
O

OASIS

SERGUEI MANKOVSKII

CA Labs, CA Inc, Thornhill, ON, Canada

Synonyms
Organization for the advancement of structured

information standards

Definition
OASIS is a non-for-profit consortium aiming at col-

laborative development and approval of open interna-

tional, mainly XML-based, standards.

Key Points
OASIS was founded in 1993 under the name ‘‘SGML

Open.’’ The initial goal of the organization was to

develop guidelines for interoperability among pro-

ducts using Standard Generalized Markup Language

(SGML). In 1998 it changed name to OASIS to reflect

on changing scope of its technical work.

OASIS consists of an open group of member orga-

nizations whose representatives work in committees

developing standards, promoting standards adoption,

product interoperability and standards conformance.

In 2007 OASIS had 5,000 participants representing

600 organizations and individual members in 100

countries. OASIS is governed by a member-elected

Board in an annual election process. The boardmember-

ship is based on the personal merits of Board nominees.

OASIS process allows participants to influence stan-

dards that affect their business, contribute to standards

advancement and start new standards. The process is

designed to promote industry consensus. OASIS strategy

values creativity and consensus over conformity and

control. It relies on the market to determine the particu-

lar approach taken in the development of sometimes

overlapping standards.

OASIS maintains collaborative relationships

with the International Electrotechnical Commission

(IEC), International Organization for Standardization
2009 Springer ScienceþBusiness Media, LLC
(ISO), International Telecommunication Union (ITU)

and United Nations Electronic Commission for

Europe (UN/ECE), and National Institute of Standards

and Technology (NIST).

Among major accomplishments of the OASIS are

such influential of standards as a group of ebXML stan-

dards, SAML, XACML, WSRP, WSDM, BPEL, Open-

Document, DITA, DocBook, LegalXML and others.

Cross-references
▶BPEL

▶DITA

▶DocBook

▶ ebXML

▶ eGovernment

▶ Emergency Management

▶ LegalXML

▶ oBIX

▶Open CSA (SCA, SDO)

▶OpenDocument

▶ SAML

▶ SOA-RM

▶UDDI

▶WS-Security

▶WSDM

▶WSRP

Recommended Reading
1. OASIS. Available at: http://www.oasis-open.org
Object Constraint Language

MARTIN GOGOLLA

University of Bremen, Bremen, Germany

Synonyms
OCL

Definition
The Unified Modeling Language (UML) includes

a textual language called Object Constraint Language

http://www.oasis-open.org

1928O Object Constraint Language
(OCL). OCL allows users to navigate class diagrams,

to formulate queries, and to restrict class diagrams

with integrity constraints. From a practical perspective,

the OCL may be viewed as an object-oriented version

of the Structured Query Language (SQL) originally

developed for the relational data model. From a theo-

retical perspective, OCL may be viewed as a variant of

first-order predicate logic with quantifiers on finite

domains only. OCL has a well-defined syntax [1,3]

and semantics [2].

Key Points
The central language features in OCL are: naviga-

tion, logical connectives, collections and collection

operations.

Navigation: The navigation features in OCL allow

users to determine connected objects in the class dia-

gram by using the dot operator ‘‘.’’. Starting with an

expression expr of start class C, one can apply a

property propC of class C returning, for example, a

collection of objects of class D by using the dot opera-

tor: expr.propC. The expression expr could be a

variable or a single object, for example. The navigation

process can be repeated by writing expr.propC.

propD, if propD is a property of class D.

Logical Connectives: OCL offers the usual logical

connectives for conjunction (and), disjunction (or),

and negation (not) as well as the implication

(implies) and a binary exclusive (xor). An equality

check (=) and a conditional (if then else endif) is

provided on all types.

Collections: In OCL there are three kinds of collec-

tions: sets, bags, and sequences. A possible collection

element can appear at most once in a set, and the

insertion order in the set does not matter. An element

can appear multiple times in a bag, and the order in

the bag collection does not matter. An element can

appear multiple times in a sequence in which the

order is significant. Bags and sequences can be con-

verted to sets with ->asSet(), sets and sequences to

bags with ->asBag(), and sets and bags to sequen-

ces with ->asSequence(). The conversion to

sequences assumes an order on the elements. The

arrow notation is explained in more detail below.

Collection Operations: There is a large number of

operations on collections in OCL. A lot of convenience

and expressibility is based upon them. The most

important operations on all collection types are the

following: forAll realizes universal quantification,
exists is existential quantification, select filters

elements with a predicate, collect applies a term

to each collection element, size determines the num-

ber of collection elements, isEmpty tests for empti-

ness, includes checks whether a possible element is

included in the collection, and including builds a

new collection including a new element.

In addition to the central language features, OCL

also has special operations available only on particular

collection, e.g., the operation at on sequences for

retrieving an element by its position. All collection

operations are applied with the arrow notation men-

tioned above. Roughly speaking, the dot notation

is used when a property follows, i.e., an attribute or a

role follows, and the arrow notation is employed when

a collection operation follows.

Variables in collection operations: Most collection

operations allow variables to be declared (possibly

including a type specification), but the variable may

be dropped if it is not needed.

Retrieving all Current Instances of a Class: Another

important possibility is a feature to retrieve the finite

set of all current instances of a class by appending

.allInstances to the class name. In order to guar-

antee finite results .allInstances cannot be applied

to data types like String or Integer.

Return types in collection operations: If the collection

operations are applied to an argument of type Set/

Bag/Sequence(T), they behave as follows: forAll

and exists returns a Boolean, select yields Set/

Bag/Sequence(T), collect returns Bag/Bag/

Sequence(T’), size gives back Integer, isEmpty

yields Boolean, includes returns Boolean, and

including gives back Set/Bag/Sequence(T).

Most notably, the operation collect(...)

changes the type of a Set(T) collection to a

Bag(T’) collection. The reason for this is that term

inside the collectmay evaluate to the same result for

two different collection elements. In order to reflect

that the result is captured for each collection element,

the result appears as often as a respective collection

element exists. This convention in OCL resembles the

same approach in SQL: SQL queries with the addition-

al keyword distinct return a set; plain SQL queries

without distinct return a bag. In OCL, the conven-

tion is similar: OCL expressions using the additional

conversion asSet() as in collect(...)->asSet

() return a set; plain collect(...) expressions

without asSet() return a bag.

Object Data Models O 1929
Cross-references
▶Unified Modeling Language

Recommended Reading
1. OMG (ed.). OMG Object Constraint Language Specification.

OMG, 2007. www.omg.org.

2. Richters M. and Gogolla M. On Formalizing the UML Object

Constraint Language OCL. In Proc. 17th Int. Conf. on Concep-

tual Modeling. 1998, pp. 449–464.

3. Warmer J. and Kleppe A. The Object Constraint Language:

Getting Your Models Ready for MDA. Addison-Wesley, Reading,

MA, 2003.
O

Object Data Models

SUSAN D. URBAN
1, SUZANNE W. DIETRICH

2

1Texas Tech University, Lubbock, TX, USA
2Arizona State University, Phoenix, AZ, USA

Synonyms
ODB (object database); OODB (object-oriented data-

base); ORDB (object-relational database)

Definition
An object data model provides support for objects as

the basis for modeling in a database application. An

object is an instance of a class, which is a complex type

specification that defines both the state of its instance

fields and the behavior provided by its methods.

Object features also include a unique object identifier

that can be used to refer to the object, as well as the

organization of data into class hierarchies that support

inheritance of state and behavior. The term object data

model encompasses the data model for both object-

oriented databases (OODBs) and object-relational

databases (ORDBs). OODBs use an object-oriented

programming language as the database language and

provide inherent support for the persistence of objects

with typical database functionality. ORDBs extend

relational databases by providing additional support

for objects.

Historical Background
The relational data model was developed in the 1970’s,

providing a way to organize data into tables with rows

and columns [4]. Relationships between tables were

defined by the concept of foreign keys, where a column

(or multiple columns) in one table contained a
reference to a primary key value (unique identifier)

in another table. The simplicity of the relational data

model was complemented by its formal foundation on

set theory, thus providing powerful algebraic and cal-

culus-based techniques for querying relational data.

Initially, relational datamodeling concepts were used

in business-oriented applications, where tables provided

a natural structure for the organization of data. Users

eventually began to experiment with the use of relational

database concepts in new application domains, such as

engineering design and geographic information systems.

These new application areas required the use of complex

data types that were not supported by the relational

model. Furthermore, database designers were discover-

ing that the process of normalizing data into table form

was affecting performance for the retrieval of large, com-

plex, and hierarchically structured data, requiring nu-

merous join conditions to retrieve data from multiple

tables. Around the same time, object-oriented program-

ming languages (OOPLs) were also beginning to devel-

op, defining the concept of user-defined classes, with

instance fields, methods, and encapsulation for informa-

tion hiding [14].

The OOPL approach of defining object structure

together with object behavior eventually provided

the basis for the development of Object-Oriented

Database Systems (OODBs) in the mid-1980’s. The

Object-Oriented Database System Manifesto, written

by leading researchers in the database field, was the

first document to fully outline the characteristics of

OODB technology [1]. OODBs provided a revolution-

ary concept for data modeling, with data objects

organized as instances of user-defined classes. Classes

were organized into class hierarchies, supporting in-

heritance of attributes and behavior. OODBs differed

from relational technology through the use of internal

object identifiers, rather than foreign keys, as a means

for defining relationships between classes. OODBs also

provided a more seamless integration of database and

programming language technology, resolving the

impedance mismatch problem that existed for rela-

tional database systems. The impedance mismatch

problem refers to the disparity that exists between

set-oriented relational database access and iterative

one-record-at-a-time host language access. In the

OODB paradigm, the OOPL provides a uniform, ob-

ject-oriented view of data, with a single language for

accessing the database and implementing the database

application.

http://www.omg.org

1930O Object Data Models
The relational database research community res-

ponded to the development of OODBs with the

Third Generation Database System Manifesto, defining

the manner in which relational technology can be

extended to support object-oriented capabilities [13].

Rowe and Stonebraker developed Postgres as the

first object-relational database system (ORDB), illus-

trating an evolutionary approach to integrating object-

oriented and relational concepts [10]. ORDB concepts

parallel those found in OODBs, with the notions

of user-defined data types, object tables formed from

user-defined types, hierarchies of user-defined types

and object tables, rows of object tables with internal

object identifiers, and relationships between object

tables that use object identifiers as references.

Today, several OODB products exist in the market,

and most relational database products provide some

form of ORDB support. The following section elabo-

rates on the common features of object data models

and then differentiates between OODB and ORDB

modeling concepts.

Foundations

Characteristics of Object Data Models

An object is one of the most fundamental concepts of

the object data model, where an object represents an

entity of interest in a specific application. An object has

state, describing the specific structural properties of

the object. An object also has behavior, defining the

methods that are used to manipulate the object. Each

method has a signature that includes the method name

as well as the method parameters and types. The state

and behavior of an object is expressed through an

object type definition, which provides an interface for

the object. Objects of the same interface are collected

into a class, where each object is viewed as an instance

of the class. A class definition supports the concept of

encapsulation, separating the specification of a class

from the implementation of its methods. The imple-

mentation of a method can therefore change without

affecting the class interface and the way in which the

interface is used in application code.

When an object of a class is instantiated, the object

is assigned a unique, internal object identifier, or oid

[6]. An oid is immutable, meaning that the value of the

identifier cannot be changed. The state of an object, on

the other hand, is mutable, meaning that the values of

object properties can change. In an object data model,

object identity is used as the basis for defining
relationships between classes, instead of using object

state, as in the relational model. As a result, the values

of object properties can freely change without affecting

the relationships that exist between objects. Object-

based relationships between classes are referred to as

object references.

Classes in an object model can be organized into

class hierarchies, defining superclass and subclass rela-

tionships between classes. A class hierarchy allows for

the inheritance of the state and behavior of a class,

allowing subclasses to inherit the properties and meth-

ods of its superclasses while extending the subclass

with additional properties or behavior that is specific

to the subclass. Inheritance hierarchies provide a pow-

erful mechanism to represent generalization/speciali-

zation relationships between classes, which simplify

the specification of an object schema, as well as queries

over the schema.

As an example of the above concepts, consider the

Publisher application described in Fig. 1 using a Uni-

fied Modeling Language (UML) class diagram [11]. A

Book is a class that is based on an object type that

defines the state of a book (isbn, title, and listPrice), as

well as the behavior of a book (the method calcBook-

Sales for calculating the total sales of a book based on

customer purchases). Publisher, Person, Author, and

Customer are additional classes, also having state and

behavior. Since authors and customers are specific

types of people, the Author and Customer classes are

defined to be subclasses of Person. Since personName

and address are common to authors and customers,

these attributes are defined at the Person level and

inherited by instances of the Author and Customer

classes. Furthermore, Author introduces additional

state and behavior that is specific to authors, defining

the date (authorSince) when an author first wrote a

book as well as a method (calcAuthorBookSales) for

calculating the total sales of the author’s books. The

Customer class similarly introduces state and behavior

that is specific to a customer.

Relationships are also defined between the classes

of the application:

� A book is authored by one or more authors; an

author writes many books

� A book is published by one publisher; a publisher

publishes many books

� A book is bought by many customers; a customer

buys many books, also recording the date of each

purchase

Object Data Models. Figure 1. The publisher object data model.

Object Data Models O 1931

O

For each relationship, specific instances of each

class are related based on the object identity of each

instance. For example, a book will establish a relation-

ship to the publisher of the book using the oid of the

publisher. In the relational model, the publisher name

would be used as a foreign key to establish the rela-

tionship. If the publisher name changes, then the

change in name must be propagated to the book that

references the publisher. In the object data model, such

changes in state do not affect relationships between

objects since the relationship is based on an immuta-

ble, internal object identity.

A generic object model, such as the one shown in

Fig. 1, can be mapped to either an object-oriented data

model or an object-relational data model. The follow-

ing subsections use the Publisher application in Fig. 1

to illustrate and explain OODB and ORDB approaches

to object data modeling.

Object-Oriented Data Model

An object-oriented database (OODB) is a term typi-

cally used to refer to a database that uses objects as a

building block and an object-oriented programming

language as the database language. The database sys-

tem supports the persistence of objects along with the

features of concurrency and recovery control with effi-

cient access and an ad hoc query language.

The Object Data Standard [2] developed as a stan-

dard to describe an object model, including a defini-

tion language for an object schema, and an ad-hoc
query language. The object model supports the speci-

fication of classes having attributes and relationships

between objects and the behavior of the class with

methods. The Object Definition Language (ODL) pro-

vides a standard language for the specification of an

object schema including properties and method signa-

tures. A property is either an attribute, representing an

instance field that describes the object, or a relation-

ship, representing associations between objects. In

ODL, relationships represent bidirectional associations

with the database system being responsible for main-

taining the integrity of the inverse association. An

attribute can be used to define a unidirectional associ-

ation. If needed, the association can be derived in the

other direction using a method specification. The de-

cision is based on trade-offs of storing and maintaining

the association versus deriving the inverse direction on

demand.

Fig. 2 provides an ODL specification of the Pub-

lisher application. Each class has a named extent,

which represents the set of objects of that type. The

Author and Customer classes inherit from the Person

class, extending each subclass with specialized attri-

butes. The Book class has the isbn attribute that

forms a key, being a unique value across all books.

The association between Author and Book is repre-

sented as an inverse relationship, and the cardinality

of the association is many-to-many since an author can

write many books and a book can be written by multi-

ple authors. The set collection type models multiple

Object Data Models. Figure 2. ODL schema of the publisher application.

1932O Object Data Models
books and authors. Since the Purchase association

class from Fig. 1 has an attribute describing the associ-

ation, Purchase is modeled in ODL using reification,

which is the process of transforming an abstract con-

cept, such as an association, into a class. As a result, the

Purchase class in Fig. 2 represents the many-to-many

association between Book and Customer. Each in-

stance of the Purchase class represents the purchase

of a book by a customer. The Purchase class has the

dateOfPurchase instance field, as well as two relation-

ships indicating which Book (bookPurchased) and

which Customer (purchasedBy) is involved in the pur-

chase. The inverse relationships in Book (boughtBy)

and Customer (buys) are related to instances of the

Purchase class.

This ODL specification forms the basis of the defi-

nition of the object schema within the particular

OOPL used with the OODB, such as C++, Java, and

Smalltalk. The specification of the schema and the

method implementation using a given OOPL is

known as a language binding. In some OODB pro-

ducts, the ODL specification of the properties of the
class are used to automatically generate the definition

of the schema for the OOPL being used.

The standard also includes a declarative query lan-

guage known as the Object Query Language (OQL).

The OQL is based on the familiar select-from-where

syntax of SQL. The select clause defines the structure of

the result of the query. The from clause specifies vari-

ables that range over collections within the schema,

such as a class extent or a multivalued property. The

where clause provides restrictions on the properties of

the objects that are to be included in the result. Object

references are traversed through the use of dot nota-

tion for single-valued properties and through the from

clause for multivalued properties.

Consider a simple query that finds the name of a

publisher of a book given its isbn:

select b.publishedBy.publisherName

from books b

where b.isbn = ‘‘0-13-042898-1’’;

This OQL query looks quite similar to SQL. In the

from clause, the alias b ranges over the books extent.

Object Data Models O 1933
The where clause locates the book of interest. The

select clause provides a path expression that navigates

through the publishedBy single-valued property to

return the name of the publisher.

Consider another query that finds the title and sales

for books published by Springer-Verlag:

select title: b.title, sales: b.calcBook-

Sales()

from p in publishers, b in p.booksPublished

where p.publisherName = ‘‘Springer-Verlag’’

This query illustrates the alternative syntax for the

alias in the from clause, using the syntax ‘‘variable in

collection’’. The alias p ranges over the publishers ex-

tent, whereas the alias b ranges over the multivalued

relationship booksPublished of each publisher that

satisfies the where condition. The select clause returns

the name of each field and its value, where sales returns

the results of a method call.
Object Data Models. Figure 3. ORDB schema of publisher a
Object-Relational Data Model

An object-relational database (ORDB) refers to a rela-

tional database that has evolved by extending its data

model to support user-defined types along with addi-

tional object features. An ORDB supports the tradi-

tional relational table in addition to introducing the

concept of a typed table, which is similar to a class in

an OODB. A typed table is created based on a user-

defined type (UDT), which provides a way to define

complex types with support for encapsulation. UDTs

and their corresponding typed tables can be formed into

class hierarchies with inheritance of state and behavior.

The rows (or instances) of a typed table have object

identifiers that are referred to as object references.

Object references can be used to define relationships

between tables that are based on object identity.

Figure 3 presents an ORDB schema of the Publisher

application that is defined using the object-relational

extensions to the SQL standard. The type personUdt is
pplication.

O

1934O Object Data Models
an example of specifying a UDT. The UDT defines the

structure of the type by identifying attributes together

with their type definitions. The phrase ‘‘instantiable

not final ref is system generated’’ defines three proper-

ties of the type:

1. ‘‘Instantiable’’ indicates that the type supports a

constructor function for the creation of instances

of the type. The phrase ‘‘not instantiable’’ can be

used in the case where the type has a subtype and

instances can only be created at the subtype level.

2. ‘‘Not final’’ indicates that the type can be

specialized into a subtype. The phrase ‘‘final’’ can

be used to indicate that a type cannot be further

specialized.

3. ‘‘Ref is system generated’’ indicates that the data-

base system is responsible for automatically gener-

ating an internal object identifier. The SQL

standard supports other options for the generation

of object identifiers, which include user-specified

object-identifiers as well as identifiers that are

derived from other attributes.

Definition of the personUdt type is followed by the

specification of the person typed table, which is based

on the personUdt type. The person typed table auto-

matically acquires columns for each of the attributes

defined in personUdt. In addition, the person typed

table has a column for an object identifier that is

associated with every row in the table. The phrase

‘‘ref is personID’’ defines that the name of the object

identifier column is personID. The definition of a

typed table can add constraints to the columns that

are defined in the type associated with the table. For

example, personName is defined to be a primary key in

the person typed table.

The authorUdt type is defined as a subtype of

personUdt, as indicated by the ‘‘under personUdt’’

clause. In addition to defining the structure of the

type, authorUdt also defines behavior with the defini-

tion of the calcAuthorBookSales method. Since

authorUdt is a subtype of personUdt, authorUdt will

inherit the object identifier (personID) defined in per-

sonUdt. For consistency, the author table is also de-

fined to be a subtable of the person object table. The

typed table hierarchy therefore parallels the UDT hier-

archy. In a similar manner, customerUdt is defined to

be a subtype of personUdt and the customer typed

table, based on customerUdt, is defined to be a sub-

table of the person table. UDTs and typed tables are
also defined for the Book and Publisher classes from

Fig. 1, as well as the (reified implementation of the)

Purchase association class.

Figure 3 also illustrates the use of object references

to represent identity-based relationships between

UDTs. Recall from the object data model in Fig. 1

that a book is published by one publisher; a publisher

publishes many books. In an ORDB, this relationship

is established through the use of reference types. In the

bookUdt, the publishedBy attribute has the type ref

(publisherUdt), indicating that the value of publishedBy

is a reference to the object identifier (publisherID)

of a publisher. In the inverse direction, the type of

booksPublished in the publisherUdt is an array of

ref(bookUdt), indicating that booksPublished is an

array of object references to books. Each attribute defi-

nition includes a scope clause and a ‘‘references are

checked’’ clause. Since a UDT can be used to define

multiple tables, the scope clause defines the table of

the object reference. The references clause specifies the

same options for referential integrity of object references

as originally defined for traditional relational tables.

To establish the fact that a book is published by a

specific publisher, the object identifier of publisher is

retrieved to create the relationship:

update book

set publishedBy = (select publisherID

from publisher

where publisherName =

‘‘Prentice Hall’’)

where isbn = ‘‘0-13-042898-1’’;

A similar update statement can be used to establish

the relationship in the inverse direction by adding the

book oid to the array of object references of the

publisher.

References can be traversed to query information

about relationships. For example, to return the name

of the publisher of a specific book, the following query

can be used:

select publishedBy.publisherName

from book

where isbn = ‘‘0-13-042898-1’’;

The dot notation in the select clause performs an

implicit join between the book table and the publisher

table, returning the name of the publisher. The deref()

function can also be used to retrieve the entire

structured type associated with a reference value. For

Object Identity O 1935

O

example, the following query will return the full in-

stance of the publisherUdt type, rather than just the

publisherName:

select deref(publishedBy)

from book

where isbn = ‘‘0-13-042898-1’’;

In this case, the result of the query is a value of

type publisherUdt, containing the publisher name

and the array of references to books published by the

publisher.

Key Applications
Computer-Aided Design, Geographic Information

Systems, Computer-Aided Software Engineering, Em-

bedded Systems, Real-time Control Systems.

Cross-references
▶Conceptual Schema Design

▶Database Design

▶ Extended Entity-Relationship Model

▶OQL

▶Relational Model

▶ Semantic Data Model

▶Unified Modeling Language

Recommended Reading
1. AtkinsonM., Bancilhon F., DeWitt D., Dittrich K., Maier D., and

Zdonik S. The Object-Oriented Database System Manifesto. In

Proc. 1st Int. Conf. on Deductive and Object-Oriented Data-

bases, North Holland, 1990.

2. Cattell R.G.G., Barry D.K., Berler M., Eastman J., Jordan D.,

Russell C., Schadow O., Stanienda T., and Velez F. (eds.). The

Object Data Standard: ODMG 3.0 Morgan Kaufmann,

San Mateo, CA, 2000.

3. Chaudhri A. and Zicari R. (eds.). Succeeding with Object

Databases: A Practical Look at Today’s Implementations with

Java and XML. J. Wiley, New York, 2000.

4. Codd E.F. A relational model of data for large shared data banks.

Comm. ACM, 13(6), 1970.

5. Dietrich S.W. and Urban S.D. An Advanced Course in Database

Systems: Beyond Relational Databases. Prentice Hall, Upper

Saddle River, NJ, 2005.

6. Koshafian S. and Copeland G. Object identity. ACM SIGPLAN

Not., 20(11), 1986.

7. Loomis M.E.S. and Chaudhri A. (eds.). Object Databases in

Practice: Prentice Hall, Upper Saddle River, NJ, 1997.

8. Melton J. Advanced SQL:1999: Understanding Object-Relational

and Other Advanced Features. Morgan Kaufmann, San Mateo,

CA, 2002.

9. Object Database Management Systems: The Resource Portal for

Education and Research, http://odbms.org/
10. Rowe L. and Stonebraker M. The Postgres Data Model. In Proc.

13th Int. Conf. on Very Large Data Bases. 1987.

11. Rumbaugh J., Jacobson I., and Booch G. The Unified Modeling

Language Reference Manual. Addison-Wesley, Reading, MA,

1991.

12. Stonebraker M. Object-Relational DBMSs: The Next Great

Wave. Morgan Kaufmann, San Mateo, CA, 1995.

13. Stonebraker M., Rowe L., Lindsay B., Gray J., Carey M., Brodie

M., Bernstein P., and Beech D. Third generation database system

manifesto. ACM SIGMOD Rec., 19(3), 1990.

14. Stroustrup B. The C++ Programming Language, 3rd edn.

Reading, MA. Addison-Wesley, Reading, MA, 1997.

15. Zdonik S.B. andMaier D. Readings in Object-Oriented Database

Systems. Morgan Kaufmann, San Mateo, CA, 1990.
Object Detection and Recognition

▶Automatic Image Annotation
Object Flow Diagrams

▶Activity Diagrams
Object Identification

▶Object Recognition
Object Identification

▶ Semantic Data Integration for Life Science Entities
Object Identifier

▶Object Identity
Object Identity

SUSAN D. URBAN
1, SUZANNE W. DIETRICH

2

1Texas Tech University, Lubbock, TX, USA
2Arizona State University, Phoenix, AZ, USA

Synonyms
Object identifier; Oid; Object reference

http://odbms.org/

1936O Object Labeling
Definition
Object identity is a property of data that is created

in the context of an object data model, where an

object is assigned a unique internal object identifier,

or oid. The object identifier is used to define associa-

tions between objects and to support retrieval and

comparison of object-oriented data based on the inter-

nal identifier rather than the attribute values of

an object.
Key Points
In an object data model, an object is created as

an instance of a class. An object has an object identi-

fier as well as a state. An object identifier is immuta-

ble, meaning that the value of the object identifier

cannot change over the lifetime of the object. The

state, on the other hand, is mutable, representing

the attributes that describe the object and the rela-

tionships that define associations among objects.

Relationships in an object data model are defined

using object references based on internal object iden-

tifiers rather than attribute values as in a relational

data model. As a result, the attribute values of an

object can freely change without affecting identity-

based relationships.

Variables that contain object references can be

compared using either object identity or object equali-

ty. Two object references are identical if they contain

the same object identifiers. In contrast, two object

references, that possibly contain different object iden-

tifiers, are equal if the values of attributes and relation-

ships in each object state are identical. Shallow equality

is the process of comparing the immediate values of

attributes and relationships. Deep equality involves

the traversal of object references in the comparison

process. Query languages for objects must incorporate

operators to distinguish between object identity

and object equality in the specification of object

queries.
Cross-references
▶Conceptual Schema Design

▶ Extended Entity-Relationship Model

▶Object Data Models

▶Object-Role Modeling

▶ Semantic Data Model

▶Unified Modeling Language
Recommended Reading
1. Beeri C. and Thalheim B. Identification as a Primitive of

Database Models. In Proc. 7th Int. Workshop on Foundations

of Models and Languages for Data and Objects, 1999.

2. Koshafian S. and Copeland G. Object identity. ACM SIGPLAN

Not., 20(11), 1986.
Object Labeling

▶Object Recognition
Object Monitor

▶Transactional Middleware
Object Query Language

▶OQL
Object Recognition

MING-HSUAN YANG

University of California at Merced, Merced, CA, USA

Synonyms
Object identification; Object labeling

Definition
Object recognition is concerned with determining the

identity of an object being observed in the image from

a set of known labels. Oftentimes, it is assumed that the

object being observed has been detected or there is a

single object in the image.

Historical Background
As the holy grail of computer vision research is to tell a

story from a single image or a sequence of images,

object recognition has been studied for more than

four decades [9,22]. Significant efforts have been

spent to develop representation schemes and algo-

rithms aiming at recognizing generic objects in images

Object Recognition O 1937
taken under different imaging conditions (e.g., view-

point, illumination, and occlusion). Within a limited

scope of distinct objects, such as handwritten digits,

fingerprints, faces, and road signs, substantial success

has been achieved. Object recognition is also related to

content-based image retrieval and multimedia index-

ing as a number of generic objects can be recognized.

In addition, significant progress towards object catego-

rization from images has been made in the recent years

[17]. Note that object recognition has also been studied

extensively in psychology, computational neuroscience

and cognitive science [4,9].
O

Foundations
Object recognition is one of themost fascinating abilities

that humans easily possess since childhood. With a sim-

ple glance of an object, humans are able to tell its identity

or category despite of the appearance variation due to

change in pose, illumination, texture, deformation, and

under occlusion. Furthermore, humans can easily gen-

eralize from observing a set of objects to recognizing

objects that have never been seen before. For example,

kids are able to generalize the concept of ‘‘chair’’ or ‘‘cup’’

after seeing just a few examples. Nevertheless, it is a

daunting task to develop vision systems that match the

cognitive capabilities of human beings, or systems that

are able to tell the specific identity of an object being

observed. The main reasons can be attributed to the

following factors: relative pose of an object to a camera,

lighting variation, and difficulty in generalizing across

objects from a set of exemplar images. Central to object

recognition systems are how the regularities of images,

taken under different lighting and pose conditions, are

extracted and recognized. In other words, all the algo-

rithms adopt certain representations or models to cap-

ture these characteristics, thereby facilitating procedures

to tell their identities. In addition, the representations

can be either 2D or 3D geometric models. The recogni-

tion process, either generative or discriminative, is then

carried out by matching the test image against the stored

object representations or models.
Geometry-Based Approaches

Early attempts at object recognition were focused on

using geometric models of objects to account for their

appearance variation due to viewpoint and illumina-

tion change. The main idea is that the geometric
description of a 3D object allows the projected shape

to be accurately predicated in a 2D image under projec-

tive projection, thereby facilitating recognition process

using edge or boundary information (which is invari-

ant to certain illumination change). Much attention

was made to extract geometric primitives (e.g., lines,

circles, etc.) that are invariant to viewpoint change [13].

Nevertheless, it has been shown that such primitives

can only be reliably extracted under limited conditions

(controlled variation in lighting and viewpoint with

certain occlusion). Mundy provides an excellent review

on geometry-based object recognition research [12].

Appearance-Based Algorithms

In contrast to early efforts on geometry-based object

recognition, most recent efforts have been centered

on appearance-based techniques as advanced feature

descriptors and pattern recognition algorithms are

developed [8]. Most notably, the eigenface method

has attracted much attention as it is one of the first

face recognition systems that are computationally effi-

cient and relatively accurate [21]. The underlying idea

of this approach is to compute eigenvectors from a set

of vectors where each one represents one face image as

a raster scan vector of gray-scale pixel values. Each

eigenvector, dubbed an eigenface, captures certain var-

iance among all the vectors, and a small set of eigenvec-

tors captures almost all the appearance variation of face

images in the training set. Given a test image represented

as a vector of gray-scale pixel values, its identity is deter-

mined by finding the nearest neighbor of this vector after

being projected onto a subspace spanned by a set of

eigenvectors. In other words, each face image can be

represented by a linear combination of eigenfaces with

minimum error (often in the L2 sense), and this linear

combination constitutes a compact reorientation. The

eigenface approach has been adopted in recognizing

generic objects across different viewpoints [14] and

modeling illumination variation [2].

As the goal of object recognition is to tell one object

from the others, discriminative classifiers have been

used to exploit the class specific information. Classi-

fiers such as k-nearest neighbor, neural networks with

radial basis function (RBF), dynamic link architecture,

Fisher linear discriminant, support vector machines

(SVM), sparse network of Winnows (SNoW), and

boosting algorithms have been applied to recognize

3D objects from 2D images [16,6,1,18,19]. While

1938O Object Recognition
appearance-based methods have shown promising

results in object recognition under viewpoint and illu-

mination change, they are less effective in handling

occlusion. In addition, a large set of exemplars needs

to be segmented from images for generative or dis-

criminative methods to learn the appearance charac-

teristics. These problems are partially addressed with

parts-based representation schemes.

Feature-Based Algorithms

The central idea of feature-based object recognition

algorithms lies in finding interest points, often occurred

at intensity discontinuity, that are invariant to change

due to scale, illumination and affine transformation

(a brief review on interest point operators can be

found in [8]). The scale-invariant feature transform

(SIFT) descriptor is arguably one of the most widely

used feature representation schemes for vision applica-

tions [8]. The SIFTapproach uses extrema in scale space

for automatic scale selection with a pyramid of differ-

ence of Gaussian filters, and keypoints with low contrast

or poorly localized on an edge are removed. Next, a

consistent orientation is assigned to each keypoint

and its magnitude is computed based on the local

image gradient histogram, thereby achieving invariance

to image rotation. At each keypoint descriptor, the

contribution of local image gradients are sampled

and weighted by a Gaussian, and then represented by

orientation histograms. For example, the 16 � 16 sam-

ple image region and 4 � 4 array of histograms with

8 orientation bins are often used, thereby providing a

128-dimensional feature vector for each keypoint.

Objects can be indexed and recognized using the

histograms of keypoints in images. Numerous applica-

tions have been developed using the SIFT descriptors,

including object retrieval [15,20], and object category

discovery [5].

Although the SIFT approach is able to extract

features that are insensitive to certain scale and illumi-

nation changes vision applications with large base

line changes entail the need of affine invariant point

and region operators [11]. A performance evaluation

among various local descriptors can be found in [10],

and a study on affine region detectors is presented in

[11]. Finally, SIFT-based methods are expected to per-

form better for objects with rich texture information

as sufficient number of keypoints can be extracted.

On the other hand, they also require sophisticated

indexing and matching algorithms for effective object

recognition [8,17].
Key Applications
Biometric recognition, and optical character/digit/doc-

ument recognition are arguably the most widely used

applications. In particular, face recognition has been

studied extensively for decades and with large scale on-

going efforts [23]. On the other hand, biometric recog-

nition systems based on iris or fingerprint as well as as

handwritten digit have become reliable technologies

[3,7]. Other object recognition applications include sur-

veillance, industrial inspection, content-based image re-

trieval (CBIR), robotics, medical imaging, human

computer interaction, and intelligent vehicle systems,

to name a few.

Future Directions
With more reliable representation schemes and recog-

nition algorithms being developed, tremendous prog-

ress has been made in the last decade towards

recognizing objects under variation in viewpoint, illu-

mination and under partial occlusion. Nevertheless,

most working object recognition systems are still sen-

sitive to large variation in illumination and heavy

occlusion. In addition, most existing methods are de-

veloped to deal with rigid objects with limited intra-

class variation. Future research will continue searching

for robust representation schemes and recognition

algorithms for recognizing generic objects.

Data Sets
Numerous face image sets are available on the web

� FERET face data set: http://www.itl.nist.gov/iad/

humanid/feret/

� UMIST data set: http://images.ee.umist.ac.uk/

danny/database.html

� Yale data set: http://cvc.yale.edu/projects/yalefacesB/

yalefacesB.html

� AR data set: http://cobweb.ecn.purdue.edu/%

7Ealeix/aleix_face_DB.html

� CMU PIE data set: http://www.ri.cmu.edu/

projects/project_418.html

There are several large data sets for object recognition

experiments,

� COIL data set: http://www1.cs.columbia.edu/

CAVE/software/softlib/coil-100.php

� CalTech data sets: http://www.vision.caltech.edu/

html-files/archive.html

� PASCAL visual object classes: http://www.pascal-

network.org/challenges/VOC/

http://www.itl.nist.gov/iad/humanid/feret/
http://www.itl.nist.gov/iad/humanid/feret/
http://images.ee.umist.ac.uk/danny/database.html
http://images.ee.umist.ac.uk/danny/database.html
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://cobweb.ecn.purdue.edu/%7Ealeix/aleix_face_DB.html
http://cobweb.ecn.purdue.edu/%7Ealeix/aleix_face_DB.html
http://www.ri.cmu.edu/projects/project_418.html
http://www.ri.cmu.edu/projects/project_418.html
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html
http://www.pascal-network.org/challenges/VOC/
http://www.pascal-network.org/challenges/VOC/

Object Reference O 1939

O

URL to Code
There are a few excellent short courses on object rec-

ognition in recent conferences available on the web.

� ‘‘Recognition and matching based on local invari-

ant features’’ by Schmid and Lowe in IEEE Confer-

ence on Computer Vision and Pattern Recognition

2003: http://lear.inrialpes.fr/people/schmid/cvpr-

tutorial03/

� ‘‘Learning and recognizing object categories’’ by

Fei-Fei, Fergus and Torralba in IEEE International

Conference on Computer Vision 2005:http://

people.csail.mit.edu/torralba/shortCourseRLOC/

� ‘‘Recognizing and Learning Object Categories: Year

2007’’ by Fei-Fei, Fergus and Torralba in IEEE

Conference on Computer Vision and Pattern Rec-

ognition 2005: http://people.csail.mit.edu/torralba/

shortCourseRLOC/

Sample code for face recognition and SIFT descriptors:

� Face recognition: http://www.face-rec.org/

� Lowe’s sample SIFT code: http://www.cs.ubc.ca/

~lowe/keypoints/

� MATLAB implementation of SIFT descriptors by

Vedaldi: http://vision.ucla.edu/~vedaldi/code/sift/

sift.html

� libsift by Nowozin: http://user.cs.tu-berlin.de/

~nowozin/libsift/

Grand challenge in object recognition:

� NIST face recognition grand challenge: http://www.

frvt.org/FRGC/

� NIST multiple biometric grand challenge: http://

face.nist.gov/mbgc/

� PASCAL visual object classes challenge 2007: http://

www.pascal-network.org/challenges/VOC/voc2007/

index.html
Cross-references
▶Object Detection and Recognition
Recommended Reading
1. Belhumeur P., Hespanha J., and Kriegman D. Eigenfaces vs.

fisherfaces: recognition using class specific linear projection.

IEEE Trans. Pattern Analy. Machine Intell., 19(7):711–720, 1997.

2. Belhumeur P. and Kriegman D. What is the Set of Images of an

Object under All Possible Illumination Conditions. Int. J. Com-

put. Vision, 28(3):1–16, 1998.

3. Daugman J. Probing the uniqueness and randomness of iris-

codes: Results from 200 billion iris pair comparisons. In Proc.

IEEE, 94(11):1927–1935, 2006.
4. Edelman S. Representation and recognition in vision. MIT,

Cambridge, MA, 1999.

5. Fergus R., Perona P., and Zisserman A. Object class recognition by

unsupervised scale-invariant learning. In Proc. IEEE Int. Conf. on

Computer Vision and Pattern Recognition. 2003, pp. 264–271.

6. Lades M., Vorbrüggen J.C., Buhmann J., Lange J., von der

Malsburg C., Würtz R.P., and Konen W. Distortion Invariant

Object Recognition in the Dynamic Link Architecture. IEEE

Trans. Comput., 42:300–311, 1993.

7. Lecun Y., Bottou L., Bengio Y., and Haffner P. Gradient-

based learning applied to document recognition. In Proc.

IEEE, 86(11):2278–2324, 1998.

8. Lowe D. Distinctive image features from scale-invariant key-

points. Int. J. Comput. Vision, 60(2):91–110, 2004.

9. Marr D. Vision. W.H. Freeman and Company, San Francisco,

CA, USA, 1982.

10. Mikolajczyk K. and Schmid C. A performance evaluation of local

descriptors. IEEE Trans. Pattern Analy. Machine Intell., 27

(10):1615–1630, 2005.

11. Mikolajczyk K., Tuytelaars T., Schmid C., Zisserman A., Matas J.,

Schaffalitzky F., Kadir T., and Van Gool L. A comparison of

affine region detectors. Int. J. Comput. Vision, 65(1/2):43–72,

2006.

12. Mundy J. Object recognition in the geometric era: a retrospec-

tive. In Toward category-level object recognition. J. Ponce, M.

Hebert, C. Schmid, and A. Zisserman (eds.). Springer, Berlin,

2006, pp. 3–29.

13. Mundy J. and Zisserman A. Geometric invariance in computer

vision. MIT, Cambridge, MA, 1992.

14. Murase H. and Nayar S.K. Visual learning and recognition of 3-D

objects from appearance. Int. J. Comput. Vision, 14:5–24, 1995.

15. Nister D. and Stewenius H. Scalable recognition with a vocabu-

lary tree. In Proc. IEEE Int. Conf. on Computer Vision and

Pattern Recognition. 2006, pp. 2161–2168.

16. Poggio T. and Edelman S. A Network that Learns to Recognize

3D Objects. Nature, 343:263–266, 1990.

17. Ponce J., Hebert M., Schmid C., and Zisserman A.

Toward category-level object recognition. Springer, Berlin, 2006.

18. Pontil M. and Verri A. Support Vector Machines for 3D Object

Recognition. IEEE Trans. Pattern Analy. Machine Intell.,

20(6):637–646, 1998.

19. Roth D., Yang M.-H., and Ahuja N. Learning to Recognize

Objects. Neural Comput., 14(5):1071–1104, 2002.

20. Sivic J. and Zisserman A. Video Google: a text retrieval approach

to object matching in videos. In Proc. 9th IEEE Conf. Computer

Vision. 2003, pp. 1470–1477.

21. Turk M. and Pentland A. Eigenfaces for recognition. J. Cognitive

Neurosci., 3(1):71–86, 1991.

22. Ullman S. High-level vision: Object recognition and visual

recognition. MIT, Cambridge, MA, 1996.

23. Zhao W., Chellappa R., Rosenfeld A., and Phillips J.P.

Face recognition: A literature survey. ACM Comput. Surv.,

35(4):399–458, 2003.
Object Reference

▶Object Identity

http://lear.inrialpes.fr/people/schmid/cvpr-tutorial03/
http://lear.inrialpes.fr/people/schmid/cvpr-tutorial03/
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://www.face-rec.org/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/
http://vision.ucla.edu/~vedaldi/code/sift/sift.html
http://vision.ucla.edu/~vedaldi/code/sift/sift.html
http://user.cs.tu-berlin.de/~nowozin/libsift/
http://user.cs.tu-berlin.de/~nowozin/libsift/
http://www.frvt.org/FRGC/
http://www.frvt.org/FRGC/
http://face.nist.gov/mbgc/
http://face.nist.gov/mbgc/
http://www.pascal-network.org/challenges/VOC/voc2007/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/index.html

1940O Object Relationship Attribute Data Model for Semi-structured Data
Object Relationship Attribute Data
Model for Semi-structured Data

GILLIAN DOBBIE
1, TOK WANG LING

2

1University of Auckland, Auckland, New Zealand
2National University of Singapore, Singapore

Synonyms
ORA-SS data model; ORA-SS schema diagram

Definition
When a database schema is designed, a data model

is initially used to model the real world constraints that

are taken into account in the design of the schema. For

semi-structured database design, it is necessary to cap-

ture the following constraints: object classes, n-ary rela-

tionship types, attributes of object classes, attributes of

relationship types, cardinality, participation and unique-

ness constraints, ordering, irregular and heterogeneous

structures, for both data- and document-centric data.
Key Points
The ORA-SS (Object-Relationship-Attribute Data

Model for Semi-structured Data) data model was

designed [1] specifically to capture the constraints that

are necessary for designing semi-structured databases,

for normalization of schemas, and for defining views.

Figure 1 models the scenario where there is a de-

partment, with a name and many courses. A course
Object Relationship Attribute Data Model for Semi-structur
has a unique code, a title, and many students, and a

student has a unique student number, name, address,

andmany hobbies. For each course that a student takes,

they have a grade. There is a tutor for each student in

each course they take. A tutor has a unique staff number

and a name, and each student can give feedback for the

tutor they have in each course that they take.

A closer look is now taken at the notation used.

Each of the rectangles represents an object class, the

circles represent attributes and the labeled directed

edges between object classes represent relationship

types. A filled circle is an identifier, which is similar

to a key in relational databases and an identifier of an

object class. The ‘‘?’’ in the circle represents zero or

one occurences of that attribute, while a ‘‘*’’ represents

zero or more occurences. The default is one. An attri-

bute in an ORA-SS diagram could be represented as an

attribute or an element in an XML document. The

label on the edge has name, n, a:b, c:d, where name is

the name of the relationship type, n is the degree, a:b is

the participation constraint on the parent and c:d

is the participation constraint on the child. The partic-

ipation constraint a:b indicates that the parent object

participates in a minimum of a and a maximum of b

relationships. Whereas, the participation constraint c:d

indicates that the child object participates in a mini-

mum of c and a maximum of d relationships. A label

on the edge between an object class and an attribute,

name, indicates that the attribute belongs to relation-

ship type name.
ed Data. Figure 1. An ORA-SS schema diagram.

Object-Role Modeling O 1941

O

Consider the example in Fig. 1. There are object

classes Department, Course, Student and Tutor. Object

class Department has an identifier name, and is the

parent object class in the relationship type between

Department and Course. The relationship type is a

binary relationship with name dc, and the participa-

tion constraint 1:m indicates that a department has a

minimum of one course and a maximum of m courses,

where mmeans many, i.e., any number of courses. The

participation constraint 1:1 indicates that each course

must belong to one department and can belong to a

maximum of one department. Each course has an

identifier code, a required attribute title, and is the

parent object class in the relationship type, cs, between

course and student. Object class Student has an identi-

fier stuNo, a required attribute stuName, an optional

attribute address, and zero or more hobby. There is

a binary relationship type, cs, between Course and

Student, where a Course can have zero or more Stu-

dents, and a Student takes one or more Courses. The

attribute grade belongs to the relationship type, cs,

that is it represents the grade a student scored in a

particular course. There is a ternary relationship type

among object classes Course, Student and Tutor. Each

course-student pair can have zero to one tutor, and

each tutor belongs to one or more course-student

pairs. Each tutor has an identifier staffNo, a required

attribute name, and there is an attribute feedback

for each tutor from a particular student in a particular

course.

Cross-references
▶ Entity Relationship Model

▶Hierarchical Data Model

▶Object Data Models

▶ Semi-structured Data Model

▶ Semi-structured Database Design

▶XML Integrity Constraints

▶XML Schema

Recommended Reading
1. Ling T.W., Lee M.L., and Dobbie G. Semi-structured Database

Design. Springer, Berlin Heidelberg New York, 2005.
Object Request Broker

▶CORBA

▶Request Broker
Object-based Storage Device

▶Network Attached Secure Device
Object-Role Modeling

TERRY HALPIN

Neumont University, South Jordan, UT, USA

Synonyms
Fact-oriented modeling; NIAM

Definition
Object-Role Modeling (ORM), also known as fact-orient-

ed modeling, is a conceptual approach to modeling and

querying the information semantics of business

domains in terms of the underlying facts of interest,

where all facts and rules may be verbalized in language

readily understood by non-technical users of those

business domains. Unlike Entity-Relationship (ER)

modeling and Unified Modeling Language (UML)

class diagrams, ORM treats all facts as relationships

(unary, binary, ternary etc.). How facts are grouped

into structures (e.g., attribute-based entity types, clas-

ses, relation schemes, XML schemas) is considered a

design level, implementation issue that is irrelevant to

the capturing of essential business semantics.

Avoiding attributes in the base model enhances

semantic stability, populatability, and natural verbali-

zation, facilitating communication with all stakeholders.

For information modeling, fact-oriented graphical nota-

tions are typically far more expressive than those

provided by other notations. Fact-oriented textual lan-

guages are based on formal subsets of native languages, so

are easier to understand by business people than techni-

cal languages like UML’s Object Constraint Language

(OCL). Fact-oriented modeling includes procedures for

mapping to attribute-based structures, so may also be

used to front-end other approaches.

The fact-oriented modeling approach comprises

a family of closely related ‘‘dialects’’, known vari-

ously as Object-Role Modeling (ORM), Natural

Language Information Analysis Method (NIAM), and

Fully-Communication Oriented Information Model-

ing (FCO-IM). While not adopting the ORM graphical

notation, the Object-oriented Systems Model (OSM)

[4] and the Semantics of Business Vocabulary and

1942O Object-Role Modeling
business Rules (SBVR) [13] initiative within the Object

Management Group (OMG) are close relatives, with

their attribute-free philosophy.

Historical Background
In 1973, Falkenberg generalized work by Abrial and

Senko on binary relationships to n-ary relationships,

and excluded attributes at the conceptual level to

avoid ‘‘fuzzy’’ distinctions and to simplify schema evo-

lution. Later, Falkenberg proposed the fundamental

ORM framework, which he called the ‘‘object-role

model’’ [5]. This framework allowed n-ary and nested

relationships, but depicted roles with arrowed lines.

Nijssen adapted this framework by introducing a cir-

cle-box notation for objects and roles, and adding a

linguistic orientation and design procedure to provide

a modeling method called ENALIM (Evolving NAtural

Language Information Model) [12]. Nijssen’s team of

researchers at Control Data in Belgium developed the

method further, including van Assche who classified

object types into lexical object types (LOTs) and non-

lexical object types (NOLOTs). Today, LOTs are com-

monly called ‘‘entity types’’ and NOLOTs are called

‘‘value types’’. Meersman added subtyping to the

approach, and made major contributions to the RIDL

query language [11] with Falkenberg and Nijssen.

The method was renamed ‘‘aN Information Analysis

Method’’ (NIAM). Later, the acronym ‘‘NIAM’’ was

given different expansions, and is now known as

‘‘Natural language Information Analysis Method’’.

In the 1980s, Nijssen and Falkenberg worked on the

design procedure and moved to the University of

Queensland, where the method was further enhanced

by Halpin, who provided the first full formalization,

including schema equivalence proofs, and made several

refinements and extensions. In 1989, Halpin and Nijssen

co-authored a book on the approach, followed a year

later by Wintraecken’s book [16]. Today several books,

includingmajor works byHalpin [10], and Bakema et al.

[1] expound on the approach.

Many researchers contributed to the fact-oriented

approach over the years, and there is no space here to list

them all. Today various versions exist, but all adhere to

the fundamental object-role framework. Habrias devel-

oped an object-oriented version called MOON (Nor-

malized Object-Oriented Method). The Predicator Set

Model (PSM), developed mainly by ter Hofstede et al.

[7], includes complex object constructors. De Troyer

and Meersman developed a version with constructors
called Natural Object-Relationship Model (NORM).

Halpin developed an extended version simply called

ORM, and with Bloesch and others developed an asso-

ciated query language called ConQuer [2]. Bakema et al.

[1] recast all entity types as nested relationships, to

produce Fully Communication Oriented NIAM, which

they later modified to Fully Communication Oriented

Information Modeling (FCO-IM).

More recently, Meersman and others adapted ORM

for ontology modeling, using a framework called

DOGMA (Developing Ontology-Grounded Method-

ology and Applications) (http://www.starlab.vub.ac.

be/website/). Nijssen and others extended NIAM to a

version called NIAM2007. Halpin and others devel-

oped a second generation ORM (ORM 2), whose

graphical notation is used in this article.

Foundations
ORM includes graphical and textual languages for

modeling and querying information at the concep-

tual level, as well as procedures for designing conceptual

models, transformingbetweendifferentconceptual repre-

sentations, forward engineering ORM schemas to imple-

mentation schemas (e.g., relational database schemas,

object-oriented schemas, XML schemas, and external

schemas) and reverse engineering implementation

schemas to ORM schemas.

Attributes are not used as a base construct. Instead,

all fact structures are expressed as fact types (relationship

types). Thesemay be unary (e.g., Person smokes), binary

(e.g., Person was born on Date), ternary (e.g., Person

visited Country in Year), and so on. This attribute-free

nature has several advantages: semantic stability (mini-

mize the impact of change caused by the need to record

something about an attribute); natural verbalization (all

facts and rules may be easily verbalized in sentences

understandable to the domain expert); populatability

(sample fact populations may be conveniently provided

in fact tables); null avoidance (no nulls occur in popula-

tions of base fact types, which must be elementary or

existential). Although attribute-free diagrams typically

consumemore space, this apparent disadvantage is easily

overcome by using an ORM tool to automatically create

attribute-based structures (e.g., ER, UML class, or rela-

tional schemas) as views of an ORM schema.

ORM’s graphical language is far more expressive

for data modeling purposes than that of UML or

industrial versions of ER, as illustrated later. The rich

graphical notation makes it easier to detect and express

http://www.starlab.vub.ac.be/website/
http://www.starlab.vub.ac.be/website/

Object-Role Modeling O 1943
constraints, and to visually transform schemas into

equivalent alternatives.

ORM includes effective modeling procedures for

constructing and validating models. In step 1a of the

Conceptual Schema Design Procedure (CSDP), the

domain expert informally verbalizes facts of interest.

In step 1b, the modeler formally rephrases the facts in

natural yet unambiguous language, using standard

reference patterns to ensure that entities are well iden-

tified. Verbalized fact instances are abstracted to fact

types, which are then populated with sample instances.

The constraints on the fact types are verbalized formal-

ly, a process that may be automated [8], and these

verbalizations are checked with the domain expert,

using positive populations to illustrate satisfaction

of the constraints as well as counterexamples to illus-

trate what it means to violate a constraint. This

approach to model validation by verbalization and

population has proved extremely effective in industrial

practice, with correct models typically obtained from

the outset rather than going through unreliable itera-

tive procedures.

Figure 1 lists the main graphical symbols in the

ORM 2 notation [8], numbered for easy reference.

An entity type (e.g., Person) is depicted as a named,
Object-Role Modeling. Figure 1. Main ORM graphic symbol
soft rectangle (symbol 1), or alternatively an ellipse or

hard rectangle. Value type (e.g., Person Name) shapes

have dashed lines (symbol 2). Each entity type has a

reference scheme, indicating how each instance may

be mapped via predicates to a combination of one or

more values. Injective (1:1 into) reference schemes

mapping entities (e.g., countries) to single values

(e.g., country codes) may be abbreviated as in symbol

3 by displaying the reference mode in parentheses, e.g.,

Country (.code). The reference mode indicates how

values relate to the entities. Values are constants with

a known denotation, so require no reference scheme.

Relationships used for preferred reference are called

existential facts (e.g., there exists a country that has the

country code ‘US’). The other relationships are elemen-

tary facts (e.g., The country with country code ‘US’ has

a population of 301,000,000). The exclamation mark in

symbol 4 declares that an object type is independent

(instances may exist without participating in any ele-

mentary facts). Object types displayed in multiple

places are shadowed (symbol 5).

A fact type results from applying a logical predicate

to a sequence of one or more object types. Each predi-

cate comprises a named sequence of one or more

roles (parts played in the relationship). A predicate is
s.

O

1944O Object-Role Modeling
sentence with object holes, one for each role, with each

role depicted as a box and played by exactly one object

type. Symbol 6 shows a unary predicate (e.g., . . .

smokes), symbols 7 and 8 depict binary predicates

(e.g., . . . loves . . .), and symbol 9 shows a ternary

predicate. Predicates of higher arity (number of roles)

are allowed. Each predicate has at least one predicate

reading. ORMusesmixfix predicates, so objects may be

placed at any position in the predicate (e.g., the fact

type Person introduced Person to Person involves the

predicate ‘‘. . . introduced . . . to . . .’’). Mixfix predi-

cates allow natural verbalization of n-ary relationships,

as well as binary relationships where the verb is not in

the infix position (e.g., in Japanese, verbs come at the

end). By default, forward readings traverse the predicate

from left to right (if displayed horizontally) or top to

bottom (if displayed vertically). Other reading direc-

tions may be indicated by an arrow-tip (symbol 8).

For binary predicates, forward and inverse readings

may be separated by a slash (symbol 7). Duplicate

predicate shapes are shadowed (symbol 10).

Roles may be given role names, displayed in square

brackets (symbol 11). An asterisk indicates that the fact

type is derived from one or more other fact types

(symbol 12). If the fact type is derived and stored, a

double asterisk is used (symbol 13). Fact types that are

semi-derived are marked ‘‘+’’ (symbol 14). Internal

uniqueness constraints, depicted as bars over one or

more roles in a predicate, declare that instances for

that role (combination) in the fact type population

must be unique (e.g., symbols 15, 16). For example, a

uniqueness constraint on the first role of Person was

born in Country verbalizes as: Each person was born in

at most one Country. If the constrained roles are not

contiguous, a dotted line separates the constrained

roles (symbol 16). A predicate may have many unique-

ness constraints, at most one of which may be declared

preferred by a double-bar (symbol 17). An external

uniqueness constraint shown as a circled uniqueness

bar (symbol 18) may be applied to two or more roles

from different predicates by connecting to them with

dotted lines. This indicates that instances of the role

combination in the join of those predicates are unique.

For example, if a state is identified by combining its

state code and country, an external uniqueness con-

straint is added to the roles played by Statecode and

Country in: State has Statecode; State is in Country.

Preferred external uniqueness constraints are depicted

by a circled double-bar (symbol 19).
To talk about a relationship, one may objectify it

(i.e., make an object out of it) so that it can play roles.

Graphically, the objectified predicate (a.k.a. nested

predicate) is enclosed in a soft rectangle, with its

name in quotes (symbol 20). Roles are connected to

their players by a line segment (symbol 21). A manda-

tory role constraint declares that every instance in the

population of the role’s object type must play that role.

This is shown as a large dot placed at the object type

end (symbol 22) or the role end (symbol 23). An

inclusive-or (disjunctive mandatory) constraint applied

to two or more roles indicates that all instances of the

object type population must play at least one of those

roles. This is shown by connecting the roles by dotted

lines to a circled dot (symbol 24).

To restrict the population of an object type or role,

the relevant values may be listed in braces (symbol 25).

An ordered range may be declared separating end

values by ‘‘..’’. For continuous ranges, a square/ round

bracket indicates an end value is included/excluded.

For example, ‘‘(0..10)’’ denotes the positive real num-

bers up to 10. These constraints are called value

constraints.

Symbols 26–28 denote set comparison constraints,

which apply only between compatible role sequences.

A dotted arrow with a circled subset symbol depicts a

subset constraint, restricting the population of the first

sequence to be a subset of the second (symbol 26).

A dotted line with a circled ‘‘=’’ symbol depicts an

equality constraint, indicating the populations must

be equal (symbol 27). A circled ‘‘X’’ (symbol 28)

depicts an exclusion constraint, indicating the popula-

tions are mutually exclusive. Exclusion and equality

constraints may be applied between two or more

sequences. Combining an inclusive-or and exclusion

constraint yields an exclusive-or constraint (symbol 29).

A solid arrow (symbol 30) from one object type to

another indicates that the first is a (proper) subtype of

the other (e.g., Woman is a subtype of Person). Man-

datory (circled dot) and exclusion (circled ‘‘X’’) con-

straints may be displayed between subtypes, but are

implied by other constraints if the subtypes have for-

mal definitions. Symbol 31 shows four kinds of fre-

quency constraint. Applied to a role sequence, these

indicate that instances that play those roles must do

so exactly n times, at least n times, at most n times, or at

least n and at most m times. Symbol 32 shows four

varieties of value-comparison constraint. The arrow

shows the direction in which to apply the circled

Object-Role Modeling O 1945
operator between two instances of the same type (e.g.,

For each Employee, hiredate > birthdate).

Symbol 33 shows the main kinds of ring constraint

that may apply to a pair of compatible roles. Read left

to right and top row first, these indicate that the binary

relation formed by the role population must respec-

tively be irreflexive, asymmetric, antisymmetric, reflex-

ive, intransitive, acyclic, intransitive and acyclic, or

intransitive and asymmetric.

The previous constraints are alethic (necessary, so

can’t be violated) and are colored violet. ORM 2 also

supports deontic rules (obligatory, but can be violated).

These are colored blue, and either add an ‘‘o’’ for

obligatory, or soften lines to dashed lines. Displayed

here are the deontic symbols for uniqueness (symbol

34), mandatory (symbol 35), set-comparison (symbol

36), frequency (symbol 37) and ring (symbol 38)

constraints.

Figure 2 shows a sample ORM schema for a book

publishing domain. A detailed discussion using the

CSDP to develop this schema may be found elsewhere

[9]. Each book is identified by an International Stan-

dard Book Number (ISBN), each person is identified

by a person number, each grade is identified by a

grade number in the range 1 through 5, each gender

is identified by a code (‘M’ for male and ‘F’ for Fe-

male), and each year is identified by its common era
Object-Role Modeling. Figure 2. An ORM schema for a boo
(CE) number. Published Book is a derived subtype

determined by the subtype definition shown at the

bottom of the figure. Review Assignment objectifies

the relationship Book is assigned for review by Person,

and is independent since an instance of it may exist

without playing any other role (one can known about a

review assignment before knowing what grade will

result from that assignment).

The internal uniqueness constraints (depicted as

bars) and mandatory role constraints (solid dots) ver-

balize as follows: Each Book is translated from at most

one Book; Each Book has exactly one Book Title; Each

Book was published in at most one Year; For each

Published Book and Year, that Published Book in

that Year sold at most one NrCopies; Each Published

Book sold at most one total NrCopies; It is possible

that the same Book is authored by more than one

Person and that more than one Book is authored by

the same Person; Each Book is authored by some

Person; It is possible that the same Book is assigned

for review by more than one Person and that more

than one Book is assigned for review by the same

Person; Each Review Assignment resulted in at most

one Grade; Each Person has exactly one Person Name;

Each Person has at most one Gender; Each Person has

at most one Person Title; Each Person Title is restrict-

ed to at most one Gender.
k publishing domain.

O

1946O Object-Role Modeling
The external uniqueness constraint (circled bar)

indicates that the combination of BookTitle and Year

applies to at most one Book. The acyclic ring constraint

(circle with three dots and a bar) on the book translation

predicate indicates that no book can be a translation of

itself or any of its ancestor translation sources. The

exclusion constraint (circled cross) indicates that no

book can be assigned for review by one of its authors.

The frequency constraint (� 2) indicates that each book

that is assigned for review is assigned for review by at

least two persons. The subset constraint (circled subset

symbol)means that if a person has a title that is restricted

to some gender, then the person must be of that gender.

The first argument of this subset constraint is a person-

gender role pair projected from a join path that performs

a conceptual join on PersonTitle. The last two lines at the

bottom of the schema declare two derivation rules, one

specified in attribute-style using role names and the

other in relational style using predicate readings.

Key Applications
ORM has been used productively in industry for over

30 years, in all kinds of business domains. Commercial

tools supporting the fact-oriented approach include

Microsoft’s Visio for Enterprise Architects, and the

FCO-IM tool CaseTalk (www.casetalk.com). CogNIAM,

a tool supporting NIAM2007 is under development at

PNA Active Media (http://cogniam.com/). Free ORM

tools include VisioModeler and Infagon (www.mattic.

com). Dogma Modeler (www.starlab.vub.ac.be) and

T-Lex [15] are academicORM-based tools for specifying

ontologies. NORMA (http://sourceforge.net/projects/

orm), an open-source plug-in to Microsoft1 Visual

Studio, is under development to provide deep support

for ORM 2 [3].

Future Directions
Research in many countries is actively extending ORM

in many areas (e.g., dynamic rules, ontology exten-

sions, language extensions, process modeling). A de-

tailed overview of this research may be found in [9].

General information about ORM, and links to other

relevant sites, may be found at www.ORMFoundation.

org and www.orm.net.

Cross-references
▶Conceptual Schema Design

▶Data Model
▶ Entity Relationship Model

▶UML
Recommended Reading
1. Bakema G., Zwart J., and van der Lek H. Fully Communication

Oriented Information Modelling. Ten Hagen Stam, The

Netherlands, 2000.

2. Bloesch A. and Halpin T. Conceptual queries using ConQuer-II.

In Proc. 16th Int. Conf. on Conceptual Modeling, 1997,

pp. 113–126.

3. Curland M. and Halpin T. Model Driven Development with

NORMA. In Proc. 40th Annual Hawaii Int. Conf. on System

Sciences, 2007.

4. Embley D., Kurtz B., and Woodfield S. Object-Oriented Systems

Analysis: A Model-Driven Approach. Prentice Hall, Englewood

Cliffs, 1992.

5. Falkenberg E. Concepts for modeling information. In Proc. IFIP

Working Conference on Modelling in Data Base Management

Systems, 1976, pp. 95–109.

6. Halpin T. Comparing metamodels for ER, ORM and UML data

models. In Advanced Topics in Database Research, vol. 3, K. Siau

(ed.). Idea Publishing Group, Hershey, 2004, pp. 23–44.

7. Halpin T. Fact-oriented modeling: past, present and future. In

Conceptual Modelling in Information Systems Engineering,

J. Krogstie A. Opdahl S. Brinkkemper (eds.). Springer, Berlin

Heidelberg New York, 2007, pp. 19–38.

8. Halpin T. and Curland M. Automated verbalization for

ORM 2. In On the Move to Meaningful Internet Systems

2006: OTM 2006 Workshops, LNCS vol. 4278, 2006,

pp. 1181–1190.

9. Halpin T., Evans K., Hallock P., and MacLean W. Database

Modeling with Microsoft1 Visio for Enterprise Architects. Mor-

gan Kaufmann, San Francisco, CA, 2003.

10. Halpin T. and Morgan T. Information Modeling and Relational

Databases, 2nd Edition. Morgan Kaufmann, San Francisco,

CA, 2008.

11. Meersman R. (1982) The RIDL conceptual language, Research

report. International Centre for Information Analysis Services,

Control Data Belgium, Brussels, 1982.

12. Nijssen G.M. Current issues in conceptual schema concepts. In

Proc. IFIP Working Conference on Modelling in Data Base

Management Systems, 1977, pp. 31–66.

13. OMG 2007, Semantics of Business Vocabulary and Business

Rules (SBVR). URL: http://www.omg.org/cgi-bin/doc?dtc/

2006-08-05.

14. ter Hofstede A.H.M., Proper H.A., and Weide th.P. van der.

Formal definition of a conceptual language for the descrip-

tion and manipulation of information models. Inf. Syst.,

18(7):489–523, 1993.

15. Trog D., Vereecken J., Christiaens S., De Leenheer P., and

Meersman R. T-Lex: a role-based ontology engineering tool.

In On the Move to Meaningful Internet Systems 2006:

OTM 2006 Workshops, LNCS vol. 4278, 2006, pp. 1191–1200.

16. Wintraecken J. (1990) The NIAM Information Analysis

Method: Theory and Practice, Kluwer, Deventer, The Nether-

lands, 1990.

http://www.casetalk.com
http://cogniam.com/
http://www.mattic.com
http://www.mattic.com
http://www.starlab.vub.ac.be
http://sourceforge.net/projects/orm
http://sourceforge.net/projects/orm
http://www.ORMFoundation.org
http://www.ORMFoundation.org
http://www.orm.net.
http://www.omg.org/cgi-bin/doc?dtc/2006-08-05.
http://www.omg.org/cgi-bin/doc?dtc/2006-08-05.

One-Copy-Serializability O 1947
OCL

▶Object Constraint Language
ODB (Object Database)

▶Object Data Models
ODBC

▶Open Database Connectivity
Office Automation

▶ Enterprise Content Management
Oid

▶Object Identity
O
OKAPI Retrieval Function

▶BM25
OLAP

▶On-Line Analytical Processing
On-Disk Security

▶ Storage Security
One-Copy-Serializability

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Transactional consistency in a replicated database
Definition
While transactions typically specify their read and

write operations on logical data items, a replicated

database has to execute them over the physical data

copies. When transactions run concurrently in the

system, their executions may interfere. The replicated

database system has to isolate these transactions. The

strongest, and most well-known correctness criterion

for replicated databases is one-copy-serializability.

A concurrent execution of transactions in a replicated

database is one-copy-serializable if it is equivalent to a

serial execution of these transactions over a single

logical copy of the database.

Key Points
A transaction is a sequence of read and write opera-

tions on the data items of the database. A read opera-

tion of transaction Ti on data item x is denoted as ri(x),

a write operation on x as wi(x). A transaction Ti either

ends with a commit ci (all operations succeed) or with

an abort ai (whereby all effects on the data are undone

before the termination).

A replicated database consists of a set of data-

base servers A, B, ... and each logical data item x of

the database has a set of physical copies xA, xB, ... where

the index refers to the database server on which the

copy resides. Replica Control translates each operation

oi(x),oi 2{r,w} of a transaction Ti on data item x into

operations oi(x
A),oi(x

B) on physical data copies. Given

a set of transactions T , a replicated history RH

describes the execution of these transactions in the

replicated database. For simplicity the following dis-

cussion only considers histories where all transactions

commit. A database server A executes the subset of

operations of the transactions in T performed on

copies residing on A. The local history RHA describes

the order in which these operations occur. For simplic-

ity a local history is assumed to be a total order. RH is

the union of all local histories with some additional

ordering. In particular, if a transaction Ti executes oi(x)

before oi(y), and RHA contains oi(x
A) and RHB con-

tains oi(y
B), then oi(x

A) < RH oi(y
B).

As an example, givenT1 = w1(y)w1(x) and T2 = r2(y)

w2(x), and database servers A and B, both having a

copy of both x and y, the local histories could be:

RHA : w1ðy AÞr2ðy AÞw1ðx AÞw2ðx AÞc1c2

RHB : w1ðy BÞw1ðx BÞw2ðx BÞc2c1

1948O One-Pass Algorithm
The replicated history RH is the union of these two

local histories plus the ordering of r2(y
A) < RH w2(x

B).

Using this notation, the following defines one-

copy-serializability for the case that replica control

uses ROWA (read-one-write-all-approach), i.e., where

each read operation is performed on one copy

while write operations are performed on all copies of

the data item. Failures are ignored. In this restricted

case conflict-equivalence can be exploited. Two opera-

tions oi and oj conflict, if they are from two different

transactions, access the same data copy, and at least

one is a write operation.

Definition A replicated history RH over a set of

transactions T in a replicated system with servers

A, B,...is one-copy-serializable if it is conflict-equivalent

to a serial history H over T in a single-copy system with

one logical server L. This means that if oi(x
A), oj(x

A) 2
RH and the operations conflict, then oi(x

L) <H oj(x
L) 2

H if and only if oiðxAÞ<RHA ojðxAÞ 2 RH .

Using conflict-equivalence, one can easily deter-

mine whether RH is one-copy-serializable. For each

local history RHA the serialization graph SG(RHA)

has each committed transaction as node, and contains

an edge from Ti to Tj if oiðxAÞ<RHA ojðxAÞ and the two

operations conflict. The serialization graph SG(RH) is

then the union of the local serialization graphs.

Theorem A replicated history RH over a set of trans-

actions T and database servers A, B,...following the

ROWA strategy is one-copy-serializable if and only if

its serialization graph SG(RH) is acyclic.

The example history above is one-copy-serializable

because its serialization graph contains only an edge

from T1 to T2, i.e., in all local histories, and for any

conflict between T1 and T2, T1’s operations are ordered

before T2’s operation.

As soon as node failures are considered or both

read and write operations only access a subset of

copies, conflict-equivalence is not appropriate any-

more because it might miss catching conflicts at

the logical level. For that purpose, one can define

one-copy-serializability based on view-equivalence

which observes which data versions a read operation

accesses and in which order write operations occur.

Cross-references
▶Replica Control

▶Replicated Database Concurrency Control

▶ Strong Consistency Models for Replicated Data
▶Traditional Concurrency Control for Replicated

Databases
Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

control and recovery in database systems. Addison Wesley,

USA, 1987.
One-Pass Algorithm

NICOLE SCHWEIKARDT

Johann Wolfgang Goethe-University, Frankfurt am

Main, Frankfurt, Germany

Synonyms
One-pass algorithm; Streaming algorithm; Data

stream algorithm

Definition
A one-pass algorithm receives as input a list of data

items x1, x2, x3,.... It can read these data items only

once, from left to right, i.e., in increasing order of the

indices i = 1, 2, 3,.... Critical parameters of a one-pass

algorithm are (1) the size of the memory used by the

algorithm, and (2) the processing time per data item xi.

Typically, a one-pass algorithm is designed for answer-

ing one particular query against the input data. To this

end, the algorithm stores and maintains a suitable data

structure which, for each i, is updated when reading

data item xi.

The two parameters processing time per data item

and memory size are usually measured as functions

depending on the size N of the input (different mea-

sures of the input size are considered in the literat-

ure, among them, e.g., the number of data items

occurring in the input, as well as the total number

of bits needed for storing the entire input). The ultimate

goal when designing a one-pass algorithm is to keep the

processing time per data item and the memory size sub-

linear, preferably polylogarithmic, in N. In particular,

one typically aims at algorithms whose memory size is

far smaller than the size of the input.

Key Points
The design and study of one-pass algorithms has a long

tradition in many areas of computer science. For

On-Line Analytical Processing O 1949

O

example, they are used in the area of data stream

processing, where streams of huge amounts of data

have to be monitored on-the-fly without first storing

the entire data. A deterministic finite automaton on

words can be viewed as a (very simple) example of a

one-pass algorithm whose memory size and processing

time per data item is constant, i.e., does not depend on

the input size. For most computational problems,

however, the amount of memory necessary for solving

the problem grows with increasing input size. Lower

bounds on the memory size needed for solving a prob-

lem by a one-pass algorithm are usually obtained by

applying methods from communication complexity

(see, e.g., [1,2] for typical examples).

For many concrete problems it is even known that

the memory needed for solving the problem by a

deterministic one-pass algorithm is at least linear in

the size N of the input. For some of these problems,

however, randomized one-pass algorithms can still

compute good approximate answers while using mem-

ory of size sublinear in N (cf. [1,2,3]). Typically, such

algorithms are based on sampling, i.e., only a ‘‘repre-

sentative’’ portion of the data is taken into account,

and random projections, i.e., only a rough ‘‘sketch’’ of

the data is stored in memory (see [3] for a comprehen-

sive survey of according algorithmic techniques).

In the context of database systems these techniques

are relevant, for example, for maintaining information

needed for cost-based query optimization, e.g., esti-

mates for the number of distinct values of an attribute,

or the self-join size of a database relation. Efficient

one-pass algorithms for incrementally updating these

estimates can be found in [1].

In some application areas, rather than just a single

pass, a small number P of sequential passes over the data

may be available; the resulting algorithms are called

multi-pass algorithms (see e.g., [2] for an analysis of

the trade-off between the memory size and the number

of passes necessary for solving particular problems).

Cross-references
▶Approximate Query Processing

▶Clustering on Streams

▶Data Stream

▶Data Sketch/Synopsis

▶ Event and Pattern Detection over Streams

▶ Stream Processing

▶XML Stream Processing
Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. J. Comput. Syst. Sci.,

58:137–147, 1999.

2. Henzinger M., Raghavan P., and Rajagopalan S. Computing on

data streams. In External Memory Algorithms. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science 50.

American Mathematical Society, Boston, MA, USA, 1999,

pp. 107–118.

3. Muthukrishnan S. Data streams: algorithms and applications.

Found. Trends Theor. Comput. Sci., 1(2):117–236, 2005.
One-Way Hash Functions

▶Hash Functions
Online Advertising

▶Web Advertising
On-Line Analytical Processing

ALBERTO ABELLÓ, OSCAR ROMERO

Polytechnic University of Catalonia, Barcelona, Spain

Synonyms
OLAP

Definition
On-line analytical processing (OLAP) describes an

approach to decision support, which aims to extract

knowledge from a data warehouse, or more specifically,

from data marts. Its main idea is providing navigation

through data to non-expert users, so that they are able

to interactively generate ad hoc queries without the

intervention of IT professionals. This name was intro-

duced in contrast to on-line transactional processing

(OLTP), so that it reflected the different requirements

and characteristics between these classes of uses. The

concept falls in the area of business intelligence.

Historical Background
From the beginning of computerized data manage-

ment, the possibility of using computers in data analy-

sis has been evident for companies. However, early

1950O On-Line Analytical Processing
analysis tools needed the involvement of the IT depart-

ment to help decision makers to query data. They were

not interactive at all and demanded specific knowledge

in computer science. By the mid-1980s, executive

information systems appeared introducing new graph-

ical, keyboard-free interfaces (like touch screens).

However, executives were still tied to IT profession-

als for the definition of ad hoc queries, and prices

of software and hardware requirements where prohib-

itive for small companies. Eventually, cheaper and

easy-to-use spreadsheets became very popular among

decision makers, but soon it was clear that they were

not appropriate for using and sharing huge amounts of

data. Thus, it was in 1993 that Codd et al. [2], coined

the term OLAP. In that report, the authors defined 12

rules for a tool to be considered OLAP. These rules

caused heated controversy, and they did not succeed as

Codd’s earlier proposal for relational database man-

agement systems (RDBMS). Nevertheless, the name

OLAP became very popular and is broadly used.

Although the name OLAP comes from 1993 and

the idea behind them goes back to the 1980s, there is

not a formal definition for this concept, yet. As pro-

posed by Nigel Pendse [6], OLAP tools should pass the

FASMI (fast analysis of shared multidimensional infor-

mation) test. Thus, they should be fast enough to allow

interactive queries; they should help analysis task by

providing flexibility in the usage of statistical tools and

what–if studies; they should provide security (both in

the sense of confidentiality and integrity) mechanisms

to allow sharing data; they should provide a multidi-

mensional view so that the data cube metaphor can be

used by users; and, finally, they should also be able to

manage large volumes of data (gigabytes can be con-

sidered a lower bound for volumes of data in decision

support) and metadata. However, there are not mea-

sures and thresholds for all these characteristics in

order to be able to establish whether one of them is

fulfilled or not, and therefore it is always arguable that

a given tool fulfills them. Nevertheless, it is generally
On-Line Analytical Processing. Figure 1. Comparing OLTP V
agreed that in order to be considered an OLAP tool, it

must offer a multidimensional view of data.

Since their first days, OLAP tools have been losing

weight and lowering prices, while at the same time,

offering more functionality, better user interfaces and

easier administration. Thus, time has come for small

companies to use OLAP. They can afford it and they

are willing to use it in their decision processes. Part of

OLAP industry was associated into the OLAP Council

(created in January 1995), whose aim was the promo-

tion and standardization of OLAP terminology and

technology. However, some major vendors never

became members of this council, so eventually it dis-

appeared (last news date from 1999). Nowadays, there

is no standardization institution specifically devoted to

OLAP. Therefore, it seems difficult to have a standard

data model and query language in the near future,

despite the fact that it is clearly desirable.

Foundations
OLAP environments have completely different require-

ments, compared to OLTP. Figure 1 summarizes the

main differences. Firstly, their usage is different. While

OLTP systems are conceived to solve a concrete prob-

lem and are used in the daily work of companies,

OLAP systems are used in decision support. Thus, in

the first case, since the addressed problem can be

completely specified, the workload of the system is

clearly predefined. Conversely, a decision support sys-

tem aims to solve new problems every day. Therefore,

ad hoc queries are executed. OLTP systems read as well

as write data, while OLAP systems are considered read-

only, because decision makers do not directly modify

data. Nevertheless, the queries in a decision support

system are much more complex, since they usually

include big volumes of information processed by join-

ing several tables, grouping data and calculating func-

tions. Queries in OLTP systems do not usually involve

volumes of data of the same magnitude, neither as

many tables, nor groupings or calculations. The
ersus OLAP.

On-Line Analytical Processing O 1951

O

number of records in OLTP operations can be esti-

mated as tens or hundreds at most, while OLAP

queries usually involve thousands or even millions of

records. Finally, the number of users is also different in

both kinds of systems. OLTP systems can have

thousands or millions of users (like in the case of

cash machines), while OLAP systems have tens or

maybe hundreds of users.

The main characteristic of OLAP is multidimen-

sionality. The data cube metaphor is used to make

user interaction easier and closer to decision makers’

way of thinking, who would probably find SQL or any

other text-based query language hard to understand

and error prone. Thus, it is much easier for them

to think in terms of the multidimensional model,

where a Fact is a subject of analysis and its Dimensions

are the different points of view that analysts could use

to study the Fact. In this way, the instances of a Fact are

shown in an n-dimensional space usually called Cube

or Hypercube.

In order to show n-dimensional Cubes in two-

dimensional interfaces, Cross-tabs or Statistical Tables

such as the one in Fig. 2 (its data is entirely fictitious)

are used. While in relational tables it is found that fixed

columns and different instances are shown in each row,

in Cross-tabs both columns and rows are fixed and

interchangeable. In this example, you see three dimen-

sions (i.e., Product, Place, and Year) that show the

different points of view to analyze the OLAP tools

market.

Multidimensionality is based on this fact-dimension

dichotomy. A Dimension is considered to contain a

hierarchy of aggregation levels representing different

granularities (or levels of detail) to study data, and an

aggregation level to contain descriptive attributes. On

the other hand, a Fact contains quantitative attributes

that are called measures. Dimensions of analysis arrange

the multidimensional space where the Fact of study is

depicted. Each instance of data is identified (i.e., placed

in the multidimensional space) by a point in each of its
On-Line Analytical Processing. Figure 2. Example of

cross-tab or statistical table representation of a

2 � 2 � 2 data cube.
analysis dimensions. Two different instances of data

cannot be spotted in the same point of the multidimen-

sional space. Therefore, given a point in each of the

analysis dimensions they only determine one, and just

one, instance of factual data. Moreover, data summari-

zation that is performed must be correct, i.e., aggregated

categories must be a partition (complementary and dis-

joint) and the kind of measure, aggregation function,

and the dimension along which data is aggregated must

be compatible. For example, stock, sum and time are not

compatible, since stock measures cannot be added along

temporal dimensions.
Operations

Unfortunately, there is no consensus on the set of

multidimensional operations and how to name them.

However, [10] provides a comparison of algebraic pro-

posals in the academic literature, as well as a set of

operations subsuming all of them. A sequence of these

operations is known as an OLAP session. An OLAP

session allows transformation of a starting query into

a new query. Figure 3 draws the transitions generated

by each one of these operations (circles and triangles

represent different attributes for Fact instances):

1. Selection or dice. By means of a logic predicate over

the dimension attributes, this operation allows

users to choose the subset of points of interest out

of the whole n-dimensional space (Fig. 3a).

2. Roll-up. Also called ‘‘Drill-up’’, it groups cells in a

Cube based on an aggregation hierarchy. This op-

eration modifies the granularity of data by means

of a many-to-one relationship which relates

instances of two aggregation levels in the same

Dimension, corresponding to a part-whole rela-

tionship (Fig. 3b from left to right). For example,

it is possible to roll-up monthly sales into yearly

sales moving from ‘‘Month’’ to ‘‘Year’’ aggregation

level along the temporal dimension.

3. Drill-down. This is the counterpart of Roll-up. Thus,

it removes the effect of that operation by going down

through an aggregation hierarchy, and showing

more detailed data (Fig. 3b from right to left).

4. ChangeBase. This operation reallocates exactly the

same instances of a Cube into a new n-dimensional

space with exactly the same number of points

(Fig. 3c). Actually, it allows two different kinds of

changes in the space: rearranging the multidimen-

sional space by reordering the Dimensions, inter-

changing rows and columns in the Cross-tab (this

On-Line Analytical Processing. Figure 3. Schema of operations on cubes.

1952O On-Line Analytical Processing
is also known as Pivoting), or adding/removing

dimensions to/from the space.

5. Drill-across. This operation changes the subject of

analysis of the Cube, by showing measures regard-

ing a new Fact. The n-dimensional space remains

exactly the same, only the data placed in it change

so that new measures can be analyzed (Fig. 3d). For

example, if the Cube contains data about sales, this

operation can be used to analyze data regarding

production using the same Dimensions.

6. Projection. It selects a subset of measures from those

available in the Cube (Fig. 3e).

7. Set operations. These operations allow users to oper-

ate two Cubes defined over the same n-dimensional

space. Usually, Union (Fig. 3f), Difference and

Intersection are considered.

This set of algebraic operations is minimal in the sense

that none of the operations can be expressed in terms

of others, nor can any operation be dropped without

affecting functionality (some tools consider that the set

of measures of a Fact conform to an artificial analysis

dimension, as well; if so, Projection should be removed

from the set of operations in order to be considered

minimal, since it would be done by Selection over

this artificial Dimension). Thus, other operations
can be derived by sequences of these. It is the case

of Slice (which reduces the dimensionality of the

original Cube by fixing a point in a Dimension) by

means of Selection and ChangeBase operations. It is

also common that OLAP implementations use the

term Slice&Dice to refer to the selection of fact instances,

and some also introduce Drill-through to refer to direct-

ly accessing the data sources in order to lower the aggre-

gation level below that in the OLAP repository or

data mart.

Declarative Languages

There are some research proposals of declarative

query languages for OLAP. Cabibbo and Torlone [1]

propose a graphical query language, while Gyssens and -

Lakshmanan [3] propose a calculus. From the industry

point of view, MDX (standing for multidimensional

expressions) [5] is the de facto standard. It was intro-

duced in 1997, and in spite of the specification being

owned by Microsoft, it has been widely adopted. Its

syntax resembles that of SQL:

[WITH <MeasureDefinition>+]

SELECT <DimensionSpecification>+

FROM <CubeName>

[WHERE <SlicerClause>]

On-Line Analytical Processing O 1953

O

However, its semantics are completely different.

Roughly speaking, an MDX query gets the instances

of a given Cube stated in the FROM clause and places

them in the space defined by the SELECT clause.

Moreover, complex calculations can be defined in

the WITH clause, and the dimensions not used in the

SELECT clause can be sliced in the WHERE clause (if

not explicitly sliced, it is assumed that dimensions that

do not appear in the SELECT are sliced at the higher

aggregation level: All).

WITH MEMBER [Measures].[pending] AS

‘[Measures].[Units Ordered]-[Mea-

sures].[Units Shipped]’ SELECT

{[Time].[2006].children} ON COLUMNS,

{[Warehouse].[Warehouse Name].mem-

bers} ON ROWS

FROM Inventory

WHERE ([Measures].[pending],[Trade-

mark].[Acme]);

In the previous MDX query, an ad hoc measure ‘‘pend-

ing’’ is first defined as the difference between units

ordered and shipped. Then, the children of the

instance representing year 2006 (i.e., the 12 months

of that year) are placed on columns, and the different

members of the aggregation level ‘‘Warehouse Name’’

on rows. Now, this matrix is filled with the data in

‘‘Inventory’’ cube, showing the previously defined

measure ‘‘pending’’ and slicing ‘‘Acme’’ trademark.

Key Applications
Managers are usually not trained to query databases by

means of SQL. Moreover, if the query is relatively

complex (several joins and subqueries, grouping, and

functions) and the database schema is not small (with

maybe hundreds of tables), using interactive SQL

could be a nightmare even for SQL experts. Thus,

OLAP is used to ease the tasks of these managers in

extracting knowledge from the data warehouse by

means of Drag&Drop, instead of typing SQL queries

by hand.

OLAP market is estimated around US$ 6 billion in

2006, which is mainly devoted to decision making.

However, this paradigm can also be used in any

other field with non-expert users, where schemas and

queries are relatively complex. For example, its usage

is under investigation in bioinformatics [8], and the

semantic web [9].
Future Directions
OLAP is used to extract knowledge from the data

warehouse. Data mining tools can also be used for

this purpose. Until now, both research communities

have been evolving separately. The former must be

interactive, while the latter presents computational

complexity problems. However, it seems promising

to integrate both kinds of tools so that one can

benefit from the other [4]. Some tools like Microsoft

Analysis Services already integrate them in some

way. Nevertheless, there is still much work to do in

this field.

On the other hand, security is usually a flaw in data

warehousing projects. Reference [7] contains a survey

of OLAP security problems. In the past, OLAP tools

used to have just a few users and all of them had high

responsibilities in the organization, so this was not

really a concern in the sense of confidentiality. Nowa-

days, with the increase in potential users of OLAP

systems inside as well as outside the organization,

security has emerged as a priority in these projects.

Moreover, personal data (like those of customers) are

usually analyzed in almost all companies. Thus, infer-

ence control mechanisms need to be studied in data

mining as well as OLAP tools.

Other research directions in OLAP can be the

improvement of user interaction and flexibility in

the calculation of statistics, and the integration of

what–if analysis (see What–if Analysis definitional

entry).
Url to Code
Some OLAP vendors:

1. Microsoft Analysis Services: http://www.microsoft.

com/sql/technologies/analysis/default.mspx

2. Hyperion Solutions: http://www.hyperion.com

3. Cognos PowerPlay: http://www.cognos.com/pro-

ducts/business_intelligence/analysis/index.html

4. Business Objects: http://www.businessobjects.com/

products/queryanalysis/olapaccess/businessobjects.

asp

5. MicroStrategy: http://www.microstrategy.com/

Solutions/5Styles/olap_analysis.asp

Some open source OLAP tools:

1. Mondrian: http://mondrian.pentaho.org

2. Palo: http://www.palo.net

http://www.microsoft.com/sql/technologies/analysis/default.mspx
http://www.microsoft.com/sql/technologies/analysis/default.mspx
http://www.hyperion.com
http://www.cognos.com/products/business_intelligence/analysis/index.html
http://www.cognos.com/products/business_intelligence/analysis/index.html
http://www.businessobjects.com/products/queryanalysis/olapaccess/businessobjects.asp
http://www.businessobjects.com/products/queryanalysis/olapaccess/businessobjects.asp
http://www.businessobjects.com/products/queryanalysis/olapaccess/businessobjects.asp
http://www.microstrategy.com/Solutions/5Styles/olap_analysis.asp
http://www.microstrategy.com/Solutions/5Styles/olap_analysis.asp
http://mondrian.pentaho.org
http://www.palo.net

1954O Online Handwriting
Cross-references
▶Business Intelligence

▶Cube Implementations

▶Database Management System

▶Data Mart

▶Data Mining

▶Data Warehouse

▶Dimension

▶Hierarchy

▶Hierarchical Data Summarization

▶Measure

▶Multidimensional Modeling

▶ Star Schema

▶ Summarizability

▶Visual On-Line Analytical Processing (OLAP)
Recommended Reading
1. Cabibbo L. and Torlone R. From a procedural to a visual query

language for OLAP. In Proc. 10th Int. Conf. on Scientific and

Statistical Database Management. 1998, pp. 74–83.

2. Codd E.F., Codd S.B., and Salley C.T. Providing OLAP to user-

analysts: An ITmandate. Technical Report, E. F. Codd & Associ-

ates, 1993.

3. Gyssens M. and Lakshmanan L.V.S. A foundation for multi-

dimensional databases. In Proc. 23rd Int. Conf. on Very Large

Data Bases, 1997, pp. 106–115.

4. Han J. OLAP Mining: Integration of OLAP with Data Mining.

In Proc. IFIP TC2/WG2.6 Seventh Conf. Database Semantics,

1997, pp. 3–20.

5. Microsoft.Multidimensional Expressions (MDX)Reference. Avail-

able at http://msdn2.microsoft.com/en-us/library/ms145506.aspx,

2007. SQL Server books online.

6. Pendse N. The OLAP Report – What is OLAP? Available at

http://www.olapreport.com/fasmi.html, 2007. Business Applica-

tion Research Center.

7. Priebe T. and Pernul G. Towards OLAP Security Design –

Survey and Research Issues. In Proc. ACM Int. Workshop

on Data Warehousing and OLAP, 2000, pp. 33–40.

8. Rahm E., Kirsten T., and Lange J. The GeWare data warehouse

platform for the analysis of molecular-biological and clinical

data. J. Integr. Bioinformat., 1(4):47, 2007.

9. Romero O. and Abelló A. Automating Multidimensional

design from ontologies. In Proc. ACM Int. Workshop

on Data Warehousing and OLAP, 2007, pp. 1–8.

10. Romero O. and Abelló A. On the need of a reference algebra for

OLAP. In Proc. Int. Conf. on Data Warehousing and Knowledge

Discovery, 2007, pp. 99–110.
Online Handwriting

▶ Electronic Ink Indexing
Online Recovery

▶Crash Recovery
Online Recovery in Parallel Database
Systems

RICARDO JIMENEZ-PERIS

Universidad Politecnica de Madrid, Madrid, Spain

Synonyms
High availability; Continuous availability; 24x7

operation
Definition
Replication (also known as clustering) is a technique to

provide high availability in parallel and distributed

databases. High availability aims to provide continu-

ous service operation. High availability has two faces.

On one hand, it provides fault-tolerance by introdu-

cing redundancy in the form of replication, that is,

having multiple copies or replicas of the data at differ-

ent sites. On the other hand, since sites holding the

replicas may crash and/or fail, in order to keep a given

degree of availability, failed or new replicas should be

reintroduced into the system. Introducing new replicas

requires transferring to them the current state in a

consistent fashion (known as recovery). A simple solu-

tion to this problem is offline recovery, that is, in order

to obtain a quiescent state, request processing is sus-

pended, then the state is transferred from a working

replica (termed recoverer replica) to the new replica

(recovering replica) and finally, request processing is

resumed. Unfortunately, offline recovery results in a

loss of availability, which defeats the original goal of

replication, that is to provide high availability. The

alternative is online recovery, in which transaction pro-

cessing is not stopped while the recovery is performed.

The main challenge for online recovery is to attain

consistency, since the state to be transferred to the

recovering replica(s) is a moving target. While the

recovery takes place, new transactions are processed

and the state evolves during the recovery itself. Online

recovery needs to be coordinated with the replica con-

trol protocol to enforce consistency.

http://msdn2.microsoft.com/en-us/library/ms145506.aspx
http://www.olapreport.com/fasmi.html

Online Recovery in Parallel Database Systems O 1955

O

Historical Background
Recovery is used in centralized databases to bring the

database to a consistent state after a crash [1]. The

consistency is attained by ensuring that the updates

of committed transactions are reflected in the database

and the updates of uncommitted (aborted) transac-

tions are not reflected in it. In clustered databases,

centralized recovery is used to bring a failed replica to

a local consistent state, but then, since other working

replicas may have processed transactions, centralized

recovery is not sufficient and it has to be followed by a

replica recovery [11]. During replica recovery, the

failed replica (or a fresh new one) recovers the current

state from the working replicas. What is meant by

current state the state reflecting all the updates from

transactions that will not be processed by the

recovering replica, and not reflecting any of the

updates from transactions that will be processed by

the recovering replica after recovery. A failed replica

only needs to recover the missed updates, while a new

replica needs to recover the full database.

The seminal paper on online recovery for clustered

databases is [8]. In this paper, a suite of protocols for

online recovery is proposed. One of the protocols lies

in a locking-based online recovery. The full database is

locked atomically using recovery locks, a special kind

of read lock. This guarantees a quiescent state of the

database. Then, the recovery locks are released as data

is transferred to the recovering replica. The atomic

setting of the recovery locks acts as a synchronization

point. All update requests processed before the recov-

ery lock setting should be reflected in the transferred

state. Requests submitted after the recovery locks are

set should be processed by the recovering replica after

recovery finishes. This protocol lies inbetween offline

and online recovery. In the beginning, all the data are

locked, and therefore the database is unavailable. This

situation improves as recovery progresses, since recov-

ery locks are released and the corresponding data be-

come available. Another online recovery protocol

proposed in [8] is a multi-round recovery. In this

protocol, the state to be transferred (missed updates)

to the recovering replica is sent in rounds. The first

round would contain all the updates missed until the

start of recovery. In the second round, the updates

performed during the first round are sent, and so on.

When the number of updates performed during the

last round is small enough, a last round is run. During

the last round, the recovering replica has to store all
client requests to process them after finishing recovery.

This recovery protocol if fully online and also signifi-

cantly reduces the number of transactions to be stored

during recovery, since it is only during the last round

that the recovering replica has to store incoming trans-

actions (typically only the resulting updates from them).

Another piece of work on online recovery was pre-

sented in [5]. This paper describes a log-based online

recovery protocol in which a failed replica receives the

prefix of the log corresponding to the update transac-

tions it has missed. Since the log grows as the recovery

progresses, the protocol has a special handshake proto-

col to finish recovery. The recoverer traverses the log

from the first transaction the failed replica missed until

it reaches the end of the log. At this point, the end

recovery handshake protocol is started to determine

which will be the last transaction to be sent as part of

the recovery. The recovering replica starts storing

requests that follow this transaction to process them

after recovery finishes.

Online recovery has also been used for replicated

data warehouses across the Internet [9]. In this work,

each replica is located at an autonomous organization

and exhibits an interface to execute queries. The online

recovery protocol exploits the underlying architecture

and performs recovery by issuing queries from the

recovering replica to the working replicas. It also

takes advantage of a facility for historical queries that

enables executing a read only query providing a time-

stamp T. This historical query will return the same

results as it happened at time T. The recovery protocol

has 3 phases. In the first phase, the recovering site

determines the latest time T for which it has all the

committed updates. In the second phase, the

recovering site runs historical queries at working repli-

cas (that act as recoverer replicas) with a timestamp

between the recovery point and a time closer to the

present to catch up missed updates. Historical queries

do not set read locks, and therefore do not block

updates at the recoverer sites. In the final phase, a

regular query (non-historical) is run to get the latest

updates. In this case, read locks are set to guarantee the

consistency.

Online recovery has also been studied in other

contexts, such as diverse data replication and Byzan-

tine data replication. In diverse data replication [4],

each replica runs a database from a different vendor.

This approach enables tolerating software failures since

it has been observed that bugs in one product typically

1956O Online Recovery in Parallel Database Systems
do not appear in a database from a different vendor

[4]. In diverse data replication, recovery is slightly

more complex, since it requires using a common ab-

stract representation of the data. This might need some

tuple translation during recovery in order to align

fields with slightly different types.

Byzantine data replication [17] tolerates intrusions

and provides continuous correct service despite them.

An intrusion happens at a site when it is attacked. This

site may behave arbitrarily to disrupt service provision.

Intrusions are modeled as Byzantine (also known as

arbitrary) failures. Byzantine replication typically

resorts to diverse data replication to avoid common

vulnerabilities. Typically tolerating f Byzantine failures

requires 3 � fþ1 replicas. Byzantine data replication has

a more involved recovery, since it should also mask

Byzantine recoverers. This means that a sufficient

number of recoverers is needed in order to mask

Byzantine failures during recovery [2]. An additional

issue in Byzantine fault tolerance is that once one

replica has been successfully attacked, another one

can be attacked, and so on. In order to reduce the

window of vulnerability, proactive recovery has been

proposed [2]. This approach recovers replicas proac-

tively without waiting until they are crashed or

attacked. During recovery, the recovering replica

boots from read-only media and recovers the state

from working replicas using a Byzantine recovery pro-

tocol. During recovery, the state is transferred from

multiple working replicas to be able to tolerate Byzan-

tine (attacked) recoverers. Replicas are recovered in a

round-robin fashion forced by a reboot provoked by a

hardware watchdog. In this way, even if a replica has

been attacked silently (without the system and admin-

istrator noticing it), it will become operative again,

thus, reducing the window of vulnerability of the

system.

Foundations
High availability consists of two inseparable aspects.

On one hand, it requires the ability to tolerate failures.

This is typically achieved by introducing redundancy

in the form of replication. However, in order to keep a

given degree of availability, the ability to recover failed

(or new) replicas is also necessary. Recovering failed

replicas requires obtaining a quiescent state from a

working replica (or recoverer replica) and transferring

it to the new replica (or recovering replica). This quies-

cent state can be easily obtained by stopping transaction
processing. This results in offline recovery. Although

offline recovery guarantees the consistency of recovery,

its major drawback is that it results in a loss of avail-

ability during the recovery process that defeats the

original goal of replication, which is to provide high

availability. The alternative is online recovery, that is, to

transfer the state to a recovering replica without stop-

ping transaction processing.

Replication can be used to provide scalability in

addition to providing availability. In this case, availabil-

ity results insufficient as a metrics to express the good-

ness of a recovery protocol [5]. Performability becomes

a more appropriate metrics in this context. Performabil-

ity is defined as the cumulative performance of a highly

available system over a period of time in the presence of

failures and recoveries. To understand why it is impor-

tant, an extreme situation will be illustrated. A replicated

system has a throughput of 1000 transactions per second

(tps). During online recovery the system remains avail-

able, but its throughput decreases to 1 tps. Although this

system is available, it is clearly worse than a system that

would deliver 990 tps during the online recovery (assum-

ing that online recovery takes the same amount of time in

both systems). However, when comparing the perform-

ability of both systems during online recovery, the former

system would offer a very poor performability, while the

second would offer a very high one close to the one in

which the system is not recovering any replica.

Online recovery protocols typically consist of five

phases:

1. Local Recovery brings the local state to a consistent

state by means of centralized recovery.

2. Find Last Committed Update Transaction deter-

mines the last update transaction reflected in the

local state.

3. Global Recovery Start initiates online recovery tak-

ing care of obtaining a quiescent state from one or

more working replicas to be transferred to the

recovering replica.

4. Global Recovery transfers a quiescent state from a

working replica to the recovering replica.

5. Global Recovery End is the handshake protocol to

determine the end of recovery.

The first and second phases depend on whether the

recovering replica is a failed replica or a fresh new

replica. For a failed replica, the first phase is typically

performed automatically by the underlying database

system upon recovery after a crash. For a failed replica,

Online Recovery in Parallel Database Systems O 1957

O

the second phase implies traversing the log or any

other recovery information repository to find out

which was the last committed update transaction.

In most protocols, this information does not need to

be precise. It can be enough to obtain the identifier

of a committed transaction (e.g., a timestamp, log

sequence number or transaction identifier, TID) close

to the failure instant such that all previously com-

mitted transactions are also reflected in the local

state. If some updates of latter transactions are

reflected in the state, they will be rewritten during

recovery. For a fresh new replica, the first phase is

empty and the second phase first involves obtaining a

checkpoint of the database and then performing the

same processing as a failed replica. The checkpoint of

the database also needs to be obtained in an online

fashion using techniques such as point-in-time recov-

ery [16] in order to keep the system available.

In the third phase, there is some communication

between the recovering replica and the working repli-

cas. This interaction has several purposes. First, the

working replicas become aware of the new replica

wanted to join the system. Second, the recovering

replica informs the working replicas about the last

known update. Third, a recoverer is elected to transfer

the state to the recovering replica.

The fourth phase transfers the state from the recov-

er to the recovering replica. The recovery process is

synchronized with replica control to guarantee that a

quiescent state is transferred to the recovering replica.

The fifth phase aims at finishing the recovery,

which requires splitting the sequence of transactions

into two disjoint sets (the ones whose state is reflected

in the state transfer to the recovering replica, and the

ones that should be processed by the recovering replica

after finishing the recovery).

Online recovery depends on the specific features of

the replica control protocol being used, such as eager

vs. lazy, primary-backup vs. update-everywhere, ker-

nel-based vs. middleware-based replication, etc. In

eager replication, the coordination between replica

control and online recovery is very tight to guarantee

consistency [6,7,13,14,10]. In lazy replication, the co-

ordination can be looser. For instance, in a freshness-

based approach [12,3], as far as the freshness require-

ment is satisfied the coordination can be more relaxed.

In a primary-backup approach, the recovery of back-

ups is simpler since they do not execute updates on

their own, they just apply the updates coming from
the primary [15]. In update-everywhere approaches

[6,7,13,14,10] the recovery needs to be interleaved care-

fully with replica control to guarantee consistency [8,5].

In kernel-based approaches, it is possible to use

recovery protocols that use mechanisms within the ker-

nel (such as locking) [8]. However, inmiddleware-based

approaches, the recovery can only use those mechan-

isms available at the database interface [5].

In this entry, two approaches will be examined in

detail: an online recovery for kernel-based replication

based on locking [8], and an online recovery for mid-

dleware-based replication based on logging [5].

First, a locking-based online recovery approach is

studied. This approach is based on the most basic

protocol from [8]. This basic version of the protocol

transfers the full database. The recovery is coordinated

with replica control to guarantee consistency. This

coordination is materialized through locking. In what

follows, the first generic phases of online recovery for

this particular protocol are described. The first phase,

local recovery, is orthogonal to online recovery it can

just be ignored. The second phase consists in deter-

mining the last update known by the recovering repli-

ca. Since in this approach the full database is sent, this

phase does not exist.

The third phase is recovery start. The recovering

replica notifies to the working replicas that is willing to

join the system and recover. In this protocol, in order

to guarantee the quiescence of the transferred state, the

recovery is started by initiating a transaction that sets

atomically special read locks or recovery locks over all

the tuples in the database. The quiescent state to be

transferred corresponds to the state just after the atom-

ic setting of the recovery locks. The recovery then takes

place gradually. As soon as a recovery lock is granted,

the tuple is read and sent to the recovering replica.

Then, the lock is released. It should be noted that

recovery locks are read locks and therefore do not

delay read operations, only update ones. During the

recovery, the recovering replica should store the in-

coming transactions (only those involving updates)

to process them after recovery, since the associated

updates are not incorporated in the state being trans-

ferred to it.

The end-of-recovery handshake is simple in this

protocol. It is initiated after the sending of the last

tuple, and the recovery message piggybacks is marked

to indicate this fact. After receiving this message,

the recovering replica starts to process all the stored

1958O Online Recovery in Parallel Database Systems
transactions during the recovery. Depending on the

replica control in place the recovering replica will exe-

cute the update transactions, or will receive the result-

ing updates from the other replicas (which is usually

the case). In the latter case, incoming transactions do

not need to be stored-just the update propagation

messages from the other replicas.

There are many optimizations that can be per-

formed over this basic protocol as described in [8].

Batching recovery messages limit the amount of data

transferred during recovery by recording the updates

performed during recovery, shortening the amount of

updates to be stored during online recovery by using

multiple phases, etc.

The second protocol that will be described is a log-

based protocol [5]. This protocol is combined with a

pessimistic replica control implemented as a middle-

ware layer. A pessimistic replica control freely executes

non-conflictive transactions in the replicated system,

while conflictive ones are executed in the same relative

order at all replicas. The replica control protocol over

which online recovery is built is Nodo, described in

[13]. Nodo is based on the notion of conflict classes.

A transaction might access one or more conflict

classes. Each conflict class has a master replica. Each

combination of conflict classes also has a master

replica, one of the master replicas of the individual

conflict classes. Each conflict class has an associated

transaction queue. Update transactions are sent to

all replicas in the same order. Read-only transactions

are only sent to one of the replicas. Transactions are

queued in the conflict class queues relevant to them

(the ones that they read or write). When a transaction

is at the front of all the queues it has been enqueued,

the master of the conflict class combination associ-

ated to the transaction executes it locally. If the trans-

action is read-only, then the results are returned

directly to the client and removed from all the

queues. If the transaction contains updates, the master

extracts them from the database and sends them to all

other replicas. Nodo keeps a log for each individual

conflict class that is exploited by the online recovery

protocol.

The online recovery protocol for Nodo guarantees

consistent recovery by careful coordination with the

replica control protocol of Nodo. Individual conflict

classes can be recovered independently, that is, each

individual conflict class could use a different recoverer
replica. The recovery of an individual conflict class is

detailed in what follows. The first phase, local recovery,

occurs when the replica recovers. The second phase,

determining the last update reflected in the replica

state, is done by looking at the local log. The recovering

replica traverses the log to determine the identifier of

the last transaction processed for the conflict class

being recovered. This identifier is used in the fourth

phase to initiate the recovery of the conflict class. One

of the working replicas is elected as recoverer replica

for this conflict class. In the fourth phase, the recoverer

replica traverses the log of the conflict class being

recovered. The recoverer replica continues processing

updates involving this conflict class. This means that

the log grows as is being traversed. The recovering

replica just applies all the updates corresponding to

the conflict class under recovery, but will discard them,

since it is receiving them via the recovery. The recover-

er replica will eventually reach the end of the log. At

this point the fifth phase is performed to finish recov-

ery. In the end-of-recovery handshake three different

roles are involved, namely, the recoverer and

recovering replicas, and the master replica of the con-

flict class under recovery. There is a race condition,

since the master produces updates from locally exe-

cuted transactions, while the recoverer needs to know

the last update to be forwarded to the recovering

replica and the recovering replica needs to know from

which transaction it has to start to process update

transactions. When the recoverer reaches the end of

the log, it sends a request-end-of-recovery message to

all replicas (only the master needs this message in the

failure-free case). The master will then piggyback with

the next update it forwards an end-of-recovery marker.

This marker will indicate to the recoverer that this is

the last update to be sent to the recovering replica. The

marker will tell the recovering replica which is the last

update part of the recovery, and therefore it will know

fromwhich point it has to apply updates received from

the master replica.

The online recovery for Nodo, as stated before,

allows recovering conflict classes independently. In

fact, once a conflict class is recovered, the recovering

replica could become master of that class. Additionally,

several conflict classes can be recovered in parallel

using different recoverers for each of them. The online

recovery for Nodo has been designed to be adaptive.

The goal is to obtain the highest performability.

Ontologies O 1959

O

If the replicated system has a low load, the resources

employed to recover the replica are increased

(i.e., increasing the number of recoverers). If there is

a peak load, during recovery, then the resources

devoted to recovery can be decreased (i.e., decreasing

the number of recoverers). In this way, performability

is maximized. Nodo also enables dealing with over-

lapping recoveries in parallel. If a batch of sites is

recovered in a time interval, they will start recovery at

slightly different times. The recovery protocol takes

care of recovering simultaneously conflict classes for

all recovering replicas it knows. In this way, if one

replica starts recovery after another one has recovered

two conflict classes, they will perform simultaneously

the recovery of the remaining N-2 conflict classes,

being N the number of conflict classes, and alone the

recovery of the first two conflict classes. This enables a

more efficient dissemination of the recovery messages

(e.g., exploiting multicast) and efficiently recovering

batches of replicas.

Key applications
Online recovery is a crucial technique to provide true

high availability, that is, 24�7 operation. Its main

potential users are all those organizations that pro-

vide services that should be continuously available.

Among these potential users one can find enterprise

data centers, software as a service (SaaS) platforms,

services governed by service level agreements (SLAs),

services for critical infrastructures (health-care, energy,

police, etc.).

Cross-references
▶Data Replication

▶Replica control

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

1987.

2. Castro M. and Liskov B. Practical byzantine fault tolerance and

proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461,

2002.

3. Gançarski S. , Naacke H., Pacitti E., and Valduriez P. The leganet

system: Freshness-aware transaction routing in a database clus-

ter. Inform. Syst., 32(2):320–343, 2007.

4. Gashi I., Popov P., and Strigini L. Fault Tolerance via

Diversity for Off-The-Shelf Products: a Study with SQL Data-

base Servers. IEEE Trans. Depend. Secur. Comput., 4(4):280–

294, 2007.
5. Jiménez-Peris R., M. Patiño-Martı́nez, and Alonso G. Non-

Intrusive, Parallel Recovery of Replicated Data. In Proc. 21st

Symp. on Reliable Distributed Syst., 2002, pp. 150–159.

6. Kemme B. and Alonso G. Don’t be lazy, be consistent:

Postgres-R, a new way to implement database replication.

In Proc. 26th Int. Conf. on Very Large Data Bases, 2000,

pp. 134–143.

7. Kemme B. and Alonso G. A New Approach to Developing and

Implementing Eager Database Replication Protocols. ACM

Trans. Database Syst., 25(3):333–379, 2000.

8. Kemme B., Bartoli A., and Babaoglu O. Online Reconfiguration

in Replicated Databases Based on Group Communication. In

Proc. Int. Conf. on Dependable Systems and Networks, 2001, pp.

117–130.

9. Lau E. and Madden S. An Integrated Approach to Recovery and

High Availability in an Updatable, Distributed Data Warehouse.

In Proc. 32nd Int. Conf. on Very Large Data Bases. 2006,

pp. 703–714.

10. Manassiev K. and Amza C. Scaling and Continuous Availability

in Database Server Clusters through Multiversion Replication.

In Proc. Int. Conf. on Dependable Systems and Networks, 2007,

pp. 666–676.

11. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems. Prentice-Hall, 2nd ed., 1999.

12. Pacitti E. and Simon E. Update Propagation Strategies to Im-

prove Freshness in Lazy Master Replicated Databases. VLDB J., 8

(3):305–318, 2000.

13. Patiño-Martı́nez M., Jiménez-Peris R., Kemme B., and Alonso G.

Middle-R: Consistent Database Replication at the Middleware

Level. ACM Trans. Comput. Syst., 23(4):375–423, 2005.

14. Pedone F., Guerraoui R., and Schiper A. The Database State

Machine Approach. Distributed and Parallel Databases, 14(1):

71–98, 2003.

15. Plattner C. and Alonso G. Ganymed: Scalable Replication for

Transactional Web Applications. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004, pp. 155–174.

16. PostgreSQL PostgreSQL Point in Time Recovery. http://www.

postgresql.org/docs/8.0/interactive/backup-online.html.

17. Vandiver B., Balakrishnan H., Liskov B., and Madden S. Tolerat-

ing Byzantine Faults in Database Systems using Commit Barrier

Scheduling. In Proc. 21st ACM Symp. on Operating System

Principles, 2007, pp. 59–72.
Ontological Engineering

▶Ontology

▶Ontology Engineering
Ontologies

▶Gazetteers

http://www.postgresql.org/docs/8.0/interactive/backup-online.html
http://www.postgresql.org/docs/8.0/interactive/backup-online.html

1960O Ontologies and Life Science Data Management
Ontologies and Life Science Data
Management

ROBERT STEVENS
1, PHILLIP LORD

2

1University of Manchester, Manchester, UK
2Newcastle University, Newcastle-Upon-Tyne, UK

Synonyms
Knowledge management

Definition
Biology is a knowledge-rich discipline. Much of bioin-

formatics can, therefore, be characterized as knowledge

management: organizing, storing and representing that

knowledge to enable search, reuse and computation.

Most of the knowledge of biology is categorical;

statements such as ‘‘fish gotta swim, birds gotta fly’’

cannot be easily represented as mathematical or statis-

tical relationships. These statements can, however, be

formalized using ontologies: a form of model which

represents the key concepts of a domain.

Ontologies are now widely used in bioinformatics

for a variety of tasks, enabling integration and man-

agement of multiple data or knowledge sources, and

providing a structure for new knowledge as it is

created.
Historical Background
Biological knowledge is highly complex. It is charac-

terized not by the large size of the data sets that it uses,

but by the large number of data types; from relatively

simple data such as raw nucleotide sequence, through

to anatomies, systems of interacting entities, to des-

criptions of phenotype.

In addition to its natural complexity, biology has

traditionally operated as a ‘‘small science’’ – with a large

number of individual, autonomous laboratories work-

ing independently. This has resulted in highly heteroge-

neous data; in addition to the natural complexity of the

data, knowledge is often represented in many different

ways [5]. There are, for example, at least twenty different

file formats for representing DNA sequence.

Ontologies can be used to enable the knowledge

management that overcomes these two forms of com-

plexity. First, they can be used to represent complex,

categorical knowledge of the sort common in biology.

Second, by describing the heterogeneity of the repre-

sentation of knowledge, they can provide a common,
shared understanding that can be used to overcome

this heterogeneity.

In post-genomic biology, the first of these has been

the most common usage. Here, ontologies are used to

generate a controlled vocabulary; for this, the Gene

Ontology (GO) [14] provides the paragon for biological

sciences. It represents three key aspects of genetics; the

molecular function of a gene (product), the biological

process in which the product is involved, and the cellu-

lar component in which it is located. GO has been used

to annotate many genomes and has been used for

annotations in UniProt and InterPro. Following on

from the success of GO, the Open Biomedical Ontol-

ogies (OBO) now provides controlled vocabularies for

describing many aspects of biological knowledge

(http://obo.sf.net).

The second major use has been to enable access to

or querying over multiple independent data sources.

EcoCyc [8], for example, uses an ontology to provide a

schema to integrate genome, proteome data and a

number of pathway resources, while RiboWeb [1] was

a similar style of ontology driven application for stor-

ing, managing and analyzing data from experiments

on ribosomal structure. The TAMBIS system [7] used

an ontology to mediate queries to a number of differ-

ent data sources.

Most of these examples are post-hoc additions to

existing systems; GO, for example, presents knowledge

which is already present in other, less formal, represen-

tations. More recently, however, there has been a

shift to the use of ontologies as a primary representa-

tion. The MGED Ontology (MO) [17] provides a

vocabulary for reporting microarray experiments,

while the Systems Biology Ontology (SBO) (http://

www.ebi.ac.uk/sbo/) supports the representation of

systems biology models.

Over the past decade, the use of ontologies has

now become well-entrenched as a tool for organizing

and structuring biomedical knowledge and, therefore,

has become a key part of life science knowledge

management [3].

Foundations
It was recognized early in bioinformatics that there is a

massive problem with heterogeneous representations of

data [5]. Such heterogeneities, particularly at the seman-

tic level, exist both in the meanings of the structures that

hold values (the schema) and in the meanings of the

values themselves. To query or analyze meaningfully

http://obo.sf.net
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/

Ontologies and Life Science Data Management O 1961

O

across data from different sources, therefore, there is a

necessary reconciliation step to enable the data to be

understood. A database, for example, might have either

separate tables for substrate or product, or just one for

reactant; as an orthogonal issue, a chemical might be

‘‘acetic acid’’ in one or ‘‘ethanoic acid’’ in another. Both

types of mis-match need to be overcome.

This heterogeneity can occur both in descriptions

of biology and also bioinformatics: it is possible to

disagree on which genes are involved in a process,

what those genes are called and what structure is used

to hold information about those genes.

Ontologies provide a computable mechanism for

working around these problems; they describe the

entities and what is known about these entities within

the data of biology, and provide a set of labels to

describe these entities and their properties. As a result,

an ontology can be used to describe the entities within

a biological database. Terms from the Gene Ontology,

for example, are used to describe the major functional

attributes of gene products in many databases; this, in

turn, allows comparative studies of genes and their

actions across species.

Ontologies need to be represented in a language;

these are often called knowledge representation lan-

guages. They have a set of language elements for de-

scribing categories (also called classes, types, concepts

or universals) of instances (also called objects, entities,

individuals or particulars). The languages vary in their

expressivity – that is, how much is it possible to say

about what these elements mean. For example, if we

state that ArB, where A and B are classes and r is a

relationship, does this mean that every A has a B

related to it by r; that for any A with a r relation, this

r is to a B; to how many B ’s can an A have a relation-

ship; that r has an inverse relationship, and so on.

Some languages allow only trees of categories to be

made, others more complex graphs. Finally, languages

differ in their computational amenability [11].

Ontologies have found a variety of uses within

bioinformatics:

" Reference Ontology: An ontology can be used simply

as a reference, encompassing what is understood

about a domain with high-fidelity. Such an ontology

is not skewed by any application bias, except that of

correctness.

" Controlled Vocabulary: The labels on the categories

in an ontology provide a vocabulary with which
discussion of those categories can be accomplished.

By committing to use that vocabulary – controlling

the words used in communication – a controlled

vocabulary is established. This is the principal means

of overcoming a large portion of heterogeneity.

" Computational Component: An ontology can form a

component in a software application. The strict seman-

tics of its representation language can be used tomake

inferences from data described in terms of that ontolo-

gy. This can simply be retrieving all the children of

a given category (all instances of a child are also

instances of the parent) to recognizing membership

of a category based on facts known about an object.
There are many technical and social difficulties

associated with using an ontology for data manage-

ment. The choice of representation language can be

key; an ontology for use as a computational compo-

nent probably needs a more computationally amena-

ble and expressive language than an ontology

intended to provide a controlled vocabulary. It is

often hard to engage with domain experts to ensure

that the ontology reflects the domain, while maintain-

ing ontological precision. There are a number of meth-

odologies for ontology building [6], but the discipline

is still nascent. Finally, adapting and updating the

ontology when it is already in use can require rigorous,

yet flexible policies.
Key Applications
Perhaps the best known ontology in biology is the

Gene Ontology (GO) [14]. It started in 1998 with an

aim of enabling queries across multiple databases for

the key aspects or properties of the genes or proteins; it

achieves this not by schema reconciliation but enabling

the augmentation of existing knowledge; in short, it is

one of the best examples of a reference ontology.

Another domain well served by reference models is

that of anatomy. The Foundational Model of Anatomy,

for example, aims to provide a ‘‘symbolic modeling of

the structure of the human body in a computable form

that is also understandable by humans’’ [12]. The aim

is that this ontology provides a common representa-

tion into which others can be mapped.

One of the early uses for ontologies was enabling

schema and value reconciliation. The TAMBIS [7]

system was an early example. It uses an ontological

representation of entities and their properties in

biology expressed in a description logic [2]. These

1962O Ontologies and Life Science Data Management
descriptions, that could be composed to more complex

concept descriptions, were then transformed to queries

against bioinformatics analysis services capable of

retrieving instances of the concepts within the ontolo-

gy. The ontology, then, could tell that the user that

a Protein might have one or more Homologs,

while the system would understand that a BLAST

search might reveal these Homologs. A concept there-

fore also defined a query plan. More recently,

the BioPAX ontology [10] provides a schema for repre-

senting biological pathway data; the different contri-

buting databases could then release knowledge in

the format. Both of these operate on the level of sche-

ma, but reconciliation to a common model also occurs

at the level of the values held within a schema.

The Gene Ontology, for example, in providing a con-

trolled vocabulary for the functional attributes of

gene products has allowed many genome resources to

use common values within their schema.

Both BioPAX and TAMBIS enabled querying

by assigning objects to categories in the ontology. Ontol-

ogies represent the properties by which objects can be

recognized to be amember of a category. If these proper-

ties are recognizable computationally, then the ontology

can beused to classify thesemembers automatically. This

approach has been used to classify the phosphatase pro-

teins from three parasite genomes [4]. A final approach

to ontological querying is to use the ontology as a

basis for statistical analysis of individuals annotated

with these ontologies. GO has been widely used for

this purpose [9,15].

Finally, ontologies have begun to be used for the

representation of metadata about primary experimen-

tal data. The MGED society has led the way with the

MGED Ontology (MO) which has been used for de-

scribing microarray data[17]. This ontology describes

a number of aspects about an experiment including:

the biological material used; experimental design and

microarray equipment. Similar work is now underway

for describing proteomics experiments [13]. These are

coming together in the Ontology for Biomedical Inves-

tigations OBI that is providing a general framework

for describing the protocols and analyses for many

different kinds of experiment [16].

Future Directions
In the past decade ontologies have come to form a

major aspect of information management in the life

sciences. The field of ontology development in the
life sciences now faces several challenges in the short

and medium term.

� The wide scope of biology is a challenge; to describe

many parts of it, also needs descriptions of closely

related areas such as chemistry, geology and

geography.

� Ontologies are starting to get very large. It is not

clear whether current methodologies are scalable,

both in terms of building, maintaining or using

them. This has many implications for the formal

expressive structures of the knowledge representa-

tion language, the ability to support modularity of

these languages, and the social processes used to

build ontologies.

� Dealing with change both as a result of the ontolo-

gy development process and, perhaps more impor-

tantly, as a result of changes in knowledge itself.

There are many different techniques for dealing

with the former situation; there are many fewer

for dealing with the latter. If datasets gathered

over a long period of time are to be understood in

the future, it may become as important to under-

stand what was thought in the past as it is to

manage the current sate of knowledge.

� Currently many ontologies deal with a single level

of granularity or the view point of a single dis-

cipline building sophisticated, computationally

amenable ontologies necessitates crossing bound-

aries of granularity and discipline. It remains, how-

ever, unclear how to integrate these sorts of

ontology.

� Ontologies currently fulfill the luxury end of

the metadata market; they can be very expensive

to build, maintain and deploy. Lower the cost

is critical. Probably the best way to achieve this

is to make them easier for domain scientists to

build which leads to a second challenge; main-

taining usability of ontologies and representa-

tion languages, while increasing their scale and

computability.

It seems clear that ontologies will be in heavy use in the

future within the life sciences. How well these chal-

lenges are answered will determine the uses to which

they are put.

Cross-references
▶Ontology

▶Query Languages for Ontological Data

Ontology O 1963

O

Recommended Reading
1. Altman R., Bada M., Chai X. Whirl Carillo M., Chen R.,

and Abernethy N. RiboWeb: an ontology-based system for col-

laborative molecular biology. IEEE Intell. Syst., 14(5):68–76,

1999.

2. Baader F., Calvanese D., McGuinness D., Nardi D., and

Patel-Schneider P. (eds.) The Description Logic Handbook:

Theory, Implementation and Applications. Cambridge Univer-

sity Press, 2003.

3. Bodenreider O. and Stevens R. Bio-ontologies: current trends and

future directions. Brief Bioinform., 7(3):256–274, 2006.

4. Brenchley R., Tariq H., McElhinney H., Szoor B., Stevens R.,

Matthews K., and Tabernero L. The TriTryp Phosphatome anal-

ysis of the protein phosphatase catalytic domains. BMC

Genome, 8:434, 2007.

5. Davidson S., Overton C., and Buneman P. Challenges in inte-

grating biological data sources. J. Comput. Biol., 2(4):557–572,

1995.

6. Fernàndez-Lòpez M. and Gòmez-Pèrez A. Overview and analysis

of methodologies for building ontologies. Knowl. Eng. Rev., 17

(2):129–156, 2002.

7. Goble C.A., Stevens R., Ng G., Bechhofer S., Paton N.W.,

Baker P., Peim M., and Brass A. Transparent access to multiple

bioinformatics information sources. IBM Syst. J., Special issue

on deep computing for the life sciences, 40(2):532–552, 2001.

8. Karp P., Riley M., Saier M., Paulsen I., Paley S., and Pellegrini-

Toole A. The EcoCyc and metacyc databases. Nucleic Acids Res.,

28:56–59, 2000.

9. Lord P.W., Stevens R., Brass A., and Goble C.A. Investigating

semantic similarity measures across the Gene Ontology:

the relationship between sequence and annotation. Bioinformat-

ics, 19–(10):1275–1283, 2003.

10. Luciano J. PAX of mind for pathway researchers. Drug Discov.

Today, 10:937–942, 2005.

11. Ringland G. and Duce D. Approaches to Knowledge Represen-

tation: An Introduction Knowledge-Based and Expert Systems

Series. John Wiley, Chichester, 1988.

12. Rosse C. and Mejino J.L.V. A reference ontology for bioinfor-

matics: the foundational model of anatomy. J. Biomed. Inform.,

36:478–500, 2003.

13. Taylor C., Paton N., Lilley K., Binz P., Julian Jr R., Jones A.,

Zhu W., Apweiler R., Aebersold R., Deutsch E., Dunn M., Heck

A., Leitner A., Macht M., Mann M., Martens L., Neubert T.,

Patterson S., Ping P., Seymour S., Souda P., Tsugita A.,

Vandekerckhove J., Vondriska T., Whitelegge J., Wilkins M.,

Xenarios I., Yates J. (3rd) and Hermjakob H. The minimum

information about a proteomics experiment (MIAPE). Nat.

Biotech., 25:887–893, 2007.

14. The Gene Ontology Consortium Gene Ontology: Tool for the

Unification of Biology. Nat. Gene., 25:25–29, 2000.

15. Wang H., Azuaje F., Bodenreider O., and Dopazo J. Gene

expression correlation and gene ontology-based similarity: an

assessment of quantitative relationships. In Proc. IEEE Symp. on

Computational Intelligence in Bioinformatics and Computa-

tional Biology. 2004, pp. 25–31.

16. Whetzel P., Brinkman R., Causton H., Fan L., Field D., Fostel J.,

Fragaso G., Gray T., Heiskanen M., Hernandez-Boussard T.,
Morrison N., Parkinson H., Rocca-Serra P., Sansone S.A.,

Schober D., Smith B., Stevens R., Stoeckert C., Taylor C.,

White J., and Wood A. the FuGo working group development

of FuGo: An ontology for functional genomics investigations.

OMICS J. Integrat. Biol., 10:199–204, 2006.

17. Whetzel P.L., Parkinson H., Causton H.C., Fan L., Fostel J., Fra-

goso G., Game L., Heiskanen M., Morrison N., Rocca-Serra P.,

Sansone S.A., Taylor C., White J., and Stoeckert C.J. The

mged ontology: a resource for semantics-based description of

microarray experiments. Bioinformatics, 22(7):866–873, 2006.
Ontology

TOM GRUBER

RealTravel, Emerald Hills, CA, USA

Synonyms
Computational ontology; Semantic data model; Onto-

logical engineering

Definition
In the context of computer and information sciences,

an ontology defines a set of representational primitives

with which to model a domain of knowledge or dis-

course. The representational primitives are typically

classes (or sets), attributes (or properties), and rela-

tionships (or relations among class members). The

definitions of the representational primitives include

information about their meaning and constraints on

their logically consistent application. In the context of

database systems, ontology can be viewed as a level of

abstraction of data models, analogous to hierarchical

and relational models, but intended for modeling

knowledge about individuals, their attributes, and

their relationships to other individuals. Ontologies

are typically specified in languages that allow abstrac-

tion away from data structures and implementation

strategies; in practice, the languages of ontologies are

closer in expressive power to first-order logic than

languages used to model databases. For this reason,

ontologies are said to be at the ‘‘semantic’’ level, where-

as database schema are models of data at the ‘‘logical’’

or ‘‘physical’’ level. Due to their independence from

lower level data models, ontologies are used for

integrating heterogeneous databases, enabling inter-

operability among disparate systems, and specifying

interfaces to independent, knowledge-based services.

In the technology stack of the Semantic Web standards

1964O Ontology
[1], ontologies are called out as an explicit layer. There

are now standard languages and a variety of commer-

cial and open source tools for creating and working

with ontologies.

Historical Background
The term ‘‘ontology’’ comes from the field of philoso-

phy that is concerned with the study of being or exis-

tence. In philosophy, one can talk about an ontology as

a theory of the nature of existence (e.g., Aristotle’s

ontology offers primitive categories, such as substance

and quality, which were presumed to account for All

That Is). In computer and information science, ontol-

ogy is a technical term denoting an artifact that is

designed for a purpose, which is to enable the modeling

of knowledge about some domain, real or imagined.

The term had been adopted by early Artificial Intel-

ligence (AI) researchers, who recognized the applicabil-

ity of the work from mathematical logic [6] and argued

that AI researchers could create new ontologies as

computational models that enable certain kinds of auto-

mated reasoning [5]. In the 1980s the AI community

came to use the term ontology to refer to both a theory

of a modeled world (e.g., a Naı̈ve Physics [5]) and a

component of knowledge systems. Some researchers,

drawing inspiration from philosophical ontologies,

viewed computational ontology as a kind of applied

philosophy [10].

In the early 1990s, an effort to create interoperability

standards identified a technology stack that called out

the ontology layer as a standard component of knowl-

edge systems [8]. Awidely cited web page and paper [3]

associated with that effort is credited with a deliberate

definition of ontology as a technical term in computer

science. The paper defines ontology as an ‘‘explicit spec-

ification of a conceptualization,’’ which is, in turn, ‘‘the

objects, concepts, and other entities that are presumed

to exist in some area of interest and the relationships

that hold among them.’’ While the terms specification

and conceptualization have caused much debate, the

essential points of this definition of ontology are:

� An ontology defines (specifies) the concepts, rela-

tionships, and other distinctions that are relevant

for modeling a domain.

� The specification takes the form of the definitions of

representational vocabulary (classes, relations, and

so forth), which provide meanings for the vocabu-

lary and formal constraints on its coherent use.
One objection to this definition is that it is overly

broad, allowing for a range of specifications from sim-

ple glossaries to logical theories couched in predicate

calculus [9]. But this holds true for data models of any

complexity; for example, a relational database of a

single table and column is still an instance of the

relational data model. Taking a more pragmatic view,

one can say that ontology is a tool and product of

engineering and thereby defined by its use. From this

perspective, what matters is the use of ontologies to

provide the representational machinery with which to

instantiate domain models in knowledge bases, make

queries to knowledge-based services, and represent the

results of calling such services. For example, an API to

a search service might offer no more than a textual

glossary of terms with which to formulate queries, and

this would act as an ontology. On the other hand,

today’s W3C Semantic Web standard suggests a specif-

ic formalism for encoding ontologies (OWL), in sever-

al variants that vary in expressive power [7]. This

reflects the intent that an ontology is a specification

of an abstract data model (the domain conceptualiza-

tion) that is independent of its particular form.

Foundations
Ontology is discussed here in the applied context of

software and database engineering, yet it has a theoret-

ical grounding as well. An ontology specifies a vocabu-

lary with which to make assertions, which may be

inputs or outputs of knowledge agents (such as a

software program). As an interface specification, the

ontology provides a language for communicating

with the agent. An agent supporting this interface is

not required to use the terms of the ontology as an

internal encoding of its knowledge. Nonetheless, the

definitions and formal constraints of the ontology do

put restrictions on what can be meaningfully stated in

this language. In essence, committing to an ontology

(e.g., supporting an interface using the ontology’s

vocabulary) requires that statements that are asserted

on inputs and outputs be logically consistent with the

definitions and constraints of the ontology [3]. This is

analogous to the requirement that rows of a database

table (or insert statements in SQL) must be consistent

with integrity constraints, which are stated declarative-

ly and independently of internal data formats.

Similarly, while an ontology must be formulated in

some representation language, it is intended to be a

semantic level specification – that is, it is independent of

Ontology Argumentation O 1965

O

datamodeling strategy or implementation. For instance,

a conventional database model may represent the iden-

tity of individuals using a primary key that assigns a

unique identifier to each individual. However, the pri-

mary key identifier is an artifact of the modeling process

and does not denote something in the domain. Ontol-

ogies are typically formulated in languages which are

closer in expressive power to logical formalisms such as

the predicate calculus. This allows the ontology designer

to be able to state semantic constraints without forcing

a particular encoding strategy. For example, in typical

ontology formalisms one would be able to say that an

individual was a member of class or has some attribute

value without referring to any implementation patterns

such as the use of primary key identifiers. Similarly, in

an ontology one might represent constraints that hold

across relations in a simple declaration (A is a subclass

of B), which might be encoded as a join on foreign keys

in the relational model.

Ontology engineering is concerned with making

representational choices that capture the relevant dis-

tinctions of a domain at the highest level of abstraction

while still being as clear as possible about the meanings

of terms. As in other forms of data modeling, there is

knowledge and skill required. The heritage of compu-

tational ontology in philosophical ontology is a rich

body of theory about how to make ontological distinc-

tions in a systematic and coherent manner. For exam-

ple, many of the insights of ‘‘formal ontology’’

motivated by understanding ‘‘the real world’’ can be

applied when building computational ontologies for

worlds of data [4]. When ontologies are encoded in

standard formalisms, it is also possible to reuse large,

previously designed ontologies motivated by systemat-

ic accounts of human knowledge or language [11]. In

this context, ontologies embody the results of academ-

ic research, and offer an operational method to put

theory to practice in database systems.

Key Applications
Ontologies are part of the W3C standards stack for the

Semantic Web, in which they are used to specify stan-

dard conceptual vocabularies in which to exchange

data among systems, provide services for answering

queries, publish reusable knowledge bases, and offer

services to facilitate interoperability across multiple,

heterogeneous systems and databases. The key role of

ontologies with respect to database systems is to specify

a data modeling representation at a level of abstraction
above specific database designs (logical or physical), so

that data can be exported, translated, queried, and uni-

fied across independently developed systems and ser-

vices. Successful applications to date include database

interoperability, cross database search, and the integra-

tion of web services.

Cross-references
▶Data Model

▶Data Modeling

▶Knowledge Base

▶Knowledge Engineering

Recommended Reading
1. Berners-Lee T., Hendler J., and Lassila O. The semantic web.

Scientific American, May 2001.

2. Gruber T.R. A translation approach to portable ontology speci-

fications. Knowl. Acquisition, 5(2):199–220, 1993.

3. Gruber T.R. Toward principles for the design of ontologies

used for knowledge sharing. Int. J. Hum. Comput. Stud., 43

(5–6):907–928, 1995.

4. Guarino N. Formal ontology, conceptual analysis and knowledge

representation. Int. J. Hum. Comput. Stud., 43(5–6):625–640,

1995.

5. Hayes P.J. The second naive physics manifesto. In Formal

Theories of the Common-Sense World, Moore (eds.). Hobbs,

Ablex, Norwood, MA, 1985.

6. McCarthy J. Circumscription – a form of non-monotonic

reasoning. Artif. Intell., 5(13):27–39, 1980.

7. McGuinness D.L. and van Harmelen F. OWL web ontology

language. W3C Recommendation, February 10, 2004. Available

online at: http://www.w3.org/TR/owl-features/.

8. Neches R., Fikes R.E., Finin T., Gruber T.R., Patil R., Senator T.,

and Swartout W.R. Enabling technology for knowledge sharing.

AI Mag., 12(3):16–36, 1991.

9. Smith B. and Welty C. Ontology – towards a new synthesis. In

Proc. Int. Conf. on Formal Ontology in Information Systems,

2001.

10. Sowa J.F. Conceptual Structures: Information Processing in

Mind and Machine, Addison Wesley, Reading, MA, 1984.

11. Standard Upper Ontology Working Group (SUO). IEEE

P1600.1. Available online at: http://suo.ieee.org/.
Ontology Acquisition

▶Ontology Elicitation
Ontology Argumentation

▶Ontology Elicitation

http://www.w3.org/TR/owl-features/
http://suo.ieee.org/

1966O Ontology Elicitation
Ontology Elicitation

PIETER DE LEENHEER

Vrije Universiteit Brussel, Collibra nv, Brussels,

Belgium

Synonyms
Ontology acquisition; Ontology learning; Ontology

argumentation; Ontology negotiation; Knowledge

creation
Definition
Ontology elicitation embraces the family of methods

and techniques to explicate, negotiate, and ultimately

agree on a partial account of the structure and seman-

tics of a particular domain, as well as on the sym-

bols used to represent and apply this semantics

unambiguously.

Ontology elicitation only results in a partial ac-

count because the formal definition of an ontology

cannot completely specify the intended structure and

semantics of each concept in the domain, but at best

can approximate it. Therefore, the key for scalability is

to reach the appropriate amount of consensus on rele-

vant ontological definitions through an effective mean-

ing negotiation in an efficient manner.

Historical Background
Ontology elicitation is based on techniques of knowl-

edge acquisition, a subfield of AI that is concerned

with eliciting and representing knowledge of human
Ontology Elicitation. Figure 1. Illustration of a minimal ORM

relational table.
experts so that it can later be used in some application.

Two typical knowledge acquisition methods can be

distinguished:

1. Top-down (deductive) knowledge elicitation techni-

ques are used to acquire knowledge directly from

human domain experts. Examples include inter-

viewing, case study, and mind mapping techniques.

2. Bottom-up (inductive) machine learning techniques

use different methods to infer knowledge (e.g., con-

cepts and rules) patterns from sets of data. A well-

known example is formal concept analysis [10].

More formal methods for top-down knowledge acqui-

sition use knowledge modeling as a way of structuring

projects, acquiring and validating and storing knowl-

edge for future use. Knowledge models include: sym-

bolic character-based languages (e.g., logic, OWL),

diagrammatic representations (networks, ladders,

taxonomies, concept maps), tabular representations

(e.g., matrices), structured text (e.g., hypertext) [16],

and conceptual modeling.

Conceptual Modeling

Certain methods and techniques from the database

field for conceptual modeling (e.g., ER, UML, dataflow

diagrams) have been proven useful for ontology elici-

tation. For example, in [13], ORM/NIAM has been

adopted. Figure 1 shows an example of a minimal

ORM diagram (on top) explicating the semantics that

is implicit in the relational table schema and popula-

tion (on the bottom). For example, this ORM diagram

already reveals what the table cannot, the semantics of
diagram explicating the implicit semantics for a

Ontology Elicitation O 1967

O

the relation of attribute ‘‘person’’ to attributes ‘‘city’’

and ‘‘country,’’ and that ‘‘first name’’ and ‘‘last name’’

are both part of a ‘‘name.’’ Furthermore, ‘‘city’’ and

‘‘country’’ appear not to be related at all.

A key characteristic of NIAM/ORM is that the

analysis of information is based on natural language.

This brings the advantage that the analysis can be done

by the domain experts using their own vocabulary, and

hence avoiding invalid interpretations. Furthermore,

this attribute-free approach seen in the NIAM/ORM

approach promotes semantic stability.

Data Schema Versus Ontology

Data models, such as data or XML schemas, typically

specify the structure and integrity of data sets. Hence,

building data schemas for an enterprise usually

depends on the specific needs and tasks that have to

be performed within this enterprise. Data engineering

languages such as SQL aim to maintain the integrity of

data sets and only use a typical set of language con-

structs to that aim, e.g., foreign keys. The schema vo-

cabulary is basically to be understood intuitively (via

the terms used) by the human database designer(s).

The semantics of data schemas often constitute an

informal agreement between the developers and an

intended group of users of the data schema, and finds

its way only in application programs that use the data

schema instead of manifesting itself as an agreement

that is shared amongst the community [20]. When new

functional requirements pop up, the schema is updated

on the fly. One designated individual usually controls

this schema update process.

In (collaborative) ontology elicitation, however,

absolute meaning is essential for all practical purposes,

hence all elements in an ontology must ultimately be

the result of agreements among human agents such as

designers, domain experts, and users. In practice, cor-

rect and unambiguous reference to concepts or entities

in the schema vocabulary is a real problem; often harder

than agreeing about their properties, and obviously not

solved by assigning system-owned identifiers.

Foundations
In collaborative ontology elicitation, multiple stake-

holders have overlapping or contradicting perspec-

tives about the intended structure, semantics, and

vocabulary of the domain concepts [5]. This is princi-

pally caused by three facts: (i) no matter how expressive

ontologies might be, they are all in fact lexical
representations of concepts, relationships, and semantic

constraints; (ii) linguistically, there is no bijective

mapping between a concept and its lexical representa-

tion; and (iii) concepts can have different properties and

values in different contexts of use. Hence, humans play

an important role in the interpretation and negotiation

of meaning during the elicitation and application of

ontologies [7]. These principles can be illustrated by

considering Stamper’s semiotic ladder [21] that consists

of six views or levels on signs from the perspective of

physics, empirics, syntactics, semantics, pragmatics and

the social world, that together form a complex conceptual

structure. In this article, we only consider syntactical or

lexical level, semantic level, and pragmatic level (Fig. 2).

Ontology elicitation can be considered as a process that

gradually takes ontological elements through these levels.

Lexical Versus Semantic Level

At the start of the elicitation of an ontology, its basic

terminology for labeling concepts and relationships

are extracted from various resources such as a text

corpus [3], existing schemas [16], from so-called seri-

ous games [19] or rashly formulated by human domain

experts through, e.g., tagging [22]. Many ontology

engineering approaches focus merely on the conceptu-

al modeling task, hence the distinction between lexical

level (term for a concept) and semantic level (the

concept itself) is often weak or ignored. In order to

represent concepts and relationships lexically, they

usually are given a uniquely identifying term (or

label). However, the meaning of a concept behind a

lexical term is influenced by the elicitation context,

which is the context of the resource the term was

extracted from. When eliciting and unifying informa-

tion from multiple sources, this can easily give rise to

misunderstandings and ambiguities, therefore the

meaning of all terms used for ontology representation

purposes should be articulated appropriately.

This is illustrated in Fig. 2: the full arrows denote

the meaning articulation mappings between terms

in organizational vocabularies (cloud on the left)

and unique concept identifiers (e.g., c1, r1, etc.). The

mapping of each unique concept identifiers to a

particular explication of a meaning, i.e., a concept

definition is defined by the dashed arrows.

Lexical Variability and Reusability

Even within one conversation, it turned out that in

a less than a quarter of the cases, two individuals use

Ontology Elicitation. Figure 2. Three levels of ontology elicitation: lexical level, semantic level, and pragmatic level.

1968O Ontology Elicitation
the same symbolic reference for a concept, and hence

the freedom to use synonyms should be accommo-

dated [8]. To engender creativity, domain experts

should initially be allowed to use their own vocabul-

aries, instead of being harshly restricted by an unfamil-

iar controlled taxonomy dictated by a central

authorship. Gradually, this variability will converge

towards one or more vocabularies that are commonly

accepted.

For example, thousands of shared vocabularies or

so-called folksonomies emerge, are sold and adver-

tised, prosper or wither in a self-organizing manner

on Web 2.0, through reuse and adaptation of natural
language labels for tagging their resources. Natural

language labels for concepts and relationships bring

along their inherent ambiguity and variability in inter-

pretation. Folksonomies provide on the one hand an

unbounded reusability potential for specific reference

in a given application context, which is important for

scalable ontology elicitation. On the other hand, how-

ever, an analysis of multiple contexts is generally needed

to disambiguate successfully [1,5].

Semantic Versus Pragmatic Level

The meaning articulation mappings and the concept

definition service respectively provide unambiguous

Ontology Elicitation O 1969
reference and semantic explication of terms, indepen-

dent of the preferred vocabulary. However, the mean-

ing of these concepts should be further formalized

for appropriately serving application purposes, by

combining and linking them with other concepts,

and axiomatizing them with semantic constraints

and rules. In the section on applications, there is an

overview of typical applications, including process

logic and (legacy) information system interoperability,

web service orchestration, and competency model gap

analysis in human resources (HR).

The relevant properties and values for the concepts

to be agreed on, depend on the application require-

ments. For the sake of scalability, as in any realistic

system or knowledge engineering scenario, in ontology

elicitation, (parts of) existing semantic resources are

reused and adopted as much as possible for new app-

lication purposes. This asks for a methodological

trade-off between the reuse of relevant consensus

from existing application contexts as much as possible,

while allowing specific variations for new application

requirements at stake to be collaboratively negotiated,

based on (parts of) existing consensus.

Figure 3 illustrates this with a model for collabora-

tive ontology elicitation, as introduced by [7], and

inspired by the Delphi method (http://en.wikipedia.

org/wiki/Delphi_method.). For bootstrapping the
Ontology Elicitation. Figure 3. A model for collaborative on
elicitation of a concept, knowledge workers are given

a pattern that defines the current insights and interests

of the community for that type of concepts. The ex-

ample here concerns the elicitation of a concept ‘‘De-

liver,’’ which is a type of ‘‘Job Task.’’ Each of the

stakeholding organizations elicit the relevant proper-

ties and values of ‘‘Deliver’’ by specializing the pattern

abstracted from ‘‘Job Task.’’ If no pattern exists, it is

bootstrapped by the core domain experts overlooking

the domain.

Divergence and Conflict

Divergence is the point in collaborative ontology elici-

tation where domain experts disagree or have a conflict

about the meaning of some concept in such a way that

consequently their ontologies evolve in widely varying

directions. Although they share common goals for

doing business, divergent knowledge positions appear

as a natural consequence when people collaborate in

order to come to a unique common understanding.

Rather than considering it to be a problem, con-

flicts should be seen as an opportunity to negotiate

about the subtle differences in interpretation of the

domain, which will ultimately converge to a shared

understanding disposed of any subjectivity. However,

meaning conflicts and ambiguities should only be re-

solved when relevant. It is possible that people have
tology elicitation.

O

http://en.wikipedia.org/wiki/Delphi_method
http://en.wikipedia.org/wiki/Delphi_method

1970O Ontology Elicitation
alternative conceptualizations in mind for business or

knowledge they do not wish to share. Therefore, in

building the shared ontology, the individual ontolo-

gies of the various partners only need to be aligned

insofar necessary, in order to avoid wasting valuable

modeling time and effort.

Basically they only need to agree on a common

specialization of the current properties present in the

pattern. However, it could be the case that a consider-

able part of the stakeholders identifies new relevant

properties, or see other properties to be obsolescent.

This provides a feedback suggestion to revise the pat-

terns for a next version of the ontology.

Relevant techniques for collaborative ontology ne-

gotiation and argumentation include [14,17].

Convergence and Patterns

Once, a common specialization is agreed on, it is lifted

up in the upper common levels of the ontology. Grad-

ually, this would result in the emergence of increasingly

stable generally deployable ontology patterns that are

key for enabling future business interoperability needs

in a scalable manner [2,6,9,7].

Key Applications
Ontologies have become an integral part of many aca-

demic and industrial applications in various domains,

including Semantic Web services, regulatory compli-

ance, and human resources.

Semantic Web Services

Service-oriented (SOA) is an architecture that relies on

service-orientation as its fundamental design principle.

In a SOA environment, independent services can be

accessed without knowledge of their underlying plat-

form implementation. Within this paradigm, the crea-

tion of automation logic is specified in the form of

services. Service orientation is another design para-

digm that provides a means for achieving a separation

of concerns, which obviously increases the potential

for software reusability.

The Semantic Web aims to make data accessible

and understandable to intelligent machine processing.

Semantic Web services additionally aim to do the same

for services available on the Semantic Web, targeting

automation of service discovery, composition and in-

vocation. For describing Semantic Web services, it is

required to elicit the so-called ‘‘domain ontologies’’ or

that formalize the knowledge necessary for capturing

the meaning of services and exchanged data. In other
words, given a particular business goal, the domain

ontologies enable the weaving of the relevant concerns

that are separated in relevant services.

A key challenge here is to overcome the ontology-

perspicuity bottleneck [11] that constrains the use of

ontologies, by finding a compromise between top-

down imposed formal semantics expressed in expert

language and bottom-up emerging real-world seman-

tics expressed in layman user language.

For more on infrastructure, theory, business

aspects, and experiences on ontology elicitation and

management for Semantic Web applications, see [12].

Regulatory Compliance

Businesses and government must be able to show com-

pliance of their outputs, and often also of their systems

and processes, to specific regulations. Demonstrable

evidence of this compliance is increasingly an auditable

consideration and required in many instances to meet

acceptable criteria for good corporate governance.

Moreover the number and the complexity of applicable

regulations in Europe and elsewhere is increasing.

This includes mandatory compliance audits and asse-

ssments against numerous regulations and best practice

guidelines over many disciplines and against many

specific criteria. The implementation of information

communications technology also means that previous

manual business processes are now being performed

electronically and the degree of compliance to applic-

able regulations depends on how the systems have been

designed, implemented and maintained. Keeping up

with the rate of new regulations for a major corporation

and small business alike is a never ending task. What

is the answer to all of this regulatory complexity? First

one should simplify regulations where possible and

then apply automatic tools to assist.

The automated data demands of networked econo-

mies and an increasingly holistic view on regulatory

issues are driving and yet partially frustrating attempts

to simplify regulations and statutes. In an ideal world

companies and other organizations would have the

tools and online services to check and measure their

regulatory compliance; and governmental organizations

would be able to electronically monitor the results. This

requires a more systemic shared approach to regulatory

assurance assessment and compliance certification.

Lessig [15] has a simple yet profound thesis ‘‘Code

is law.’’ The application of this concept taken in con-

junction with the emergence of regulatory ontologies

opens up a new way of assessing whether burgeoning

Ontology Elicitation O 1971

O

systems are compliant with regulations they seek and

claim to embody. First specific regulations (e.g., data

privacy, digital rights management) are converted into

and expressed as ‘‘Regulatory Ontologies.’’ These ontol-

ogies are then used as the base platform for a ‘‘Trusted

Regulatory Compliance Certification Service.’’

Over time the resulting ontology describing and

managing the areas analyzed can literally replace the

regulations and compliance criteria. So much so, it is

envisaged that an eventual outcome could be that the

formal writing (codification) of future laws will start

with the derived ontologies and use intelligent agents

to help propose specific legal text which ensures that

the policy objectives are correctly coded in law. In

addition automatic generation of networked computer

applications that are perfectly compliant with the wide

variety of directives and laws in any country is one of

the ultimate goals of this type of ontology based work.

For an overview of ontology-grounded trusted reg-

ulatory compliance, see [18].

Human Resources

Competencies describe the skills and knowledge indivi-

duals should have in order to be fit for particular jobs.

Especially in the domain of vocational education, hav-

ing a central shared and commonly used competency

model is becoming crucial in order to achieve the

necessary level of interoperability and exchange of

information, and in order to integrate and align the

existing information systems of competency stake-

holders like schools or public employment agencies.

Only few organizations however, have successfully

implemented a company-wide ‘‘competency initia-

tive,’’ let alone a strategy for inter-organizational ex-

change of competency related information.

Several projects (See, e.g., the EU-funded CoDrive

project.) aim at contributing to a competency-driven

vocational education by using state-of-the-art ontolo-

gy methodology and infrastructure in order to collab-

oratively develop a conceptual, shared and formal KR

of competence domains.

For a business case study on vocational competency

ontology elicitation, see [4].

Future Directions
The ever-changing interoperability requirements be-

tween the stakeholding communication partners (See,

e.g., diverse (legacy) systems in the open extended

enterprise.) requires ontologies to continuously evolve.

Usually the domain is too large and complex to be
explicated in one single effort, and the knowledge

workers understanding of the domain is in continu-

ously changing, requiring timely renegotiation of exist-

ing consensus. Therefore, one should not merely focus

on the practice of eliciting ontologies in a project-like

context, but consider it as a real-time collaborative and

continuous process that is integrated with and in the

operational processes of the community itself. The

shared background of communication partners is con-

tinuously negotiated as are the characteristics or values

of the concepts that are agreed upon.

There are many additional complexities that should

be considered. As investigated in FP6 integrated pro-

jects (See, e.g., http://ecolead.vtt.fi/.) on collaborative

networked organizations, the different professional,

social, and cultural backgrounds among communities

and organizations can lead to misconceptions, result-

ing in costly ambiguities and misunderstandings if not

aligned properly. This is especially the case in inter-

organizational settings, where there may be many pre-

existing organizational sub-ontologies, inflexible data

schemas interfacing to legacy data, and ill-defined,

rapidly evolving collaborative requirements. Further-

more, participating stakeholders usually have strong

individual interests, inherent business rules, and work

practices. These may be tacit, or externalized in work-

flows that are strongly interdependent, hence further

complicate the conceptual alignment. Finally this also

involves ontology elicitation cost estimation. Simperl

and Sure (chapter 7, [12]) propose a parametric cost

estimation model for ontologies by identifying relevant

cost drivers having a direct impact on the effort

invested in ontology elicitation.

For an overview of future directions towards com-

munity-driven ontology elicitation and management,

see [6].

Cross-references
▶ Emergent Semantics

▶Ontology

▶Ontology Engineering

Recommended Reading
1. Bachimont B., Troncy R., and Isaac A. Semantic commitment for

designing ontologies: a proposal. In Proc. 13th Int. Conf. on

Knowledge Engineering and KnowledgeManagement. Ontologies

and the Semantic Web, 2002, pp. 114–121.

2. Blomqvist E. OntoCase – a pattern-based ontology construction

approach. In Proc. OTM Confederated International Con-

ferences CoopIS, DOA, ODBASE, GADA, and IS, 2007,

pp. 971–988.

http://ecolead.vtt.fi/

1972O Ontology Engineering
3. Buitelaar P., Cimiano P., andMagnini B. Ontology learning from

text: methods, evaluation and applications, vol. 123 of Frontiers

in Artificial Intelligence and Applications, IOS, Amsterdam,

2005.

4. Christiaens S., De Leenheer P., and de Moor A. Robert

Meersman R. Ontologising Competencies in an Interorgani-

sational Setting. In Ontology Management. vol. 7 of Semantic

Web and Beyond Computing for Human Experience, Springer,

Berlin, 2008, pp. 265–288.

5. De Leenheer P., de Moor A., and Meersman R. Context depen-

dency management in ontology engineering: a formal approach.

J. Data Semantics, 8:26–56, 2006.

6. De Leenheer P. and Meersman R. Towards community-based

evolution of knowledge-intensive systems. In Proc. OTM Con-

federated International Conferences CoopIS, DOA, ODBASE,

GADA, and IS, 2007, pp. 989–1006.

7. de Moor A., De Leenheer P., and Meersman R. DOGMA-MESS:

a meaning evolution support system for interorganizational

ontology engineering. In Proc. 14th Int. Conf. on Conceptual

Structures, 2006, pp. 189–203.

8. Furnas G., Landauer T., and Dumais S. The vocabulary

problem in human-system communication. Commun. ACM,

30(11):964–971, 1987.

9. Gangemi A. Ontology design patterns for semantic web content.

In Proc. 4th Int. Semantic Web Conf., 2005, pp. 262–276.

10. Ganter B., Stumme G., and Wille R. (eds.), Formal concept

analysis, foundations and applications, LNCS, vol. 3626, Springer,

Berlin, 2005.

11. Hepp M. Possible ontologies: how reality constrains the devel-

opment of relevant ontologies. IEEE Internet Comput.,

11(1):90–96, 2007.

12. Hepp M., De Leenheer P., de Moor A., and Sure Y. (eds.)

Ontology management, semantic web, semantic web services,

and business applications, vol. 7 of Semantic Web and Beyond

Computing for Human Experience. Springer, Berlin, 2008.

13. Jarrar M., Demey J., and Meersman R. On reusing conceptual

data modeling for ontology engineering. J. Data Semantics,

1(1):185–207, 2003.

14. Kotis K. and Vouros G. Human-centered ontology

engineering: the Hcome methodology. Knowl. Inf. Syst.,

10:109–131, 2005.

15. Lessig L. Ontology Management, Semantic Web, Semantic Web

Services, and Business Applications. Basic Books, 1999.

16. Milton N. Knowledge Acquisition in Practice: A Step-by-Step

Guide. Springer, London, 2007.

17. Pinto H., Staab S., and Tempich C. DILIGENT: towards a fine-

grained methodology for DIstributed, Loosely-controlled and

evolvInG Engineering of oNTologies. In Proc. 16th European

Conf. on Artificial Intelligence, 2004.

18. Ryan H., Spyns P., De Leenheer P., and Leary R. Ontology-based

platform for trusted regulatory compliance services. In

OTM Workshops, LNCS, vol. 2889, Springer, Berlin, 2003,

pp. 675–689.

19. Siorpaes K. and HeppM. Games with a purpose for the semantic

web. IEEE Intell. Syst., 23(3):50–60, 2008.

20. Spyns P., Meersman R., and Jarrar M. Data modelling

versus ontology engineering. ACM SIGMOD Rec., 31(4):

12–17, 2002.
21. Stamper R. Information in Business and Administrative Sys-

tems. Wiley, NY, 1973.

22. Van Damme C., Hepp M., and Siorpaes K. Folksontology: an

integrated approach for turning folksonomies into ontologies.

In Proc. ESWC Workshop Bridging the Gap between Semantic

Web and Web 2.0, 2007.
Ontology Engineering

AVIGDOR GAL

Technion – Israel Institute of Technology,

Technion City, Haifa, Israel

Synonyms
Ontological engineering

Definition
Ontology Engineering is ‘‘the set of activities that con-

cern the ontology development process, the ontology

life cycle, and the methodologies, tools and languages

for building ontologies’’ [2]. It provides ‘‘a basis of

building models of all things in which computer sci-

ence is interested’’ [4]. Ontology engineering aims at

providing standard components for building knowl-

edge models. Ontologies play a similar role to design

rationale in mechanical design. It allows the reuse of

knowledge in a knowledge base by providing concep-

tualization, reflecting assumptions and requirements

made in the problem solving using the knowledge

base. Ontology engineering provides the means to

build and use ontologies for building models.

Key Points
Eight levels (from shallow to deep) of using ontologies

can be defined [4]. At level 1, ontologies are used as a

common vocabulary for communication. At level 2, it is

used as a conceptual schema of a relational data base. At

the third level, ontologies are used as backbone informa-

tion for using a knowledge base. The remaining five levels

are the levels where ontology engineering comes into

play. Ontologies at the fourth level are used to answer

competence questions and then they are used for stan-

dardization (of terminology or of tasks) at level 5. At level

6, ontologies are used for structural and semantic trans-

formation of schemas. Reusing knowledge is done at the

seventh level and knowledge reorganization is considered

the eighth and highest level of using ontologies.

Ontology Visual Querying O 1973

O

Ontology engineering makes use of ontologies (in

the sense of levels 4–8) to generate standard tools for

knowledge representation. This does not imply that

knowledge is standardized. Using ontology engineer-

ing, one can design knowledge for specific applica-

tions, similar to production based on engineering

tools in other engineering fields.

The use of ontology engineering is now illustrated

in two key applications, namely functional design and

schema matching. For the former, [3] describes a sev-

enth level of using ontologies in a real world applica-

tion of plant and production systems. There, an

ontology that describes two types of functional mod-

els, two types of organization of generic knowledge,

and two ontologies of functionality were put into use

in sharing functional design knowledge on production

systems. The users (engineers) of the system have indi-

cated that this framework enabled them to make im-

plicit knowledge possessed by each designer explicit,

and to share it among team members.

Ontologies are used in schema matching in many

ways. One of these, corresponding to the sixth level of

use, was presented in the OntoBuilder toolcase [1].

Special ontological constructs were identified for the

matching of Web form data. Ontologies were built

using these constructs and dedicated matching algo-

rithms were constructed to determine the amount of

certainty to assign with the matching of attribute pairs.

An example of an ontological construct, unique to

OntoBuilder, is precedence. This construct determines

the order in which attributes are presented to the user

on a Web form and generate a partial order on attri-

butes. Attribute similarity is then measured based on

their relative positioning in their own ontologies.

Cross-references
▶Ontology

▶ Semantic Matching

Recommended Reading
1. Gal A., Modica G., Jamil H., and Eyal A. Automatic ontology

matching using application semantics. AI Mag., 26(1):21–32,

2005.

2. G’omez-P’erez A., Fern’andez-L’opez M., and Corcho O. Onto-

logical Engineering. Springer, Berlin, 2003.

3. Kitamura Y., Kashiwase M., Fuse M., and Mizoguchi R. Deploy-

ment of an ontological framework of functional design knowl-

edge. Adv. Eng. Inform., 18(2):115–127, 2004.

4. Mizoguchi R. and Ikeda M. Towards Ontology Engineering.

Technical Report AI-TR-96-1, I.S.I.R., Osaka University, 1996.
5. Paslaru Bontas E. and Tempich C. Ontology Engineering:

A Reality Check. In Proc. 5th Int. Conf. on Ontologies, DataBases,

and Applications of Semantics, 2006, pp. 836–854.

6. Sure Y., Tempich C., and Vrandecic D. Ontology engineering

methodologies. In John Davies, Rudi Studir and Paul Warren

(Eds). Semantic Web Technologies: Trends and Research in

Ontology-Based Systems. Wiley, UK, 2006.
Ontology Learning

▶Ontology Elicitation
Ontology Negotiation

▶Ontology Elicitation
Ontology Query Languages

▶ Semantic Web Query Languages
Ontology Visual Querying

SEAN BECHHOFER, NORMAN W. PATON

University of Manchester, Manchester, UK

Definition
An ontology definition language provides constructs

that can be used to describe concepts and the relation-

ships in which they participate. Because such languages

define the properties concepts can exhibit, they can be

used to restrict the questions that can meaningfully be

asked about the concepts. Given a specification of the

questions that can legitimately be asked, a user inter-

face can direct query construction tasks towards mean-

ingful requests, which in turn are expected to yield

non-empty answers. Thus ontology visual querying is

the use of an ontology to direct interactive query

construction. A related topic is faceted browsing, in

which the incremental description of concepts of in-

terest is closely integrated with retrieval, thereby

providing information about the results of a request

as it is being constructed.

1974O Ontology Visual Querying
Historical Background
The history of visual query languages is almost as

long as that of textual query languages, with Query-

by-Example [14] developed in parallel with SQL.

Query-by-Example contained two features that recur

in almost all visual query languages: (i) a representa-

tion of the model over which the query is to be

expressed; and (ii) a notation for incrementally con-

structing queries from the collections, relationships

and value ranges of interest, with reference to the

representation in (i). The evolution of visual query

languages [4] has tracked the evolution of data models

and interactive paradigms, and proposals have been

made that support querying over many different data

models (relational, object-oriented, temporal, etc)

using a variety of interaction objects (forms, graphs,

icons, etc). An orthogonal aspect is the closeness of the

relationship between query construction and answer

presentation; for example, in dynamic queries the an-

swer to a request is constructed automatically and

incrementally as a query is refined [12]. This provides

immediate feedback to users on the size and nature of

the result, but may require specialised storage struc-

tures to support incremental result computation.

Ontology visual querying has been developed so

that the knowledge expressed in an ontology can be

used to direct query construction; query answers may

then be constructed from an instance store that is

closely integrated with the ontology definition lan-

guage, or by evaluating requests over external data

sources. The latter is quite common, as ontologies are

widely used to provide conceptual models for web

(e.g., [1]) or data (e.g., [3]) resources.

Foundations
As in other visual query languages, ontology visual

querying requires a visual representation of the concepts

over which a request is to be constructed. Visual query

formulation allows users to explore the domain of

interest by recognition rather than recall: that is, it

should not be necessary to remember (or even be

fully aware of) the ontology in order to express a

query over it.

Ontologies are represented visually other than for

querying; for example, ontology design tools typically

support both form and graph-based views of concepts

and their relationships (e.g., [10]). As concept defini-

tion and query formulation may have significant

common ground, representations that are useful for
ontology browsing and concept definition may also be

relevant for querying. For example, in the TAMBIS

ontology-based data integration system [2], a query

is a concept definition in a Description Logic (DL)

[8], so writing a query is essentially the same as defin-

ing a new concept.

Although expressive ontology languages may pres-

ent challenges for navigation and thus query construc-

tion, they also present certain opportunities for query

interface designers, as various forms of reasoning may

be useful for guiding query construction. For example,

an interface can prevent the submission of queries that

are unsatisfiable (i.e., that are known from the defini-

tions in the ontology to return no results) either by

making it impossible for the user to construct such

queries or by detecting when such requests have been

created (e.g., [7,5]). Such feedback can be seen as

intensional, with the constraints or knowledge in the

ontology determining the behaviour of the interface.

Feedback may also be extensional, for example, with

the number of results to be returned being shown to

the user. This is common in facted browsing systems,

and such direct result construction is generally sup-

ported in combination with closely integrated stores.

In addition to the feedback described above, sys-

tems may also provide alternative renderings of the

query being constructed – for example a natural lan-

guage description of the query. This can be of use

in helping naı̈ve or inexperienced users in forming

appropriate queries. Note that this involves the render-

ing of the query in natural language, rather than trans-

lating a query posed using natural language.

A common approach is to specify queries through

an iterative refinement process, in which the content of

the ontology and current context of the query impact

on the options presented. The principle of intensional

navigation uses the vocabulary to guide the user dur-

ing query formulation, employing constraints in the

ontology to either flag to the user that the query is in

some way violating the constraints, or preventing the

user from forming queries that would be unsatisfiable,

and thus return no results. Operations available for

query manipulation in SEWASIE [5] include the addi-

tion of a new role/property with an associated filler,

or the replacement of a filler value. In the latter case,

a classification or super/sub class taxonomy is used

to support the manipulation, with value fillers being

specialised or generalised. Although ontology lan-

guages differ in the constructors and expressivity

Ontology Visual Querying O 1975
offered, some notion of hierarchical classification is

nearly always present, and so can be exploited in visual

query interfaces. An additional operation offered

by the TAMBIS system is to refocus the query, which

takes a sub node of the query and reorganises the query

to promote that node to the root. This operation

introduces an additional requirement on the ontology

language, namely that properties or relations have

inverses.

Various of the notions discussed above are illustrated

in Figs. 1 and 2 for SQoogle, which was developed in

the SEWASIE project. Figure 1 shows the composition

phase, with the graphical depiction of the query.
Ontology Visual Querying. Figure 1. Visual query expressio

trousers that cost less than 60 euros, where the supplier is sit

Ontology Visual Querying. Figure 2. Visual query refinemen

concept supplier with a more general (e.g., agent, broker) or
In Fig. 2, the user is being offered generalisations or

specialisations of a particular node in the query.

Overall, ontology visual query systems can be char-

acterized by a number of features:

� Identification of starting points. The construction

of a query has to start from some place in the

ontology; systems may offer predetermined entry

points, user defined bookmarks, or a search mech-

anism across the concepts in the ontology.

� Query language. More expressive query languages

support more precise question answering, but may

contain constructs that require explanation for
n in SQoogle. The query is to select suppliers that sell

uated in a warehouse.

t in SQoogle. The query can be revised by replacing the

specialized (e.g., wholesaler) concept.

O

1976O Ontology Visual Querying
users or that are challenging to represent using

certain visual paradigms. Ontology visual query

languages rarely support features such as aggrega-

tion or grouping.

� Query modification operations. Query construction

involves manipulation of query expressions, for

example, to include additional relationships or to

specialise a concept named in the query.

� The ontology definition language. Richer ontology

definition languages are generally more complex

to display and navigate, but may provide more

options for generalizing and specializing query

components, and can express constraints that are

useful for directing query construction.

� Relationship between query language and ontology

language. Proposals implement different relation-

ships between the query language and the ontology

definition language. For example, in SEWASIE,

the query language and ontology language are ex-

plicitly separated. The ontology language supports

reasoning services that are used to guide the inten-

sional navigation process described above. In con-

trast, in TAMBIS, queries are concept descriptions,

thus the interface is tied more closely to the ontol-

ogy language.

� Feedback mechanisms. Feedback can inform the

user about the results of the query or the state of

the query with respect to the underlying ontology.

Feedback may be intensional (in terms of the on-

tology), or extensional (in terms of the result set).
Ontology Visual Querying. Table 1. Representative example

Proposal TAMBIS SEWAS

Reference [7] [5]

Query language Concept definition Conjunctive qu

Query
modification
operations

Property add/remove;
filler specialization or
generalization; refocus

Property add/r
filler specializa
generalization

Ontology
definition
language

Description logic Description log

Feedback
mechanism

Intensional Intensional

Query
presentation

Visual Visual plus NL
rendering

Domain
specificity

Generic Generic
� Query presentation. Queries may be presented

solely using the visual query, or may also offer, for

example, natural language renderings of the query.

� Domain specificity. Visual interfaces provide the op-

portunity to represent models or results using gen-

eral-purpose or domain-specific representations.

Most ontology visual query languages are general

purpose, but faceted browsing interfaces are often

designed to support specific applications.

Table 1 describes a collection of representative

visual query systems using a selection of the above

criteria: the TAMBIS and SEWASI visual query lan-

guages, and the Flamenco and /facet faceted browsing

systems. In all these proposals, the ontology directs

query construction, and thus the design of the onto-

logy has a significant influence on the utility of the

interface.
Key Applications
Ontology visual query systems have most commonly

been deployed in areas of science and culture where

there are rich data resources to be explored. For exam-

ple, TAMBIS provided access to multiple biological

information sources. Faceted browsing and querying

has been widely used to browse image collections and

in the cultural heritage domain, for example to sup-

port access to Finnish Museums [9] and galleries in the

Netherlands [11]. The faceted approach is also com-

mon in on-line shopping sites such as eBay.
s of ontology visual query systems

IE Flamenco facet

[13] [8]

eries Path expressions Path expressions

emove;
tion or

Property add/remove;
filler specialization or
generalization

Property add/remove;
filler specialization or
generalization

ic Hierarchical categories RDFS

Extensional Extensional

Path expression Path expression

Specific (image
repositories)

Generic

Open Database Connectivity O 1977
Future Directions
Large amounts of a data are beginning to emerge using

representation languages like OWL. Current work in

ontology languages should see standardisation of the

SPARQL query language finalised in the near future.

Query interfaces that sit on top these standardized

languages will then be required in order to support

access to this data – interfaces that support naı̈ve or

non-expert users will clearly be required.
Cross-references
▶OWL: Web Ontology Language

▶Visual Query Language
O

Recommended Reading
1. Antoniou G. and van Harmelen F. A Semantic Web Primer. MIT

Press, Cambridge, MA, 2004.

2. Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-

Schneider P. (eds.). The Description Logic Handbook. Cam-

bridge University Press, Cambridge, 2003.

3. Calvanese D., De Giacomo G., Lenzerini M., Nardi D. and

Rosati, R. Data integration in data warehousing. Int. J. Cooper-

ative Inf. Syst. 10(3):237–271, 2001.

4. Catarci T., Costabile M.F., Levialdi S., and Batı́n C. Visual query

systems for databases: a survey. J. Vis. Lang. Comput. 8(2):

215–260, 1997.

5. Catarci T., Dongilli P., Di Mascio T., Franconi E., Santucci G.,

and Tessaris S. An ontology based visual tool for query formula-

tion support. In Proc. 16th European Conf. on AI, 2004,

pp. 308–312.

6. Colucci S., Noia T.D., Sciascio E.D., Donini F.M., Ragone A.,

and Rizzi R. A semantic-based fully visual application for

matchmaking and query refinement in B2C e-marketplaces.

In Proc. 8th ACM Int. Conf. on Electronic Commer. 2006,

pp. 174–184.

7. Goble C.A., Stevens R., Ng G., Bechhofer S., Paton N.W.,

Baker P.G., PeimM., and Brass A. Transparent access to multiple

bioinformatics information sources. IBM Syst. J., 40(2):532–551,

2001.

8. Hildebrand M., van Ossenbruggen J., and Hardman L. /facet: a

browser for heterogeneous semantic web repositories. In Proc.

5th Int. Semantic Web Conf., 2006, pp. 272–285.

9. Hyvyonen E., Myakelya E., Salminen M., Valo A., Viljanen K.,

Saarela S., Junnila M., and Kettula S. Museum Finland – Finnish

museums on the semantic web. J. Web Semantics 3(2):224–241,

2005.

10. Knublauch H., Fergerson R.W., Noy N.F., and Musen M.A. The

protégé OWL plugin: an open development environment for

semantic web applications. In Proc. 3rd Int. Semantic Web

Conf., 2004, pp. 229–243.

11. Schreiber G., et al. MultimediaN E-culture Demonstrator. In

Proc. 5th Int. Semantic Web Conf. 2006, pp. 951–958.

12. Shneiderman B. Dynamic queries for visual information seek-

ing. IEEE Software 11(6):70–77, 1994.
13. Yee K.-P., Swearingen K., Li K., and Hearst M.A. Faceted meta-

data for image search and browsing. In Proc. SIGCHI Conf. on

Human Factors in Computing Systems, 2003, pp. 401–408.

14. Zloof M.M. Query-by-example: the invocation and definition

of tables and forms. In Proc. 1st Int. Conf. on Very Large Data

Bases. 1975, pp. 1–24.
On-Wire Security

▶ Storage Security
OODB (Object-Oriented Database)

▶Object Data Models
Open Database Connectivity

CHANGQING LI

Duke University, Durham, NC, USA

Synonyms
ODBC

Definition
Open Database Connectivity (ODBC) [1] is an Appli-

cation Programming Interface (API) specification to

use database management systems (DBMS). The

ODBC API is a library of functions for the ODBC-

enabled applications to connect any ODBC-driver-

available database, execute Structured Query Language

(SQL) statements, and retrieve results. ODBC is inde-

pendent of programming languages, database systems

and operating systems.

Key Points
ODBC (pronounced as separate letters), is a standard

database access method developed by the SQL Access

Group in 1992. Its objective is to make any application

to access any data regardless of the database management

systems. To achieve this objective, ODBC inserts a data-

base driver as a middle layer between an application and

the DBMS, the purpose of which is to translate the

application queries to commands understood by the

DBMS. In practice, both the application and the DBMS

must be ODBC-compliant; that is, the application must

1978O Open Nested Transaction Models
be capable of issuing ODBC commands and the DBMS

must be capable of responding to them.

A procedural API is offered by the ODBC specifica-

tion for using SQL queries to access data. One or more

applications will be contained in an implementation of

ODBC, a core ODBC library, and one ormore ‘‘database

drivers.’’ Independent of the applications and DBMS,

the core library acts as an ‘‘interpreter’’ between the

applications and the database drivers, whereas the data-

base drivers contain the DBMS-specific details. Thus

applications can be written to use standard types

and features without concerning the specifics of each

DBMS that the applications may encounter. Similarly,

database driver implementors only need to know how to

attach to the core library. This makes ODBC modular.

ODBC operates with a variety of operating systems

and drivers existing for relational database as well

as non-relational data such as spreadsheets, text and

XML files.

Cross-references
▶Data Integration

▶Database Adapter and Connector

▶ Interface

▶ Java Database Connectivity

▶ .NET Remoting

▶Web 2.0/3.0

▶Web Services

Recommended Reading
1. Geiger K. Inside ODBC. Microsoft Press, 1995.
Open Nested Transaction Models

ALEJANDRO BUCHMANN

Darmstadt University of Technology, Darmstadt,

Germany

Synonyms
Extended transaction models; advanced transaction

models

Definition
Open nested transactions are hierarchically structured

transactions with relaxed ACID properties. Individual

subtransactions may commit independently before the

complete top level transaction commits. Therefore,
conventional rollback is not possible and the effects

of a commited subtransaction have to be compensated

if the top level transaction aborts. Depending on the

particular open nested transaction model, subtransac-

tions may be vital or non-vital and may have alterna-

tive or contingency subtransactions. Open nested

transaction models are characterized through relaxed

visibility rules, abort and commit dependencies.

Historical Background
Open nested transactionmodels evolved in the 1980s in

response to two major sets of requirements: the needs

of federated multidatabase systems integrating autono-

mous legacy database systems, and the demands of long

running, cooperative processes for higher levels of

concurrency while maintaining some of the main ben-

efits of transactional processes. Extended transaction

models influenced the tightly coupled transaction

model of distributed object systems and the activity

model of the OMG, as well as the transaction and

coordination models of Web Services.

Foundations
Transaction models are characterized by the structure

of its transactions, the commit and abort dependencies

and the visibility rules among transactions.

Nested transactions are hierarchically structured

transactions consisting of a top level transaction

and subtransactions that may themselves be tree-

structured. Typical of the execution model of nested

transactions is the fact that higher level transactions

do not execute while their subtransactions are active.

The order of execution of subtransactions can be either

sequential or parallel. The closed nested transaction

model proposed by Moss does not specify an execution

order and preserves the atomicity, consistency, isola-

tion and durability properties of traditional flat trans-

actions. The commit dependencies of closed nested

transactions specify that all subtransactions must com-

mit to their immediate ancestor and the top level

transaction can only commit after all the subtransac-

tions terminated. The abort dependencies specify that

the whole transaction tree must be aborted if the top

level transaction aborts while the abort of a subtran-

saction can be handled by the immediate ancestor

transaction. The visibility rules among transactions

and subtransactions specify that subtransactions may

see changes of other subtransactions only once they

are commited to the common ancestor. Changes of

Open Nested Transaction Models O 1979

O

a nested transaction become visible to the outside

world only after the top level transaction commits.

Since changes of committed subtransactions are made

visible only after the top level transaction commits,

they can be undone through conventional roll-back.

Open nested transaction models are also based

on hierarchically structured transactions. However,

depending on the particular transaction model, the sub-

transactions may be of different types. Different types of

subtransactions require different commit and/or abort

dependencies. The visibility rules are also relaxed with

respect to those of closed nested transaction models.

Open nested transactions may consist of the fol-

lowing component transactions:

� One top level transaction that has mostly a coordi-

nation function

� Vital subtransactions that must all commit for the

top level transaction to be allowed to commit

� Non-vital subtransactions of which one or more

may abort without causing the top level transaction

to fail

� Contingency transactions are alternative subtran-

sactions that often are executed by different auton-

omous systems or service providers

� Compensating transactions that must be defined to

undo the changes of subtransactions that may have

committed but must be undone

� Triggers that are executed as subtransactions and

may execute either immediately, deferred before the

commit of the triggering transaction or as detached

transactions.

Open nested transaction models were defined for long

running transactions and for transactions executing on

federated autonomous (legacy) systems. Therefore, the

degree of control of the coordinating top level transac-

tion over the execution of the subtransactions is re-

duced compared to closed nested transactions running

on a single database management system. Distributed

short lived transactions and closed nested transactions

are typically implemented through a two-phase com-

mit protocol. In a two-phase commit protocol the first

phase serves to reach agreement among the partici-

pants whether to commit or to abort, and once con-

sensus to commit has been reached, the commit is

carried out in the second phase. This protocol requires

holding all the resources required by all the subtransac-

tions through the negotiation phase until the global

commit. This approach is not feasible for long running
transactions because of performance reasons and in

federated multidatabase systems because of the auton-

omy of the participating database systems.

The coordinating top level transaction in an open

nested transaction model cannot secure the resources of

the participating systems that execute subtransactions

as autonomous individual short transactions until all

participating systems have executed their subtransac-

tions and are ready to commit. Therefore, subtran-

sactions may commit immediately upon completion

and their results are thus visible to the outside world

before the top level transaction commits. Compensating

transactions execute the semantically inverse operation

of the committed subtransaction but do not guarantee

that the exact initial state can be restored since other

transactions may have executed in the interim.

The commit dependencies of open nested transac-

tion models depend on whether they distinguish be-

tween vital and non-vital subtransactions or not. A

commit dependency exists between the top level trans-

action and all vital subtransactions, i.e., the coordinating

top level transaction may only commit if all the

vital subtransactions committed. This is the default

case if non-vital subtransactions are not provided.

The abort of a non-vital transaction does not affect

the possibility to commit the top level transaction.

The abort dependencies of open nested transaction

models are the same as for closed nested transactions:

the abort of the parent transaction causes the abort and

undo (roll-back or compensation) of the subtransac-

tion. The abort of a non-vital subtransaction is handled

by the parent transaction, the abort of a vital transac-

tion causes the abort of the parent and all siblings.

Contingency transactions represent alternative

actions. For example, if the top-level transaction repre-

sents the booking of a trip consisting of a roundtrip flight,

a hotel and a rental car booking, two different flights

on different airlines may be defined as a subtransaction

and a contingency transaction. Contingency transactions

may only commit if the primary subtransaction aborts.

Open nested transaction models that do not provide

contingency transactions must implement this function-

ality as application-specific code in the corresponding

parent transaction or the top-level transaction.

Triggers have become commonplace mechanisms

in commercial relational databases and execute as sub-

transactions according to the semantics of closed

nested transactions. The order of execution may be

immediate or deferred, meaning that the trigger

1980O Open Nested Transaction Models
executes either at the point of occurrence of the trig-

gering event or at the end of the triggering transaction,

respectively. Some extended transaction models allow

the triggering of subtransactions as detached or auton-

omous transactions, i.e., following the semantics of

open nested transactions. This, however, implies all

the problems resulting from the violation of the isola-

tion and atomicity properties and requires the defini-

tion of compensating transactions for those triggers.

The concepts developed as part of extended trans-

action models resulted in the definition of the CORBA

Activity Service Framework. The Activity Service is a

general purpose event signalling mechanism that can

be used to program activities to coordinate themselves

according to the transaction model under consider-

ation. The Activity Service has also been incorporated

in the J2EE framework but is not widely used.

Key Applications
The main application areas for open nested transaction

models are multidatabase systems in which autonomous

systems are loosely coupled.Web Services with their loose

coupling, distribution and often long running interac-

tions prompted renewed interest in extended transaction

models and open nested transactions. Applications based

on Web Services span the whole range of e-business

applications. Mobile commerce is another key applica-

tion domain for open nested transactions. Proposedmo-

bile transaction models are instances of open nested

transaction models, e.g., the model proposed by Chry-

santhis and extended in Kangaroo Transactions.

Future Directions
Several proposals for long running activities based on

Web Services have been advanced by different consortia.

The OASIS Business Transaction Protocol was proposed

in 2001 by a consortium consisting of HP, BEA, and

Oracle. Their model provides for the execution of busi-

ness logic between the two phases of a 2 phase commit

protocol. Arjuna, Oracle, Sun Microsystems, IONA

Technologies and Fujitsu in 2003 founded the OASIS

Web Services Composite Application Framework that

defines three transaction protocols, each aimed at a

specific use case. The WS-TX builds on and extends

the web Services Coordination specification and pro-

vides two kinds of transaction models. These are not

meant to cover all possible use cases and can be extended

with the semantics of other extended transactionmodels

as required by emerging applications.
Atomic Transactions are meant for short lived

transactional interactions within trusted domains and

provide full isolation (no dirty reads and repeatable

reads), atomicity (well-formedness and two-phase

commit protocol), and durability. For loosely coupled,

long running interactions Web Services Transactions

can use the Business Activity protocol, a more flexible

transaction and coordination protocol that relaxes the

ACID properties and draws heavily on previous re-

search on open nested transaction models.

Business Activities are designed for long-lived

transactions. They are based on the original Sagas

open nested transaction model. Services are treated

as Sagas and if there is the appropriate compensa-

tion behaviour defined, they can execute the undo

behaviour if so instructed by the Business Activity.

The responsibility of writing correct compensation

services to ensure consistency rests with the developer

of a service.

Business Activities consist of (possibly nested)

Saga-like service invocations. Such scopes can handle

errors, i.e., the abort of a task, through application

logic and continue processing without globally

aborting. Upon completion a child subtransaction

can either leave the scope of the Business Activity or

it can signal the parent that its work can be compen-

sated later. In any event, the visibility rules are

such that the results of child tasks can be seen by the

outside world. Business Activities must record applica-

tion state and keep a record of all sent and received

messages, all request messages must be acknowledged,

and requests and responses are decoupled. Two differ-

ent protocols exist for Business Activities: Business

Agreement With Coordinator Complete and Business

Agreement With Participant Complete. The main dif-

ference between these two protocols is that in the

former a participating task may not leave the scope of

the Business Activity unilaterally and must wait for it

to terminate. In case of abort, the subtask must com-

pensate. In the latter a task may leave the scope of the

Business Activity unilaterally.

Cross-references
▶ Extended Transaction Models and the ACTA Frame-

work

▶Compensating Transactions

▶ConTract

▶CORBA

▶Distributed Database Systems

Operator-Level Parallelism O 1981

O

▶Distributed Transaction Management

▶ Extended Transaction Models

▶ Flex transactions

▶ Loose Coupling

▶Multilevel Transactions and Object-Model Transac-

tions

▶Nested Transaction Models

▶Orchestration

▶ Sagas

▶Transaction

▶Web Transactions

▶Workflow Transactions

Recommended Reading
1. Buchmann A., Özsu M.T., Hornick M., Georgakopoulos D., and

Manola F. A transaction model for active distributed object

systems. In Database Transaction Models for Advanced Applica-

tions, A.K. Elmagarmid (ed.). Morgan Kaufmann Publishers,

Los Altos, CA, 1992.

2. Cabrera L.F., Copeland G., Feingold M. et al. Web services

atomic transaction (WS-AtomicTransaction), Version 1.0, Aug.

2005. Available at: http://download.boulder.ibm.com/ibmdl/

pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf.

3. Cabrera L.F., Copeland, G., Feingold M. et al., Web services

business activity framework (WS-BusinessActivity), Version

1.0, Aug. 2005. Available at: http://download.boulder.ibm.com/

ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf.

4. Cabrera L.F., Copeland G., Feingold M. et al. Web services

coordination (WS-Coordination), Version 1.0, Aug. 2005. Avail-

able at: http://download.boulder.ibm.com/ibmdl/pub/software/

dw/specs/ws-tx/WS-Coordination.pdf.

5. Chrysanthis P.K. Transaction processing in a mobile environ-

ment. In Proc. IEEE Workshop on Advances in Parallel and

Distributed Systems. 1993, pp. 77–82.

6. Chrysantis P. and Ramamritham K. ACTA: The saga continues.

In Database Transaction Models for Advanced Applications,

A.K. Elmagarmid, (ed.). Morgan Kaufmann Publishers, Los

Altos, CA, 1992.

7. Dunham M.H., Helal A., and Balakrishnan S. A mobile transac-

tion model that captures both data and movement behavior.

MONET, 2(2):149–162, 1997.

8. Elmagarmid A.K. (ed.), Database Transaction Models for

Advanced Applications. Morgan Kaufmann Publishers, Los

Altos, CA, 1992.

9. Garcia-Molina H. and Salem K. SAGAS. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1987, pp. 249–259.

10. Houston I., Little M., Robinson I., Shrivastava S.K., andWheater

S.M. The CORBA activity service framework for supporting

extended transactions. In Proc. IFIP/ACM Int. Conf. on Dist.

Syst. Platforms, 2001, pp. 197–215.

11. Little M. A history of extended transactions. Available at: http://

www.infoq.com/articles/History-of-Extended-Transactions.

12. Moss E. Nested Transactions. MIT Press, Cambridge, MA, 1985.

13. Weikum G. and Schek H.J. Concepts and applications of

multilevel transactions and open nested transactions. In
Database Transaction Models for Advanced Applications, A.K.

Elmagarmid (ed.). Morgan Kaufmann Publishers, Los Altos, CA,

1992.
Open Nested Transactions

▶Multilevel Transactions and Object-Model

Transactions
Operating Characteristic

▶Receiver Operating Characteristic (ROC)
Operator-Level Parallelism

NIKOS HARDAVELLAS, IPPOKRATIS PANDIS

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Inter-operator parallelism

Definition
Operator-level parallelism (or inter-operator parallel-

ism) is a form of intra-query parallelism obtained

by executing concurrently several operators of the

same query. By contrast, intra-operator parallelism

is obtained by executing the same operator on multiple

processors, with each instance working on a different

subset of data.

Historical Background
Parallelism has been a key focus of database research

since the 1970s. For example, as early as 1978 Teradata

was building highly-parallel database systems and qui-

etly pioneered many of the ideas on parallel query

execution [5]. However, the intra-query parallelism

employed by these early systems was mostly intra-

operator or independent parallelism (see Classes of

Parallelism below). Gamma [4] was one of the first

database systems that allowed operator-level parallel-

ism through pipelining.

Foundations
Parallel processing uses multiple processors coopera-

tively to improve the performance of application

programs. With relations growing larger and queries

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-tx/WS-Coordination.pdf
http://www.infoq.com/articles/History-of-Extended-Transactions
http://www.infoq.com/articles/History-of-Extended-Transactions

1982O Operator-Level Parallelism
becoming more complex, parallel processing is an

increasingly attractive option for improving the per-

formance of database management systems. The wide-

spread adoption of the relational database model has

enabled the parallel execution of relational queries,

as these queries are composed of uniform operators

applied to uniform streams of data. Each operator

produces a new relation, so the operators can be com-

posed into highly parallel dataflow graphs. At the same

time, multiprocessor systems and high-speed intercon-

nection networks have become mainstream, providing

an excellent basis for parallel execution.

Classes of Parallelism

Parallelism in the evaluation of database queries is clas-

sified into two main categories: inter-query parallelism

(see Inter-Query Parallelism), in which different queries

execute on different processors to improve the overall

throughput of the system, and intra-query parallelism,

inwhich several processors cooperate for the faster execu-

tion of a single query. Intra-query parallelism is further

classified into intra-operator and inter-operator para-

llelism. Intra-operator parallelism (see Intra-Operator

Parallelism) is obtained by executing the same operator

on multiple processors, with each instance working on a

different subset of data. Operator-level parallelism (or

inter-operator parallelism), is obtained by executing con-

currently several operators of the same query. This latter

form of parallelism is the subject of this chapter.

Operator-level parallelism is in two forms:

independent parallelism and pipelined parallelism.

Independent parallelism (or bushy parallelism) is

achieved when there is no dependency between the

operators executed in parallel. For example, consider a

simple query plan with two select operators and a join,

that it is not nested-loops. The select operators are

independent of each other and can execute concurrent-

ly, thereby exhibiting independent parallelism.

Algebraically, independent parallelism can be expressed

by a relation of the form f(g(X), h(Y)), where X and Y

are relations and f, g, and h are relational operators. In

this example, g and h exhibit independent parallelism.

Because the operators participating in bushy paral-

lelism are independent, they do not directly affect the

execution of one another. Interference is only indirect,

e.g., due to the concurrent use of shared resources like

disks, caches, or main memory bandwidth. Thus, in-

dependent parallelism is simpler to employ as it is

easier to schedule the execution of the participating
independent operators, and it has the potential to

deliver high performance improvements.

Alternatively, operator-level parallelism can take the

form of pipelined parallelism, also called dataflow paral-

lelism. Pipelined parallelism can be achieved when the

concurrent operators form producer/consumer pairs in

which the consumer can start executing without requir-

ing its entire input to be available. For example, consider

the aforementioned simple query that consists of two

select operators and a join. The select operator can

execute in parallel with the join operator. However,

they are not independent, because the intermediate

results produced by the select are consumed by the

subsequent join. Thus, the tuples output by the select

can be pipelined to the join operator to be consumed

immediately. This example illustrates a significant ad-

vantage of pipelined parallelism: intermediate results are

used immediately and are not materialized, saving mem-

ory and disk accesses. Algebraically, pipelined parallelism

can be expressed by a relation of the form f(g(X)), where

X is a relation and f and g are relational operators.

The operators that cannot produce tuples unless they

have processed their entire input are called Stop-&-Go

operators.

Effect of Query Plan Selection on Operator-Level

Parallelism

The query plan determines the execution sequence of a

query’s operators. The selection of a query plan greatly

affects the degree of attainable operator-level parallel-

ism. To illustrate this point, and without loss of gener-

ality, let’s assume a multi-way hash-join query with four

joins: A�B�C�D�E where A, B, C, D, E are relations

and � is the join operator. The query plan is typically

depicted graphically as a tree with vertices representing

relations. Because every operator in the relational model

defines a new relation, the operators in the internal

vertices denote the relation they represent. If an opera-

tor Y takes relation X as one of its inputs, then a directed

edge connects X to Y in the tree representation.

Three forms of query execution trees are explored

in the literature: left-deep trees, right-deep trees, and

bushy trees. Figure 1 shows the query execution trees

for the example multi-way join query used above.

Left-deep trees and right-deep trees represent the two

extreme strategies of query execution, while bushy

trees claim a middle ground.

To compare the trade-offs between the alternative

query plans, Fig. 2 shows the execution dependencies

Operator-Level Parallelism. Figure 1. (a) Left-deep, (b) right-deep, and (c) bushy query plans.

Operator-Level Parallelism. Figure 2. Operator dependencies for (a) left-deep, (b) right-deep, and (c) bushy plans.

Operator-Level Parallelism O 1983

O

between the operators of each execution strategy in

Fig. 1. The execution dependencies are shown using

operator dependency graphs [10]. The dotted lines

encircle the operators amenable to pipelined parallel-

ism. The bold directed arcs between subgraphs show

which sets of operators must be executed before other

sets of operators are executed, thereby determining the

maximum level of parallelism and resource require-

ments (e.g., memory) for the query. As discussed in

[10] hash joins have two distinct phases, the build
and the probe phase. Since the first phase must

completely precede the second, the hash joins in Fig.

2 can be viewed as if consisting of two operators, the

build and the probe operator.

The operator dependency graph of the left-deep

query plan shows that only a scan, the build phase of

a join, and the probe phase of a join can execute in

parallel. Thus, although the left-deep query plan has

low memory requirements (it needs enough memory

to fit the hash tables of two joins) it offers only limited

1984O Operator-Level Parallelism
pipelined parallelism and no independent paralle-

lism. In contrast, the operator dependency graph

for the right-deep query plan shows that significant

operator-level parallelism is available: all scans but one

have a producer/consumer relationship with the build

phase of the subsequent hash join, thereby exhibiting

pipelined parallelism, while the scan/build pairs are

independent of one another so they exhibit indepen-

dent parallelism. However, the high degree of parallel-

ism comes at the expense of high shared resource

pressure. The hash tables for all joins should fit in

main memory simultaneously, or risk spilling to disk.

Finally, the operator dependency graph for the

bushy query plan has characteristics that are between

the left-deep and the right-deep query plans. The

bushy plan enables independent parallelism, albeit at

a lower degree than the right-deep plan, as about half

the scans can proceed in parallel. However, the bushy

plan imposes lower pressure on shared resources than

the right-deep plan, because fewer operators execute in

parallel. Bushy query plans allow the formation of

deeper pipelines, some of which extend all the way

from a leaf to the root of the tree. Thus, bushy trees

enable pipelined parallelism as well, but it may be

harder to balance the load within their deeper pipelines

due to execution skew.

Because bushy plans achieve a balance between

pipelined parallelism, independent parallelism, and

resource utilization, researchers further investigated

their applicability in improving query execution. For

example, segmented right-deep trees [3] (bushy trees

of right-deep subtrees) have been shown to outper-

form their left-deep and right-deep counterparts.

Other Factors Limiting Operator-Level Parallelism

The selection of the query plan determines the degree of

available operator-level parallelism. This section dis-

cusses factors that limit the effectiveness of operator-

level parallelism, given a query plan. Among other

things, the discussion in this section touches on issues

of load balancing and processor allocation.

The operators participating in independent paral-

lelism interfere only indirectly through the concurrent

use of shared resources. The factors limiting the benefit

of independent parallelism are the constraints imposed

by the hardware resources. All relations that execute in

parallel produce intermediate results which increase

the data footprint of the application, resulting in
higher cache miss rates and higher memory pressure.

The larger data footprint, in turn, may oversubscribe

memory bandwidth or induce more spills to disk if the

relations do not fit in main memory.

Resource contention affects pipelined parallelism as

well, but to a lesser degree because the intermediate data

in pipelined parallelism are short lived as they are con-

sumed immediately after their production. The benefits

of pipelined parallelism are generally limited by three

factors [5]: (i) relational pipelines are rarely very long –

a chain of length ten is unusual. (ii) some relational

operators are blocking operators, i.e., they do not emit

their first output until they have consumed all their

inputs. Sort and the partitioning phase of hash join

are examples of blocking relational operators. Such

operators cannot be pipelined, and (iii) there are depen-

dencies between the operators participating in a pipe-

line. Often, the execution cost of one operator is much

greater than the others, a phenomenon referred to as

execution skew. In this case, the performance of the

pipelined execution is dominated by the slowest opera-

tor, which significantly limits parallelism.

The execution skew also gives rise to startup/tear-

down execution delays: processors assigned to opera-

tors at the end of a pipeline are idle at the beginning

of the computation, whereas processors assigned to

operators at the beginning of a pipeline are idle

towards the end of the computation. It is important

to note here that data skew may induce execution skew

in some cases. For example, in a sort-merge join with

data skew, some sort partitions may be much larger

than others, creating execution skew.

A potential solution to execution skew is to predict

the execution load for each operator and schedule

them accordingly across the parallel processors. How-

ever, the predictions may fail as the costs are estimated

in the query optimization phase using typically inac-

curate cost models and statistics.

The assignment of processors to operators and their

scheduling is an important and hard problem that

affects all forms of operator-level parallelism. It is an

optimization problem that attempts to utilize all the

available processors efficiently to minimize the execu-

tion time of a query. Sometimes operators may need

to be scheduled as a team (e.g., producer/consumer

pairs), while other times gang scheduling should be

avoided (e.g., scheduling together the first and the

last operator of a deep pipeline would leave the last

Operator Tree O 1985
operator mostly idle). Scheduling is easier when there

are no dependencies between the operators executing

in parallel, in which case load balancing is of primary

concern.

The processor allocation is based on the selection of

the query plan and estimates on the execution cost of

each operator. If the execution cost of some operators

is much higher than others, the system may be subject

to fragmentation: after a sequence of processor alloca-

tions and releases there may be a few processors left

idle and rebalancing the workload dynamically is not

always possible or beneficial. These cases may benefit

from the concurrent employment of multiple forms of

parallelism (see next section). However, the applica-

tion of multiple forms of parallelism adds an extra

dimension to the processor allocation problem,

making it harder to solve.
O

Relation to Inter-Query and Intra-Operator Parallelism

Operator-level parallelism is orthogonal to inter-query

and intra-operator parallelism and can work synergis-

tically with them to improve performance even further.

For example, if there is imbalance in the execution

times of a query’s operators and there are free proces-

sors, intra-operator parallelism can be applied to split a

long-running operator into multiple ones, each

executing on a smaller subset of data. This will allow

for faster execution of the expensive operators and may

balance the execution times of operators participating

in a pipeline, avoiding execution skew.

For a more comprehensive treatment of operator-

level parallelism, the interested reader is referred to

[5,10,11].
Key Applications
Several parallel database systems have been developed

that utilize operator-level parallelism to improve per-

formance. Systems built in academic institutions

include GAMMA [4], BUBBA [2], Volcano [6], Mon-

etDB/X100 [1], and StagedDB [7]. Commercial sys-

tems that support operator-level parallelism include

Oracle [9] and IBM DB2 [8].
Cross-references
▶Data Skew

▶ Execution Skew

▶ Intra-Operator Parallelism
▶ Inter-Query Parallelism

▶ Parallel Hash Join, Parallel Merge Join, Parallel

Nested Loops Join

▶ Parallel Query Processing

▶ Pipelining

▶Query Plan

▶ Stop-&-Go Operator

Recommended Reading
1. Boncz P., Zukowski M., and Nes N. MonetDB/X100: hyper-

pipelining query execution. In Proc. 2nd Biennial Conf. on

Innovative Data Systems Research, 2005, pp. 225–237.

2. Boral H. Prototyping bubba: a highly parallel database system.

IEEE Trans. Knowl. Data Eng., 2(1), 1990.

3. Chen M.-S., Lo M., Yu P.S., and Young H.C. Using segmented

right-deep trees for the execution of pipelined hash joins.

In Proc. 18th Int. Conf. on Very Large Data Bases, 1992,

pp. 15–26.

5. DeWitt D.J. and Gray J. Parallel database systems: the future

of high-performance database computing. Commun. ACM,

35(6):85–98, 1992.

4. DeWitt D.J., Gerber R.H., Graefe G., Heytens M.L., Kumar K.B.,

and Muralikrishna M. GAMMA – A high performance dataflow

database machine. In Proc. 12th Int. Conf. on Very Large Data

Bases, 1986, pp. 228–237.

6. Graefe G. Volcano – an extensible and parallel query evaluation

system. IEEE Trans. Knowl. Data Eng., 6(1):120–135, 1994.

7. Harizopoulos S. and Ailamaki A. Staged D.B.: designing data-

base servers for modern hardware. IEEE Data Eng. Bull., 28

(2):11–16, 2005.

8. IBM Corp. DB2 Version 9 Performance Guide. Part No.

SC10–4222–00, 2006.

9. Oracle Corp. Oracle Database Data Warehousing Guide. 10g

Release 1 (10.1). Part No. B10736–01, 2003.

10. Schneider D.A. and DeWitt D.J. Tradeoffs in processing complex

join queries via hashing in multiprocessor database machines.

In Proc. 12th Int. Conf. on Very Large Data Bases, 1986,

pp. 469–480.

11. Yu P.S., Chen M.-S., Wolf J.L., and Turek J.J. Parallel query pro-

cessing. In Advanced Database Systems, N. Adam, B. Bhargava,

(eds.). LNCS, vol. 759, Springer, Berlin, 1993, pp. 239–258.
Operator Scheduling

▶ Scheduling Strategies for Data Stream Processing
Operator Tree

▶Query Plan

1986O Opinion Mining
Opinion Mining

BING LIU

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Sentiment analysis
Definition
Given a set of evaluative text documents D that contain

opinions (or sentiments) about an object, opinion

mining aims to extract attributes and components of

the object that have been commented on in each doc-

ument d 2 D and to determine whether the comments

are positive, negative or neutral.
Historical Background
Textual information in the world can be broadly clas-

sified into two main categories, facts and opinions.

Facts are objective statements about entities and events

in the world. Opinions are subjective statements

that reflect people’s sentiments or perceptions about

the entities and events. Much of the existing research

on text information processing has been (almost ex-

clusively) focused on mining and retrieval of factual

information, e.g., information retrieval, Web search,

and many other text mining and natural language

processing tasks. Little work has been done on the

processing of opinions until only recently. Yet, opi-

nions are so important that whenever one needs to

make a decision one wants to hear others’ opinions.

This is not only true for individuals but also true for

organizations.

One of the main reasons for the lack of study on

opinions is that there was little opinionated text before

the World Wide Web. Before the Web, when an indi-

vidual needs to make a decision, he/she typically asks

for opinions from friends and families. When an orga-

nization needs to find opinions of the general public

about its products and services, it conducts surveys

and focused groups. With the Web, especially with

the explosive growth of the user generated content on

the Web, the world has changed. One can post reviews

of products at merchant sites and express views on

almost anything in Internet forums, discussion groups,

and blogs, which are collectively called the user gener-

ated content. Now if one wants to buy a product, it
is no longer necessary to ask one’s friends and famil-

ies because there are plenty of product reviews on the

Web that give the opinions of the existing users of the

product. For a company, it may no longer need to

conduct surveys, to organize focused groups or to

employ external consultants in order to find consumer

opinions or sentiments about its products and those of

its competitors.

Finding opinion sources and monitoring them on

the Web, however, can still be a formidable task be-

cause a large number of diverse sources exist on the

Web and each source also contains a huge volume of

information. In many cases, opinions are hidden in

long forum posts and blogs. It is very difficult for a

human reader to find relevant sources, extract perti-

nent sentences, read them, summarize them and orga-

nize them into usable forms. An automated opinion

mining and summarization system is thus needed.

Opinion mining, also known as sentiment analysis,

grows out of this need.

Research on opinion mining started with identify-

ing opinion (or sentiment) bearing words, e.g., great,

amazing, wonderful, bad, and poor. Many researchers

have worked on mining such words and identifying

their semantic orientations (i.e., positive or negative).

In [5], the authors identified several linguistic rules

that can be exploited to identify opinion words and

their orientations from a large corpus. This method

has been applied, extended and improved in [3,8,12].

In [6,9], a bootstrapping approach is proposed, which

uses a small set of given seed opinion words to find

their synonyms and antonyms in WordNet (http://

wordnet.princeton.edu/). The next major development

is sentiment classification of product reviews at the

document level [2,11,13]. The objective of this task

is to classify each review document as expressing a

positive or a negative sentiment about an object (e.g.,

a movie, a camera, or a car). Several researchers

also studied sentence-level sentiment classification

[9,14,15], i.e., classifying each sentence as expressing a

positive or a negative opinion. The model of feature-

based opinion mining and summarization is proposed

in [6,10]. This model gives a more complete formula-

tion of the opinion mining problem. It identifies the key

pieces of information that should be mined and

describes how a structured opinion summary can be

produced from unstructured texts. The problem of

mining opinions from comparative sentences is intro-

duced in [4,7].

Opinion Mining O 1987

O

Foundations

Model of Opinion Mining

In general, opinions can be expressed on anything, e.g.,

a product, a service, a topic, an individual, an organi-

zation, or an event. The general term object is used

to denote the entity that has been commented on. An

object has a set of components (or parts) and a set

of attributes. Each component may also have its sub-

components and its set of attributes, and so on. Thus,

the object can be hierarchically decomposed based on

the part-of relationship.

Definition (object): An object O is an entity which

can be a product, topic, person, event, or organization.

It is associated with a pair, (T, A), where T is a hierar-

chy or taxonomy of components (or parts) and sub-

components of O, and A is a set of attributes of O. Each

component has its own set of sub-components and

attributes.

In this hierarchy or tree, the root is the object itself.

Each non-root node is a component or sub-component

of the object. Each link is a part-of relationship. Each

node is associated with a set of attributes. An opinion can

be expressed on any node and any attribute of the node.

However, for an ordinary user, it is probably

too complex to use a hierarchical representation. To

simplify it, the tree is flattened. The word ‘‘features’’ is

used to represent both components and attributes.

Using features for objects (especially products) is

quite common in practice. Note that in this definition

the object itself is also a feature, which is the root of

the tree.

Let an evaluative document be d, which can be a

product review, a forum post or a blog that evaluates a

particular object O. In the most general case, d consists

of a sequence of sentences d = hs1, s2,...,smi.
Definition (opinion passage on a feature): The

opinion passage on a feature f of the object O evaluated

in d is a group of consecutive sentences in d that

expresses a positive or negative opinion on f.

This means that it is possible that a sequence of

sentences (at least one) together expresses an opinion

on an object or a feature of the object. It is also possible

that a single sentence expresses opinions on more than

one feature, e.g., ‘‘The picture quality of this camera is

good, but the battery life is short.’’

Definition (opinion holder): The holder of a par-

ticular opinion is a person or an organization that

holds the opinion.
In the case of product reviews, forum postings and

blogs, opinion holders are usually the authors of the

posts. Opinion holders are important in news articles

because they often explicitly state the person or orga-

nization that holds a particular opinion [9]. For exam-

ple, the opinion holder in the sentence ‘‘John expressed

his disagreement on the treaty’’ is ‘‘John.’’

Definition (semantic orientation of an opinion):

The semantic orientation of an opinion on a feature f

states whether the opinion is positive, negative or

neutral.

Putting things together, a model for an object and

a set of opinions on the features of the object can be

defined, which is called the feature-based opinion

mining model.

Model of Feature-Based Opinion Mining: An

object O is represented with a finite set of features,

F = {f1, f2,...,fn}, which includes the object itself. Each

feature fi 2 F can be expressed with a finite set of words

or phrases Wi, which are synonyms. That is, there is a

set of corresponding synonym sets W = {W1, W2,...,

Wn} for the n features. In an evaluative document d

which evaluates object O, an opinion holder j com-

ments on a subset of the features Sj � F. For each

feature fk 2 Sj that opinion holder j comments on,

he/she chooses a word or phrase from Wk to describe

the feature, and then expresses a positive, negative or

neutral opinion on fk. The opinion mining task is to

discover all these hidden pieces of information from a

given evaluative document d.

Mining output: Given an evaluative document d,

the mining result is a set of quadruples. Each quadru-

ple is denoted by (H, O, f, SO), where H is the opinion

holder, O is the object, f is a feature of the object and

SO is the semantic orientation of the opinion expressed

on feature f in a sentence of d. Neutral opinions are

ignored in the output as they are not usually useful.

Given a collection of evaluative documents D con-

taining opinions on an object, three main technical

problems can be identified (clearly there are more):

Problem 1: Extracting object features that have been

commented on in each document d 2 D.

Problem 2: Determining whether the opinions on

the features are positive, negative or neutral.

Problem 3: Grouping synonyms of features (as dif-

ferent opinion holders may use different words or

phrase to express the same feature).

Opinion Summary: There are many ways to use

the mining results. One simple way is to produce a

1988O Opinion Mining
feature-based summary of opinions on the object [6].

An example is used to illustrate what that means.

Figure 1 summarizes the opinions in a set of revi-

ews of a particular digital camera, digital_camera_1.

The opinion holders are omitted. In the figure, ‘‘CAM-

ERA’’ represents the camera itself (the root node of the

object hierarchy). One hundred and twenty-five reviews

expressed positive opinions on the camera and seven
Opinion Mining. Figure 1. An example of a feature-

based summary of opinions.

Opinion Mining. Figure 2. Visualization of feature-based op
reviews expressed negative opinions on the camera. ‘‘pic-

ture quality’’ and ‘‘size’’ are two product features. One

hundred and twenty-three reviews expressed positive

opinions on the picture quality, and only 6 reviews

expressed negative opinions. The hindividual review

sentencesi points to the specific sentences and/or the

whole reviews that give the positive or negative com-

ments about the feature. With such a summary, the user

can easily see how existing customers feel about the

digital camera. If he/she is very interested in a partic-

ular feature, he/she can drill down by following the

hindividual review sentencesi link to see why existing

customers like it and/or dislike it.

The summary in Fig. 1 can be easily visualized using

a bar chart [10]. Figure 2(a) shows such a chart. In the

figure, each bar above the X-axis gives the number of

positive opinions on a feature (listed at the top), and

the bar below the X-axis gives the number of negative

opinions on the same feature. Obviously, other visualiza-

tions are also possible. For example, one may only

show the percentage of positive (or negative) opinions

on each feature. Comparing opinion summaries of a
inion summary and comparison.

Opinion Mining O 1989

O

few competing objects is even more interesting [10].

Figure 2(b) shows a visual comparison of consumer

opinions on two competing digital cameras. One can

clearly see how consumers view different features of

each camera.

Sentiment Classification

Sentiment classification has been widely studied in

the natural language processing (NLP) community

[e.g., 2,11,13]. It is defined as follows: Given a set of

evaluative documents D, it determines whether each

document d 2 D expresses a positive or negative opin-

ion (or sentiment) on an object. For example, given a

set of movie reviews, the system classifies them into

positive reviews and negative reviews.

This is clearly a classification learning problem. It is

similar but also different from the classic topic-based

text classification, which classifies documents into pre-

defined topic classes, e.g., politics, sciences, and sports.

In topic-based classification, topic related words are

important. However, in sentiment classification, topic-

related words are unimportant. Instead, opinion words

that indicate positive or negative opinions are impor-

tant, e.g., great, excellent, amazing, horrible, bad,

worst, etc. There are many existing techniques. Most

of them apply some forms of machine learning tech-

niques for classification (e.g., [11]). Custom-designed

algorithms specifically for sentiment classification also

exist, which exploit opinion words and phrases togeth-

er with some scoring functions [2,13].

This classification is said to be at the document level

as it treats each document as the basic information unit.

Sentiment classification thus makes the following as-

sumption: Each evaluative document (e.g., a review)

focuses on a single object O and contains opinions of a

single opinion holder. Since in the above opinion

mining model an object O itself is also a feature (the

root node of the object hierarchy), sentiment classifi-

cation basically determines the semantic orientation

of the opinion expressed on O in each evaluative

document that satisfies the above assumption.

Apart from the document-level sentiment classifi-

cation, researchers have also studied classification at

the sentence-level, i.e., classifying each sentence as a

subjective or objective sentence and/or as expressing a

positive or negative opinion [9,14,15]. Like the docu-

ment-level classification, the sentence-level sentiment

classification does not consider object features that

have been commented on in a sentence. Compound
sentences are also an issue. Such a sentence often

express more than one opinion, e.g., ‘‘The picture

quality of this camera is amazing and so is the battery

life, but the viewfinder is too small.’’
Feature-Based Opinion Mining

Classifying evaluative texts at the document level or

the sentence level does not tell what the opinion holder

likes and dislikes. A positive document on an object

does not mean that the opinion holder has positive

opinions on all aspects or features of the object. Like-

wise, a negative document does not mean that the

opinion holder dislikes everything about the object.

In an evaluative document (e.g., a product review),

the opinion holder typically writes both positive and

negative aspects of the object, although the general

sentiment on the object may be positive or negative.

To obtain such detailed aspects, going to the feature

level is needed. Based on the model presented earlier,

three key mining tasks are:

1. Identifying object features: For instance, in the

sentence ‘‘The picture quality of this camera is

amazing,’’ the object feature is ‘‘picture quality.’’ In

[10], a supervised pattern mining method is pro-

posed. In [6,12], an unsupervised method is used.

The technique basically finds frequent nouns and

noun phrases as features, which are usually genuine

features. Clearly, many information extraction tech-

niques are also applicable, e.g., conditional random

fields (CRF), hidden Markov models (HMM), and

many others.

2. Determining opinion orientations: This task deter-

mines whether the opinions on the features are

positive, negative or neutral. In the above sentence,

the opinion on the feature ‘‘picture quality’’ is

positive. Again, many approaches are possible. A

lexicon-based approach has been shown to perform

quite well in [3,6]. The lexicon-based approach

basically uses opinion words and phrases in a sen-

tence to determine the orientation of an opinion on

a feature. A relaxation labeling based approach is

given in [12]. Clearly, various types of supervised

learning are possible approaches as well.

3. Grouping synonyms: As the same object features

can be expressed with different words or phrases,

this task groups those synonyms together. Not

much research has been done on this topic. See

[1] for an attempt on this problem.

1990O Optical Storage
Mining Comparative and Superlative Sentences

Directly expressing positive or negative opinions on

an object or its features is only one form of evalua-

tion. Comparing the object with some other similar

objects is another. Comparisons are related to but

are also different from direct opinions. For example, a

typical opinion sentence is ‘‘The picture quality of

camera x is great.’’ A typical comparison sentence is

‘‘The picture quality of camera x is better than that of

camera y.’’ In general, a comparative sentence expresses

a relation based on similarities or differences of more

than one object. In English, comparisons are usually

conveyed using the comparative or the superlative

forms of adjectives or adverbs. The structure of

a comparative normally consists of the stem of an

adjective or adverb, plus the suffix -er, or the modifier

‘‘more’’ or ‘‘less’’ before the adjective or adverb. The

structure of a superlative normally consists of the

stem of an adjective or adverb, plus the suffix -est,

or the modifier ‘‘most’’ or ‘‘least’’ before the adjective

or adverb. Mining of comparative sentences basically

consists of identifying what features and objects

are compared and which objected are preferred by

their authors (opinion holders). Details can be found

in [4,7].

Key Applications
Opinions are so important that whenever one needs to

make a decision, one wants to hear others’ opinions.

This is true for both individuals and organizations.

The technology of opinion mining thus has a tremen-

dous scope for practical applications.

Individual consumers: If an individual wants to

purchase a product, it is useful to see a summary of

opinions of existing users so that he/she can make an

informed decision. This is better than reading a large

number of reviews to form a mental picture of the

strengths and weaknesses of the product. He/she can

also compare the summaries of opinions of competing

products, which is even more useful.

Organizations and businesses: Opinion mining is

equally, if not even more, important to businesses

and organizations. For example, it is critical for a

product manufacturer to know how consumers per-

ceive its products and those of its competitors. This

information is not only useful for marketing and prod-

uct benchmarking but also useful for product design

and product developments.
Cross-references
▶Text Mining

Recommended Reading
1. Carenini G., Ng R., and Zwart E. Extracting Knowledge from

Evaluative Text. In Proc. 3rd Int. Conf. on Knowledge Capture,

2005.

2. Dave D., Lawrence A., and Pennock D. Mining the peanut

gallery: opinion extraction and semantic classification of prod-

uct reviews. In Proc. 12th Int. World Wide Web Conference,

2003.

3. Ding X., Liu B., and Yu P. A holistic lexicon-based approach to

opinion mining. In Proc. 1st ACM Int. Conf. onWeb Search and

Data Mining. 2008.

4. Ganapathibhotla G. and Liu B. Identifying preferred entities in

comparative sentences. In Proc. 22nd Int. Conf. on Computa-

tional Linguistics. 2008.

5. Hatzivassiloglou V. and McKeown K. Predicting the semantic

orientation of adjectives. In Proc. 8th Conf. European Chapter of

Assoc. Comp. Linguistics. 1997.

6. Hu M. and Liu B. Mining and summarizing customer reviews.

In Proc. 10th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2004.

7. Jindal N. and Liu B. Mining comparative sentences and rela-

tions. In Proc. of National Conf. on Artificial Intelligence, 2006.

8. Kanayama H. and Nasukawa T. Fully automatic lexicon expan-

sion for domain-oriented sentiment analysis. In Proc. 2006

Conf. on Empirical Methods in Natural Language Processing,

2006.

9. Kim S. and Hovy E. Determining the sentiment of opinions. In

Proc. 20th Int. Conf. on Computational Linguistics, 2004.

10. Liu B., Hu M., and Cheng J. Opinion observer: analyzing

and comparing opinions on the web. In Proc. 14th Int. World

Wide Web Conference, 2005.

11. Pang B., Lee L., and Vaithyanathan S. Thumbs up? Sentiment

classification using machine learning techniques. In Proc. 2002

Conf. on Empirical Methods in Natural Language Processing,

2002.

12. Popescu A.-M. and Etzioni O. Extracting product features

and opinions from reviews. In Proc. 2005 Conf. on Empiri-

cal Methods in Natural Language Processing, 2005.

13. Turney P. Thumbs up or thumbs down? Semantic Orientation

Applied to Unsupervised Classification of Reviews. In Proc. 40th

Annual Mfg. of Assoc. Comp. Linguistics, 2002.

14. Wiebe J. and Riloff E. Creating subjective and objective sentence

classifiers from unannotated texts. In Proc. Int. Conf. on Intelli-

gent Text Processing and Computational Linguistics, 2005.

15. Wilson T., Wiebe J., and Hwa R. Just how mad are you?

Finding strong and weak opinion clauses. In Proc. National

Conf. on Artificial Intelligence, 2004.
Optical Storage

▶ Storage Devices

Optimistic Replication and Resolution O 1991
Optimistic Replication

▶Optimistic Replication and Resolution
O

Optimistic Replication and
Resolution

MARC SHAPIRO

INRIA Paris-Rocquencourt and LIP6, Paris, France

Synonyms
Optimistic Replication; Reconciliation-Based Data

Replication; Lazy Replication; Multi-Master System

The term ‘‘Optimistic Replication’’ is prevalent in

the distributed systems and distributed algorithms liter-

ature. The database literature prefers ‘‘Lazy Replication’’

Definition
Data replication places physical copies of a shared logical

item onto different sites. Optimistic replication (OR)

[11] allows a program at some site to read or update

the local replica at any time. An update is tentative

because it may conflict with a remote update.

Such conflicts are resolved after the fact, in the back-

ground. Replicas may diverge occasionally but are

expected to converge eventually (see entry on EVENTUAL

CONSISTENCY).

OR avoids the need for distributed concurrency

control prior to using an item. It allows a site to execute

even when remote sites have crashed, when network

connectivity is poor or expensive, or while disconnect-

ed from the network. Disconnected operation, the capa-

bility to compute while disconnected from a data

source, e.g., in mobile computing, requires OR. In

computer-supported co-operative work, OR enables a

user to temporarily insulate himself from other users.

The defining characteristic of OR is that any syn-

chronization between sites occurs in the background,

after local termination, i.e., off the critical path of

the application.

Historical Background
The first historical instance of OR is Johnson’s

and Thomas’s replicated database (1976). (The vocab-

ulary used in this history is defined in Section

‘‘Foundations.’’)
Usenet News (1979) was an important and inspira-

tional development. News supports a large-scale

ever-growing database of (read-only) items, posted by

users all over theworld. AUsenet site connects infrequent-

ly (e.g., daily) with its peers. New items are flooded to

other sites, and are received in arbitrary order. Users

occasionally observe ordering anomalies, but this is not

considered a problem. However, system administrators

must deal manually with conflicts over administrative

operations.

In 1984, Wuu and Bernstein’s replicated mutable

key-value-pair database use an operation log, trans-

mitted by an anti-entropy protocol: site A sends to

site B only the tail of A’s log that B has not yet seen

[15]. Concurrent operations either commute or have a

natural semantic order; non-concurrent operations

execute in happens-before order.

The LotusNotes system (1988) supports co-operative

work between mobile enterprise users. It replicates a

database of discrete items in a peer-to-peer manner.

Notes is state-based, and uses a Last-Writer Wins policy.

A deleted item is replaced by a tombstone.

Several file systems, designed in the early 1990s

to support disconnected work, e.g., Coda [6], are

state based and uses version vectors for conflict

detection. Conflicts over some specific object types

(e.g., directories or mailboxes) cause automatic resolv-

er programs to run. The others must be resolved

manually.

Golding (1992) [3] studies a replicated database of

mutable key-value pairs. This system purges an opera-

tion from the log when it can prove that it was deliv-

ered to all sites. Consistency is ensured by defining a

total order of operations.

Bayou (1994–1997) is an innovative general-purpose

database for mobile users [9]. Bayou is operation-based

and uses an anti-entropy protocol. Each site executes

transactions in arbitrary order; transactions remain ten-

tative. The eventual serialization order is the order of

execution at a designated primary site. Other sites roll

back their tentative state, and re-execute committed

transactions in commit order.

In 1996, Gray et al. argued that OR databases for

disconnected work cannot scale [4], because conflict

reconciliation is expensive, conflict probability rises as

the third power of the number of nodes, and the wait

probability further increases quadratically with discon-

nection time.

Optimistic Replication and Resolution. Figure 1. Three

sites with replicas of logical item x. Site 1 initiates

transaction f, Site 2 initiates g. The system propagates and

replays on remote sites. Site 3 executes in the order g;f,

whereas Site 1 replays f before g. Eventually, Site 2 will also

execute f.

1992O Optimistic Replication and Resolution
Breitbart et al. [1] describe a partially-replicated

database that uses a form of OR. Each item has a desig-

nated primary site and may be replicated at any number

of secondary sites. A read may occur at a secondary site

but a write must occur on the primary. It follows that

write transactions update a single site. If transactions are

serialisable at each site, and update propagation is re-

stricted to avoid ordering anomalies, then transactions

are serialisable despite lazy propagation.

The Computer-Supported Cooperative Work

(CSCW) community invented (1989) a form of OR

called Operational Transformation (OT). Conflicting

operations are transformed, by modifying their argu-

ments, in order to execute in arbitrary order [12].

Foundations
Figure 1 depicts a logical item x, concretely replicated

at three different sites. In OR, any site may submit or

initiate a transaction reading or writing the local repli-

ca. If the transaction succeeds locally, the system pro-

pagates it to other sites, and replays the transaction on

the remote sites, in a lazy manner, in the background.

Local execution is tentative and may be rolled back

later, because of a conflict with a concurrent remote

transaction. (The happens-before and concurrency

relations are defined formally by Lamport [7]. Trans-

action A happens-before B, if B was initiated on some

site after A executed at that site. Two transactions are

concurrent if neither happens-before the other.)

OR is opposed to pessimistic (or eager) replication,

where a local transaction terminates only when it

commits globally. Pessimistic replication establishes a

total order for committed transactions, at the latest

when each transaction terminates. In contrast, OR

generally relaxes the ordering requirements and/or

converges to a common order a posteriori. The effects

of a tentative transaction can be observed, thus OR

protocols may violate the isolation property and allow

cascading aborts and retries to occur.

Transmitting and Replaying Updates

In OR, updates are propagated lazily, in the back-

ground, after the transaction has terminated locally.

Transmission usually uses peer-to-peer epidemic or

anti-entropy techniques (see entry on PEER-TO-PEER

CONTENT DISTRIBUTION).

A site that receives a remote update replays it, i.e.,

incorporates it into the local replica. There are two

main approaches. In the state-based approach, the
initiator site transmits the after-values of the transac-

tion, and other sites assign the after-value to their local

replica. In the operation-based approach, the initiator

sends the program of the transaction itself, and other

sites re-execute the transaction.

State-based replay is guaranteed to be determin-

istic. State-based replay can be more efficient, since the

replay code is just a write. On the downside, if the

granularity is large, then state-based transmission is

expensive and replay is subject to false conflicts. Fur-

thermore, logical operations are more likely to com-

mute than writes, thus operation-based replay typically

causes fewer aborts.

Conflicts

Each transaction taken individually is assumed correct

(the C of the ACID properties), i.e., it maintains

semantic invariants. For example, ensuring that a

bank account remains positive, or that a person is not

scheduled in two different meetings at the same time.

As is clear from Fig. 1, concurrent transactions may

be delivered to different sites in different orders. (Depen-

dent transactions are assumed to execute in dependency

order; see Section ‘‘Scheduling Transactions Content

and Ordering.’’) However, consistency requires that

local schedules be equivalent. In this respect, one may

classify pairs of concurrent transactions as commuting,

non-commuting, and antagonistic. Transactions conflict

if they are mutually non-commuting or mutually

antagonistic.

The relative execution order of commuting transac-

tions is immaterial; they require no remote synchroni-

zation. Formally, two transactions T1 and T2 commute

if execution order T1;T2 returns the same results to the

Optimistic Replication and Resolution O 1993

O

user and leaves the database in the same state as the

order T2;T1. For instance, depositing €10 in a bank

account commutes with a depositing €20 into the

same account, and also commutes with withdrawing

€100 from an independent account.

If running concurrent transactions together would

violate an invariant, they are said antagonistic. Safety

requires aborting one or the other (or both). For

instance, if T1 schedules me in a meeting from 10:00

to 12:00, and T2 schedules a meeting from 11:00 to

13:00, they are antagonistic since no combination of

both T1 and T2 can be correct.

If two transactions are non-commuting and neither

is aborted, then their relative execution order must be

the same at all sites. Consider for instance T1 = ‘‘trans-

fer balance to savings’’ and T2 = ‘‘deposit €100.’’ Both

orders T1;T2 and T2;T1 make sense, but the result is

clearly different. There must be a system-wide consen-

sus on the order chosen.

Conflict Resolution and Reconciliation

Conflict resolution rewrites or aborts transactions to

remove conflicts. Conflict resolution can be either

manual or automatic. Manual conflict resolution sim-

ply allows conflicting transactions to proceed, thereby

creating conflicting versions; it is up to the user to

create a new, merged version.

Reconciliation detects and repairs conflicts, and

combines non-conflicting updates. Thus transactions

are tentative, i.e., a tentatively-successful transaction

may have to roll back for reconciliation purposes. OR

resolves conflicts a posteriori (whereas pessimistic

approaches avoid them a priori).

In many systems, data invariants are either un-

known or not communicated to the system. In this

case, the system designer conservatively assumes that,

if concurrent transactions access the same item, and

one (or both) writes the item, then they are antagonis-

tic. Then, one of them must abort, or both.

A few systems, such as Bayou [14] or IceCube [10]

support an application-specific check of invariants.

Last Writer Wins

When transactions consist only of writes, a common

approach is to ensure a global precedence order.

For instance, many replicated file systems follow the

‘‘Last Writer Wins’’ (LWW) approach. Files have time-

stamps that increase with successive versions.When the

file system encounters two concurrent versions of
the same file, it overwrites the one with the smallest

timestamp with the ‘‘younger’’ one (highest time-

stamp). The write with the smallest timestamp is lost;

this approach violates the Durability property of ACID.

Semantic Resolvers

A resolver is an application-specific conflict resolution

program that automatically merges two conflicting

versions of an item into a new one. For example, the

Amazon online book store resolves problems with a

user’s ‘‘shopping cart’’ by taking the union of any

concurrent instances. This maximizes availability

despite network outages, crashes, and the user opening

multiple sessions.

A resolver should ensure that the conflicting trans-

actions are made to commute. In a state-based ap-

proach, a resolver generally parses the item’s state

into small, independent sub-items. Then it applies a

LWW policy to updated and tombstoned sub-items,

and a union policy to newly-created sub-items.

The most elaborate example exists in Bayou. A

Bayou transaction has three components: the dependen-

cy check, the write, and the merge procedure. The for-

mer is a database query that checks for conflicts when

replaying. The write (a SQL update) executes only if the

consistency check succeeds. If it fails, the merge proce-

dure (an arbitrary but deterministic program) provides

a chance to fix the conflict. However, it is very difficult to

write merge procedures in the general case.

Operational Transformation

In Operational Transformation (OT), conflicting

operations are transformed [12]. Consider two users

editing the shared text ‘‘abc’’. User 1 initiates insert

(‘‘X’’,2) resulting in ‘‘aXbc’’ and User 2 initiates delete

(3), resulting in ‘‘ab.’’ When User 2 replays the insert,

the result is ‘‘aXb’’ as expected. However for User 1 to

observe the same result, the delete must be trans-

formed to delete(2).

In essence, the operations were specified in a

non-commuting way, but transformation makes them

commute. OT assumes that transformation is always

possible. The OT literature focuses on a simple, linear,

shared edit buffer data type, for which numerous

transformation algorithms have been proposed.

OT requires two correctness conditions, often

called TP1 and TP2. TP1 requires that, for any two

concurrent operations A and B, running ‘‘A followed

by {B transformed in the context of A}’’ yield the same

1994O Optimistic Replication and Resolution
result as ‘‘B followed by {A transformed in the context

of B}.’’ TP1 is relatively easy to satisfy, and is sufficient

if replay is somehow serialized.

TP2 requires that transformation functions them-

selves commute. TP2 is necessary if replay is in arbi-

trary order, e.g., in a peer-to-peer system. The vast

majority of published non-serialized OT algorithms

have been shown to violate TP2 [8].
Scheduling Transactions Content and Ordering

In order to capture any causal dependencies, transac-

tions execute in happens-before order. As explained

in Section ‘‘Conflicts,’’ antagonistic transactions cause

aborts, and non-commuting transactions must be mu-

tually ordered. This so-called serialization requires a

consensus.

Whereas pessimistic approaches serialize a priori,

most OR systems execute transactions tentatively in

arbitrary order and serialize a posteriori. Some execu-

tions are rolled back; cascading aborts may occur.

A prime example is the Bayou system [14]. Each

site executes transactions in the order received. Even-

tually, the transactions reach a distinguished primary

site. If a transaction fails its dependency check at the

primary, then it aborts everywhere. Transactions that

succeed commit, and are serialized in the execution

order of the primary.

The IceCube system showed that it is possible

to improve the user experience by scheduling opera-

tions intelligently [10]. IceCube is a middleware that

relieves the application programmer from many of the

complexities of reconciliation. Multiple applications

may co-exist on top of IceCube. Applications expose

semantic annotations, indicating which operation

pairs commute or not, are antagonistic, dependent, or

have an inherent semantic order. The user may create

atomic groups of operations from different applica-

tions. The IceCube scheduler performs an optimization

procedure over a batch of operations, minimizing the

number of aborted operations. The user commits any of

the alternative schedules proposed by the system.
Freshness of Replicas

Applications may benefit from freshness or quality-

of-service guarantees, e.g., that no replica diverges by

more than a known amount from the ideal, strongly-

consistent state. Such guarantees come at the expense of

decreased availability.
The Bayou system proposes qualitative ‘‘session

guarantees’’ on the relative ordering of operations [13].

For instance, Read-Your-Writes (RYW) guarantees that

a read observes the effect of a write by the same user,

even if initiated at a different site. RYW ensures, that

immediately after changing his password, a user can

log in with the new password. Other similar guar-

antees are Monotonic-Reads, Writes-Follow-Reads, and

Monotonic-Writes.

Systems such as TACT control replica divergence

quantitatively [5]. TACT provides a time-based guar-

antee, allowing an item to remain stale for only a

bounded amount of time. TACT implements this by

pushing an update operation to remote replicas before

the time limit elapses. TACT also provides ‘‘order

bounding,’’ i.e., limiting the number of uncommitted

operations: when a site reaches a user-defined bound

on the number of uncommitted operations, it stops

accepting new ones.

Finally, TACT can bound the difference between

numeric values.

For this, each replica is allocated a quota. Each

site estimates the progress of other sites, using vector

clock techniques. The site stops initiating operations

once its cumulative modifications, or the estimated

remote updates to the item, reach the quota. At that

point the site pushes its updates and pulls remote

operations. For example a bank account might be

replicated at ten sites.

To guarantee that the balance observed is within

€50 of the truth, each site’s quota is €50/10 = €5.

Whenever the difference estimated by a site reaches

€5, it synchronises with the others.

Optimistic Replication Versus Optimistic Concurrency

Control

The word ‘‘optimistic’’ has different, but related,

meanings when used in the context of replication and

of concurrency control.

Optimistic replication (OR) means that updates

propagate lazily. There is no a priori total order of

transactions. There is no point in time where different

sites are guaranteed to have the same (or equivalent)

state. Cascading aborts are possible.

Optimistic concurrency control (OCC) means

that conflicting transactions are allowed to proceed

concurrently. However, in most OCC implementa-

tions, a transaction validates before terminating. A

transaction is serialized with respect to concurrent

Optimization and Tuning in Data Warehouses O 1995

O

transactions, at the latest when it terminates, and

cascading aborts do not occur.

Key Applications
Usenet News pioneered the OR concept, allowing to

share write-only information over a slow, but cheap

network using dial-up modems over telephone lines.

Mobile users want to be able to work as usual, even

when disconnected from the network. Thus, mobile

computing is a key driver for OR applications. Systems

designed for disconnected work that use OR include

the Coda file system [6], the Bayou shared database

[14], or the Lotus Notes collaborative suite.

Another important application area is Computer-

Supported Collaborative Work. In this domain, users

must be able to update shared artefacts in complex

ways without interfering with one another. OR allows

a user to insulate himself temporarily from other users.

A key example is the Concurrent Versioning System

(CVS), which enables collaborative authoring of com-

puter programs [2]. Bayou and Lotus Notes, just cited,

are also designed for collaborative work.

OR is used for high performance and high availabil-

ity in large-scale web sites. A recent example is Ama-

zon’s ‘‘shopping cart,’’ which is designed to be highly

available, even if the same user connects to several

instances of the Amazon store discussed earlier.

Cross-references
▶ Eventual Consistency

▶ Peer-to-Peer Content Distribution

▶ Peer-to-Peer System

▶ Strong Consistency Models for Replicated Data

▶Traditional Concurrency Control for Replicated

Databases

▶WAN Data Replication
Recommended Reading
1. Breitbart Y., Komondoor R., Rastogi R., and Seshadril S. Update

propagation protocols for replicated databases. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1999, pp. 97–108.

2. Cederqvist P. et al. Version Management with CVS. Network

Theory, Bristol, 2006.

3. Golding R.A. Weak-Consistency Group Communication and

Membership. Ph.D. thesis, University of California, Santa Cruz,

CA, USA, 1992, tech. Report no. UCSC-CRL-92-52. Available at

ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z

4. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.
5. Haifeng Yu and Amin Vahdat. Combining Generality and Prac-

ticality in a Conit-Based Continuous Consistency Model for

Wide-Area Replication. In Proc. 21st Int. Conf. on Distributed

Computing Systems, USA.

6. Kistler J.J. and Satyanarayanan M. Disconnected operation

in the Coda file system. ACM Trans. Comp. Syst., 10(5):3–25,

1992.

7. Lamport L. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7): 558–565, 1978.

8. Oster G., Urso P., Molli P., and Imine A. Proving correctness of

transformation functions in collaborative editing systems. Rap-

port de recherche RR-5795, LORIA – INRIA Lorraine, 2005,

Available at http://hal.inria.fr/inria-00071213/.

9. Petersen K., Spreitzer M.J., Terry D.B., Theimer M.M.,

and Demers A.J. Flexible update propagation for weakly con-

sistent replication. In Proc. 16th ACM Symp. on Operating

System Principles, 1997, pp. 288–301.

10. Preguiça N., Shapiro M., and Matheson C. Semantics-based

reconciliation for collaborative and mobile environments. In

Proc. Int. Conf. on Cooperative Inf. Syst., 2003, pp. 38–55.

11. Saito Y. and Shapiro M. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, 2005.

12. Sun C. and Ellis C. Operational transformation in real-time

group editors: issues, algorithms, and achievements. In Proc.

Int. Conf. on Computer-Supported Cooperative Work, 1998,

p. 59.

13. TerryD.B.,DemersA.J.,PetersenK.,SpreitzerM.J.,TheimerM.M.,

and Welch B.B. Session guarantees for weakly consistent

replicated data. In Proc. Int. Conf. on Parallel and Distributed

InformationSystems, 1994, pp. 140–149.

14. TerryD.B., TheimerM.M., PetersenK.,DemersA.J., SpreitzerM.J.,

and Hauser C.H. Managing update conficts in Bayou, a weakly

connected replicated storage system. In Proc. 15th ACM Symp. on

Operating System Principles, 1995, pp. 172–182.

15. Wuu G.T.J. and Bernstein A.J. Efficient solutions to the

replicated log and dictionary problems. In Proc. ACM

SIGACT-SIGOPS 3rd Symp. on the Principles of Dist. Comp.,

1984, pp. 233–242.
Optimization and Tuning in Data
Warehouses

LADJEL BELLATRECHE

LISI/ENSMA–Poitiers University, Futuroscope Cedex,

France

Definition

Optimization and tuning in data warehouses are the

processes of selecting adequate optimization techniques

in order to make queries and updates run faster and to

maintain their performance by maximizing the use of

data warehouse system resources. A data warehouse is

http://hal.inria.fr/inria-00071213/

1996O Optimization and Tuning in Data Warehouses
usually accessed by complex queries for key business

operations. They must be completed in seconds not

days. To continuously improve query performance, two

main phases are required: physical design and tuning. In

the first phase, data warehouse administrator selects

optimization techniques such as materialized views, ad-

vanced index schemes, denormalization, vertical parti-

tioning, horizontal partitioning and parallel processing.

Generally, this selection is based on most frequently

asked queries and typical updates. Physical design gen-

erates a configurationD containing a number of optimi-

zation techniques. This configuration should evolve,

since data warehouse dynamically changes during its

lifetime. These changes necessitate a tuning phase so

as to keep the performance of the warehouse from

degrading. Changes may be related to the content of

tables, sizes of optimization structures selected during

physical design (materialized views, indexes and parti-

tions), frequencies of queries/updates, addition/deletion

of queries/updates, etc. The role of the tuning phase is

to monitor and to diagnose the use of configuration

D and different resources assigned to D (like buffer,

storage space, etc.). For instance, if an optimization

technique, like an index, is not used by the whole work-

load, it will be dropped by a tuning tool and might

be replaced with another technique.

Historical Background
There has been extensive work in query optimization

since the early 1970s in traditional databases. Several

algorithms and systems have been proposed, such as

System-R project, and its ideas have been largely

incorporated in many commercial optimizers. Note

that each SQL query corresponding to a select-project-

join query in the relational algebra may be represented

by many query trees. The leaves of each query tree

represent base relations and non-leaf nodes are algebraic

operators like selections, projections, unions, joins. An

intermediate node indicates the application of the

corresponding operator on the relations generated by

its children, the result of which is then sent further up.

Thus, the edges of a tree represent data rows from

bottom to top, i.e., from the leaves which correspond

to data in the database, to the root, which is the final

operator producing the query answer. For a complicated

query, the number of all possible query treesmay be very

high due to many algebraic laws that hold for relational

algebra: commutative and associative laws of joins, laws
involving selection and projection push down along the

tree, etc.

To choose an optimal query tree, a database opti-

mizer may employ one of two optimization techni-

ques: rule-based optimization approach and cost-based

optimization approach. The rule-based optimizer is the

oldest one. It is simple since it is based on a set of rules

concerning join algorithms, the use of an index or not,

the choice of the external relation in a nested loop, and

so on. The optimizer chooses an execution plan based

on the available access paths and their ranks. For in-

stance, Oracle’s ranking of the access paths is heuristic.

If there is more than one way to execute a query, then

the rule-based optimizer always uses the operation

with the lower rank. Usually, operations of lower

rank execute faster than those associated with con-

structs of higher rank. In cost-based optimization,

the optimizer estimates the cost of each possible exe-

cution plan (Query execution plan is a set of steps used

to access data in relational databases. Figure 1 gives an

example of an execution plan, where dashed circles and

solid circles represent base tables and algebraic opera-

tions, respectively. Other execution plans might be

generated.) by applying heuristic formulas using a set

of statistics concerning database (sizes of tables, index-

es, tuple length, selectivity factors of join and selection

predicates, sizes of intermediate results, etc.) and hard-

ware (size of buffer, page size, etc.). For each execution

plan, the query optimizer performs the following tasks:

(i) it selects an order and grouping for associative-and-

commutative operations like joins, unions and inter-

section, (ii) it chooses implementation algorithms for

different algebraic operations: for example, selections

may be implemented using either a sequential scan or

an index scan; join operation may be implemented in

different ways: nested loop, sort-merge join and hash join

(see Fig. 1), (iii) it manages additional operators like

group-by, sorting, etc., and (iv) it manages the inter-

mediate results (T1 and T2 are an example of interme-

diate results of two execution plans of the same query

in Fig. 1), etc. Cost-based optimizer chooses the plan

that has the lowest cost using dynamic programming

approaches (e.g., in System R).

Cost-based optimization is more effective than

rule-based optimization, since all decisions taken on

a query execution plan are validated by a cost model.

An important point to be mentioned is that the quality

of cost-based optimization depends strongly on the

Optimization and Tuning in Data Warehouses. Figure 1. Two different query execution plans.

Optimization and Tuning in Data Warehouses O 1997

O

recency of the statistics. Determining which statistics

to create is a difficult task [6].

Due to the difficulty query optimizers have in

selecting an optimal execution plan, some commercial

database systems offer the data warehouse administra-

tor to use hints in order to force query optimizer to

choose an execution plan.

The above cited optimization techniques are

enough to optimize traditional database applications

(called, OLTP: On-Line Transaction Processing). It will

be interesting to see whether they are also sufficient for

decision support applications built around a large data

warehouse.

A data warehouse is usually modeled with a rela-

tional schema (star schema, snow flake schema). A star

schema consists of a single fact table that is related

to multiple dimension tables via foreign key joins.

Dimension tables are relatively small compared to

the fact table and rarely updated. They are typically

denormalized so as to minimize the number of join

operations required to evaluate a query. Due to the

interactive nature of decision support applications,

having a fast query response time is a critical perfor-

mance goal. The above optimization techniques are

not suitable for data warehouse applications due to

their different requirements and workload. Data ware-

house applications operate in mostly-read environ-

ments, which are dominated by large and complex

queries. The typical queries on the star schema are called

star join queries. They are characterized by: (i) a multi-

table join among a large fact table and dimension tables

and (ii) each of the dimension tables involved in the
join operation has multiple selection predicates (a se-

lection predicate has the following form: Di.Aj y value,

where Aj is an attribute of dimension table Di and y is

one of six comparison operators {=,<,>,�,�}, and

value is the predicate constant) on its descriptive attri-

butes and (iii) no join operation between dimension

tables. Unfortunately, conventional query optimiza-

tion techniques are not efficient for star-join queries

for two main reasons. First, traditional indexing tech-

niques (B-tree) are not efficient to process such a

selection predicate. This is due to the fact that dimen-

sion attributes often have low cardinality (e.g., gender)

and each selection predicate typically has a low selec-

tivity. Second, since the fact table is very large, com-

puting the multi-table joins using traditional join

algorithms (nested loop, sort-merge, hash joins) is

inefficient because it requires scanning the fact table.

Without efficient optimization techniques, such

queries may take hours or days, which is unacceptable

in most cases. As a consequence, the physical design

becomes sophisticated to cope with complex decision

support queries [6]. To speed up these queries, in

addition to the existing ones (developed for OLTP

applications), a large spectrum of optimization tech-

niques were proposed in the literature and mostly

supported by commercial database systems. These

techniques include materialized views, partitioning,

advanced indexing schemes, denormalization, parallel

processing. In the next section, all these techniques will

be described in details. For each one, its principle,

advantages, disadvantages and selection problem will

be presented.

Constraints

Objectives
Without

constraints
Maintenance

cost
Storage
cost

Query cost √ √ √

Maintenance
cost

√ ? √

Query cost &
Maintenance
Cost

√ ? √

1998O Optimization and Tuning in Data Warehouses
Foundations
The various optimization techniques selected during

the physical design process may be classified into two

main categories: redundant techniques and non-

redundant techniques.

Redundant Techniques

This category includes four main techniques: materi-

alized views, advanced indexing schemes, denormali-

zation, and vertical partitioning.

1. Materialized views. A virtual view (A view is a

derived relation defined in terms of base relations.) can

be materialized by storing its tuples in the databases.

Materialized views are used to precompute and to store

aggregated data. They can also be used to precompute

joins with or without aggregations. So, materialized

views are suitable for queries with expensive joins or

aggregations. Once materialized views are selected, all

queries will be rewritten using materialized views (this

process is known as query rewriting). A rewriting of a

query Q using views is a query expression Q 0 referen-

cing to these views. The query rewriting is done trans-

parently by the query optimizer. To generate the best

rewriting for a given query, a cost-based selection

method is used. Two major problems related to mate-

rialized views are: (i) the view selection problem and

(ii) the view maintenance problem.

Views selection problem. The database administra-

tor cannot materialize all possible views, as he/she is

constrained by some resources like, disk space, compu-

tation time, maintenance overhead and cost required

for query rewriting process. Hence, he/she needs to

select an appropriate set of views to materialize under

some resource constraint. Formally, view selection

problem (VSP) is defined as follows: given a set

of most frequently used queries Q = {Q1,Q2,...,Qn},

where each query Qi has an access frequency fi (1 � i

� n) and a resource constraint M, the view selection

problem consists of selecting a set of materialized views

that minimizes one or more objectives, possibly subject

to one or more constraints. Many variants of this

problem have been studied: (i) minimizing the query

processing cost subject to storage size constraint [5],

(ii) minimizing query cost and maintenance cost sub-

ject to storage space constraint [9], (iii) minimizing

query cost under a maintenance constraint [8], etc.

This problem is known to be an NP-hard problem

[8]. Several algorithms were proposed to deal with

this problem [8,9]. The following table summarizes
all possible formalizations of view selection problem.

Two symbols are used in this table (√ and ?), where

each one has its own interpretation: √: formalizations

and selection algorithms already exist and ?:

Inapplicable.
View maintenance problem. Note that materialized

views store data from base tables. In order to keep the

views in the data warehouse up to date, it is necessary

to maintain the materialized views in response to the

changes at the base tables. This process of updating

views is called view maintenance which has generated a

great deal of interest. Views can be either recomputed

from scratch, or incrementally maintained by propa-

gating the base data changes onto the views. As recom-

puting the views can be prohibitively expensive, the

incremental maintenance of views is of significant

value [8].

2. Indexing has been at the foundation of perfor-

mance tuning for databases for many years. A database

index is a data structure that improves the speed of

operations in a table. Indexes can be created using one

or more columns. An index can be either clustered or

non-clustered. It can be defined on one table (or view)

or many tables using a join index [10]. The traditional

indexing strategies used in database systems do not

work well in data warehousing environments since

most OLTP queries are point queries. B-trees, which

are used in most common relational database systems,

are geared towards such point queries. In the data

warehouse context, indexing refers to two different

things: (i) indexing techniques and (ii) index selection

problem.

Indexing techniques. A number of indexing strate-

gies have been suggested for data warehouses: Value-

List Index, Projection Index, Bitmap Index, Bit-Sliced

Index, Data Index, Join Index, and Star Join Index.

Bitmap index is probably the most important result

Optimization and Tuning in Data Warehouses O 1999

O

obtained in the data warehouse physical optimization

field. The bitmap index is more suitable for low cardi-

nality attributes since its size strictly depends on the

number of distinct values of the column on which it is

built. Besides disk space saving (due to their binary

representation and potential compression), such index

speeds up queries having Boolean operations (such as

AND, OR and NOT) and COUNToperations. Bitmap

join index is proposed to speed up join operations. In

its simplest form, it can be defined as a bitmap index

on a table R based on a single column of another table

S, where S commonly joins with R in a specific way.

Index selection problem. The task of index selection

is to automatically select an appropriate set of indices

for a data warehouse (having a fact table and dimen-

sion tables) and a workload under resource constraints

(storage, maintenance, etc.). It is challenging for the

following reasons [3]: the size of a relational data

warehouse schema may be large (many tables with

several columns), and indices can be defined on a set

of columns. Therefore, the search space of indices that

are relevant to a workload can be very large [2]. To deal

with this problem, most selection approaches use two

main phases: (i) generation of candidate attributes and

(ii) selection of a final configuration. The first phase

prunes the search space of index selection problem,

by eliminating non-relevant attributes. In the second

phase, the final indices are selected using greedy algo-

rithms [4], linear programming algorithms [3], etc.

The quality of the final set of indices depends essentially

on the pruning phase. To prune the search space of

index candidates, many approaches were proposed

[1–3], that can be classified into two categories: heuris-

tic enumeration-driven approaches and data mining

driven approaches.

In heuristic enumeration-driven approaches, heur-

istics are used. For instance, in [4], a greedy algorithm

is proposed that uses optimizer cost of SQL Server to

accept or reject a given configuration of indices. The

weakness of this work is that it imposes the number of

generated candidates. IBM DB2 Advisor is another

example belonging to this category [15], where the

query parser is used to pick up selection attributes

used in workload queries. The generated candidates

are obtained by a few simple combinations of selection

attributes [15].

In data mining-driven approaches, the pruning

process is done using data mining techniques, like in

[2]. In this approaches the number of index candidates
is not a priori known as in the first category. The basic

idea is to generate frequent closed itemsets represent-

ing groups of attributes that could participate in select-

ing the final configuration of bitmap join indexes. A

data mining based approach has been developed for

selecting bitmap join indexes [2].

3. Vertical partitioning can be viewed as a redun-

dant structure even if it results in little storage over-

head. The vertical partitioning of a table T splits it into

two or more tables, called, sub-tables or vertical frag-

ments, each of which contains a subset of the columns

in T. Note that the key columns are duplicated in each

vertical fragment, to allow ‘‘reconstruction’’ of an orig-

inal row in T. Since many queries access only a small

subset of the columns in a table, vertical partitioning

can reduce the amount of data that needs to be

scanned to answer the query. Unlike horizontal parti-

tioning, indexes or materialized views, in most of

today’s commercial database systems there is no native

database definition language support for defining ver-

tical partitions of a table [14].

To vertically partition a table with m non-primary

keys, the number of possible fragments is equal to

B(m), which is the mth Bell number [12]. For large

values of m, B(m) ffi mm. For example, for m = 10;

B(10) ffi 115,975. These values indicate that it is futile

to attempt to obtain optimal solutions to the vertical

partitioning problem. Many algorithms were proposed

and classified into two categories: grouping and

splitting [12]. Grouping starts by assigning each attri-

bute to one fragment, and at each step, joins some of

the fragments until some criteria is satisfied. Splitting

starts with a table and decides on beneficial partition-

ings based on the query frequencies.

In the data warehousing environment, [7] pro-

posed an approach for materializing views in vertical

fragments, each including a subset of measures possi-

bly taken from different cubes, aggregated on the same

grouping set. This approach may unify two or more

views into a single fragment.

4. Denormalization is the process of attempting to

optimize the performance of a database by adding

redundant data to save join operations. Denormaliza-

tion is usually promoted in a data warehouse

environment.

Non Redundant Techniques

In this category, two main techniques exist: horizontal

partitioning and parallel processing.

2000O Optimization and Tuning in Data Warehouses
1. Horizontal partitioning represents an important

aspect of physical database design. It allows tables,

indexes and materialized views to be partitioned into

disjoint sets of rows that are physically stored and

accessed separately [14] or in parallel. Horizontal par-

titioning may have a significant impact on perfor-

mance of queries and manageability of very large data

warehouses. Not only do data partitions reduce the

time it takes to perform database maintenance and

management tasks, by eliminating non-relevant parti-

tion(s), they also have a positive effect on the perfor-

mance of applications. Another characteristic of

horizontal partitioning is its ability to be combined

with other optimization structures like indexes, mate-

rialized views. Splitting a table, a materialized view or

an index into smaller pieces makes all operations on

individual pieces much faster. Contrary to materialized

views and indexes, data partitioning does not replicate

data, thereby reducing space requirements and mini-

mizing update overhead [13].

A native database definition language support is

available for horizontal partitioning, where several frag-

mentationmodes are available [11]: range, list and hash.

In the range partitioning, an access path (table, view, and

index) is decomposed according to a range of values of a

given set of columns. The hash mode decomposes the

data according to a hash function (provided by the

system) applied to the values of the partitioning col-

umns. The list partitioning splits a table according to

the listed values of a column. These methods can be

combined to generate composite partitioning (List-

List, Range-Range,Hash-Hash, Range-List, ...). Recently,

a new mode of horizontal partitioning became available

inOracle11g [11], called virtual column-based partition-

ing. It is defined by one of the above mentioned tech-

niques and the partitioning key is based on a virtual

column. Virtual columns are not stored on disk and

only exist as metadata.

Two versions of horizontal partitioning are avail-

able [12]: primary and derived horizontal partitioning.

Primary horizontal partitioning of a table is performed

using predicates defined on that relation. It can be per-

formed using the different fragmentation modes above

cited. Derived horizontal partitioning is the partitioning

of a table that results from predicates defined in other

table(s). The derived partitioning of a table R according

to a fragmentation schema of table S is feasible if and

only if there is a join link between R and S.
In the context of relational data warehouses,

derived horizontal partitioning is well adapted. In

other words, to partition a data warehouse, the best

way is to partition some/all dimension tables using

their predicates, and then partition the fact table based

on the fragmentation schemas of dimension tables.

This fragmentation takes into consideration require-

ments of star join queries (these queries impose res-

trictions on the dimension values that are used for

selecting specific facts; these facts are further grouped

and aggregated according to the user demands). To

illustrate this fragmentation, suppose that a relational

warehouse is modeled by a star schema with d dimen-

sion tables and a fact table F. Among these dimension

tables, g tables are fragmented (g� d). Each dimension

table Di (1 � i � g) is partitioned into mi fragments:

fDi1;Di2; :::;Dimi
g, where each fragment Dij is defined

as: Dij ¼ sclij ðDiÞ, where clij and s (1 � i � g, 1 � j �
mi) represent a conjunction of simple predicates and

the selection operator, respectively. Thus, the fragmen-

tation schema of the fact table F is defined as follows:

Fi = F ⋉ D1j ⋉ D2k ⋉ ... ⋉ Dgl, (1 � i � mi), where ⋉
represents the semijoin operation.

Derived horizontal partitioning has two main

advantages in relational data warehouses, in addition

to classical benefits of data partitioning: (i) precom-

puting joins between fact table and dimension tables

participating in the fragmentation process of the fact

table [1] and (ii) optimizing selections defined on

dimension tables. Similar advantages hold for bitmap

join indexes.

2. Parallel Processing Data partitioning is always

coupled with parallel processing. To design a parallel

data warehouse, two main issues must be addressed:

data partitioning and data placement (allocation).

Data placement is a key factor for high performance

parallel data warehouses. Determining an effective

data placement is a complex administration problem

depending on many parameters including system

architecture, database and workload characteristics,

hardware configuration, etc. The easier way to design

a parallel data warehouse is to first partition dimension

tables using the primary horizontal partitioning and

then derived partition the fact table. This partitioning

alternative generates a set of sub-star schemas. In order

to ensure a high performance of complex queries, these

sub-star schemas shall be allocated to various machines

in efficient manner.

Optimization and Tuning in Data Warehouses O 2001

O

Tuning

Before talking about tuning phase, a summarization of

physical design is required to understand the need for

tuning.

The first point concerns the different formaliza-

tions of problems of selecting optimization techniques

in physical design phase. They are mostly based on a

set of most frequently asked queries, a priori known.

However, in dynamic environments, like data ware-

housing with various ad-hoc queries, it is difficult

to identify potential useful optimization structures in

advance. The second point is about the similarities

between optimization techniques: materialized views

and indexes, bitmap join indexes and derived hori-

zontal partitioning. These similarities are not always

taken into account during physical design phase.

This situation may incur the following limitations:

(i) non-consideration of the mutual interdependencies

between optimization structures (sometimes it is

better to select more materialized views than indexes

and vice-versa or replacing bitmap join indexes by

a non redundant technique like derived horizontal

partitioning to reduce maintenance overhead) gives

sub-optimal solutions, (ii) absence of metrics for

efficient distribution of storage space between redun-

dant optimization techniques and (iii) redistribution

of space among optimization structures after update

operations.

Based on the above points, tuning tools are recom-

mended since they supervise the good use of different

optimization techniques selected during physical de-

sign phase. Tuning tools might be triggered when user

requirements evolve (new queries/updates, not consid-

ering some existing queries), query frequencies change,

sizes of tables, materialized views, indexes and parti-

tions increase, etc. To keep data warehouse applica-

tions running at high performance, several aspects of

physical design should be tuned: buffer pool, allocation

of working memory, materialized views, indexes, stor-

age space, horizontal partitioning, vertical partition-

ing, data placement, etc.

During the data warehouse life cycle, some struc-

tures may be added/dropped (e.g., materialized views

and indexes), merged (indexes and horizontal parti-

tions) or splitted (e.g., horizontal partitions). For in-

stance, some commercial database systems provide

monitoring tools observing the good utilization of

indexes. If an index is not used by a workload, it will
be dropped. Its storage space might be used for creat-

ing another optimization technique. Merging opera-

tions deal mainly with indexes and horizontal

partitions. They are crucial for data warehouse appli-

cations [5,14]. This is because optimization structures

are often either too large (for redundant structures) to

fit in the available storage, or cause updates to slow

down significantly. They are supported by most com-

mercial database systems.

Many commercial database systems offer tools for

physical design tuning: ‘‘What-If ’’ analysis tool of SQL

Server used to facilitate manual tuning. SQL Server

proposes a tuning using a relation-based approach.

The optimizer can replace a large useful index with

smaller, less useful ones. For example, operations that

required a single traversal through a complex index

may be implemented as the intersection of two traver-

sals through simple indexes. Other transformations

include index merging (implementing an index scan

of relation B as a full scan through relation A), prefix-

ing (building an index on a; b instead of a; b; c), and

the removal of structures. DB2 design advisor tool

provides integrated recommendations for indexes,

materialized views, shared-nothing partitioning and

multidimensional clustering. ORACLE 10G takes as

input a workload and a set of optimization candidates

for that workload (these candidates are generated by

Oracle Automatic Tuning Optimizer) and provides a

recommendation for the overall workload.

In academic research work, a tuning tool called

AutoPart which combines horizontal and vertical

table partitioning to reduce I/O costs for each query

by eliminating unnecessary accesses to non-relevant

data is proposed [13]. AutoPart recommends the com-

bination of partitioning with a small set of key indexes.

A similar work proposed to combine derived horizon-

tal partitioning with bitmap join indexes [1].

Key Applications
The proposed techniques within this paper can be

applied in any database applications having the same

characteristics (huge tables, complex queries with

many join operations and restriction) and require-

ments of data warehouse (response time). Scientific

and statistical database applications are a good exam-

ple. Historically, the main techniques explored in this

paper were proposed and supported in decision sup-

port applications. Materialized views and advanced

2002O Optimization and Tuning in Data Warehouses
indexing schemes could be easily applied in traditional

OLTP applications, when update operations are not

important. Horizontal partitioning can also be ap-

plied, but moderately. The choice of partitioning attri-

butes is a crucial performance issue. For example, if a

database is partitioned based on changing value attri-

butes like Age, the database will be faced with the

problem of instance migration.

Future Directions
As mentioned in the previous section, physical design

and tuning are very crucial decisions for the perfor-

mance of data warehouse applications. In this section,

some of the interesting open issues for physical design

and tuning are highlighted:

1. Multi-objective algorithms for indexes: most index

selection algorithms have one objective function

which represents the query processing cost subject

to one constraint representing the storage cost. It

will be interesting to propose multi-objective algo-

rithms for selecting indexes. Such formalizations

will reduce the query processing and maintenance

cost (which is not negligible for indexes). Since

there is a strong similarity between materialized

views and indexes, an easier way to deal with this

problem is to adapt multi-objective algorithms for

materialized views to indexes.

2. Incorporating query rewriting using materialized

views in selection process: after selection of materi-

alized views, all queries will be rewritten using

them. Choosing an optimal rewriting is a difficult

problem. It will be interesting to combine the prob-

lem of selecting materialized views and the problem

of rewriting queries. A simple combination may

involve the formalization of materialized view se-

lection subject to time requiring for query rewrite

process.

3. Pruning search space of materialized view selection

problem: selecting materialized views is an NP-hard

problem. To prune search space of this problem,

vertical and horizontal partitioning (primary and

derived) might be used, because a materialized view

may involve selection, projection, join operations.

4. Partition allocation over table spaces: assigning dif-

ferent fragments generated by horizontal partition-

ing process over various table spaces may be a

crucial issue for performance of queries. This prob-

lem does not get enough attention from data ware-

house research community. This problem is quite
similar to data placement studied in distributed

and parallel databases areas. It will be interesting

to adapt the existing algorithms. Most of these

algorithms are static. Tuning of data placement

will be recommended since partition usages

change, partition might be merged/splitted, etc.

5. Supporting derived horizontal partitioning: Today’s

commercial database systems support derived hori-

zontal partitioning, where a table is decomposed

based on the fragmentation schema of only one

table, using referential partitioning [11]. In real

data warehouse applications, a fact table may be

derived partitioned based on fragmentation schemas

of several dimension tables in order to satisfy star join

queries requirements. From an industry perspective,

this situation is quite unsatisfactory and requires

further thought.
Cross-references
▶Bitmap-Based Index Structures for Multidimensional

Data

▶Data Partitioning

▶ Index Join Physical Schema Design

▶Query Rewriting Using Views

▶ Semijoin

▶View Maintenance in Data Warehouses

▶Virtual Partitioning
Recommended Reading
1. Bellatreche L., Boukhalfa K., and Mohania M.K. Pruning search

space of physical database design. In Proc. 18th Int. Conf.

Database and Expert Syst. Appl. 2007, pp. 479–488.

2. Bellatreche L., Missaoui R., Necir H., and Drias H. Selection and

pruning algorithms for bitmap index selection problem using

data mining. In Proc. Int. Conf. on Data Warehousing and

Knowledge Discovery, 2007, pp. 221–230.

3. Chaudhuri S. Index selection for databases: a hardness study and

a principled heuristic solution. IEEE Trans. Knowl. Data Eng., 16

(11):1313–1323, 2004.

4. Chaudhuri S. and Narasayya V. An efficient cost-driven

index selection tool for microsoft sql server. In Proc. 23rd Int.

Conf. on Very Large Data Bases, 1997, pp. 146–155.

5. Chaudhuri S. and Narasayya V. Index merging. In Proc. 15th Int.

Conf. on Data Engineering. 1999, pp. 296–303.

6. Chaudhuri S. and Narasayya V. Self-tuning database systems:

a decade of progress. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

7. Golfarelli M., Maniezzo V., and Rizzi S. Materialization of frag-

mented views in multidimensional databases. Data & Knowl.

Eng., 49(3):325–351, June 2004.

8. Gupta H. Selection and maintenance of views in a data ware-

house. Ph.D. Thesis, Stanford University, September 1999.

OQL O 2003
9. Lawrence M. Multiobjective genetic algorithms for materialized

view selection in OLAP data warehouses. In Proc. The Genetic

and Evolutionary Computation Conf., 2006, pp. 699–706.

10. O’Neil P. and Quass D. Improved query performance with

variant indexes. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1997, pp. 38–49.

11. Oracle Data Sheet. Oracle partitioning. White Paper: http://

www.oracle.com/technology/products/bi/db/11g/, 2007

12. Özsu M.T. and Valduriez P. Principles of distributed database

systems. Second edition. Prentice Hall, Englewood Cliffs, NJ,

1999.

13. Papadomanolakis S. and Ailamaki A. Autopart: automating sche-

ma design for large scientific databases using data partitioning.

In Proc. 16th Int. Conf. on Scientific and Statistical Database

Management, 2004, pp. 383–392.

14. Sanjay A., Narasayya V.R., and Yang B. Integrating vertical and

horizontal partitioning into automated physical database design.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2004, pp. 359–370.

15. Valentin G., Zuliani M., Zilio D.C., Lohman G.M., and Skelley A.

Db2 advisor: an optimizer smart enough to recommend its own

indexes. In Proc. 16th Int. Conf. on Data Engineering, 2000,

pp. 101–110.
Optimization of DAG-Structured
Query Evaluation Plans

▶Multi-Query Optimization
O

Optimization of Parallel Query Plans

▶ Parallel Query Optimization
OQL

PETER M.D. GRAY

University of Aberdeen, Aberdeen, UK

Synonyms
Object query language
Definition
OQLwas developed to play the role of SQL for Object-

Oriented Databases, especially those adhering to the

ODMG Standard [4] where the language is defined.

Unlike SQL, OQL is a functional language, and its
operators can be composed to an arbitrary level of

nesting within a query provided the query remains

type-correct. Fegaras and Maier [8] have shown how

OQL expressions have a direct translation into monoid

Comprehensions.

Optimisation techniques for OQL that exploit its

inherent functional nature are discussed in [5,6,8].

OQL has been influential in the development of the

SQL3 standard and also the functional core of

the XQuery language for XML. Thus optimisation

techniques developed for OQL are also applicable to

these languages.

Key Points
The fundamental modelling concept of object identi-

fiers for entity instances was accepted into the database

mainstream in the late 1980s, and the move to using

SQL-like syntax for querying such data models fol-

lowed soon after. Early influential systems were

OSQL [2] and AMOSQL (q.v.). This resulted in

query language proposals for object-oriented databases

such as the very influential O2 query language [1] and

its successor OQL, which was included in the ODMG

Standard [4]. For example, the DAPLEX query

FOR EACH S IN STUDENT

SUCH THAT name(S)="Fred Jones"

PRINT name(S), age(S);

is expressed as follows in OQL, basically by syntactic

reordering of the query clauses and using path expres-

sions rather than function application:

SELECT S.name, S.age FROM STUDENT S

WHERE S.name="Fred Jones"

When restricted to sets, monoid comprehensions are

equivalent to set monad comprehensions [3], which

capture precisely the nested relational algebra [8].

Most OQL expressions have a direct translation into

the monoid calculus. For example, the OQL query

SELECT DISTINCT HOTEL.price

FROM HOTEL IN(

SELECT h

FROM c IN CITIES, h IN c.hotels

WHERE c.name="Arlington")

WHEREEXISTrINHOTEL.rooms:r.bed_num=3

AND HOTEL.name IN (

SELECT t.name

FROM s IN STATES, t IN s.attractions

WHERE s.name = "Texas");

http://www.oracle.com/technology/products/bi/db/11g/
http://www.oracle.com/technology/products/bi/db/11g/

2004O ORA-SS Data Model
finds the prices of hotels in Arlington that have rooms

with three beds and are also are named after a tourist

attraction in Texas. This query is translated into the

following monoid comprehension [7]:

fold(Union,Empty,

[price(h) | c <- Cities; h <- hotels

(c); name(c) = ‘‘Arlington’’;

fold(Or,False,

[bednum(r)=3 | r <- rooms(h)]),

fold(Or,False,

[name(h)=name(t) | s <- States; t <-

attractions(s);name(s)=‘‘Texas’’])])

Here, as in Functional Programming

fold(Or,False,[x1,x2, ... xn]) = x1

Or x2 Or ... xn Or False

computes the logical Or of a list of boolean values,

so it is true only if some of them are true. Likewise

fold(Union,Empty,L) copies the list L into a set

without duplicates. Mathematically fold implements

monoid operations with a given merge operation

and a zero.
Cross-references
▶AMOSQL

▶Comprehensions

▶ Functional Query Language
Recommended Reading
1. Bancilhon F., Delobel C., and Kanellakis P.C. Building an Object-

Oriented Database System, The Story of O2. Morgan Kaufmann,

Los Altos, CA, 1992.

2. Beech D. A foundation of evolution from relational to

object databases. In Advances in Database Technology, In

Proc. 1st Int. Conf. on Extending Database Technology. 1988,

pp. 251–270.

3. Buneman P., Libkin L., Suciu D., Tannen V., and Wong L.

Comprehension syntax. ACM SIGMOD Rec., 23(1):87–96,

1994.

4. Cattell R.G.G. (ed.). The Object Data Standard: ODMG 3.0.

Morgan Kaufmann, Los Altos, CA, 2000.

5. Cluet S. and Delobel C. A general framework for the

optimization of object-oriented queries. In Proc. ACM

SIGMOD Int. Conf. on Management of Data. 1992,

pp. 383–392.

6. Fegaras L. Query unnesting in object-oriented databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data.

1998, pp. 49–60.

7. Fegaras L. Query Processing and Optimization in l-DB. In The

Functional Approach to Data Management, Chapter 13. P.M.D.,
Gray L., Kerschberg P.J.H., and King A. (eds.). Springer, Berlin,

2004.

8. Fegaras L. and Maier D. Towards an effective calculus for Object

Query Languages. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data. 1995, pp. 47–58.
ORA-SS Data Model

▶Object Relationship Attribute Data Model for Semi-

structured Data
ORA-SS Schema Diagram

▶Object Relationship Attribute Data Model for Semi-

structured Data
Orchestration

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Definition
In a Service Oriented Architecture (SOA) services are

interacting by exchanging messages, i.e., by combining

services more complex services are created. Orchestra-

tion is concerned with the composition of such ser-

vices seen from the viewpoint of single service.
Key Points
The terms ‘‘orchestration’’ and ‘‘choreography’’ de-

scribe two aspects of integrating services to create busi-

ness processes [2,3]. The two terms overlap somewhat

and the distinction is subject to discussion. Orchestra-

tion and choreography can be seen as different ‘‘per-

spectives.’’ Choreography is concerned with the

exchange of messages between those services and is

often be characterized by analogy ‘‘Dancers dance fol-

lowing a global scenario without a single point of con-

trol.’’ Orchestration is concerned with the interactions

of a single service with its environment. Here an anal-

ogy can also be used. In orchestration, there is

Orchestration. Figure 1. Orchestration.

Origin O 2005

O

someone, ‘‘the conductor’’, who tells everybody in the

orchestra what to do and makes sure they all play in

sync.

Figure 1 illustrates the notion of orchestration.

Service A is interacting with other services to create a

more complex service. The dashed area shows the focal

point of orchestration, i.e., the control-flow related to

message exchanges of a single party. Languages such a

BPEL are proposed to model and enact such orches-

trations [1]. Note that languages like BPEL are very

close to traditional workflow languages, i.e., the same

types of control-flow patterns need to be supported.

Orchestration often assumes that services have a

‘‘buy side’’ and a ‘‘sell side,’’ i.e., services can be used

by other services (‘‘sell side’’) and at the same time

use services (‘‘buy side’’). Orchestration is mainly con-

cerned with the ‘‘buy side.’’ Unlike choreography, there

is a single party coordinating the process.

Cross-references
▶BPEL

▶Business Process Management

▶Orchestration

▶Web Services

▶Workflow Management

Recommended Reading
1. Alves A., Arkin A., Askary S., Barreto C., Bloch B., Curbera F.,

Ford M., Goland Y., Guzar A., Kartha N., Liu C.K., Khalaf R.,

Koenig D., Marin M., Mehta V., Thatte S., Rijn D., Yendluri P.,
and Yiu A. Web Services Business Process Execution Language

Version 2.0 (OASIS Standard). WS-BPELTC OASIS, http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

2. Dumas M., van der Aalst W.M.P., and ter Hofstede A.H.M.

Process-Aware Information Systems: Bridging People and Soft-

ware through Process Technology. Wiley, New York, 2005.

3. Weske M. Business Process Management: Concepts, Languages,

Architectures. Springer, Berlin, 2007.
ORDB (Object-Relational Database)

▶Object Data Models
Order Item

▶Clinical Order
Order Statistics

▶Quantiles on Streams
Ordering

▶ Similarity and Ranking Operations
Orientation Relationships

▶Cardinal Direction Relationships
Oriented Clustering

▶ Subspace Clustering Techniques
Origin

▶ Provenance

▶ Provenance in Scientific Databases

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

2006O OR-Join
OR-Join

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Synchronous join
Definition
The point of convergence within a workflow following

alternative, mutually exclusive paths.
Key Points
An OR-Join (Fig. 1) represents a point within a work-

flow where two or more alternative workflow branches

re-converge following an OR-Split into a single com-

mon activity as the next step within the workflow.

In contrast with an AND-Join, no parallel activity

execution has occurred at the join point, therefore no

synchronization is required. With an OR-Join a thread

of control may arrive at the specific activity via any of

several alternative preceding activities.
OR-Join. Figure 1. OR-Join.

OR-Split. Figure 1. OR-Split.
Cross-references
▶ Join

▶OR-Split

▶ Process Life Cycle

▶Workflow Management and Workflow Management

System
OR-Split

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Conditional branching; Conditional routing; Switch;

Branch

Definition
A point within the workflow where a single thread of

control makes a decision upon which branch to take

when encountered with multiple alternative workflow

branches.

Key Points
An OR-Split (Fig. 1) establishes alternative and mutu-

ally exclusive workflow branches. For example, in a

mortgage application, different paths may represent dif-

ferent branches based on conditional logic, such as credit

risk or the amount to be barrowed. As paths are mutually

exclusive, no parallel execution of activities occur and

thus no synchronization is required, so the workflow

branching converges with an OR-Join rather than an
AND-Join. An OR-Split is conditional and the (single)

specific transition to next activity is selected according

to the outcome of the Transition Condition(s).

Cross-references
▶AND-Join

▶OR-Join

OSQL O 2007
▶ Process Life Cycle

▶ Split

▶Workflow Management and Workflow Management

System
OSD

▶Network Attached Secure Device
O

OSQL

TORE RISCH

Uppsala University, Uppsala, Sweden

Definition
OSQL [1,2] is an functional query language and

data model similar to Daplex, first implemented in

the Iris DBMS [4]. The data model of OSQL is object

oriented with three kinds of system entities: objects,

types, and functions. A database consists of a set of

objects, the objects are classified into types, and func-

tions define the semantics of types. The data model

is similar to an ER model with the difference that

both entity relationships and attributes are represented

as functions and that (multiple) inheritance among

entity types is supported. OSQL provide object iden-

tifiers (OIDs) as first class objects, and, unlike Daplex,

queries can return OIDs in results. Queries are

expressed using a SELECT syntax similar to SQL.

Derived functions are also defined using select state-

ments similar to functions in SQL-2003.

Key Points
With the OSQL data model a database consists of a

set of objects. The objects are classified into subsets by

types and each type has an extent consisting of the

objects belonging to that type. Type inheritance is

supported with the type named OBJECT as most gen-

eral type. The extent of a type is a subset of the extents

of its supertype(s). For example if entity type

STUDENT is a subtype of type PERSON then the

extent of type STUDENT is also a subset of the extent
PERSON. Types are defined dynamically using a

CREATE TYPE statement, e.g.,:

CREATE TYPE STUDENT SUBTYPE OF PERSON;

Functions define relationships among entities and

properties of entities. Functions can be stored in the

databases, derived in terms of other functions, or be

defined as foreign functions implemented in some

conventional programming language. Stored functions

correspond to tables in relational databases, and

derived functions are parameterized views similar to

function definitions in SQL-2003.

Queries and derived functions are defined decla-

ratively using a SELECT statement, e.g.,:

SELECT NAME(P)

FOR EACH PERSON P

WHERE AGE(P)>20 AND SEX(P) =

‘‘Female’’;

CREATE FUNCTION GRANDPARENTS(PERSON

P)-> PERSON

AS SELECT PARENT(PARENT(P));

Queries are expressed as constraints over extents.

Functions composition allows easy traversal of rela-

tionships between entity types. As in Daplex, if a func-

tion returns a set of objects (e.g., PARENT) functions

applied on it iterate over the elements of the set. This is

a form of extended path expressions through function

composition.

OSQL was implemented in the Iris DBMS [4] and

HP’s OpenODB product. The Amos II DBMS [3] uses

a modified OSQL language, AmosQL.

Cross-references
▶AmosQL

▶Daplex

▶ Functional Data Model

Recommended Reading
1. Beech D. A foundation of evolution from relational to

object databases. In Advances in Database Technology, In Proc.

1st Int. Conf. on Extending Database Technology. 1988,

pp. 251–270.

2. Fishman D.H., Beech D., Cate H.P., Chow E.C., Connors T.,

Davis J.W., Derrett N., Hoch C.G., Kent W., Lyngbaek P.,

Mahbod B., Neimat M.A., Ryan T.A., and Shan Iris M.C. An

Object-Oriented Database Management System, ACM Trans.

Off. Inf. Syst., 5(1):48–69, 1987.

2008O Overlay Network
3. Risch T., Josifovski V., and Katchaounov T. Functional data

integration in a distributed mediator system. In Functional

Approach to Data Management – Modeling, Analyzing and

Integrating Heterogeneous Data, P. Gray, L. Kerschberg, P.

King, A. Poulovassilis (eds.). Springer, Berlin, 2003.

4. Wilkinson K., Lyngbaek P., and Hasan W. The iris architec-

ture and implementation, IEEE Trans. Knowl. Data Eng.,

2(1):63–75, 1990.
Overlay Network

WOJCIECH GALUBA, SARUNAS GIRDZIJAUSKAS

Ecole Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

Definition
An overlay network is a communication network con-

structed on top of an another communication network.

The nodes of the overlay network are interconnected

with logical connections, which form an overlay topolo-

gy. Two overlay nodes may be connected with a logical

connection despite being several hops apart in the

underlying network. Overlay networks may define

their own overlay address space which is used for effi-

cient message routing in the overlay topology.

Key Points
When a distributed application is deployed in a com-

puter network, the individual nodes on which the

application is running need to be able to discover and

communicate with one another. A solution to this

problem is the overlay network. The overlay network

interconnects all the application nodes and provides

the basic communication primitives such as flooding,

random walks or point-to-point overlay message rout-

ing and multicast.

Overlay networks are typically deployed on top of

the Internet and by far the most common usage is in

peer-to-peer systems. For example, Gnutella, an early

peer-to-peer file sharing system connects all the

peers in an overlay network, each peer shares its files,

and files are searched for using query flooding in the

overlay network.

Overlay network topologies can be divided into two

broad classes: unstructured and structured. Unstructured

overlay networks do not construct a globally consistent

topology, instead peers choose their neighbor sets inde-

pendently and in a largely ad-hoc way. In unstructured
overlay networks nodes reach the other nodes by mes-

sage flooding or random walks. Structured overlays de-

fine an address space and each of the overlay nodes has

a unique address. The addresses are used to construct

an overlay topology that enables efficient and scalable

messages passing between the overlay nodes. In most of

the modern structured overlays the expected number

of routing hops scales as O(log N) with the network

size. Distributed Hash Tables are a specific case of

structured overlay networks. Apart from structured

and unstructured there also exist hybrid overlays.

Overlay networks are designed to be robust to churn,

i.e., arrivals and departures of the overlay network

nodes to and from the network. As overlay network

nodes loose their overlay topology connections, new

connections have to be added in their place. In

structured overlay networks the additional challenge

is to maintain the overlay topology such that the over-

lay routing remains efficient, i.e., the routing paths

are kept short.
Cross-references
▶Distributed Hash Table

▶ Peer to Peer Overlay Networks: Structure, Routing

and Maintenance

▶ Peer-to-Peer System
OWL: Web Ontology Language

SEAN BECHHOFER

University of Manchester, Manchester, UK

Synonyms
Web ontology language

Definition
The Web Ontology Language OWL is a language for

defining ontologies on the Web. An OWL Ontology

describes a domain in terms of classes, properties and

individuals and may include rich descriptions of the

characteristics of those objects. OWL ontologies can be

used to describe the properties of Web resources. Where

earlier representation languages have been used to devel-

op tools and ontologies for specific user-communities

in areas such as sciences, health and e-commerce, they

were not necessarily designed to be compatible with the

OWL: Web Ontology Language O 2009
World Wide Web, or more specifically the Semantic

Web, as is the case with OWL.

Features of OWL are a collection of expressive

operators for concept description including boolean

operators (intersection, union and complement), plus

explicit quantifiers for properties and relationships;

the ability to specify characteristics of properties,

such as transitivity or domains and ranges; a well

defined semantics facilitating the use of inference and

automated reasoning; the use of URIs for naming

concepts and ontologies; a mechanism for importing

external ontologies; and compatability with the archi-

tecture of the World Wide Web, in particular other

representation languages such as RDF and RDF

Schema.

OWL consists of a suite of World Wide Web Con-

sortium (W3C) Recommendations – six documents

published in February 2004 describe Use Cases and

Requirements, an Overview of the language, a Guide,

Reference, OWL Semantics and a collection of Test

Cases [3].
O

Key Points
Ontology languages allow the representation of

ontologies. An ontology ‘‘defines a set of representa-

tional primitives with which to model a domain

of knowledge or discourse’’ (see Ontology). The defi-

nition of an ontology can encompass a wide range

of artefacts, from simple word lists, through taxo-

nomies, thesauri and rich logic-based models and

there are a corresponding range of languages for their

representation.

Standardization of representation languages is a

cornerstone of the Semantic Web effort. A standard

representation facilitates interoperation – in particular,

well-defined, unambiguous semantics ensure that appli-

cations can agree on the meaning of expressions. OWL

is intended to provide that standard representation.

OWL builds on RDF and RDF Schema and adds

more vocabulary for describing properties and classes.

The design of the language was influenced by a number

of factors. Description Logics, Frame-based modeling

paradigms, and Web languages RDF and RDF Schema

were key inputs, as was earlier work on languages such

as OIL and DAML+OIL.

Knowledge Representation in a Web setting intro-

duces particular requirements such as the distribution

across many systems; scalability to Web size; compati-

bility with Web standards for accessibility and
internationalization; and openness and extensibility.

OWL uses URIs for naming and extends the descrip-

tion framework for the Web provided by RDF to ad-

dress some of the issues above.

OWL defines three sublanguages: OWL Lite, OWL

DL and OWL Full. OWL Full is essentially RDF ex-

tended with additional vocabulary, with no restrictions

on the way in which that vocabulary is used. OWL DL

places restrictions on the way in which the vocabulary

can be used in order to define a language for which a

number of key reasoning tasks (for example concept

satisfiability or subsumption) are decidable. OWL Lite

further restricts the expressivity allowed – for example,

explicit union or complement are disallowed in OWL

Lite. OWL DL and OWL Lite have a model theoretic

semantics that corresponds to a Description Logic

(DL) [1] and thus facilitate the use of DL reasoners

to provide reasoning support for the language [2].

The design of representation languages often

involves trade-offs, and there are limitations on what

can be expressed using OWL, in particular in OWL-

DL. These limitations have been selected primarily to

ensure that these language subsets are well-behaved

computationally, with decidable procedures for con-

cept satisfiability. For example, OWL does not provide

support for general purpose rules, which are seen as

an important paradigm in knowledge representation,

for example in expert systems or deductive databases.

Extensions to OWL are being proposed to cover,

among others, rules, query, additional expressivity,

metamodeling and fuzzy reasoning.
Cross-references
▶Description Logics

▶Ontology

▶RDF

▶RDF Schema

▶ Semantic Web
Recommended Reading
1. Baader F., Calvanese D., McGuinness D.L., Nardi D., and Patel-

Schneider P.F. (eds.). The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press,

Cambridge, UK, 2003.

2. Horrocks I., Patel-Schneider P.F., and van Harmelen F. From

SHIQ and RDF to OWL: the making of a web ontology language.

J. Web Semant., 1(1):7–26, 2003.

3. WorldWideWeb Consortium. Web Ontology Language (OWL).

W3C Recommendation. Available at: http://www.w3.org/2004/

OWL/.

http://www.w3.org/2004/OWL/
http://www.w3.org/2004/OWL/

	O
	OASIS
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Constraint Language
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Data Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Characteristics of Object Data Models
	Object-Oriented Data Model
	Object-Relational Data Model

	Key Applications
	Cross-references
	Recommended Reading

	Object Detection and Recognition
	Object Flow Diagrams
	Object Identification
	Object Identification
	Object Identifier
	Object Identity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Labeling
	Object Monitor
	Object Query Language
	Object Recognition
	Synonyms
	Definition
	Historical Background
	Foundations
	Geometry-Based Approaches
	Appearance-Based Algorithms
	Feature-Based Algorithms

	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Object Reference
	Object Relationship Attribute Data Model for Semi-structured Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Request Broker
	Object-based Storage Device
	Object-Role Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	OCL
	ODB (Object Database)
	ODBC
	Office Automation
	Oid
	OKAPI Retrieval Function
	OLAP
	On-Disk Security
	One-Copy-Serializability
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	One-Pass Algorithm
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	One-Way Hash Functions
	Online Advertising
	On-Line Analytical Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Operations
	Declarative Languages

	Key Applications
	Future Directions
	Url to Code
	Cross-references
	Recommended Reading

	Online Handwriting
	Online Recovery
	Online Recovery in Parallel Database Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Key applications
	Cross-references
	Recommended Reading

	Ontological Engineering
	Ontologies
	Ontologies and Life Science Data Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Ontology
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Ontology Acquisition
	Ontology Argumentation
	Ontology Elicitation
	Synonyms
	Definition
	Historical Background
	Conceptual Modeling
	Data Schema Versus Ontology

	Foundations
	Lexical Versus Semantic Level
	Lexical Variability and Reusability
	Semantic Versus Pragmatic Level
	Divergence and Conflict
	Convergence and Patterns

	Key Applications
	Semantic Web Services
	Regulatory Compliance
	Human Resources

	Future Directions
	Cross-references
	Recommended Reading

	Ontology Engineering
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Ontology Learning
	Ontology Negotiation
	Ontology Query Languages
	Ontology Visual Querying
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	On-Wire Security
	OODB (Object-Oriented Database)
	Open Database Connectivity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Open Nested Transaction Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Open Nested Transactions
	Operating Characteristic
	Operator-Level Parallelism
	Synonyms
	Definition
	Historical Background
	Foundations
	Classes of Parallelism
	Effect of Query Plan Selection on Operator-Level Parallelism
	Other Factors Limiting Operator-Level Parallelism
	Relation to Inter-Query and Intra-Operator Parallelism

	Key Applications
	Cross-references
	Recommended Reading

	Operator Scheduling
	Operator Tree
	Opinion Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Model of Opinion Mining
	Sentiment Classification
	Feature-Based Opinion Mining
	Mining Comparative and Superlative Sentences

	Key Applications
	Cross-references
	Recommended Reading

	Optical Storage
	Optimistic Replication
	Optimistic Replication and Resolution
	Synonyms
	Definition
	Historical Background
	Foundations
	Transmitting and Replaying Updates
	Conflicts
	Conflict Resolution and Reconciliation
	Last Writer Wins
	Semantic Resolvers
	Operational Transformation
	Scheduling Transactions Content and Ordering
	Freshness of Replicas
	Optimistic Replication Versus Optimistic Concurrency Control

	Key Applications
	Cross-references
	Recommended Reading

	Optimization and Tuning in Data Warehouses
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Optimization of DAG-Structured Query Evaluation Plans
	Optimization of Parallel Query Plans
	OQL
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ORA-SS Data Model
	ORA-SS Schema Diagram
	Orchestration
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ORDB (Object-Relational Database)
	Order Item
	Order Statistics
	Ordering
	Orientation Relationships
	Oriented Clustering
	Origin
	OR-Join
	Synonyms
	Definition
	Key Points
	Cross-references

	OR-Split
	Synonyms
	Definition
	Key Points
	Cross-references

	OSD
	OSQL
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Overlay Network
	Definition
	Key Points
	Cross-references

	OWL: Web Ontology Language
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

