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Abstract: We present a new method for modular compilation of synchronous programs 
given in imperative languages like Quartz or Esterel. The main idea of our 
approach consists of computing sequential jobs that correspond with control flow 
locations of the program. Each job encodes that part of an instantaneous reaction 
that is triggered by the activation of the corresponding control flow location. The 
special consideration of the initial job that is executed at initial time yields a 
simple method for modular code generation. 

Keywords: synchronous languages, modular compilation 

1. INTRODUCTION 
Synchronous languages [13], [2] like Esterel [3] and its variants [14], [19] are 
particularly interesting for system design: First, it is possible to generate both 
efficient software and hardware from the same synchronous program. Second, 
it is possible to determine tight bounds on the reaction time by a simplified 
worst-case execution time analysis [15]. Third, the formal semantics of these 
languages allows one to formally prove (1) the correctness of the compilation 
and (2) the correctness of particular programs with respect to given formal 
specifications [18], [19], [21]. 

Although several success stories have been reported [12], there is still a 
need for further research on efficient and modular compilation of synchronous 
languages. In the past years, several different compilation techniques have 
beendeveloped[9], [17], [11]: 
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• The first compilers translated the program to an extended finite state ma­
chine whose transitions are endowed with corresponding code fragments 
[6]. The disadvantage is the potential state-explosion problem; the ad­
vantage is the very fast execution time of the generated code. 

• Polynomial compilation was first achieved by a translation to equation 
systems [16], [18], [21] that symboHcally encode the automata. The 
idea behind this approach is to consider control flow locations instead of 
entire control states ̂  This approach is successfully used for hardware 
synthesis and it is still the core of conmiercial tools [12], although the 
generated software is sometimes comparably slow. 

• A third approach has been followed by the Saxo-RT compiler [8], [7] 
of France Telecom, which translates the program into an event graph. 
Hence, an event driven simulation scheme can be used to generate code, 
which is compiled into efficient C code. 

• A fourth approach is based on the translation of programs into concur­
rent control data flow graphs [11], [17], [9], [10], [23], whose sizes de­
pend linearly on the given program. At each instant, the control flow 
graph is traversed until active nodes are found to trigger the execution of 
the corresponding subtree. 

All of the above approaches have been developed to optimize the compila­
tion time, as well as the size and the execution time of the generated code. 
However, with the exception of [23], essentially none of the above compila­
tion techniques considered a modular compilation, which is standard for all 
sequential programming languages. 

Modular compilation of synchronous programs is not at all straightforward: 
A previously compiled module may start or end with an incomplete macro step 
whose micro steps can interact with the micro steps of later added modules. 
Hence, to achieve a modular compilation, the surface of each module must 
be known: The surface [4], [22] of a statement consists of those micro steps 
that are executed at initial time before the first control flow location is reached. 
Surfaces are the essential information for combining pre-compiled statements. 

For this reason, we have developed a completely new compilation technique, 
which has different advantages [20]. Our compiler splits the given program 
into so-called jobs that correspond with the control flow locations of the pro­
gram. Hence, we simply execute those jobs that correspond with the currently 
active control flow locations. To this end, we have to take care of mutual 
dependencies that have to be checked by causality analysis. An important sim-

^We distinguish between a control flow state that consists of a boolean vector of control flow locations. A 
control flow location is a statement of the program that can hold the control flow for an instant of time. In 
case of Esterel, control flow locations are essentially pause statements. 
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plification is obtained by our compilation technique since each job consists of 
purely sequential code. 

For modular compilation, the job-based compilation technique has the ad­
vantage that the surface of the compiled module is explicitely given as the 
unique initial job. Thus, modular compilation is basically achieved by taking 
the union of the set of jobs and declaring the new initial job as the new surface. 

The paper is organized as follows: in the next section, we briefly describe 
the Esterel/Quartz language that we consider in this paper. We then define the 
syntax and semantics of an intermediate language that we use to represent the 
sequential jobs, and we explain the key idea of our job-based compiler. After 
this, we illustrate the job-based compilation by means of a small example. 
Then, we explain in detail how modular compilation can be achieved with 
the job-based code. Finally, we discuss the advantages of our new compilation 
technique for modular compilation and conclude with a short summary. Details 
of the compiler are given in [20]. 

2. THE SYNCHRONOUS LANGUAGE Quartz 
Quartz [18], [19], [20] is a descendant of Esterel that shares its basic model 
with its ancestor Esterel. In this paper, we rely on the common statements and 
therefore only consider the following: 

DEFINITION 1 [Statements of Quartz] The set of statements o/Quartz is the 
smallest set that contains the following statements, provided that S, Si, and S2 
are also statements of Quartz, i is a location variable, x is an event variable, 
y is a state variable, a is a Boolean expression, and a is a type: 

nothing (empty statement) 
emit X and emit next{x) (boolean event emissions) 
y = T and next{y) = r (assignments) 
i : pause (consumption of time) 
if{cr) Si else S2 (conditional) 
Si; S2 (sequential composition) 
Si II S2 (synchronous concurrency) 
do S while{a) (iteration) 
[weak] suspend S when [immediate]{a) (suspension) 
[weak] abort S when [immediate]{a) (abortion) 
{a y; S} (local variable y with type a) 

There are two kinds of (local and output) variables in Quartz, namely event 
and state variables: State variables y are persistent, i.e., they store their current 
value until an assignment changes it, while event variables take a default value 
if no assignment is made. Executing a delayed assignment next{y) = r means 
to evaluate r in the current macro step (environment) and to assign the obtained 
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value to y in the following macro step. Immediate assignments update y in 
the current macro step and are therefore rather equations than assignments. As 
most events are of Boolean type, we use the statements emit x and emit next{x) 
as macros for y = true and next{y) = true, respectively. 

There is only one basic statement that defines a control flow location, namely 
the pause statement^. For this reason, we endow pause statements with unique 
Boolean valued location variables £ that are true iff the control is currently at 
location £ : pause. 

The semantics of the statements is the same as in Esterel. Due to lack of 
space, we do not describe their semantics in detail, and refer instead to [19], 
[18], and, in particular, to the Esterel primer [5], which is an excellent intro­
duction to synchronous programming. 

3. COMPUTING JOBS FOR PROGRAMS 
In this section, we describe the computation of an equivalent set of jobs for a 
given Quartz program. As already outlined, the overall idea of the proposed 
code generator is as follows: For each control flow location i of the program, 
a job Si is computed that has to be executed iff the control flow resumes the 
execution from location i. Of course, several jobs may have to be executed in 
one macro step since several locations can be active at once. 

3.1 THE JOB LANGUAGE 
In principle, a job Si consists of a set of guarded actions and guarded schedule 
statements (see below) to implement the data flow and the control flow of the 
program, respectively. However, we do not compute simple sets of guarded 
statements. Instead, we additionally use conditional and sequential statements 
to allow sharing of common conditions. Moreover, we use statements for bar­
rier synchronization to implement the concurrency of synchronous programs. 

DEFINITION 2 [Job Language] The set of Job statements is the smallest set 
that contains the following statements, provided that S, Si, and S2 are also 
Job statements, £ is a location variable, x is an event variable, y is a state 
variable, a is a Boolean expression, and X is a lock variable (having integer 
type): 

• n o t h i n g (empty statement) 
• emit xandemi-t ney:t{x) (event emissions) 
• y = r and ney:t{y) = r (assignments) 
• i n i t (x, To) (initialize local variable) 
• schedule(£) (resumption at next reaction) 

^To be precise, immediate forms of suspend also have this ability. 
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• reset(A) (reset a barrier variable) 
• j oin(A) (apply for passing barrier) 
• ba r r i e r (A , c) (declare barrier X) 
• i f (cr) Si e l s e 52 (conditional) 
• ^ i ; 52 (sequential composition) 

Note that there is no longer a parallel statement and also the abort/suspend 
statements are no longer required. Moreover, there are no loops, since we 
can implement them by the help of schedule statements (explained below). 
Furthermore, all job statements are instantaneous^. 

The atomic statements no th ing , emit x, emit next(a;), y = T, and 
next(y) = r have the same meaning as in Quartz programs. The meaning 
of conditionals and sequences is also the same as in Quartz. The statement 
in i t (x , ro ) replaces a local variable declaration as follows: when executed, 
it first removes x from the current context as well as pending (delayed) assign­
ments to X, and then gives x the initial default value TQ. 

The schedule(£) statement corresponds with a control flow location i of 
the Quartz program. When executed, it simply puts the label i in the schedule, 
so that the runtime environment will execute the corresponding job Se in the 
next reaction step. Note, however, that schedule(^) is instantaneous, so 
that schedule(£i); schedule(^2) will at once put both ii and £2 to the 
schedule for the next reaction step. 

The statements r e s e t (A), join(A), and ba r r i e r (A , c) are used to im­
plement concurrency based on barrier synchronization. ba r r i e r (A , c) de­
clares a barrier with an integer lock variable A and an integer constant c as 
threshold. Executing this statement checks whether X > c holds, and if so, 
it immediately terminates, so that a further statement 5 can be executed in a 
sequence like b a r r i e r (A, c); 5. If A < c holds, the execution stops, so that 
the control thread terminates. 

Executing r e s e t (A) simply resets A = 0, and join(A) first increments A 
and then invokes a fimction fx that is associated with the barrier whose lock 
variable is A. Usually (and in our compiled jobs always), it is the case that the 
code of function fx is a sequence ba r r i e r (A , c); 5 with some statement 5. 

Using the statements for barrier synchronization, it is straightforward to ex­
ecute parallel code on a uniprocessor machine: We associate with each parallel 
statement a barrier with lock variable A and threshold c = 2 that is reset when 
the parallel statement is started. When a thread of the parallel statement ter­
minates, it executes a j oin(A) statement. If both threads have executed their 
final j oin(A) statements, the barrier will be passed, so that the code following 

^The job language is therefore also a synchronous language on its own, which is however not meant to be 
offered to the programmer. Instead, it is used as an intermediate language that could, in principle, be the 
target for many synchronous languages. 
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the associated b a r r i e r (A, c) statement in the function fx associated with the 
barrier can be executed. 

The implementation of the barrier synchronization for other architectures 
may (and must) be different. Hence, it depends on the platform that is used to 
execute the program, while our jobs remain architecture-independent. Differ­
ent implementations for barrier synchronization already exist [1] for hardware, 
software on multiprocessors, and software on uniprocessors, so that our jobs 
can be executed on all of these platforms. 

3.2 COMPUTING JOBS 
The computation of the jobs of a statement is done in a single pass using a 
recursive fiinction Jobs(-, •, •). To compile a statement 5, we start the function 
call Jobs(S', nothing, {}), which computes a tuple {Sa, V, T) with the follow­
ing meaning: 

• Sa is the surface statement of 5, i.e., that code that is executed when S is 
initially started (which is often viewed as being started from an invisible 
'boot' control flow location £«)• 

• P is a set of pairs (£, Si) such that St is the job that is associated with 
control flow location i. 

• .7̂  is a set of pairs (A, S\), where A is the lock variable of a barrier and 
S\ is of the form b a r r i e r (A, c); S" with some threshold c (hence, S' 
is the job that is executed when the barrier is passed). 

The execution of the initial call Jobs(S, nothing, {}) will produce subsequent 
calls Jobs(5, Sy^, J) with statements S, Sjj with the following meaning: During 
the function calls, the statement that has to be compiled has been transformed 
to an equivalent one that is now of the form S', Sr^. Moreover, the set J is either 
{} or a singleton set {A}. In the latter case, we have to immediately execute 
j oin(A) to apply for passing the barrier A as soon as S; Srj terminates. If A 
is large enough, the barrier can be passed and the job 5A associated with the 
barrier will be immediately executed. 

In principle, our compilation procedure performs a symbolic execution of 
the statement, and each recursive call corresponds with a SOS rule that de­
fines the semantics of Quartz, which allows us to easily verify its correctness. 
The recursion is made primarily on S, and secondarily on Sr^. Details of the 
compilation are given in a forthcoming publication and also in [20]. 

4. AN ILLUSTRATING EXAMPLE 
A difficult example program (with event input i and event outputs a, b, and c) 
is given in Figure 1. This program suffers from a schizophrenia problem, since 
the scope of the declaration of the local variable x can be left and re-entered in 
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module Schizo(event i,&a,&b,&c) { 
loop 

{bool x; 
if{i) { 

next(x) = true; 
ql:pause; 

} 

abort { 
emit a; || if(not(x)) emit b; 

else q2:pause; 
emit c; 
q3:pause; 

} when(not(i)); 

Figure 1. A Challenging Example with a Schizophrenic Local Declaration. 

void f start 0 { 
init(x,false); 
if(i) { 

next(x) = true; 
schedule(ql); 

} else { 
reset (_linb4) ; 
emit a; 
join( lmb4); 
if(~x) { 

emit b; 
join(_lmb4); 

} else 
schedule(q2); 

} 
} 

void f_ql() { 
reset(_lmb4); 
emit a; 
join( lmb4); 
if(~x) { 

emit b; 
join(_lmb4); 

} else 
schedule(q2); 

} 

void g lmb4() { 
barrier(_lmb4,2); 
emit c; 
schedule(q3); 

Li 

void f q2() { 
if(~i) { 
init(x,false) ; 
reset(_lmb4); 
emit a; 
join( lmb4); 
if(~x) { 

emit b; 
join(_lmb4); 

} else 
schedule(q2); 

} else 
join( lmb4); 

} 

void f q3() { 
if(~i) { 

init(x,false); 
reset(_lmb4); 
emit a; 
join( lmb4); 
if(~x) { 1 

emit b; 
join(_lmb4); 

} else 
schedule(q2); 

} else { 
init(x,false); 
next(x) = true; 
schedule(ql); 

} 
b 1 

Figure 2. Sequential Jobs for Module Schizophrenia (Figure 1). 

the same macro step. It is well-known that a statement may be entered more 
than once in a single macro step if the module is called in a surrounding context 
where the module is nested in several loops. 

Figure 2 shows the resulting jobs that are obtained by compilation of this 
module. As can be seen, our code generator has constructed functions f _ql, 
f _q2, and f _q3 for each control flow location as well as for the boot location 
(function f __start) . Moreover, there is a continuation function g__lmb4 to 
implement the termination of the parallel statement. 

Note that the schizophrenic local declaration is correctly implemented due 
to the initialization statements that are called in the correct order. 

5. MODULAR COMPILATION 
Since a previously compiled module may start or end with incomplete macro 
steps, it is possible that these micro steps can interact with the micro steps of 
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of a surrounding calling module. Hence, we have to consider the potentially 
incomplete initial and final macro steps of the modules in order to compile 
them in a modular way. In particular, we have to combine the incomplete 
macro steps to a complete macro step of the entire module. 

The job-based compilation technique presented above lends itself well for 
this purpose: Assume we have to compile a module M with body statement 
S for later use. To this end, we first replace the usually used initial function 
call Jobs(S', nothings {}) for the module's body statement S with the extended 
function call Jobs(5, nothing, {A^}) with a new lock variable A5. Hence, 
when M terminates, it immediately calls a corresponding continuation func­
tion gxg with job statement Sx^. Since gxg is not available in the compiled 
code of M, the runtime environment has to add such a function (with Sxs '-= 
no th ing) when M is executed without a further context module. 

Now assume M is instantiated in a surrounding module M^ Then, the job-
based compilation function works as follows: The function call Jobs(S', Srj, J) 
is replaced by (1) Jobs(S', nothing, {^s}) and (2) Jobs(5^, nothing, J) . Since 
(1) is what we already compiled in the previous compilation run for module 
M, we can simply read'̂  the compilation result (S'a, P , J^) from the file that 
contains the results of the previous compilation run. Call (2) is obtained by 
normal compilation and will thereby generate a triple {S^,V^,J^), The final 
result is then (S'a, P U P^, .7=' U Ĵ ^ U {(A5, barr ier (A5,1) ; 52)}), i.e., we 
use the initial job 52 of 5?̂  as the continuation function for the barrier Â -. 

Hence, modular compilation can be simply integrated with the job-based 
compilation technique. The only fact we have to verify is that Jobs(5, S-q, J) 
is equivalent to (5^, VyJV'^.TUJ^D {(A5, barr ier (A5,1) ; Si)}), where 
(1) A5 is a new barrier variable, (2) (S'a, V, T) = Jobs(S', nothing, {A5}), and 
(3) (52, P^, T"^) = Jobs(5ry, nothing, J) holds. 

Note that during the compilation of the context module M', the jobs V that 
have been generated by the previous compilation run of M may be modified 
due to surrounding abortion or suspension statements. These statements have 
to abort or suspend the job's execution whenever the corresponding abortion 
or suspension condition holds. Since this is done in the usual job-based com­
pilation as well, we need not discuss this issue further, but we want to note that 
it may be necessary to modify the jobs V. Moreover, several module calls to 
M may even require copies of the jobs V. 

Another problem is posed by causality analysis: Although all modules can 
be checked independently of each other, a complete causality analysis can be 
only performed after all modules have been linked together. Hence, causality 
analysis has to be done after the complete compilation. Nevertheless, it may 

"* Clearly, substitutions may be necessary due to the given arguments of the module instantiation. 
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be additionally done as well on single modules after their local compilation in 
order to speed up the final causality analysis. 

Equation-based code can be integrated in the modular compilation scheme 
as well: The compiler just wraps the equations into two jobs: All initial equa­
tions define the initial job, and the transition equations define the main job 
Jmain- Both jobs coucludc with a check whether at least one control flow loca­
tion is active: If such a location exists, jmain is scheduled again, otherwise, the 
exit continuation fiinction is joined. 

6. SUMMARY 
In this paper, a very simple code generation scheme has been presented that is 
based on splitting the given program into sequential jobs that correspond with 
the control flow locations of the program. Additionally, continuation functions 
are required in order to avoid an exponential blow-up of the code, and to effi­
ciently execute parallel statements on uniprocessor systems. 

In particular, we have shown in this paper that our compilation technique is 
suited for modular compilation, since the jobs explicitly contain the surface of 
the program given as the initial job f _ s t a r t . Modular compilation is not as 
simple as known from sequential programming languages, since a reprocess­
ing of the compiled module cannot be avoided. However, the main benefits 
of modularization remain: Compiled and potentially highly-optimized com­
ponents can be distributed and reused. Moreover, they can be shared without 
revealing their source codes, since the generated jobs are a rather low-level 
(but still adaptable) description from which the original code cannot be recon­
structed. 
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