
Checkpoint-based resumption 
in data warehouses 

Marcin Gorawski and Pawel Marks 

Silesian University of Technology, 
Institute of Computer Science, 

Akademicka 16, 
44-100 Gliwice, Poland 

{Marcin.Gorawski, Pawel.Marks) @polsl.pl 

Abstract. In the paper we focused on the problem of efficient handling of ETL 
processes failures. During such a process, a data warehouse is filled with data. 
Because large amounts of data need to be processed, the whole process takes a 
lot of time. After a failure there may be no time to restart the process. In such a 
situation a resumption algorithm should be applied. In the .paper we present a new 
approach to the checkpoint-based resumption method. We combine checkpointing 
with the Design-Resume algorithm. Such a combination is supposed to work more 
efficiently than the pure checkpointing. Moreover, not all the ETL application 
modules must implement the checkpointing. We present a basic idea of the 
algorithm, its requirements and necessary definitions. The proposed solution is 
then compared to other resumption methods and obtained results are discussed. 

1 Introduction 

Data warehouses collect large quantities of data. Their task is to provide the decision 
support applications used by managers and directors with the necessary data. The 
more up-to-date the warehouse is, the closer to the reality are the results of analysis 
performed by DSS applications, and the better decisions can be made. The data set 
stored in a data warehouse (DW) is usually taken from transactional systems. Not all 
the data are required, in business applications it is usually approximately 20% of the 
transactional data set. Moreover, records are usually processed before they are loaded 
into a destination database. A whole process of extracting and transforming the data 
and loading them into a destination is called ETL that is an abbreviation for Extraction, 
Transformation and Loading. 

Nowadays data warehouses collect giga- or even terabytes of data. It is not a 
surprise that in the case of so huge data sets, an ETL process (further called simply 
extraction process) takes long hours or even days to perform a full load. Depending on 
a data warehouse system two kinds of DW loads may be met: full and incremental. 
During a full load all the data already stored in a DW are deleted, and when the 
warehouse is empty then a loading starts. During incremental load only the data that 
changed since the last load are processed. It makes the incremental load much shorter 
than the full load. However, it is not always possible to run the incremental load. If the 

Please use the following format when citing this chapter: 

Gorawski, M., Marks, P., 2006, in IFIP International Federation for Information Processing, Volimie 227, Software Engi­
neering Techniques; Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 313-323. 



314 Marcin Gorawski, Pawel Marks 

data changes are too complex, or aggregates computation is made in a way they cannot 
be easily updated, we must run a full load. 

During a load process, a data warehouse is not available. That is why an ETL 
process is usually run in a time window when the system is idle (for example in the 
night or during a weekend). Here a problem may appear. In order not to disrupt the 
managers' work, an ETL process must not exceed the fixed time window. It fits the 
window if the processing goes without any unpredicted events. Unfortunately such an 
ideal situation sometimes does not take place. Statistically every thirtieth ETL process 
fails due to a system or hardware failure [10]. 

Occurrence of a failure interrupts an ETL process. The warehouse contains partially 
loaded data set, which in most cases is inconsistent. Such a dataset is unusable. In such 
a case we have three choices: 

- restart the ETL process, 
- restore the warehouse from a backup copy created before starting the ETL process, 
- run the resumption procedure and continue the interrupted process. 

Restarting the extraction from the beginning is the easiest option but it is also the 
most inefficient. The second option is to use a backup copy of the warehouse content. 
It is better to have the old data than to have no valid data at all. The best choice is to 
load only the missing part of the data set. The data set will be then consistent, and the 
time of producing the missing tuples should be short enough to fit in the remaining 
time. Resuming the interrupted ETL process is called resumption process. 

In this paper we focus on the algorithms for resumption of the interrupted extraction 
process. In section 2 we present the current state of the art, describe the most common 
resumption techniques, present their advantages and disadvantages. In section 3 we 
present our approach to the checkpoint-based resumption algorithm. The results of the 
performed tests are included in section 4. 

2 Previous works 

Most commercial tools or tools such as Ajax [3] do not consider the internal structure of 
transformations and the graph architecture of ETL processes. Exceptions are researches 
[11,12], where the authors describe the ETL ARKTOS (ARKTOS II) tool. To optimize 
ETL process, there is often designed a dedicated extraction application adjusted to 
requirements of a particular data warehouse system. Our experience prompted the 
decision to build a developmental ETL environments using JavaBeans components 
(ETL/JB and DR/JB). In the meantime, a similar approach was proposed in paper [1]. 

Further speeding up of the ETL process encouraged us to abandon JavaBeans 
platform. Our new ETL-DR environment succeeds the previous ETL/JB (JavaBeans 
ETL environment) and DR/JB (ETL environment with a Design-Resume algorithm [7]). 
The new ETL-DR environment is a set of Java object classes, used to build extraction 
and resumption applications. This is analogous to JavaBeans components in the DR/JB 
environment. In the DR/JB we implemented a dynamic estimation mechanism detecting 
cases when the use of DR resumption is inefficient. Another direction of our research is 
combining the DR resumption with techniques such as staging and checkpointing. 



Checkpoint-based resumption in data warehouses 315 

Similar research was presented in [7] where the authors compared the DR algorithm 
to its combination with savepoints. They proved that the DR-savepoint combination 
performs a little better than the pure DR. Unfortunately these experiments were 
performed on very small TCP-D data sets. In our opinion it gives non-representative 
results, because in data warehousing we have to deal with much larger datasets. We 
tried to combine the DR algorithm with the staging. After a failure part of the data set 
can be restored from the disk and there is no need to process it again. We gave the name 
"hybrid resumption" to the obtained algorithms combination. In [5] we showed that the 
proper use of the staging can be a quite efficient solution. The proper selection of the 
nodes writing stage data to disk files is crucial to reduction of the overhead imposed on 
the uninterrupted extraction process. In our experiments we managed to increase the 
resumption efficiency whereas the normal extraction time remained almost unchanged. 

3 Checkpointing 

A concept of checkpoints or snapshots is in general very simple. Assuming that there is 
a process running for a long period of time and it is failure prone (mostly hardware 
failures) we can create so called checkpoints. What a checkpoint is? It is nothing more 
than a copy of the process state. It is saved in a way that makes it possible to revert the 
process to the saved state and continue the processing whenever there is such a need. 
There are many applications of this method: fault tolerance, process migration, job 
swapping [9], virtual time [2]. 

We decided to apply the checkpointing to increase the resistance of the data 
extraction process against system failures. The extraction process usually takes a lot of 
time and cannot be interrupted. Accidental hardware failure or blackout may lead to loss 
of the results of many hours of work, even if it is was very close to the end of the process. 

Our previous experience with combining the Design-Resume algorithm (DR) with the 
staging technique prompted us to combine the DR algorithm with the checkpointing. Both 
the DR and checkpoints are very efficient methods. The difference between them is the 
overhead imposed on the normal extraction process. The DR takes no additional actions 
during the extraction, so it has no influence on the process duration. The checkpointing 
is completely different. It may lengthen the processing even a few times depending on 
the frequency of checkpoints creation and amount of the data stored during each save. 

Increasing the frequency of checkpoints creation leads to significant drop of the 
processing efficiency. In our research we focus on creating checkpoints in the most 
efficient possible way. We want to combine the checkpoints with the DR algorithm 
which uses the graph-based ETL process description, so in our research we will use the 
graph description also. 

3.1 Graph-based ETL process description 

In graph representation of the ETL process, graph nodes are responsible for tuples 
processing and graph edges define tuple flow directions. Each node belongs to one of 
the three categories: 

- extractors reading data from sources 



316 Marvin Gorawski, Pawel Marks 

O ^ ... (r^-^(^^(^ ... -<Z) 
Fig. 1. Example of a simple extraction graph. E is an extractor node reading data from a source. 
T stands for a transformation node, such as filtration, grouping etc. / is an inserter loading data 
to a destination (e.g. a database table) 

- transformations performing operations such as selection, projection, aggregation, etc, 
- inserters loading tuples to destination places 

An example graph is presented in Fig. 1. It consists of one extractor, one inserter 
and a few transformations. It is an example of the linear processing, it means that each 
graph node has at most one source node and one target node. Of course, the graph can 
be much more complicated: transformations can receive data from many source-nodes 
0oins, for example) and send results to many target-nodes. 

The DR algorithm requires that the extraction graph is acyclic: during traversing 
the graph, there is no possibility to visit the same node twice. In our research this 
limitation is not a problem, it even simplifies graph analysis. 

Each graph node and each node input is described by a set of boolean properties 
and key attributes. These properties are used by the DR algorithm to compute the place 
and type of additional filters used during resumption. Thanks to these properties, the 
algorithm can treat the nodes as black boxes and does not have to know anything more 
about the processing perform by them. The great advantage of the DR algorithm is no 
need of modifications of the existing nodes. During resumption they remain unchanged, 
only additional filter nodes are inserted into the graph to ensure that only the missing 
part of the data set will be produced. 

3.2 Details of the ETL process implementation 

To talk about the optimization of the checkpoints creation we have to provide some 
details of the ETL application implementation. The graph-based ETL process is 
implemented as a multi-threaded Java application. Each node works as a separate 
thread communicating with other nodes via shared memory and message passing. 

Fig. 2 shows an example of connection between two nodes. Node 123 produces 
tuples and stores them in the output buffer. The buffer is a multichannel structure; 
it can transmit data to multiple receiver-nodes. Such a receiver in this case is node 
124. It has an input parameter defined as a source node ID = 123 and output channel 
number = 1. Output buffer contains a packet queue in each logical channel, and each 
packet contains a hmited number of tuples. Grouping tuples into packets increases the 
efficiency of communication between nodes by reducing the number of required thread 
synchronizations. 

As can be noticed, one of the data sets that each node owns, is the output buffer 
containing output tuples. Moreover, there are nodes such as grouping ones, which can 
store in memory their temporary data structures. Depending on the kind of the processing 
it can be a small or quite large set of data. No matter when the checkpoint is created, all 
the data of each graph node must be saved. Besides the data sets, thread state has to be 
saved also, to enable restarting the processing from the point saved in the checkpoint. 



Checkpoint-based resumption in data warehouses 317 

Output 

1 * 1 
1 *' 1 

1 #n 1 

Logical 
c> 

Input: 
- sourcBiD - 123 
~ sourceChannel = 1 

Iitput 
, Data 

Fig. 2. Nodes interconnection on the implementation level. Data produced by node 123 are stored 
in a multi-channel output buffer. Source of the node 124 is defined as a node with ID = 123 and 
logical output channel number = 1 

(VMQ(29J) »{joT(30))—^(FUTOI) 

Fig. 3. Extraction graph divided into three functional blocks which are: extractors (the left most), 
transformations (in the middle) and inserters (the right most) 

3.3 Graph analysis 

We propose dual approach to the graph analysis for checkpoints. First, the graph is 
analysed as in the DR algorithm [7]: the nodes properties are processed. In the next 
step, the graph is seen as three functional blocks: extractors, transformations and 
inserters. Between these blocks the connections exist: many connections from extractors 
block to transformations block, and as many connections from transformations to 
inserters as many inserters there are in the graph. 

Fig. 3 presents a graph split into functional blocks. Connections between the blocks 
are marked with circles. In the given example it would be the best to be able to save 
the state of all the nodes belonging to the three functional blocks. In practice it is 
usually impossible or it costs too much time: 

- each inserter would have to make a copy of a complete database table. In data 
warehousing it means transferring even gigabytes of data which takes a very long time 



318 Marcin Gorawski, Pawel Marks 

- period of time between checkpoints could be treated as a transaction but even 
assuming that the database could handle such a case, a synchronization of such a 
transaction in distributed data warehouse would be too complicated (if at all possible) 

- extractors would have to be able to return to the place in the data stream where 
they were when the checkpoint was created. It is possible to do, but requires 
additional implementation-level modifications 

However, there are no significant difiiculties to save the state of transformation 
nodes. This is the main assumption, the algorithm discussed below bases on. 

3.4 Algorithm details 

The goal of the presented algorithm is periodical saving of states of the transformation 
nodes and optionally extractors or inserters. The saved states should enable resumption 
of the interrupted ETL process. General steps of the algorithm are as follows: 
1. Analysis of the graph properties to check if the algorithm can be applied 
2. Periodical creation of the checkpoints 
3. Assignation of filters for resumption phase 
4. Insertion and initialization of resumption filters, optional switching insert­

ers/extractors into resumption mode 

Graph traversing and analysing The graph is analysed as in the DR algorithm in 
both topological and reversed direction. In the first step graph nodes are checked if they 
support checkpointing: 

- a transformation should have the possibility to save and restore its state in any 
moment of the processing, 

- an inserter should have the possibility to save and restore its state or possibility of 
identification of the last loaded tuple, 

- an extractor should have the possibility to save and restore its state or possibility to 
get the part of the stream read before a failure once again. 

Further in the paper we will say that if a node can save and restore its state, it 
holds the checkpointable property. Now for each graph node X, a transitive property 
checkpointFeasible(X) is computed. It is defined as follows: 

Definition 1. checkpointFeasible(X) = true, if: 

- X is an inserter and holds checkpointable property or (it holds suffixSafe^ and 
mapToOne^ properties and can remember the last loaded tuple) 

- X is a transformation and holds checkpointable property and all its direct target 
nodes holds checkpointFeasible property 

- X is an extractor and all its direct target nodes holds checkpointFeasible property 

suffixSafe[l] property is described in the definition 4 
^ mapToOne[7] property is held if each input tuple contributes to no more than one output 

tuple. All inserters hold this property 



Checkpoint-based resumption in data warehouses 319 

If any of the extractors does not hold the checkpointFeasible property, it means that 
the checkpointing cannot be apphed to this graph, because one or more nodes do not 
support the method. 

In the second step the graph is analysed to check the possibility of additional filters 
insertion. The task of an additional filter is removing from a tuple stream these tuples 
which were processed before creating the checkpoint (extractor filters) or tuples loaded 
after checkpoint creation and prior to a failure (inserter filters). Such filters can (but do 
not have to) be placed on connections between the three functional blocks. Here we 
can distinguish two cases: 

- extractor does not hold checkpointable. The filter is inserted just behind the extractor 
- inserter does not hold checkpointable. The filter is inserted just in front of the inserter 

In the Design-Resume algorithm[7] four types of filters are used: CleanPreflx, 
CleanSubset, DirtyPrefix, DirtySubset. We focus only on the two first filters, which 
were described in details in [7]. 

Filters preceding inserters are inserted according to the rules known from the DR 
algorithm. Both CleanPrefix and CleanSubset filtration is possible. CleanPreflx filter 
requires the input of the inserter Y connected to the node X to hold the transitive 
property sameSuffix(Yx). This property denotes that on the input Yx the suffix of the 
data stream will be provided in the same form as it would be provided if the processing 
would not have been interrupted. If this property is not held, only a CleanSubset filter 
can be used. The sameSuffix property bases on the following properties: 

Definition 2. sameSet(X) = true, if: 

- X is an extractor and during the resumption it generates the same set of tuples as 
prior to a failure 

- Xis a transformation that for the same input sets always generates the same output set 

Definition 3. setToSeq(Yx) = true, if for any permutation of the input set received 
from the node X, the node Y always generates the same output sequence. It is true for 
sorting transformations. 

Now a sameSuffix property can be defined: 

Definition 4. sameSuffix(Yx) = true, if: 

- X is an extractor and during the resumption it generates the sequence of tuples as 
prior to a failure. Optionally a prefix of the sequence excluding the last prefix tuple 
can be removed 

- X is a transformation that holds inDetOu^ property and whose each input node V 
holds sameSuffix for each input or (it holds sameSet(V) and the X's input holds 
setToSeq(Xv)) 

' inDetOut[7] property is held if for the same input sequences the node generates the same 
output sequence 



320 Marcin Gorawskr, Pcnvel Marks 

Saving application state When a checkpoint is created, state of all nodes holding 
checkpointable is saved. These are for sure all the transformations and optionally 
extractors or inserters. Efficient creation of checkpoints requires a special creation 
procedure. Out of the discussion is the necessity of putting the nodes into the state to 
which they can return after restoring their states. We talk about both the temporary data 
and buffers and also current position in the running code. Creation of a checkpoint has 
been divided into three phases: stopping the nodes threads in conjunction with output 
queues emptying, saving nodes state, continuation of the processing. 

Filter assignation Behind an extractor only a CleanPrefix filter can appear. This 
guarantees that only the required data stream suffix will be provided to the transformation 
input. Of course the input must have key attributes set, otherwise filtration will not be 
possible. If an extractor supports such a possibility, the built-in reextraction procedures 
can be used instead of filters. Known from the DR algorithm GetSuffix procedure 
replaces the CleanPrefix filter, and GetDirtySuffix procedure can be used instead of the 
DirtyPrefix filter [7]. In this case additional CleanPrefix filter is still necessary to get 
the same result as by use of a GetSuffix procedure. Filters placed in front of inserters 
are being assigned basing on the DR algorithm rules. 

The filters are required only when a particular extractor or inserter does not hold 
a checkpointable property. If the extractor or inserter state can be restored from a 
previously created checkpoint, no filters are needed. 

Resumption initialization Resumption initialization procedure is simple. After an 
interruption of the ETL process, the latest checkpoint must be found. Then it is loaded 
which means that the state of all graph nodes holding checkpointable property is 
restored. Now insertion of additional filters begins and the filters are initiaUzed. Filters 
inserted behind extractors are informed what the last tuple received by the subsequent 
transformation is. Filters preceding the inserters are initialized with data taken from the 
inserters. Next inserters are switched to resumption mode. It causes that already loaded 
data set is not erased and new tuples are appended to the existing set. 

4 Efficiency tests 

4.1 Test Conditions 

The base for our tests is an extraction graph containing 4 extractors reading tuples 
from 4 source files and 15 inserters (loading nodes) loading tuples into 15 database 
tables. The graph consists of three independent parts, but it is seen by the extraction 
appMcation as a single ETL process. 

The ETL process generates a complete data warehouse structure. It is a distributed 
spatial data warehouse system designed for storing and analyzing a wide range of 
spatial data [4]. The data is generated by media meters working in a radio-based 
measurement system. All the data is gathered in a telemetric server, from which it can 
be fetched to fill the data warehouse. The distributed system is based on a data model 
called the cascaded star model. The test input data set size is 500MB. 



Checkpoint-based resumption in data warehouses 321 

Method 

Hybrid 
DR stream 
Checkpoint 

Extraction time [s] 

1475 
1366 
1496 

% change 
to the fastest 

method 
+8% 
0% 

+9% 

Tab. 1. Measured extraction time for failureless cases 

The tests were divided into three parts. In the first part we examined the resumption 
efficiency of the hybrid resumption algorithm (DR + staging) [5]. During this test all 
the join transformations worked in a buffering mode. It means that they collect all the 
tuples from the slave input iirst, then they start on-line processing of the master input. 
In such a mode VMQ'' nodes are required to avoid data flow deadlocks, but on the 
other hand we can make use of the staging technique used by the hybrid algorithm. 

In the second step we analysed the efficiency of the pure DR algorithm. This time 
all the join transformations worked in stream mode. In the stream mode we cannot 
distinguish prebuffering and on-line processing phases. Tuples from both inputs are 
processed simultaneously and only a small set of tuples may be buflfered. In this mode 
the VMQ nodes are disabled. 

In the third part we used the same extraction graph as in the second part, but this 
time we examined the efficiency of checkpointing. We focused on both: increase of the 
normal processing time caused by checkpoints creation and the resumption efficiency. 
In this test the extractors and inserters were unable to remember their states in created 
checkpoints, so additional filters had to be inserted into the graph. 

The tests were ran on two PC machines with Pentium IV processors and 512MB of 
RAM. On one of them Oracle lOg database was running, and on the other one the ETL 
application was started. Communication with the database was implemented using 
Oracle OCI drivers and SQL*Loader. A single uninterrupted extraction process time 
varied from 22 to 25 minutes. 

During each loading test the extraction process was interrupted in order to simulate 
a failure. The resumption process was then run and the time was measured. Using 
collected results we prepared resumption charts showing the resumption efficiency 
depending on the time of a failure, 

4.2 Extraction and Resumption Tests 

The goal of the tests is to compare the efficiency of various extraction and resumption 
methods for the same extraction graph. Three aspects were analysed: influence of the 
chosen method on the time of the normal (uninterrupted) ETL process, resumption 
time and overall processing time^. 

'* VMQ (Virtual Memory Queue) is a special node storing large amounts of data on external 
storage to avoid running out of memory. It is desirable not to use it because accessing external 
storage lowers the efficiency 

^ Overall processing time is the sum of the resumption time and the time of failure. It expresses 
the amount of time required to finish the ETL process in case of failures 



322 Marcin Gormvski, Pawel Marks 

-HBR-TT -

- CHK-TT -

-HBR-RT -

-CHK-RT 

200 400 10QO 1200 1400 

-HBR-TT • 

•CHK-TT -

-HBR-OT - • * - • DR-TT 

-CHK-OT 

Fig. 4. Resumption (left) and overall (right) time plot. TT denotes Total Time of the normal 
processing, RT is the Resumption time, OT is the Overall Time 

Table 1 compares extraction times for the three presented methods. The pure DR 
algorithm using stream-like joins is the fastest one. The reason why it is faster is in our 
opinion no VMQ nodes buffering the data. Data streams are processed on-the-fly, all 
the graph nodes are working all the time, none of them is idle. Unfortunately in such a 
case the use of staging technique makes no sense[5]. When join transformations work in 
a buffering mode, the data provided to the master inputs must be buffered until all the 
slave input tuple are read. The buffering lengthens the processing due to additional disk 
accesses. The third method uses the extraction graph used in the first test case, but it 
creates a checkpoint every 60 seconds. Creation of checkpoints lengthens the processing 
time also, but comparing to the hybrid method the overhead is relatively small. 

Figure 4 shows the resumption times of the examined methods compared to the time 
of uninterrupted extraction. As we can see DR and checkpoints resumption efficiency is 
initially similar, but the later a failure occurs, the more efficient the checkpoint method is. 
For failures occurring at the end of the ETL process, the efficiency of the DR closes to 
the efficiency of the hybrid algorithm. The most important here is to have the resumption 
curve below the line denoting normal extraction time {TT). Otherwise it means that 
the resumption last longer than simple restarting the whole process from the beginning. 

In fig. 4 overall processing times are compared also. Overall processing time is the 
sum of the processing time prior to a failure and the sum of the resumption time. It 
simply can be explained as the time between starting and finishing the ETL process 
assuming that after a failure the resumption process runs without any delay. Here again 
we can see that checkpointing is the best solution. The closer to the TT line is the 
resumption curve, the better. One should notice that it is impossible to have resumption 
curve below the TT line. If it was, it would mean that it is better to interrupt the 
extraction and then run the resumption. 

5 Conclusions 

In the paper we presented a new approach to the problem of resumption of the 
interrupted extraction process using checkpoints. The approach mixes two mechanisms: 
ETL application state saving and restoring which is typical for checkpointing, and usage 
of additional filters which is used in the Design-Resume [7] algorithm. We assumed that 
nodes such as extractors or inserters can work in a way making impossible to save and 



Checkpoint-based resumption in data warehouses 323 

restore their states. Even if it is possible, its overhead may be too big and may lower 
the efBciency of the running process significantly. The proposed algorithm can work 
without storing the states of extractors and inserters. To make the application consistent 
during the resumption additional DR-like filters are inserted into the graph. The task of 
the filters is to remove from a tuple stream these tuples which were processed before 
creation of the checkpoint or were loaded by inserters. In this case data loaded after 
creation of the checkpoint are not lost, and additional filter ensures that they are not 
loaded to the warehouse again. 

The proposed solution was tested in the ETL-RT extraction environment implemented 
in Java for research requirements. The environment supports various resumption 
algorithms: the Design-Resume algorithm, staging technique, hybrid algorithm (DR + 
staging) and the presented checkpoint-based resumption. Because all these algorithms 
are implemented in the same environment, the results of the tests we obtained are 
reliable and valuable. 

The results are very encouraging and promising. The time of the normal extraction 
process was increased by less than 10% in comparison to the fastest tested method. In 
exchange for this we obtained a significant resumption efficiency growth that was 
presented in figure 4. 

References 

1. Bruckner R., List B., Schiefer J.: Striving Towards Near Real-Time Data Integration for Data 
Warehouses. DaWaK 2002. 

2. FujiMoto R.: Parallel discrete event simulation, Communications of the ACM, 33(10), 1990 
3. Galhardas H., Florescu D., Shasha D., Simon E.: Ajax: An Extensible Data Cleaning-Tool. In 

Proc. ACM SIGMOD Intl. Conf. On the Management of Data, Texas (2000). 
4. Gorawski M., Malczok R.: Distributed Spatial Data Warehouse Indexed with Virtual 

Memory Aggregation Tree. 5th Workshop on Spatial-Temporal DataBase Management 
(STDBM_VLDB'04), Toronto, Canada 2004. 

5. Gorawski M., Marks P.: High Efficiency of Hybrid Resumption in Distributed Data Warehouses. 
1st Intl. Workshop on High Availability in Distributed Systems (HADIS 2005), Copenhagen, 
Denmark 2005. 

6. Gorawski M., Chechelski R.: Spatial Telemetric Data Warehouse Balancing Algorithm in 
Orac!e9i/Java Environment, Intelligent Information Systems, Gdansk, Poland, 2005. 

7. Labio W., Wiener J,, Garcia-Molina H., Gorelik V.: Efflcient resumption of interrupted 
warehouse loads. SIGMOD Conference, 2000. 

8. Labio W., Wiener J., Garcia-Molina H., Gorelik V.: Resumption algorithms. Technical report, 
Stanford University, 1998. 

9. Plank J. S., An Overview of Checkpointing in Uniprocessor and Distributed Systems, Focusing 
on Implementation and Performance. Technical report, University of Tennessee. 1997 

10. Sagent Technologies Inc.; Personal correspondence with customers. 
11. Vassiliadis P., Simitsis A., Skiadopoulos S.: Modeling ETL Activities asGraphs. InProc. 4th 

Intl. Workshop on Design and Management of Data Warehouses, Canada, (2002). 
12. Vassiliadis P., Simitsis A., Georgantas P., Terrovitis M.: A Framework for the Design of ETL 

Scenarios. CAiSE 2003. 




