topic Maps was published as ISO/IEC 13250 based

primarily on SGML and the hypermedia linking lan-

guage HyTime.

Foundations
Topic Maps support the modeling and exchange of

knowledge based on a standardized framework cen-

tered around topics, occurrences, and associations

[1,3,4]. These constructions serve as n-ary connections

between items that express overarching semantics.

Using Topic Maps

According to the ISO standard, Topic Maps [2] are

designed to facilitate knowledge representation and

interchange by:

� Providing an abstract layer of topic-centered meta-

data over information resources for supporting

navigational tools like indexes, glossaries, and cita-

tion systems.

� Linking topics in a clearly defined fashion so that

users can navigate between them. Such linking can

support thesaurus-like interfaces to disparate infor-

mation stores.

� Supporting different “views” over a set of informa-

tion resources by filtering information resources

based on the metadata described in Topic Maps.

� Adding a structured layer over unstructured infor-

mation resources in the form of a markup that is

completely external to the original resources.

The Basics of Topic Maps

To represent and interchange knowledge in a standar-

dized way, Topic Maps rely on three key concepts:

(i) topics, which represent abstract concepts; (ii) asso-

ciations, which model relationships among topics; and

(iii) occurrences, which connect topics to real-world

resources.

The most basic element in a topic map is a topic. In

general, a topic is an abstract concept or subject of

concern within the framework of Topic Maps. A topic

Topic Maps T 3125

T

can be used to represent people, places, events, organi-

zations,Web pages, documents, or any other reasonable

unit of interest. In an example universe of discourse, it

may be appropriate to represent the author Jane Austen

as a topic, as well as the concepts of author, person,

novel, and so on. A topic may be associated with one or

more names; in the running example, Jane Austen the

topic may be referred to by multiple names, including

Austen, Jane Austen, and jane-austen.

Using XTM, the topic for novel and the topic for

Jane Austen (as an instance of a Writer) can be

expressed as:

<topic id="novel">

<baseName>

<baseNameString>Novel

</baseNameString>

</baseName>

</topic>

<topic id="jane-austen">

<instanceOf><topicRef xlink:href=

"#writer"/></instanceOf>

<subjectIdentity>

<subjectIndicatorRef xlink:href=

"{http://en.wikipedia.org/wiki/

Jane_Austen}"/>

<subjectIdentity>

<baseName>

<baseNameString>Austen, Jane 1775-

1817</baseNameString>

</baseName>

</topic>

Note that the Jane Austen topic includes a special

subject indicator syntax that refers to the Wikipedia

entry for Jane Austen. A subject indicator is a guideline

for a human consumer of the topic map that, although

Jane Austen the writer cannot be directly addressed by

a URL, the Wikipedia article uniquely identifies her. In

this way, the subject indicator serves as a subject identi-

fier for the topic Jane Austen. By construction, two

topics that have the same subject identifier must refer

to the same abstract concept.

The second key component of Topic Maps is an

association. An association is a relationship between

topics in a topic map. For example, a topic for the

author Jane Austen and a topic for the novel Pride and

Prejudice (which was written by Jane Austen) could be
linked by the association “written-by” which links an

instance of an Author with an instance of a Novel.

These instances serve as roles in the association. Since

associations imply no directionality, the “written-by”

association implicitly has a dual association “wrote.”

There are no limits on the number and nature of

associations in a Topic Map, so the Topic Maps para-

digm may be used to model complex and sophisticated

domains, as well as simpler domains as in the Jane

Austen example.

<association>

<instanceOf><topicRef xlink:href="#

written-by"/></instanceOf>

<member>

<roleSpec><topicRef xlink:

href="#author"/> </roleSpec>

<topicRef xlink:href="#jane_

austen"/>

</member>

<member>

<roleSpec><topicRef xlink:

href="#novel"/> </roleSpec>
<topicRef xlink:href="#pride_and_

prejudice"/>

</member>

</association>

Finally, an occurrence is a real representations of a

topic. For example, a Web-accessible file of the book

Pride and Prejudice is an occurrence of the topic of the

same name. Similarly, the Pride and Prejudice topic may

also occur in a scholarly article discussing the role of

women in British literature that happens to mention

Pride and Prejudice. In an XTM topic map, an occur-

rence must be a resource that is addressable using a

Uniform Resource Identifier (URI) or may be placed

inline as character data. Hence, an occurrence of Jane

Austen could be an external resource like a Web page

or an image, or a brief in-line description of the author.

In the following example, two of Jane Austen’s

works are referenced as occurrences:

<topic id="pride_and_prejudice">

<instanceOf><topicRef xlink:href="#

novel"/> </instanceOf>

<baseName><baseNameString>Pride

and Prejudice</baseNameString>

</baseName>

3126T Topical-Hierarchical Relevance
<occurrence>

<instanceOf><topicRef xlink:href=

"#pdf-format"/></instanceOf>

<resourceRef xlink:href="http://

www.gutenberg.org/dirs/etext98/

pandp12p2.pdf"/>

</occurrence>

</topic>

<topic id="sense_and_sensibility">

<instanceOf><topicRef xlink:href="

#novel"/> </instanceOf>

<baseName><baseNameString>Sense and

Sensibility</baseNameString>

</baseName>

<occurrence>

<instanceOf><topicRef xlink:href=

"#pdf-format"/></instanceOf>

<resourceRef xlink:href="http://

www.gutenberg.org/dirs/etext94/

sense11p.pdf"/>

</occurrence>

</topic>

Extending the Basic Model

Topic Maps can be further refined through the use of

types and scope.

A type is fundamentally a special kind of associa-

tion between topics, used to indicate that one topic is

an “instance-of” another topic. For example, since

Pride and Prejudice is a book, there may also exist

in the topic map an “instance-of” association between

the topic Pride and Prejudice and a topic representing

the concept of a book. A topic may have multiple types.

A scope provides additional contextual information

about the elements of a Topic Map. Scope allows for the

same topic map to exist at different levels of specification.

Users of the topic maps can then decide if they are

interested in things from any scope or only from one

particular scope or subset of scopes. For example, scope

can be used to provide localized names for topics – one

name for English, one for Spanish, and one for French.

Merging Topic Maps

Since Topic Maps may be developed in a distributed or

independent environment, one of the key features of

Topic Maps is the notion of merging. Merging means

that two topic maps with identical topics can have their

associations and occurrences combined together to build
a richer semantic model. In particular, two topics can be

combined (or “merged”) into a single topic containing

the union of the types, the names, and the occurrences of

the original two topics. This merged topic replaces the

original two topics wherever they participate as a role in

an association or serve as a topic type.

Using Topic Maps

The Topic Maps standard provides a reference point for

the appropriate syntax and functionality of topic maps,

leaving the implementation details of a topic maps

processing engine to commercial and non-commercial

applications and tools. Currently, there are topic map

processing libraries inmost popular languages like Java,

C, Perl, and Python. In an effort to provide a uniform

programmatic interface to topic maps, regardless of the

particular language and platform, the Common Topic

Map Application Programming Interface (TMAPI) has

been recently developed. The TMAPI specification

provides a base set of core interfaces for accessing and

manipulating topic maps.

Key Applications
Web, Semantic Web, digital libraries, business-to-

business exchange.
Cross-references
▶Conceptual Schema Design

▶RDF

▶ Semantic Web
Recommended Reading
1. Garshol L. Metadata? Thesauri? Taxonomies? Topic maps!

Making sense of it all. J. Inf. Sci., 30(4):378–391, 2004.

2. International Organization for Standardization. ISO 13250-2003

Information technology – SBML applications – Topic maps.

Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc

/catalogue_detail.htm?csnumber=38068

3. Park J. and Hunting S. (eds.). XMLTopic Maps. Addison-Wesley,

Boston, MA, USA, 2002.

4. Pepper S. The TAO of topic maps: finding the way in an age of

infoglut. In Proc. XML Europe Conf., 2000.
Topical-Hierarchical Relevance

▶Relevance

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38068
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38068

Topic-based Publish/Subscribe T 3127
Topic-based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Synonyms
Subject-based publish/subscribe

Definition
Topic-based publish/subscribe is a communication

abstraction that supports selective message dissemina-

tion among many sources and many sinks. Messages

are associated with topics and are selectively routed to

destinations with matching topic interests. Data sinks

specify interest in receiving messages of a given topic

and data sources publish messages on different topics.

Topic-based publish/subscribe is an instance of the

more general publish/subscribe concept.
T

Key Points
Topic-based publish/subscribe is an instance of the

more general publish/subscribe concept. In the topic-

based publish/subscribe model, a data source submits

publication messages associated with a topic to the

publish/subscribe system, while a data sink subscribes

its interest in receiving messages of certain topics by

submitting subscription expressions on available topics

to the system. The kind of topics to publish or subscribe

that exist is either out of band information andmust be

know to clients, or is dynamically discoverable by cli-

ents based on additional support provided by the sys-

tem. For example, by subscribing to control channel

topics, where the creation of new topics is announced.

Topics are an integral part of themessages disseminated

through the publish/subscribe system. The publish/

subscribe system only knows how to interpret the

topics, but not the rest of the publication message,

which remains opaque to the system.

A publication message published to the topic-based

publish/subscribe system is delivered to all subscribers

with matching subscriptions. A subscription matches a

publication if the topic associated with the publication

message matches the subscription expression. In very

simple realizations of this model, a topic is simply a

string that represents a name, a subject, or a topic

according to which messages are classified. In more

sophisticated realizations, topics draw from a hierarchi-

cal topic space. The topic space is used to categorize
messages. For example, in a market data dissemination

scenario, messages may be classified according to

the stock exchange, the traded commodity, and the

kind of information disseminated. A message could for

instance be associated with the following topic: /NAS-

DAQ/ABC-Inc/AskingPrice. A subscriber can

express interest in receiving messages of a specific

topic, such as by subscribing to /NASDAQ/ABC-Inc/

AskingPrice, or by defining a set of messages it is

interested in, such as /NASDAQ/ABC-Inc/*, which

indicates that the subscriber would like to receive any

message published with topic NASDAQ and ABC-Inc.

As in the other publish/subscribe models, the

topic-based publish/subscribe model decouples the

interaction among publishing data sources and sub-

scribing data sinks. The same decoupling characteris-

tics as discussed under the general publish/subscribe

concept apply here as well. Specific realizations of this

model found in practice vary in the exact decoupling

offered. To properly qualify as publish/subscribe, at

least the anonymous communication style must exist.

That is publishing clients must not be aware of who the

subscribing clients are and how many subscribing cli-

ents exist, and vice versa. Thus, topic-based publish/

subscribe enables the decoupled interaction of n

sources with m sinks for n, m � 1.

In topic-based publish/subscribe, the publication

data model is defined by the topics that can be asso-

ciated with messages. Simplistic models allow the ap-

plication developer to categorize messages by defining

a flat topic space, simply a collection of topics. More

sophisticated approaches allow the application devel-

oper to select topics from a hierarchical topic space.

Whether flat or hierarchical, topics are often strings,

possibly structured with separators for the hierarchical

case. Some approaches additionally type the various

levels of a hierarchical topic space allowing the appli-

cation developer to use various operators supported by

the type for expressing subscriptions. For example, in

he above example, AskingPrice could be defined as

Integer, to allow the subscriber to express a relation-

al condition on the messages returned. This approach

is close in expressiveness to the capabilities of content-

based or type-based publish/subscribe, as the matching

mechanism now also inspects the message content, i.e.,

the value associated with AskingPrice.

The subscription language model depends on the

publication data model. A subscription expression

defines the subscriber’s interest in receiving messages.

3128T Topic-based Publish/Subscribe
Given a flat publication data model, subscribers can

express interest in receiving messages of a given topic

by specifying the exact topic or by specifying a regular

expression that defines interest in a set of possible

topics. For a hierarchical publication data model, any

part of the hierarchy can be specified as interest by a

subscriber in using a wildcard notation to select all

messages published by the specified topics.

The publish/subscribe matching problem has the

standard interpretation and is defined as determin-

ing the set of subscribers based on their subscription

expression for a given publication message. This prob-

lem is solved over the topic space, which is much

simpler than its content-based counter part.

Topic-based publish/subscribe systems are distin-

guished by the qualities of service the system offers

to its clients, such as various degrees of reliability,

topic persistence, message ordering constraints, mes-

sage delivery guarantees, and message delivery laten-

cies constraints. Topic-based publish/subscribe relates

to channel-based publish/subscribe in that publishing

a message to a channel is similar to associating a

message with a topic, which could be the name or

identity of the channel. However, in topic-based pub-

lish/subscribe this association is reflected in the mes-

sage itself, while in channel-based publish/subscribe

the association is indirect, reflected by selecting a chan-

nel, which must not be represented in the message.

Topic-based publish/subscribe has more limited filter-

ing capabilities than content-based publish/subscribe,

as the message is opaque to the system, while in con-

tent-based publish/subscribe the message structure

and content is used for determining the set of recipi-

ents of a message.

Examples that follow the topic-based publish/sub-

scribe model are the information bus [3], TIBCO’s

RendezVous product [5], and the series of Web services

standards: WS Topics, WS Base Notifications, WS

Brokered Notifications [1]. Elements of channel-based

publish/subscribe can also be found in the Java Messag-

ing Service [2], the OMG Data Dissemination Service

[4], and other messaging middleware. However, these

systems are not directly following the topic-based model

as described above; rather these approaches are enriched

with elements of message queuing, channel-based pub-

lish/subscribe, and content-based publish/subscribe.

Topic-based publish/subscribe is intended to sup-

port applications that need to selectively disseminate

messages from one or more data source to several data
sinks, where the mapping of sources to sinks changes

dynamically. That is not all sources always communi-

cate with the same sinks. The mapping of which source

communicates with which sink is represented through

associating topics with messages and subscribing to

topics. Most existing systems allow the application

to dynamically change subscriptions to topics. Also,

applications of topic-based publish/subscribe exist that

use the topic as a message log. For these applications

the filtering capabilities of the topic-based model is not

so important, but message order guarantees, reliability

of the queues underlying each topic, and low message

delivery latencies are crucial. There are many applica-

tions that follow these characteristics. Examples include

system integration, selective information dissemination,

system management, and database replication.

The term topic-based publish/subscribe is not

used uniformly. Abstractions that exhibit the above

described functionality are also often referred to as

subject-based publish/subscribe systems that offer sub-

ject-based addressing to the applications using the

system. Subject-based addressing means that interact-

ing applications address each other by publishing

messages associated with subjects and by subscribing

to subjects of interest. The term subject and topic

are used synonymously. Based on the subscriptions

registered with the system, the system determines the

set of recipients for a given message, without needing

explicit address information that identifies that a

given message is to be sent to a given destinations.

Also, many messaging systems exhibit part of the above

described functionality and are simply referred to as

messaging systems, message-oriented middleware, or

message queuing systems.
Cross-references
▶Channel-Based Publish/Subscribe

▶ Publish/Subscribe

▶Type-Based Publish/Subscribe
Recommended Reading
1. Chappell D. and Liu L. (ed). Web Services Brokered Notification

1.2 (WS-BrokeredNotification), working draft 01 edition,

July 2004.

2. Hapner M., Burridge R., and Sharma R. Java Message Service.

Sun Microsystems, version 1.0.2 edition, November 9th 1999.

3. Oki B., Pfluegl M., Siegel A., and Skeen D. The information bus:

an architecture for extensible distributed systems. In Proc. 14th

ACM Symp. on Operating System Principles, 1993, pp. 58–68.

Top-K Selection Queries on Multimedia Datasets T 3129
4. OMG. Data Distribution Service for Real-time Systems, version

1.2, formal/07-01-01 edition, January 2007.

5. TIBCO. TIBCO Rendezvous, software release 8.1 edition,

April 2008.
Topic-Directed Web Crawling

▶ Focused Web Crawling
Top-k Queries in P2P Systems

▶Approximate Queries in Peer-to-Peer Systems
T

Top-K Selection Queries on
Multimedia Datasets

AMÉLIE MARIAN

Rutgers University, Piscataway, NJ, USA

Synonyms
Ranked multimedia retrieval; Aggregation algorithms

for middleware systems; Evaluation of fuzzy queries

over multimedia systems

Definition
Traditionally, queries over structured (e.g., relational)

data identify the exact matches for the queries. This

exact-match query model is not appropriate for a

multimedia dataset scenario where queries are inher-

ently fuzzy – often expressing user preferences and not

hard Boolean constraints – and are best answered with

a ranked, or “top-k,” list of the best matching objects.

Efficient top-k query algorithms for such applications

must take into account the specific challenges in acces-

sing multimedia data. In particular, the query model

should consider the access interfaces available to re-

trieve object attribute information, as well as the cost

of retrieving this attribute information.

Historical Background
Content management in multimedia repositories is

an important problem as more and more multimedia

applications are developed. For example, digitization of

photo and art collections is increasingly popular, multi-

media mail and groupware applications are becoming
widely available, and satellite images are being used for

weather predictions. To access such large repositories

efficiently, multimedia objects need to be queried via

their attribute values, such as the date the multimedia

object was authored, a free-text description of the ob-

ject, and features like color histograms.

There are at least three major ways in which

accesses to a multimedia repository differ from that

of a structured database (e.g., a relational database).

First, the data are inherently fuzzy: rarely does a user

expect an exact match with the features of a multime-

dia object (e.g., color histogram). Rather, an object

does not either satisfy or fail a condition, but has

instead an associated grade of match [3,5]. Thus, an

atomic query condition will not be a filter testing for

an equality between two values (e.g., between a given

color c and the color O.c of an object O) as is usually

the case in an exact query model scenario, but instead

will assign a score representing the grade of match

between the two values (e.g., GradeColor(c,O.c)).

Next, every condition on an attribute of a multimedia

object may only be separately evaluated through calls

to a system or index that handles that particular attri-

bute. This is in contrast to a traditional database where,

after accessing a tuple, all selection predicates can be

evaluated on the tuple. Finally, the process of querying

and browsing over a multimedia repository is likely to

be interactive, and users will tend to ask for only a few

best matches according to a ranking criterion.

Foundations
Existing query processing techniques for relational

data cannot efficiently be applied to multimedia sce-

narios as object attribute information is often kept

separate, possibly in different subsystems, and is typi-

cally expensive to retrieve. In addition, the fuzzy nature

of the queries means that users are only interested in

the best matches, making it unnecessary to evaluate

every object.

Query Model

Consider a collection C of objects with attributes A1,...,

An. A top-k query over collection C simply specifies

target values for each attribute Ai. Therefore, a top-k

query q is an assignment of values {A1 = q1,...,An = qn}

to the attributes of interest. The answer to the top-k

query q = {A1 = q1,...,An = qn} over a collection of

objects C and for a scoring function is a list of the k

objects in the collection with the highest score for

3130T Top-K Selection Queries on Multimedia Datasets
the query. The final score that each object t in C

receives for q is generally a function of a score for

each individual attribute Ai of t. Typically, the scoring

function that is associated with each attribute Ai is

application-dependent. Top-k algorithms presented in

the literature can be applied to a variety of aggregate

scoring functions as long as they satisfy some mono-

tonicity requirements [1,4,5,8].

Typically, multimedia attribute values (or scores)

can only be accessed through specific interfaces. Two

types of access to data, along with their associated

costs, can be distinguished. The first type of access is

sorted (or sequential) access, which allows retrieving

objects through a list sorted by the objects’ attribute

scores (for instance, all images stored by degree of

redness). The second type of access is random access,

which allows to directly access the attribute score of a

given object. A sorted access is usually cheaper than a

random access as it can make use of sequential access

to precomputed index structures. However, sorted ac-

cess does require to access every object in the attribute’s

score order. The multimedia system may allow either

sorted- or random-access, or both, for each attribute

score, depending on the underlying subsystems.

Top-k Query Evaluation Algorithms

A naive brute-force top-k query processing strategy

would consist of computing the score for the query for

every object to identify and return k objects with the

best scores. For large collections of objects, it is easy to

see that this brute-force evaluation could be prohibi-

tively expensive. Fortunately, the top-k query model

provides the opportunity for efficient query processing,

as only the best k objects need to be returned. Objects

that are not part of the top-k answer, therefore, might

not need to be processed. The challenge faced by top-k

query processing techniques is then to identify the top-

k objects efficiently, to limit the amount of processing

done on non-top-k objects. To this end, various top-k

query processing strategies have been presented.

The Threshold Algorithm

To process queries involving multiple multimedia

attributes, Fagin et al. proposed a family of algorithms

[3,4,5], developed as part of IBM Almaden’s Garlic

project. These algorithms can evaluate top-k queries

that involve several independent multimedia “subsys-

tems,” each producing scores that are combined using

arbitrary monotonic aggregation functions. The initial

FA algorithm [3] was followed by “instance optimal”
query processing algorithms over sources that allow

for sorted accesses and possibly random accesses (TA

algorithm) or only for sorted accesses (NRA algo-

rithm) [4]. In later work, Fagin et al. [5] introduced

the TAz algorithm, a variation of TA that also handles

sources that only provide random-access interfaces.

These algorithms rely on making dynamic choices for

scheduling index lookups during query execution in

order to prune low-scoring candidate items as early as

possible. TA does not need an unbounded buffer, and

dynamically considers object grades to decide when

to stop retrieving new objects. Specifically, TA stops

retrieving new objects when it finds a threshold grade

G such that (1) at least k objects with grade G or higher

have been identified and (2) no unretrieved object

can have a grade greater than G.

Nepal and Ramakrishna [10] and Güntzer et al. [6]

presented variations of Fagin et al.’s TA algorithm [4]

for processing queries over multimedia databases. In

particular, Güntzer et al. [6] reduce the number of ran-

dom accesses through the introduction of more stop-

condition tests and by exploiting the data distribution.

While these algorithms are proved “instance opti-

mal,” i.e, the consider the minimum number of objects

needed to correctly identify the top-k answer, they

completely evaluate each object they consider.

Algorithms based on Expensive Predicates Evaluation

Some works have built upon the TA family of algo-

rithms to further improve query processing efficiency

by reducing the number of expensive random accesses.

Marian et al.’s Upper algorithm [8] picks the most

promising object-attribute pair to process at any given

time based on the result of previous accesses. The

Upper algorithm requires keeping track of partially

evaluated object score bounds. By interleaving the pro-

cessing of objects, and discarding objects that are not fully

evaluated, Upper results in significant savings in ran-

dom access costs. Marian et al. also proposed TA-EP, an

optimization of TA that exploits existing techniques

for processing selections with expensive predicates. In

addition, Marian et al. [8] proposes extending the

Upper algorithm to efficient parallel evaluation.

Chang and Hwang [1] presented MPro, an algo-

rithm that relies on identifying necessary probes to

optimize the execution of expensive predicates for

top-k queries. Unlike Upper, MPro always evaluate

attributes in the same order for every object. Chang

and Hwang also briefly discussed parallelization

Top-K Selection Queries on Multimedia Datasets T 3131

T

techniques for MPro and proposed the Probe-Parallel-

MPro algorithm.

Filter/Restart Method

Algorithms based on Fagin et al.’s TA dynamically

refine a threshold value G based on the status of eval-

uated objects. As a result, these algorithms can be pro-

cessed continuously, until a solution is reached. In

contrast, some techniques have focused on translating

top-k queries into standard selection queries. While this

approach allows using existing query evaluation and

optimization implementations, it may require to “restart”

a query, if the translation does not return at least k

results.

In particular, Chaudhuri et al. built on Fagin’s

original FA algorithm and proposed a cost-based ap-

proach for optimizing the execution of top-k queries

over multimedia repositories [2]. Their strategy trans-

lates a given top-k query into a selection (filter) query

that returns a (hopefully tight) superset of the actual

top-k tuples using data distribution information to

estimate the value G that is expected to be the score

of the kth object. Ultimately, the evaluation strategy

consists of retrieving the top-k 0 tuples from as few

sources as possible, for some k 0 � k, and then probing

the remaining sources by invoking existing strategies

for processing selections with expensive predicates.

Using Pre-computed Views

Another approach to top-k query evaluation is to use

precomputed top-k query indexes. Various top-k

queries, with different scoring functions, are evaluated

to create indexes, which are used whenever a new top-k

query is entered. A challenge of such an approach is to

correctly identify the most efficient index for the new

query. The PREFER system [7] uses pre-materialized

views to efficiently answer ranked preference queries

over commercial DBMSs. PREFER precomputes a set

of materialized views that provide guaranteed query

performance and, for any new top-k query, selects a

near optimal set of views under space constraints.

Handling Joins

Top-k query evaluation algorithms over arbitrary

joins have been presented for multimedia applications

[1,9]. They use a ranking function that combines indi-

vidual tuple scores. These algorithm handle the possi-

ble explosion in the number of results resulting from

the join operation.
Key Applications

Multimedia Search

Typical search queries in multimedia systems require

for fuzzy matches on predicates that are expensive to

evaluate as the corresponding information is not

stored in indexes (e.g., similarity to a user-specified

image). Top-k algorithms are designed to minimize the

number of accesses to the data, only focusing on those

that are needed to identify the best query answers.

Information Integration

In scenarios where many sources may be accessed to

answer a query (e.g., web databases, legacy systems),

using algorithms that are designed to minimize the

number of these expensive remote accesses is an im-

portant aspect of query processing efficiency.
Future Directions
Research on top-k query processing in multimedia

scenarios has so far focused mostly on efficiency. Rela-

tively little attention has been devoted to evaluating the

quality and usefulness of the resulting top-k answers.

In contrast, the design of good scoring functions

for (relatively unstructured) text documents has been

the main focus of the IR community for the last few

decades. Many lessons and techniques from IR can be

applied to a more structured multimedia scenario.
Cross-references
▶Multimedia Information Retrieval Model

▶Multimedia Retrieval Evaluation

▶ Similarity and ranking operations
Recommended Reading
1. Chang K.C.-C. and Hwang S. Minimal probing: supporting

expensive predicates for top-k queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2002, pp. 346–357.

2. Chaudhuri S., Gravano L., and Marian A. Optimizing top-k

selection queries over multimedia repositories. IEEE Trans.

Knowledge and Data Eng., 16(8):992–1009, August 2004.

3. Fagin R. Combining fuzzy information from multiple systems.

In Proc. 15th ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 1996, pp. 216–226.

4. Fagin R., Lotem A., and Naor M. Optimal aggregation algo-

rithms for middleware. In Proc. 20th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2001,

pp. 102–113.

3132T Top-k XML Query Processing
5. Fagin R., Lotem A., and Naor M. Optimal aggregation algo-

rithms for middleware. J. Comput. Syst. Sci., 66(4), 2003.

6. Güntzer U., Balke W.-T., and Kießling W. Optimizing multi-

feature queries for image databases. In Proc. 26th Int. Conf. on

Very Large Data Bases, 2000, pp. 419–428.

7. Hristidis V., Koudas N., and Papakonstantinou Y. PREFER: a

system for the efficient execution of multi-parametric ranked

queries. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2001, pp. 259–270.

8. Marian A., Bruno N., and Gravano L. Evaluating top-k queries

over web-accessible databases. ACM Trans. Database Syst.,

29(2):319–362, 2004.

9. Natsev A., Chang Y.-C., Smith J.R., Li C.-S., and Vitter J.S.

Supporting incremental join queries on ranked inputs. In Proc.

27th Int. Conf. on Very Large Data Bases, 2001, pp. 281–290.

10. Nepal S. and Ramakrishna M.V. Query processing issues

in image (multimedia) databases. In Proc. 15th Int. Conf. on

Data Engineering, 1999, pp. 22–29.
Top-k XML Query Processing

▶Ranked XML Processing
Topological Data Models

ERIK HOEL

Environmental Systems Research Institute, Redlands,

CA, USA

Synonyms
Topology; Topological fabric; Topological data

structure

Definition
Topology is defined as a mathematical model used to

define the location of and relationships between geo-

graphical phenomena. These topological relationships

are independent of distance or direction. Topology

may depict connectivity of one entity to another; for

example, an edge will have topological relationships to

it’s from and to nodes.

Topology is useful with spatial data because many

spatial modeling or geoprocessing operations do not

require geometric coordinate values. For example, to

find the shortest path between two nodes requires a list
of which edges connect to each other and the cost of

traversing along each edge. Geometric coordinates are

only necessary to draw the shortest path after it is

calculated.

More generally, topology, in the context of spatial

data, can have several other meanings:

� A mathematical model of features in space (e.g.,

nodes, edges, and faces).

� A physical data model for efficient representation

of feature data.

� A mechanism that can be used to ensure data

quality (e.g., no gaps or overlaps between

polygons).

� A mechanism that allows the management of

shared geometry.

� A mechanism that facilitates navigation between

features using topological relationships (e.g.,

equal, disjoint, intersects, touches, crosses, within,

contains, overlaps, and relate – the nine topological

relationships in the dimensionally extended nine-

intersection model [5]).

A topological data model is used to represent collec-

tions of features that are assembled into a topology (or

topological fabric). Topological data models come in

many different variants (as described in the following),

but the central theme for each of the models is the

storage and representation of spatial data that forms a

topological fabric.
Historical Background
Topological data structures have been used to represent

geographic information for over 40 years [3,14]. The

topological model has been the basis of a number of

operational systems (see, for example DIME [3],

GIRAS [11], ODYSSEY [13], ARC/INFO [1], TIGRIS

[7], and TIGER [9]). Many of these systems have been

based on binary file and in-memory data structures

and supported a single-writer editing model on geo-

graphic libraries organized as a set of individual map

sheets or tiles.

Topology has historically been viewed as a spatial

data structure used primarily to ensure that the asso-

ciated data forms a consistent and clean topologi-

cal fabric. Topology is used most fundamentally to

ensure data quality (e.g., no gaps or overlaps between

polygons representing land parcels) and allow a GIS

Topological Data Models T 3133
to more realistically represent geographic features.

Topology allows one to control the geometric relation-

ships between features and maintain their geometric

integrity.

Foundations
Topological data structures for representing geographic

information are a standard topic in geographic infor-

mation science (see [6], for example, for an excellent

definition of the mathematical theory underlying this

information model). In general, the topological data

model represents spatial objects (point, line, and area

features) using an underlying set of topological primi-

tives. These primitives, together with their relation-

ships to one another and to the features, are defined

by embedding the feature geometries in a single planar

graph. Such datasets are said to be “topologically

integrated.”

The model associates one or more topological pri-

mitives (i.e., nodes, edges, and faces; or 0-cells, 1-cells,

and 2-cells in the TIGER parlance) with spatial objects

of varying geometry type (i.e., points, lines, and poly-

gons respectively). More specifically, a feature with

point geometry is associated with a single node element,

a feature with line geometry is associated with one or

more edge elements, and a feature with polygon geom-

etry is associated with one or more face elements. This is

depicted in Fig. 1 as the generic topology model.

There are additional relationships between the

topological elements themselves as is also shown in

Fig. 1. A node element may or may not be associated

with a collection of edge elements. A face element

may be associated with one or more edge elements.
Topological Data Models. Figure 1. Generic topology

model.
Finally, an edge element is associated with two node

elements and two face elements. The relationships be-

tween nodes and faces may either be implicit or

explicit.

The common representation of a topology is as a

collection of topological primitives – i.e., nodes, arcs,

and faces, with explicit relationships between the pri-

mitives themselves. For example, an arc would have a

relationship to the face on the left, and the face on the

right. With advances in GIS development, an alterna-

tive view of topology has evolved. Topology can be

modeled as a collection of rules and relationships

that, coupled with a set of editing tools and techniques,

enables a GIS to more accurately model geometric

relationships found in the world.

Topology, implemented as feature behavior and

user specified rules, allows a more flexible set of geomet-

ric relationships to be modeled than topology imple-

mented as a data structure. For example, older data

structure based topology models enforce a fixed collec-

tion of rules that define topological integrity within a

collection of data. The alternative approach (feature

behavior and rules) allows topological relationships to

exist between more discrete types of features within a

feature dataset. In this alternative view, topology may

still be employed to ensure that the data forms a clean

and consistent topological fabric, but also more broadly,

it is used to ensure that the features obey the key geo-

metric rules defined for their role in the database.

Topological data structures, beginning with DIME

in 1967 [3] have been used to represent features assem-

bled into a topological fabric in a number of different

ways over the past 40 years. In the following, the seven

or so significant variants that have emerged during this

period are described.
T
DIME Files

The US Census Bureau, as part of the New Haven

Census Use Study of 1967, undertook the development

of an explicit topological data model for their geo-

graphic data [3]. This system was called DIME (for

Dual Independent Map Encoding) and was intended

to facilitate the automation of detecting topological

errors in the base geographic data. DIME files were

based upon planar line segments defined by two end-

points. The line segments correspond to the Street

Segment records as shown in Fig. 1. Each street

3134T Topological Data Models
segment was associated with a start and end node

identifier (endpoint), left and right side block and

tract identifiers, as well as an address range. Drawbacks

of the DIME model include the need to perform

searches in order to assemble polygons from the street

segment records, or to determine all the segments

sharing a given node.

In Fig. 2, Main Street is represented as a collection

of four records in the Street Segment Records. Each

(line) segment is defined by two end points (there are

no midspan shape points for the segment). The seg-

ment is associated with the start and end node, identi-

fiers for the blocks and tracts on the left and right sides

of the segment, as well as the low and high address

ranges for each side of the segment. In addition, it is

assumed that the segments are planar – segments may

not cross each other.

The “dual independent” portion of the DIME

model reflects the redundant nature of how the topol-

ogy is represented. Topological fabrics can be repre-

sented using the collection of relationships between

edges and nodes, or nodes and faces, or faces and

edges. With DIME, the topological correctness may

be verified using either block chaining or node chain-

ing. Block chaining involves finding all the segment

records that have a given block on the left or right

side. By rearranging the from/to orientations of each

segment (and the associated left/right oriented attri-

butes) such that the block is on the right side of each

segment, it is possible to chain the nodes. This involves
Topological Data Models. Figure 2. Example of the DIME a
walking from the “to node” of one segment to the

“from node” of another segment, continuing until

all segments are visited. If there is a topological prob-

lem, it will not be possible to chain the blocks in

this manner [2].

Due to the dual nature of DIME, it is also possi-

ble to chain the nodes in order to find topological -

problems. Specifically, for a given node, select all

segments that have it as a “to” or “from” node. Then,

after rearranging the from/to orientations of each

segment such that the node is always in the “to

node” position, one may chain all the blocks surround-

ing the node (moving from the “block right” rec-

ord in one segment to the “block left” record

in another segment). Thus, because of the dual

independent encoding of DIME, one may use two

independent mechanisms to detect topological

problems.

POLYVRT

The Harvard Laboratory for Computer Graphics and

Analysis developed a topological data structure,

termed POLYVRT, that was intended to serve as a

data structure to facilitate interchange between various

other data models [14]. POLYVRTextended the repre-

sentational capabilities of DIME to allow planar seg-

ment chains to exist between nodes. This allowed line

detail to be efficiently handled. In addition, POLYVRT

enables the user to readily flip between segment chains

and polygons.
pproach to storing topology (adapted from [3]).

Topological Data Models. Figure 3. Example of the POLYVRT approach to storing topology.

Topological Data Models T 3135

T

Figure 3 contains an analogous example as shown

in Fig. 2 but using the POLYVRT representation as

well as adding shape points to various segments

(e.g., segments 344, 399, and 433). A POLYVRT chain

record contains a unique identifier, a pointer to the

shape points (termed Points), identifiers of the from

and to nodes, and identifiers of the polygons on the left

and right sides. Records in the nodes table contain a

unique identifier and an (x, y) coordinate value. Entries

in the Polygons table have a unique identifier and a

pointer to a list of all associated chains that compose

the boundary of the polygon (e.g., for polygon 4, the

list contains chains 344, 222, 399, 433, and 446).

GIRAS

GIRAS (Geographical Information Retrieval and

Analysis System) was developed by the US Geological

Survey the mid 1970s [11]. The GIRAS topological

data structure was motivated by the need to represent

polygonal data. In addition, it was determined that it

was more efficient to store certain types of data rather

than recompute it. As a consequence, a large amount

of ancillary data such as polygon perimeter and area

was explicitly stored in the data structure. The data

structure was based upon arcs and was considered a

direct descendent of DIME and POLYVRT due to its

topological similarities.

Figure 4 contains the same example dataset as shown

in Figs. 2 and 3 except using the GIRAS topology
model. The GIRAS model differs from DIME and

POLYVRT as various attributes unrelated to storing

the topology are maintained. This includes the length

as well as bounding rectangle information for the Arc

records (Length, MinXY, and MaxXY). In addition, the

Arc records store the attribute codes of the left and

right polygons (this is not represented in the figure).

The Polygon records similarly store the area and pe-

rimeter of the polygon, the bounding rectangle infor-

mation, as well as the attribute code and the island

count (number of islands found within the polygon).

Note depicted in the figure is the identifier of the

enclosing polygon if the polygon serves as an island

to another polygon. Finally, there are structures for

representing the vertex coordinates of the arcs

(e.g., LastCoord in the Arc Records table), as well as

another structure that maps arcs to polygons (the FAP

file in GIRAS).

TIGER

TIGER (Topologically Integrated Geographic Encod-

ing and Referencing) was developed by the US Census

Bureau during the 1980s as an evolution of the earlier

DIME-file model [9]. New features and capabilities

were added (e.g., curve points for linear features) to

the model in order to create a comprehensive system

that could support all of the various censuses. TIGER

was first used for the 1990 Census of Population and

Housing.

Topological Data Models. Figure 4. Example of the GIRAS approach to storing topology.

3136T Topological Data Models
The topology model within TIGER was based upon

the two dimensional network model of Corbett [6].

This model used three topological primitives termed

0, 1, and 2-cells (analogous to nodes, edges, and faces

in other topological data models).

Figure 5 contains the same example dataset as

shown in Figs. 2–4 except using the TIGER topology

model (note – some liberty has been taken as in reality,

the entries in the list tables are all consecutively

numbered – this is not necessarily shown here; e.g.,

the file position in the C1RALS table). Within TIGER,

0 and 2-cells may be accessed via a directory mecha-

nism. In the figure, the directory for 0-cells is shown

(termed C0DIR). This directory contains a record for

each 0-cell in the 0-cell List table (C0RALS). The

directory entries are sorted by a simple Peano key (an

alternating bit merging of longitude and latitude values

for the associated point); this enables nearest point

queries, etc. Each record in the directory table refer-

ences a 0-cell in the 0-cell List table. The 0-cell List

table is not geographically sorted. The 0-cell entries

contain the x, y coordinate value of the point, and

a pointer to the 1-cell List table (C1RALS) for the

lowest value 1-cell (according to the file position)

that is associated with the 0-cell at an endpoint. The

entries in the 1-cell List table contain back-pointers to

the from and to 0-cells, as well as threading pointer to

other 1-cell records that enable a counter-clockwise
traversal of all 1-cells associated with a given 0-cell

(note that the last record in the thread contains

a terminator – “EOT” in the figure). The 1-cell records

also contain references to the 2-cells (faces) on the left

and right sides as well as threading pointers to other

1-cells that enable the traversal of all 1-cells associated

with a 2-cell. Finally, the 2-cell List (or C2RALS) table

contains an entry for each 2-cell. Each entry contains a

reference to the first 1-cell found in the C1RALS table

that is associated with the 2-cell.

ARC/INFO Coverages

The motivating requirements behind the development

of the ARC/INFO Coverage model were a model that

had a strong theoretical basis (topology), as well as

simplicity and efficiency (e.g., ability to support effi-

cient geoprocessing functions such as polygon overlays

and dissolves) [12].

The Coverage topological data model uses a collec-

tion of tables. End users are responsible for populating

the ARC and LAB files. The entries in the ARC file

correspond to line segments with optional attributes.

In Fig. 6, the shaded portions of the ARC file

correspond to system generated fields. Thus, the user

specifies the user id field along with the shape (geome-

try) as well as any attributes. End users are also

responsible for populating entries in the LAB (for

label) file. Each label is used to specify the attributes

Topological Data Models. Figure 5. Example of the TIGER approach to storing topology.

Topological Data Models. Figure 6. Example of the

Coverage approach to storing topology (simplified).

Topological Data Models T 3137

T

that will be associated with a polygon in the topology.

Following the population of the ARC and LAB files,

the user will perform a topological integration and

structuring of the data. The result of this is the
population of the Arc Attribute Table (AAT) and the

Polygon Attribute Table (or PAT). In addition, other

fields in the ARC file are populated (i.e., the FNODE,

TNODE, LPOLY, and RPOLY). There are other tables

that form the Coverage data model that are not depicted

in Fig. 6 (e.g., the Polygon Arc List, or PAL file) that

provide additional explicit topological relationships.

Relational

Many topological data models stored in relational

databases utilize a storage representation that relies

upon a fixed length record. The winged-edge data

structure [1], a fixed-length storage representation

for representing the relationships between nodes,

edges, and faces, simplified the task of representing

Topological Data Models. Figure 7. Example of an edge and its four wings in the winged-edge data structure of

Baumgart.

3138T Topological Data Models
explicit topological data models within a relational da-

tabase system. The edge record is the primal structure in

this representation. For each edge, the identifiers of the

start and end nodes (termed nodeprev and nodenext in

Fig. 7), and the two faces, one in the clockwise traversal

orientation (facecw), and the other in the counter-

clockwise orientation (faceccw) are represented. Finally,

identifiers of four connected edges, two at each node,

are stored. The four edges correspond to the previous

and next edges found when traversing the two adjacent

polygons in the clockwise (edgepcw and edgencw) and

counterclockwise (edgepccw and edgenccw) orientations.

A topological data model can be stored in a relation-

al database. The topology model is represented using

three tables – an edge table, a node table, and a face table.

The edge table is essentially encoding the winged-edge

data structure in addition to the geometry of the portion

of the feature associated with the edge. The edge table

utilizes negative identifiers to encode the orientation of

the four edges found at the start or end nodes.

ArcGIS Geodatabase

The ArcGIS Geodatabase approach to modeling topol-

ogy represents it as a collection of rules and relation-

ships, coupled with a set of editing tools and techniques

[8]. With the standard models (e.g., TIGER, Relational,

etc.), it is possible to obtain topological primitives from
feature geometry; similarly, it is possible to obtain fea-

ture geometry from topological primitives. Effectively,

the geometry found in features is a dual representation

of the geometry that would be found on the topological

primitives. This topology model simplifies the generic

explicit topology model and does not need to make

both representations persistent. The process of topolog-

ical integration (validation) results in vertex equality

where features share underlying topological primitives.

Given vertex equality, reconstruction of topological pri-

mitives is straightforward. Vertices on feature geome-

tries in this scheme play the same role as that assigned to

embedded foreign keys in data structures that explicitly

model topological primitives.

Topological primitives and relationships are only

instantiated during the process of topological valida-

tion or when required by the client application (this is

similar to Intergraph’s MGE where topology is selec-

tively built but the topological primitives are not per-

sisted in the RDBMS). The primary reason for this

alternative approach is that it is easier (faster, more

scalable) to recreate an index (e.g., the topological

primitives) than to do all the bookkeeping necessary

to make the topological primitives persistent and re-

trieve the primitives from the database while preserv-

ing the database transaction model. Additionally, it is

frequently the case that the portion of the topological

Topological Data Models T 3139

T

primitives necessary for an operation is small relative

to the entire topology (e.g., editing a few block groups

in a localized area within TIGER).

In order for this approach to be viable from a

performance standpoint, it is critical that there exists

a high performance topology engine that validates the

portion of the topology in question as well as instanti-

ate the topological primitives for the given collection

of features within the topology [15].

At a high level, this topology model consists of a

collection of feature classes (homogeneous collections

of features), topology rules, and other metadata used

to support the validation model. This metadata

includes dirty areas (areas that have not been validated

following updates or edits), topology errors, and the

cluster tolerance (i.e., the distance range in which

vertices and boundaries are considered identical or

coincident). Topological integrity is defined with re-

spect to a collection of topology rules. Topology rules

are used to define constraints on the permissible topo-

logical relationships between features in one or more

feature classes that participate in the topology. The

collection of topology rules that are associated with

the topology are selected on the basis of which topo-

logical relationships are important for the user’s

model.

The validation process is a fundamental operation

on a topology performed by a topology engine. The

validation process on a topology is responsible for

ensuring that the first three of Milenkovic’s five nor-

malization rules [10] on all spatial objects participating

in the topology are respected:

1. No two vertices are closer than e.
2. No vertex is closer than e to an edge of which it is

not an endpoint.

3. No two edges intersect except at their endpoints.

In addition, the validation process is responsible

for checking all specified topology rules and generating

topology errors at locations where rules are violated.

Topology rules are checked when the topology is

validated. When a topology rule is violated, a topolo-

gy error object is generated. This topology error may

be represented as a special type of feature that may

itself be persisted. At a later point following the vali-

dation, the user may then review the topology error

objects, and the error conditions may be corrected.

Topology rule violations do not prevent the valida-

tion operation from completing successfully.
Examples of topological rules that may be applied to

polygon features include:

� The interiors of polygons in a feature class must not

overlap (they may however share edges or vertices).

� Polygons must not have voids within themselves or

between adjacent polygons (they may share edges,

vertices, or interior areas).

� Polygons of one feature class must share all their

area with polygons in another feature class (i.e.,

they must cover each other).

Key Applications
Cadastral databases, land use information systems,

overlay processing, geoprocessing, topological analysis,

dataset quality assurance/quality control (QA/QC).
Cross-references
▶Geographic Information System

▶Geographical Information Retrieval

▶Network Data Model

▶ Spatial Data Analysis

▶ Spatial Data Types

▶ Spatial Network Databases

▶ Spatial Operations and Map Operations

▶Topological Relationships
Recommended Reading
1. Baumgart B. A polyhedron representation for computer vision. In

National Computer Conf., 1975, pp. 589–596.

2. Census Bureau. The DIME Geocoding System. Report No. 4,

Census Use Study, US Department of Commerce, Bureau of the

Census, 1970.

3. Cooke D. and Maxfield W. The development of a geographic

base file and its uses for mapping. In Proc. 5th Annual Conf.

Urban and Regional Information System Association, 1967,

pp. 207–218.

4. Corbett J. Topological Principles in Cartography. Technical

Paper 48. Bureau of the Census, Washington, DC, 1979.

5. Egenhofer M., Clementini E., and Di Felice P. Topological rela-

tions between regions with holes. Int. J. Geograph. Inform.

Syst., 8(2):129–142, 1994.

6. Güting R. and Schneider M. Realm-based spatial data types: the

ROSE algebra. VLDB J., 4(2):243–286, 1995.

7. Herring J. TIGRIS: topologically integrated geographic informa-

tion system. In Proc. 8th Int. Symp. on Computer Assisted

Cartography, 1987, pp. 282–291.

8. Hoel E., Menon S., and Morehouse S. Building a robust rela-

tional implementation of topology. In Proc. 8th Int. Symp.

Advances in Spatial and Temporal Databases, 2003, pp. 508–524.

9. Marx R. The TIGER system: automating the geographic

structure of the United States. In Introductory Readings in

3140T Topological Data Structure
Geographic Information Systems. Peuquet Marble Taylor &

Francis, London, 1990.

10. Milenkovic V. Verifiable implementations of geometric

algorithms using finite precision arithmetic. Artif. Intell.,

37(1–3):377–401, 1988.

11. Mitchell W., Guptill S., Anderson K., Fegeas R., and Hallam C.

GIRAS: A geographic information retrieval and analysis system

for handling land use and land cover data: US Geological Survey

Professional Paper 1059, GPO, Washington, DC, 1977.

12. Morehouse S. ARC/INFO: a geo-relational model for spatial

information. In Proc. 7th Int. Symp. on Computer Assisted

Cartography, 1985, pp. 388–397.

13. Morehouse S. and Broekhuysen M. ODYSSEY User’s Manual.

Laboratory for Computer Graphics and Spatial Analysis,

Harvard Graduate School of Design, Cambridge, MA, 1982.

14. Peucker T. and Chrisman N. Cartographic data structures. Am.

Cartograph., 2(1): 55–69, 1975.

15. van Roessel J. A new approach to plane-sweep overlay: topolog-

ical structuring and line-segment classification. Cartograph.

Geograph. Inform. Syst., 18(1), 1991.
Topological Data Structure

▶Topological Data Models
Topological Fabric

▶Topological Data Models
Topological Relationships

PAOLINO DI FELICE, ELISEO CLEMENTINI

University of L’Aguila, L’Aguila, Italy

Definition
Topological relationships describe qualitative proper-

ties that characterize the relative position of spatial
Topological Relationships. Figure 1. Examples of binary top

(the biggest): (a) <A, disjoint, B>, (b) <A, meet, B>, (c) <A, ov
objects. disjoint, meet, overlap, and inside are few exam-

ples (Fig. 1).

Topology is considered the most primitive kind

of spatial information, since a change in topology

implies a change in other geometric aspects, while the

opposite is not true. Generally speaking, topological

properties are those that do not change after transfor-

mations like rotation, translation, scaling, and rubber

sheeting.
Historical Background
Topological relationships have been studied exten-

sively in a number of diverse disciplines since the

beginning of the 1990s, achieving theoretical results

which have constituted the basis for the definition of

most of the topological operators today being part of

the SQL dialects supported by commercial DBMSs

(e.g., IBM-DB2, Oracle, PostGIS/PostgreSQL, . . .).

The implementations are all based on the OpenGIS

Consortium specifications [8] and ISO/TC 211

standard.

Foundations
The mathematical background behind the published

contributions about topological relationships is consti-

tuted either by the point set topology or spatial logic.

The study of topological relationships also depends

on the embedding space, prevalently assumed to be

the two-dimensional Euclidean space.

The major results that appeared in the literature

can be clustered in the three main groups briefly

discussed below.

Topological Relationships for Simple Objects

At the conceptual level, spatial objects can be modeled

as points, lines, and areas. Simple lines are one-

dimensional, continuous features embedded in the

plane with two end points; simple areas are two-

dimensional point sets topologically equivalent to a

closed disc (Fig. 2).
ological relationships between objects A and B

erlap, B>, and (d) <A, inside, B>.

Topological Relationships T 3141
The two conceptual approaches, upon which

almost all publications in this field have been based,

are the 9-Intersection model [5] and the RCCmodel [3].

Despite rather different foundations (the former

relies on point set topology [6], the latter on spatial

logic), both methods come to very similar results.

Further relevant contributions belonging to this

group are: [1,2,4].

The model proposed, in 1991, by Egenhofer and

Franzosa, [4], for classifying topological relationships

between pairs of 2D area features represents the start-

ing point of the research in the field and the basis

for the efficient implementation of the theory on top

of commercial query languages [10]. Their classifica-

tion is based on the cross intersection of the bound-

aries and interiors of the two features. The four values

are collected into a two-by-two matrix, called the

4-intersection; while the approach is called the

4-IntersectionMethod (4IM).

Topological Relationships for Complex Objects

An important advancement of the results about topolog-

ical relationships, with respect to those based on

the assumptionof simple objects,was achievedbyextend-

ing the definitions of point, line, and area, in order to take

into account finite sets of isolated points as a single com-

plex point feature, lines having separations, more than

two end-points, and possibly self-intersections, and,

finally, complex areas having both separations and holes

(Fig. 3). In the reality, complex features are far more

common than simple ones: [1,11].
Topological Relationships. Figure 2. Examples of a

simple point, a simple line, and a simple area.

Topological Relationships. Figure 3. Examples of a complex
Topological Relationships for Objects with Vague

Boundary

The models belonging to the previous two groups

are applicable only to features whose geometry is

exactly known (often called crisp spatial objects).

Examples of crisp objects are mainly man-made arti-

facts like land parcels, buildings, and roads. But the

reality reveals that the boundaries and extent of most

spatial objects cannot be precisely determined. Exam-

ples of non-crisp features are: population density, veg-

etation, oceans, clouds, soil type, Spanish speaking

areas, etc.

Three main alternatives have been proposed to

model non-crisp spatial objects:

1. Models based on fuzzy sets. They allow a fine-

grained modeling of vague spatial objects but are

computationally rather expensive with respect to

data structures and algorithms.

2. Models based on rough sets. They work with lower

and upper approximations of spatial objects.

3. Models based on crisp spatial objects. They extend

data models, type systems, and concepts for crisp

spatial objects to vague spatial objects.

A discussion of the differences of these approaches can

be found in [9], together with links to pertinent

references.

Table 1 summarizes the different subfields in the

study of topological relationships discussed above.
Key Applications
The following applications are some examples among

the many that benefit from dealing with topological

relationships.
T
Geographic Information Systems (GISs)

Topological queries are relevant when dealing with spa-

tial data. Today’s GIS applications use a huge amount of

spatial data. Formal models and efficient algorithms are

of primary importance to reach optimal solutions.
point, a complex line, and a complex area.

Topological Relationships. Table 1. The different

subfields behind the study of topological relationships

Geometry Boundary

Simple Crisp

Vague

Complex Crisp

Vague

Geometry
type WKT representation Comment

Point point(10,20) A 2D point

Polygon polygon((0 0,0 40,40
40,40 0,0 0))

A 2D polygon

3142T Topological Relationships
Qualitative Spatial Reasoning (QSR)

Topological relations capture the everyday common-

sense knowledge of space. QSR makes this knowledge

explicit, so that, given appropriate reasoning techni-

ques, a computer can make predictions about spatial

relations in a qualitative manner, without recourse to

an intractable or unavailable quantitative model [3].

Geospatial Semantic Web (GSW)

The Geospatial Semantic Web has become one of

the most prominent research themes in geographic

information science. In fact, the wide availability of

geo-referenced data on the web would make it possible

to index and query information based on the spatial

attributes. This approach would be facilitated by using

qualitative spatial relations, such as topological rela-

tions, since people are much more inclined to query

web pages through natural language, instead of metric

measurements.

Future Directions
Despite of the huge amount of theoretical studies

about topological relationships done so far, there is

still a lot of work to be done.

For example, the mapping of the topological rela-

tionships into operators to be included in future

releases of spatial query languages, as well as the devel-

opment of processing strategies for their efficient eval-

uation are still open issues. A notable contribution in

this direction is constituted by a very recent paper by

Praing and Schneider, [10].

Furthermore, major attention needs to be paid

with respect to complex objects characterized by un-

certainty in order to: a) identify suitable spatial data

types for their modeling, b) design a minimal set of

operations and predicates defined on top of them,

and c) proceed to their integration into the query

language of existing DBMSs.
Experimental Results
The IBMDB2 UDB system supports the modelling and

the management of spatial data through the so-called

Spatial Extender (briefly, SE) subsystem [7] which is

fully conformant with the OGC Simple Features Spec-

ification for SQL [8], starting with version 8.2.

DB2 SE supports four different spatial data for-

mats: a) Well-known text (WKT) representation,

b) Well-known binary (WKB) representation, c) Shape

representation, and d) Geography Markup Language

(GML) representation.

Table below provides two examples according to

the WKT text representation (the numerical values

represent X-Y coordinates).
{ST_Geometry, ST_Point, ST_LineString,

ST_Polygon, ST_GeometryCollection, ST_Mul-

tiLineString,ST_MultiPolygon ST_Multi-

Point} is the set of geometric data types being part

of the SQL/DDL language running under DB2 SE.

DB2 SE implements a long list of spatial functions

conceptually grouped into five macro-categories: a)

data exchange format functions, b) comparison func-

tions, c) functions that return information about

properties of geometries, d) functions that derive new

geometries from existing ones, and e) miscellaneous

functions. The comparison functions implement the

topological operators.

In order to give the flavour of how they look like

and how easily they can be called as part of SQL

statements, a spatial database storing descriptive and

spatial data about sites of interest and counties is taken

into account.

The SQL/DDL scripts below provide the definition

of the corresponding tables according to the DB2 SE

syntax:

CREATE TABLE sitesOf_interest (id SMAL-

LINT, geometry ST_POINT);

CREATE TABLE counties (id SMALLINT, geom-

etry ST_POLYGON);

TP T 3143

T

The SQL/DML scripts below insert 1 and 2 tuples

into the previous tables, respectively:

INSERT INTO sitesOf_interest (id,

geometry)

VALUES (1, ST_Point(10,20,1)), (2,

ST_Point(41,41,1));

INSERT INTO counties (id, geometry)

VALUES (100, ST_Polygon(‘polygon ((0 0,0

40,40 40,40 0,0 0))’, 1));

INSERT INTO counties (id, geometry)

VALUES (200, ST_Polygon(‘polygon ((1 1,1

40,40 40,40 1,1 1))’, 1));

Notice that 1 identifies the spatial reference system for

the resulting geometry.

The (incomplete) list of available topological opera-

tors are:

ST_Disjoint, ST_Touches, ST_Equals,

ST_Contains, ST_Overlaps, ST_Crosses, etc.

An example of SQL usage of ST_Contains follows:

Syntax:

ST_Contains(geometry1,geometry2)

Meaning:

ST_Contains returns 1 if geometry1 contains

geometry2, 0 otherwise.

The query: Determine the counties where the points of

interest are located in.

SELECT poly.id AS polygon_id, pts.id AS

point_id

FROM sitesOf_interest pts, counties poly

WHERE ST_Contains (poly.geometry, pts.

geometry)

In summary, RDBMSs with spatial extensions like

those featured by the IBM DB2 SE are:

� Reach of data types and functions to deal with

geometry. This extends significantly the expressive-

ness of the relational data model and of SQL. It

follows that writing ad hoc applications in high

level programming languages, to make spatial anal-

ysis, is much easier than before

� Not problematic to be used for people accustomed

to use SQL

Cross-references
▶Dimension-Extended Topological Relationships

▶ Spatial Data Types

▶ SQL
Recommended Reading
1. Clementini E. and Di Felice P. A model for representing topo-

logical relationships between complex geometric features in

spatial databases. Inf. Sci., 90(1–4):121–136, 1996.

2. Clementini E., Di Felice P., and van Oosterom P. A small set of

formal topological relationships suitable for end-user interac-

tion. In Proc. 3rd Int. Symp. Advances in Spatial Databases,

1993, pp. 277–295.

3. Cohn A.G., Bennett B., Gooday J., and Gotts N. RCC: a calculus

for region based qualitative spatial reasoning. GeoInformatica,

1:275–316, 1997.

4. Egenhofer M.J. and Franzosa R. Point-set topological spatial

relations. Int. J. Geogr. Inf. Syst., 5(2):161–174, 1991.

5. Egenhofer M.J. and Herring J. Categorizing binary topological

relationships between regions, lines, and points in geographic

databases. Technical report, Department of Surveying Engineer-

ing, University of Maine, 1991.

6. Gaal S. Point Set Topology. Academic Press, New York, NY, 1964.

7. IBM DB2. Spatial extender user’s guide and reference (Vers. 8).

2004.

8. Open Geospatial Consortium. OpenGIS simple features specifi-

cation for SQL. OpenGIS Project Document, 99–049, 1999.

9. Pauly A. and Schneider M. Topological predicates between vague

spatial objects. In Proc. 9th Int. Symp. Advances in Spatial and

Temporal Databases, 2005, pp. 418–432.

10. Praing R. and Schneider M. Efficient implementation techniques

for topological predicates on complex spatial objects. GeoInfor-

matica, 2007.

11. Schneider M. and Behr T. Topological relationships between

complex spatial objects. ACM Trans. Database Syst., 31(1):

39–81, 2006.
Topology

▶Topological Data Models
Toponyms

▶Gazetteers
Tour

▶Dynamic Graphics
TP

▶XMLTree Pattern, XMLTwig Query

3144T TP Monitor
TP Monitor

▶Transactional Middleware
TPQ

▶XMLTree Pattern, XMLTwig Query
Traditional Concurrency Control for
Replicated Databases

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Traditional replica and concurrency control strategies;

Traditional data replication

Definition
Since the beginnings of distributed computing, the

database community has developed strategies for repli-

cated data management. The basic idea is that each

“logical” data item has one or more physical data

copies, also called replicas, that are distributed across

the database servers in the system. Early work on data

replication provided a framework to describe transac-

tions in a replicated environment and developed con-

currency control mechanisms to control their

execution. The formalism and the techniques devel-

oped in this early work have been the foundations for

much of the further research on database replication. It

considered strong consistency requirements where the

replicated system behaves similar to a non-replicated

system. Replica control was introduced as the task of

translating the read and write operations of transac-

tions on logical data items into operations on the

physical data copies. One-copy-serializability was de-

veloped as a first – and very strong – correctness

criterion defining when the concurrent execution of

transactions in a replicated system is equivalent to a

serial execution of these transactions over a single

logical copy of the database. Replica control was com-

bined with concurrency control mechanisms in order to

provide one-copy-serializable transaction execution.
Historical Background
Replication became a hot topic in the early 1980s.

In their book “Concurrency Control and Recovery in

Database Systems” [2], Bernstein et al. presented a

thorough formalism to reason about the correctness of

transaction execution and concurrency control mechan-

isms in central, distributed and replicated database

systems. Their definitions of serializability and one-

copy-serializability (1SR) are still used to reason about

the correctness of transactional systems. Early work on

replication took as baseline concurrency control strate-

gies used in non-replicated or distributed databases,

extended them and combined themwith replica control

in order to provide one-copy-serializability [2,3]. Fur-

thermore, the correctness of execution despite site or

communication failures has been analyzed thoroughly

[1,4]. Work done in this early phase is very visible in

textbooks on database systems and distributed systems

[6], and builds part of the foundations of academic

education in this area. In 1996, Gray et al. [5] indicated

that these traditional approaches provide poor perfor-

mance and do not scale as they commit transactions only

if they have executed all their operations on all (avail-

able) physical data copies. Many advanced replication

schemes have been developed since then. Nevertheless,

they reuse many of the base techniques developed in the

traditional replication algorithms.

Foundations

Transactions in a Non-Replicated System

The formalism that describes transactions and their

execution in a replicated database is derived from

the transaction model in a non-replicated system. In

a non-replicated system, a database consists of a set

of data items x,y,... . A transaction Ti is a sequence of

read operations ri(x) and write operations wi(x) on

data items that build a logical unit. The database sys-

tem should provide the transactional properties atom-

icity, consistency, isolation and durability (see the

entry ACID properties). Among them, atomicity and

isolation require actions in a replicated system that go

beyond the tasks in a non-replicated system.

Atomicity means that a transaction Ti either termi-

nates with a commit operation (indicated as ci) and

all its write operations remain effective in the database,

or with an abort operation (indicated as ai), in which

case all already executed write operations are undone

before the transaction terminates.

Traditional Concurrency Control for Replicated Databases T 3145
Isolation requires that even if transactions execute

concurrently in the system, each transaction should

have the impression it executes isolated on the data.

In particular, when two operations conflict, i.e., they

are from different transactions, want to access the same

data item and at least one is a write, the execution

order matters. Given a set of transactions, a history

describes the order in which the database server

executes the operations of these transactions. The tra-

ditional correctness criterion in a non-replicated

system is serializability. It requires a history to be

equivalent to a serial history where the same transac-

tions are executed serially one after the other. Equiva-

lence typically refers to executing all conflicting

operations in the same order.

The execution of transactions is controlled by several

components of the database system (see Fig 1). The

client starts a transaction and then submits the indi-

vidual operations of the transaction (including a final

commit or abort request). These requests are inter-

cepted by the transaction manager which keeps track
Traditional Concurrency Control for Replicated

Databases. Figure 1. Transaction components in non-

replicated database systems.
of active transactions. The individual read and write

operations are forwarded to the concurrency control

module that controls when operations are executed

by the data manager in order to provide serializability.

The recovery manager makes changes persistent at

commit time or triggers undo operations in case of

abort. In real database systems, clients submit SQL

statements that can access and manipulate many

records of different tables. However, the abstraction

into simple read and write operations on data items

allows for a clear and powerful reasoning framework.
Transaction Execution in a Replicated System

In a replicated database, there is a set of database

servers A, B,..., also referred to as sites, and each logical

data item x has a set of physical copies xA, xB, ... where

the index refers to the server on which the copy resides.

In full replication, each data item has a copy on each

server, while using partial replication, it has only copies

on a subset of the servers.
T

Execution Model As replication should be transparent

to clients they continue to submit operations on the

logical data items. Replica control has to map an oper-

ation oi(x), oi 2{r,w}, of transaction Ti into operations

on the physical copies of x, e.g., oi(x
A),oi(x

B), Given

the mapping for a set of transactions, when executing

these transactions in the replicated system each data-

base server A produces a local history showing the

execution order of all the operations performed on

the copies maintained by A.

The most common execution model for transac-

tions in a replicated environment is to perform a read

operation on one data copy while write operations

update all copies. This is referred to as ROWA (or read-

one-write-all). As most database applications typically

have more read than write operations is makes sense

to provide fast read access and only penalize write

operations.

A problem of ROWA is that if one copy is not

accessible, write operations cannot be performed any-

more on the data item. In order to be able to continue

even if failures occur, ROWAA (read-one-write-all-

available) needs to be used. It does not require

to perform updates on copies that are currently not

available. An alternative are quorum protocols that

require both read and write operations to access a

quorum of copies.

3146T Traditional Concurrency Control for Replicated Databases
Isolation One-copy-serializability was the first cor-

rectness criterion for replicated histories. The execu-

tion of a set of transactions in a replicated environment

is one-copy-serializable if it is equivalent to a serial

execution over a single, non-replicated (logical) data-

base. Defining equivalence is not straightforward since

the replicated system executes on physical copies while

the non-replicated on the logical data items. The

handling of failures further complicates the issue.

Atomicity Guaranteeing atomicity in a replicated

system requires that all sites that have performed

operations on behalf of a transaction agree on the

outcome (commit or abort) of a transaction. Tradi-

tional replication solutions typically achieve atomicity

by running a commit protocol at the end of a trans-

action. Commit protocols, such as the Two-Phase-

Commit Protocol, are a special form of agreement

protocol in a distributed system. The challenge here

is to define a protocol that works correctly in the

presence of crash and network failures.

This entry does not further look at failures but

focuses on providing isolation in a ROWA system.

Replica and Concurrency Control in a Replicated System

There are many ways to distribute concurrency and

replica control tasks across the system. Figure 2a shows

a centralized architecture. Each individual server is

only responsible for data and recovery management.

Additionally, there is one central transaction manager,

one concurrency control module and one replica con-

trol module in the system. Together, they control the

execution of all operations in the system. They could

be all located in one of the data servers, or, as shown

in the figure, in a special middleware. Figure 2b shows

a distributed architecture where each site has its own

transaction manager, concurrency and replica control

modules. Decisions on where and when to execute

operations are made locally at each site. A hybrid

approach is shown in Fig 2c. Each database server has

its traditional transaction and concurrency control

modules. A middleware layer controls transactions

globally and performs replica control. It relies partially

on the concurrency control modules of the individual

servers. As this might not be enough for a globally

correct execution, the middleware performs some ad-

ditional scheduling. Other combinations of distribu-

tion are also possible.

Given a concurrency control mechanism developed

for a non-replicated system, there exist many ways to
extend it to a replicated system. The following depicts

a few examples.

Strict Two-Phase Locking (S2PL) is probably the best

known concurrency control mechanism. In this case,

the concurrency control module implements a lock

manager. Using S2PL, a transaction has to acquire a

shared lock on data item x before performing a read on

x, and an exclusive lock on x before writing x. An

exclusive lock on x conflicts with other shared and

exclusive locks on x. If a transaction requests a lock

and another transaction holds a conflicting lock, the

requesting transaction has to wait. Only when a trans-

action terminates it releases all its locks, which then

can be granted to waiting transactions. S2PL guaran-

tees serializability because the order in which locks are

granted for the first pair of conflicting operations

between two transactions determines the serialization

order. Deadlocks can occur. A deadlock involving two

transactions can happen if the transactions have two

pairs of conflicting operations and execute them in

different order.

Applying S2PL in a replicated system with a

centralized architecture (Fig 2a), clients submit their-

operations to the global transaction manager. The

transaction manager gets the appropriate lock via

the lock manager and then the replica control module

transfers each read operation to one database

server with a copy of the data item, and write opera-

tions to all servers with copies. In the distributed

architecture (Fig 2b), a client connects to any site.

The execution of individual operations is illustrated

in Fig 3a. The figure shows the message exchange

between a client and two sites. When the client submits

a read operation on logical data item x to the local

server A, a local shared lock is acquired on the local

physical copy (sl(x A)) and the read operation executes

locally. If it is a write operation, an exclusive lock (xl

(x A)) is acquired locally and the operation executes

locally. At the same time, the operation is forwarded to

the server B. B, upon receiving the request, acquires a

lock on the local copy, performs the operation, and

sends a confirmation back to A. When A has received

all confirmations, it sends the confirmation back to

the client.

Architectural Comparison Comparing how well S2PL

maps to the two architectures reflects well the principle

trade-offs between a centralized and a decentralized

architecture.

Traditional Concurrency Control for Replicated Databases T 3147
In favor of a centralized architecture. In principle,

a central component makes the design of coordination

algorithms often simpler. It directs the flow of execu-

tion, and has the global knowledge of where copies are

located. One central concurrency control module seri-

alizes all operations. In the distributed architecture,

the flow of execution is more complex as no single

component has the full view of what is happening in

the system.

While the centralized architecture acquires one

lock per each operation on a logical data item, the
Traditional Concurrency Control for Replicated Databases.

Architecture.
distributed architecture acquires locks per data copies.

Thus, a write operation involves many exclusive locks,

adding to the complexity. The distributed architecture

has the additional disadvantage of potential distributed

deadlocks: there is no deadlock at any site locally but

globally, a deadlock has occurred. Figure 3b depicts an

example execution where a distributed deadlock occurs

although the transactions both only access a single data

item (something not even possible with the centralized

architecture). T1 first acquires the lock on server A

which forwards the request to server B. Concurrently,
Figure 2. Concurrency Control and Replica Control

T

Traditional Concurrency Control for Replicated Databases. Figure 3. Distributed Transaction Execution.

3148T Traditional Concurrency Control for Replicated Databases
T2 acquires the lock first on B and then requests it on

A. At A, T2 has to wait for T1 to release the lock, on B,

T1 waits for T2. The deadlock is distributed since no

single server observes a deadlock. Such deadlocks need

to be resolved via timeout or a deadlock detection

mechanism, which in turn, could be implemented

centrally or distributed.

In favor of a decentralized architecture. A central

middleware is a potential bottleneck and a single point

of failure. In contrast, in the distributed architecture,

if ROWAA is used, the system can continue executing

despite the failure of individual sites.

Furthermore, themiddleware approach has an extra

level of indirection. In the above example algorithm,

this leads to four messages per read operation (a pair

of messages between clients and middleware, and a

pair between middleware and one database server). In

contrast, the distributed architecture has two messages

(between the client and one database server).

A further disadvantage is that the global controller

does not have access to the data manager modules of

the database servers. For example, assume clients sub-

mit SQL statements. The middleware cannot know

what records will actually be accessed by simply look-

ing at the SQL statement. Such information is only

available during the execution. Thus, the central lock

manager might need to set locks on the entire relation.

In contrast, the distributed architecture can execute an

SQL statement first locally, lock only the tuples that are
updated, and then forward the update requests on the

specific records to the other servers, allowing for a

finer-grained concurrency control. Generally, a tighter

coupling often allows for a better optimization.

Optimistic Concurrency Control A last example looks

at optimistic concurrency control (OCC) [7]. In a non-

replicated system, a write operation on x generates a

local copy of x. A read on x either reads the local

copy (if the transaction has previously written x) or

the last committed version of x. At commit time of a

transaction Ti, validation is performed. If validation

succeeds, a write phase turns Ti’s local copies into

committed versions and Ti commits. Otherwise, Ti
aborts. In the simplest form of OCC, validation and

write phase are executed in a critical section. The

validation order determines the serialization order.

Therefore, validation of Ti fails if there is a committed

transaction Tj that is concurrent to Ti (committed after

Ti started), and Tj’s writeset (data items written by Tj)

overlaps with Ti’s readset (data items read by Ti). As Ti
validates after Tj it should be serialized after Tj, and

thus, read what Tj has written. In the concurrent exe-

cution, however, it might have read an earlier version.

Therefore, it needs to be aborted. Optimistic execution

assumes conflicts are rare, and thus, it is sufficient to

detect them at the end of transaction.

One possible implementation of OCC in a system

using full replication uses the hybrid architecture of

Traditional Replica and Concurrency Control Strategies T 3149
Fig 2c. Upon the first operation of a transaction, the

middleware starts a transaction and then executes all

operations at one of the database servers. The local

OCC of the server retrieves the latest committed ver-

sions and keeps track of local copies. At commit time

the middleware retrieves the read- and writesets from

the server at which the transaction executed, and per-

forms validation. For that, it has to keep track of the

writesets of previously committed transactions and use

some timestamping mechanism to determine concur-

rent transactions. If validation succeeds, the write

phase is triggered at all database servers with copies.

Concurrency control is distributed: the middleware

performs validation and ensures execution within a

critical section while the local concurrency control is

needed for the generation of local copies.

A distributed OCC strategy is proposed in [3].

It integrates validation into the commit protocol per-

formed for atomicity. Therefore, a transaction can first

execute completely locally at one database server and

only at commit time communication takes place. This

reduces the message overhead considerably.
Key Applications
Although the exact algorithms developed in this early

phase of research are barely found in any system, the

fundamental techniques behind the coordinated exe-

cution are used widely. For example, although few

commercial solutions actually provide one-copy-

serializability, the concept of ordering conflicting opera-

tions to some degree is common. Locking, timestamp-

ing, multi-version management, OCC, and distributed

and centralized solutions are common place in the man-

agement of replicated data.
T
Experimental Results
Gray et al. [5] show that traditional approaches do

not scale well. They analyzed the distributed locking

approach and determined that the potential of dead-

lock increases quickly with the number of replicas in

the system, the message overhead becomes too high,

and transaction response times become too long. The

goal of more recent research into replica and concur-

rency control has aimed at reducing the overhead by

either providing lower levels of correctness or by

developing more efficient ways to control the flow of

execution in the system.
Cross-references
▶ACID Properties

▶Concurrency Control – Traditional Approaches

▶Distributed Concurrency Control

▶One-Copy-Serializabilty

▶Replica Control

▶Replicated Database Concurrency Control

▶Replication based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶Transaction Models – the Read/Write Approach

▶Two-Phase Locking
Recommended Reading
1. Bernstein P.A. and Goodman N. An algorithm for concurrency

control and recovery in replicated distributed databases. ACM

Trans. Database Syst., 9(4):596–615, 1984.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

Reading, MA, USA, 1987.

3. Carey M.J. and Livny M. Conflict detection tradeoffs for

replicated data. ACM Trans. Database Syst., 16(4):703–746,

1991.

4. El Abbadi A. and Toueg S. Availability in partitioned replicated

databases. In Proc. 5th ACM SIGACT-SIGMOD Symp. on Prin-

ciples of Database Systems, 1986, pp. 240–251.

5. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

6. Kindberg T., Coulouris G.F., and Dollimore J. Distributed

Systems: Concepts and Design, 4th edn. Addison Wesley,

Reading, MA, USA, 2005.

7. Kung H.T. and Robinson J.T. On optimistic methods for

concurrency control. ACM Trans. Database Syst., 6(2):213–226,

1981.
Traditional Data Replication

▶Traditional Concurrency Control for Replicated

Databases
Traditional Replica and Concurrency
Control Strategies

▶Traditional Concurrency Control for Replicated

Databases

3150T Trajectory
Trajectory

RALF HARTMUT GÜTING

University of Hagen, Hagen, Germany

Synonyms
Trajectory; Moving point

Definition
Representation of a time dependent position observed

over some period of time. Usually represented as a

polyline in a 3D (2D + time) space for an object

moving in the 2D plane.

Key Points
Trajectories describe complete histories of movement;

they are stored in moving objects databases, sometimes

called trajectory databases in the literature.

When operations are included, a trajectory corre-

sponds to a value of a moving point data type. Queries

on databases containing trajectories can be formulated

usingmoving object languages. When uncertainty about

an object’s precise position is taken into account, an

uncertain trajectory [3] results which can be viewed as

a kind of cylindrical volume in the 2D + time space.

There exists a lot of work on indexing trajectories [2].

Querying for trajectories similar to a given one is also

an important research area [1].

Cross-references
▶Moving Objects Databases and Tracking

▶ Spatio-Temporal Data Types

References
1. Chen L., Özsu M.T., and Oria V. Robust and fast similarity

search for moving object trajectories. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 491–502.

2. Mokbel M.F., Ghanem T.M., and Aref W.G. Spatio-temporal

access methods. Bull. TC Data Eng., 26(2):40–49, 2003.

3. Trajcevski G., Wolfson O., Hinrichs K., and Chamberlain S.

Managing uncertainty in moving objects databases. ACM

Trans. Database Syst., 29(3):463–507, 2004.
Trajectory Databases

▶Moving Objects Databases and Tracking
Trajectory Indexing

▶ Indexing Historical Spatio-Temporal Data
Transaction

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Transaction; ACID transaction

Definition
A transaction is a tool for application programmers

to delegate the responsibility for preventing damage to

data from threats such as concurrent execution, partial

execution, or system crashes to the database system

software; at the same time, application programmers

retain the obligation to think about the impact on data

consistency of the code they are writing, when executed

alone and without failures. From a programmer’s per-

spective, the power of the transaction paradigm hence

lies in the fact that it reduces the task of concurrent

failure-aware programming of the entire system to that

of correct sequential programming of each application

program separately. The transaction concept offers

the ACID properties (short for atomicity, consistency

preservation, isolation, and durability) and materializes

through concurrency control and recovery. It is nowa-

days used beyond database systems.

Key Points
Database transactions go back to the work of Gray et al.

[3,4] in the mid-1970s. Their development has been

driven by applications where programs run against

data stored in a single database system or a collection

of such systems. There are many threats to the overall

dependability of a system formed as a combination of

databases and application programs; database transac-

tions deal with the threats from concurrent execution,

from incomplete execution (e.g., due to crashes or

cancelations), and from system crashes that lose infor-

mation from volatile buffers that has not yet been

saved. The problem itself has not only been recognized

in the context of database applications [1], yet has

finally been solved by the notion of a transaction.

Transaction Chopping T 3151

T

The key point of a transaction is that it comes

with system-guaranteed properties collectively known

as the ACID properties which considerably simplify the

development of OLTP applications in that application

programs can safely ignore a major portion of the

system complexity. In particular, application programs

are completely freed up from taking care of the issues

of concurrency, i.e., effects that may result from con-

current or even parallel program executions and espe-

cially data accesses, and of failures, i.e., effects that

would result from program executions being inter-

rupted at random points due to process or computer

failures.

In order to make this work, database systems

offer the transaction concept as well as transaction

management, commonly broken down into concurren-

cy control for the synchronization of concurrent access

to common data objects from multiple transactions, as

well as into recovery for being able to restore a consis-

tent state of the database after a crash. From a concep-

tual point of view, transactions can be modeled in

various ways, which essentially boil down to the page

model as well as the object model [5], and they have

evolved from an abstraction concept into a system

mechanism nowadays offered beyond database systems

[2]. The page model considers transactions and trans-

action management at the syntactic level of disk pages

that can either be read or written, while the object

model considers them at a level where the semantics

of operations on database objects can be taken into

account.

Transactions are executed in interleavings called

schedules or histories, which need to satisfy a correct-

ness criterion that commonly comes in a form of

serializability. Serializability is based on the perception

that serial executions are correct and hence tries to

make a non-serial execution “look” as if it was run

serially. Similar approaches can be applied to both

page-model as well as object-model transactions.

Cross-references
▶ACID Properties

▶Concurrency Control

▶Crash Recovery

▶ Extended Transaction Models

▶ Serializability

▶Transaction Management

▶Transaction Manager

▶Transaction Models – The Read/Write Approach
Recommended Reading
1. Davies C.T. Data processing spheres of control. IBM Syst. J.,

17:179–198, 1978.

2. Elmagarmid A.K. Database Transaction Models for Advanced

Applications. Morgan Kaufmann, San Francisco, CA, 1992.

3. Eswaran K.P., Gray J., Lorie R.A., and Traigerv I.L. The notions

of consistency and predicate locks in a database system.

Commun. ACM, 19:624–633, 976.

4. Gray J., Lorie R.A., Putzolu G.R., and Traiger I.L. Granularity

of locks in a large shared data base. In Proc. 1st Int. Conf. on

Very Large Data Bases, 1975, pp. 428–451.

5. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Transaction Chopping

DENNIS SHASHA

New York University, New York, NY, USA

Definition
Transaction chopping is a technique for improving

the concurrent performance of a database system by

reducing the time locks are held. The idea is to break

up each transaction into smaller “pieces,” such that

each piece executes as a transaction, but the effect is

as if the original transactions executed serializably.

Key Points
Imagine an application that locks the entire database

and then accesses a few rows in a table that does not

fit into memory. If one looked at the resource statis-

tics, one would find low CPU consumption and low

disk utilization, yet the throughput would be very

bad. For example, if ten pages were accessed even at

1 ms per page, then throughput would be only 100

transactions per second. The point is that it is possible

to slow down performance greatly just because of

a poor locking strategy, even if there are plenty of

resources.

One might consider a less extreme case: a transac-

tion that processes an order. The transaction might

check whether there is sufficient cash available, then

add the appropriate quantities to inventory, subtract

the value from cash, and commit the transaction.

Because any application that invokes this transaction

will access the “cash” data item, that data item may

become a bottleneck. Transaction chopping is a tech-

nique for circumventing such bottlenecks by dividing

3152T Transaction Commit Time
transactions into smaller transactional pieces that will

hold locks for only a short time, yet still preserve the

serializability of the original transactions.

Assumptions

Transaction chopping makes the following main

assumptions: (i) One can characterize all the transac-

tions that will run in some time interval. The charac-

terization may be parameterized. For example, one

may know that some transactions update account

balances and branch balances, whereas others check

account balances. However, one need not know exactly

which accounts or branches will be updated. (ii) The

goal is to achieve the guarantees of serializability, while

obtaining as much concurrency as possible. That is,

one would like either to use degree 2 isolation, snap-

shot isolation, or to chop transactions into smaller

pieces. The guarantee should be that the resulting

execution be equivalent to one in which each original

transaction executes serializably. (iii) If a transaction

makes one or more calls to rollback, one knows when

these occur and can arrange the transaction to move

them towards the beginning.

Basic Definitions

A chopping partitions each Ti into pieces ci1 ; ci2 ;:::cik .

Every database access performed by Ti is in exactly one

piece. A chopping of a transaction T is said to be

rollback-safe if either T has no rollback statements or

all the rollback statements of T are in its first piece. The

first piece must have the property that all its statements

execute before any other statements of T. This will

prevent a transaction from half-committing and then

rolling back. All transactions should be rollback-safe.

Each piece will act like a transaction in the sense

that each piece will acquire locks according to some

standard method that guarantees the serializability of

the piece.

For example, suppose Tupdates an account balance

and then updates a branch balance. Each update

might become a separate piece, acting as a separate

transaction.

Correct Choppings

One may characterize the correctness of a chopping

with the aid of an undirected graph having two kinds

of edges. (i) C edges: C stands for conflict. Two pieces

p and p0 from different original transactions conflict if

there is some data item x that both access and at least
one modifies. In that case, one draws an edge between

p and p0 and label the edge C. (ii) S edges: S stands for

sibling. Two pieces p and p0 are siblings if they come

from the same transaction T. In this case, draw an edge

between p and p0 and label the edge S.

The resulting graph is called the chopping graph.

(Note that no edge can have both an S and a C label.)

A chopping graph has an SC-cycle if it contains a

simple cycle that includes at least one S edge and at

least one C edge. A chopping of T1,T2,...,Tn is correct if

any execution of the chopping is equivalent to some

serial execution of the original transactions. “Equiva-

lent” is in the sense of the serializability entry.

Theorem 1: A chopping is correct if it is rollback-safe

and its chopping graph contains no SC-cycle.

Theorem 1 shows that the goal of any chopping of a

set of transactions should be to obtain a rollback-safe

chopping without an SC-cycle.

Conclusion

Transaction chopping is a method to enhance concur-

rency by shortening the time a bottleneck resource is

held locked. It works well in practice and the theory

extends naturally to snapshot isolation as well as read

committed isolation levels.

Cross-references
▶Concurrency Control

▶ Locking

▶Transaction Execution

Recommended Reading
1. Fekete A., Liarokapis D., O’Neil E., O’Neil P., and Shasha D.

Making Snapshot Isolation Serializable. ACM Trans. Database

Syst., 30(2):492–528, 2005.

2. Shasha D. and Bonnet P. Database Tuning : Principles Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann,

2002.
Transaction Commit Time

▶Transaction Time
Transaction Execution

▶Concurrency Control – Traditional Approaches

Transaction Management T 3153

T

Transaction Management

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Concurrency control and recovery; Transaction sched-

uling; Transaction processing

Definition
Transaction management [2,6] refers to the tasks of

processing multiple transactions issued by various cli-

ents of a database server in such a way that the ACID

contract can be fulfilled, that is, the properties of atom-

icity, consistency preservation, isolation, and durability

of each individual transaction can be guaranteed.

Transaction management is generally understood as

requiring serializability-based concurrency control as

well as recovery from failures. Concurrency control is

the task of scheduling transactions such that their

serializability can be guaranteed, while recovery has

to restore a consistent database state after a system or

media failure. Assuming that the database server is in

charge of the “C,” the former guarantees the “I” in

ACID, the latter the “A” and “D” properties. Transac-

tion management has to be highly efficient, as modern

transaction servers need to accommodate thousands of

transactions per minute. This is achieved by a compre-

hensive combination and interplay of theoretical re-

search and practical developments.

Historical Background
Transaction management emerged in the 1970s in early

database management systems [5], and has become an

indispensable part of a database server [1,3]. Its goal

is to devise efficient algorithms for handling transac-

tions, the essential “contract” between an application

program and transactional server that combines a

number of requests to the server into a logical unit.

Over the years, transaction management has received

theoretical underpinnings as well as system implemen-

tations in various ways, the former of which have

allowed it to extend beyond simple database objects

(pages) [7]. Indeed, transaction management can essen-

tially be “positioned” at any level of abstraction within

the functional layers of a data server, where the price to

pay for expressiveness typically is efficiency. Neverthe-

less, transaction management has also been extended
into areas beyond database management, among them

operating systems and, more recently, programming

languages.
Foundations
To recognize the essence of what transaction manage-

ment is about, consider the operation of a bank that

uses a relational database to keep track of its account

business. The database may contain a table Accounts

which describes bank accounts in terms of their

account id, associated customer name, identification

of the respective bank branch, balance, and possibly

other data. Transactions in the bank are either with-

drawals or deposits (debit/credit transactions) applied

to Accounts, and these operations are often combined

into funds transfers, i.e., withdrawals from one account

and immediate deposit into another. With a huge

number of clients potentially issuing simultaneous

requests to the bank’s database server, a concurrent

execution of multiple debit/credit transactions is man-

datory in order to exploit the server’s hardware

resources and to achieve processing speeds acceptable

to clients. Concurrently executing transactions are typ-

ically modifying the underlying database of the bank-

ing application (table Accounts) frequently. In order to

be able to ignore the potential fallacies of this concur-

rency, each transaction would ideally be executed as if

there were no other transactions, but that would mean

no concurrency. This tradeoff between concurrency for

the sake of performance on the one hand, and potential

sequential execution for the sake of correctness on the

other, is one aspect of transaction processing, formally

captured through notions of serializability and recon-

ciled by the concurrency control techniques of a transac-

tional server.

Figure 1 illustrates that concurrency may indeed be

tricky, since it may have a disastrous impact on the

consistency of the underlying data. Consider two debit/

credit transactions t1 and t2 that are concurrently exe-

cuted and that are both operating on the same account

x (which could be the account id). To distinguish the

two different instances of the local variable “balance”

that temporarily holds the value of the account bal-

ance, they can be referred to as “balance1” for transac-

tion t1 and “balance2” for t2. The first transaction then

intends to withdraw $30, the second transaction

intends to deposit $20, and it is assumed that the initial

account balance is $100. The table in Fig. 1 shows those

Transaction Management. Figure 1. Concurrent transactions requiring concurrency control.

3154T Transaction Management
parts of the two transactions that read and modify the

account record. Upon completion of the execution, the

balance of account x, as recorded in the persistent

database, will be $120, although it should be $90

after execution of the two transactions. Thus, the

recorded data are incorrect, a kind of “anomaly”

must be prevented, and concurrent executions must

be treated with care. Similar anomalies can arise from

transaction failures.

A second fundamentally important point is that the

various accesses a transaction has to perform need to

occur in conjunction: Once a transaction has begun

execution, its data accesses should look to the outside

world as an atomic operation which is either executed

completely or not at all. This property of atomicity

should be guaranteed even in a failure-prone environ-

ment where individual transactions or the entire data-

base server may fail at an arbitrary point in time. To

this end, a transactional server needs to provide recov-

ery techniques to cope with failures. In addition to

ensuring transaction atomicity, these techniques also

serve to ensure the durability of a transaction’s effects

once the transaction is completed. The scenario

shown in Fig. 2 illustrates this. It shows a program

which transfers a given amount of money between

two accounts, by first withdrawing it from a source

account and then depositing it in a target account.
The program is described in terms of SQL statements

embedded into a C program. It is assumed that the

funds transfer program has started executing and has

already performed the withdraw operation (i.e., the

first SQL Update). If there is a hardware or software
failure that interrupts the program’s execution at this
point, the remaining second update operation will not
be performed. Thus, the target account will not receive
themoney.

A recovery procedure, to be invoked after the

system is restarted, will try to find out which updates

were already made by ongoing transaction program

executions and which ones were not yet done, and

will try to fix the situation. However, implementing

recovery procedures on a per-application case basis is a

difficult task that is itself error prone because of its

sheer complexity, especially because multiple transac-

tions issued by different programs may have accessed

the data at the time of the failure. So rather than

programming recovery in an ad hoc manner for each

application separately, a systematic approach is needed,

as described, for example, in [9,2]. System-provided

recovery ensures the atomicity of transactions and

simplifies the understanding of the post-failure state

of the data and the overall failure handling on the

application side. In the sample scenario of Fig. 2, rather

than being left with the inconsistent state in the middle

Transaction Management. Figure 2. Sample funds transfer that needs atomicity.

Transaction Management T 3155

T

of the transaction, the system recovery will restore

the state as of before the transaction began. On the

other hand, if the transaction had already issued its

“commit transaction” call, then the systemwould guar-

antee the durability of the transaction’s complete funds

transfer.

Guaranteeing the ACID properties of a transaction,

which allow application developers to disregard con-

currency and failures, are the major goal of transaction

management; the means to accomplish this are con-

currency control and recovery. These cornerstones for

building highly dependable information systems can

also be successfully applied outside the scope of online

transaction processing (OLTP) applications.

Key Applications
Figure 3 shows the layered architecture shared by

essentially all database servers in one form or another.

When a client request arrives at the server, the server

executes code that transforms the request into one or

more operations at each of the underlying layers, ulti-

mately arriving at a sequence of disk accesses (unless

caching avoids the disk access). The language and in-

terface layermakes various kinds of interfaces available

to the application developer, usually in the form of

APIs (e.g., SQL and ODBC). The query decomposition

and optimization layer works on an internal, tree based

representation of a request and is concerned with the

further decomposition of the request into smaller units
that can be directly executed; this is the level where also

optimizations are carried out. The execution plan cho-

sen is often represented as an operator tree where each

operator can be directly mapped to a piece of server

code. This code is provided by the query execution layer.

Next, index structures and also the capabilities for

accessing and manipulating data records are provided

by the access layer. Finally, the storage layer is responsi-

ble for managing the pages of a database, including

disk I/O and caching.

The layered architecture in Fig. 3 does not explicitly

mention transaction management, for the simple rea-

son that the functionality of transactional concurrency

control and recovery can be tied to any of the five layers

shown. For many applications that run simple transac-

tions, each of which accesses a small portion of the data

only, transaction management is commonly integrated

into the access and storage layers. Applications in this

category include classical OLTP scenarios such as

banking (see above) or reservation systems, where

high availability, high throughput, and high reliability

are of utmost importance. However, transactions in

electronic commerce applications, where client req-

uests may span multiple databases as well as other

information sources across enterprise boundaries, or

transactions arising from an execution of business

processes which typically take some form of semantic

information (stemming from higher-level, for example

SQL-type operations) into account can also benefit

Transaction Management. Figure 3. Functional database system layers.

3156T Transaction Management
from transaction concepts. Through appropriate trans-

action models and an appropriate adaptation of the

relevant concurrency control and recovery algorithms

to these models, transaction management can be ap-

plied in almost any area that needs to handle concur-

rent requests to shared resources in such a way that the

ACID properties can be guaranteed [9].

Future Directions
With constant changes in network-centric computing,

including the proliferation ofWeb services, long-running

processes across organizational boundaries, large scale

peer-to-peer publish-subscribe and collaboration plat-

forms, and ambient-intelligence environments with

large numbers of mobile and embedded devices, support

for handling or even masking concurrency and compo-

nent failures is critical inmanymodern application areas,

but can no longer use traditional atomicity concepts

alone. In open systems applications are constructed

from pre-existing components, and these components

and their configurations are not known in advance

and they can change on the fly. Thus, it is crucial

that atomicity properties of components become

composable and allow for reasoning about the behavior

of the resulting system. Transaction management will

thus continue to require research for the foreseeable

future.
Experimental Results
Since transaction management typically has to meet

high efficiency requirements, experimental evaluation

and comparison of algorithmic approaches to concur-

rency control and recovery has always been crucial, as is

tuning of the transaction management component of a

database server for the system administrator. Prominent

references including implementation recipes as well as

experimental evaluations are [4,8].

Cross-references
▶Control

▶Crash Recovery

▶Database Server

▶ Performance Analysis of Transaction Processing

Systems

▶Transaction

▶Two-Phase Locking

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

2. Bernstein P.A. and Newcomer E. Principles of Transaction Pro-

cessing for the Systems Professional. Morgan Kaufmann, San

Francisco, CA, 1997.

3. Cellary W., Gelenbe E., and Morzy T. Concurrency Control n

Distributed Database Systems. North–Holland, Amsterdam, 1988.

Transaction Model T 3157
4. Gray J. (ed.). The Benchmark Handbook for Database and

Transaction Processing Systems. 2 edn. Morgan Kaufmann, San

Francisco, CA, 1993.

5. Gray J., Lorie R.A., Putzolu G.R., and Traiger I.L. Granularity of

locks in a large shared data base. In Proc. 1st Int. Conf. on Very

Data Bases, 1975, pp. 428–451.

6. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

7. Lynch N., Merritt M., Weihl W., and Fekete A. Atomic Transac-

tions. Morgan Kaufmann, San Francisco, CA, 1994.

8. Shasha D. and Bonnet Ph. Database Tuning: Principles Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann, San

Francisco, CA, 2002.

9. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Transaction Management in
Distributed Database Systems

▶Distributed Transaction Management
T

Transaction Manager

ANDREAS REUTER
1,2

1EML Research gGmbH, Villa Bosch, Heidelberg,

Germany
2Technical University Kaiserslautern, Kaiserslautern,

Germany

Definition
The transaction manager (TxM) is a special resource

manager that implements the resource type “transac-

tion.” It handles all the state transitions that a tran-

saction can perform. For simple ACID transactions

these are: begin, savepoint, rollback, abort, prepare

commit; for more refined transaction models there

will be additional states. The resource managers regis-

ter with the TxM when they get employed by a trans-

action for the first time. Thus, the TxM keeps a record

for each transaction of which resource managers have

been involved with it. In the same vein, it stores which

sessions each transaction has used in case it has per-

formed operations on other nodes in a distributed

system. The TxM closely interacts with the concurren-

cy control manager who can make transaction wait for

other transactions in case of access conflicts. It also
interacts with the logging and recovery subsystem and

the communications manager.

Key Points
The TxM keeps track of all active transactions. When a

transaction starts, it is assigned a transaction ID that is

unique across any distributed system and will never

repeat. For each transaction the TxM stores which

resource managers and which sessions are associated

with it; for sessions the polarity (outgoing/incoming) is

also important. For each state transition of a transac-

tion, the TxM will orchestrate the proper protocol. The

most important of these protocols is the two-phase

commit (2PC) protocol. Depending on the structure

of a transaction, the TxM will act as a coordinator or a

participant – or both. Using the information about the

participating resource managers and communication

sessions, the TxM calls them at their proper callback

entries to perform all the necessary actions to go, for

example, into the prepared state. TxMs are often imple-

mented as interpreters of the formal description of a

state machine, so they can dynamically switch between

different (optimizations of) commit protocols.

Upon recovery, the TxM is the first resource man-

ager that is reconstructed by the recovery manager.

When the recovery manager has completed its initial

backward scan of the online log, the table of active

transactions is completely recovered. If there are any

in-doubt transactions left, the TxM starts handling

that particular part of the 2PC in order to resolve

those transactions.

Cross-references
▶Communications Manager

▶Concurrency Control Manager

▶ Logging/Recovery Subsystem

▶ Storage Resource Management

▶Transactional Middleware

Recommended Reading
1. Gray J. and Reuter A. Transaction Processing – Concepts and

Techniques; Morgan Kaufmann, San Mateo, CA, 1993.
Transaction Model

▶Transaction Models – The Read/Write Approach

3158T Transaction Models – the Read/Write Approach
Transaction Models – the Read/Write
Approach

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Transaction model; Page model; Read/write model

Definition
The transaction concept essentially establishes an

“ACID contract” in data-processing situations, and a

transaction model is an abstraction concept that makes

this concept amenable to realizations. Two fundamen-

tal models are the page model as well as the object

model, where the former is an execution model and

the latter is more a conceptual model. The page model

is based on the perception that database operations

ultimately are read or write operations on pages that

need to be transferred between secondary storage and

main memory or the database buffer. The model allows

making all relevant notions (in particular interleavings

of multiple transactions and schedule correctness) pre-

cise in a syntactic manner, and it forms the basis for

verifying a variety of concurrency control algorithms

that can be used in database management as well as

other systems.

Historical Background
The read/write or page model of transactions goes back

to the work of Jim Gray [5,6] and Kapali Eswaran et al.

[4]. Related notions of atomic actions have been dis-

cussed by others around the same time, the mid- to

late-1970s, including [8,9]. The page-model transac-

tion concept became the subject of intensive theoreti-

cal studies, in particular in the work of Christos

Papadimitriou and, independently, Phil Bernstein

et al. around 1980 [2,3,10,11]. It is essentially valid in

its original form until today, yet has received a number

of extensions and variations over the years [13].

Foundations
The read/write model of database transactions is moti-

vated by the observation that all operations on data

(i.e., queries as well as updates) are eventually mapped

into indivisible read and write operations on disk

pages or on a page cache in main memory. Thus, to

study the effects of concurrent executions, it essentially
suffices to inspect the interleavings of the resulting

page operations. The abstraction from higher-level

data operations, such as SQL commands or method

invocations on business objects, down to the view that

a resulting transaction consists of reads and writes only

is a strong one, yet suffices for many practical pur-

poses. In fact, a comprehensive theory of concurrency

control and of recovery can be built on it, which is

directly applicable to real-world systems, albeit with

some performance limitations.

Definition of a Transaction

To define the model of read/write transactions forma-

lly, a database is assumed to contain a (finite) set

D = {x,y, z,. . .} of (indivisible and disjoint) items

(pages) with indivisible read and write operations.

Data items are often denoted by small letters from

the end of the alphabet, where indices are used if

necessary (e.g., x1,y4). A transaction can then be de-

fined as a total or a partial order of steps; for total

orders, a formal definition is as follows: A transactiont

is a (finite) sequence of steps (actions) of the form r(x)

or w(x), written t = p1...pn, where n < 1, pi 2 {r(x),

w (x)} for 1 � i � n, and x 2 D for a given database D.

Here, r stands for “read” and w for “write.” Thus, a

transaction abstracts from the details of a program

execution and instead focuses on the sequence of

read and write operations that results from that

execution.

Each step occurring in a transaction can be uniquely

identified so that two distinct transactions do not have

steps in common. Let pj denote the jth step of a given

transaction, and let pij denote the jth step of transac-

tion i in the presence of multiple transactions. Then

the following terminology is common: If pj = r(x), the

interpretation is that step j reads data item x; if pj = w

(x), the interpretation is that step j writes data item x.

A transaction is hence a purely syntactic entity whose

semantics or interpretation is unknown. In the absence

of information on the semantics of the program that

launches a transaction, however, the best that can be

done is to devise a Herbrand semantics, i.e., a “syntac-

tic” interpretation of the steps of a transaction that is as

general as possible: (i) In case pj = r(x), the current

value of x is assigned to a local variable vj. (ii) In case

pj = w(x), a possibly new value, computed by the

respective program, is written into x. Each value writ-

ten by a transaction t potentially depends on the values

of all data items that t has previously read; if t writes x,

Transaction Models – the Read/Write Approach T 3159

T

x is the return value of an arbitrary but unknown

function fj applied to all values read before the respec-

tive write step. The Herbrand semantics of a read/write

transaction thus is a technical vehicle, only useful for

making various correctness notion for transaction

interleavings precise.

The total ordering requirement to the steps of a

transaction can be relaxed into a partial ordering;

thus, a transaction t becomes a partial order of steps

(actions) of the form r(x) or w(x), where x 2 D and

reads and writes as well as multiple writes applied to

the same data item are ordered. More formally, a

transaction is a pair t = (op, <), where op is a finite

set of steps of the form r(x) or w(x), x 2 D, and < �
op � op is a partial order on set op for which the

following holds: If {p, q} � op s.t. p and q both access

the same data item and at least one of them is a write

step, then p < q ∨ q < p. In other words, in the partial

ordering of a transaction’s steps, a read and write

operation on the same data item or two write opera-

tions on the same data item need to be ordered. With

“conflicting” steps inside a transaction being ordered,

the “semantics” outlined above for totally ordered

transactions carries over to partially ordered ones.

For simplicity, however, most discussions of correct-

ness criteria in the literature stick to total orders.

Although read/write transactions are considered syn-

tactic entities only, it is an advantage of this model that

its theory can be developed in the absence of semantic

information and hence can be used for every possible

interpretation of the transactions. In other words, the

read/write page model is fairly general despite its sim-

ple structure.

The model as described above allows a transaction

to read or write the same data item more than once, as

it is the case in the example t = r(x)w(x)r(y)r(x)w(x).

Here t reads and writes x twice, although it is reason-

able to assume that the value of x remains available,

after having been read the first time, in the local vari-

ables of the underlying program for as long as it is

needed by t, and that only the last write step deter-

mines the final value of x produced by this transaction.

To exclude “redundancies” of this kind, it is common

to assume that (i) in each transaction each data item is

read or written at most once, and (ii) no data item is

read (again) after it has been written. The latter condi-

tion does not exclude the possibility of “blind writes,”

which is a write step on a data item that is not preceded

by a read of that data item.
Schedules and Histories

The distinction between partial and total orderings is

also appropriate for interleavings of transactions, i.e.,

for schedules and histories: Let T = {t1,...,tn} be a

(finite) set of transactions, where each ti 2 T has the

form ti = (opi, < i), with opi denoting the set of

operations of ti and < i denoting their ordering, 1 � i

� n. A history for T is a pair s = (op(s),< s) s.t. (i) op(s)

� Un
i¼1 opi [Un

i¼1 {ai, ci} and Un
i¼1 opi � op(s), i.e.,

s consists of the union of the operations from the given

transactions plus a termination operation, which is

either a ci (commit) or an ai (abort), for each ti 2 T,

(ii) (8i, 1� i� n) ci 2 op(s), ai =2 op(s), i.e., for each
transaction, there is either a commit or an abort in s,

but not both, (iii) Un
i¼1 < i � < s, i.e., all transaction

orders are contained in the partial order given by s,

(iv) (8i,1 � i � n)(8p 2 opi)p < s ai or p < s ci, i.e.,

the commit or abort operation always appears as the

last step of a transaction, and (v) any pair of operations

p,q 2 op(s) from distinct transactions accessing the

same data item s.t. at least one is a write operation is

ordered in s in such a way that either p < s q or q < s p.

A schedule is a prefix of a history. A history s is serial if

for any two transactions ti and tj in it, where i 6¼ j, all

operations from ti are ordered in s before all operations

from tj or vice versa. Thus, a history (for partially

ordered transactions) has to contain all operations from

all transactions (i), needs a distinct termination opera-

tion for every transaction (ii), preserves all orders within

the transactions (iii), has the termination steps as final

steps in each transaction (iv), and orders “conflicting”

operations (v). The view that two operations which ac-

cess the same data item and of which at least one is awrite

operation are in conflict is identical to the notion of

conflict that will shortly be used as the basis for a notion

of serializability. The notions “schedule” and “history”

are not always used in the sense defined here in the

literature, but are often used as synonyms.

Schedule Correctness

For transaction executions, it is important to not only

have a model of interleavings and their constituents,

but also to fix a notion of schedule or history correct-

ness. To this end, conflict serializability (CSR) is the

notion which is most important for the practice of

transactional information systems, in particular for

designing scheduling algorithms and for building sche-

dulers. CSR is computationally easy to test, and it has

a number of interesting theoretical properties which

3160T Transaction Models – the Read/Write Approach
can justify an exploitation of this concept in practice

in a variety of ways. Finally, it can be generalized to

other transaction models and different data settings.

Conflict serializability is based on a simple notion of

conflict which was mentioned already in connection

with partially ordered histories, and which is appropri-

ate for the syntactical nature of read/write transactions.

Two data operations from distinct transactions are in

conflict in a schedule if they access the same data item

and at least one of them is a write. The notion of con-

flict gives rise to a notion of serializability: A history is

conflict serializable if there exists a serial history with

the same conflicts.

Commutativity of Operations

Conflict serializability can be characterized via acyclic

conflict graphs, which gives rise to efficient testability.

It is can also be characterized via commutativity rules

for page model data operations. In these rules “�”
means that the ordered pair of actions on the left-

hand side can be replaced by the right-hand side, and

vice versa: (C1) ri(x)rj(y) � rj(y)ri(x) if i 6¼ j, i.e., two

read steps ri(x) and rj(y), i 6¼ j, which occur in a

schedule in this order and are adjacent (with no

other operation in between), may be commuted. (C2)

ri(x)wj(y) � wj(y)ri(x) if i 6¼ j, x 6¼ y, i.e., a read and

write step can be exchanged if they are from distinct

transactions and access different data items. (C3) wi(x)

wj(y) � wj(y)wi(x) if i 6¼ j, x 6¼ y, i.e., two write steps

can be commuted if they refer to different data items.

These commutativity rules can be applied to a given

schedule or history in a stepwise fashion, for example

to transform s = w1(x)r2(x)w1(y)w1(z)r3(z)w2(y)w3(y)

w3(z) into w1(x)w1(y)w1(z)r2(x)w2(y)r3(z)w3(y)w3(z),

thereby proving it equivalent to the serial history

t1t2t3. The above transformations have implicitly

assumed that operations in a schedule are totally or-

dered. With partial orders, one may need an additional

transformation rule which simply states that two un-

ordered operations can be arbitrarily ordered if they

are non-conflicting.

The commutativity rules can be used for introdu-

cing another relation on schedules: Let s and s 0 be two
schedules s.t. op(s) = op(s0). Define s � s 0 if s 0 can be

obtained from s by a single application of the commu-

tativity rules to the steps of the schedule. Let “��”
denote the reflexive and transitive closure of “�,” i.e.,

s �� s0 if s0 can be obtained from s by a finite number of
applications of the rules. It turns out that “��” is an

equivalence relation on the set of all schedules for a

given set of transactions, and that finitely many appli-

cations of the rules may transform a given history into

a serial one, as in the example above. More formally,

a history s is commutativity based reducible if there is a

serial history s0 s.t. s �� s
0, i.e., s can be transformed into

s 0 through a finite number of allowed transformation

steps according to the commutativity rules. Therefore,

a history s is commutativity based reducible iff s is

CSR. An important application of this alternative char-

acterization of schedule correctness is that it can imme-

diately be generalized. Indeed, it is irrelevant to know of

a schedule whether a step reads or writes or which data

item it accesses, as long as it is known which steps of the

schedule are in conflict. The latter suffices for deciding

about the correctness of the schedules, even without any

knowledge about the meaning of the operations [11].

Thus, the steps of a schedule or history to which a

commutativity argument is applied may be of a

completely different type, such as increment and decre-

ment on a counter object, push and pop on a stack

object, or enqueue and dequeue on a queue object.

This observation can be exploited in the context of

extended transaction models, where notions of serial-

izability can be established that are based on semantic

information.

The page model of transactions can also be extended

to accommodate transaction recovery. Indeed, when a

transaction aborts, the intuitive reaction of the underly-

ing system is to “undo” the effects of that transaction,

which can adequately be captured by inverse write

operations. To execute an abort operation, the system

would have to execute inverse writes in reverse order of

their occurrence [1].
Key Applications
Key applications for transactions started out from

debit/credit scenarios in banks and financial institu-

tions, where multiple customer activities against

shared accounts need to be synchronized, yet executed

at a high throughput rate. In a debit/credit transaction,

the activities are either withdrawals or deposits, and

these are often combined into funds transfers. The

typical structure of a debit/credit program is shown

below, using SQL commands embedded into a C pro-

gram. Note the distinction between local variables of

Transaction Models – the Read/Write Approach T 3161

T

the invoked program and the data in the underlying

database that is shared by all programs.

/* debit/credit program */

void main()

{EXEC SQL BEGIN DECLARE SECTION;

int accountid, amount;

/* input variables */

int balance; /* intermediate variable */

EXEC SQL END DECLARE SECTION;

/* read user input */

printf("Enter Account ID, Amount for

deposit (positive) or withdrawal (nega-

tive): ");

scanf("%d %d", &accountid, &amount);

/* determine current balance of the ac-

count, reading it into a local variable

of the program */

EXEC SQL

Select Account_Balance Into :balance

From Accounts

Where Account_Id = :accountid;

/* add amount (negative for withdrawal) */

balance = balance þ amount;

/*updateaccountbalanceinthedatabase*/

EXEC SQL Update Accounts

Set Account_Balance = balance

Where Account_Id = :accountid;

EXEC SQL Commit Work; }

The crucial situation is that, say, two transactions access

the same account, where one makes a withdrawal and

the other a deposit, i.e., both transactions write new

values of the account balance. If unsynchronized, these

transaction could overwrite each other’s results, there-

by leaving the account in an inconsistent state. Another

crucial situation is that a transaction makes a with-

drawal from one account and a deposit into another

(i.e., a transfer); if this transaction crashes in the mid-

dle, i.e., after the withdrawal but before the deposit,

money would be lost if the system is not capable of

restoring the state prior to the withdrawal. The read/

write model allows for a straightforward formaliza-

tion of these situations, and efficient concurrency

control as well as recovery procedures can be devised

to handle them.

For scenarios like the one just sketched (in particu-

lar transfers that need to appear atomic to the outside

world), there are numerous applications in today’s
information systems landscape of electronic business

over the Internet, where client requests are rarely re-

stricted to single data servers, but often span multiple

databases and other information sources across enter-

prise boundaries, yet the mutual consistency of all this

data is crucial and thus important to maintain. Then,

the resulting transactions operate in a distributed sys-

tem that consists of multiple servers, often with het-

erogeneous software. To go one step further, a business

process is a set of activities (or steps) that belong to-

gether in order to achieve a certain business goal.

Business processes are also at the heart of advanced,

business-to-consumer (B2C) or business-to-business

(B2B) services on the Internet, for example, electronic

auctions (B2C) or supply chains (B2B). Typical exam-

ples would be the processing of a credit request or an

insurance claim in a bank or insurance company, re-

spectively, the administrative procedures for real estate

purchase, or the “routing” of a patient in a hospital.

Future Directions
Transactions have originally been developed in the

database system community, but their usage and po-

tential benefits are by no means limited to database

management. Not surprisingly, the transaction concept

is also being explored in the operating systems and

programming languages communities. Recent trends

include, for example, enhancing the Java language with

a notion of atomic blocks that can be defined for

methods of arbitrary classes. This could largely simpli-

fy the management of concurrent threads with shared

objects, and potentially also the handling of failures

and other exceptions. The run-time environment

could be based on an extended form of software trans-

actional memory. Another important direction in on-

going research is to design and reason about guarantees

that resemble transactions but are weaker than the

ACID properties, especially with regard to the notion

of isolation. A model that is widely deployed in indus-

trial data management systems is snapshot isolation

(based on keeping a versioned history of data items).

Experimental Results
The read/write model of transactions has in part been

so successful since it allows for highly efficient imple-

mentations of concurrency control and recovery meth-

ods, and it allows for tuning a system on the fly.

Surveys are provided by [7] and in particular [12].

3162T Transaction Processing
Cross-references
▶Atomicity

▶Concurrency Control

▶ Extended Transaction Models

▶ Logging and Recovery

▶Multi-version Serializability and Concurrency Control

▶ Serializability

▶ Software Transactional Memory

▶Transaction

▶Transaction Chopping

Recommended Reading
1. Alonso G., Vingralek R., Agrawal D., Breitbart Y., El Abbadi A.,

Schek H.-J., and Weikum G. Unifying concurrency control and

recovery of transactions. Inform. Syst., 19:101–115, 1994.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

3. Bernstein P.A., Shipman D.W., and WongW.S. Formal aspects of

serializability in database concurrency control. IEEE Trans. Soft-

ware Eng., SE-5:203–216, 1979.

4. Eswaran K.P., Gray J., Lorie R.A., and Traiger I.L. The notions of

consistency and predicate locks in a database system. Commun.

ACM, 19:624–633, 1976.

5. Gray J. Notes on database operating systems. In: Operating

Systems: An Advanced Course, LNCS, Vol. 60, R. Bayer, M.R.

Graham, G. Seegmüller (eds.). Springer, Berlin Heidelberg

New York, 1978, pp. 393–481.

6. Gray J. The transaction concept: virtues and limitations. In Proc.

7th Int. Conf. on Very Data Bases, 1981, pp. 144–154.

7. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

8. Lampson B.W. Atomic transactions. In: Distributed Systems –

Architecture and Implementation: An Advanced Course, LNCS,

Vol. 105, B.W. Lampson, M. Paul, H.J. Siegert (eds.). Springer,

Berlin Heidelberg New York, 1981.

9. Lomet D.B. Process structuring, synchronization, and recovery

using atomic actions. ACM SIGPLAN Notices, 12(3):128–137,

1977.

10. Papadimitriou C.H. The Serializability of concurrent database

updates. J. ACM, 26:631–653, 1979.

11. Papadimitriou C.H. The Theory of Database Concurrency Con-

trol. Computer Science, Rockville, MD, 1986.

12. Shasha D., Bonnet Ph. Database Tuning – Principles, Experi-

ments, and Troubleshooting Techniques. San Francisco, CA,

Morgan Kaufmann, 2003.

13. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Transaction Processing

▶Application Recovery

▶Transaction Management
Transaction Scheduling

▶Transaction Management
Transaction Service

▶Transactional Middleware
Transaction Time

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Registration time; Extrinsic time; Physical time; Trans-

action commit time; Belief time

Definition
A database fact is stored in a database at some point in

time, and after it is stored, it remains current, or part of

the current database state, until it is logically deleted.

The transaction time of a database fact is the time when

the fact is current in the database. As a consequence,

the transaction time of a fact is generally not a time

instant, but rather has duration.

The transaction time of a fact cannot extend into the

future. Also, as it is impossible to change the past, mean-

ing that (past) transaction times cannot be changed.

In the context of a databasemanagement system that

supports user transactions, the transaction times of facts

are consistent with the serialization order of the tran-

sactions that inserted or logically deleted them. Transac-

tion times may be implemented using transaction

commit times, and are system-generated and -supplied.

Key Points
A database is normally understood to contain state-

ments that can be assigned a truth value, also called

facts, that are about the reality modeled by the database

and that hold true during some non-empty part of the

time domain. Transaction times, like valid times, may be

associated with such facts. It may also be noted that it

is possible for a database to contain the following differ-

ent, albeit related, facts: a non-timestamped fact and that

fact timestamped with a valid time. The first would

belong to a snapshot relation, and the second would

Transactional Middleware T 3163

T

belong to a valid-time relation. Both of these facts may

be assigned a transaction timestamp. The resulting facts

would then be stored in relations that also support

transaction time.

A transaction time database is append-only and

thus ever-growing. To remove data from such a data-

base, temporal vacuuming may be applied.

The term “transaction time” has the advantage

of being almost universally accepted and it has no con-

flicts with the other important temporal aspect of data,

valid time.

The Oracle DBMS explicitly supports transaction

time. Applications can access prior transaction-time

states of their database, by means of transaction time-

slice queries. Database modifications and conventional

queries are temporally upward compatible.

Concerning the alternatives, the term “registration

time” seems to be straightforward. However, this term

may leave the impression that the transaction time is

only the time instant when a fact is inserted into the

database. “Extrinsic time” is rarely used. “Physical time”

is also used infrequently and seems vague. “Transaction

commit time” is lengthy, but more importantly, the term

appears to indicate that the transaction time associated

with a fact must be identical to the time when that fact

is committed to the database, which is an unnecessary

restriction. The term is also misleading because the

transaction time of a fact is not a single time instant as

implied. The term “belief time” stems from the view

that the current database state represents the current

belief about the aspects of reality being captured by the

database. This term is used infrequently.

Cross-references
▶ Supporting Transaction Time Databases

▶Temporal Compatibility

▶Temporal Database

▶Temporal Generalization

▶Temporal Specialization

▶Temporal Vacuuming

▶Time Domain

▶Timeslice Operator

▶Transaction

▶Transaction-Time Indexing

▶User-Defined Time

▶Valid Time

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

Springer-Verlag, Berlin, 1998, pp. 367–405.
2. Snodgrass R.T. and Ahn I. A taxonomy of time in databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1985, pp. 236–246.

3. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, September 1986.
Transactional Business Processes

▶Transactional Processes

▶Workflow Transactions
Transactional Consistency in a
Replicated Database

▶One-Copy-Serializability
Transactional Middleware

GUSTAVO ALONSO

ETH Zurich, Zurich, Switzerland

Synonyms
TP monitor; Object monitor; Application server;

Transaction manager; Transaction service

Definition
Transactional Middleware is a generic term used to

refer to the IT infrastructure that supports the execu-

tion of electronic transactions in a distributed setting.

The best known form of transactional middleware is

Transaction Processing Monitors (TP Monitors or

TPM), which have been around for more than 3 decades

(e.g., CICS of IBM). Today, TPMonitors are at the heart

of most application servers and are a key component of

any enterprise computing architecture. The main role of

these systems is to run transactions, i.e., to support the

illusion that certain distributed operations are executed

atomically. This makes the design of complex systems

easier for the programmer, who does not need to im-

plement this functionality but can rely on the transac-

tional middleware to ensure that groups of operations

are executed in their entirety or not all, with the trans-

actional middleware taking care of all the work neces-

sary to do so. Historically, transactional middleware has

often provided much more functionality than just

3164T Transactional Middleware
transactions and, in many ways, they were some of

the earliest forms of middleware. They were already

used in early mainframes to connect different

applications.

Historical Background
The background for transactional middleware is TP

Monitors. TP Monitors originated with the first com-

mercial applications running on mainframes and the

need to provide additional functionality not provided

by the operating system. As the needs of applications

and developers flourished, so did the capabilities

and features of TP Monitors. This is how TP Monit-

ors became a general term to refer to complex infra-

structure and collection of tools that provide not only

transactional support but also specialized networking

capabilities, batch jobs, job control languages, multi-

threading, transactional extensions to programming lan-

guages, load-balancing capabilities, transactionalmessage

queues,etc.Whenenterpriseapplicationsbrokeawayfrom

the mainframe and started running on mixed environ-

ments (e.g., a large database in the mainframe, worksta-

tions forprocessing, andPCs for the clients),TPMonitors

proved to be the ideal platform to develop and operate

such distributed systems. During the 1990s, TPMonitors

dominated the middleware arena and were not only

the most prominent but also the clearly dominant form

of middleware in themarket.

The conventional TP Monitors with extensive

functionality were called TP-Heavy. These were stan-

dalone products were intended for the development of

distributed, transactional applications with high per-

formance requirements. A simpler form of TPMonitor

was the so called TP-Light systems. Typically, these

were extensions to database engines to support inter-

actions with the database through RPC calls and the

addition of some basic data processing capabilities to

the database engine without having to resort to a full

middleware layer such as that required by TP-Heavy

approaches. The dominance and importance of TP-

Monitors is illustrated by the struggles of CORBA

systems to implement the Object Transactional Ser-

vices described in the CORBA specification. Object

Transactional Services are exactly the transactional

functionality provided by a TP-Monitor and in many

commercial systems it was implemented by using an

already existing TP Monitor. Such combined systems

enjoyed a short period of popularity under the name of

Object Monitors or Object Transaction Monitors.
TP Monitors today are still widely used although

the name TP Monitor has been replaced by others,

more all-encompassing terms. For instance, applications

servers have a TP Monitor as one of the central com-

ponents. Platforms like .NETo J2EE also rely heavily on

TP Monitor functionality. Hence, today these systems

are collectively referred to as transactional middleware.

Foundations
To understand transactional middleware, one needs to

understand that it is not just about transactions (or, at

least, historically it was not just about transactions).

Nevertheless, the core functionality of transactional

middleware is to run distributed transactions in an

efficient manner. Thus, the discussion starts by cover-

ing this aspect of transactional middleware and post-

pone the system issues till later.

Transactions are an abstraction used in database

engines to implement the so called ACID properties

(Atomicity, Consistency, Isolation, and Durability).

Unlike what is commonly found in many textbooks,

the vast majority of transactional middleware systems

are not there to support the four ACID properties but

only one: atomicity in distributed transactions and in

the interaction between applications and databases. To

the extent that records of the transaction executed are

kept, transactional middleware can also provide dura-

bility but in a different sense than database durability

and not as one of its main operational features. Some

systems also supported isolation (e.g., Encina), but

such systems run into the same difficulties that all

other solutions for concurrent programming have

faced and are still facing today.

Atomicity in the context of transactional middle-

ware translates into running a 2 Phase Commit proto-

col among all the entities involved in executing parts of

a transaction. The interactions and interfaces required

to do so were standardized in the early 1990s as part of

the X/Open models for transactions and distributed

transactions, which also defined the XA interface. The

XA interface describes how a transaction manager (the

transactional middleware) interacts with a resource

manager (e.g., a database) to run a 2 Phase Commit

protocol. Once standardized, the XA interface allowed

TP Monitors to execute transactions across heteroge-

neous systems, greatly simplifying the task of writing

code integrating several systems.

The standard and generic procedure for running a

transaction in a transactional middleware platform

Transactional Middleware T 3165

T

involves invoking some primitive that tells the middle-

ware that a transaction needs to be started. This prim-

itive typically hides a call to a transaction manager that

records the transaction and return and identifier and a

context for the transaction. The application then pro-

ceeds to make calls as part of this transaction. Each call

is augmented with the transaction identifier and con-

text, which allows the recipient of the call to realize that

its execution has become part of a transaction and tells

it of which one. The recipient of the call uses the

transactional context it has received to register with

the transactional manager. Part of this registration

procedure also involves telling the transaction manager

where the actual transaction will be executed (typically

the part of the system that supports the XA interface).

After registration, the transaction manager knows who

is involved in running parts of the transaction, infor-

mation that maintains in a transaction record that

contains all participants in that transaction. When

the original application invokes a commit on the trans-

action, the transaction manager uses the transaction

record to start a 2 Phase Commit protocol between all

the participants that have registered for this transac-

tion. At the end of the protocol, the transaction man-

ager informs the original application of the success or

failure of the commit. If the commit was successful, the

original application has the guarantee that the transac-

tion has been executed and completed at all sites where

it was invoked. If the commit fails, the original appli-

cation has the guarantee that all side effects and

changes made by the transaction have been rolled

back. Of course, these guarantees hold only if the

code that is being invoked does not cause any side

effects or persistent changes outside the transaction

(e.g., on a sub-system that does not support the XA

interface) as those changes will not be rolled back for

obvious reasons.

The system side of transactional middleware

involves all the machinery necessary to run transactions

plus a great deal of additional functionality to cope with

distribution. Historically, transactional middleware also

had to provide a wide range of functionality to compen-

sate for the lack of support at the operating system level.

A good example is support for multi-threading, which is

necessary to allow the system to cope with concurrent

requests to the same service. Other examples include

name and directory services, load balancing, life cycle

management for services, logging, domain definition,

and authentication. For performance reasons, many
commercial products also supported specializednetwork

interfaces (e.g., to communicate with a mainframe)

and provided additional sub-systems such as message

queuing or transactional file systems. Providing such a

wealth of functionality made transactional middleware,

especially TP Monitors, very generic tools where some-

timesthesupportfortransactionmanagementwasnotthe

primary reason to use the system. To a large extent, espe-

cially during the 1980s and the first half of the 1990s,

transactional middleware was the most efficient way to

build a distributed system and TPMonitors became not

only middleware but also development platforms for

distributed applications. A good example of this was

Encina (the commercial version of Camelot [2]), which

provided its own versions or C or C++ (Transactional C

andTransactionalC++).
Key Applications
High performance transaction processing (financial,

on line trading, banking).

Application servers (web shops, multi tier systems).

Future Directions
TP Monitors are and will remain a key component of

any enterprise computing solution. As the key func-

tionality of TP Monitors (the ability to efficiently pro-

cess large volumes of transactions) is embedded deeper

and deeper within larger systems, some of the addi-

tional functionality that conventional TP Monitors

always provided has migrated to other platforms

(e.g., application servers) or become independent

systems on their own (e.g., message brokers). Hence

the generic name of transactional middleware when

referring to such systems. A challenge in the future

will be providing similar transactional semantics on

Service Oriented Architectures where the interactions

might be based on asynchronous messages instead of

through blocking calls (RPC/RMI). What the proper

transactional semantics are for an asynchronous enter-

prise bus or an event based architecture is a topic that

is still open and needs attention.
Cross-references
▶ACID Properties

▶Advanced Transaction Models

▶Transaction

▶Transaction Tuning

▶Two-Phase Commit

3166T Transactional Processes
Recommended Reading
1. Bernstein P.A. and Newcomer E. Principles of Transaction Pro-

cessing. Morgan Kaufmann, Los Altos, CA, 1997.

2. Eppinger J.L., Mummert L.B., and Spector A.Z (eds.). Camelot

and Avalon. Morgan Kaufmann, Los Altos, CA, 1991.

3. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, (3rd edn.). Prentice Hall, Englewood Cliffs, NJ, 2009.

4. Reuter A. and Gray J. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, Los Altos, CA, 1993.

5. Weikum G. and Vossen G. Transactional Information Systems.

Morgan Kaufmann, Los Altos, CA, 2001.
Transactional Processes

HEIKO SCHULDT

University of Basel, Basel, Switzerland

Synonyms
Transactional workflows; Transactional business

processes

Definition
A Transactional Process is a partially ordered sequence

of activities which is executed in a way that guarantees

transactional consistency for all activities or a subset of

them. Activities can be either transactional (e.g., they

are again transactional processes or conventional data-

base transactions) or non-transactional (e.g., invoca-

tions of application services). Activities are ordered by

means of control flow and data flow dependencies.

Key Points
In most cases, transactional consistency for processes

focuses on notions of atomicity which go beyond the

“all-or-nothing” semantics of ACID database transac-

tions. This is done by supporting a process designer in

explicitly specifying how consistency has to be

achieved. Models for transactional processes include

support for failure handling which can either be

integrated into control flow dependencies (i.e., distin-

guishing between regular execution and alternative

executions in case of failures) or, in a rather program-

matic style, as exception handlers. Failure handling

also needs to take into account that certain activities

can neither be compensated after having been success-

fully executed (i.e., to semantically undo their effects)

nor be deferred until the end of a process, due to
control flow dependencies. For this, backward recovery

(partial compensation in case of failures) and forward

recovery (alternative executions) need to be combined.

Forward recovery also requires to make the state of a

process persistent during execution so that it can be

resumed in case of system failures. For applications in

which also concurrent executions of transactional pro-

cesses need to be controlled, isolation and atomicity

can be jointly considered.

Commercial tools for transactional processes distin-

guish between microflows (short running processes

where all activities are transactional) and macroflows

(long-running processes). The former can actually be

considered conventional database transactions and are

executed using protocols such as two phase commit

(2PC) while the latter have to be treated as transactional

processes. Several Web services standards define proto-

cols that allow to execute Web services in a transactional

context and thus facilitate their integration into transac-

tional processes.

Cross-references
▶Distributed Transaction Management

▶Generalization of ACID Properties

▶Multilevel Transactions and Object-Model Transac-

tions

▶Transactional Middleware

▶Workflow Transactions

Recommended Reading
1. Alonso G. Transactional business processes. In Process-Aware

Information Systems. M. Dumas, W. Aalst, and van der A. ter

Hofstede (eds.), Wiley, New York, 2005, pp. 257–278.

2. Leymann F. Supporting business transactions via partial back-

ward recovery in workflow management systems. In Proc.

Datenbanksysteme in Büro, Technik und Wissenschaft

(BTW’95), Informatik Aktuell, Dresden, Germany, March

1995. Springer Verlag, Berlin, 1995, pp. 51–70.

3. Schuldt H., Alonso G., Beeri C., and Schek H.-J. Atomicity

and isolation in transactional processes. ACM Trans. Database

Syst., 27(1):63–116, March 2002.

4. Zhang A., Nodine M., and Bhargava B. Global scheduling

for flexible transactions in heterogeneous distributed database

systems. IEEE Trans. Knowl. Data Eng., 13(3):439–450, 2001.
Transactional Workflows

▶Transactional Processes

▶Workflow Transactions

Transaction-Time Indexing T 3167
Transaction-Time Access Methods

▶Transaction-Time Indexing
Transaction-Time Algebras

▶Temporal Algebras
Transaction-Time Data Model

▶Temporal Data Models
T

Transaction-Time Indexing

MIRELLA M. MORO
1, VASSILIS J. TSOTRAS

2

1The Federal University of Rio Grande do Sol, Porte

Alegre, Brazil
2University of California-Riverside, Riverside,

CA, USA

Synonyms
Transaction-time access methods

Definition
A transaction-time index is a temporal index that

enables fast access to transaction-time datasets. In a

traditional database, an index is used for selection

queries. When accessing transaction-time databases,

selection queries also involve the transaction-time

dimension. The characteristics of the transaction-

time axis imply various properties that such temporal

index should have to be efficient. As with traditional

indices, the performance is described by three costs:

(i) storage cost (i.e., the number of pages the index

occupies on the disk), (ii) update cost (the number of

pages accessed to perform an update on the index; for

example when adding, deleting or updating a record),

and (iii) query cost (the number of pages accessed

for the index to answer a query).
Historical Background
Most of the early work on temporal indexing has con-

centrated on providing solutions for transaction-time

databases. A basic property of transaction-time is that

it always increases. This is consistent with the serializa-

tion order of transactions in a database system. Each

newly recorded piece of data are time-stamped with a

new, larger, transaction time. The immediate implica-

tion of this property is that previous transaction times

cannot be changed (since every new change must be

stamped with a new, larger, transaction time). This is

useful for applications where every action must

be registered and maintained unchanged after reg-

istration, as in auditing, billing, etc. Note that a

transaction-time database records the history of a

database activity rather than “real” world history. As

such it can “rollback” to, or answer queries for, any of

its previous states.

Consider, for example, a query on a temporal rela-

tion as it was at a given transaction time. There are two

obvious but inefficient approaches to support this query,

namely the “copy” and “log” approaches. In the “copy”

approach, the whole relation is “flushed” (copied) to

disk for every transaction for which a new record is

added or modified. Answering the above rollback

query is simple: the system has to then query the copy

that has the largest transaction-time less or equal to

the requested time. Nevertheless, this approach is ineffi-

cient for its storage and update costs (the storage

can easily become quadratic to the number of records

in the temporal database and the update is linear, since

the whole temporal relation needs to be flushed to disk

for a single record update). In contrast, the “log” solu-

tion simply maintains a log of the updates to the tempo-

ral database. Clearly, this approach uses minimal space

(linear to the number of updates) and minimal update

cost (simply add an update record at the end of the log),

but the query time is prohibitively large since the

whole log may need to be traversed for reconstructing a

past state of the temporal database. Various early works

on transaction-time indexing behave asymptotically like

the “log” or the “copy” approaches. For a worst-case

comparison of these methods see [7]. Later on, two

methodologies were proposed to construct more effi-

cient transaction-time indices, namely the (i) overlap-

ping [3,10] and (ii) (partially) persistent approaches

[1,6,9,]. These methodologies attempt to combine the

benefits of the fast query time from the “copy”

3168T Transaction-Time Indexing
approach with the low space and update costs of the

“log” approach.

Foundations
The distinct properties of the transaction-time dimen-

sion and their implications to the index design are

discussed through an example; this discussion has

been influenced by [8]. Consider an initially empty

collection of objects. This collection evolves over time

as changes are applied. Time is assumed discrete and

always increasing. A change is the addition or deletion

of an object, or the value change of an object’s attri-

bute. A real life example would be the evolution of the

employees in a company. Each employee has a surro-

gate (ssn) and a salary attribute. The changes include

additions of new employees (as they are hired or

re-hired), salary changes or employee deletions (as

they retire or leave the company). Each change is

time-stamped with the time it occurs (if more than

one change happen at a given time, all of them get the

same timestamp). Note that an object attribute value

change can be simply “seen” as the artificial deletion

of the object followed by the simultaneous rebirth (at

the same time instant) of this object having the mod-

ified attribute value. Hence, the following discussion

concentrates only on object additions or deletions.

In this example, an object is called “alive” from the

time that it is added in the collection until (if ever) it is

deleted from it. The set s(t), consisting of all alive

objects at time t, forms the state of the evolving collec-

tion at t. Figure 1 illustrates a representative evolution

shown as of time t = 53. Lines ending to “>” corre-

spond to objects that have not yet been deleted at

t = 53. For simplicity, at most one change per time

instant is assumed. For example, at time t = 10 the state
Transaction-Time Indexing. Figure 1. An example of a trans
is s(10) = {u, f, c}. The interval created by the consecu-

tive time instants an object is alive is the “lifetime”

interval for this object. Note that the term “interval” is

used here to mean a “convex subset of the time do-

main” (and not a “directed duration”). This concept

has also been named a “period” in this discussion

however, only the term “interval” is used. In Fig. 1,

the lifetime interval for object b is [2,10). An object can

have many non-overlapping lifetime intervals.

Note that in the above evolving set example,

changes are always applied to the current state s(t),

i.e., past states cannot be changed. That is, at time

t = 7, the deletion of object d is applied to

s(16) = {u, f, c, d, g} to create s(17) = {u, f, c, g}. This

implies that, at time t = 54, no object can be retro-

actively added to state s(5), neither the interval of

object d can be changed to become [15,25]. All such

changes are not allowed as they would affect previous

states and not the most current state s(53).

Assume that all the states s(t) of the above evolu-

tion need to be stored in a database. Since time is

always increasing and the past is unchanged, a transac-

tion time database can be utilized with the implicit

updating assumption that when an object is added or

deleted from the evolving set at time t, a transaction

updates the database system about this change at the

same time, i.e., this transaction has commit timestamp t.

When a new object is added in the collection at time t,

a record representing this object is stored in the data-

base accompanied by a transaction-time interval of the

form [t, UC). In this setting, UC (Until Changed) is

a variable representing the fact that at the time the

object is added in the collection, it is not yet known

when (if ever) it will be deleted from it. If this object is

later deleted at time t’, the transaction-time interval
action-time evolution.

Transaction-Time Indexing T 3169

T

of the corresponding record is updated to [t, t’). A real-

world object deletion is thus represented in the data-

base as a “logical” deletion: the record of the deleted

object is still retained in the database, accompanied

by an appropriate transaction-time interval. Since

the past is kept, a transaction-time database concep-

tually stores, and can thus answer queries about, any

past state s(t).

Based on the above discussion, an index for a

transaction-time database should have the following

properties: (i) store past logical states, (ii) support

addition/deletion/modification changes on the objects

of the current logical state, and (iii) efficiently access

and query any database state.

Since a fact can be entered in the database at a

different time than when it happened in reality, the

transaction-time interval associated with a record is

actually related to the process of updating the database

(the database activity) and may not accurately repre-

sent the times the corresponding object was valid in

reality. Note that a valid-time database has a different

abstraction, which can be visualized as a dynamic

collection of “interval-objects.” The term interval-

object is used to emphasize that the object carries a

valid-time interval to represent the temporal validity of

some object property. Reality is more accurately repre-

sented if both time dimensions are supported. A bi-

temporal database has the characteristics of both

approaches. Its abstraction maintains the evolution

(through the support of transaction-time) of a dynamic

collection of (valid-time) interval-objects.

Traditional indices like the B+-tree or the R-tree are

not efficient for transaction-time databases because

they do not take advantage of the special characteristics

of transaction time (i.e., that transaction time is

always increasing and that changes are always applied

on the latest database state). There are various index

proposals that are based on the (partially) persistent

data-structure approach; examples are the Time-Split

B-tree (TSB) [6], the Multiversion B-tree (MVBT) [1],

the Multiversion Access Structure [11], the Snapshot

Index [9], etc. It should be noted that all the above

approaches facilitate “time-splits”: when a page gets

full, current records from this page are copied to a new

page (this operation is explained in detail below).

Time-splits were first introduced in the Write-Once

B-tree (WOBT), a B-tree index proposed for write-

once disks [5]. Later, the Time-Split B-tree used

time-splits for read-write media and also introduced
other splitting policies (e.g., splitting by other than the

current time, key splits etc.) Both the WOBT and TSB

use deletion markers when records are deleted and do

not consolidate pages with few current records. The

MVBT uses the time splitting approach of the WOBT,

drops the deletion markers and consolidated pages

with few current records. It thus achieves the best asym-

ptotic behavior and it is discussed in detail below.

Among the index solutions based on the overlapping

data-structure approach [2], the Overlapping B-tree

[10] is used as a representative and discussed further.

For the purposes of this discussion, the so-called

range-timeslice query is considered, which provides a

key range and a specific time instant selection. For

example: “find all objects with keys in range [K1, K2]

whose lifetimes contain time instant t.” This corre-

sponds to a query “find the employees with ids in

range [100,..,500] whose entries were in the database

on July 1, 2007.” Let n be the total number of updates

in a transaction-time database; note that n corresponds

to the minimal information needed for storing the

whole evolution. [7] presents a lower bound for an-

swering a range-timeslice query. In particular, any

method that uses linear space (i.e, O(n/B) pages,

where B is the number of object records that fit in a

page) would need O(logBn + s/B) I/O’s to answer such

a query (where an I/O transfers one page, and s corre-

sponds to the size of the answer, i.e., the number of

objects that satisfy the query).

The Multiversion B-tree (MVBT): The MVBT

approach transforms a timeslice query to a partial

persistence problem. In particular, a data structure is

called persistent [4] if an update creates a new version

of the data structure while the previous version is still

retained and can be accessed. Otherwise, if old versions

of the structure are discarded, the structure is termed

ephemeral. Partial persistence implies that only the

newest version of the structure can be modified to

create a new version.

The key observation is that partial persistence

“suits” nicely transaction-time evolution since these

changes are always applied on the latest state s(t) of

the evolving set (Fig. 1). To support key range queries

on a given s(t), one could use an ordinary B+-tree to

index the objects in s(t) (that is, the keys of the objects

in s(t) appear in the data pages of the B+-tree). As s(t)

evolves over time through object changes, so does its

corresponding B+-tree. Storing copies of all the states

that the B+-tree took during the evolution of s(t)

3170T Transaction-Time Indexing
is clearly inefficient. Instead, one should “see” the

evolution of the B+-tree as a partial persistence prob-

lem, i.e., as a set of updates that create subsequent

versions of the B+-tree.

Conceptually, the MVBT stores all the states assu-

med by the B+-tree through its transaction-time evo-

lution. Its structure is a directed acyclic graph of pages.

This graph embeds many B+-trees and has a number of

root pages. Each root is responsible for providing ac-

cess to a subsequent part of the B+-tree’s evolution.

Data records in the MVBT leaf pages maintain the

transaction-time evolution of the corresponding B+-

tree data records (that is, of the objects in s(t)). Each

record is thus extended to include an interval [inser-

tion-time, deletion-time), representing the transaction-

times that the corresponding object was inserted/de-

leted from s(t). During this interval the data-record is

termed alive. Hence, the MVBT directly represents

object deletions. Index records in the non-leaf pages

of the MVBT maintain the evolution of the

corresponding index records of the B+-tree and are

also augmented with insertion-time and deletion-

time fields.

Assume that each page in the MVBT has a capacity

of holding B records. A page is called alive if it has not

been time-split (see below). With the exception of root

pages, for all transaction-times t that a page is alive, it

must have at least q records that are alive at t (q < B).

This requirement enables clustering of the alive objects

at a given time in a small number of pages, which in

turn will minimize the query I/O. Conceptually, a data

page forms a rectangle in the time-key space; for any

time in this rectangle the page should contain at least

q alive records. As a result, if the search algorithm

accesses this page for any time during its rectangle, it

is guaranteed to find at least q alive records. That is,

when a page is accessed, it contributes enough records

for the query answer.

The first step of an update (insertion or deletion) at

the transaction time t locates the target leaf page in a

way similar to the corresponding operations in an

ordinary B+-tree. Note that, only the latest state of

the B+-tree is traversed in this step. An update leads

to a structural change if at least one new page is created.

Non-structural are those updates which are handled

within an existing page.

After locating the target leaf page, an insert opera-

tion at the current transaction time t adds a data record

with a transaction interval of [t, UC) to the target
leaf page. This may trigger a structural change in the

MVBT, if the target leaf page already has B records.

Similarly, a delete operation at transaction time

t finds the target data record and changes the record’s

interval to [insertion-time, t). This may trigger a struc-

tural change if the resulting page ends up having less

than q alive records at the current transaction time.

The former structural change is called a page overflow,

and the latter is a weak version underflow [1]. Page

overflow and weak version underflow need special

handling: a time-split is performed on the target leaf-

page. The time-split on a page x at time t is performed

by copying to a new page y the records alive in page x

at t. Page x is considered dead after time t. Then

the resulting new page has to be incorporated in the

structure [1].

Since updates can propagate to ancestors, a root

page may become full and time-split. This creates a

new root page, which in turn may be split at a later

transaction time to create another root and so on. By

construction, each root of the MVBT is alive for a

subsequent, non-intersecting transaction-time inter-

val. Efficient access to the root that was alive at time

t is possible by keeping an index on the roots, indexed

by their time-split times. Since time-split times are in

order, this root index is easily kept (this index is called

the root* in [1]). In general, not many splits propagate

to the top, so the number of root splits is small and the

root* structure can be kept in main memory. If this is

not the case, a small index can be created on top of

the root* structure.

Answering a range-timeslice query on transaction

time t has two parts. First, using the root index, the

root alive at t is found. This part is conceptually equiv-

alent to accessing s(t) or, more explicitly, accessing the

B+-tree indexing the objects of s(t). Second, the answer

is found by searching this tree in a top-down fashion as

in a B+-tree. This search considers the record transac-

tion interval. The transaction interval of every record

returned or traversed should include the transaction

time t, while its key attribute should satisfy the key

query predicate. A range-timeslice query takes

O(logBn + s/B) I/O’s while the space is linear to n

(i.e., O(n/B)). Hence, the MVBT optimally solves the

range-timeslice query. The update processing is

O(logBm) per change, where m is the size of s(t)

when the change took place. This is because a change

that occurred at time t traverses what is logically a

B+-tree on the m elements of s(t).

Transaction-Time Indexing. Figure 2. The Overlapping

B-tree.

Transaction-Time Indexing T 3171

T

The Overlapping B-tree: Similar to the MVBT ap-

proach, the evolving set s(t) is indexed by a B+-tree.

The intuition behind the Overlapping B-tree [2,10] is

that the B+-trees of subsequent versions (states) of s(t)

will not differ much. A similar approach was taken in

the EXODUS DBMS [3]. The Overlapping B-tree is

thus a graph structure that superimposes many ordi-

nary B+-trees (Fig. 2). An update at some time t creates

a new version of s(t) and a new root in the structure. If

a subtree does not change between subsequent ver-

sions, it will be shared by the new root. Sharing com-

mon subtrees among subsequent B+-trees is done

through index nodes of the new B+-tree that point to

nodes of previous B+-tree(s). An update will create a

new copy of the data page it refers to. This implies that

a new path is also created leading to the new page; this

path is indexed under the new root.

To address a range-timeslice query for a given

transaction time t, the latest root that was created

before or at t must be found. Hence, roots are time-

stamped with the transaction time of their creation.

These timestamps can be easily indexed on a separate

B+-tree. This is similar to the MVBT root* structure;

however, the Overlapping B-tree creates a new root per

version. After the appropriate root is found, the search

continues traversing the tree under this root, as if an

ordinary B+-tree was present for state s(t).

Updating the Overlapping B-tree involves travers-

ing the structure from the current root version and

locating the data page that needs to be updated. Then a

copy of the page is created as well as a new path to this

page. This implies O(logBm) I/O’s per update, wherem

is the current size of the evolving set. An advantage of

the Overlapping structure is in the simplicity of its

implementation. Note that except the roots, the other

nodes do not involve any time-stamping. Such time-

stamping is not needed because pages do not have to

share records from various versions. Even if a single
record changes in a page, the page cannot be shared by

different versions; rather a new copy of the page is

created. This, however, comes at the expense of the

space performance. The Overlapping B-tree occupies

O(n logBn) pages since, in the worst case, every version

creates an extra tree path. Further performance results

on this access method can be found in [10].

Key Applications
The characteristics of transaction-time make such

databases ideal for applications that need to maintain

their past; examples are: billing, accounting, tax-

related etc.

Cross-references
▶Bi-Temporal Indexing

▶B+-Tree

▶Temporal Database

▶Transaction Time

▶Valid Time

▶Valid-Time Indexing

Recommended Reading
1. Becker B., Gschwind S., Ohler T., Seeger B., and Widmayer P.

An asymptotically optimal multiversion B-tree. VLDB J.,

5(4):264–275, 1996.

2. Burton F.W., Huntbach M.M., and Kollias J.G. Multiple

generation text files using overlapping tree structures. Comput.

J., 28(4):414–416, 1985.

3. Carey M.J., DeWitt D.J., Richardson J.E., and Shekita E.J.

Object and file management in the EXODUS extensible database

system. In Proc. 12th Int. Conf. on Very Large Data Bases, 1986,

pp. 91–100.

4. Driscoll J.R., Sarnak N., Sleator D.D., and Tarjan R.E.

Making data structures persistent. J. Comput. Syst. Sci.,

38(1):86–124, 1989.

5. Easton M.C. Key-sequence data sets on inedible storage. IBM

J. Res. Dev., 30(3):230–241, 1986.

6. Lomet D. and Salzberg B. Access methods for multiversion data.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1989, pp. 315–324.

7. Salzberg B. and Tsotras V.J. A comparison of access methods

for time-evolving data. ACM Comput. Surv., 31(2):158–221,

1999.

8. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, 1986.

9. Tsotras V.J. and Kangelaris N. The snapshot index: an

I/O-optimal access method for timeslice queries. Inf. Syst.,

20(3):237–260, 1995.

10. Tzouramanis T., Manolopoulos Y., and Lorentzos N.A.

Overlapping B+-trees: an implementation of a transaction time

access method. Data Knowl. Eng., 29(3):381–404, 1999.

11. Varman P.J. and Verma R.M. An efficient multiversion access

structure. IEEE Trans. Knowl. Data Eng., 9(3):391–409, 1997.

3172T Transcriptional Networks
Transcriptional Networks

▶Biological Networks
Transformation

▶Mediation
Transformation Engines

▶ Interface Engines in Healthcare
Translation Lookaside Buffer (TLB)

▶ Processor Cache
Translingual Information Retrieval

▶Cross-Language Mining and Retrieval
Tree Drawing

▶Visualizing Hierarchical Data
Tree Pattern Queries

▶XMLTree Pattern, XMLTwig Query
Tree-based Indexing

YANNIS MANOLOPOULOS
1, YANNIS THEODORIDIS

2,

VASSILIS J. TSOTRAS
3

1Aristotle University of Thessaloniki, Thessaloniki,

Greece
2University of Piraeus, Piraeus, Greece
3University of California-Riverside, Riverside,

CA, USA

Synonyms
Index Sequential Access Method (ISAM); B+-tree;

R-tree
Definition
Consider a relation R with some numeric attribute A

taking values over an (ordered) domain D. A range

query retrieves all tuples in R whose attribute A has

values in the interval [low, high]. That is, low � R.A �
high. To enable fast processing of range selection

queries, an access method that maintains order is

needed. Such an index has the form of a tree, where

each node corresponds to a page. Leaf nodes contain

(or index) the actual values of A, while index nodes

provide ordered access to the nodes underneath.

Examples of tree-based indexing are the B+-tree and

the R-tree (for single- and multi-dimensional ranges,

respectively).

Key Points
A major performance goal of a database management

system is to minimize the number of I/O’s (i.e., blocks

or pages transferred) between the disk and main mem-

ory. One way to achieve this goal is to minimize the

number of I/O’s when answering a query. Consider for

example relation Employee (ssn, name, salary, dept,

address); the query: “Find the employees who reside

in Santa Monica” references only a fraction of Employee

records. It would be very inefficient to have the data-

base system sequentially read all the pages of the Em-

ployee file and check the address field of each employee

record for the value “Santa Monica.” Instead the sys-

tem should be able to locate the pages with “Santa

Monica” employee records directly.

To allow such fast access additional data structures

called access methods (or indices) are designed per

database file. The term search-key is used to identify

the attribute(s) on which the access method is built.

There are two fundamental access methods, namely

tree-based and hash-based indexing. They differ

on the kind of queries that they can efficiently address.

Tree-based indexing maintains the order of the search-

key values. It is thus applicable to attributes that are

numeric and hence it can be used to address range

queries (and also equality queries, when the range

query interval is reduced to one value). Hash-based

indexing on the other hand does not assume any

ordering; rather it is based on mapping the search-

key values on a collection of buckets. Therefore it can

only address equality (or membership) queries. Since a

tree-based index maintains the order of the indexed

values in its leaf pages, a (one-dimensional) range

query is implemented as a search for the leaf page

Treemaps. Figure 1. Rendition of a rooted tree as a node-

link diagram on the left and as a Treemap on the right.

Treemaps T 3173

T

with the lower value of the range interval, followed by

the accessing of sibling pages until a page that contains

the higher value of the range interval is reached.

Tree-based indices are further categorized by

whether their search-key ordering is the same with

the file’s logical order (if any). Note that a file may or

may not be ordered according to the value of an

(a sequence of) attribute(s). A file stored without any

logical order is called an unordered file or heap. If the

search-key of a tree-based index is the same as the

ordering attribute of a (ordered) file then the index is

called primary. Since such an index also clusters the

values of the file, the term clustering index has also

been used. The search-key of a primary index is usually

the file’s primary key, however this is not necessary. An

index built on any non-ordering attribute of a file is

called secondary. A relation can have several indices,

on different search-keys; among them, at most one is

primary (clustering) index and the rest are secondary

ones (obviously, a file can have at most a single logical

order since it is physically stored once).

Historically, the first tree-based index used in

relational databases was the ISAM file (a static tree).

Currently, the most widely used tree-based index is the

B+-tree which is a dynamic structure (i.e., its size

increases or decreases as the size of the indexed file

changes by record insertions/deletions). As with any

data structure, the performance of an access method

is characterized by three costs, namely: query time,

update time and space. Query time corresponds to

the number of page accesses (I/O’s) needed to answer

a query. Update time counts the number of I/O’s

needed for updating the method when a record is

updated, inserted or deleted. Space measures the

number of pages occupied by the method’s data struc-

tures. The B + -tree uses logarithmic update and query

costs while its space requirements are linear to the

size of the indexed file.

Cross-references
▶Access Path

▶Hash-based Indexing

▶ Index Creation and File Structures

▶ Primary Index

▶ Secondary Index

▶ Signature Trees

▶ Spatial Indexing Techniques

▶ Suffix Tree

▶Text Indexing Techniques
Recommended Reading
1. Elmasri R.A., and Navathe S.B. Fundamentals of Database

Systems (5th edn.). Addisson-Wesley, Reading, MA, 2007.

2. Manolopoulos, Theodoridis Y., Tsotras. Y., and Vassilis. J.,

Advanced Database Indexing. Kluwer, Dordecht, 1999.

3. Ramakrishnan R. and Gehrke J. Database Management Systems

(3rd edn.). McGraw-Hill, NY, 2003.
Treemaps

JEAN-DANIEL FEKETE

INRIA, LRI University Paris Sud, Orsay Cedex, France

Definition
Treemaps [5] have been designed to visualize rooted

trees using containment to express the hierarchy (Fig. 1

right). It is a space-filling technique and uses all the

available space to render the tree. One important feature

of Treemaps is their use of surface to represent an attri-

bute value that adds up with the hierarchy. The number

of leaves under a node is the simplest of these attributes.

This number is one for a leaf and, for an interior node, it

is the sum of the number of leaves of all its children.

This additive property is frequent on real trees. In

an organizational chart, the salary of employees adds

up, in an administrative geographical decomposition

such as the one used by the census, population adds

up, as well as income.

The traditional visual representation of rooted trees

is called a node-link diagram (Fig. 1 left). Treemaps are

not as good as standard node-link diagrams to repre-

sent the hierarchy depth on the tree; if an important

task on the tree is to compare the depth of two nodes,

node-link diagrams are more appropriate.

However, Treemaps can be applied on trees ranging

from tens to hundred-thousands of nodes, much more

3174T Treemaps
than standard node-link diagrams. Computing the

layout of Treemaps is fast and their reading is easy

with some training.

Historical Background
Treemaps were introduced by Shneiderman in 1992

[5]. They are restrictions of Euler diagrams to repre-

sent inclusion. Furthermore, when Euler diagrams are

usually drawn with circles, ellipses, or curved shapes,

Treemaps are drawn with rectangles to better use the

screen real-estate.

The original Treemap algorithm is called “Slice and

Dice” because at each level in the hierarchy, the chil-

dren of a node cut the node’s rectangle in slices hori-

zontally or vertically, flipping direction at each level.

Further refinements of Treemaps have tried to improve

two main features: the aspect ratio of the rectangles

and their order.

With the original “Slice and Dice” algorithm, the

ratio between width and height of nodes can vary

widely in the same Treemap. Some slices can become

very thin while others can be almost square. Compar-

ing visually the surface of rectangles with different

aspect ratio is difficult for the human vision so one

important improvement was to try to create nodes as

square as possible. The most popular algorithm for

achieving this property is due to van Wijk and is

called “Squarified Treemap” [3].
Neither the “slice and Dice,” nor the squarified

algorithm maintains the order of children visually.

When the leaf order is important, Bederson et al. have

compared several algorithms and found that a simple

variant of the squarified algorithm called “Ordered

Treemaps” provided a good tradeoff between complex-

ity and performance [2].

Further research have been conducted to study the

limits of Treemaps in term of tree size and density [4] or

to enhance their readability. Variant layouts have also

been proposed, such as circular Treemaps (not space

efficient) and Voronoı̈ Treemaps [1] that are space

efficient but costly to compute.

Foundations
As in all the visualization techniques, Treemaps visuali-

zations consist in computing a layout for the tree – here

a rectangle associated with each node – and drawing

these rectangles using adequate visual attributes.

A rooted treeT is defined as a set of nodes n 2 Tand
three functions root , parent and children . It is conve-

nient to define the element NIL to represent an unde-

fined node. A rooted tree verifies the following axioms:

parentðT ; nÞ 2 T [fNILg
parentðT ; nÞ ¼ NIL, n ¼ rootðTÞ
childrenðT ; nÞ ¼ fc1; c2;:::ckg 2 Tk

parentðT ; nÞ ¼ p , n 2 childrenðT ; pÞ

Treemaps. Figure 2. SequoiaView using the Cushion Treemap rendition technique for a large file hierarchy.

Treemaps. Figure 3. A Treemap of a one million file Web server, using intensity for depth perception and smooth

shading to render the rectangles.

Treemaps T 3175

T

3176T Treemaps
For convenience, define the degree of a node deg(T,n)

to be the number of nodes in its children set and the is

Leaf(T, m) predicate is deg(T, n) = 0.

Drawing a Treemap requires a positive function

weight on the tree such that:

weightðT ; nÞ ¼
X

c 2 childrenðT ;nÞ
weightðT ; cÞ ^

weightðT ; nÞ > 0

ð1Þ

A rectangular portion of the screen is used to display

the whole tree. The layout algorithm is recursive and

uses theweight function to allocate space. The algorithm

for “Slice and Dice” is simple (Algorithm 1). The “flip”

function and the accessor function for the rectangle type

should be self explanatory.
The squarified algorithm is more complex. It tries to

assign a rectangle to each node with the ratio w ∕h close

to 1. Computing the optimal configuration is equiva-

lent to bin-packing and is known to be NP-complete so

it uses a simple heuristics. It sorts the children by

decreasing weights and fills the parent rectangle with

strips of children. Each node rectangle is added to the

strip until adding the next rectangle decreases the

quality of the rectangles already in the strip. Then a

new strip is created (see Algorithm 2). The quality is

usually the worst aspect ratio of the rectangles in the

strip. It is computed as follows: given R a list of areas

and s their total sum:

worstðR;wÞ¼ max
r2R
ðmaxðw2r=s2; s2=ðw2rÞÞ

Triangular Norms T 3177
In the algorithm 2, a scale argument is passed to the

function worst to transform the weights in surfaces

since in the definition (equation 1), the weights are

in arbitrary units. The computation of strips can be

done incrementally as described in [3].

Sorted Treemaps only change two lines to the

Algorithm 2: line 7 is removed so the nodes are in

their natural order and line 9 is removed so the strips

are always horizontal.

Key Applications
Treemaps have been used on any kinds of trees. They

became visible to a large audience when the company

SmartMoney used Treemaps to visualize a “map of

the market” (still visible at www.smartmoney.com/

mapofthemarket. Other applications include browsers

for file systems where one can visualize the whole hierar-

chy and navigate on it by file sizes and using sophisticated

color rendition for the rectangles, such as “cushion” (Fig.

2) or “smooth shading” (Fig. 3).

They are also very useful to visualize data tables

using a flexible hierarchy. A set of column is chosen

and ordered. The first level of the tree consists in

creating a node for each values of the first column

(partitioning according to the first column). The sec-

ond level is built by sub-partitioning by values of the

second column etc. This method is well suited to

OLAP databases where the partitioning is already

available. By interactively changing the column order,

different Treemap views of the table can be explored.
T

Cross-references
▶Data Visualization

▶Dense Pixel Displays

▶Graphic Information Processing

▶Graphical Perception

▶Hierarchical Data Model

▶Hierarchy

▶Human-Computer Interaction

▶Visual Analytics

▶Visual Data Mining

▶Visual Representation

▶Visualization for Information Retrieval

▶Visualizing Hierarchical Data

Recommended Reading
1. Balzer M. and Deussen O. Voronoi treemaps. In Proc. IEEE

Symp. on Information Visualization. 2005, pp. 48–56.
2. Bederson B.B., Shneiderman B., and Wattenberg M. Ordered

and quantum treemaps: Making effective use of 2D space to

display hierarchies. ACM Trans. Graph., 21(4):833–854, 2002.

3. Bruls M., Huizing K., and van Wijk J.J. Squarified treemaps. In

Data Visualization 2000, Proceedings of the Joint Eurographics

and IEEE TCVG Symposium on Visualization, W. de Leeuw and

R. van Liere (eds.). Springer, Vienna, 2000, pp. 33–42.

4. Fekete J.D. and Plaisant C. Interactive information visualization

of a million items. In Proc. IEEE Symp. on Information Visuali-

zation, 2002, pp. 117–124.

5. Shneiderman B. Tree visualization with tree-maps: 2-d space-

filling approach. ACM Trans. Graph., 11(1):92–99, 1992.
Tree-Structured Classifier

▶ Scalable Decision Tree Construction
Triangular Norms

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech Republic

Synonyms
t-Norm

Definition
Triangular norms (briefly t-norms) are special binary

operations T : [0,1]2![0,1]. They are interesting for

fuzzy logic because they preserve the fundamental

properties of the logical conjunction “and” (to hold

at the same time), namely commutativity, monotonic-

ity, associativity, and boundedness and thus, they serve

as a natural generalization of the classical conjunction

in many-valued logical systems.

A concept associated with the t-norm is the trian-

gular conorm (t-conorm) S : [0,1]2![0,1]. This

corresponds to the behaviour of truth values when

joined by the logical connective “or.”

Key Points
A t-norm is a binary operation T : [0,1]2![0,1]

such that the following axioms are satisfied for all

a, b, c 2 [0,1]:

ðcommutativityÞ a T b ¼ b T a;

ðassociativityÞ a Tðb T cÞ ¼ ða T bÞT c;

ðmonotonicityÞ a � b implies a T c � b T c;

ðboundary conditionÞ 1 T a ¼ a:

http://www.smartmoney.com/mapofthemarket
http://www.smartmoney.com/mapofthemarket

3178T Triangulated Irregular Network
The most important t-norms are minimum, product

and Łukasiewicz conjunction defined by

a TLb ¼ maxf0; a þ b � 1g:
A t-conorm is a binary operation S : [0,1]2![0,1],

which is commutative, associative, monotone, and

for all a 2 [0,1] it fulfils the following boundary

condition:

0 S a ¼ a:

The most important t-conorms are maximum, proba-

bilistic sum

a SP b ¼ a þ b � ab

and Łukasiewicz disjunction

a SLb ¼ minf1; a þ bg:
A t-conorm is dual to the given t-norm T if a S b ¼1�
(1�a) T (1�b) holds for all a, b 2 [0,1]. There are

many classes of t-norms and their structure is extreme-

ly complicated.

Cross-references
▶Approximate Reasoning

▶ Fuzzy IF-THEN Rules

▶ Fuzzy Relation

▶ Fuzzy Set

▶Residuated Lattice

Recommended Reading
1. Klement E.P., Mesiar R., and Pap E. Triangular Norms. Kluwer,

Dordrecht, 2000.
Triangulated Irregular Network

LEILA DE FLORIANI, PAOLA MAGILLO

University of Genova, Genova, Italy

Synonyms
Triangulated terrains; TIN
Definition
A Triangulated Irregular Network (TIN) is a special

case of a Digital Elevation Model (DEM).

A terrain can be mathematically modeled as a func-

tion z = f (x, y) mapping a point (x, y) in a domain D in
the plane to its elevation value f (x, y). In practice, the

value of function f is known at a finite set S of points

within D. A DEM provides an estimated value for

function f at any point (x, y) of the domain, based

on the values at the points of S. A DEM consists of a

subdivision of the domain into cells and of a piece-wise

interpolating function defined on such cells.

A TIN is a DEM in which the domain subdivision

is a triangle mesh, i.e., a set T of triangles such that:

(i) the set of vertices of T is S, (ii) the interiors of any

two triangles of T do not intersect, (iii) if the bound-

aries of two triangles intersect, then the intersection

is either a common vertex, or a common edge.

Usually, a linear interpolating function is defined on

the triangles of T, thus providing a continuous terrain

approximation. Given a triangle t = P1P2P3 and a

point P = (x,y) inside triangle t, the following function

estimates the elevation value z at P. Let P1 = (x1,y1,z1)

P2 = (x2,y2,z2) and P3 = (x3,y3,z3) be the coordinates

of the three vertices of t. Then,

z = z1 � (a(x � x1) + b(y � y1)) ∕c,
where (a,b,c) are the components of the normal vector

to the triangle P1P2P3 in 3D space:

a = (y1 � y2)(z1 � z3) � (z1 � z2)(y1 � y3)

b = (z1 � z2)(x1 � x3) � (x1 � x2)(z1 � z3)

c = (x1 � x2)(y1 � y3) � (y1 � y2)(x1 � x3)
Key Points
TINs have been extensively studied in Geographic In-

formation Systems (GISs), in Computational Geome-

try, and in Computer Graphics. Several data structures

and algorithms for representing, constructing and

manipulating triangle meshes have been proposed.

The quality of the terrain approximation provided

by a TIN depends on the underlying triangle mesh.

Note that a point set S does not define a unique

triangle mesh. The most widely used triangle mesh is

the Delaunay one, in which the circumcircle of each

triangle does not contain any data point in its interior.

This means that the triangles of a Delaunay mesh are as

much equiangular as possible. It has also been proven

that the use of a Delaunay mesh as the basis of a TIN

improves the quality of the terrain approximation and

enhances numerical stability in computations. Other

triangulation criteria have been proposed which con-

sider the triangles of the mesh in 3D space.

Often, not only points, but also lines need to

be included in a TIN. Such lines may represent

Trie T 3179
morphological terrain features (coast lines, rivers,

ridges), man-made structures (roads, railways, gas

lines), political or administrative boundaries, or contour

lines. The Delaunay criterion has been modified to deal

with lines in two different ways: (i) in the constrained

Delaunay triangulation, the lines appear as triangle

edges (but it may present sliver triangles); (ii) in the

conforming Delaunay triangulation, each line is discre-

tized by adding points on it (but a large number of

points may need to be added).

TINs are used in multiresolution terrain modeling.
Cross-references
▶Regular Entry on Digital Elevation Models (DEM)

▶Regular Entry on Multiresolution Terrain Modeling

Recommended Reading
1. de Berg M., van Kreveld M., Overmars M., and Schwarzkopf O.

Computational Geometry – Algorithms and Applications.

2nd ed. Springer-Verlag, Berlin, 2000.

2. De Floriani L., Magillo P., and Puppo E. Applications of com-

putational geometry to Geographic Information Systems. Chapter

7 in Handbook of Computational Geometry, J.R. Sack, J. Urrutia

(eds.). Elsevier Science, 1999, pp. 333–388.

3. van Kreveld M. Digital elevation models and TIN algorithms. In

Algorithmic Foundations of Geographic Information Systems,

M. van Kreveld, J. Nievergelt, T. Roos, P. Widmayer (eds.).

Springer-Verlag, Berlin, 1997, pp. 37–78.
Triangulated Terrains

▶Triangulated Irregular Networks (TIN)
T

Trie

MAXIME CROCHEMORE
1,2, THIERRY LECROQ

3

1King’s College London, London, UK
2University of Paris-East, Paris, France
3University of Rouen, Rouen, France

Synonyms
Prefix tree

Definition
A trie is a rooted tree used for storing associative arrays

where keys are usually strings. Edges are often labeled by

individual symbols. Then common prefixes are
factorized. Each node of the trie is associated with a

prefix of a string of the set of strings: concatenation of

the labels of the path from the root to the node. The

root is associated with the empty string. Strings of the

set are stored in terminal nodes (leaves) but not in

internal nodes. A trie can be seen as a Deterministic

Finite Automaton.

Tries can be compacted. To get a compact trie from

a trie, internal nodes with exactly one successor are

removed. Then labels of edges between remaining

nodes are concatenated. Thus:

� Edges are labeled by strings.

� Internal nodes have at least two children.

� Edges outgoing an internal node are labeled by

strings starting with different symbols.

Historical Background
Tries were first recommended by de la Briandais [1]. The

word “trie” comes from information retrieval and was

suggested by Fredkin [3]. Tries enable to store and

retrieve information that consists of key-element

pairs. Fredkin suggested, in 1960, that it is an alterna-

tive way of storage to unordered lists, ordered lists or

pigeonholes. The reader can refer to [6] for further

details on tries.

Foundations
In binary search trees, keys are stored in all the nodes of

the tree and the search method is based on comparison

between keys. In tries, keys are stored in the leaves and

the search method involves left-to-right comparison of

prefixes of the keys.

The trie of the set of strings X = {in, integer,

interval, string, structure} is presented Fig. 1.

Note that the space sign t has been added at the end of

each of the strings of X so that no string of X is a prefix

of another string of X. Then each string of X

is associated with a leaf of the trie (not with an internal

node). The trie for the set X can be implemented in

linear space with respect to the total length of the

strings in X. The compact trie for the set X can be

implemented in linear space with respect to the total

number of the strings in X, which dramatically reduces

the size of the structure.

Consider that the strings are build over an alphabet

of size s.
Flajolet and Sedgewick [8] provide an average case

analysis of tries.

Trie. Figure 1. Trie of X = {in, integer, interval, string, structure}.

Trie. Figure 2. Algorithm that builds the trie containing

of the string of a set X.

Trie. Figure 3. Algorithm that enables to test if a string x

belongs to a trie.

3180T Trie
Construction

The algorithm TRIE(X) shown in Fig. 2, builds the trie

containing all the strings in the set X. It uses a function

TARGET(p, a) that gives the successor of a node p for a

symbol a or the value special NIL if such a node does

not exist. It works by inserting all the strings of

X successively in the trie starting with the tree consist-

ing with a single node (the root). Then for each string

x 2 X it spells the longest prefix of x corresponding

to an existing path from the root of the trie. When

this longest prefix is found, it creates the nodes and

the edges of the remaining suffix of x.

The sum of the lengths of all the strings of X is

denoted byM. Then, the algorithm TRIE(X) run in time

O(M) when the branching time from a node with

a given symbol is constant or O(M � log s) when

the branching time depends on the alphabet size (see

Implementation below).

Searching

The algorithm ISINTRIE(root, x), see Fig. 3, tests if the

string x is present in the trie and consequently if

the string x is a prefix of strings represented by the

trie. It works, similarly to the creation of the trie, by

spelling, from the root of the trie, the longest prefix of x

corresponding to a branch in the trie. If this longest

prefix is x itself, then the algorithm returns TRUE and

the string x belongs to the trie, otherwise the algorithm

returns FALSE and the string is not a prefix of any string in

the set. The algorithm ISINTRIE(root, x) works in time O

(jxj) or O(jxj� log s) depending on the branching

time.
Sorting

A trie can be used to sort a set of strings by doing the

following: insert all the strings in the trie and output

them in lexicographically increasing order by applying a

pre-order traversal of the trie (respectively lexicographi-

cally decreasing order by applying a post-order traversal

of the trie).

Trie. Figure 4. Compact trie of X = {inF, integerF,
intervalF, stringF, structureF}.

Trie T 3181

T

Implementation

There exist different possible representations of a trie,

each with different branching times. It is possible to

use a transition table whose size is the product of the

number of nodes times the size of the alphabet. A trie

can then be implemented in linear space with respect

to the total length of all the strings it represents. The

branching time, for finding the successor of a given

node with a given symbol, is then constant.

The use of adjacency lists has the advantage to

minimize the required space but the branching time

depends on the alphabet size. It can be as low as log(s)
if the alphabet is ordered and outgoing edges are stored

in a balanced search tree. A representation by binary

tree is achieved by using a “first child – right sibling”

representation of the trie.

Hashing techniques can be used as a good trade-off

between transition tables and adjacency lists. The

branching time is then constant on average.

A mixed technique known as the “deep shallow”

technique consists of representing the nodes up to a

certain level k with a transition table and to use adja-

cency lists for the nodes with level greater than k. Most

of the times nodes with small level have many succes-

sors while nodes with large level have only one

successor.

However when storage space is an issue and tries do

not entirely fit into the central memory, it is possible to

use compact tries as described below. Accesses to indi-

vidual edges are only a bit more involved than in non-

compact tries.

Compact Tries

The compact trie of the set of strings X = {in, inte-

ger, interval, string, structure} is presented

Fig. 4. It is obtained from the trie of Fig. 1 by removing

internal nodes with exactly one successor. Then labels

of edges between remaining nodes are concatenated.

Patricia Trees

Morrison [7] designed specific compact tries known

as PATRICIA trees. PATRICIA trees are efficient espe-

cially for extremely long variable-length strings. The

PATRICIA tree of the set of strings X = {int,
integert, intervalt, stringt, structuret} is

presented Fig. 5. PATRICIA trees are binary trees that

consider the binary encoding of the strings. In Fig. 5

nodes 0, 1 and 3 actually point to int, nodes 4 and 7

point to integert, node 8 points to intervalt,
nodes 2 and 5 point to stringt and node 6 points

to structuret. Small numbers close to the nodes are

skip numbers, they indicate on which bit the branching

has to be decided. The skip number of node 0 is 1:

it corresponds to bit at position 1 (bolded in columns 1,

18, 26, and 34 on Fig. 5), which is the leftmost differ-

ence in the bit strings representing the strings of X.

The three strings int, integert and intervalt
possess a 0 so they are on the left and stringt and

structuret possess a 1 so they are on the right. The

skip number of node 1 is 18: it corresponds to bit at

position 18 (bolded on Fig. 5), where is the leftmost

difference in the bit strings representing the three

strings int, integert and intervalt. The string

int has a 0 so it is on the left and integert and

intervalt possess a 1 so they are on the right. The

skip number of node 2 is 26: it corresponds to bit at

position 26, (bolded on Fig. 5), where is the leftmost

difference in the bit strings representing the two strings

stringt and structuret. The string stringt has a
0 so it is on the left and structuret possesses a 1 so it
is on the right. The skip number of node 4 is 34: it

corresponds to bit at position 34 (bolded on Fig. 5),

where is the leftmost difference in the bit strings repre-

senting the two strings integert and intervalt.
The string intervalt has a 0 so it is on the left and

integert possesses a 1 so it is on the right.

The skip number of a node (different from the

root) in a PATRICIA tree is never larger than its parent

skip number.

Trie. Figure 5. PATRICIA tree of X = {inF, integerF, intervalF, stringF, structureF}.

3182T Triggers
The reader can refer to [4] for further details on

PATRICA trees.

Key Applications
Tries are used for dictionary representation including

spell checking systems or predictive text for mobile

phones (T9 system for instance). They are used for text

compression (Ziv and Lempel compression schemes),

multiple string matching (or multi key search). They are

at the basis of the Burstsort for sorting large sets of

strings. Also, it should be mentioned that when X is

the set of suffixes of a string, the structures that are

then called Suffix Trie or Suffix Tree are intensively

used for Pattern Matching [2,5].

Cross-references
▶Data Dictionary

▶ Suffix Tree

▶Text Compression

Recommended Reading
1. de la Briandais R., File searching using variable length keys. In

Proc. Western Joint Computer Conference., 1959, pp. 295–298.

2. Crochemore M., Hancart C., and Lecroq T. Algorithms on

Strings. Cambridge University Press, Cambridge, 2007.
3. Fredkin E. Trie memory. Commun. ACM, 3(9):490–499, 1960.

4. Gonnet G.H. and Baeza-Yates R. Handbook of Algorithms and

Data Structures – In Pascal and C, 2nd edn. Addison-Wesley,

1991.

5. Gusfield D. Algorithms on strings, trees and sequences.

Cambridge University Press, Cambridge, 1997.

6. Knuth D.E. The Art of Computer Programming, Volume 3:

Sorting and Searching, 3rd edn. Addison-Wesley, 1997, Section

6.3: Digital Searching, pp. 492–512.

7. Morrison D.R. PATRICIA – Practical Algorithm to Retrieve Infor-

mation Coded in Alphanumeric, J. ACM, 15(4):514–534, 1968.

8. Sedgewick R. and Flajolet Ph. An Introduction to the Analysis of

Algorithms, Addison-Wesley, 1996.
Triggers

▶Database Trigger

▶ ECA Rules
True Answer (Maybe Answer)

▶Certain (and Possible) Answers

Trust and Reputation in Peer-to-Peer Systems T 3183
Trust and Reputation in Peer-to-Peer
Systems

ZORAN DESPOTOVIC

NTT DoCoMo Communications Laboratories Europe,

Munich, Germany

Synonyms
Feedback systems; Word of mouth
T

Definition
Trust means reliance on something or someone’s ac-

tion. As such, it involves risks on the side of the subject

of trust, i.e., trustor. Reducing these risks is the main

goal of a trust management system. A possible way to

do this is through reputation management, i.e., repu-

tation systems.

In a typical large scale online setting, be it on

the Web or in P2P networks, it is necessary to learn

more about prospective transaction partners prior to

engaging in a transaction with them. The size of such

systems makes it highly improbable to meet the same

partner repeatedly, so own experience is of little use.

The types of the performed transactions are often such

that well-established forms of quality assurance (e.g.,

contracts) are highly inefficient. Under such circum-

stances, reputation systems (“word of mouth” [3]) turn

out to be the only viable mechanism to encourage

trustworthy behavior and guide people to decide

whom to trust and towhat degree. They do this through

collecting, distributing, and aggregating feedback

about the participants past behavior,” as Resnick et al.

[8] explain. The key presumptions of a reputation

system are that the participants of the considered

online community engage in repeated interactions

and that the information about their past doings is

informative of their future performance and as such

will influence it. Thus, collecting, processing, and dis-

seminating the feedback about the participants’ past

behavior is expected to boost their trustworthiness.

Historical Background
The concept of reputation is almost as old as human

society. It was present in ancient times as a key enabler

of trade and a broad range of other activities [3]. In the

millennia to come, a new form of interaction between

interested parties emerged, involving contractual

agreements. When necessary, they are enforced by
third parties, be it a local feudal sovereign in the

medieval time or state, as nowadays. But the need for

reputation did not disappear. Quite often, it is not

possible to foresee what can go wrong, so that it can

be specified in a contract. More important, binding

contracts incur transaction costs which sometimes

offset the prospective benefits from the interaction. In

such cases, people resort to streamlining their inter-

actions in informal ways, one of them being the use of

reputation.

Reputation has long been a subject of study in

economics. Economists find it vital. Many markets

would not exist or they would be highly inefficient

without reputation. Consider a market in which sellers

sell goods of different qualities. Buyers cannot observe

the quality of any good. Thus, they tend to undervalue

high quality goods, as they may end up purchasing low

quality. But then high quality sellers cannot achieve

good prices and may withdraw from the market. So

only low quality goods will be traded. This is what

George Akerlof calls the “market for lemons” [1]. In-

formation asymmetry between sellers and buyers

is critical here. A mechanism to break it is needed.

Reputation systems may be such a mechanism.

Today’s perception of the P2P systems are old about

eight years as of this writing. But that is quite enough

for a turbulent history, which demonstrated the need

for reputation management, among others. There were

numerous reports of viruses spreading through well

known P2P file sharing applications such as Gnutella

or Kazaa. A quick inspection in Google reveals millions

of entries returned to the query (Gnutella OR

Kazaa) AND virus. As an example, Wired reports as

of September 2004 that “forty-five percent of the exe-

cutable files downloaded through Kazaa, the most

popular file-sharing program, contain malicious code

like viruses and Trojan horses, according to a

new study.”

Although these examples illustrate the point, they

are benign in the sense that one can select different

ways to download content, e.g., through well known

web sites. But the P2P paradigm does not coincide

with simple file swapping. It aims at making a more

serious impact on the online world through offering a

range of useful applications. No matter what these

applications are, they will need reputation manage-

ment. The reason is that P2P applications must be

implemented through cooperation of their users,

which can be unskilled or dishonest.

Trust and Reputation in Peer-to-Peer Systems. Figure 1. A trust graph.

3184T Trust and Reputation in Peer-to-Peer Systems
Foundations
The core of any P2P reputation system is how it solves

the following problem: how can a peer use the infor-

mation on experiences between the peers to evaluate

the trustworthiness of any other peer? A possible strat-

egy might be as follows. The peer (call it also trustor)

can ask its friends to report on their experiences with

the unknown peer (trustee). However, the friends

might not have any experience with the peer in ques-

tion. This happens quite frequently in large scale sys-

tems, in which virtually every interaction is with a new

peer, not seen before. As a result, the peer may search

for some other unknown peers which happened to

interact with the trustee. Their opinion might help.

However, they might lie for whatever reason. So the

problem is now how to assess the credibility of their

reports. A possible solution is to continue with the

search, this time looking for peers who interacted

with the feedback providers and so on until enough

peers are found with whom the trustor had enough

experiences so that it knows their credibility. The

whole process is depicted in Figure 1. The figure

shows a set of peers, which are shown as vertices in

the graph. The arcs represent the interactions among

them, i.e., services they provide to each other. For

example, peer b provided three services to peer a. The

weights next to the arcs represent the level of satisfac-

tion of the service consumer with the provided service.

The structure that is formed in this way is called a

trust graph.

There are two classes of reputation systems: signal-

ing and sanctioning reputation systems [3]. They make

different assumptions on the underlying behavior and

also use different amounts of available reputation data,
i.e., different fractions of the trust graph. In a signaling

reputation system, the interacting entities are pre-

sented with signals of what can go wrong in the inter-

actions if they behave in specific ways. Having

appropriate signals, the entities should decide what

behavior is most appropriate for them. An important

assumption of the signaling reputation systems is that

the involved entities do not change their behavior in

response to a change of their reputation. As an exam-

ple, the system may just provide a prospective buyer

with indications of the probability that the seller will

fail to deliver a purchased item. This probability is

the main property of the seller. It can change with

time, but independently of the seller’s reputation.

The other possibility is sanctioning reputation sys-

tems. The main assumption they make is that the

involved entities are aware of the effect the reputation

has on their benefits and thus adjust their behavior

dynamically as their reputation changes. The main task

of a reputation system in this case is to sanction mis-

behavior through providing correlation between the

feedback the agent receives and the long-run profit

made. The distinction between signaling and sanction-

ing reputation systems is made explicit in the following

discussion.

A typical signaling approach involves the following

three-step procedure: (i) enumerating all paths from

the trustor to the trustee, (ii) aggregating the feedback

along the paths and (iii) merging the obtained values.

There is a nice theory developed on this subject.

It is due to Richardson et al. [9]. Consider a trust

graph and assume that there is only one directed arc

from i to j, for any pair of vertices i and j. Multiple

arcs have been merged somehow. It is not important

Trust and Reputation in Peer-to-Peer Systems T 3185

T

how exactly this merging is done. Consider the matrix

M � ½Mij �Ni; j ¼ 1 (N is the number of the peers) corres-

ponding to the trust graph and assume that it has

been normalized so that for any 1 � i, j � N: 0 � Mij

� 1 and
PN

k¼1 Mik ¼ 1.

Define two binary operators: trust concatenation,

the symbol � will be used to denote it, and trust

aggregation, denoted by e. The former is applied on

two consecutive edges in a chain of trust, while the

latter applies to two chains. Simple multiplication and

addition are good examples of these operators. Define

now a matrix “multiplication” operation � as C = A � B
such that Cij =e(8k : Aik � Bkj). If A = B�M, whereM

is the matrix representation of a given trust graph, then

the interpretation of Cij is aggregated trust that i puts

on j over all chains of length 2. Again, if � and e are

ordinary multiplication and addition then � becomes

the ordinary matrix multiplication. This is what [6]

proposes.

Now, the most interesting result is that if e is

commutative and associative and � is associative and

distributes over e then the aggregated value of all

paths (of any length) between any pair of users can

be obtained by the following simple algorithm:

Qð0Þ ¼ M ;QðkÞ ¼ M � Qðk�1Þ until QðkÞ ¼ Qðk�1Þ:
ð1Þ

The computation will converge after a finite number of

steps if the matrixM (or the trust graph) is irreducible

and aperiodic. It is important to see that the computa-

tion can be performed locally, after each iteration k all

the peers can retrieve from their neighbors the current-

ly computed opinions of those neighbors about all

other peers and then do the computation of the step

k + 1. It turns out that this algorithm requires at

most O(N3) computations per peer.

In a similar vein, Xiong and Liu [10] compute

the trustworthiness of a given peer as the average

feedback about it weighted by the trustworthiness

of the feedback originators themselves. This can be

expressed by the formula:

t j ¼
X

e2incomingðjÞ
we �

t sourceðeÞP
f 2incomingðjÞt sourceðf Þ

;

where incoming(j) is the set of all edges ending at node

j, we is the feedback belonging to the edge e and tsource(e)
the trustworthiness of the originator of this feedback.
The formula can be computed by using an iterative

computation, similar to (1).

[4] makes explicit the assumption about the peer

behavior. The gain is a more efficient algorithm. There

is a loss as well; the mechanism is not as robust as [10].

Assume that a peer can perform trustworthy or un-

trustworthy (1 or 0) in its interactions with others.

More precisely, each peer’s behavior is modeled as

two Bernoulli random variable, i.e., each peer has

innate probabilities of performing trustworthy when

serving other peers (denote this probability yk for peer
pk) and reporting truthfully its experiences with other

peers (let lk be the probability for peer pk). The dis-

tributions of these variables are independent across

peers. Consider a peer pj that interacted with peers

p1,...,pn and its performances in these interactions

were x1,...,xn, where xi 2 {0,1}. When asked to report

on peer pj’s performances witnesses p1, p2,...,pn may

misreport. This happens with their associated mis-

reporting probabilities. The probability of observing

report yk from peer pk can be calculated as:

P½Y k ¼ yk� ¼ ½lkð1� yjÞ
þð1� lkÞyj �yk ½lkyj þ ð1� lkÞð1� yjÞ�1�yk :

ð2Þ

Given a sample of independent reports y1,y2,...,yn, the

likelihood function of the sample is computed:

LðyjÞ ¼ P½Y 1 ¼ y1� � P½Y 2 ¼ y2� � � � P½Yn ¼ yn�: ð3Þ
The final step is finding yj that maximizes this expres-

sion, i.e., the maximum likelihood estimate of the

unknown probability. To do this, one needs to know

lk’s in (1.3). [4] proposes a simple method to appro-

ximate them. Peer pi deduce them from its own per-

formances, by comparing own performances with the

reports about them. If peer pi has sufficiently many

experiences with peers p1, p2,...,pn as reporters of its

performances then it can use them to estimate the

misreporting probabilities of those peers. If not, then

it can opt to estimate the misreporting probability at

the level of the entire network. In this case, all lk’s

have the same approximate value, denote it by l, and

the maximum likelihood estimate of yj becomes
�y�l
1�2l ,

where �y ¼ y1þ���yn
n

.

[10] and [6] on the one hand and [4], on the other,

represent different tradeoffs between the computation

efficiency and robustness.

So far, an important assumption was that the

peer behavior is static. The peers were characterized

Trust and Reputation in Peer-to-Peer Systems. Table 1.

The ”leading eight” in the evolutionary indirect reciprocity

game. G and B stand for good and bad reputation labels

respectively. C and D stand for cooperation and defection.

The GG, GB, BG, BB encode four possible states of the

labels (of the two players). The three asterisks in the

assessment function can take any value, hence eight

possible assessment functions are possible (The value at

the asterisk in the action function is uniquely determined

given the choice of one of the eight assessment functions.)

3186T Trust and Reputation in Peer-to-Peer Systems
by probability distributions whose parameters never

change. This is an unrealistic assumption. It is dropped

in sanctioning reputation systems. As a special case of

these systems, game theoretic models of reputation go

to the other extreme with respect to the peer behavior.

They assume that the involved agents maximize their

utilities across their entire lifetime. This means that,

at any time instant, the agents condition their actions

by the histories of previous play, both theirs and

their opponents. The concept of repeated games deals

with such long term interactions. However, the game-

theoretic models of reputation need one more in-

gredient. Players are associated with different types

(normally, every type assumes a different utility func-

tion of a player). Every player knows his type but the

others are uncertain about which types of their oppo-

nents they face. The game-theoretic tool for modeling

such uncertainties is that of games with incomplete

information (Bayesian games). Fudenberg and Tirole

[5] offer an extensive introduction to the subject.

There are a number of problems with a potential

application of game-theoretic reputation models to

P2P systems. One deals with human behavior. There

are evidences that humans do not behave as utility max-

imizers (or if they do, it is hard to grasp their utilities

within simple economic models). The other one is

related to the complexity of game-theoretic models.

The problem is that feedback has to be processed by

the peers themselves. This leads to enlarged strategy

spaces of the peers and complicates the task substantially.

Reputation models of evolutionary game theory

present another area of active research. Their assump-

tions are as follows. A game, most often the celebrated

Prisoner’s dilemma, is played repeatedly among the

players. The play is divided into epochs. In each

epoch the players make a choice of (repeated game)

strategies. When going to the next epoch, the choice of

the players’ strategies is biased by their scores in the

previous epoch. Hence the name “evolutionary mod-

els.” Axelrod [2] performed experiments in which he

found that one strategy performs particularly well for

the Prisoner’s dilemma game. He called it “tit-for-tat” -

a- it plays at any round whatever the opponent played

in the previous round (and starts with cooperation).

The setting for his experiments was that in each epoch

the same two players played against each other. The

question is how much his result extends to setting

where the opponents are matched randomly, i.e.,

their interactions within an epoch are one-shot rather
than long-term. Ohtsuki and Ywasa [7] offer an answer

in which reputation data plays a critical role. They

assume that a public label is associated with each

player. All players can read the label, and all players

except the owner of the label are allowed to change it.

When a pair of players interacts, their labels are mod-

ified according to their actions. The behavior of a

player can be described with two functions: the action

function and the assessment function. The action func-

tion takes the label of self and the opponent and

produces the decision to either cooperate or defect.

The assessment function is executed after the actions

of both agents have taken place. The assessment func-

tion takes the label of self, the label of the opponent

and the action of the opponent and produces the new

value for the opponent’s label. There are 16 possible

action functions and 256 possible assessment func-

tions. This gives 4096 possible behaviors. [7] per-

formed a systematic experimental study of these

behaviors and found 8 of them (termed “the leading

eight”) evolutionary stable, see Table 1.

A population of agents using one of these strategies

is able to sustain cooperation and drive out of existence

any small population of defectors and/or reputation

liars (i.e., players that set the labels to ”bad” value even

though their opponent cooperated).

Interestingly, there is a remarkable similarity be-

tween tit-for-tat and the leading eight strategies. The

leading eight strategies exhibit all the properties

of tit-for-tat, found to be important in Axelrod’s

experiments.

One cannot apply the above reasoning to P2P sys-

tems directly. There is a serious problem to solve.

Trust in Blogosphere T 3187

T

How to maintain the reputation data when there is no

trusted third party to do that, i.e., how to enforce

the specific reputation aggregation strategy in a

decentralized system? Problems like this constitute an

active research area.

Key Applications
P2P applications are provided by participating peers

collaboratively. For example, in a file sharing applica-

tions, any peer may provide a file that others can down-

load. In a publish-subscribe application, anyone can act

as supplier of information that the other peers can use.

At the same time, peers are not well established and

reputable institutionswhose trustworthiness is not ques-

tionable. Most often, they are unknown individuals

hidden behind meaningless identifiers. This means that

reputation management is a natural need in P2P sys-

tems. Different P2P applications have varying degrees

of need for reputation management, but literally all of

them need it.

Interestingly, the operation of core P2P protocols

can also benefit from reputation management. When

routing messages, peers can take reputation of their

neighbors into account and select only those which do

not drop messages. This way, reputation management

improves routing performance.

Cross-references
▶Distributed Hash Table

▶ P2P Database

▶ Peer-to-Peer System

▶ Similarity and Ranking Operations

▶ Social Networks

▶Trust in Blogosphere

Recommended Reading
1. Akerlof G. The market for “lemons”: quality uncertainty and

the market mechanism. Quart. J. Econom., 84:488–500, 1970.

2. Axelrod R. The Evolution of Cooperation. Basic Books,

New York, 1984.

3. Dellarocas C. The digitization of word-of-mouth: promise

and challenges of online reputation systems. Manage. Sci.,

49(10):1407–1424, October 2003.

4. Despotovic Z. and Aberer K. Probabilistic prediction of

peers performances in P2P networks. Int. J. Eng. Appl. Artif.

Intell., 18(7):771–780, Elsevier, October 2005.

5. Fudenberg D. and Tirole J. Game Theory. MIT, Cambridge,

MA, USA, 1991.

6. Kamvar S., Schlosser M., and Garcia-Molina H. EigenRep:

reputation management in P2P networks. In Proc. 12th Int.

World Wide Web Conference, 2003, pp. 640–651.
7. Ohtsuki H. and Iwasa Y. How should we define goodness? –

reputation dynamics in indirect reciprocity. J. Theor. Biol.,

231:107–120, 2004.

8. Resnick P., Zeckhauser R., Friedman E., and Kuwabara K.,

Reputation systems. Commun. ACM, 43(12):45–48, 2000.

9. Richardson M., Agrawal R., and Domingos P. Trust manage-

ment for the semantic web. In Proc. 2nd Int. Semantic Web

Conf. SanibelIsland, FL, 2003, pp. 351–368.

10. Xiong L. and Liu L. Peertrust: supporting reputation-based

trust in peer-to-peer communities. IEEE Trans. Knowl. Data

Eng., 16(7):843–857, 2004.
Trust in Blogosphere

NITIN AGARWAL, HUAN LIU

Arizona State University, Tempe, AZ, USA

Synonyms
Reputation; Relationship of reliance

Definition
Trust can be defined as the relationship of reliance

between two parties or individuals. Alice trusts Bob

implies Alice’s reliance on the actions of Bob, based

on what they know about each other. Trust is basically

prediction of an otherwise unknown decision made by

a party or an individual based on the actions of anoth-

er party or individual. Trust is always directional and

asymmetric. Alice trusts Bob does not imply Bob also

trusts Alice.

From a sociological perspective, trust is the mea-

sure of belief of one party in another’s honesty, benev-

olence, and competence. Absence of any of these

properties causes failure of trust. From a psychological

perspective, trust can be defined as the ability of a party

or an individual to influence the other. The more

trusting someone is the more easily (s)he can be

influenced.

The past several years witnessed significant changes

in the interactions between the individuals and groups.

Individuals flock on the Internet and engage in com-

plex social relationships, termed as social networks.

Social networking has changed the paradigm of inter-

actions and content generation. Former information

consumers are now producers (or, Prosumers). Social

networking has given a humongous thrust to online

communities, like Blogosphere. Blogosphere is the uni-

verse of all the blog sites which contains blog posts in

3188T Trust in Blogosphere
reverse chronological order. Each blog post is a dis-

course of an individual’s opinions, ideas, thoughts on

some subject matter. These could be journals of per-

sonal experiences. Nonetheless, blog posts could be

easily considered as a collection of semi-structured

text. This opens up many research opportunities for

existing text mining techniques to be adapted for this

domain. Trust is highly important in a virtual world

because of its low barriers to credibility. Profiles and

identities could be easily faked and trust could be com-

promised, leading to severely critical losses, physical

and/or mental.

Historical Background
Many existing works have identified the need for

handling the trust aspect in social networks. Social

networks can be further divided into friendship net-

works and the blogosphere. In social friendship

networks it is important not only to detect the influ-

ential members or experts in case of knowledge sharing

communities but also to assess to what extent some of

the members are recognized as experts by their collea-

gues in the community. This leads to the estimation of

trust and reputation of these experts. Some social

friendship networks like Orkut allow users to assign

trust ratings as a more explicit notion of trust. Whereas

some websites have an implicit notion of trust where

creating a link to a person on a webpage implies some

amount of business trust for the person. In other cases,

Trust and reputation of experts could be typically

assessed as a function of the quality of their response

to other members’ knowledge solicitations. Pujol et al.

[5] proposed a NodeMatching algorithm to compute

the authority or reputation of a node based on its

location in the social friendship network. A node’s

authority depends upon the authority of the nodes

that relate to this node and also on other nodes that

this node relates to. The basic idea is to propagate the

reputation of nodes in the social friendship network.

This is very similar to the PageRank and HITS algo-

rithm in the traditional web search. However, authors

point out the differences between their algorithm and

Pagerank and HITS. For PageRank and HITS the tran-

sition probability matrix and variance-covariance

matrix respectively have to be known previously, un-

like NodeMatching algorithm. This becomes infeasible

for very large graphs. Moreover, PageRank assumes a

fixed graph topology by stratifying the range of transi-

tion probability which is different in NodeMatching
which can automatically adapt to the topology since

it depends upon the authority of the related nodes.

While Pujol et al. [5] proposed an approach to

establish reputation based on the position of each

member in the social friendship network [8], devel-

oped a model for reputation management based on the

Dampster-Shafer theory of evidence in the wake of

spurious testimonies provided by malicious members

of the social friendship network. Each member of a

social friendship network is called an agent. Each

agent has a set of acquaintances a subset of which

forms its neighbors. Each agent builds a model for its

acquaintances to quantify their expertise and sociabili-

ty. These models are dynamic and change based on the

agent’s direct interactions with the given acquaintance,

interactions with agents referred to by the acquain-

tance, and on the ratings this acquaintance received

from other agents. The authors point out a significant

problem with this approach which arises if some

acquaintances or other agents generate spurious ratings

or exaggerate positive or negative ratings, or offer tes-

timonies that are outright false. Yu and Singh [8] study

the problem of deception using the Dampster-Shafer

belief functions so as to capture uncertainty in the

rankings caused by malicious agents. A variant of ma-

jority weighted function is applied to belief functions

and simple deception models were studied to detect

deception in the ratings.

Sabater and Sierra [6] propose a combination of

reputation scores on three different dimensions. They

combined reputation scores not only through social

relations governed by a social friendship network,

termed as social dimension but also past experiences

based on individual interactions, termed as individ-

ual dimension and reputation scores based on other

dimensions, termed as ontological dimension. For

large social friendship networks it is not always possi-

ble to get reputation scores based on just the individual

dimension, so they can use the social dimension and

ontological dimension would enhance the reputa-

tion estimation by considering different contexts. The

ontological dimension is very similar to the work pro-

posed in [7], where the authors recommend collabora-

tion in social friendship networks based on several

factors. They explain the importance of context in

recommending a member of social friendship network

for collaboration.

In [2], authors consider those social friendship

networking sites where users explicitly provide trust

Trust in Blogosphere T 3189

T

ratings to other members. However, for large social

friendship networks it is infeasible to assign trust rat-

ings to each and every member so they propose an

inferring mechanism which would assign binary trust

ratings (trustworthy/non-trustworthy) to those who

have not been assigned one. They demonstrate the

use of these trust values in email filtering application

domain and report encouraging results. Authors also

assume three crucial properties of trust for their ap-

proach to work: transitivity, asymmetry, and persona-

lization. These trust scores are often transitive,

meaning, if Alice trusts Bob and Bob trusts Charles

then Alice can trust Charles. Asymmetry says that for

two people involved in a relationship, trust is not

necessarily identical in both directions. This is contrary

to what was proposed in [8]. They assume symmetric

trust values in the social friendship network between

two members. Personalization of trust means that a

member could have different trust values with respect

to different members. Trust of a member is absolutely a

personal opinion. Consolidating the trust scores for

a member might not give a reasonable estimation, so

authors propose trust propagation mechanism. Authors

define source as the node which is seeking trust value of

another node called sink. If there is a direct edge

between source and sink then the value is directly

transferred, otherwise the trust value is inferred based

on the source’s neighbors. Source polls each of its

neighbors whom it has given a positive trust rating.

The neighbors also use this procedure to compute the

trust rating of the sink. Hence gradually sink’s trust

scores propagate to the source. They demonstrate

the trust rating in filtering emails with the help of a

prototype TrustMail and using Enron email dataset.

(http://www.cs.cmu.edu/�enron/). Guha et al. [3] pro-
posed another trust propagation scheme in social

friendship networks based on a series of matrix opera-

tions but they included the element of distrust along

with the trust scores.

The works discussed above rely on one or the other

form of network centrality measures (like degree central-

ity, closeness centrality, betweenness centrality, eigenvec-

tor centrality) to evaluate trustworthy nodes and how

trust propagates in the network. Nonetheless, blog net-

works have very sparse trust information between differ-

ent pairs of nodes. Using trust propagation approaches

for such a sparse network would be highly inaccurate and

unreliable. Although not much research has been pub-

lished that exploits text mining to evaluate trust in
Blogosphere, authors in [4] have proposed to use senti-

ment analysis of the text around the links to other blogs

in the network. They study the link polarity and label the

sentiment as “positive,” “negative,” or “neutral.” This

information mined from the blogs is coupled with

Guha et al.’s [3] trust and distrust propagation approach

to derive trust values between node pairs in the blog

network. They further use this model to identify trust-

worthy nodes in the blog network and also identify

clusters of like-minded blogs.

Foundations
Quantifying and computing trust in social networks is

hard because concepts like trust are fuzzy, and is being

expressed in a social way. The definitions and proper-

ties are not mathematical formalisms but social ones.

The two main components of defining trust are belief

and commitment. The extent to which someone trusts

another is illustrated by the belief and trusted indivi-

duals maintain that with their commitment. Note that

trust is highly subjective, nevertheless some character-

istic properties are pointed:

Transitivity: Trust can propagate through different

nodes following transitive property. However, the degree

of trust does not remain same. It may decrease as the

path length through which trust propagates increases.

Asymmetry: Trust is asymmetric, in the sense that if A

trusts B then it is not necessary that B also trusts A.

Some existing works relax this assumption and consid-

er trust as symmetric.

Personalization: Trust is a personalized concept. Every-

one has a different conception of trust with respect to

some other individual. Assigning a global trust value to

an individual is highly unrealistic. Trustworthiness of an

individual is always evaluated with respect to some other

individual.

Trust can be considered as binary-valued with 1

indicating trust and 0 indicating “not-trusted.” Trust

can also be evaluated as continuous-valued. Moreover,

binary-valued trust is little more complicated than

meets the eye. A value of 0 could be a little vague as it

could represent both “no-opinion” or “distrust.” To

qualify this notion, often researchers use � 1 to repre-

sent distrust and 0 as missing value or “no-opinion.”

Researchers model the propagation of distrust the

same way as the propagation of trust. Propagation of

trust (T) and distrust (D) could be governed by the set

of rules illustrated in Table 1. Here A, B, and C are

http://www.cs.cmu.edu/~enron/

Trust in Blogosphere. Table 1. Rules for trust and distrust propagation

Propagation Scheme Outcome Comments

A !T B!T C A!T C Transitivity

A !T B!D C A!D C Don’t trust someone who is distrusted by a person you trust.

A !D B!T C A!D C Don’t trust someone who is trusted by a person you don’t trust.

A !D B!D C (1) A!T C Enemy of yopur enemy is your friend.

(2) A!D C Don’t trust someone who is not trusted by a person you don’t trust.

3190T Trust in Blogosphere
different individuals and trust or distrust relationship

between A–B and B–C is known. These rules help in

inferring trust or distrust between A–B. Propagation of

distrust is a little intricate. As shown in the Table 1, if A

distrusts B and B distrusts C then A has reasons for

either trusting C (enemy of enemy is a friend) or

distrusting C (do not trust someone who is not trusted

by someone else that is not trusted).

In case the link between A and C, like B is missing,

which can be used to infer the trust between A–C, a

different strategy could be used. Trust only if someone is

trusted by k people, i.e., if C is trusted by a k number of

people then A could trust C. Do not trust anyone who

is distrusted by k 0 people, i.e., if C is distrusted by k 0

number of people then A could distrust C. Note that

the thresholds k and k 0 could be learned from the data.

Key Applications
Trust in social networks has several applications. Trust

and reputation based spam email filters have become

popular after naı̈ve spam email filters. The social network

information of senders and recipients could be exploited

to study trust among them and filter emails based on

these values. Trust acts as lubricant that improves infor-

mation flow and promotes frankness and honesty. Trust

can also be helpful in online discussion forums where

users look for informative and trustworthy answers to

their questions. Giving trustworthy recommendations

could also improve the customer retention policies.

Future Directions
Trust is a promising area of research in social networks,

especially the blogosphere, where most of the assump-

tions from friendship networks are absent.

1. Social friendship networks assume initial trust

values are assigned to the nodes of the network.
Unless some social networking websites allow their

members to explicitly provide trust ratings for

other members, it is a topic of research and explo-

ration to compute initial trust scores for the mem-

bers. Moreover, in Blogosphere it is even harder to

implicitly compute initial trust scores.

2. Social friendship networks assume an explicit rela-

tionship between members of the network. How-

ever, in Blogosphere there is no concept of explicit

relationship between bloggers. Many times, these

relationships have to be anticipated using link

structure in the blogs or blogging characteristics

of the bloggers.

3. Existing works of trust propagation algorithms as-

sume an initial starting point. In Blogosphere,

where both network structure and initial ratings

are not explicitly defined, it is challenging to tackle

the trust aspect. A potential approach could be to

use influential members [1] of a blog community as

the seeds for trustworthy nodes.

4. Since text mining has not been sufficiently exploited

in Blogosphere domain, several promising research

opportunities can be explored.

Data Sets
The following datasets are widely used by many

researchers in this area:

A website (http://www.epinions.com/) that main-

tains trust values for all the available products/services

provided by the customers.
Epinions: Movie Recommendation: Netflix (http://

www.netflixprize.com/) provides movie recommenda-

tion dataset and what recommendations were followed

by the customers. Research works have engineered this

dataset to evaluate trust among customers.

Enron Email Dataset: A collection of emails that

contains both genuine and spam emails. Researchers

http://www.epinions.com/
http://www.netflixprize.com/
http://www.netflixprize.com/

Trusted Hardware T 3191
constructed social network between senders and reci-

pients of the email and studied trust aspect.

Cross-references
▶Actors/Agents/Roles

▶ Social Networks

▶Trust and Reputation in Peer-to-Peer Systems
Recommended Reading
1. Agarwal N., Liu H., Tang L., and Yu P.S. Identifying the influen-

tial bloggers in a community. In Proc. Int. Conf. Web Search and

Web Data Mining, 2008, pp. 207–218.

2. Golbeck J. and Hendler J. Inferring binary trust relationships

in web-based social networks. ACM Trans. Inter. Tech.,

6(4):497–529, 2006.

3. Guha R., Kumar R., Raghavan P., and Tomkins A. Propagation of

trust and distrust. In Proc. 12th Int. World Wide Web Confer-

ence, 2004, pp. 403–412.

4. Kale A., Karandikar A., Kolari P., Java A., Finin T., and Joshi A.

Modeling trust and influence in the blogosphere using link

polarity. In Proc. 1st Int.’l AAAI Conf. on Weblogs and Social

Media, 2007.

5. Pujol J.M., Sangesa R., and Delgado J. Extracting reputation in

multi agent systems by means of social network topology.

In Proc. 1st Int. Joint Conf. on Autonomous Agents and Mul-

tiagent Systems, 2002, pp. 467–474.

6. Sabater J. and Sierra C. Reputation and social network analysis

in multi-agent systems. In Proc. 1st Int. Joint Conf. on Autono-

mous Agents and Multiagent Systems, 2002, pp. 475–482.

7. Terveen L. and McDonald D.W. Social matching: a framework

and research agenda. ACM Trans. Comput.-Hum. Interact.,

12(3):401–434, 2005.

8. Yu B. and Singh M.P. Detecting deception in reputation man-

agement. In Proc. 2nd Int. Joint Conf. on Autonomous Agents

and Multiagent Systems, 2003, pp. 73–80.
T

Trusted Database Systems

▶Multilevel Secure Database Management Systems
Trusted Hardware

RADU SION

Stony Brook University, Stony Brook, NY, USA

Synonyms
Tamper-proof hardware; Secure hardware
Definition
Trusted Hardware is a broad term used to denote any

hardware that has been certified to perform according

to a certain set of requirements. Most often however,

“trusted hardware” is discussed in adversarial contexts.

The term has thus been somewhat hijacked to mean

“tamper-proof” hardware, i.e., hardware designed to

resist direct physical access adversaries. Often trusted

hardware encompasses some cryptographic abilities,

i.e., performing encryption and data authentication.

Key Points
Certification. The National Institute of Standards has

established a set of standards for security requirements

of cryptographic modules and specifically for physical

properties and tamper-resistance thereof [2]. The FIPS

140–2 Level 4 certification is at present the highest-attain-

able hardware security in sensitive, non-classified

domains. While a plethora of devices have undergone

FIPS certification, the most common types of trusted

hardware in use today are TPM micro-controllers

and secure CPUs: TPM. The Trusted Platform Mod-

ule (TPM) specifications of the Trusted Computing

Group [3] define a micro-controller that stores keys,

passwords and digital certificates. In actual instances

TPMs are connected to the main circuitry of com-

puting devices (such as PC motherboards) and ensure

that the stored data are secure from external software

attacks. It is important to note however, that a TPM

“can only act as a ‘lave’ to higher level services and

applications by storing and reporting pre-runtime

configuration information. [. . .]. At no time can the

TCG building blocks ‘control’ the system or report

the status of applications that are running.” This

passive nature limits the TPM’s utility in security para-

digms that require active processing.

SCPUs. Secure CPUs (SCPUs) are a term used to

denote general-purpose CPUs deployed in a certified

tamper-proof enclosure. Instances include the IBM

4758 PCI and the newer IBM 4764 PCI-X cryptographic

coprocessors [1]. The IBM 4764 is a PowerPC-based

board and runs embedded Linux. The 4758 is based

on a Intel 486 architecture and is preloaded with a

compact runtime environment that allows the loading

of arbitrary external certified code. The CPUs can be

custom programmed. Moreover, they (4758 models

2 and 23 and 4764 model 1) are compatible with the

IBM Common Cryptographic Architecture (CCA) API.

The CCA implements common cryptographic services

3192T TSQL2
such as random number generation, key management,

digital signatures, and encryption (DES/3DES, RSA). If

physically attacked, the devices destroy their internal

state (in a process powered by internal long-term bat-

teries) and shut down in accordance with their FIPS

140-2 certification. It is important to note that SCPUs

are generally one order of magnitude slower than main

processors mainly due to heat dissipation constraints

limiting the maximum allowable gate-density within the

tamper-proof enclosure.
Cross-references
▶Regulatory Compliance in Data Management
Recommended Reading
1. IBM Cryptographic Hardware. Online at http://www-03.ibm.

com/security/products/, 2007.

2. NIST Federal Information Processing Standards. Online at

http://csrc.nist.gov/publications/fips/, 2007.

3. Trusted Computing Group. Online at http://www.

trustedcomputinggroup.org/, 2007.
TSQL2

RICHARD T. SNODGRASS

University of Arizona, Tucson, AZ, USA

Definition
TSQL2 (Temporal Structured Query Language) is a

temporal extension of SQL-92 designed in 1993–1994

by a committee comprised of Richard T. Snodgrass,

Ilsoo Ahn, GadAriav, Don Batory, James Clifford, Curtis

E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S.

Jensen, Wolfgang Käfer, Nick Kline, Krishna Kulkarni,

T. Y. Cliff Leung, Nikos Lorentzos, John F. Roddick, Arie

Segev, Michael D. Soo and Suryanarayana M. Sripada.

The goal of this language design committee was to

consolidate past research on temporal query languages,

by the committee members as well as many others, by

developing a specification for a consensus language that

could form a common core for research.

Historical Background
Temporal databases have been an active research topic

since 1980. By the early 1990’s, several dozen temporal
query languages had been proposed, and many tempo-

ral database researchers felt that the time had come to

consolidate approaches to temporal data models and

calculus-based query languages to achieve a consensus

query language and associated data model upon which

future research could be based.

In April 1992, Richard Snodgrass circulated a

white paper that proposed that a temporal extension

to SQL be produced by the research community.

Shortly thereafter, the temporal database community

organized the ARPA/NSF International Workshop

on an Infrastructure for Temporal Databases, held

in Arlington Texas in June 1993 [3]. Discussions at

that workshop indicated that there was substantial

interest in a temporal extension to the conventional

relational query language SQL-92 [2]. A general invi-

tation was sent to the community, and about a dozen

people volunteered to develop a language specification.

Several people later joined the committee. The goal

of this language design committee was to develop a

specification for a consensus extension to SQL-92,

termed the Temporal Structured Query Language, or

TSQL2.

The group corresponded via electronic mail from

early July 1993, submitting, debating, and refining pro-

posals for the various aspects and elements of the lan-

guage. In September 1993, the first draft specification,

accompanied by 13 commentaries, was distributed to the

committee. In December 1993, a much enlarged draft,

accompanied by some 24 commentaries, was distributed

to the committee. A preliminary language specification

was made public inMarch 1994 [6], and a tutorial of the

language appeared in September 1994 [7]. The final

language specification and 28 commentaries were also

made available via anonymous FTP in early October

2004. The final specification and commentaries app-

eared in a book [4] that was distributed at a temporal

database workshop in summer of 1995, less than 2 years

after the committee had been founded. TSQL2 is

remarkable, and perhaps unique, in that it was designed

entirely via electronic mail, by a committee that never

met physically (in fact, no one on the committee hasmet

every other committee member).

Work then commenced to incorporate elements

and underlying insights of TSQL2 into SQL3. The

first step was to propose a new part to SQL3, termed

SQL/Temporal. This new part was accepted at the

Ottawa meeting in January, 1995 as Part 7 of the

http://www-03.ibm.com/security/products/
http://www-03.ibm.com/security/products/
http://csrc.nist.gov/publications/fips/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/

TSQL2 T 3193

T

SQL3 specification [11]. A modification of TSQL2’s

PERIOD data type is included in that part.

The focus at that point changed to adding valid-time

and transaction-time support to SQL/Temporal. Two

change proposals, one on valid-time support and one

on transaction-time support, were unanimously accept-

ed by ANSI and forwarded to ISO [8,9]; a summary

appeared shortly thereafter [10]. A comprehensive set

of case studies [5] showed that while SQL-92 required

1,848 lines, only 520 lines of SQL/Temporal were

required to achieve exactly the same functionality.

These case studies showed that, over a wide range of

data definition, query, and modification fragments, the

SQL-92 version is three times longer in numbers of lines

than the SQL/Temporal version, and many times more

complex. In fact, very few SQL/Temporal statements

were more than ten lines long; some statements in

SQL-92 comprised literally dozens of lines of highly

complex code. Due to disagreements within the ISO

committee as to where temporal support in SQL

should go, the project responsible for temporal sup-

port was canceled near the end of 2001. Nevertheless,

concepts and constructs from SQL/Temporal have

been implemented in the Oracle database management

system, and other products have also included tempo-

ral support.

Oracle 9i includes support for transaction time.

Its flashback queries allow an application to access

prior transaction-time states of its database; they

are transaction timeslice queries. Database modifica-

tions and conventional queries are temporally up-

ward compatible. Oracle 10g extends flashback

queries to retrieve all the versions of a row between

two transaction times (a key-transaction-time-range

query) and allows tables and databases to be rolled

back to a previous transaction time, discarding all

changes after that time. The Oracle 10g Workspace

Manager includes the period data type, valid-time

support, transaction-time support, support for

bitemporal tables, and support for sequenced prima-

ry keys, sequenced uniqueness, sequenced referential

integrity, and sequenced selection and projection,

in a manner quite similar to that proposed in

SQL/Temporal.

Foundations
The goals that underpinned the process that led

to the TSQL2 language design are first considered,
then the language concepts underlying TSQL2 are

reviewed.

Design Goal for TSQL2

TSQL2 is a temporal query language, designed

to query and manipulate time-varying data stored in

a relational database. It is an upward-compatible

extension of the international standard relational

query language SQL-92.

The TSQL2 language design committee started

their work by establishing a number of ground rules

with the objective of achieving a coherent design.

� TSQL2 will be a language design.

� TSQL2 is to be a relational query language, not an

object-oriented query language.

� TSQL2 should be consistent with existing stan-

dards, not another standard.

� TSQL2 should be comprehensive and should reflect

areas of convergence.

� The language will have an associated algebra.

The committee enumerated the desired features of

TSQL2; these guided the design of the language. The

first batch concerned the data model itself.

� TSQL2 should not distinguish between snapshot

equivalent instances, i.e., snapshot equivalence

and identity should be synonymous.

� TSQL2 should support only one valid-time

dimension.

� For simplicity, tuple timestamping should be

employed.

� TSQL2 should be based on homogeneous tuples.

� Valid-time support should include support for

both the past and the future.

� Timestamp values should not be limited in range or

precision.

The next concerned the language proper.

� TSQL2 should be a consistent, fully upwardly

compatible extension of SQL-92.

� TSQL2 should allow the restructuring of tables

on any set of attributes.

� TSQL2 should allow for flexible temporal projec-

tion, but TSQL2 syntax should reveal clearly when

non-standard temporal projections are being done.

� Operations in TSQL2 should not accord any explic-

it attributes special semantics. For example, opera-

tions should not rely on the notion of a key.

3194T TSQL2
� Temporal support should be optional, on a per-

table basis. Tables not specified as temporal should

be considered as snapshot tables. It is important to

be an extension of SQL-92’s data model when pos-

sible, not a replacement. Hence, the schema defini-

tion language should allow the definition of

snapshot tables. Similarly, it should be possible to

derive a snapshot table from a temporal table.

� User-defined time support should include instants,

periods, and intervals.

� Existing aggregates should have temporal analo-

gues in TSQL2.

� Multiple calendar and multiple language support

should be present in timestamp input and output,

and timestamp operations. SQL-92 supports only

one calendar, a particular variant of the Gregorian

calendar, and one time format. The many uses of

temporal databases demand much more flexibility.

� It should be possible to derive temporal and non-

temporal tables from underlying temporal and

non-temporal tables.

Finally, the committee agreed upon three features

aimed at ease of implementation.

� TSQL2 tables should be implementable in terms of

conventional first normal form tables. In particular,

the language should be implementable via a data

model that employs period-timestamped tuples.

This is the most straightforward representation, in

terms of extending current relational technology.

� TSQL2 must have an efficiently implementable al-

gebra that allows for optimization and that is an

extension of the conventional relational algebra, on

which current DBMS implementations are based.

The temporal algebra used with the TSQL2 tempo-

ral data model should contain temporal operators

that are extensions of the operations in the rela-

tional algebra. Snapshot reducibility is also highly

desired, so that, for example, optimization strate-

gies will continue to work in the new data model.

� The language datamodel should accept implementa-

tion using other models, such as models that time-

stamp attribute values. The language data model

should allow multiple representational data models.

In particular, it would be best if the data model

accommodated themajor temporal datamodels pro-

posed to date, including attribute timestamped

models.
Language Concepts in TSQL2

The following is a brief outline of the major concepts

behind TSQL2.

Time Ontology The TSQL2 model of time is bounded

on both ends. The model refrains from deciding

whether time is ultimately continuous, dense, or dis-

crete. Specifically, TSQL2 does not allow the user to ask

a question that will differentiate the alternatives. In-

stead, the model accommodates all three alternatives

by assuming that an instant on a time-line is much

smaller than a chronon, which is the smallest entity

that a timestamp can represent exactly (the size of a

chronon is implementation-dependent). Thus, an in-

stant can only be approximately represented. A discrete

image of the represented times emerges at run-time as

timestamps are scaled to user-specified (or default)

granularities and as operations on those timestamps

are performed to the given scale.

An instant is modeled by a timestamp coupled

with an associated scale (e.g., day, year, month). A period

is modeled by a pair of two instants in the same scale,

with the constraint that the instant timestamp that

starts the period equals or precedes (in the given scale)

the instant timestamp that terminates the period.

Base Line Clock A semantics must be given to each

time that is stored in the database. SQL-92 specifies

that times are given in UTC seconds, which are, how-

ever, not defined before 1958, and in any case cannot

be used to date prehistoric time, as UTC is based

in part on solar time. TSQL2 includes the concept of

a baseline clock, which provides the semantics of time-

stamps. The baseline clock relates each second to phys-

ical phenomena and partitions the time line into a set

of contiguous periods. Each period runs on a different

clock. Synchronization points delimit period bound-

aries. The baseline clock and its representation are

independent of any calendar.

Data Types SQL-92’s datetime and interval data types

are augmented with a period datetime, of specifiable

range and precision. The range and precision can be

expressed as an integer (e.g., a precision of 3 fractional

digits) or as an interval (e.g., a precision of a week).

Operators are available to compare timestamps and

to compute new timestamps, with a user-specified

precision. Temporal values can be input and output

TSQL2 T 3195

T

in user-specifiable formats, in a variety of natural lan-

guages. Calendars and calendric systems permit

the application-dependent semantics of time to be

incorporated.

A surrogate data are introduced in TSQL2. Surro-

gates are unique identifiers that can be compared for

equality, but the values of which cannot be seen by the

users. In this sense, a surrogate is “pure” identity and

does not describe a property (i.e., it has no observable

value). Surrogates are useful in tying together repre-

sentations of multiple temporal states of the same

object; they are not a replacement for keys.

Time-Lines Three time-lines are supported in TSQL2:

user-defined time, valid time, and transaction time.

Hence values from disparate time-lines can be com-

pared, at an appropriate precision. Transaction-time

is bounded by initiation, the time when the

database was created, and until changed. In addition,

user-defined and valid time have two special values,

beginning and forever, which are the least and greatest

values in the ordering. Transaction time has the special

value until changed.

Valid and user-defined times can be indeterminate.

In temporal indeterminacy, it is known that an

event stored in a temporal database did in fact occur,

but it is not known exactly when that event occurred.

An instant (interval, period) can be specified as

determinate or indeterminate; if the latter then the

possible mass functions, as well as the generality of

the indeterminacy to be represented, can be specified.

The quality of the underlying data (termed its credibil-

ity) and the plausibility of the ordering predicates

expressed in the query can be controlled on a per-

query or global basis.

Finally, instant timestamps can be now-relative. A

now-relative time of “now – 1 day,” interpreted when

the query was executed on June 12, 1993, would have

the bound value of “June 11, 1993.” The users can

specify whether values to be stored in the database

are to be bound (i.e., not now-relative) or unbound.

Aggregates The conventional SQL-92 aggregates

are extended to take into account change across time.

They are extended to return time-varying values and

to permit grouping via a partitioning of the underlying

time line, termed temporal grouping. Values can be

weighted by their duration during the computation of
an aggregate. Finally, a new temporal aggregate,

RISING, is added. A taxonomy of temporal aggregates

[4, Chap. 21] identifies 14 possible kinds of aggregates;

there are instances of all of these kinds in TSQL2.
Valid-Time Tables The snapshot tables supported by

SQL-92 continue to be available in TSQL2, which, in

addition, supports state tables, where each tuple is

timestamped with a temporal element that is a union

of periods. As an example, the Employee table with

attributes Name, Salary, and Manager could contain

the tuple (Tony, 10,000, LeeAnn). The temporal ele-

ment timestamp would record the maximal (non-con-

tiguous) periods in which Tony made $10,000 and had

LeeAnn as his manager. Information about other

values of Tony’s salary or other managers would be

stored in other tuples. The timestamp is implicitly

associated with each tuple; it is not another column

in the table. The range, precision, and indeterminacy

of a temporal element can be specified.

Temporal elements are closed under union, differ-

ence, and intersection. Timestamping tuples with

temporal elements is conceptually appealing and can

support multiple representational data models. Depen-

dency theory can be extended to apply in full to this

temporal data model.

TSQL2 also supports event tables, in which each

tuple is timestamped with an instant set. As an exam-

ple, a Hired table with attributes Name and Position

could contain the tuple (LeeAnn, Manager). The in-

stant set timestamp would record the instant(s) when

LeeAnn was hired as a Manager. (Other information

about her positions would be stored in separate tables.)

As for state tables, the timestamps are associated

implicitly with tuples.
Transaction-Time and Bitemporal Tables Orthogonal-

ly to valid time, transaction time can be associated

with tables. The transaction time of a tuple, which is

a temporal element, specifies when that tuple was

considered to be part of the current database state. If

the tuple (Tony, 10,000, LeeAnn) was stored in the

database on March 15, 1992 (say, with an APPEND

statement) and removed from the database on June 1,

1992 (say, with a DELETE statement), then the trans-

action time of that tuple would be the period from

March 15, 1992 to June 1, 1992.

3196T TSQL2
Transaction timestamps have an implementation-

dependent range and precision, and they are

determinate.

In summary, there are six kinds of tables: snapshot

(no temporal support beyond user-defined time),

valid-time state tables (timestamped with valid-time

elements), valid-time event tables (timestamped with

valid-time instant sets), transaction-time tables (time-

stamped with transaction-time elements), bitemporal

state tables (timestamped with bitemporal elements),

and bitemporal event tables (timestamped with bitem-

poral instant sets).

Schema Specification The CREATE TABLE and

ALTER statements allow specification of the valid-

and transaction-time aspects of temporal tables. The

scale and precision of the valid timestamps can also

be specified and later altered.

Restructuring The FROM clause in TSQL2 allows

tables to be restructured so that the temporal elements

associated with tuples with identical values on a subset

of the columns are coalesced. For example, to deter-

mine when Tony made a Salary of $10,000, indepen-

dent of who his manager was, the Employee table

could be restructured on the Name and Salary col-

umns. The timestamp of this restructured tuple

would specify the periods when Tony made $10,000,

information which might be gathered from several

underlying tuples specifying different managers.

Similarly, to determine when Tony had LeeAnn as

his manager, independent of his salary, the table would

be restructured on the Name andManager columns. To

determine when Tony was an employee, independent of

how much he made or who his manager was, the table

could be restructured on only the Name column.

Restructuring can also involve partitioning of the

temporal element or instant set into its constituent

maximal periods or instants, respectively. Many

queries refer to a continuous property, in which maxi-

mal periods are relevant.

Temporal Selection The valid-time timestamp of a

table may participate in predicates in the WHERE

clause by via VALID() applied to the table (or corre-

lation variable) name. The transaction-time of a table

can be accessed via TRANSACTION(). The operators

have been extended to take temporal elements and

instant sets as arguments.
Temporal Projection Conventional snapshot tables,

as well as valid-time tables, can be derived from under-

lying snapshot or valid-time tables. An optional VALID

or VALID INTERSECT clause is used to specify

the timestamp of the derived tuple. The transaction

time of an appended or modified tuple is supplied by

the DBMS.

Update The update statements have been extended in

a manner similar to the SELECT statement, to specify

the temporal extent of the update.

Cursors Cursors have been extended to optionally

return the valid time of the retrieved tuple.

Schema Versioning Schema evolution, where the

schema may change, is already supported in SQL-92.

However, old schemas are discarded; the data are al-

ways consistent with the current schema. Transaction

time support dictates that previous schemas be acces-

sible, which calls for schema versioning. TSQL2 sup-

ports a minimal level of schema versioning.

Vacuuming Updates, including (logical) deletions, to

transaction time tables result in insertions at the phys-

ical level. Despite the continuing decrease in cost of

data storage, it is still, for various reasons, not always

acceptable that all data be retained forever. TSQL2

supports a simple form of vacuuming, i.e., physical

deletion, from such tables.

System Tables The TABLE base table has been ex-

tended to include information on the valid and trans-

action time components (if present) of a table. Two

other base tables have been added to the definition

schema.

SQL-92 Compatibility All aspects of TSQL2 are

pure extensions of SQL-92. The user-defined time

in TSQL2 is a consistent replacement for that of

SQL-92. This was done to permit support of mul-

tiple calendars and literal representations. Legacy

applications can be supported through a default

SQL92_calendric_system.

The defaults for the new clauses used to support

temporal tables were designed to satisfy snapshot re-

ducibility, thereby ensuring that these extensions con-

stitute a strict superset of SQL-92.

Tug-of-War Sketch T 3197

T

Implementation During the design of the language,

considerable effort was expended to ensure that the

language could be implemented with only moderate

modification to a conventional, SQL-92-compliant

DBMS. In particular, an algebra has been demon-

strated that can be implemented in terms of a period-

stamped (or instant-stamped, for event tables) tuple

representational model; few extensions to the conven-

tional algebra were required to fully support the

TSQL2 constructs. This algebra is snapshot reducible

to the conventional relational algebra. Support for

multiple calendars, multiple languages, mixed preci-

sion, and indeterminacy have been included in proto-

types that demonstrated that these extensions have

little deleterious effect on execution performance.

Mappings from the data model underlying TSQL2,

the bitemporal conceptual data model [1], to various

representational data models have been defined [4].

Key Applications
TSQL2 continues to offer a common core for temporal

database research, as well as a springboard for change

proposals for extensions to the SQL standard.

Future Directions
Given the dramatic decrease in code size and complex-

ity for temporal applications that TSQL2 and SQL/

Temporal offers, it is hoped that other DBMS vendors

will take Oracle’s lead and incorporate these proposed

language constructs into their products.

Url to Code
http://www.cs.arizona.edu/people/rts/tsql2.html This

web page includes links to the ISO documents.

http://www.sigmod.org/dblp/db/books/collections/

snodgrass95.html

Cross-references
▶Applicability Period

▶ Fixed Time Span

▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Span

▶ Schema Versioning

▶Temporal Aggregation

▶Temporal Algebras

▶Temporal Compatibility

▶Temporal Integrity Constraints

▶Temporal Joins
▶Temporal Logical Models

▶Temporal Query Languages

▶Temporal Vacuuming

▶Time-Line Clock

▶Transaction Time

▶TUC

▶Until Changed

▶Valid Time

▶Value Equivalence

Recommended Reading
1. Jensen C.S., Soo M.D. and Snodgrass R. T. Unifying Temporal

Data Models via a Conceptual Model. Inf. Syst., 19(7):513–547,

December 1994.

2. Melton J. and Simon A.R. Understanding the New SQL: A

Complete Guide. Morgan Kaufmann, San Mateo, CA, 1993.

3. Snodgrass R.T. (ed.). In Proc. Int. Workshop on an Infrastruc-

ture for Temporal Databases, 1993.

4. Snodgrass R.T. (ed.). The TSQL2 Temporal Query Language.

Kluwer Academic, 1995.

5. Snodgrass R.T. Developing Time-Oriented Database Appli-

cations in SQL. Morgan Kaufmann, San Francisco, CA, July

1999.

6. Snodgrass R.T., Ahn I., Ariav G., Batory D.S., Clifford J.,

Dyreson C.E., Elmasri R., Grandi F., Jensen C.S., Käfer W.,

Kline N., Kulkarni K., Leung T.Y.C., Lorentzos N., Roddick J.F.,

Segev A., Soo M.D., and Sripada S.M., TSQL2 Language Specifi-

cation. ACM SIGMOD Rec., 23(1):65–86, March 1994.

7. Snodgrass R.T., Ahn I., Ariav G., Batory D., Clifford J., Dyreson

C.E., Elmasri R., Grandi F., Jensen C.S., Käfer W., Kline N.,

Kulkarni K., Leung T.Y.C., Lorentzos N., Roddick J.F., Segev A.,

Soo M.D., and Sripada S.M. A TSQL2 tutorial. ACM SIGMOD

Rec., 23(3):27–33, September 1994.

8. Snodgrass R.T., Böhlen M.H., Jensen C.S. and Steiner A. Adding

Transaction Time to SQL/Temporal. Change proposal, ANSI

X3H2-96-502r2, ISO/IEC JTC1/SC21/ WG3 DBL MAD-147r2,

November 1996.

9. Snodgrass R.T., Böhlen M.H., Jensen C.S. and Steiner A. Adding

Valid Time to SQL/Temporal. change proposal, ANSI X3H2-96-

501r2, ISO/IEC JTC1/SC21/ WG3 DBL MAD-146r2, November

1996.

10. Snodgrass R.T., Böhlen M.H., Jensen C.S., and Steiner A., Tran-

sitioning Temporal Support in TSQL2 to SQL3. In Temporal

Databases: Research and Practice, O. E.zion, S. Jajodia, S.M.

Sripada (eds.). Springer, Berlin, 1998, pp. 150–194.

11. Snodgrass R.T., Kulkarni K., Kucera H., and Mattos N. Proposal

for a new SQL Part – Temporal. ISO/IEC JTC1/SC21 WG3 DBL

RIO-75, X3H2-94-481, November 2, 1994.
Tug-of-War Sketch

▶AMS Sketch

http://www.cs.arizona.edu/people/rts/tsql2.html
http://www.sigmod.org/dblp/db/books/collections/snodgrass95.html
http://www.sigmod.org/dblp/db/books/collections/snodgrass95.html

3198T Tuning Concurrency Control
Tuning Concurrency Control

PHILIPPE BONNET
1, DENNIS SHASHA

2

1University of Copenhagen, Copenhagen, Denmark
2New York University, New York, NY, USA

Synonyms
Lock tuning

Definition
Database systems implement concurrency control

to give users the illusion that each transaction executes

correctly, in isolation from all others. The concurrency-

control algorithm in predominant use is two-phase

locking. Tuning concurrency control consists in im-

proving the performance of concurrent operations by

reducing the number, duration and scope of the con-

flicts due to locking.
Historical Background
In 1976, Jim Gray et al. identified the fundamental

concurrency control trade-off between correctness

and performance. They discussed different lock gran-

ularities and introduced the notion of degrees of

consistency.
Foundations
Database systems attempt to give users the illusion

that each transaction executes in isolation from all

others. The ANSI SQL standard, for example, makes

this explicit with its concept of degrees of isolation.

Full isolation or serializability is the guarantee that

each transaction that completes will appear to execute

one at a time, except that its performance may be

affected by other transactions. Choosing a lower level

of isolation will benefit performance, possibly at the

cost of correctness. The value of serializability experi-

ment (see below in experimental results) illustrates this

performance/correctness trade-off. This entry dis-

cusses basic concurrency tuning techniques.

Leveraging Application Semantics

Efficient tuning often entails understanding applica-

tion semantics. A frequently required feature is to

assign consecutive key values to consecutive records

(e.g., customer numbers, purchase order numbers).

Consider a straightforward implementation.
In the following example, the COUNTER table

contains the next value which is used as a key when

inserting values in the ACCOUNT table.

begin transaction
NextKey:=select nextkey from COUNTER;

insert into ACCOUNT values (nextkey, 100, 200);

update COUNTER set nextkey=NextKey+1;
end transaction

When the number of such transactions issued

concurrently increases, COUNTER becomes a bottle-

neck because all transactions read and write the value

of nextkey.

An alternative approach is to use the facilities that

many systems offer that reduce the length of time

counter locks are held. These facilities (sequences in

Oracle, autoincrement in MySQL and identity in SQL

Server, DB2 UDB and Sybase Adaptive Server) enable

transactions to hold a latch (see the latch definitional

entry) on the counter only while accessing the counter,

rather than until the transaction completes. This elim-

inates the counter as a bottleneck but may introduce a

small problem.

Consider an insert transaction T that increments the

counter then aborts. Before T aborts, a second transac-

tion T’ may increment the counter further. Thus, the

counter value obtained by Twill not be associated with

any data item. That is, there may be gaps in the counter

values. Most applications can tolerate such gaps, but

some cannot for legal reasons, e.g., tax authorities prefer

that invoice numbers have no gaps.

Living Dangerously

Many applications live with less than full isolation

due to the high cost of holding locks during user

interactions. Consider the following full-isolation

transaction from an airline reservation application:

Airline Reservation Transaction

Begin transaction
Retrieve list of seats available;

Reservation agent talks with customer regarding

availability;

Secure seat.
End transaction

The performance of a system built from such transac-

tions would be intolerably slow, because each customer

would hold a lock on all available seats for a flight

Tuning Concurrency Control T 3199
while chatting with the reservations agent. This solu-

tion does, however, guarantee two conditions: (i) no

two customers will be given the same seat, and (ii) any

seat that the reservation agent identifies as available in

view of the retrieval of seats will still be available when

the customer asks to secure it.

Because of the poor performance, however, the

following is done instead:

Loosely Consistent Airline Reservation

Begin transaction
Retrieve list of seats available;

Reservation agent talks with customer regarding

availability;

Secure seat.
T

End transaction

This design relegates lock conflicts to the secure

step, thus guaranteeing that no two customers will

be given the same seat. It does allow the possibility,

however, that a customer will be told that a seat is

available, will ask to secure it, and will then find out

that it is gone.

General Rules of Thumb

By looking at blocking and (more rarely) deadlock

statistics, an administrator or advanced application

user can infer the existence of a concurrency control

bottleneck. What should follow is careful analysis of

the application to see (i) whether transactions can be

redesigned to place accesses to hot items at the ends of

the transactions, (ii) whether system facilities may help

to reduce concurrency bottlenecks, (iii) or whether the

application semantics allow a lesser form of concur-

rency correctness guarantee for the sake of perfor-

mance. The general idea is to reduce the hold on

the few critical resources that cause the concurrency

bottleneck.

Key Applications
Concurrency control tuning is essential for appli-

cations having frequent modifications (inserts, deletes,

and/or updates), because those applications entail lock

conflicts.

Experimental Results

Value of Serializability

This experiment illustrates the correctness/performance

trade-off associated to the two isolation levels, i.e.,
serializable and read committed. Consider a table of

the form R(a int primary key, b int), on which an

application executes two types of transactions: (i) a

sum transaction that computes the sum of b values,

and (ii) swap transactions that swap b values. The

experiment consists in executing the two types of

transactions concurrently. The parameters of the

experiments are (i) the level of isolation, and (ii) the

number of concurrent threads executing the swap

transactions (note that the total number of transac-

tions is kept constant throughout the experiment).

Response time is measured for the total number of

transactions.

The results presented below were obtained with

MySQL SQL 6.0 (using InnoDB with a 1GB buffer

pool), running on a Linux server equipped with an

Intel Core 2 Duo processor (the cache is warm during

this experiment). The SQL code and the data used

for this experiment as well as the data set with the

measurements are available at the URL listed at the

end of this entry.

Interestingly, both the read committed and serial-

izable isolation levels yield 100% correct answer

regardless of the number of threads executing the

swap transactions. The reason is that MySQL (like

Oracle) implements snapshot isolation: the result of

the sum transaction is obtained on the R table as it

stood when that transaction began, i.e., the swap trans-

actions do not impact the result of the sum transaction.

When executed on database systems that do not im-

plement snapshot isolation (e.g., SQLServer or DB2),

only about 40% of the results were correct for the sum

transaction [3].

Figure 1 traces throughput (i.e., total number

of transactions/response time) for the serializable and

read committed level as a function of the number of

swap threads.

Read committed yields a higher throughput than

serializable. The reason is that in the serializable isola-

tion level, the sum transaction sets next-key locks while

scanning the table, whereas at the read committed

isolation level, the sum transaction relies on snapshot

isolation, i.e., no read locks are used.

Counters

This experiment illustrates the benefit of using a

system-defined counter as opposed to using an adhoc

method based on a counter table. The experiment

Tuning Concurrency Control. Figure 2. Counter experiment on MySQL 6.0.

Tuning Concurrency Control. Figure 1. Value of serializability experiment on MySQL 6.0.

3200T Tuning Concurrency Control
consists in running a fixed number of insert transac-

tions concurrently. The number of threads used to

run these transactions is the main parameter of this

experiment. The experiment measures response time

for the total number of transactions.

Figure 2 presents traces throughput (i.e., total

number of transactions/response time) for the ad hoc

and system implementation as a function of the num-

ber of swap threads. These results were obtained with

the configuration used for the Value of Serializability

experiment (see above). The SQL code and the data

used for this experiment are available at the URL listed

below.

In the experiment, the benefits of the system-based

counter become more significant as the number of
threads increases. The reason is that as the number

of threads increase, the counter table becomes a hot

spot and the benefits of using a latch released at the end

of the statement (system method) over a lock held

until the end of the transaction (ad hoc method)

becomes significant. Note that the performance of the

ad hoc method diminishes as the amount of processing

in the transaction increases (i.e., as the time during

which the lock is held increases).

URL to Code and Data Sets
Value of Serializability experiment: http://www.

databasetuning.org/?sec=valueofserializability

Counter experiment: http://www.databasetuning.

org/?sec=counter

http://www.databasetuning.org/?sec=valueofserializability
http://www.databasetuning.org/?sec=valueofserializability
http://www.databasetuning.org/?sec=counter
http://www.databasetuning.org/?sec=counter

Tuple-Generating Dependencies T 3201
Cross-references
▶Concurrency Control

▶ Isolation

▶ Latching

▶ Performance Monitoring Tools

▶ Snapshot Isolation

▶Transaction Chopping

▶Two-Phase Locking

Recommended Reading
1. Bernstein P., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Boston, MA, 1987.

2. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1992.

3. Shasha D. and Bonnet P. Database Tuning: Principles, Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann,

San Francisco, CA, 2002.

4. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2001.
Tuning the Application Interface

▶Application-Level Tuning
Tuple Relational Calculus

▶Relational Calculus
T

Tuple-Generating Dependencies

RONALD FAGIN

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
Equality-generating dependency (egd)

Definition
Tuple-generating dependencies, or tgds, are one of the

two major types of database dependencies (the other

major type consists of equality-generating dependencies,

or egds).

To define tgds, the notion of an atomic formula is

first needed, which is a formula of the form P(x1,...,xk),
where P is a k-ary relational symbol, and x1,...,xk
are variables, not necessarily distinct.

Then tgds are formulas of the form

8x(f(x)!∃yc(x, y)), where

1. f(x) is a conjunction of atomic formulas, all with

variables among the variables in x.

2. every variable in x appears in f(x) (but not neces-
sarily in c(x, y)).

3. c(x, y) is a conjunction of atomic formulas, all

with variables among the variables in x and y.

If y is empty, so that there are no existentially-

quantified variables, then the tgd is called full.

Conditions (1) and (2) together are sometimes

replaced by the weaker condition that f(x) be an

arbitrary first-order formula with free variables exactly

those in x.

Key Points
An example of a tgd is the formula

8x18x2ðRðx1; x1; x2Þ ^ Sðx2Þ
! 9yðRðx1; yÞ ^ Tðx2; y; x1ÞÞ:

Historically, tgds were introduced for the purpose

of database normalization and design, with the first

example being multivalued dependencies [2,5]. Fagin

[3] defined the class of embedded implicational depen-

dencies, which includes both tgds and egds, but he

focused on the case where they are (i) unirelational

(so that all atomic formulas involve the same relation

symbol) and (ii) typed (so that no variable can appear

in both the ith and jth position of an atomic formula

if i 6¼ j). Beeri and Vardi [1] defined and named tgds

and egds.

In recent years, tgds have been used to define

schema mappings in data exchange [4], which describe

how data structured under one schema (the source

schema) is to be transformed into data structured

under a second schema (the target schema). In this

application, the atomic formulas in the premise f(x)
are all from the source schema, and the atomic for-

mulas in the conclusion c(x, y) are all from the target

schema.
Cross-references
▶Data Exchange

▶Database Dependencies

▶ Equality-Generating Dependencies

3202T Twigs
▶ Join Dependency

▶Multivalued Dependency

▶Normal forms and Normalization

▶ Schema Mapping

Recommended Reading
1. Beeri C. and Vardi M.Y. A proof procedure for data dependen-

cies. J. ACM, 31(4):718–741, 1984.

2. Fagin R. Multivalued dependencies and a new normal form for

relational databases. ACM Trans. Database Sys., 2(3):262–278,

1977.

3. Fagin R. Horn clauses and database dependencies. J. ACM,

29(4):952–985, 1982.

4. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data exchange:

semantics and query answering. Theor. Comput. Sci., 2005,

pp. 89–124.

5. Zaniolo C. Analysis and Design of Relational Schemata for

Database Systems. 1976. Ph.D. Dissertation, UCLA.
Twigs

▶XMLTree Pattern, XMLTwig Query
Two-Dimensional Shape Retrieval

LEI CHEN

Hong Kong University of Science and Technology,

Kowloon, Hong Kong, China

Definition
Shape is an important image feature, it is the geomet-

rical information of an object after removing position,

scale and rotational effects [3]. A shape is often
Two-Dimensional Shape Retrieval. Figure 1. Examples of sh
represented by the contour map extracted from the

images. Given a query 2D shape, 2D shape retrieval

retrieves a ranked list of similar 2D shapes from a

collection of 2D polygonal models (contour points)

based on the shape characteristics.

Figure 1 gives an example object shapes, which are

represented by the extracted contour maps.

Historical Background
The study of shape retrieval can be traced back to

1980s. At that time, shape retrieval was treated as an

key technique in object recognition of robot vision.

Since then, shape retrieval has received much attention

in the database domain due to its various application

in biometrics, industry, medicine and anthropology.

Foundations
The shape retrieval problem is to retrieve shapes that are

visually similar to the query shape. There are two key

issues related to shape retrieval [6], shape representation

and similarity measure. Given a shape, it should be

represented in a form which is invariant to scaling,

translation and rotation. For similarity measures, vari-

ous measures are designed to meet application require-

ments. In fact, the two key issues are closely related to

each other. Based on the different shape representa-

tions, different similarity measures are applied. Exist-

ing works represent shape in various ways including:

1. Shape signature is one-dimensional vector derived

from the shape boundary coordinates. For exam-

ple, the Euclidean distance between centroid point

to the boundary points [8]. The shape of an object

is represented by a set of normalized Fourier coeffi-

cients of the shape signature and the inner product
ape of object represented by contour maps [4].

Two-Dimensional Shape Retrieval T 3203

T

of the Fourier coefficients is used to measure the

similarity between two shapes.

2. Grid descriptor is derived by overlaying the shapes

with a coarse grid and assigning an ‘1’ to a grid

cell if more than 15% of the cell is covered by the

shape, otherwise ‘0’ [5]. Two shapes are compared

by counting the number of different bits of cor-

responding normalized grid descriptors. The simi-

larity measure conforms to human similarity

perception, i.e., perceptually similar shapes have

high similarity measure.

3. Shape context captures the distribution of the

points relative to a reference point on the contour

of an object, thus it offers a globally discriminative

feature. Two shapes are similar if they have similar

shape contexts. Therefore, the similarity between

two shapes is computed by counting the number of

matching corresponding points [2].

4. Distance set uses N nearest neighbors to represent

each contour point [4]. The similarity between two

shapes are measure by the cost of the cheapest

correspondence relation of corresponding distance

sets, which is computed by evaluating theminimum

cost assignment in an associated bipartite graph.

5. Curvature scale space is formed by the positions of

inflection points (x-axis) on the contours on every

scale (y-axis) [7]. The shape representation is the

positions of the maxima on these curves. The shape

similarity is measures by relating the positions of

the maxima of the corresponding curves.

6. Symbolic features refers to a shape which is repre-

sented in terms of multi-interval valued type fea-

tures including shape centroid, extreme points, axis

of least inertia with slope angle, and feature points

on the axis of least inertia, etc. [1]. The similarity

between two shapes is defined on these symbolic

features as the average degree of similarity of all

corresponding feature vector pairs.

7. Shape space refers a single point (vector) in a high-

dimensional manifold. The vector is obtained by

normalizing the landmark vector of the origin

shape [9]. The similarity is measured as the geode-

sic distance between a shape and a model in the

shape space.

In addition to the shape representation and similarity

measure design, index structures should be built on the

shape representations to allow shape similarity queries

be answered efficiently.
Key Applications

Content Based Image Retrieval

Content-based image retrieval (CBIR), also known as

query by image content (QBIC) and content-based

visual information retrieval (CBVIR) is the application

of computer vision to the image retrieval problem, that

is, the problem of searching for digital images in large

databases.

Visual Surveillance

Visual surveillance in dynamic scenes is an active re-

search topics in computer vision. The aim of visual

surveillance is to make it possible that the computer

can watch or monitor a scene by automatic localiza-

tion, tracking and recognition.

Future Directions
Effective and robust similarity measures and efficient

indexing structures.

Cross-references
▶ Feature-Based 3D Object Retrieval

▶ Image Retrieval
Recommended Reading
1. Attalla E. and Siy P. Robust shape similarity retrieval based on

contour segmentation polygonal multiresolution and elastic

matching. Pattern Recognit., 38(12):2229–2241, 2005.

2. Belongie S., Malik J., and Puzicha J. Shape matching and object

recognition using shape contexts. IEEE Trans. Pattern Anal.

Mach. Intell., 24(4):509–522, 2002.

3. Dryden I.L. and Mardia K.V. Statistical Shape Analysis. Wiley,

New York, 1998.

4. Grigorescu C. and Petkov N. Distance sets for shape filters

and shape recognition. IEEE Trans. Image Process., 12(10):

1274–1286, 2003.

5. Lu G. and Sajjanhar A. Region-based shape representation and

similarity measure suitable for content-based image retrieval.

Multimedia Syst., 7(2):165–174, 1999.

6. Mehrotra R. and Gary J.E. Similar-shape retrieval in shape data

management. Computer, 28(9):57–62, 1995.

7. Mokhtarian F. and Bober M. Curvature Scale Space Representa-

tion: Theory, Applications, and MPEG-7 Standardization.

Kluwer, Norwell, MA, USA, 2003.

8. Zhang D. and Lu G. Evaluation of mpeg-7 shape descriptors

against other shape descriptors. Multimedia Syst., 9(1):15–30,

2003.

9. Zhang J., Zhang X., Krim H., and Walter G.G. Object represen-

tation and recognition in shape spaces. Pattern Recognit., 36(5):

1143–1154, 2003.

3204T Two-Phase Commit
Two-Phase Commit

YOUSEF J. AL-HOUMAILY
1, GEORGE SAMARAS

2

1Institute of Public Administration, Riyadh,

Saudi Arabia
2University of Cyprus, Nicosia, Cyprus

Definition
Two-phase commit (2PC) is a synchronization proto-

col that solves the atomic commitment problem, a spe-

cial case of the Byzantine Generals problem. Essentially,

it is used in distributed database systems to ensure

global atomicity of transactions in spite of site and

communication failures, assuming that a failure will

be, eventually, repaired and each site guarantees atom-

icity of transactions at its local level.

Historical Background
2PC is the simplest and most studied atomic commit

protocol (ACP). It was first published in [9] and [4].

Since then, the protocol has received much attention

from the academia and industry due to its importance

in distributed database systems, and the research has

resulted in numerous variants and optimizations for

different distributed database environments. These

environments include main memory databases (e.g.,

[10]), real-time databases (e.g., [5]), mobile database

systems (e.g., [12]), heterogeneous database systems

(e.g., [1]), Web databases (e.g., [15]), besides tradi-

tional (homogeneous) distributed database systems

(e.g., [13,3]).
Foundations
In a distributed database system, a transaction is

decomposed into a set of subtransactions, each of

which executes at a single participating database site.

Assuming that each database site preserves atomicity of

(sub)transactions at its local level, global atomicity

cannot be guaranteed without taking additional mea-

sures. This is because without global synchronization a

distributed transaction might end-up committing at

some participating sites and aborting at others due to a

site or a communication failure. Thus, jeopardizing

global atomicity and, consequently, the consistency of

the (distributed) database.

To achieve atomicity at the global level, there is a

need for a synchronization protocol that ensures a unan-

imous final outcome for each distributed transaction
and regardless of failures. Such a protocol is referred

to as an atomic commit protocol (ACP). An ACP ensures

that a distributed transaction is either committed

and all its effects become persistent across all partici-

pating sites, or aborted and all its effects are obliterated

as if the transaction had never executed at any site. This

is the essence of the two-phase commit (2PC) protocol.

Dynamics of Two-Phase Commit

In 2PC, each transaction is associated with a desig-

nated site called the coordinator (or master). Although

the coordinator of a transaction could be any of the sites

participating in the transaction’s execution, it is com-

monly the originating site of the transaction (i.e., the

site where the transaction is first initiated). The rest of

the sites are called participants, subordinates, cohorts or

slaves. Once a transaction finishes its execution and

indicates its termination point, through a commit prim-

itive, to its coordinator, the coordinator initiates 2PC.

As the name implies, 2PC consists of two phases,

namely a voting phase and a decision phase, as shown

Fig. 1. During the voting phase, the coordinator

requests all the sites participating in the transaction’s

execution to prepare-to-commit whereas, during the

decision phase, the coordinator either decides to com-

mit the transaction if all the participants are prepared

to commit (voted “yes”), or to abort if any participant

has decided to abort (voted “no”). On a commit deci-

sion, the coordinator sends out commit messages to all

participants whereas, on an abort decision, it sends out

abort messages to only those (required) participants

that are prepared-to-commit (voted “yes”).

When a participant receives a prepare-to-commit

message for a transaction, it validates the transaction

with respect to data consistency. If the transaction can

be committed (i.e., it passed the validation process),

the participant responds with a “yes” vote. Otherwise,

it responds with a “no” vote and aborts the transaction,

releasing all the resources held by the transaction.

If a participant had voted “yes”, it can neither

commit nor abort the transaction unilaterally and has

to wait until it receives a final decision from the coor-

dinator. In this case, the participant is said to be

blocked for an indefinite period of time called window

of uncertainty (or window of vulnerability) awaiting the

coordinator’s decision. When a participant receives the

final decision, it complies with the decision, sends back

an acknowledgement message (Ack) to the coordinator

and releases all the resources held by the transaction.

Two-Phase Commit. Figure 1. The two-phase commit protocol.

Two-Phase Commit T 3205

T

When the coordinator receives Acks from all the

participants that had voted “yes,” it forgets the transac-

tion by discarding all information pertaining to the

transaction from its protocol table that is kept in

main memory.

The resilience of 2PC to failures is achieved by

recording the progress of the protocol in the logs of

the coordinator and the participants. The coordinator

force writes a decision record prior to sending out its

decision to the participants. Since a forced write of a log

record causes a flush of the log onto a stable storage

that survives system failures, the decision is not lost if

the coordinator fails. Similarly, each participant force

writes a prepared record before sending its “yes” vote

and a decision record before acknowledging a decision.

When the coordinator completes the protocol, it writes

a non-forced end record in the volatile portion of its

log that is kept in main memory. This record indicates

that all (required) participants have received the deci-

sion and none of them will inquire about the transac-

tion’s status in the future. This allows the coordinator

to (permanently) forget the transaction, with respect

to 2PC, and garbage collect the log records of the

transaction when necessary.

Recovery in Two-Phase Commit

Site and communication failures are detected by time-

outs. When an operational site detects a failure, it

invokes a recovery manager to handle the failure.

In 2PC, there are four places where a communication
failure might occur. The first place is when a partici-

pant is waiting for a prepare-to-commit message

from the coordinator. This occurs before the partici-

pant has voted. In this case, the participant may

unilaterally decide to abort the transaction. The second

place is when the coordinator is waiting for the votes

of the participants. Since the coordinator has not made

a final decision yet and no participant could have

decided to commit, the coordinator can decide to

abort. The third place is when a participant had

voted “yes” but has not received a commit or an

abort final decision. In this case, the participant cannot

make any unilateral decision because it is uncertain

about the coordinator’s final decision. The participant,

in this case, is blocked until it re-establishes communi-

cation with the coordinator and, once re-established,

the participant inquires the coordinator about the final

decision and resumes the protocol by enforcing and,

then, acknowledging the coordinator’s decision. The

fourth place is when the coordinator is waiting for the

Acks of the participants. In this case, the coordinator

re-submits its final decision to those participants that

have not acknowledged the decision once it re-estab-

lishes communication with them. Notice that the co-

ordinator cannot simply discard the information

pertaining to a transaction from its protocol table or

its stable log until it receives Acks from all the (re-

quired) participants.

To recover from site failures, there are two cases to

consider: coordinator’s failure and participant’s failure.

3206T Two-Phase Commit
For a coordinator’s failure, the coordinator, upon its

restart, scans its stable log and re-builds its protocol

table to reflect the progress of 2PC for all the pending

transactions prior to the failure. The coordinator has

to consider only those transactions that have started

2PC and have not finished it prior to the failure (i.e.,

transactions that have decision log records without

corresponding end log records in the stable log). For

other transactions, i.e., transactions that were active at

the coordinator’s site prior to its failure without a

decision record, the coordinator considers them as

aborted transactions. Once the coordinator re-builds

its protocol table, it completes the protocol for each

of these transactions by re-submitting its final deci-

sion to all (required) participants whose identities

are recorded in the decision record and waiting for

their Acks. Since some of the participants might

have already received the decision prior to the failure

and enforced it, these participants might have already

forgotten that the transaction had ever existed. Such

participants simply reply with blind Acks, indicating

that they have already received and enforced the deci-

sion prior to the failure.

For a participant’s failure, the participant, as part

of its recovery procedure, checks its log for the exis-

tence of any transaction that is in a prepared-to-

commit state (i.e., has a prepared log record without

a corresponding final decision one). For each such

transaction, the participant inquires the transaction’s

coordinator about the final decision. Once the parti-

cipant receives the decision from the coordinator, it

completes the protocol by enforcing and, then,

acknowledging the decision. Notice that a coordinator

will be always able to respond to such inquires because

it cannot forget a transaction before it has received the

Acks of all (required) participants. However, there is

a case where a participant might be in a prepared-to-

commit state and the coordinator does not remember

the transaction. This occurs if the coordinator

fails after it has sent prepare-to-commit messages and

just before it has made its decision. In this case, the

coordinator will not remember the transaction after it

has recovered. If a prepared-to-commit participant

inquires about the transaction’s status, the coordinator

will presume that the transaction was aborted and

responds with an abort message. This special case

where an abort presumption is made about unremem-

bered transactions in 2PC motivated the design of the

presumed abort 2PC.
Underlying Assumptions

ACPs solve a special case of the problem of consensus

in the presence of faults, a problem that is known in

distributed systems as the Byzantine Generals problem

[7]. This problem is, in its most general case, not

solvable without some simplifying assumptions. In

distributed database systems, ACPs solve the problem

under the following general assumptions (among

others that are sometimes ACP specific):

1. Each site is sane : A site is fail stop where it never

deviates from its prescribed protocol. That is, a site

is either operational or not but never behaves

abnormally causing commission failures.

2. Eventual recovery : A failure (whether site or com-

munication) will be, eventually, repaired.

3. Binary outcome : All sites unanimously agree on a

single binary outcome, either commit or abort.

Performance Issues

There are three important performance issues that are

associated with ACPs, which are as follows [3]:

1. Efficiency During Normal Processing : This refers to

the cost of an ACP to provide atomicity in the

absence of failures. Traditionally, this is measured

using three metrics. The first metric is message

complexity which deals with the number of mes-

sages that are needed to be exchanged between

the systems participating in the execution of a

transaction to reach a consistent decision regarding

the final status of the transaction. The second

metric is log complexity which accounts for the

frequency at which information needs to be

recorded at each participating site in order to

achieve resiliency to failures. Typically, log com-

plexity is expressed in terms of the required num-

ber of non-forced log records which are written

into the log buffer (in main memory) and, more

importantly, the number of forced log records

which are written onto the stable log (on the

disk). The third metric is time complexity which

corresponds to the required number of rounds or

sequential exchanges of messages in order for a

decision to be made and propagated to the

participants.

2. Resilience to Failures : This refers to the types of

failures that an ACP can tolerate and the effects of

failures on operational sites. An ACP is considered

non-blocking if it never requires operational sites to

Two-Phase Commit T 3207

T

wait (i.e., block) until a failed site has recovered.

One such protocol is 3PC.

3. Independent Recovery : This refers to the speed of

recovery. That is, the time required for a site to

recover its database and become operational,

accepting new transactions after a system crash.

A site can independently recover if it has all

the necessary information needed for recovery

stored locally (in its log) without requiring any

communication with any other site in order to

fully recover.

Most Common Two-Phase Commit Variants

Due to the costs associated with 2PC during normal

transaction processing and the reliability drawbacks in

the events of failures, a variety of ACPs have been

proposed in the literature. These proposals can be,

generally, classified as to enhance either (i) the effi-

ciency of 2PC during normal processing or (ii) the

reliability of 2PC by either reducing 2PC’s blocking

aspects or enhancing the degree of independent

recovery. The most commonly pronounced 2PC var-

iants are presumed abort (PrA) [11] and presumed

commit (PrC) [11]. Both variants reduce the cost of

2PC during normal transaction processing, albeit for

different final decisions. That is, PrA is designed to

reduce the costs associated with aborting transactions

whereas PrC is designed to reduce the costs associated

with committing transactions.

In PrA, when a coordinator decides to abort a trans-

action, it does not force-write the abort decision in its

log as in 2PC. It just sends abort messages to all the

participants that have voted “yes” and discards all infor-

mation about the transaction from its protocol table.

That is, the coordinator of an aborted transaction does

not have to write any log records or wait for Acks. Since

the participants do not have to Ack abort decisions, they

are also not required to force-write such decisions. After

a coordinator’s or a participant’s failure, if the partici-

pant inquires about a transaction that has been

aborted, the coordinator, not remembering the trans-

action, will direct the participant to abort the transac-

tion (by presumption). Thus, as the name implies, if

no information is found in the log of the coordinator

of a transaction, the transaction is presumed aborted.

As opposed to PrA, in which missing information

about transactions at a coordinator’s site is interpreted

as abort decisions, in PrC, a coordinator interprets

missing information about transactions as commit
decisions when replying to inquiry messages. However,

in PrC, a coordinator has to force write a commit

initiation record for each transaction before sending

out prepare-to-commit messages to the participants.

This record ensures that missing information about a

transaction will not be misinterpreted as a commit

after a coordinator’s site failure without an actual

commit decision is made.

To commit a transaction, the coordinator force

writes a commit record to logically eliminate the initi-

ation record of the transaction and then sends out

commit messages. The coordinator also discards all

information pertaining to the transaction from its

protocol table. When a participant receives the deci-

sion, it writes a non-forced commit record and com-

mits the transaction without having to Ack the

decision. After a coordinator’s or a participant’s failure,

if the participant inquires about a transaction that has

been committed, the coordinator, not remembering the

transaction, will direct the participant to commit

the transaction (by presumption).

To abort a transaction, on the other hand, the

coordinator does not write the abort decision in its

log. Instead, the coordinator sends out abort messages

and waits for Acks before discarding all information

pertaining to the transaction. When a participant

receives the decision, it force writes an abort record

and then acknowledges the decision, as in 2PC. In the

case of a coordinator’s failure, the initiation record of

an interrupted transaction contains all needed infor-

mation for its recovery.

Table 1 summarizes the costs associated with the

three 2PC variants for the commit as well as the abort

case assuming a “yes” vote from each participant: “m”

is the total number of log records, “n” is the number of

forced log writes, “p” is the number of messages sent

from the coordinator to each participant and “q” is the

number of messages sent back to the coordinator.

For simplicity, these costs are calculated for the flat

(two-level) execution model in which, unlike the

multi-level execution model, a participant never initi-

ates (i.e., spawns) new (sub)transactions that execute

at other participants, forming a tree of communicating

participants.

Compatibility of 2PC Variants

ACPs are incompatible in the sense that they cannot be

used (directly) in the same environment without con-

flicts. This is true even for the simplest and most

Two-Phase Commit. Table 1. The costs for update transactions in 2PC and its most commonly known two variants

2PC Variant

Commit decision Abort decision

Coordinator Participant Coordinator Participant

m n p m n q m n p m n q

Basic 2PC 2 1 2 2 2 2 2 1 2 2 2 2

Presumed abort 2 1 2 2 2 2 0 0 2 2 1 1

Presumed commit 2 2 2 2 1 1 2 1 2 2 2 2

3208T Two-Phase Commit
closely related variants such as the basic 2PC, PrA and

PrC. The analysis of ACPs shows that incompatibilities

among ACPs could be due to (i) the semantics of the

coordination messages (which include both their

meanings as well as their existence), or (ii) the pre-

sumptions about the outcome of terminated transac-

tions in case of failures [1].

The presumed any (PrAny) protocol [2] interope-

rates the basic 2PC, PrA, and PrC. It was proposed in

the context of multidatabase systems, a special case of

heterogeneous distributed databases, to demonstrate

the difficulties that arise when one attempts to interop-

erate different ACPs in the same environment and, more

importantly, to introduce the “operational correctness

criterion” and the notion of “safe state.” Operational

correctness means that all sites should be able, not only

to reach an agreement but also, to forget the outcome

of terminated transactions. On the other hand, the

safe state means that, for any operationally correct

ACP, the coordinator should be able to reach a state

in which it can reply to the inquiry messages of the

participants, in a consistent manner, without having

to remember the outcome of terminated transactions

forever.

In PrAny, a coordinator talks the language of the

three 2PC variants and knows which variant is used by

which participant. Based on that, it forgets a com-

mitted transaction once all PrA and 2PC participants

Ack the commit decision, and forgets an aborted trans-

action once all PrC and 2PC participants Ack the abort

decision. This is because only commit decisions are

acknowledged in PrAwhereas, in PrC, only abort deci-

sions are acknowledged. However, unlike the other

2PC variants, in PrAny, a coordinator does not adopt

a single presumption about the outcome of all termi-

nated transactions. This is because, if it does so, the

global atomicity of some transactions might be vio-

lated. For example, if the coordinator adopts for

recovering purposes the abort presumption, it will
respond with an abort message to a recovering

PrC participant that inquires about a forgotten com-

mitted transaction. Similarly, if the coordinator adopts

the commit presumption, it will respond with a com-

mit message to a recovering PrA participant that

inquires about a forgotten aborted transaction. Instead

of using a single presumption, a coordinator in PrAny

adopts the presumption of the protocol used by the

inquiring participant. That is, if a participant inquires

about a forgotten committed transaction, the partici-

pant has to be a PrC participant. This is because only

PrC participants do not acknowledge commit deci-

sions. Thus, the coordinator will reply with a commit

message in accordance with PrC adopted by the

participant. On the other hand, if a participant

inquires about a forgotten aborted transaction, the

participant has to be a PrA participant. This is because

only PrA participants do not acknowledge abort deci-

sions. Thus, the coordinator will reply with an abort

message in accordance with PrA adopted by the par-

ticipant. Knowledge about the used protocols by the

participants could be recorded statically at the coordi-

nator’s site [2] or inferred dynamically by having a

participant declares its used protocol in each inquiry

message [15].

Key Applications
The use of 2PC (or one of its variants) is mandatory in

any distributed database system in which the tradition-

al atomicity property of transactions is to be preserved.

However, the basic 2PC has never been implemented

in any commercial database system due to its unneces-

sary costs compared to its two other most commonly

known variants. Instead, PrA is considered the de facto

standard in the industry and has been incorporated as

part of the current X/Open DTP [14] and ISO OSI-TP

[6] distributed transaction processing standards. PrA is

chosen instead of PrC because (i) the cost of PrC for

committing transactions is not symmetric with the

Two-Phase Commit Protocol T 3209

T

cost of PrA for aborting transactions (which is high-

lighted in Table 1) and, more importantly, (ii) PrA is

much cheaper to use with read-only transactions when

complementing it with the traditional read-only opti-

mization [13,3] (which is also part of the current

database standards).

The above two reasons that favor PrA have been

nullified with new 2PC variants and a read-only opti-

mization called unsolicited update-vote (UUV). Thus,

PrC is expected to become also part of future database

standards, especially that the two variants can be

incorporated in the same environment without any

conflicts [1,15].

Cross-references
▶Atomicity

▶Distributed Database Systems

▶Distributed Recovery

▶Distributed Transaction Management

Recommended Reading
1. Al-Houmaily Y. Incompatibility dimensions and integration

of atomic commit protocols. Int. Arab J. Inf. Technol., 5(4):2008.

2. Al-Houmaily Y. and Chrysanthis P. Atomicity with incompatible

presumptions. In Proc. 18th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1999, pp. 306–315.

3. Chrysanthis P.K., Samaras G., and Al-Houmaily Y. Recovery and

performance of atomic commit processing in distributed data-

base systems, In Recovery Mechanisms in Database Systems, V.

Kumar, M. Hsu (eds.). Prentice Hall, Uppersaddle River, NJ,

1998, pp. 370–416.

4. Gray J.N. Notes on data base operating systems. In Operating

Systems – An Advanced Course. M.J. Flynn et al. (eds.), LNCS,

Vol. 60, Springer, London, 1978, pp. 393–481.

5. Haritsa J., Ramamritham K., and Gupta R. The PROMPT real-

time commit protocol. IEEE Trans. Parallel Distributed Syst.,

11(2):160–181, 2000.

6. ISO. Open systems interconnection – Distributed transaction

processing – Part 1: OSI TP Model. ISO/IEC, 10026–1, 1998.

7. Lamport L., Shostak R., and Pease M. The Byzantine generals

problem. ACM Trans. Programming Lang. Syst., 4(3):382–401,

1982.

8. Lampson B. and Lomet D. A new presumed commit optimiza-

tion for two phase commit. In Proc. 19th Int. Conf. on Very

Large Data Bases, 1993, pp. 630–640.

9. Lampson B. and Sturgis H. Crash recovery in a distributed data

storage system. Technical report, Computer Science Laboratory,

Xerox Palo Alto Research Center, CA, 1976.

10. Lee I. and Yeom H. A single phase distributed commit protocol

for main memory database systems. In Proc. 16th Int. Parallel

and Distributed Processing Symp., 2002, pp. 14–21.

11. Mohan C., Lindsay B., and Obermarck R. Transaction manage-

ment in the R* distributed data base management system. ACM

Trans. Database Syst., 11(4):378–396, 1986.
12. Nouali N., Drias H., and Doucet A. A mobility-aware two-phase

commit protocol. Int. Arab J. Inf. Technol., 3(1):2006.

13. Samaras G., Britton K., Citron A., and Mohan C. Two-phase

commit optimizations in a commercial distributed environ-

ment. Distrib. Parall. Databases, 3(4):325–361, 1995.

14. X/Open Company Limited. Distributed Transaction Proces-

sing: Reference Model. Version 3 (X/Open Document No.

504), 1996.

15. Yu W. and Pu C. A Dynamic Two-phase commit protocol for

adaptive composite services. Int. J. Web Serv. Res., 4(1):2007.
Two-Phase Commit Protocol

JENS LECHTENBÖRGER

University of Münster, Münster, Germany

Synonyms
XA standard

Definition
The Two-phase commit (2PC) protocol is a distributed

algorithm to ensure the consistent termination of a

transaction in a distributed environment. Thus, via

2PC a unanimous decision is reached and enforced

among multiple participating servers whether to com-

mit or abort a given transaction, thereby guaranteeing

atomicity. The protocol proceeds in two phases, namely

the prepare (or voting) and the commit (or decision)

phase, which explains the protocol’s name.

The protocol is executed by a coordinator process,

while the participating servers are called participants.

When the transaction’s initiator issues a request to

commit the transaction, the coordinator starts the

first phase of the 2PC protocol by querying – via

prepare messages – all participants whether to abort

or to commit the transaction. If all participants vote

to commit then in the second phase the coordinator

informs all participants to commit their share of the

transaction by sending a commit message. Otherwise,

the coordinator instructs all participants to abort their

share of the transaction by sending an abort message.

Appropriate log entries are written by coordinator as

well as participants to enable restart procedures in case

of failures.

Historical Background
Essentially, the 2PC protocol is modeled after general

contract law, where a contract among two or more

3210T Two-Phase Commit Protocol
parties is only established if all parties agree; hence, the

underlying idea is well-established in everyday life.

According to [3] the first known implementation in a

distributed system was performed by Nico Garzado for

the Italian social security system in the early 1970s,

while the protocol’s name arose in the mid 1970s.

Early scientific presentations are given by Gray [2]

and by Lampson and Sturgis [4]. Since then an API

for the 2PC protocol has been standardized under the

name XA within the X/Open Distributed Transaction

Processing (DTP) model [7], and this API has been

incorporated into several middleware specifications

and implemented in numerous software components.
Two-Phase Commit Protocol. Figure 1. Statechart for

coordinator (given N participants).
Foundations
The 2PC protocol as described and analyzed in detail

in [8] assumes that parts of a single (distributed)

transaction involve resources hosted by multiple

resource managers (e.g., database systems, file systems,

messaging systems, persistent programming environ-

ments), which reside on possibly different nodes of a

network and are called participants of the protocol. For

every transaction one coordinator process, typically

running on the node of that participant where the

transaction was initiated, assumes responsibility for

executing the 2PC protocol; alternative strategies for

selecting (and transferring) the coordinator are dis-

cussed in [8]. The states through which coordinator

and participants move in the course of the protocol are

illustrated in Figs. 1 and 2, resp., and explained in the

following. Such statecharts represent finite state auto-

mata, where ovals denote states, labeled arcs denote

state transactions, and arc labels of the form “precon-

dition/action” indicate that (i) the state transition is

only enabled if the precondition is satisfied and (ii) the

given action is executed when the state is changed.
Two-Phase Commit Protocol. Figure 2. Statechart for

participant I.
Basic Protocol

As long as a transaction is still executing ordinary

operations, coordinator as well as all participants op-

erate in the Initial state. When the coordinator is

requested to commit the transaction, it initiates the

first phase of the 2PC protocol: To capture the state of

the protocol’s execution (which needs to be available in

case of protocol restarts as explained below), the coor-

dinator first forces a begin log entry, which includes a

transaction identifier as well as a list of the transac-

tion’s participants, to a stable log. Afterwards, the
coordinator sends a prepare message to every partici-

pant, enters the Collecting state and waits for replies.

Upon receiving a prepare message, a participant

decides whether it is able to commit its share of the

Two-Phase Commit Protocol. Figure 3. Actions for

transaction commit in the basic protocol.

Two-Phase Commit Protocol T 3211

T

transaction. In either case, suitable log entries for later

recovery operations as well as a prepared log entry

indicating the vote (“Yes” or “No”) are forced to a

stable log, before a response message containing

the vote is sent back to the coordinator. In case of a

No-vote, the participant switches into the Aborted

state and immediately aborts the transaction locally.

In case of a Yes-vote, the participant moves into the

Prepared state. In the latter case the participant is said

to be in doubt or blocked as it has now given up its local

autonomy and must await the final decision from the

coordinator in the second phase (in particular, locks

cannot be released yet).

Once the coordinator has received all participants’

response messages it starts the second phase of the 2PC

protocol and decides how to complete the global trans-

action: The result is “Commit” if all participants voted

to commit and “Abort” otherwise. The coordinator

then forces a commit or abort log entry to the stable

log, sends a message containing the final decision to all

participants, and enters the corresponding state (Com-

mitted or Aborted).

Upon receipt of the decision message, a participant

commits or aborts the local changes of the transaction

depending on the coordinator’s decision and forces

suitable log entries for later recovery as well as a com-

mit or abort log entry to a stable log. Afterwards, it

sends an acknowledgment message to the coordinator

and enters the corresponding final state (Committed

or Aborted).

Once the coordinator has received all acknowledg-

ment messages it ends the protocol by writing an end

log entry to a stable log to enable later log truncation

and enters the final state, Forgotten. The actions de-

scribed for the overall process are summarized in Fig. 3

for the case of a transaction commit. (For multiple

participants, the actions simply have to be duplicated;

in case of abort, at least one of the participants votes

“No”, which implies that all occurrences of “commit”

are replaced with “abort”.)

Protocol Restart

The log entries seen so far are used to restart the 2PC

protocol after so-called soft crashes of coordinators or

participants, i.e., failures like process crashes which

lead to a loss of main memory but which leave second-

ary storage intact. In particular, as participants always

force log entries before sending replies, the coordinator

never needs to resend messages for which replies have
been received. Moreover, log truncation (garbage col-

lection) may occur once all acknowledgment messages

have arrived. Finally, every log entry uniquely deter-

mines a state, and the last log entry determines the

most recent state prior to a failure. Clearly, failures in

the final states (Forgotten for the coordinator and

Committed or Aborted for a participant) do not re-

quire any action. For the remaining states, restart pro-

cedures are as follows:

If the coordinator fails in the Initial or the Collect-

ing state, it simply restarts the protocol in the Initial

state. (Coordinators writing received votes into the log

could recover differently from the Collecting state.) If

it fails in the Committed or in the Aborted state, it re-

sends the decision message to all participants, and

continues waiting for acknowledgments in the previ-

ous state.

If a participant fails in the Initial state it did not yet

participate in the 2PC protocol and is free to decide

arbitrarily when asked later on. If it fails in the

Prepared state it either waits for the coordinator to

announce the decision or actively queries the coordi-

nator or other participants for the decision.

In addition to these restart procedures, coordina-

tor and participants also need to be able to recover

from message losses. To this end, standard timeout

Two-Phase Commit Protocol. Figure 4. Actions for

transaction abort in the presumed-abort variant.

3212T Two-Phase Commit Protocol
mechanisms are employed: Whenever a message is

sent, a timer starts to run. If the timer expires before

an appropriate answer is received, the message is

simply resent (assuming that either original message

or answer are lost; e.g., if the coordinator is missing

some votes in the Collecting state, it resends a prepare

message to every participant that did not answer in

time). Finally, if repeated timeouts occur in the Col-

lecting state the coordinator may decide to abort the

transaction globally (as if an “Abort” vote was

received), and a participant may unilaterally abort

the transaction in the Initial state if no prepare mes-

sage arrives.

Hierarchical and Flattened 2PC

New participants enter the 2PC protocol whenever

they receive requests (e.g., to execute SQL statements)

from already existing participants. In such a situation,

the new participant can be regarded as child node of

the requesting participant, and all such parent-child

relationships form a participant tree with the transac-

tion’s initiator as root node. To execute the 2PC proto-

col, that tree may either be used directly or flattened as

explained in the following.

For the flattened 2PC, one node in the participant

tree, e.g., the root node, is chosen as coordinator, and

this coordinator communicates directly with every

participant contained in the tree to execute the basic

2PC protocol as described above. In contrary, in case

of the hierarchical 2PC, the root node acts as global

coordinator, the leaf nodes are ordinary participants,

and the inner nodes are participants with respect to

their parents as well as sub-coordinators for their

children. Thus, when an inner node receives a 2PC

message from its parent, the inner node first has to

forward the message to its children before it responds

on behalf of the entire subtree. For example, a prepare

message is forwarded down the tree recursively, and an

inner node first waits for all votes of its children before

it decides, write a log entry, responds with a vote to the

parent, and makes a transition to the Prepared (if all

children voted to commit) or Aborted state.

Optimizations

As the 2PC protocol involves costly operations such as

sending messages and forcing log entries, several opti-

mizations of the basic protocol have been proposed. In

the following the most common variants based on
presumption are sketched; further details and techni-

ques such as real-only subtree optimization, coordina-

tor transfer, and three-phase commit (3PC) to reduce

blocking are presented in [8].

The key idea for presumption based optimizations

is to write less log entries and send fewer messages in a

systematic way such that in case of a failure the missing

information can be compensated for by suitable pre-

sumptions concerning the transaction’s state. As the

basic protocol described above is not based on any

presumptions, it is also called presumed-nothing proto-

col. In contrast, in the presumed-abort protocol, which

aims to optimize the case of aborted transactions, the

essential idea is to omit certain information con-

cerning transaction aborts. If that information is need-

ed but absent later on, abort is presumed. In fact, for

the presumed-abort protocol the following informa-

tion is omitted:

� The Coordinator’s begin and abort log entries are

omitted.

� The participants’ abort log entries are not forced.

� Participants do not send acknowledgment mes-

sages before entering the Aborted state.

The actions required in case of a transaction abort are

summarized in Fig. 4, which indicates significant

Two-Phase Commit Protocol T 3213
savings when compared with the actions for the basic

protocol shown in Fig. 3. In the presumed-abort vari-

ant, if a participant fails after receiving the abort deci-

sion from the coordinator and restarts without finding

a log entry, it queries the coordinator for the decision.

As the coordinator does not find the appropriate log

entry (which has never been written) it presumes that

the transaction should be aborted and informs the

participant accordingly, which leads to a globally con-

sistent decision.

Alternatively, in the presumed-commit protocol,

which aims to optimize the case of committed transac-

tions, the following information is omitted:

� The participants’ commit log entries are not forced.

� Participants do not send acknowledgment mes-

sages before entering the Committed state.

The actions required in case of a transaction commit

are summarized in Fig. 5, which again indicates signif-

icant savings in comparison to the basic protocol

shown in Fig. 3. In this variant, log entries of com-

mitted transactions can be garbage collected as missing

transactions are presumed to have committed. Thus, if

a participant fails after receiving the commit decision

from the coordinator and restarts without finding a log

entry, it queries the coordinator for the decision. If the

coordinator does not find any log entry it presumes
Two-Phase Commit Protocol. Figure 5. Actions for

transaction commit in the presumed-commit variant.
that the transaction has committed and informs the

participant accordingly, which leads to a globally con-

sistent decision.

Key Applications
While there is no single key application for the

2PC protocol, it is applicable wherever decentralized

data needs to be shared by multiple participants

under transactional guarantees, e.g., in e-commerce or

e-science settings. More specifically, the 2PC protocol

is widely implemented in database systems (commercial

as well as open source ones), TP monitors, and message

queue systems, where it is used in the background to

provide atomicity for distributed transactions. In addi-

tion, the XA interface [7] for the protocol,more precisely

for the hierarchical presumed-abort variant, has been

adopted in the CORBA Transaction Service specified

by the OMG [5] and is used as basis for the Java Trans-

action API (JTA) [6]. Furthermore, the 2PC protocol

is also part of the Web Services Atomic Transaction

specification [1] to enable the interoperable atomic com-

position of Web Service invocations.

Cross-references
▶ACID Properties

▶Distributed Transaction Management

▶ Logging and Recovery

▶Transaction

▶Transaction Management
T

Recommended Reading
1. Cabrera L.F. et al. Web services atomic transaction, 2005.

2. Gray J. Notes on database operating systems. In Operating

Systems: An Advanced Course. Lecture Notes in Computer

Science. R. Bayer, M.R. Graham, G. Seegmüller (eds.). 60,

Springer, Berlin Heidelberg New York, 1978, pp. 393–481.

3. Gray J. and Reuter A. Transaction processing: concepts and

techniques. Morgan Kaufmann, San Francisco, CA, 1993.

4. Lampson B.W. and Sturgis H. Crash recovery in distributed data

storage systems. Technical Report, Xerox Palo Alto Research

Center, Palo Alto, CA.

5. OMG Transaction Service, version 1.4. http://www.omg.org/

technology/documents/formal/transaction_service.htm, 2007.

6. Sun Microsystems. Java Transaction API (JTA). http://java.sun.

com/jta/; http://java.sun.com/jta/, 2007.

7. The Open GROUP Distributed Transaction Processing: The XA

Specification. X/Open Company Ltd, ISBN 1 872630 24 3, 1991.

8. Weikum G. and Vossen G. Transactional information systems –

theory, algorithms, and the practice of concurrency control and

recovery. Morgan Kaufmann, San Francisco, CA, 2002.

http://www.omg.org/technology/documents/formal/transaction_service.htm
http://www.omg.org/technology/documents/formal/transaction_service.htm
http://java.sun.com/jta/
http://java.sun.com/jta/
http://java.sun.com/jta/

3214T Two-Phase Locking
Two-Phase Locking

GEORG LAUSEN

University of Freiburg, Freiburg, Germany

Synonyms
Locking protocol; Isolation; Conflict serializability;

Pessimistic scheduler

Definition
A locked transaction is a transaction which, in addition

to read and write actions, contains lock and unlock

operations to the data items. Lock and unlock opera-

tions enable a database system to control the order of

read and write actions of a concurrent set of transac-

tions. A locking policy is a set of rules which restrict the

possible ways to introduce lock and unlock operations

into a transaction. A locking policy is safe, if, whenever

all the transactions conform to the policy, any history

of the transactions is guaranteed to be serializable.

Two-Phase Locking is a safe locking policy which is

based on the simple rule saying a transaction is not

allowed to further lock a data item once it has already

unlocked some data item.

Historical Background
Two-Phase Locking was first described in [6]. Later

the basic policy has been extended into several direc-

tions. In [1] ordered sharing of locks is proposed

which allows more than one transaction to hold a

lock on a data item as long as the actions are performed

in the same order as the locks have been acquired.

Altruistic locking has been proposed by [10]. A trans-

action may allow other transactions to access data

items it has locked if it will not access these items

later again. This protocol is designated to situations

in which long and short transactions are running con-

currently. Two-Phase Locking taking old values of a

data item into account is described in [2]. Also hybrid

protocols have been proposed which allow to apply

other techniques than Two-Phase Locking simulta-

neously [5,8].
Foundations
Locking protocols are among the earliest mechanisms

which have been developed for controlling a set of

transactions to achieve serializability. The reason is
not surprising, as locking is a very intuitive means

to control transactions: the processing of an action

may be either immediately allowed or delayed. Using

locking, the critical actions for serializability are all

those, whose order of processing might influence the

effects of the transactions and thereby affect serial-

izability. Such actions are called conflicting. Read and

write actions are conflicting, whenever they refer to

the same data item and at least one of them is a write

action. The notion of serializability which is appli-

cable under these assumptions is called conflict-

serializability.

For the following, a database is a finite set D = {x, y,

z,...} of disjoint data items. A transaction t = (opt, <t)

consists of a set of steps opt which are assumed to be

totally ordered by <t. Read actions r(x) and write

actions w(x) are steps, where x is the data item on

which the respective action is processed. A history s of

a set T of concurrent transactions is a pair s = (ops,<s),

where ops = [t2Topt and <s is a total order on the steps

in ops which preserves <t for t 2 T. <s also is called an

interleaving of the transactions in T. For notational

simplicity, total orders <t and <s, t 2 T, s a history of

T, are also written as action sequences, where the total

order is defined by considering a sequence from left to

right. A history is called serializable, if it is equivalent to a

serial, i.e., not interleaved history of the same set of

transactions.

The decision whether or not a history is serializable

can be based on an analysis of a so called conflict graph

whose definition is based on the relative order of

conflicting actions. Let s = (ops, <s) be a history of a

set of transactions T. The conflict graph C(s) is a

directed graph with set of nodes T and edges ti ! tj,

i 6¼ j, whenever one of the following conditions is

fulfilled:

RW� conflict: riðxÞ 2 opi;wjðxÞ 2 opj ;riðxÞ<s wjðxÞ
and for all wkðxÞ 2 ops; i 6¼k; j 6¼k;
there either holds wkðxÞ<s r iðxÞ
or wjðxÞ<s wkðxÞ;

WR� conflict: wiðxÞ 2 opi;rjðxÞ 2 opj ; wiðxÞ<s r jðxÞ
and for all wkðxÞ 2 ops; i 6¼k; j 6¼k;
there either holds wkðxÞ<s wiðxÞ
or r jðxÞ<s wkðxÞ;

WW� conflict: wiðxÞ 2 opi; wjðxÞ 2 opj ; wiðxÞ<s wjðxÞ
and for all wkðxÞ 2 ops; i 6¼k; j 6¼k;
there either holds wkðxÞ<s wiðxÞ
or w jðxÞ<s wkðxÞ:

:

Two-Phase Locking T 3215

T

It is well known (e.g., [9,12]), whenever the conflict

graph of a history is acyclic, then the history is serial-

izable. However, this condition is not necessary, there

may exist histories whose conflict graph is cyclic and still

these histories are serializable. In practice, such histories

are considered to be not of interest and, as a conse-

quence, as correctness notion conflict-serializability

(CSR) is used:

CSR :A history is conflict� serializable if and

only if its conflict graph is acyclic:

To keep the terminology simple, instead of conflict-

serializability the notion of serializability will be used

in the sequel. The serializability of a history s = (ops,<s)

of a set of transactions T depends on the relative

ordering of the conflicting actions of the involved

transactions. Consider two transactions t, t’. Let t,

among others, contain actions p, q and t0actions p’, q’.
Now assume that p and p0are in conflict and q and q0as
well. Let further p <s p

0and q0<s q. s is not serializable

as the conflict graph C(s) contains the cycle t! t0! t.

This means that there cannot exist a serial schedule s∗

containing t and t0 with the same order on the

conflicting actions. For such a schedule s∗, either

p<s�p
0 and q<s�q

0, or p0<s�p and q0<s�q; both or-

derings are not compatible to <s. So why not enforce

q<s q
0once p<s p

0 has occurred? Thismeans to ask for a

transaction scheduler who is able to enforce certain

relative orderings of conflicting actions such that not

serializable orderings cannot occur. Two-Phase Locking,

which is called 2PL for brevity in the sequel, is the most

widely used technique which can be used to control the

concurrent execution of transactions in a way which

guarantees serializability.

To control a concurrent set of transactions 2PL

uses lock and unlock operations. A locked transaction

t = (opt, <t) is a transaction which, in addition to the

read and write actions, contains lock operations Lx and

unlock operations Ux, where Lx, Ux 2 opt and <t is a

total order as before, however now ordering locks and

unlocks as well. For a locked transaction t = (opt,<t),

whenever p 2 opt, p 2{ r(x), w(x)}, the following con-
ditions must hold: (i) Lx, Ux 2 opt, (ii) Lx <t Ux

and (iii) Lx <t p <t Ux.

Let t = r(x)w(x)r(y)w(y) be a transaction without

any lock and unlock operations. Under the above con-

ditions, there still exist many ways to insert lock
and unlock operations into t, as it is demonstrated

by the following examples:

ðaÞLx rðxÞ wðxÞ Ux Ly rðyÞ wðyÞ Uy;
ðbÞLx rðxÞ wðxÞ Ly Ux rðyÞ wðyÞ Uy;
ðcÞLx rðxÞ wðxÞ Ly rðyÞ wðyÞ Ux Uy;

ðdÞLx Ly rðxÞ wðxÞ Ux rðyÞ wðyÞ Uy;
ðeÞLx Ly rðxÞ wðxÞ rðyÞ wðyÞ Ux Uy:

ð1Þ

The idea of a lock operation Lx and the correspond-

ing unlock operation Ux is to grant a transaction t

the right of an exclusive access to data item x for the

interval defined by the time of the processing of the lock

and the processing of the succeeding unlock operation.

The decision whether or not a lock can be granted

typically is based on a so called lock table L. Starting
from an empty table L, a lock operation Lx can only

then be granted to a transaction t, if L does not contain

an entry with respect to x. In that case (x, t) is inserted

into L. Otherwise transaction t has to wait until the

condition is fulfilled. When later t processes the

corresponding unlock operation Ux, the entry (x, t)is

deleted from the lock table L. Therefore, for any history
s of locked transaction the following condition on

locks and unlocks (LUL) must hold, where t1, t2 2 T:

LUL : If L1 x<s L2 x; thenU1 x<s L2 x:

Locking by itself does not guarantee serializability.

Consider the two transactions t1, t2:

t1 : L1x r1ðxÞ w1ðxÞ U 1x L1y r1ðyÞ w1ðyÞ U 2y;

t2 : L2x L2y r2ðxÞ w2ðxÞ r2ðyÞ w2ðyÞ U 2x U 2y;

and a history s representing an interleaving of t1 and t2:

s :L1x r1ðxÞ w1ðxÞ U 1x L2x L2y r2ðxÞ
w2ðxÞ r2ðyÞ w2ðyÞ U 2x U 2y L1y r1ðyÞ w1ðyÞ U 1y:

This schedule is not serializable; w1(x) <s r2(x) and

w2(y) <s r1(y) force a cycle t1! t2! t1 in the conflict

graph which contradicts serializability. Therefore, rules

are needed which define how locks and unlocks should

be introduced into the single transactions such that,

whatever other transactions are running concurrently,

serializability is guaranteed. In other words, a locking

policy has to be introduced. The most widely used

locking policy is called Two-Phase Locking (2PL) and

is expressed by the surprisingly simple sentence:

3216T Two-Phase Locking
2PL :Whenever a transaction t has executed its

first operation;no further lock operations

of t are allowed:

All except the first transaction listed in (1) perfectly

obey 2PL. The remaining four locked versions (b) – (e)

implement different strategies for locking. Transaction

(b) unlocks x as early as possible and locks y as late as

possible. It therefore tries to minimize delay of other

transactions by keeping the intervals of locked data

items as small as possible. At a first glance, this seems

to be an attractive approach. However, because of the

early unlocking, another transaction may read

the value written of x before the transaction has fin-

ished. Reading values of data items from transactions

which have not yet reached their end is highly

problematic for recovery reasons. Only after a transac-

tion has executed its final commit successfully, a data-

base system guarantees that the effects of the respective

transactions are permanent and will survive system

and transaction failures. Version (c) behaves more

carefully and keeps all data items locked until the

end of the transaction. The remaining versions (d)

and (e) lock all data items in advance and unlock either

as early as possible, respectively at the end of the

transaction. Taking the possibility of failures into

account, only versions (c) and (e) are acceptable. In

practice, locks are kept until to the end of a transaction

giving rise to the notion of strict 2PL. The

following theorem states that 2PL indeed is a safe lock-

ing policy:

Theorem: Let T be a set of transactions. If all t 2 T

obey 2PL, then any history of the transactions in T is

serializable.

Proof: For any t 2 T, the lock point of t is defined as

t’s last lock operation. Now consider a history s of the

transactions in T such that all t 2 T obey 2PL. Under

the assumption, that s is not serializable, a contradic-

tion to 2PL can be derived thereby proving serializ-

ability of s which in turn proves the theorem.

If s is not serializable, then the conflict graph of <s

contains a cycle, which, without loss of generality, is of

the form t1 ! t2 !. . . ! tk ! t1. An edge t ! t0can
only then be part of the cycle, when there exists a data

item x such that t and t0perform conflicting actions on

x. As all transactions use locks, transaction t0can only

then execute its action on x, after t has processed the

unlock Ux. Before processing the respective action on
x, t0 has to lock x. Applying this observation on all edges
of the cycle the following restrictions on the order

<s can be concluded, where x1,...,xk are data items:

U 1x1<s L2x1;

..

.

Uk�1xk�1<s Lkxk�1;
Ukxk<s L1xk:

Let li be the lock point of transaction ti, 1� i� k. From

the structure of <s it follows l1 <s l2,...,lk�1 <s lk and lk
<s l1. Therefore it holds l1 <s l1, which is a contradic-

tion to the total order <s.

2PL is optimal in the sense that for any locked

transaction t1 which does not follow 2PL, a locked

transaction t2 can be constructed such that for T =

{t1,t2} there exists a history which is not serializable.

Consider the lock and unlock operations of t1 be

given by L1x<t1 U 1x<t1 L1y<t1U 1y and the lock

and unlock operations of t2 be given by

L2x<t2 L2y <t2 U 2y <t2 U 2x. t2 follows the 2PL policy,

however t1 does not. If both transactions are running

concurrently, then the following order of locks and

unlocks being part of a history s may happen:

L1x<s U 1x<s L2x<s L2y<s U 2y<s U 2x<s L1y<s U 1y:

Obviously, if between any pair of lock and unlock

operations Lx, Ux and Ly, Uy there exist read and

write actions to the respective data items, conflicts

happen and history s is not serializable. Therefore,

t1 has also to follow 2PL when serializability has

to be guaranteed for arbitrary sets of transactions T,

t1 2 T.

However, optimality in the above sense does not

imply that in every serializable history of transactions

without locks and unlocks, locks and unlocks can be

inserted according to 2PL in a way not violating LUL.

Consider a serializable history s of T = {t1,t2,t3} with

order of actions

r1ðxÞ<s r2ðxÞ<s w2ðxÞ<s r3ðyÞ<s w3ðyÞ<s w1ðyÞ:

It is impossible to insert lock and unlock opera-

tions into the transactions in T such that any t 2 T

obeys 2PL and s fulfills LUL. Because of r1(x) <s r2 (x)

it must hold U1x <s L2 x and because of 2PL it must

hold L1y <s U1 x. However, as w1(y) <s U1y, this

implies L1y <s r3(y) <s w3(y) <s U1y. Therefore, either

L3y<s L1y<s U3y, or L1y<s L3y<s U1y. Both orderings

Two-Phase Locking T 3217

T

contradict the basic locking condition LUL. Therefore,

2PL is a safe locking policy, however some serializable

histories of a set of transactions Tmay be excluded. In

other words, 2PL can only accept a strict subset of the

set of all serializable histories, in general.

The model for locking presented so far is overly

restrictive, as it does not distinguish between read

and write actions. Serializability of a history is only

then an issue, when some of the involved transactions

modify the database, i.e., perform write actions.

Therefore, when locking it should be possible to

distinguish between locks for read actions LRx and

locks for write actions LWx. If a transaction reads

and writes a data item x, then a single write lock is in

order. It should be possible that arbitrarily many trans-

actions may lock a data item for reading as long as

there is no concurrent transaction writing the

same data item. For any history s of locked transaction

t1,t2 2 T the following conditions on locks and unlocks

(LULRW) must hold, which do not impose any restric-

tions on the ordering of read locks L1
Rx and L2

Rx:

LULRW :
IfLR1 x <s L

W
2 x; then U1x <s L

W
2 x:

IfLW1 x <s L
R
2 x; then U1x <s L

R
2 x:

IfLW1 x <s L
W
2 x; then U1x <s L

W
2 x:

When locking is used, deadlocks may occur. Consider

transactions t1, t2 as follows: t1 = L1x r1(x) L1y w1(y)

U1x U1y and t2 = L2y r2(y) L2x w2(x) U2y U2x. A prefix

s0of a history s cannot be continued to a complete

history containing all the steps of t1 and t2, if, for

example, L1x <s’ L2y and s0does not contain U1x. To

complete the prefix, L2x and also L1y have to be con-

sidered for <s. However this is not possible, because

otherwise the condition LUL would be violated. The

problem of deadlocks is inherent to locking and practical

systems solve deadlocks by aborting one of the involved

transactions [12].

The transaction model abstracts away many aspects

of real transactions running in practical systems. In

particular, transactions are defined explicitly by a set

of steps and not by a program whose concrete execu-

tion on a certain state of the database will define the

transaction. Assume a program to process all data

items which fulfill a certain predicate p. A transaction

t resulting from executing the program will read all

data items for which p is true. To guarantee serial-

izability, in advance to reading such a data item, the

item has to be locked. If concurrently, however later
before t has finished, another transaction t0inserts a

new data item x into the database which also fulfills

predicate p, t has neither read nor locked x. In such

situations serializability cannot be guaranteed by 2PL

as described so far, because the relevant set of data

items has not been locked by t. This problem is

known as the phantom problem. Practical systems

have found ways to live with phantoms. Instead of

only locking data items, locking is applied on the

set of objects fulfilling a predicate, on complete rela-

tions or index intervals.

Key Applications
For organizations of any kind database systems have

become indispensable to maintain the operational

data. Applications in this context typically are domi-

nated by a potentially huge number of rather short

transactions. In such a setting, commonly called online

transaction processing (OLTP), reliable and efficient

processing of transactions is required. 2PL has become

a de facto standard in database systems for OLTP

applications. However, 2PL is based on blocking trans-

actions and therefore system throughput may be se-

verely affected by the locking protocol. Fortunately,

over the years several guidelines have been developed

[3,7,11] which help a database administrator to tune

the programming of the transactions and the imple-

mentation of 2PL in a way such that the requisite

efficiency of the overall system can be achieved.

Cross-references
▶ACID Properties

▶Concurrency Control – Traditional Approaches

▶ Locking Granularity and Lock Types

▶Multi-Version Serializability and Concurrency Control

▶ Serializability

▶ SQL Isolation Levels

▶Transaction Chopping

▶Transaction Models – The Read/Write Approach

Recommended Reading
1. Agrawal D. and Abbadi A.E. Constrained shared locks for

increased concurrency in databases. J. Comput. Syst., Sci.51:(1)

53–63, 1995.

2. Bayer R., Heller H., and Reiser A. Parallelism and recovery in

database systems. ACM Trans. Database Syst., 5:(2)139–156,

1980.

3. Bernstein P.A. and Newcomer E. Principles of Transaction

Processing for Systems Professionals. Morgan Kaufmann,

San Francisco, CA, 1996.

3218T Two-Poisson model
4. Bernstein P.A., Shipman D.W., and Wong W.S. Formal Aspects

of Serializability in Database Concurrency Control. IEEE Trans.

Software Eng., SE-5:203–215, 1979.

5. Boral H. and Gold I. Towards a Self-adapting Centralized Con-

currency Control Algorithm. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1984, pp. 18–32.

6. Eswaran K.P., Gray J.N., Lorie R.A., and Traiger I.L. The notion

of consistency and predicate locks in a database system. Com-

mun. ACM, 19:624–633, 1976.

7. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

8. Lausen G. Concurrency Control in Database Systems: A Step

towards the Integration of Optimistic Methods and Locking.

In Proc. ACM Annual Conf., 1982, pp. 64–68.

9. Papadimitriou C.H. The Serializability of Concurrent Database

Updates. J. ACM, 26:631–653, 1979.

10. Salem K., Garcia-Molina H., and Shands J. Altruistic locking.

ACM Trans. Database Syst., 19:(1)17–165, 1994.

11. Shasha D. Database Tuning – A Principled Approach. Prentice-

Hall, USA, 1992.

12. Weikum G. and Vossen G. 1Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control and

Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Two-Poisson model

GIAMBATTISTA AMATI

Ugo Bordoni Foundation, Rome, Italy,

Synonyms
Harter’s model; Probabilistic model of indexing

Definition
The 2-Poisson model is a mixture, that is a linear

combination, of two Poisson distributions:

ProbðX ¼ tfÞ ¼ a
ltfe�l

tf !
þ ð1� aÞ m

tfe�m

tf !
½0 � a � 1�

In the context of IR, the 2-Poisson is used to model the

probability distribution of the frequency X of a term in

a collection of documents.

Historical Background
The 2-Poisson model was given by Harter [5–7], al-

though Bookstein [2,1] and Harter had been exchang-

ing ideas about probabilistic models of indexing

during those years. Harter coined the word “elite” to

introduce his 2-Poisson model [5, pp. 68–74].
The origin of the 2-Poisson model can be traced

back through all Luhn, Maroon, Damerau, Edmund-

son and Wyllys [3,4,5,6]. The first accounts on Poisson

distribution modeling the stochastic behavior of

functional words were given by Stone, Rubinoff

and Damerau [3,11]. Stone, Rubinoff and Damerau

observed that the words that have only a functional

role in the text, can be modeled by a Poisson

distribution.
Foundations
The 2-Poisson model is a probabilistic model of

indexing, rather than a document retrieval model.

The purpose of Harter’s work is to identify the key-

words likely to be informative for an arbitrary docu-

ment that can be selected to build an index for a

collection. Such words are called specialty words by

Harter in contraposition to the other ones, the non-

specialty ones, which instead are considered to occur at

random in documents. In the works by Luhn, Maroon,

Damerau, Edmundson and Wyllys it was observed that

the divergence between the rare usage of a word across

the document collection and the contrasting relative

within-document frequency constitutes a revealing in-

dication of the informative status of a word. Damerau

suggests selecting the class of high status words of the

index by making the assumption that Poisson distri-

bution describes frequencies of words that are in the

complementary class. If the Poisson probability of a

term within a document is very small, then the word is

marked as an index term. Obviously, not all words

clearly fall either into one class or into the other. But

nonetheless, many word tokens occur randomly in

many documents while the same word tokens occur

more densely and nonrational in a few documents.

This set of documents called the Elite set of the term

t is very likely to be the set of documents which

extensively connects with the concept or the semantics

related to the term. The Elite set Et attracts the tokens

with an expected rate lEt . Tokens fall randomly into

the other documents with a lower rate lEt . The

final probability of occurrence of the term in any

document is given by the mixture of these two Poisson

distributions:

ProbðX ¼ tfÞ ¼a: e
�lEt ltfEt
tf!

þ ð1� aÞ:
e
�l

Etltf
Et

tf!
ð1Þ

Two-Poisson model T 3219

T

The probability of term t to appear tf times in a

document d belonging to the Elite set Et is given by

the conditional probability

Probðd 2 EtjX ¼ tfÞ ¼ ProbðX ¼ tf ; d 2 EtÞ
ProbðX ¼ tfÞ

¼ a � e
�lEt ltfEt
tf!

a � e
�lEt ltfEt
tf!
þ ð1� aÞ� e

�l
Et ltf

Et

tf!

ð2Þ
Thus, in the case that the word belongs to the non-

specialty class:

Probðd 2 EtjX ¼ tfÞ ¼ 1

1þ b � e lEt�lEtð Þ l
Et

lEt

� tf
ð3Þ

where b ¼ 1�a
a . The conditional probability of (3) is

used by Harter to generate a ranking of the most

informative words. However, the 2-Poisson model

requires the estimation of three parameters for each

word of the vocabulary, and this is a real drawback for

any direct practical application of his model to term

selection or term-weighting problems.

A last remark concerns the N-Poisson model, the

generalization of the 2-Poisson model. Any probability

distribution on (0,1) can be defined as a mixing dis-

tribution of Poisons [10]. Therefore, it is true that every

word follows a N-Poisson distribution for some N.

N-Poisson models thus have a practical application

only when N is small, that is the 2-Poisson model or

the 3-Poisson model.

The 2-Poisson is illustrated with an example. A

collection of ten documents contains a word t occur-

ring respectively 4, 5, 6, 0, 1, 2, 0, 0, 0, 0 times within

these ten documents, the first three documents having

the highest frequency of term in the collection. A useful

image for this configuration could be that the first

three documents constitute an elite or special subset

of documents for the term. Then, these data are fitted

to the 2-Poisson model using the Expectation Maximi-

zation (EM) algorithm. To set the initial values a0,
l0 and m0 for the first step of the EM algorithm

the assumption is that there is a Poisson distribution

generating the frequency in the elite set of the word,

with a mean term-frequency m̂0 ¼ 4þ5þ6
3
¼ 5, and a

second Poisson distribution generating the term-

frequency in the rest of the collection with
l̂0 ¼ 0þ1þ2þ0þ0þ0þ0
7

¼ 0:4287. Observe that the elite

set is 3
10
¼ 0:3333 of the entire collection, and thus

â0 ¼ 0:3333 is initially set. Finally, the EM algorithm

converges to the values â ¼ 0:35, m̂ ¼ 4:5 and l̂ ¼ 0:54

with a confidence of 0.99. The probability that a docu-

ment d belongs to the Elite set of a term occurring tf

times in d is

Probðd 2 EtjX ¼ tfÞ ¼ 1

1þ 1:86 � e3:960:12tf

Key Applications
The 2-Poisson model is at the basis of two types of

probabilistic models of IR: the BM25 model and the

Divergence From Randomness models.

Cross-references
▶BM25

▶Divergence from Randomness Models

Recommended Reading
1. Bookstein A. and Kraft D. Operations research applied to docu-

ment indexing and retrieval decisions. J. ACM, 24(3):418–427,

1977.

2. Bookstein A. and Swanson D. Probabilistic models for automatic

indexing. J. Am. Soc. Inform. Sci., 25:312–318, 1974.

3. Damerau F. An experiment in automatic indexing. Am. Doc.,

16:283–289, 1965.

4. Edmundson H.P. and Wyllys R.E. Automated abstracting and

indexing–survey and recommendations. Commun. ACM,

4(5):226–234, May 1961. Reprinted in Readings in Information

Retrieval, pp. 390-412. H. Sharp (ed.). New York, NY: Scarecrow;

1964.

5. Harter S.P. A probabilistic approach to automatic keyword

indexing. PhD thesis, Graduate Library, The University of

Chicago, Thesis No. T25146, 1974.

6. Harter S.P. A probabilistic approach to automatic keyword

indexing. part I: On the distribution of specialty words in a techni-

cal literature. J. American Soc. for Inf. Sci., 26:197–216, 1975.

7. Harter S.P. A probabilistic approach to automatic keyword

indexing. part II: An algorithm for probabilistic indexing.

J. American Soc. for Inf. Sci., 26:280–289, 1975.

8. Luhn H.P. A statistical approach to mechanized encoding and

searching of literary information. IBM Journal of Research and

Development, 1:309–317, 1957.

9. Maron M.E. Automatic indexing: an experimental inquiry.

J. ACM, 8:404–417, 1961.

10. Puri P.S. and Goldie C.M. Poisson mixtures and quasi-infinite

divisibility of distributions. J. Appl. Probab., 16(1):138–153,

1979.

11. Stone D. and Rubinoff B. Statistical generation of a technical

vocabulary. Am. Doc., 19(4):411–412, 1968.

3220T Two-Sorted First-Order Logic
Two-Sorted First-Order Logic

▶Temporal Relational Calculus
Type Theory

▶Data Types in Scientific Data Management
Type-based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Definition
Type-based publish/subscribe is an instance of the pub-

lish/subscribe concept, where publications are instances

of application-defined types, subscriptions express in-

terest in receiving publications of a specified type or

sub-type, and publish/subscribe matching amounts to

type conformance checking.

Key Points
The characterization of the type-based publish/sub-

scribe class originated in the programming languages

context with the objective of bridging the impedance

mismatch in the integration of publish/subscribe

abstractions into programming languages. For exam-

ple, the representation of subscriptions as strings that

are parsed, checked, and processed at runtime by the

underlying publish/subscribe implementation, are fre-

quent sources of errors that materialize too late

due to the inability to properly type check the sub-

scription string at the language level. To enable static
type checking, type-based publish/subscribe includes

subscriptions and publications as first class citizens

into the language.

Publications become instances of language types.

Arbitrary composite types, subject to the type definition

capabilities of the host language, can be used to model

application-defined events. Subscribers express interest

in receiving publications of a specified type. Matching of

publications against subscriptions amounts to type con-

formance checking. That is a publication matches a

subscription, if the type of interest specified by a sub-

scription conforms to the type of a publication, for some

definition of type conformance. Matching is based on

type determination, sub-type checking, and is-instance-

of type checks. This is similar to topic-based publish/

subscribe matching, except that a type is more general

than a topic. Moreover, types may support operations

that can model content-based predicates as tests on

the instances of types. In this sense, type-based publish/

subscribe can model content-based processing.

Several standards, such as the OMG Notification

Service [2] and the OMG Data Dissemination Service

[3] exhibit elements of type-based publish/subscribe,

but do not directly follow the prescription of the type-

based publish/subscribe model. The characterization

of type-based publish/subscribe can be found in [1].
Cross-references
▶ Publish/Subscribe

▶Topic-Based Publish/Subscribe
Recommended Reading
1. Eugster P. Type-based publish/subscribe: concepts and experi-

ences. ACM Trans. Program. Lang. Syst., 29(1):6, 2007.

2. MG. Notification Service Specification, version 1.1, formal/04–

10–11 edition, October 2004.

3. MG. Data Distribution Service for Real-time Systems, version

1.2, formal/07–01–01 edition, January 2007.

	T
	Table
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Table Design
	Table Normalization
	Tabular Data
	Synonyms
	Definition
	Key Points
	Cross-references

	Tamper-Proof Hardware
	Tape Libraries
	Tapes
	Task
	Taxonomies
	Taxonomy: Biomedical Health Informatics
	Synonyms
	Definition
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Telic Distinction in Temporal Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Semantics
	Example

	Key Applications
	Cross-references
	Recommended Reading

	Telos
	Definition
	Historical Background
	Foundations
	Propositions
	Organizing Propositions
	Interacting with Telos Knowledge Bases
	Metaclasses
	Integrity Constraints and Deductive Rules
	Language Extensibility Through Metaclasses and Integrity Constraints
	Query Languages for Telos
	Temporal Knowledge in Telos
	Telos and RDF

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Temporal Access Control
	Synonyms
	Definition
	Historical Background
	Foundations
	TAM: Temporal Authorization Model
	TDAM: Temporal and Derived data Authorization Model
	TRBAC: Temporal Role Based Access Control Model
	GTRBAC: Generalized Temporal Role Based Access Control Model

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Aggregation
	Definition
	Historical Background
	Foundations
	Defining Temporal Aggregation
	Temporal Aggregation Processing Techniques
	Two Scans
	Aggregation Tree
	Balanced Tree
	SB-Tree
	MVSB-Tree
	MDTA

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Algebras
	Synonyms
	Definition
	Historical Background
	Foundations
	Temporal Algebra Basics
	Algebras for Tuple Timestamping
	Algebras for Attribute Timestamping
	Valid-time and Transaction-time Algebras
	Bitemporal Relational Algebras

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Assignment
	Temporal Association Mining
	Temporal Coalescing
	Definition
	Historical Background
	Foundations
	Implementing Temporal Coalescing

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Compatibility
	Definition
	Historical Background
	Foundations
	Motivation
	Upward Compatibility
	Temporal Upward Compatibility
	Snapshot Reducibility
	Sequenced Semantics

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Conceptual Models
	Definition
	Historical Background
	Foundations
	Motivating Example
	Syntactics
	Semantics
	Pragmatics
	Internal Representation
	Snapshot Reducibility
	Upward Compatibility

	Summary

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Temporal Constraints
	Definition
	Historical Background
	Foundations
	Conjunctions of Constraints
	Labeled Directed Graphs
	Difference Bound Matrices

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Data Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification and Clustering
	Prediction
	Association Analysis and Extraction of Sequence Patterns
	Temporal, Cyclic, and Calendric Association Rules

	Key Applications
	Weather Forecasting
	Market Basket Analysis
	Stock Market Prediction
	Web Data Mining

	Cross-references
	Recommended Reading

	Temporal Data Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Levels of Abstraction
	Temporal Aspects of Data
	Representation of Time
	Data Model Objects
	Query Languages

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Data Warehousing
	Temporal Database
	Synonyms
	Definition
	Historical Background
	Foundations
	General Concepts

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Dependencies
	Definition
	Historical Background
	Foundations
	Functional Dependencies Over Temporal Databases
	Definition

	Vianu's Dynamic Functional Dependency [7]
	Definition

	Temporal Extensions of Functional Dependency Proposed by Wijsen [9, 10, 11, 12]
	Definition
	Definition

	Wang et al.'s Temporal Functional Dependency [8]
	Definition
	Definition
	Definition

	Constraint-Generating Dependencies [1]
	Dynamic Algebraic Dependencies [2]
	Definition

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Domain
	Temporal Element
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Evolution
	Temporal Expression
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Generalization
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Granularity
	Synonyms
	Definition
	Historical Background
	Foundations
	Definitions
	Granularity Relationships
	Defining New Granularities through Algebraic Operators

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Temporal Homogeneity
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Indeterminacy
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Temporal Information Retrieval
	Temporal Integrity Constraints
	Synonyms
	Definition
	Historical Background
	Foundations
	1. Defining Temporal Integrity
	1.1 Temporal, Transition, and Static Constraints
	1.2 Different Notions of Consistency
	1.3 Expressiveness of Temporal Constraints
	1.4 Constraints on Interval-stamped Temporal Data

	2. Checking and Enforcing Temporal Integrity

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Joins
	Definition
	Historical Background
	Foundations
	Cartesian Product
	Theta-Join
	Equijoin
	Natural Join
	Outerjoins and Outer Cartesian Products
	Reducibility
	Theorem 1
	Evaluation Algorithms

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Layer
	Temporal Logic
	Temporal Logic in Database Query Languages
	Definition
	Historical Background
	Foundations
	Extensions
	Expressive Power

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Logical Models
	Synonyms
	Definition
	Historical Background
	Foundations
	The Treatment of Time in Database Systems
	Temporal Data Behavior
	Behavioral Properties of Temporal Sequences
	Operation over Temporal Data
	Predicate Operators Over Time Sequences
	Aggregation Operators Over Time Windows
	Aggregation Operators Over Time Sequence Collections
	Composition of Time Sequences
	Combinations of the Above Operators
	Additional Concepts

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Middleware
	Temporal Object-Oriented Databases
	Definition
	Historical Background
	Foundations
	Time and Abstract Data Types
	Temporal Object Data Models
	General OO Models Using OO Concepts for Modeling Temporal Dimensions
	OO Models Having Explicit Constructs for Temporal Dimensions of Data

	Temporal Object Query Languages
	Temporal Object-Oriented Database Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Periodicity
	Definition
	Historical Background
	Foundations
	Deductive Rule-Based Approaches
	Constraint-Based Approaches
	Symbolic Approaches

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Projection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Query Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Language Extension Approaches
	Abstract Data Types for Time
	Use of Point Timestamps
	Syntactic Defaults
	Semantic Defaults

	Additional Characterizations of Temporal Query Languages

	Future Directions
	Cross-references
	Recommended Reading

	Temporal Query Processing
	Definition
	Historical Background
	Foundations
	Functionalities
	The Layered Architecture
	The Monolithic Architecture
	The Extensible Architecture

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Relation
	Temporal Relational Calculus
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Restriction
	Temporal Semi-Structured Data
	Temporal Specialization
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Strata
	Synonyms
	Definition
	Historical Background
	Scientific Fundamentals
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Structure
	Temporal Type
	Temporal Upward Compatibility
	Temporal Vacuuming
	Synonyms
	Definition
	Historical Background
	Foundations
	Formal Vacuuming Specifications
	Space/Storage Requirements
	Approaches to Vacuuming
	Administrative Approaches to Vacuuming
	Application/Query-Driven Approaches

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Value
	Temporal Visual Interfaces
	Temporal Visual Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Temporal Visual Queries
	Temporal XML
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporally Indeterminate Databases
	Temporally Uncertain Databases
	Temporally Weak
	Term Expansion
	Term Expansion Models
	Term Frequency by Inverse Document Frequency
	Term Frequency Normalization
	Term Processing
	Term Proximity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Term Statistics for Structured Text Retrieval
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Term Weighting
	Definition
	Historical Background
	Foundations
	Term Frequency
	Inverse Document Frequency
	Document Length
	Term Weighting Schemes
	TF*IDF
	BM25
	Language Modeling

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Term-Document Matching Function
	Terminologic Languages
	Terminological Database
	Test Collection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Text Analytics
	Text Categorization
	Synonyms
	Definition
	Historical Background
	Foundations
	Document Representation
	Dimensionality Reduction
	Classification Algorithms
	Naïve Bayesian Classifier (NB)
	Support Vector Machine (SVM)

	Performance Measures

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Text Classification
	Text Clustering
	Definition
	Historical Background
	Foundations
	Document Representation
	Text Clustering Algorithms
	Single-Link Clustering
	K-Means Clustering
	Co-Clustering

	Performance Measurements
	Internal Quality Measure
	External Quality Measure

	Key Applications
	Cross-references
	Recommended Reading

	Text Compression
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Text Data Mining
	Text Databases
	Text Extraction
	Text Generation
	Synonyms
	Definition
	Historical Background
	Foundations
	Text Generation System Architecture
	Input and Output
	Architectures

	Key Applications
	Cross-references
	Recommended Reading

	Text Index Compression
	Synonyms
	Definition
	Historical Background
	Foundations
	Inverted Indexes for Full-Text Retrieval
	Searching for Phrases Using Inverted Indexes
	Inverted Indexes for Relevance Ranking

	Key Applications
	Future Directions
	Experimental Results
	URL to Code
	Cross-references
	Recommended Reading

	Text Indexing and Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Indexing Techniques
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Text Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Text Classification
	Text Clustering
	Information Extraction
	Document Summarization
	Key Phrase Extraction
	Topic Detection and Tracking (TDT)
	Opinion Mining

	Key Applications
	Bioinformatics
	Email Spam Filtering
	Business Intelligence

	URL to Code
	Cross-references
	Recommended Reading

	Text Mining of Biological Resources
	Synonyms
	Definition
	Historical Background
	Foundations
	Resources
	Methods

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Text Representation
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Retrieval
	Text Segmentation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Semantic Representation
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Streaming Model
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Recommended Reading

	Text Summarization
	Synonyms
	Definition
	Historical Background
	Foundations
	Extractive Summarization Algorithms
	Unsupervised Methods
	Supervised Methods

	Evaluation

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Text Visualization
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Text/Document Summarization
	Text-based Image Retrieval
	TF*IDF
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	tgd
	Thematic Map
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Theme Algebra
	Thesauri Business Catalogues
	Thiessen Polygons
	Third Normal Form
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Thread Lifecycle
	Three-Dimensional GIS and Geological Applications
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Three-Dimensional Similarity Search
	Three-Phase Commit
	Definition
	Historical Background
	Foundations
	Dynamics of Three-Phase Commit
	Recovery in Three-Phase Commit
	Non-Blocking Commit Protocol Variants
	Other Atomic Commit Protocol Variants and Optimizations

	Key Applications
	Cross-references
	Recommended Reading

	Thresholding
	Tight Coupling
	Synonyms
	Definition
	Key Points
	Cross-references

	Time Aggregated Graphs
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time and Information Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Overview and Motivation
	Time and Timelines
	Temporal Expressions
	Temporal Processing Pipeline
	Document Retrieval

	Key Applications
	Timeline-Based Exploration

	Future Directions
	Cross-references
	Recommended Reading

	Time Dependent Geometry
	Time Distance
	Time Domain
	Synonyms
	Definition
	Historical Background
	Foundations
	Basics
	Temporal Models and Query Languages
	Time Domain and Granularity
	The Association of Time with Data

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Time Granularity
	Time in Philosophical Logic
	Synonyms
	Definition
	Historical Background
	Foundations
	Dynamical and Static Time: A-Theory vs. B-Theory
	Linear vs. Branching Time
	Punctual vs. Durational Time

	Definition
	Time and Narratives

	Key Applications
	Cross-references
	Recommended Reading

	Time Instant
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time Interval
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time Period
	Synonyms
	Definition
	Key Points
	Cross-references

	Time Period Set
	Time Point
	Time Quantum
	Time Sequence
	Time Sequence Query
	Time Sequence Search
	Time Series
	Time Series Data Mining
	Time Series Database Querying
	Time Series Query
	Synonyms
	Definition
	Historical Background
	Foundations
	Basic Concepts
	Time Series Query
	Query Processing: Index-based Methods for Similarity Search
	Query Processing: Similarity Search over Streaming Time Series

	Key Applications
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Time Series Search
	Time Span
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time Unit
	Time-based Access Control
	Time-based Window
	Time-Constrained Transaction Management
	Time-Dependent Graphs
	Time-Dependent Networks
	Time-Line Clock
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time-Oriented Database
	Time-Segment Clock
	Timeslice Operator
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	TIN
	Tiny Aggregation (TAG)
	TinyDB
	TinySQL
	t-Norm
	Topic Detection and Tracking
	Definition
	Historical Background
	Foundations
	The Segmentation Task
	The Detection Task
	Retrospective Event Detection
	Online New Event Detection
	The Tracking Task

	Key Applications
	Future Directions
	Data Sets
	Recommended Reading

	Topic Hierarchies
	Topic Maps
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Topical-Hierarchical Relevance
	Topic-based Publish/Subscribe
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Topic-Directed Web Crawling
	Top-k Queries in P2P Systems
	Top-K Selection Queries on Multimedia Datasets
	Synonyms
	Definition
	Historical Background
	Foundations
	Query Model
	Top-kQuery Evaluation Algorithms
	The Threshold Algorithm
	Algorithms based on Expensive Predicates Evaluation
	Filter/Restart Method
	Using Pre-computed Views
	Handling Joins

	Key Applications
	Multimedia Search
	Information Integration

	Future Directions
	Cross-references
	Recommended Reading

	Top-k XML Query Processing
	Topological Data Models
	Synonyms
	Definition
	Historical Background
	Foundations
	DIME Files
	POLYVRT
	GIRAS
	TIGER
	ARC/INFO Coverages
	Relational
	ArcGIS Geodatabase

	Key Applications
	Cross-references
	Recommended Reading

	Topological Data Structure
	Topological Fabric
	Topological Relationships
	Definition
	Historical Background
	Foundations
	Topological Relationships for Simple Objects
	Topological Relationships for Complex Objects
	Topological Relationships for Objects with Vague Boundary

	Key Applications
	Geographic Information Systems (GISs)
	Qualitative Spatial Reasoning (QSR)
	Geospatial Semantic Web (GSW)

	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Topology
	Toponyms
	Tour
	TP
	TP Monitor
	TPQ
	Traditional Concurrency Control for Replicated Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Transactions in a Non-Replicated System
	Transaction Execution in a Replicated System
	Execution Model
	Isolation
	Atomicity

	Replica and Concurrency Control in a Replicated System
	Strict Two-Phase Locking (S2PL)
	Architectural Comparison
	Optimistic Concurrency Control

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Traditional Data Replication
	Traditional Replica and Concurrency Control Strategies
	Trajectory
	Synonyms
	Definition
	Key Points
	Cross-references
	References

	Trajectory Databases
	Trajectory Indexing
	Transaction
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transaction Chopping
	Definition
	Key Points
	Assumptions
	Basic Definitions
	Correct Choppings
	Conclusion

	Cross-references
	Recommended Reading

	Transaction Commit Time
	Transaction Execution
	Transaction Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Transaction Management in Distributed Database Systems
	Transaction Manager
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transaction Model
	Transaction Models – the Read/Write Approach
	Synonyms
	Definition
	Historical Background
	Foundations
	Definition of a Transaction
	Schedules and Histories
	Schedule Correctness
	Commutativity of Operations

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Transaction Processing
	Transaction Scheduling
	Transaction Service
	Transaction Time
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transactional Business Processes
	Transactional Consistency in a Replicated Database
	Transactional Middleware
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Transactional Processes
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transactional Workflows
	Transaction-Time Access Methods
	Transaction-Time Algebras
	Transaction-Time Data Model
	Transaction-Time Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Transcriptional Networks
	Transformation
	Transformation Engines
	Translation Lookaside Buffer (TLB)
	Translingual Information Retrieval
	Tree Drawing
	Tree Pattern Queries
	Tree-based Indexing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Treemaps
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Tree-Structured Classifier
	Triangular Norms
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Triangulated Irregular Network
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Triangulated Terrains
	Trie
	Synonyms
	Definition
	Historical Background
	Foundations
	Construction
	Searching
	Sorting
	Implementation
	Compact Tries
	Patricia Trees

	Key Applications
	Cross-references
	Recommended Reading

	Triggers
	True Answer (Maybe Answer)
	Trust and Reputation in Peer-to-Peer Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Trust in Blogosphere
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Trusted Database Systems
	Trusted Hardware
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	TSQL2
	Definition
	Historical Background
	Foundations
	Design Goal for TSQL2
	Language Concepts in TSQL2
	Time Ontology
	Base Line Clock
	Data Types
	Time-Lines
	Aggregates
	Valid-Time Tables
	Transaction-Time and Bitemporal Tables
	Schema Specification
	Restructuring
	Temporal Selection
	Temporal Projection
	Update
	Cursors
	Schema Versioning
	Vacuuming
	System Tables
	SQL-92 Compatibility
	Implementation

	Key Applications
	Future Directions
	Url to Code
	Cross-references
	Recommended Reading

	Tug-of-War Sketch
	Tuning Concurrency Control
	Synonyms
	Definition
	Historical Background
	Foundations
	Leveraging Application Semantics
	Living Dangerously
	General Rules of Thumb

	Key Applications
	Experimental Results
	Value of Serializability
	Counters

	URL to Code and Data Sets
	Cross-references
	Recommended Reading

	Tuning the Application Interface
	Tuple Relational Calculus
	Tuple-Generating Dependencies
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Twigs
	Two-Dimensional Shape Retrieval
	Definition
	Historical Background
	Foundations
	Key Applications
	Content Based Image Retrieval
	Visual Surveillance

	Future Directions
	Cross-references
	Recommended Reading

	Two-Phase Commit
	Definition
	Historical Background
	Foundations
	Dynamics of Two-Phase Commit
	Recovery in Two-Phase Commit
	Underlying Assumptions
	Performance Issues
	Most Common Two-Phase Commit Variants
	Compatibility of 2PC Variants

	Key Applications
	Cross-references
	Recommended Reading

	Two-Phase Commit Protocol
	Synonyms
	Definition
	Historical Background
	Foundations
	Basic Protocol
	Protocol Restart
	Hierarchical and Flattened 2PC
	Optimizations

	Key Applications
	Cross-references
	Recommended Reading

	Two-Phase Locking
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Two-Poisson model
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Two-Sorted First-Order Logic
	Type Theory
	Type-based Publish/Subscribe
	Definition
	Key Points
	Cross-references
	Recommended Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

