
Advanced mutation operators applicable in C#
programs

Anna Derezinska

Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19
00-665 Warsaw, Poland

A.Derezinskadi i .pw.edu.pl

Abstract. This paper is devoted to advanced mutation operators for C# source
code. They deal with object-oriented (00 mutations) and other complex fea­
tures of the code. They require structural information about a code, unlike the
standard mutations. Applicability of 0 0 operators in C# is compared with those
for other 0 0 languages. Operators for specific featui-es of C# language are also
proposed. The detailed specification of operators can be provided in terms of
pre- and post-conditions of a program transformation. Based on the operators'
specification, the generation of mutated C# programs can be automated.

1 Introduction

Mutation testing is a fault-based testing technique used for evaluating tests and for
meastiring the effectiveness of test cases [11]. Mutations are simple changes inserted
into a source code. They are defined in terms of mutation operators in order to make
the automated testing process. Standard (traditional) mutation operators can be easily
specified for many languages, e.g. an operator replacing an arithmetic operator "+"
with "-". Testing of new features in object-oriented languages require more complex
operators. The changes, introduced by these operators, should be consistent, for in­
stance, with the inheritance hierarchy of classes. These operators take into account
information that is non-local to the placement of the change in the source code.

This paper is devoted to advanced mutation operators specialized for C# code.
They can be more dependent on the programming language than the standard muta­
tion operators. The known (firom Java [3,7,10] and C++ [4]) object-oriented operators
were revised and adopted for C#. Some of the operators have altered definition or
different scope of application due to different constructs used in the C#. New opera­
tors for specific, not only object-oriented, features of C# were also proposed.

Mutation operators were usually defined informally and illustrated by code exam­
ples [3,7,10]. It is not sufficient for the precise definition of advanced mutation opera­
tors. To make a definition unambiguous an operator can be specified as a program
transformation with pre- and post-conditions. This approach is presented in the paper.
Precise specification of operators allows effectively generating mutated programs (so-
called mutants) that could be successively compiled. The specification and the quality
of selected operators were verified in experiments on functional and unit tests [5,6].

Please use the foUawingformat when citing this chapter:

Derezinska, A., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering
Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 283-288.

284 Anna Dereziiiska

2 Object-oriented mutation testing

In object-oriented programs standard mutation can be used for intra-method level
testing. Object oriented languages provide also nevi' constructions that are not tackled
directly by standard mutation operators. The research on the 0 0 mutation was done
mostly on Java programs [1,3,7-10], Mutation of object-oriented features of a UML
class specification and C++ code was studied in [4]. To my best knowledge the only
research on OO mutation in C# was performed by Baudry et al. [2]. They referred to
standard mutation operators, invocation of an exception and only two 0 0 operators.
The 0 0 operators were not studied in detail but announced in their Mutator tool.
Other C# mutation tools (Nester) support so far only the standard mutation operators.

An important issue is determining the quality of mutation operators in order to
choose the best ones to be applied [8]. A good operator should satisfy the following
conditions: (1) reflect typical errors of program developers, (2) generate proper and
non-equivalent mutants, (3) be effective in qualification of tests. An equivalent mu­
tant gives for any input exactly the same output as the non-mutated program. The
judgment about the equivalence is very effort-consuming. Some mutation operators
can generate mutants that are killed very easily by any test. Such operators are not
useful in qualification of tests, although they can mimic typical errors of developers.
Although 0 0 operators generate fewer mutants than standard operators [9], we would
like to limit the number of mutants and choose the most appropriate operators for C#.

3 Advanced mutation operators for C#

The comprehensive set of mutation operators for C# language is presented in tab. 1.
The relations for previously defined operators for Java [3,7,10] and/or for C++ [4] are
indicated in the column "Ref. The differences between the applicability of the corre­
sponding operators in different languages were examined [5]. Also eight new opera­
tors concerning the specific features of C# were defined. Different groups of opera­
tors are discussed below. For the brevity reasons, a description and a specification is
given only for two exemplary operators, OPD and lOK.

An informal description of advanced operators is not sufficient for their precise
specification. Therefore, any operator could be specified using pre- and post­
conditions of the transformation of program P to a mutant PQI' (i-th mutant after ap­
plying operator O on P). The pre- and post-conditions are specified using logical
predicates with quantifiers (exists 3, for all V) and operators (and, not, or, xor, o , =>).
In post-conditions, the elements marked with the apostrophe (eg. x') relate to elements
changed in the mutant Pot- Different features of the elements are defined by Boolean
values using the dot notation. For example:

x.class True \fx is a class
z.override True if z has the modifier override
x.z.method True if z is a method declared in x (or inherited by x)

Advanced mutation operators applicable in C# programs 285

The following expression denotes that 5 is a syntactically and semantically correct
partof instruction/? (is used in/i): s ® p, or equivalently "s" ® p for complex 5.
The full notation of the specification and specifications of operators are given in [5].

Table 1. Advanced mutation operators for C#

Operators
AMC
IHD
IHI
lOD
lOP
lOR
ISK
IPC
PNC
PMD
PPD
PRV
OMR
OMD
OAO
OAN
JTD
JSC
JID
JDC
EOA
HOC
EAM
EMM
MNC
MBC
MCO
MCI
RFI
EHR
EHC
DMC
DM0
DEH
PRM
lOK
OPD
OID
NDC

Access modifier change
Hiding variable deletion
Hiding variable insertion
Overriding method deletion
Overridden method calling position change
Overridden method rename
Base keyword deletion
Explicit call of a parent's constructor deletion
New method call with child class type
Member variable declaration with parent class type
Parameter variable declaration with child class type
Reference assignment with other compatible type
Overloading method contents change
Overloading method deletion
Argument order change
Argument number change
This keyword deletion
Static modifier change
Member variable initialization deletion
C#-supported default constructor create
Reference assignment and content assignment replacement
Reference comparison and content comparison replacement
Accessor method change
Modifier method change
Method name change
Member changed
Member call from another object
Member call from another inherited class, MCR in [2]
Referencing fault insertion
Exception handler removal
Exception handling change
Delegated method change
Delegated method order change
Method delegated for event handhng change
Property replacement with member field
Override keyword substitution
Overriding property deletion
Overriding indexer deletion
Namespace declaration change

Inv
-

-

-

Spec

-
-
-
-
-

-
-

Appl

-

-
-
-

-

-
-
-
-

Ref
[10,7,4]
[10,7]
[10,7]
[10,7]
[10,7]
[10]
[10]
[10]
[10,7]
[10,71
[10,7]
[10,4]
flO]
[10,71
[10,7]
[10,71
[101
[10,7]
[101
rio]
[10,3]
[10,3]
[10,3,4]
[10,3,4]
[3,4]
[41
[41
[4,2]
[21
[7]
[71

Inv - invalid operators (listed for compatibility reasons),
Spec - differences in specification to Java or C++,
Appl - differences in meaning or application scope to Java or C++

286 Anna Derezinska

Several object-oriented inter-class mutation operators can be applied in the similar
way in different languages. These operators refer mainly to usage of classes related
by inlieritance, e. g. PMD, PPD, PRV. Also the operators dealing with incorrect call­
ing of methods are language-independent, e. g. MCO, MNC, MBC, MCI.

Some mutation operators are not appropriate for C# programs. This was stated by a
code analysis and experiments [5,6]. These operators (AMC, lOR, EHC) are listed for
compatibility reasons and indicated in the column "Inv" of the Table 1.

Other operators for C# have to be specified in a different way than the correspond­
ing operators for C++ or Java (the column "Spec" of the table 1). The specification
has to take into account new features of C#. For example, extended usage of key­
words (new - in operators IHD, IHI), keywords newly introduced in C# {override - in
operators lOD, lOP).

Regardless of an operator specification its application can be different in the con­
sidered languages (the column "Appl" in table 1). They can have a different meaning,
or the scope of the application can be broader or narrower than that from Java or C++.

The JSC operator for C# deletes the static modifier for any member of a class. The
reverse operation (adding static modifier as in the JSC operator for Java) could be
omitted, because it provides non-compiled code in most cases.

The EOA operator replaces assignment of an object reference pointing to an object
with the clone (duplicate) of this object. It intends to check a possible mismatch of
objects and object references. In C# the overloaded CloneQ method creates an object
duplicate and is defined for many types. The EOA operator can be applied for a class
which has its CloneQ method.

The EOC operator replaces one kind of comparison with another one (= with
EqualsQ or v.v.). In C# the default ObJect.Equals method calls Object.Referen-
ceEquals which results in a reference comparison instead of a value comparison. For
many types Equals method is overloaded to implement value comparison. The user
can overload Equals method and the operator = for own declared types.

Operators EAM and EMM dealing with accessor and modifier methods {get and
set) have a minor significance in C# because a new element -property can be used.

New mutation operators for the specific features of C# were also defined. They are
dealing with delegates, properties, indexers, override modifier and namespaces. Prop­
erties are values that can be stored or retrieved of a class using an accessor {get) and a
modifier {set). Properties can be overriding in the similar way as methods do. The
OPD operator deletes a whole definition of a property from the derived class, e. g.:
OPD: Original code Mutated code
public class Figure public class Figure
{ public virtual double Area { public virtual double Area

{ g e t { get
{ return 0;} { return 0;}

} }
} }
public class Square : Figure public class Square : Figure
{ public override double Area { }

{ get
{ return Math.Ar(base. 2); }

}
}

Advanced mutation operators applicable in C# programs 287

The operator forces the usage of the appropriate property from the base class. It
can be applicable only if the class does not inherit from an abstract type, otherwise a
compilation error would be detected because the class does not implement inherited
abstract member. A specification of the OPD operator is given below:

OPD Pre: B^X-class and 3yy.class and y.x.publicjnherited and
and not x.abstract and 3̂ (y.z.property and z.override)

OPD Post: not y'.z'.property

Indexers are used to index a class in the same way as an array. The OID operator
deletes a whole definition of an indexer from the derived class. This operator can be
defined in the similar way as the OPD operator.

In properties the set modifier uses an implicit parameter called value, whose type is
of the property. By convention names of properties begin with capital letter, while
names of fields with a small one. By mistake a property can be called instead of a
field or vice versa. The PRM operator replaces those two names.

Omission of the keyword override in a method declaration is a common mistake of
C# program developers, who have habits from C++ or Java. In C#, special keywords
{override, new) denote override or hide of a method from the base class. The lOK
operator substitutes an override occurrence with the new keyword, or vice versa {new
with override). This substitution cannot be revealed by a compiler.

lOK: Original code Mutated code
public class Figure public class Figure
{ public virtual void Draw() { public virtual void Draw()

{ } { }
} }
public class Square : Figure public class Square : Figure
{ public override void Draw() { public new void DrawO

{ } { }
} }

This mutation will be detected if polymoiphism is used. In the above example an
object of Square can be referenced as a Figure. After mutation a method Draw called
for this object will invoke a method from class Figure instead of class Square.
lOKPre: a^x.class and 3yy.class and y.x.publicjnherited and

3z (x.z.method and (z.override or z.new))
lOK Post: (z.override =*z'.new) and (z.new =*z'.override)

In C# delegates are the object-oriented equivalents of function pointers. However,
unlike fimction pointers, delegates are type-safe and secure. Delegates can be used in
callback and event-handling scenarios. The DMC operator changes a delegated
method into another method visible in this context and taking the same types of pa­
rameters. The operator simulates a fault, when a developer used by mistake a differ­
ent method as a callback. The DM0 operator changes the order of assigrmient of
delegated methods. The DEH operator changes a method delegated for the event
handling. Simulated fault can be for example caused by misleading of elements dur­
ing construction of a GUI. The operators on delegates are extensively studied in [6].

The namespace statement is used in C# to define a new namespace, which encap­
sulates the classes. The NDC operator changes a namespace declaration. It is used
only if exists an appropriate declaration of the class in both namespaces.

288 Anna Derezinska

4 Final Remarks

The object-oriented mutation operators adopted for C# programs and other advanced
operators dealing with new programming features were studied. Defining a mutation
operator as a program transformation with pre- and post-conditions allows to give a
precise specification of the operator. It is especially important for complex operators
dealing with structural features of a program. Based on provided specifications of
operators a tool for mutation of C# programs is currently under development.

The application of selected mutation operators for C# was evaluated in experi­
ments. They allowed verifying the specifications, comparing usefulness of operators
and suitability for the test selection. The sets of functional tests and unit tests were
used [5,6]. The preliminary results showed that object-oriented operators IHD, IHI,
lOD, lOP, lOK, OPD and OMD generated proper, non-equivalent mutants and were
selective in assessment of the quality of functional tests. Mutants generated by the
PRM operator were non-equivalent but killed by all functional tests. Among the op­
erators dealing with exception handling and delegates two operators EHR and DMC
were the most promising ones. The evaluation of mutation operators for C# and com­
parison with other testing criteria needs still further experiments.

Acknowledgment This work was supported by the Polish State Committee for Scien­
tific Research under the project 4 T 11 C 04925.

References

1. Alexander, R. T., Bieman, J. M., Ghosh, J. M., Bixia, J.: Mutation of Java objects, Proc of
IS* Int. Symp. on Software Reliability Eng., (2002) 341-351

2. Baudry, B., Fleurey, F., Jezequel, J-M., Traon, Y. Le.: From genetic to bacteriological
algorithms for mutation-based testing, Sof. Testing Verif. and Reliab., vol 15, no 2, (2005)

3. Chevalley, P.: Applying mutation analysis for object-oriented programs using a reflective
approach, Proc of 8-th Asia-Pacific Softw. Engin. Conf, ASPEC (2001) 267-270

4. Derezinska, A.: Object-oriented mutation to assess the quality of tests, Proc. of 29* Eu-
romicro Conf, Belek, Turkey, 1-6 Sept. 2003, IEEE Comp. Soc. (2003) 417-420

5. Derezinska, A.: Specification of mutation operators specialized for C# code, ICS Res.
Raport 2/05 WUT (2005)

6. Derezinska, A.; Quality assessment of mutation operators dedicated for C# programs, ac­
cepted for Inter. Conf on Quality Software, QSIC06, Beijing, China, Oct. (2006)

7. Kim, S., Clark, J., McDermid J. A.: Class Mutation: mutation testing for object-oriented
programs, Proc of Conf on Object-Oriented Soft. Systems, Erfurt, Germany, Oct. (2000)

8. Kim, S., Clark, J., McDermid J. A.: Investigating the effectiveness of 0 0 testing strategies
with the mutation method, J. of Soft. Testing, Verif, and Rel., 11(4) (2001) 207-225

9. Ma, Y-S., Offiitt, J., Kwon, Y-R.: MuJava: an automated class mutation system, Softw.
Testing, Verif and Reliab., vol 15, no 2, June (2005)

10. Ma, Y-S., Kwon, Y-R., Offlitt, J.: Inter-class mutation operators for Java, Proc. of Inter.
Symp. on Software Reliability Engin., ISSRE'02, IEEE Computer Soc, (2002)

ll.Voas, J.M., McGraw, G.: Software fault injection, Inoculating programs against errors,
John Wiley & sons Inc. (1998)

