

FROM MODEL-DRIVEN DESIGN TO
RESOURCE MANAGEMENT FOR
DISTRIBUTED EMBEDDED SYSTEMS

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

FROM MODEL-DRIVEN
DESIGN TO RESOURCE
MANAGEMENT FOR
DISTRIBUTED
EMBEDDED SYSTEMS
IFIP TC 10 Working Conference on Distributed and
Parallel Embedded Systems (DIPES 2006),
October 11-13, 2006, Braga, Portugal

Edited by

Bernd Kleinjohann
University of Paderborn
Germany

Lisa Kleinjohann
University of Paderborn/ C-Lab
Germany

Ricardo J. Machado
Universidade do Minlio
Portugal

Carlos E. Pereira
Universidade Federal do Rio Grande do Sul
Brazil

P.S. Thiagarajan
National University of Singapore
Republic of Singapore

^ Spri ringer

Library of Congress Control Number: 2006931703

From Model-Driven Design to Resource Management for Distributed Embedded Systems

Edited by B. Kleinjohann, L. Kleinjohann, R. Machado, C. Pereira, and P.S. Thiagarajan

p. cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)
ISBN: 10:0-387-39361-7
ISBN: 13:9780-387-39361-7
elSBN: 10:0-387-39362-5

Printed on acid-free paper

Copyright © 2006 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2
springer.com

Contents

Preface ix

Conference Committee xi

1 Challenges in the Design of Distributed Embedded Systems

Design Challenges in Multiprocessor System-on-Chips
Wayne Wolf 1
Some Issues in Model-Based Development for Embedded Control
Systems
Paul Caspi 9

2 Model-Driven Development

MDE Benefits for Distributed, Real-Time and Embedded Systems
Francois Terrier, Sebastien Gerard 15

Reifying the Semantic Domains of Component Contracts
Jean-Marc Jezequel 25

Model-Based Conformance Testing and Requirement Adaptation

Model Based Test Selection for Infinite State Reactive Systems
Thierry Jeron 3 5

Continuous Engineering of Embedded Systems
Bernhard Steffen, Tiziana Margaria 45

VI

4 Applications and Code Realization

Prototyping an Ambient Light System - A Case Study
Henning Zabel, Achim Rettberg 55

The Paderkicker Team: Autonomy in Realtime Environments
Willi Richert, Bernd Kleinjohann, Markus Koch, Alexander Bruder,
Stefan Rose, Phillip Adelt 65

Modular Compilation of Synchronous Programs
Klaus Schneider, Jens Brandt, Eric Vecchie 75

5 Timing Analysis

Trends in Timing Analysis
Bjorn Lisper 85

Traffic Scheduling Anomalies in Temporal Partitions

Luis Almeida, Paulo Pedreiras, Ricardo Marau 95

6 Towards Timing Predictability

Pulsed Data Streams
Hermann Kopetz 105
From Time-Triggered to Time-Deterministic Real-Time Systems
Peter Puschner, Raimund Kirner 115

7 Scheduling and Timed Multitasking

Lazy Scheduling for Energy Harvesting Sensor Nodes
Clemens Moser, Davide Brunelli, Lothar Thiele, Luca Benini 125

Transient Processor/Bus Fault Tolerance for Embedded Systems
Alain Girault, Hamoudi Kalla, Yves Sorel 135

Distributed Timed Multitasking - A Model Of Computation for Hard
Real-Time Distributed Systems
Chris to Angelov, Jesper Berthing 145

8 Service Configuration and Task Allocation

Iterative Refinement Approach for QoS-Aware Service Configuration

Vll

Luis Noguera, Luis Miguel Pinho 155

A Fast and Efficient Isomorphic Task Allocation Scheme for K-ary N-
cube Systems
D. Doreen Hephzibah Miriam, T. Srinivasan 165

Communication Aware Component Allocation Algorithm for a Hybrid
Architecture
Marcelo Gotz, Achim Rettberg, Carlos Eduardo Pereira 175

9 Design Space Exploration and Memory Management

Multi-Objective Design Space Exploration of Embedded System
Platfoms
Jan Madsen, Thomas K. Stidsen, Peter Kjcerulf Shankar Mahadevan

185

Dynamic Memory Management for Embedded Real-Time Systems

A. Crespo, L Ripoll, M. Masamano 195

10 Power Management

Reliability-Aware Power Management of Multi-Core Processors
Jan Haase, Markus Damm, Dennis Hauser, Klaus Waldschmidt 205
Evaluating Energy-Aware Task Allocation Strategies for MPSoCs
Fabio Wronski, Eduardo W, Brido, Fldvio R. Wagner 215

Integration of Energy Reduction into High-Level Synthesis by
Partitioning
Achim Rettberg, Franz J. Rammig 225

11 Work in Progress

A Demonstration Case on the Transformation of Software Architectures
for Service Specification
Jodo M. Fernandes, Ricardo J. Machado, Paula Monteiro, Helena
Rodrigues 235

A Model-Based Analysis of a Wndmill Communication System
Simon Tjell 245

Pre-Runtime Scheduling Considering Timing and Energy Constraints in

V l l l

Embedded Systems with Multiple Processors
Eduardo Tavares, Meuse Oliver a Jr., Paulo Maciel, Bruno Souza,
Silvino Neto, Raimundo Barreto, Romulo Freitas, Marcelo Custodio 255

A Hierarchical Approach for Power Management on Mobile Embedded
Systems
Arliones Stevert Hoeller Jr., Lucas Francisco Wanner, Antonio Augusto
Frohlich 265

Preface

This volume consists of the proceedings of the 5th IFIP Working Conference
on Distributed and Parallel Embedded Systems (DIPES 2006). This bi­
annual series of conferences are intended as a forum where significant
research on models, methods, tools and applications in the area of distributed
embedded systems are presented.

Embedded computing systems have started to carry out the key control
functions in diverse domains such as telecommunications, automotive
electronics, avionics and even complete industrial manufacturing lines.
Traditionally, such embedded control systems have been implemented in a
monolithic, centralized manner. However, distributed and parallel solutions
have been steadily gaining popularity. In a distributed setup, the control task
is carried out by a number of controllers distributed over the entire system
and interconnected as a network by communication components such as
field buses. More demanding local control applications require controllers
based on parallel architectures or processors with dedicated co-processors.
Distribution and parallelism in embedded system design increase the
engineering challenges and demand new development methods and tools.
The main goal of the DIPES series of conferences is to bring together the
research community dealing with problems in this important area.

The previous conferences were located in Toulouse, France (2004),
Montreal, Canada (2002) and SchloB Eringerfeld, Germany (1998 and
2000). This year's conference was organized by the Escola de Engenharia,
Universidade do Minho and took place in Braga, Portugal. We cordially
thank the organizers, especially Joao M. Femandes, for the great deal of
work they have put in to enable the smooth running of the conference.

The DIPES 2006 conference comprises a combination of invited
presentations by the leading researchers in the field and papers selected from
a pool of submitted papers. We are grateful to our invited speakers for
agreeing to present their research at the conference and for the papers they
have provided for inclusion in this volume. Li this connection, we also wish
to thank Franz Rammig and Lisa Kleinjohann for helping to put together a
first rate set of invited speakers and conference program.

This year we received 21 submissions from which 12 papers were selected
for regular presentations and 4 for short presentations. We thank the authors
for their submissions and the members of the Program Committee for their
timely reviews.

Bemd Kleinjohann, Ricardo J. Machado, Carlos E. Pereira, P. S. Thiagarajan

IFIP TCIO Working Conference on Distributed and
Parallel Embedded Systems (DIPES 2006)
October 11-13,2006, Braga, Portugal

General Chair
Bemd Kleinjohann, University of Paderbom (Germany)

Organizing Chair
Ricardo J. Machado, Universidade do Minho (Portugal)

Program Committee Co-Chairs
Carlos E. Pereira, UFRGS (Brazil)
P. S. Thiagarajan, NUS (Republic of Singapore)

Program Committee
Amdt Bode (Germany)
Joao Cardoso (Portugal)
Nikil Dutt (USA)
Bemhard Eschermann (Switzerland)
Joao Femandes (Portugal)
Guang R. Gao (USA)
Uwe Glasser (Canada)
Luis Gomes (Portugal)
Uwe Honekamp (Germany)
Pao-Ann Hsiung (Taiwan)
Ahmed Jerraya (France)
Jens B. Jorgensen (Denmark)
Kane Kim (USA)
Moon Hae Kim (Korea)
Bemd Kleinjohann (General Chair, Germany)
Lisa Kleinjohann (Germany)
Herman Kopetz (Austria)
Johan Lilius (Finland)
Ricardo J. Machado (Portugal)

Xll

Erik Maehle (Germany)
Carlos E. Pereira (PC Co-Chair, Brazil)
Luis Pinho (Portugal)
Byron Purves (USA)
Peter Puschner Austria)
Franz J. Rammig (Germany)
Achim Rettberg (Germany)
Matthias Riebisch (Germany)
Bemd-Heinrich (Germany)
Edwin Sha (USA)
Zili Shao (Hong Kong)
Joachim Stroop (Germany)
P. S. Thiagarajan (PC Co-Chair, Republic of Singapore)
Flavio R. Wagner (Brazil)
Dieter Wuttke (Germany)
Alex Yakovlev (UK)
Laurence T. Yang (Canada)

Organizing Committee (Univ. do Minho and Univ. ofPaderborn)
Ricardo J. Machado, Chair and Editorial Liaison
Joao M. Femandes, Co-Chair and Finance
Lisa Kleinjohann, Web Services
M. Joao Nicolau, Internet Services
Achim Rettberg, Web Services
Oscar Ribeiro, Local Arrangements
Paula Monteiro, Local Arrangements

Sponsoring and Co-Organizing Institution
IFIP TC 10, WG 10.5, SIG-ES in co-operation with WG 10.1, 10.3, 10.4

Acknowledgement
Special thanks to the authors for their contribution, and for the Program

Committee members for their time reviewing the contributions.

DESIGN CHALLENGES IN MULTIPROCESSOR
SYSTEMS-ON-CHIP

Wayne Wolf
Department of Electrical Engineering, Princeton University

Abstract: A multiprocessor system-on-chip is an integrated system that performs real­
time tasks at low power and for low cost. The stringent requirements on
multiprocessor systems-on-chips force us to use advanced design methods to
create these systems. Both hardware and software design must be taken into
account. In this paper, we will survey some important challenges in the design
of these systems.

1. INTRODUCTION

A multiprocessor system-on-chip (MPSoC) is an integrated system
designed with multiple processing elements. MPSoCs are already in
common use; over the next several years very large MPSoCs will come onto
the market.

MPSoCs are interesting examples of complex embedded systems. A
variety of techniques must be used to successfully create MPSoCs and their
embedded applications. These techniques must take into account real-time
performance, power/energy consumption, and cost.

In this paper, we will survey some design challenges in MPSoCs. We
will start by reviewing the requirements on these systems. We will then look
at several aspects of these systems: processors, multiprocessor architecture,
programs, and task-level scheduling.

Please use the following format when citing this chapter:

Wolf, W., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Model-Driven Design to
Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R., Pereira C.,
Thiagarajan PS., (Boston: Springer), pp. 1-8.

From Model-Driven Design to Resource Management for Distributed Embedded Systems

2. REQUIREMENTS AND APPROACHES

MPSoCs must provide high levels of performance for applications like
video compression and high-speed data communication. But that
performance must meet real-time, not just average performance
requirements. Real-time computing constraints are deadlines that must be
met. Average high performance is not satisfactory if one of the system's
tasks does not meet its deadlines.

Many multiprocessor SoCs also operate under tight power and energy
requirements. Most embedded applications are somewhat power and heat
sensitive. Battery-powered systems must make the best use of available
battery energy.

Embedded systems are generally cost-sensitive. The cost of the
hardware platform, including processors and memory, must be kept down
while meeting the real-time performance requirements.

One traditional approach to meeting these requirements is to make use
of knowledge of the application. General-purpose computers are designed
around benchmarks but not highly tuned to a particular application. If we
know details of the application to be run, we can customize the MPSoC to
provide features where needed and eliminate them where they are not
necessary.

An implication of this approach is that many MPSoCs are
heterogeneous, with multiple types of CPUs, irregular memory hierarchies,
and irregular communication. Heterogeneity allows architects to support
necessary operations while eliminating the costs of unnecessary features.
Heterogeneity is also important to real-time performance—limiting access to
part of the system can make that part more predictable.

3. PROCESSOR SELECTION

The choice of processor is one of the basic decisions in the design of
an embedded system. The decision may be made on several grounds, both
technical and non-technical: software performance, I/O system
configuration, support tools, setup costs, etc. The designer may also choose
between an existing processor and a customized CPU.

Customized processor architectures can be implemented on systems-
on-chips or using FPGAs. When choosing a CPU based on software
performance, two major alternatives exist: hardware/software partitioning
and custom instruction sets. While these techniques have not traditionally
been seen as alternatives, both have a similar goal, namely the cost-effective
speedup of a program. Hardware/software partitioning works at coarser

From Model-Driven Design to Resource Management for Distributed Embedded Systems

granularity while custom instruction sets find speedups at finer levels of
granularity.

Hardware/software partitioning builds a custom heterogeneous
system with a CPU and a hardwired accelerator, based on program
characteristics and performance requirements. A variety of
hardware/software partitioning systems have been developed, including
COSYMA [7], Vulcan [10], CoWare [25], the system of Eles et al. [Ele97],
Lycos [17], and COSYN [5]. These co-synthesis algorithms work on fairly
large blocks of program behavior, generally either loop nests or task graphs.
They choose units to implement in hardware based in part on the cost of
communication between the processor and the accelerator.

The goal of instruction set design is to find operations that can be
profitably packaged as instructions. These are generally combinations of
more basic instructions or perhaps work on specialized registers, and so
show coarser granularity than standard instructions, but finer granularity
than accelerators. Instruction sets can be designed by hand, and CPU
microarchitectures that are designed to be customized are known as
configurable processors. Several companies offer configurable processors.
Several university configurable processors also exist, including LISA [11]
andPEAS-III[13,23].

The largest cost in using configurable processors, when compared to
accelerators, is the overhead of instruction interpretation. Instruction fetch,
decode, and execution on a CPU are more expensive than dedicated logic on
an accelerator. However, a configurable processor has two advantages over
an accelerator. First, it can be used for many tasks and so may be more
heavily utilized. Second, we can eliminate the cost of communication
between the accelerator and the processor (so long as we have the registers
required to perform the operations). As MPSoCs become larger and the area
cost of CPUs becomes less critical, we may see more configurable
processors.

4. IVIULTIPROCESSOR CONFIGURATION

Many embedded systems are multiprocessors, so we need to configure
a multiprocessor for use as a platform for the application. Embedded
multiprocessors are often heterogeneous, in order to meet real-time
performance requirements as well as power and cost requirements.

Hardware/software co-design algorithms have been developed to
synthesize multiprocessor architectures, for example systems by Dave and
Jha [4] and Wolf [26], but system-on-chip multiprocessors have often been
designed by hand. Hand-designed architectures may be satisfactory for

From Model-Driven Design to Resource Management for Distributed Embedded Systems

multiprocessors with a few processors, but as we move to systems-on-chips
with a dozen or more large processors, we may see MPSoC designers rely
more heavily on design space exploration tools.

As in general-purpose computing systems, busses don't scale to large
multiprocessors. As a resuh, MPSoCs are starting to use on-chip networks
that route packets between processors and memory. A number of networks-
on-chips have been developed, including Nostrum [15], SPIN [9], Slim-
spider [16], OCCN [3], QNoC [1], xpipes/NetChip [20,14], and the network
ofXuetal. [27].

5. PROGRAIM DESIGN

When optimizing embedded programs for the target platform,
memory system behavior is a prime target for optimization. Many embedded
systems are memory intensive and the program's interaction with memory
helps to determine both the system performance and energy consumption.

Code placement was originally developed for general-purpose
machines but is also useful in embedded systems. Code placement
determines the addresses for sections of code to minimize the cost of cache
interactions between instructions. Hwu and Chang [12] extracted
information from traces and placed code using a greedy algorithm.
McFarling [18] used a combination of trace data and program behavior to
determine how to place code.

A variety of methods for optimizing the cache behavior of data have
been developed, both by the scientific computing and embedded
communities. Panda et al. [21] used a cluster interference graph to optimize
the placement of data in memory. Panda et al. [22] developed algorithms for
placing data in scratch pads, which are software-controlled memories at the
same level of memory hierarchy as level-one caches.

Overall methodologies for memory-intensive systems have also been
developed, most notably by Catthoor et al. [2]

6, PROCESS-LEVEL DESIGN

Traditional scheduling algorithms treat jobs as atomic; in some
cases, jobs are assumed to arrive dynamically so their characteristics are not
known to the scheduler. While embedded systems tasks may use some
dynamic tasks, the critical code is often known in advance. Knowledge of
the task allows us to combine scheduling algorithms with memory hierarchy
analysis, power management, and other aspects of the system

From Model-Driven Design to Resource Management for Distributed Embedded Systems

When we build embedded systems on multiprocessor platforms, we
often rely on middleware to manage the multiprocessor. Single-processor
management is handled by an operating system, while middleware
negotiates resource requests across the multiprocessor platform. One
approach to building embedded system middleware is to rely on existing
standards, such as CORBA [19, 24]. An alternative is to design custom
middleware services. Thanks to the tight performance/energy/cost
constraints of embedded systems, we should expect to see at least
customized versions of middleware standards.

7. SUMMARY

Embedded systems must provide very high levels of performance, but
under much more serious power and cost constraints than general-purpose
systems. MPSoC designers need to take advantage of the knowledge of
computer system design gained over the past several decades, but embedded
computing is developing additional techniques to solve its unique problems.
Optimizations of both hardware and software are often necessary to achieve
the strict requirements of multiprocessor systems-on-chips.

REFERENCES

[1] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "QNoC: QoS
architecture and design process for network on chip," The Journal of
Systems Architecture, 50(2-3), February 2004, pp. 105-128.

[2] Francky Catthoor, Sven Wuytack, Eddy De Greef, Florin Balasa, Lode
Nachtergaele, and Amout Vandecappelle, Custom Memory Management
Methodology: Exploration of Memory Organization for Embedded
Multimedia System Design, Norwell MA: Kluwer Academic Publishers,
1998.

[3] Marcello Coppola, Stephane Curaba, Miltos D. Grammatikakis,
Giuseppe Maruccia, and Francesco Papariello, "OCCN" a network-on-
chip modeling and simulation framework," in Proceedings of the
Conference on Design Automation and Test in Europe, vol. 3, IEEE
Computer Society Press, 2004, p. 30174.

[4] Bharat P. Dave and Niraj K. Jha, "COHRA: hardware-software
cosynthesis of hierarchical heterogeneous distributed embedded
systems," IEEE Transactions on CAD/ICAS, 17(10), October 1998, pp.
900-919.

I From Model-Driven Design to Resource Management for Distributed Embedded Systems

[5] Bharat P. Dave, Ganesh Lakshminarayana, and Niraj K. Jha, "COSYN:
hardware-software co-synthesis of heterogeneous distributed embedded
systems," IEEE Transactions on VLSI Systems, 7(1), March 1999, pp.
92-104.

[6] Petru Eles, Zebo Peng, Krzysztof Kuchcinski, and Alexa Doboli,
"System level hardware/software partitioning based on simulated
annealing and tabu search," Design Automation for Embedded Systems,
2, 1996, pp. 5-32.

[7] Rolf Ernst, Joerg Henkel, and Thomas Benner, "Hardware-software
cosynthesis for microcontrollers," IEEE Design and Test of Computers,
10(4), December 1993, pp. 64-75.

[8] G. Goossens, "Application-specific networks-on-chips," in A. Jerraya
and W. Wolf, eds.. Multiprocessor Systems-on-Chips, Morgan Kaufman,
2004.

[9] Pierre Guerrier and Alain Greiner, "A generic architecture for on-chip
packet-switched interconnections," in Proceedings of the Conference on
Design Automation and Test in Europe, ACM Press, 2000, pp. 250-256.

[10] Rajesh K. Gupta and Giovanni De Micheli, "Hardware-software
cosynthesis for digital systems," IEEE Design and Test of Computers,
10(3), September 1993, pp. 2 9 ^ 0 .

[11] Andreas Hoffman, Tim Kogel, Achim Nohl, Gunnar Braun, Oliver
Schliebusch, Oliver Wahlen, Andreas Wieferink, and Heinrich Meyr, "A
novel methodology for the design of application-specific instruction-set
processors (ASIPs) using a machine description language," IEEE
Transactions on CAD/ICAS, 20(11), November 2001, pp. 1138-1354.

[12] Wen-Mei W. Hwu and Pohua P. Chang, "Achieving high instruction
cache performance with an optimizing compiler," in Proceedings of the
16th Annual International Symposium on Computer Architecture, ACM,
1989, pp. 242-251.

[13] Makiko Itoh, Shigeaki Higaki, Jun Sato, Akichika Shiomi, Yoshinori
Takuchi, Akira Kitajima, and Masaharu Imai, "PEAS-IIT. an ASIP
design environment," in International Conference on Computer Design:
VLSI in Computers and Processors, IEEE Computer Society Press, 2000,
pp. 430-436.

[14] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, "xpipesCompiler:
a tool for instantiating application specific networks-on-chips," in
Proceedings of Design Automation and Testing in Europe Conference,
IEEE, 2004, pp. 884-889.

[15] Sashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell,
Mikael Millberg, Jonny Oberg, Kari Tiensyrja, and Ahmed Hemani, "A
network on chip architecture and design methodology," in Proceedings

From Model-Driven Design to Resource Management for Distributed Embedded Systems ^

of the IEEE Computer Society Annual Symposium on VLSI, IEEE
Computer Society Press, 2002.

[16] Se-Joong Lee, Kangmin Lee, and Hoi-Jun Yoo, "Analysis and
implementation of practical, cost-effective networks-on-chips," IEEE
Design & Test of Computers, 22(5), September/October 2005, pp. 422-
433.

[17] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, and A.
Haxthausen, "LYCOS: the Lyngby Co-Synthesis System," Design
Automation for Embedded Systems,!, 1997, pp. 195-235.

[18] Scott McFarling, "Program optimization for instruction caches,"
Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM,
1989, pp. 183-191.

[19] Object Management Group, CORBA Basics, 2006,
http://www.omg.org/gettingstarted/corbafaq.htm.

[20] M. D. Osso, G. Biccari, L. Giovanni, D. Bertozzi, and L. Benini,
"xpipes: a latency insensitive parameterized network-on-chip
architecture for multi-processor SoCs," in Proceedings of the 21'^
International Conference on Computer Design, IEEE Computer Society
Press, 2003, pp. 536-539.

[21] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau, "Memory
data organization for improved cache performance in embedded
processor applications," ACM Transactions on Design Automation of
Electronic Systems, 2(4), October 1997, pp. 384-409.

[22] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau, "On-chip
vs. off-chip memory: the data partitioning problem in embedded
processor-based systems," ACM Transactions on Design Automation of
Embedded Systems, 5(3), July 2000, pp. 682-704.

[23] Toshiyuki Sasaki, Shinsuke Kobayashi, Tomohide Maeda, Makkiko
Itoh, Yoshinori Takeushi, and Masahiru Imai, "Rapid prototyping of
complex instructions for embedded processors using PEAS-III," in
Proceedings, SASIMI200I, October, 2001, pp. 61-66.

[24] Douglas C. Schmidt and Fred Kuhns, "An overview of the real-time
CORBA specification," IEEE Computer, 33(6), June 2000, pp. 56-63,

[25] S. Vercauteren, B. Lin, and H. De Man, "A strategy for real-time
kernel support in application-specific HW/SW embedded architectures,"
in Proceedings, 33^^ Design Automation Conference, ACM Press, 1996,
pp. 678-683,

[26] Wayne Wolf, "An architectural co-synthesis algorithm for distributed
embedded computing systems," IEEE Transactions on VLSI Systems,
5(2), June 1997, pp. 218-29,

From Model-Driven Design to Resource Management for Distributed Embedded Systems

[27] Jiang Xu, Wayne Wolf, Joerg Henkel, and Srimat Chakradhar, "A
design methodology for application-specific networks-on-chips," ACM
Transactions on Embedded Computing Systems, to appear in the Special
Issue on Multiprocessor Systems-on-Chips.

SOME ISSUES IN MODEL-BASED DEVELOPMENT
FOR EMBEDDED CONTROL SYSTEMS

Paul Caspi
caspi@lmag.fr
Verimag-CNRS
www-verimag. imag.fr

Abstract This presentation aims to discuss the needs for better and more soUd
foundations of model-based development in embedded control systems.
Three particular points are discussed: a comparison between model-
based development in control and in computer sciences, the need for
a sampling theory of discrete event systems and the need for precise
implementation methods based on preemptive scheduling.

Keywords: model-based development, embedded control, approximation, sampling,
voting, distances

1. INTRODUCTION
Model-based development is widely recognised as a method of choice

for efficiently and safely designing computing systems. After all, isn't it
the way other branches of engineering have followed for achieving such
a goal? Just think of how bridges and buildings are designed. Yet,
though the need for model-based development is widely recognised, it is
true that advances in this direction are quite slow and charges are put
on both the youth of computer science and the intrinsic complexity of
computing to account for this state of affairs.

There is however a particular subdomain, the embedded control do­
main, where things have progressed faster. For instance, automatic
code generation from high level model have been in use at Airbus in
the fly-by-wire department for more than twenty years [7]. Since the
beginning of the nineties, the Simulink/Stateflow tool-box also allows
automatic code generation (RealTime Workshop) and has achieved an
impressive diversity of possible implementation platforms ranging from
simple cyclic monoprocessor ones to multi-threaded ones, based on pre­
emptive scheduling and to distributed ones based on specialised CAN

Please use the following format when citing this chapter:

Caspi, P., 2006, in IFIP International Federation for Information Processing, Volume 225, From Model-Driven Design to
Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R., Pereira C.,
Thiagarajan PS., (Boston: Springer), pp. 9-13.

10 From Model-Driven Design to Resource Management for Distributed Embedded Systems

or TTA libraries. It is not unfair to say that embedded control is by
now one (if not the only one) computing subdomain that has reached
the highest possible level of model-based development.

However, as it is often the case, this fast progress has been achieved
rather empirically, without taking much care of foundations. Basically,
it is the accomplishment of practitioners rather than of theoreticians and
the latter have cast very little attention to it. The thesis we would like
to support in this presentation is that times have come to strengthen the
foundations of the method. Not only this effort can be expected to be
fruitful for intellectual purposes but it is also likely that practitioners
can benefit from it by getting better, with wider scope and simpler
development tools.

So the aim of this presentation is to discuss this issue: which are the
foundation needs? Three points will be more precisely considered:

1 What is the use of models in control and how this use differs from
what is currently considered in computer science?

2 Is there a well-admitted theory of computer implementation for
control models, in particular concerning the sampling of discrete
event systems?

3 How can we guarantee behaviour equivalence between models and
implementations in case of preemptive scheduling?

2. MODEL-BASED DESIGN IN COMPUTER
SCIENCE AND CONTROL

Model-based design is advocated in both theories as a method of
choice for efficiently and safely building systems. However these the­
ories differ in the way of achieving this goal:

In computer science, the proposed method (see for instance [1]) is
based on successive refinements: a large specification is designed first,
imprecise (non deterministic) in general, but sufficient for meeting the
desired system properties. Then implementation details are brought in
progressively, making the specification more and more precise, while
keeping the properties, up to a point when it can be implemented.
Clearly, this is an ideal scheme which is seldom fulfilled in practice,
but which has a paradigmatic value.

In control science, on the contrary, an exact model is built first, which
allows a control system to be designed. Then the various uncertainties
that may affect the system behaviour are progressively introduced and
it is checked that the designed controller is robust enough to cope with
these uncertainties.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 11

Clearly, these two schemes are not, in practice, too far from each other.
But, as control systems are mostly implemented by now on computers,
some effort is needed if these two schemes have to match more closely.
This can be valuable in the perspective of achieving an easier communi­
cation between computer and control cultures. A way to reach this goal
would be to see the initially precise control model as representing a large
class of models, those models which fall within some given "distance"
from this model. This distance would then represent the maximally ad­
missible uncertainty around the model and further refinements would
make this uncertainty smaller. This goal requires thus some notion of
control system distance and approximation.

3. SAMPLING DISCRETE EVENT AND
HYBRID SYSTEMS

Large modern control systems mix very closely continuous and dis­
crete event systems. This is due for instance, to mode changes, alarms,
fault tolerance and supervisory control. From a theoretical point of
view, computer implementation techniques for these two kinds of activ­
ity are quite different. Continuous control is dealt with through periodic
sampling (time-triggered computations as defined by [5]) while discrete
event systems use event-triggered implementations. However, in prac­
tice, many mixed continuous control and discrete event control systems
are implemented through periodic sampling. This is the case, for in­
stance, in Airbus fly-by-wire systems [7] and many other safety-critical
control systems. The problem is that there are no solid foundations
to periodically sampling discrete event systems and practitioners rely
on in-house "ad-hoc" methods. Building a consistent sampling theory
for mixed continuous control and discrete event systems would help in
strengthening these practices.

A situation where such lack of theory is particularly critical concerns
fault-tolerance: though the theory of distributed fault-tolerant systems
[8; 5] advocates the use of clock synchronisation, still many critical real­
time systems are based on the GALS (globally asynchronous, locally syn­
chronous) and, more precisely, the "Quasi-Synchronous" [3] paradigm:
in this framework, each computer is time-triggered but the clocks asso­
ciated with each computer are not synchronised and communication is
based on periodic sampling: each computer hats its own clock and pe­
riodically samples its environment, i.e., the physical environment but,
also, the activities of the other computers with which it communicates.
When such an architecture is used in critical systems, there is a need for
a thorough formalisation of fault tolerance in this framework.

12 From Model-Driven Design to Resource Management for Distributed Embedded Systems

4. FAITHFUL IMPLEMENTATIONS BASED
ON PREEMPTIVE SCHEDULING

A key question in model based development is the possible discrep­
ancy between models and their computer implementations. As a matter
of fact, if this discrepancy is too large, the benefits gained from the use
of models can be spoiled. This is the general question investigated in
section 2 where this question is considered in terms of distances and
topologies. Yet there are particular situations where other approaches
can be used. A typical example is found when implementations are based
on multiple theads and preemptive scheduling. This kind of implemen­
tation is mandatory in several cases, for instance:

• in multi-periodic models for efficiency reasons;

• in event-triggered systems when urgent events have to be handled.

In such systems, inter-task communication is likely to be strongly non
deterministic [2]. In some cases, for instance when discrete events are
considered, critical races can take place and the "distance" between mod­
els and implementations may become too large. There is thus a need for
more precise implementation techniques, which do not spoil the benefits
of model-based development such as those described in [4; 6].

REFERENCES
[1] Abrial, J.-R. (1995). The B-Book Cambridge University Press.

[2] Caspi, P. and Maler, O. (2005). From control loops to real-time programs.
In Hristu, D. and Levine, W., editors, Handbook of Networked and Embedded
Computing Systems. Birkhauser.

[3] Caspi, P., Mazuet, C , Salem, R., and Weber, D. (1999). Formal design of
distributed control systems with Lustre. In Proc. Safecomp'99, volume 1698 of
Lecture Notes in Computer Science. Springer Verlag.

[4] Henzinger, T. A., Horowitz, B., and Kirsch, Ch. M. (2003). Giotto: A time-
triggered language for embedded programming. Proceedings of the IEEE, 91:84-
99.

[5] Kopetz, H. (1997). Real-Time Systems Design Principles for Distributed Em­
bedded Applications. Kluwer.

[6] Scaife, N. and Caspi, P. (2004). Integrating model-based design and preemptive
scheduling in mixed time- and event-triggered systems. In Pushner, P., editor,
Euromicro Conference on Real-Time Systems, ECRTSO^-

[7] Traverse, P., Lacaze, I., and Souyris, J. (2004). Airbus fly-by-wire: A total
approach to dependability. In IFIP World Congress, Toulouse. IFIP.

[8] Wensley, J.H., Lamport, L., Goldberg, J., Green, M.W., Lewitt, K.N., MelHar-
Smith, P.M., Shostak, R.E, and Weinstock, Ch.B. (1978). SIFT: Design and

From Model-Driven Design to Resource Management for Distributed Embedded Systems 13

analysis of a fault-tolerant computer for aircraft control. Proceedings of the
IEEE, 66(10):1240-1255.

MDE BENEFITS FOR DISTRIBUTED, REAL
TIME AND EMBEDDED SYSTEMS

Fran9ois Terrier and Sebastien Gerard
CEA-List, {francois.terrier, sebastien.gerard}@cea.f

Abstract: Embedded systems envelopment are currently being challenged to provide
global solutions that reconcile three conflicting agendas:
enrichment/refinement of system functionalities, reduction of time-to-market
and production costs, and compliance with nonfunctional requirements.
Model-Driven Engineering (MDE) can help development master these
complexities by both separating concerns and systematically automating the
production, integration and validation process. This paper draws on the
AccordluML research project to illustrate the benefits of model-driven
engineering for embedded real time systems development.

Keywords; Model-Driven Engineering, UML profile. Embedded System, Real Time

1. INTRODUCTION

On today's sharply competitive industrial market, engineers must focus
on their core competencies to produce ever more innovative products, while
also reducing development times and costs. This has further heightened the
complexity of the development process. At the same time, industrial
systems, and specifically embedded systems, have become increasingly
software-intensive. New software development approaches and methods
must therefore be found to free engineers from the technical constraints of
development and allow them to concentrate on their core specialties. One
possible solution is to provide them with development models adapted to
these specialties instead of asking them to write code.

The purpose of this paper is to describe the advantages expected from
MDE for embedded real time systems. The paper begins with an overview

Please use the foil owing format when citing this chapter:

Terrier, E , Gerard, S., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Model-Driven

Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R.,

PereiraC.,ThiagarajanRS., (Boston: Springer), pp. 15-24.

16 From Model-Driven Design to Resource Management for Distributed Embedded Systems

of development problems, and then describes the various stages in MDE and
their advantages, using the example of a CEA-List experiment conducted for
the AccordluML research project.

2. MODEL MANIPULATION

Model-driven engineering relies on mastery of two essential mechanisms:
abstraction and refinement. Both mechanisms partially satisfy the need for
top-down and bottom-up approaches, while providing the different points of
view required for system development (e.g. design and validation).

2.1 MODEL ABSTRACTION

The concept of "abstraction" is intrinsic to that of modeling, which by
definition consists of representing a real world object in simplified form.
This involves two possible types of abstraction - vertical and horizontal.
• Vertical abstraction - it follows development process flow, producing

models that focus on the pertinent level of detail. There is a recurrent
need, in system development, for models of standardized software
(RTOS and/or middleware) and of hardware implementation platforms
(e.g. POSIX, OSEK) that identify dependencies between application
models and implementation choices/constraints.

• Horizontal abstraction - it takes place at a same level of definition and
emphasizes certain system facets or complementary viewpoints.
Examples include task models for RT analysis, architectural models
centering on system functions and scenarios models for system testing.

For refinement purposes, the goal is to master and automate the process
of building one specialized model from another. This typically means
producing executable applications for example by model compilation,
formalization, use of design patterns for the domain.

2.2 EXECUTABLE MODELS

Fast prototyping, evaluation and validation are vital to the development
of real time embedded (RT/E) systems. To this effect, engineers need
"executable" models, i.e. models whose behavior (dynamics) can be
executed or simulated. More specifically, they must also be:
• Deterministic behavior models - RT/E applications must always behave

in the same way in a given, same initial context. The semantics of the
models used, and therefore, of the underlying modeling language, must
be precisely defined and above all unambiguous.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 17

• Complete models - A complete model contains all the data required to
analyze its behavior and to generate an executable view of this data.

A model is executable if it exhibits both the above properties:
determinism and completeness. It can be executed in different ways, e.g. via
automatic code generation and simulation of the resulting code, or through
formal model analysis tools that trace system operation and verify behavior.

2.3 UML FORMALISM

This section provides a brief description of the UML standard from an
RT/E perspective. It then identifies the reasons why extensions to this
standard, in the form of language-dedicated MDE artifacts, are necessary.
Following this quick overview, the high level abstractions required to model
RT concerns, i.e. concurrency and RT constraints, are presented.

2.3.1 UML PROFILE FOR EMBEDDED SYSTEMS

The Object Management Group has standard profiles (e.g. for CORBA),
to model "schedulability, performance and time" (SPT [1]) and "quality of
service and fault tolerance" (QoS&FT [2]). However, these profiles cannot
fully support the needs of the real time domain. OMG has therefore launched
a new profile, definition for this domain (MARTE, [3]), which includes the
previous SPT profile and affords:
• generic concepts required to model real time aspects in both qualitative

and quantitative terms (concurrency, resources, time);
• concepts required for schedulability or performance analysis on a model;
• a complete set of modeling elements to build specification and design

models of embedded systems, and support the various (asynchronous
and synchronous) computation models used in the RT domain;

• extensive models of standard platforms (POSIX, Arinc, OSEK, etc.).

2.3.2 OPEN POINTS

The UML2 standard deliberately leaves open a number of issues for which
solutions differ, depending on domain and software design approach. These
points need to be clarified to obtain complete and unambiguous models [4].
The three most important of them are:
• Concurrency models - the basic concept of UML is the "active object",

whose only given characteristic is the ability to autonomously process
certain messages, thereby introducing parallel execution.

• Message management policy for state machines — the basic management
scheme calls for messages to be placed in a queue, then selected one at a

18 From Model-Driven Design to Resource Management for Distributed Embedded Systems

time to trigger a transition and undergo processing. The next message is
only taken once the first has been processed. Neither the message
selection criterion nor the exact system behavior on receipt of an
unexpected message is defined here.

• Description of algorithms - UML2 proposes a conceptual fi*amework for
describing all actions and their sequences. It does not, however, define a
standardized notation that is common to and directly usable for them.

Practical implementation of UML for embedded systems also requires well-
defined semantic variation points and a modeling method adapted to each
development stage, to ensure selection of the right modeling level, usable
concept subset and writing rules.

3. BACKGROUND ON MDE RESEARCH

The CEA-List conducts studies on new methods and techniques to
facilitate development of distributed real-time embedded systems (or DREs).
Through regular collaboration with major industrial firms (PSA, Thales,
EdF, EADS, CS-SI, etc.). Among the needs expressed there is a strong
demand for assistance in dealing with the increasing complexity of systems,
a wide variety of implementation options, constantly evolving functionalities
and shorter times-to-market. Strong attention is also being paid to
"capturing" and generalizing company development knowhow to afford and
enhance reusability, not only in the last stages of implementation but also
throughout the system development cycle. DREs are therefore an ideal case
for studying possible automation of development steps or model analysis:
1. They intrinsically involve various points of view (e.g. fiinctional, real­

time, security, fault-tolerance), with the drawback that separation of
product line generic requirements from those of particular applications is
difficult (due to a priori implementation choices or constraints or
frequent expression of requirements based on specific real time values).

2. Target implementation options vary widely: they may use different
execution models for a same specification, (e.g. multitask models with
RTOS, synchronous models, loop programming); they may be mapped
on various platforms (single/multiple processors, shared/distributed
memory...). In addition, these options use largely proprietary and ad hoc
solutions and benefit only fi-om a few viable standards.

3. Performance is often a "sensitive" issue, which cannot be dealt with
practically by conventional software encapsulation techniques (multi­
level interfaces may be inefficient). This can lead to strong interleaving
of real time and functional codes, a critical factor where component

From Model-Driven Design to Resource Management for Distributed Embedded Systems 19

models for DREs must be defined without knowing the intricacies of real
time and functional code operation inside the component.

4. They are often critical to testing or validation and require complete and
accurate specifications and intensive use of system analysis techniques.

5. They generally require very skilled developers (specification, design,
implementation, validation, integration), with a high level of expertise.

All of these requirements are an incentive for intensive use of MDE
techniques throughout the system development and validation process. This
means use of complementary MDE artifacts tested, implemented and
evaluated in the Accord|UML methodology tool kit as discussed below.

4. PREVIOUS EXPERIENCE WITH MDE

Accord|UML [5-13] is both a conceptual framework and a method whose
purpose is to assist in developing RTE applications, whereby specific design
and implementation aspects are abstracted as much as possible, so that:
• Developers can concentrate on the specialist aspects of these systems

(e.g. fiinctionalities and performance constraints).
• Porting of applications is made easier by use of a first modeling level that

is independent from implementation platforms.
To achieve this, Accord|UML is adapted to an MDE context. Accorĉ uML is

based on use of UML models for abstraction and automatic and/or assisted
transformation for refinement. Another of its objectives is to provide the
method with modeling guidance tools. This method involves four main
modeling phases: preliminary analysis, detailed analysis, validation/testing
and prototyping. Progression from one to another of these phases is achieved
by a continuous and iterative process of refining UML models.

The preliminary analysis phase thus consists essentially of rewriting
system specifications in unambiguous form [8, 11]. Requirements are
translated into use cases that are themselves broken down into scenarios
depicted by sequence diagrams; these scenarios model interactions between
the system, considered as a black box, and its environment. This requires
very few concepts: the modeling rules (e.g. choice of diagrams and
consistencies) are formalized and incorporated into the development process
model as an initial profile, identified as the "Preliminary Analysis Rules".

The second phase consists of switching from a black box to a white box
view in which emphasis is then placed on system content. The initial version
of the resulting detailed analysis model is obtained by refming the
preliminary analysis model. This model affords precise modeling of system
behavior using interaction diagrams and state diagrams [6, 7, 9]. It can be

20 From Model-Driven Design to Resource Management for Distributed Embedded Systems

transformed into a dedicated RT validation model and annotated to perform
either performance analysis or scheduling analysis [14].

The prototyping model is then obtained on the same basis, by automatic
generation from the previous model. This operation is performed specifically
through systematic application of design patterns to key elements of the
embedded system model (real time objects, automata management, real time
constraints, asynchronous or synchronous communications, etc.). The result
is a multitask model that can be implemented on the Accord platform [11,
12]. This platform is a "framework" for implementing the high level
concepts (such as "real time object") that are manipulated via the application
models. It enables complete separation of the specialty models from the
implementation constraints of the target platforms.

To assist users in this modeling process, the methodology is backed up
by a set of Eclipse modules (modeling and model transformation profiles),
which were integrated for experimentation purposes into the IBM-Rationale
modeling tool "Rationale Software Architect" (RSA).

4.1 HIGH-LEVEL MODELING CONCEPTS

To facilitate the expression of RT requirements from the onset of the
embedded system modeling process, modeling concepts must be suitably
detailed and independent from implementation techniques. Two types of
abstractions are especially vital to RT/E modeling: parallelism and RT
characteristics. To integrate these abstractions, Accord|uML proposes [11]:
• The "RealTimeObject" stereotype: Model elements that have this

stereotype are in fact considered as concurrent entities that encapsulate
concurrency and state controls for the messages received for processing.
This is an extension of the UML active object concept. Such an
approach views the real time object as a task server whose RT
characteristics (deadline, periodicity, etc.) are defined by the received
messages triggering the tasks. The operation calls received by the object
are processed by a concurrent activity.

SRSJ

tgSpeed: Integer
regCoef:Real

start()
sfopO
regulateSpeedO

ssm
0..1

0..V

« RealTimeObject»
SpeedSensorManager

getSpeedO: Speed

« RealTimeObject»
MotorConfrolter

sendCmd (dT: Real)

Figure 1. Typical use of RealTimeObject.

The "RealTimeFeature" stereotype reifies the quality of service concept
for modeling the RT constraints of an application. The different tag

From Model-Driven Design to Resource Management for Distributed Embedded Systems 21

definitions associated with this concept allow modeling of qualitative
RT characteristics such as deadlines, periods, or ready times. Figure 2
describes the behavior of the SpeedRegulationManager class, using an
executable-protocol-type state machine (standard specialization of a
common state machine). Addition of the "RTF" stereotype with the
tagged value period = 100 Hz on the cyclic transition of the On state
with itself causes this cyclic treatment to take place periodically.
Figure 3 illustrates a startRegulating interaction. It has the «RTF»
stereotype that specifies an end-to-end deadline for said scenario, which
here is 100 ms. This means that all the activities executed in the system
on receipt of the startRegulating message must end no later than 100 ms
after the message has been received.
All of the UML extensions proposed by AccordjUML are thus grouped

together in a language-dedicated MDE artifact - the Accord|uML profile.

«RT-EPSM»
stm RegulatingSpeedManagei 7

«RTF»
period = 100 î

[carSpeed > 30] / [regulateSpeed]

[carSpeed <= 30] / tself'stopO]-

(RTF »{deadline = 100 ms}
interaction startRegulation "J
% I

Figure 2. Periodic RTF applied to a state machine. Figure 3. End-to-end Deadline.

4.2 EXECUTABLE MODELS

4.2.1 DETERMINISTIC MODELS

To enable construction of a deterministic model, the underlying modeling
language must have both well-defined grammar (syntax) and unambiguous,
deterministic semantics. The following paragraphs use three examples based
on the Accord|uML approach to illustrate how the indeterminisms remaining
in the standard are corrected by specializing the latter in a dedicated profile.

One open variation point in UML semantics is the policy set for
dispatching the messages present in a state machine queue. In AccordjuML,
this variability has been eliminated, by assigning each message an RT
constraint, i.e. by considering that each state machine stores received events
in a mailbox and that messages are selected by comparing their RT
constraints (e.g. the first message selected is the one with the earliest
deadline, which is tantamount to "earliest deadline first" scheduling).

22 From Model-Driven Design to Resource Management for Distributed Embedded Systems

4.2.2 COMPLETE MODELS

Once model determinism has been confirmed, the second requirement for
RT/E-dedicated models - completeness - must likewise be met. In our case,
a complete model not only describes system structure and communications
but also fully models behavior, control mechanisms and data processing
actions. Our approach proposes to separate control (life cycle) aspects from
data processing aspects. Control mechanisms are modeled using state
machines as described above. Data processing actions are modeled using
UML activity diagrams supplemented by various basic actions.
Mathematical actions are modeled using MathML language syntax [15].

To meet the needs of all users, AccordJAL - the action language
associated with AccordluML? proposes two formalisms to describe data
processing actions, textually or graphically [13] (Figure 4). They are
equivalent, and the user can switch back and forth between them according
to his needs or working habits. Each action is defined as follows: semantics,
textual notation (in EBNF), graphic equivalent and examples.

act regulateSpeed J

I ssm I—>[getSpeed j

arctanCtgSpeed-carSpeed)]

3L

B-G

deltaTorque: Real

sendCmd (dettaTorque)

«textualView »
act regulateSpeed J

!l variables declaratiort

Speed carSpsed

Real dsitaTorque

// irsthod body

carSpeed = ssm.getSpeed

deit.iTwqua = arctan (tgSpeed -

mcsendCmd (deilaTofque)

Figure 4. Graphic and textual views of algorithm modeling.

4.3 IMODEL EXECUTION

An executable model is a model that can be ran on a computer. There are
two main techniques for making a model "executable":
• By a machine that incorporates model elements and can run them on a

computer (this is known as "model interpretation") [14].
• By transformation, i.e. conversion of the model into a formalism that is

itself executable (i.e. code generation).

From Model-Driven Design to Resource Management for Distributed Embedded Systems 23

5. HOW COULD MDA HELP DREs?

Five requirements have been defined for DRES development. Experience
with AccordluML shows that use of model-driven engineering techniques and
development more than cover these requirements, as shown for each here:
• DREs intrinsically require various points of view, process definitions and

tooling associated with UML extensions that provide high-level concepts
can formalize the content of the models as well as their interdependency.
It is then possible, on a given model, to ensure visibility of the
requirements corresponding to implementation concerns and to easily
extract or modify them without changing the rest of the model.

• DREs implementation choices vary widely: definition of Computation
Description Models and Platform Description Models allow separation
of these elements from the rest of the application model. Final
implementation can then be done though dedicated transformations.

• Performance is often a "sensitive" issue: Code generation heuristics have
shown that it is possible to both manipulate high-level concepts in the
model and ensure effective implementation.

• DREs are often critical to testing or validation: Definition of UML
extensions eliminates ambiguities and provides full semantics, thus
enabling, by example, use of formal analysis tools to derive test
sequences or determine the feasibility of scheduling.

• DREs generally require highly skilled developers: generic
implementation patterns and architectures are widely used for such
systems. Introduced into the development process as reusable elements,
they allow easy reuse of developer know-how.
It should be noted that transition from code-oriented to model-oriented

development will not alleviate the need for answers to the usual problems of
traceability, configuration and version management, etc. For MDE to be
successful in industry, solutions to these issues will have to be available for
all tools claiming to be MDE-compliant!

Definition and development of a set of MDE artifacts lies at the core of
new large-scale joint research programs as for example:
• The CARROLL program involving CEA, INRIA and Thales

(www.carroll-research.org), whose goal is to provide tools for model-
driven engineering and component-based middleware.

• The Software Factory project of the System@tic competitiveness cluster
(www.svstematic-paris-region.org) federates more than 40 partners in
research on MDE, validation and execution. This project will provide an
open source platform supporting MDE for embedded systems.

24 From Model-Driven Design to Resource Management for Distributed Embedded Systems

REFERENCES

[1]0MG, "UML Profile for Schedulability, Performance, and Time, vl.l," formal/05-01-02,
2005.

[2] OMG, "UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
& Mechanisms," ptc/04-09-01, 2004.

[3] OMG, "UML Profile for Modeling and Analysis of Real-Time and Embedded systems
(MARTE) RFP", realtime/05-02-06.

[4] S. Gerard and F. Terrier, "UML for Real-Time," chapter in "UML for Real: Design of
Embedded Real-Time Systems," L. Lavagno, G. Martin, and B. Selic, editors, Kluwer
Academic Publishers, Boston, 2003, p. 369.

[5]F. Terrier and S. Gerard, "Real Time System Modeling with UML: Current Status and
Some Prospects," in 2nd Workshop on SDL and MSC, 2000, Grenoble, France.

[6] A. Lanusse, S. Gerard, and F. Terrier, "Real-Time Modeling with UML : The ACCORD
Approach," in "UML'98 : Beyond the Notation," 1998, Mulhouse, France, J. Bezivin et
P.A. Muller eds.

[7]S. Gerard, N. S. Voros, C. Koulamas, and F. Terrier, "Efficient System Modeling of
Complex Real-time Industrial Networks Using The ACCORD/UML Methodology,"
presented at Architecture and Design of Distributed Embedded Systems (DIPES 2000), B.
Kleinjohaim, Kluwer Academic Publishers, p. 10, Paderbom University, Germany,
October 18-19 2000.

[8] S. Gerard, F. Terrier, and Y. Tanguy, "Using the Model Paradigm for Real-Time Systems
Development: ACCORD/UML," presented at OOIS'02-MDSD, J.-M. Bruel and Z.
Bellahsene eds.. Springer, pp 260-269, Montpellier, September 2002.

[9] C. Mraidha, S. Gerard, F. Terrier, and J. Benzakki, "A Two-Aspect Approach for a Clearer
Behavior Model," presented at the 6th IEEE Intemational Symposium on Object-Oriented
Real-time Distributed Computing (ISORC'2003), T. N. P. Puschner, A. Ghafoor eds.,
IEEE Computer Society, ISBN 0-7695-1928-8, pp 213-220, Hakodate, Hokkaido, Japan,
14-16 May 2003.

[10] P. Tessier, S. Gerard, C. Mraidha, F. Terrier, and J.-M. Geib, "A Component-Based
Methodology for Embedded System Prototyping," presented at 14th IEEE Intemational
Workshop on Rapid System Prototyping (RSP'03), IEEE Computer Society, ISBN 0-7695-
1943-1, pp 9-15, San Diego, USA, 9-11 June 2003.

[11] S. Gerard, C. Mraidha, F. Terrier, and B. Baudry, "A UML-Based Concept for High
Concurrency: the Real-Time Object," presented at The 7th IEEE Intemational Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC'2004), T. A. a. I. L. J.
Gustafsson, IEEE Computer Society, ISBN 0-7695-2124-X, pp 64-67, Vienna, Austria,
12-14 May 2004.

[12] N. Guelfi, A. Schoos, S. Gerard, and F. Terrier, "EUDEMES: Component-Based
Development Methods for Small-Size Embedded Systems," ERCIM NEWS, 2003, vol. 52
(Embedded Systems), p. 64

[13] C. Mraidha, S. Gerard, Y. Tanguy, H. Dubois, and R. Schneckenburger, "Action
Language Notation for Accord/UML," CEA DTSI/SOL/LLSP/04-163/HD, 2004.

[14] D. Lugato, N. Rapin, and J.-P. Gallois, "Verification and tests generation for SDL
industrial specifications with the AGATHA," presented at Workshop on Real-Time Tools,
CONCUR'01,pp,200L

[15] W3C, "Mathematical Markup Language (MathML) Version 2.0 (Second Edition),"
http://www.w3.org/TR/2003/REC-MathML2-20031021/. 2003.

REIFYING THE SEMANTIC DOMAINS OF
COMPONENT CONTRACTS

Jean-Marc Jezequel
Irisa (INRIA & University of Rennes 1)*

Abstract In domains such as automotive or avionics, software cannot any longer
be produced as a single chunk, and engineers are contemplating the pos­
sibility of componentizing it. A component only exhibits its provided or
required interfaces, which must be enriched to take into account extra-
functional aspects. This defines multi-level contracts between compo­
nents allowing one to properly wire them. Instead of defining an in­
tegrated language only making available a limited set of concepts for
modeling extra-functional aspects, we propose to handle open-ended
modeling of extra-functional aspects of real-time and embedded sys­
tems, based on meta-modeling techniques and Model Driven Engineer­
ing (MDE) for reifying their semantics. Then the designer can use
off-the-shelf tools to perform various kinds of design time analysis.

1. INTRODUCTION
In domains such as automotive or avionics, products are characterized

by high performance, high dependabiUty, outstanding quahty demands,
and exponentially increasing complexity. Since these real-time and em­
bedded systems are getting ever more software intensive, their software
cannot any longer be produced as a single chunk. Automotive or avion­
ics engineers are thus contemplating the possibility of componentizing
it, along the lines of Szyperski's [12] ideas, where

a software component is a unit of composition with contractually speci­
fied interfaces and explicit context dependencies only. A software com­
ponent can be deployed independently and is subject to composition by
third-party.

In real-time and embedded systems however, we have to take into
account many extra-functional aspects, such as timeliness, memory con-

*This work has been partially supported by the Artist2 Network of Excellence on Embedded
Systems Design (IST-004527).

Please use the foil owing format when citing this chapter:

Jezequel, J.-M., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Model-Driven
Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R.,
Pereira C, Thiagarajan PS., (Boston: Springer), pp. 25-34.

26 From Model-Driven Design to Resource Management for Distributed Embedded Systems

sumption, power dissipation, reliability, performances, and generally
speaking Quality of Service (QoS). These aspects can also be seen as
contracts [9] between the system, its environment and its users. These
contracts must obviously be propagated down to the component level.
One of the key desiderata in component-batsed development for embed­
ded systems is thus the ability to capture both functional and extra-
functional properties in component contracts, and to verify and predict
corresponding system properties [11].

To master the complexity of modern real-time and embedded systems,
engineers must rely on modeling for representing several aspects of reality
for some purposes, such as thorough quality and stability assessment at
early design stages or active treatment of design assumptions to guide
system development. However the extra-functional aspects that must be
taken into account are so various and domain specific (and even vary very
much company-wide inside the same domain) that there is no integrated
modeling language encompassing them all.

We propose an alternate way to handle open-ended modeling of extra-
functional aspects of real-time and embedded systems, based on meta-
modeling techniques and Model Driven Engineering (MDE) [3]. Instead
of defining an integrated language only making available a limited set
of concepts for modeling extra-functional aspects, we propose to let
the designer define as many modeling sub-languages as needed for de­
scribing QoS contracts. These sub-languages are defined as executable
meta-models: their abstract syntax are defined as plug-in extensions to
the UML2.0 meta-model, their static semantics are given with a set of
OCL constraints, and their dynamic semantics are expressed with Ker-
meta [10]. Once the semantic domains of component contracts has been
reified this way, the designer can use off"-the-shelf tools (such as model-
checkers or constraint solvers) to perform various kinds of design time
analysis.

The rest of the paper is organized as follows. Section 2 details the
notion of contract along the four levels defined in [2]. Section 3 presents
how they can be integrated at meta-modeling level. Section 4 discusses
the problem of composing the components and computing the QoS prop­
erties of the assembly. Section 5 discusses how various kinds of design
time analysis can then be performed. Section 6 discusses related works,
and we finish by some conclusions and perspectives.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 27

2. FOUR LEVELS OF C O M P O N E N T
CONTRACTS

The term contract can very generally be taken to mean "component
specification" in any form. This specification should tells us what the
component does without entering into the details of how.

A contract is in practice taken to be a constraint on a given aspect
of the interaction between a component that supplies a service, and a
component that consumes this service [9]. Component contracts differ
from object contracts in the sense that to supply a service, a component
often explicitly requires some other service, with its own contract, from
another component. So the expression of a contract on a component-
provided interface might depend on another contract from one of the
component-required interfaces.

That is also known as the assume/promise approach where each com­
ponent has a black-box model, which explicates assumptions about its
environment and state corresponding promises on the service offered by
the component to the environment (e.g.; promising state-dependent la­
tencies of component services as a function of assumed service times of
invoked services). Similarly, bounds on the occurrence of critical events
can be promised only batsed on failure rates for invoked services, assump­
tions on failure rates for an execution platform, and knowledge of the
ways the component itself can induce and propagates failures.

A now widely accepted classification of different kinds of contracts has
been proposed in [2], where a contract hierarchy is defined consisting of
four levels.

Level 1 : Syntactic interface, or signature (i.e. types, fields, methods,
signals, ports etc., which constitute the interface). The syntactic
interface of a component is a list of operations or ports, includ­
ing their signatures (the types of allowed inputs and outputs),
by means of which communication with this component is per­
formed. These Level 1 contracts allow static type checking, that is
a verification that there is no possibility of interaction errors (i.e.
messages not understood).

Level 2 : Constraints on values of parameters and of persistent state
variables, expressed, e.g., by pre- and post-conditions and invari­
ants. Functional properties are used to achieve more than just
interoperability. Level 2 contracts are about the actual values of
data that are passed between components through the interfaces,
whose syntax is specified at Level 1. Typical properties of inter­
est are constraints on their ranges, or on the relation between the
parameters of a method call and its return value.

28 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Level 3 : Synchronization between different services and method calls
(e.g., expressed as constraints on their temporal ordering). Level
3 contracts are about the actual ordering between different inter­
actions at the component interfaces. They allow one to express
explicit control information, which makes the expression of com­
plex, history dependent input/output relations much easier.

Level 4 : Extra-functional properties, such as performance, memory
consumption, constraints on response times, throughput, etc..

A quality of a system (e.g.; memory consumption) can in general be
considered as a function mapping a given system instance with its full
behavior onto some scale. The scale may be qualitative, in particular it
may be partially or totally ordered, or the scale can be quantitative (as
for memory consumption), in which case the quality is a measure. The
problem of realizing systems that have certain guaranteed qualities, also
known as their quality of service (QoS), involves the representation of
such qualities in design models or languages and techniques to implement
and analyze them as properties of implemented system instances.

There exist many QoS contracts languages which allow the designer
to specify the extra-functional properties and their constraints on the
provided interfaces only. However, few of them allow specifying de­
pendency relationships between the provided and required services of a
component (e.g.; the memory consumption of a component may depend
on some function of its required interfaces). If we want an open-ended
way of letting the designer specify such QoS dimensions, we need to
provide a meta-model infrastructure allowing for both:

• the description of the various types of contracts and their depen­
dencies at the modeling level,

• the specification of a mapping function from the syntactic domain
of the contract to its semantic domain.

For example, to continue with our simple example of memory con­
sumption, in the case of a simple centralized memory system, the op­
erational semantic of memory can be defined as a class with an integer
attribute modeling the amount of memory already consumed, and two
operations, alloc and free, each taking an integer parameter.

3. META-MODELING C O M P O N E N T
CONTRACTS

These four levels of contracts should fully describe all the visible prop­
erties of components, whatever their actual implementation. Model

From Model-Driven Design to Resource Management for Distributed Embedded Systems 29

based engineering is the idea that working with models of such com­
ponent can be useful to perform a range of engineering tasks, such as
prototyping, dimensioning, validation, and even code or test genera­
tion. While the levels 1 to 3 are supported in a number of ways in
many modeling languages (e.g.; SDL, Lotos, as well as various flavors of
automata-based languages) the aspects that must be taken into account
at level 4 are so various and domain specific that there can probably be
no integrated modeling language encompassing them all.

We thus propose an alternate way to handle open-ended modeling of
extra-functional aspects of real-time and embedded systems, based on
meta-modeling techniques and Model Driven Engineering (MDE) [3].
Instead of defining an integrated language only making available a lim­
ited set of concepts for modeling extra-functional aspects, we propose
to let the designer define as many modeling sub-languages as needed for
describing QoS contracts.

At the abstract syntax level, these open-ended sub-languages are
linked to a component met a-model playing the role of a backbone. We
use a subset of the UML2.0 meta-model for describing component-related
notions, as follows:

Level 1 The structural part of a component type is defined by a set of
port types. Each port type is identified by a name and a set of
provided and required UML2 interfaces. Each interface groups a
set of services. Composite component types also contain a slot for
each sub component they contain.

Level 2 For describing functional aspects, we can just reuse the OCL
(Object Constraint Language), hence providing means for describ­
ing partial functions or relations by means of invariants, pre- and
postconditions.

Level 3 In the description of a primitive component type we include
an abstraction of its behavior, based on the UML2.0 State-Chart
formalism. Since composite component types must delegate all
their ports, they do not contain any behavior.

Level 4 Since our extra-functional contracts would be used on software
components with explicit dependency specification, we need means
to express a provided contract in terms of required contracts. In
the most general case, a component may bind together its provided
contracts with its required contracts as an explicit set of equations
(i.e. how offered QoS is related to required QoS).

Therefore, the meta-model for Level 4 contracts is made of the fol­
lowing concepts:

30 From Model-Driven Design to Resource Management for Distributed Embedded Systems

• expression of QoS spaces (dimensions, units);

• primitives bindings between these spaces and the levels 1-3 mod­
eling elements (bindings to observable events, conversion from dis­
crete event traces to continuous flows, definition of measures);

• constraint languages on the QoS spaces (defining the operations
that can be used in the equations, form of these equations).

The declarative nature of Level 4 contract will make them suitable to
various kinds of design-time analysis, including solving them with Con­
straint Logic Programming techniques [4].

At each level, these meta-models can be enriched with well-formedness
rules expressed with the OCL, hence providing some elements of static
semantics. Note that all these definitions are made at the component
type level. UML2.0 indeed rightly distinguishes between component
types and component instances^ which are deployed into particular con­
figurations, called component assemblies.

4. COMPONENT COMPOSITION
At the syntactic level, component composition is easy: the designer

just has to wire required interfaces to provided interfaces of compo­
nent into a particular component assembly. The overall system can
even be closed if we are able to provide a model of the environment,
which is formally seen as just another component. Things are getting
a little bit more interesting at the semantic level, which should answer
the following question "what is the global behavior of the assembly on
each of the 4 levels that have been defined above?". At the behavioral
level, that 's not too difficult a question, because the global behavior
of a component assembly can often be described as the parallel com­
position of the component state-charts, with some synchronization on
input/outputs. However the question is more complex for level 4. Ide­
ally, for any components (C^, Cy), and for any interesting property P of
the components, the composition operator o should have the following
property: P{C^oCy) = P{C^)oP{Cy)

This ideal composition operator might however be difficult to define
for two different kinds of reasons.

• real system level composition operators are non trivial. This might
be overcome by modeling these composition operators as compo­
nents relying on a few set of primitive operators. In practice how­
ever, it is tedious to reverse engineer complex component frame­
works such as .NET or real-time buses.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 31

• the mere nature of the composition meaning depends on the prop­
erty of interest. For instance, while memory consumption MC is
clearly additive among components {MC{CxoCy) = MC{Cx) +
MC{Cy))^ this is seldom the case for other quality attributes (e.g;
reliability). Furthermore, if we want to allow open-ended level 4
contracts, we need the designer to express the meaning of compo­
sition on new quality attributes.

We thus prefer to keep all aspects separate in the semantics, or more
precisely to define one semantic domain for each aspect, and then let
the designer explicitly define the meaning of the composition with a
set of projections oi of the composition operator on each aspect: Vi G
aspect, Pi{CxOiCy) = Pi{Cx)oiPi{Cy)

We propose an operational way of handling this projection, which is
based on the reification of the semantic domain of each QoS dimension.
As we have seen before with our simple example of memory consumption,
the operational semantic of memory can be defined as an integer that can
be incremented or decremented as memory is allocated or freed. Then
we can use an Aspect-Oriented Programming (AOP) kind of approach
to "weave" this memory consumption aspect into the global behavior of
the component assembly which is given by the parallel composition of
component state-charts. Each time a component service with a memory
consumption related contract is called, we get a side effect which is
a call to the relevant operation on the reification of the memory QoS
dimension. In AOP terms, the contract plays the role of a point-cut,
while the state-chart transition holding the service call is the join point.

We then need a tool for (1) describing the operational semantics of
extra-functional aspects and (2) implementing this weaving at modeling
time, for model analysis purposes. We have developed Kermeta exactly
for this kind of problems.

Kermeta [10] is an open source meta-modeling language developed
by the Triskell team at IRIS A. It has been designed as an extension to
the EMOF 2.0 to be the core of a meta-modeling platform. Kermeta
extends EMOF with an action language that allows specifying semantics
and behavior of meta-models. The action language is imperative and
object-oriented. It is used to provide an implementation of operations
defined in meta-models. As a result the Kermeta language can, not
only be used for the definition of meta-models but also for implementing
their semantics, constraints and transformations, as well as weave extra-
functional aspects [8] into base models (e.g. memory consumption within
the component model).

32 From Model-Driven Design to Resource Management for Distributed Embedded Systems

5. APPLICATIONS
Since the projection of a component assembly onto any QoS dimension

can be seen at the semantic level as a system of non-linear constraints
that must be satisfied, we can foresee several ways of exploiting this in­
formation at design time, with (1) Constraint Logic Programming (CLP)
techniques (2) Model Checking and (3) Simulation.

For any QoS dimension, the constraints attached to a component can
be translated into a specific CLP-compliant language, using a model
transformation techniques as described in [5]. Then for a single com­
ponent, we can use a CLP(R) based constraint solver to get ranges for
admissible values for the QoS properties of the component. It might also
allow an early detection of incompatibilities among component with re­
spect to QoS properties. Similarly, since the component assembly is
being seen a a complex system of constraints, it can be solved in two
directions, either bottom-up or top-down. Knowing the value ranges for
QoS properties of the deployment platform, the system of non-linear con­
straints can be solved bottom-up to obtain end-to-end QoS value ranges.
Conversely, based on wanted operational value ranges for QoS properties
of the component assembly, the system of non-linear constraints can be
solved top-down to obtain dimensioning information for the deployment
platform.

The idea of using model-checking techniques is to run an exhaustive
co-simulation of the various semantic domains. Since the semantic do­
mains of the QoS dimensions have been reified and woven into the global
behavior of the component gtssembly, QoS dimensions such as memory
consumption are now part of the global state of the system as seen by
a model checker. Since the model checker needs no knowledge at all
of this fact, we can easily reuse off-the-shelf model checkers and obtain
results on e.g.; the exact bounds on memory consumption of the com­
ponent assembly. However, it is clear that if our model checking tool
relies on enumeration techniques for the state space exploration, we are
bound for trouble if our QoS semantic domains are based on unbounded
integers or even worse, floating point real numbers. This limitation can
be somehow overcome either by bounding QoS semantic domains, or by
using recent progress on symbolic model checking. In the latter case, it
would however limit our level 4 contracts to constraint expressed with
simple arithmetics.

Simulation can be seen as a non-exhaustive exploration of the com­
ponent assembly semantic domain, again including the reification of the
QoS dimensions. Then, given a sets of operational profiles, we can get
interesting statistics on typical distributions of end-to-end QoS values.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 33

We actually see these various techniques as complementary. Once the
designer has described her component assembly, then a set of comple­
mentary analysis can be performed depending on the characteristics of
the application, as well as the availability of tools.

6- RELATED WORKS
In the Component-Based Software Engineering community, the con­

cept of predictability [6] is getting more and more attention, and is now
underlined as a real need (see for instance Predictable Assembly from
Certifiable Components (PACC) initiative promoted at the SEI [7]). At
modeling level, the Object Management Group (OMG) has developed
its own UML profiles for QoS and for schedulability, performance and
time specification, and it is still working in this domain with the MARTE
RFP. In these works however, the semantic domain of extra-functional
properties is either hard-coded or implicit. The interest of our approach
is to make their semantics both open-ended and explicit at the meta-
model level.

In most of these approaches, a QoS property is specified as a constant:
they do not allow the specification of QoS properties dependency rela­
tionships. In contrast, Reussner proposes parameterized contracts [11]:
the set of available services provided by a component depends on its
required services that the context can provide. We actually follow the
same line, just making it more flexible an open-ended with executable
meta-modeling techniques.

The Metropolis meta-model [1] also allows capturing extra-functional
aspects of design by so-called quantity managers, and provides means
for declarative specification of extra-functional constraints through its
constraints logic. Our approach follows the same line, but starts from
a different context where component contracts are explicitly modeled to
allow assume/promise reasoning.

7. CONCLUSION
In the Component-Based Software Engineering community, the con­

cept of predictability is getting more and more attention: how compo­
nent technology can be extended to achieve predictable assembly, en­
abling runtime behavior to be predicted from the properties of com­
ponents. We have proposed to handle open-ended modeling of extra-
functional aspects of real-time and embedded systems, based on meta-
modeling techniques and Model Driven Engineering. We let the de­
signer define as many modeling sub-languages as needed for describing
QoS contracts. These sub-languages are defined as executable meta-

34 From Model-Driven Design to Resource Management for Distributed Embedded Systems

models: their abstract syntax are defined as plug-in extensions to the
UML2.0 meta-model, their static semantics are given with a set of OCL
constraints, and their dynamic semantics is expressed with Kermeta in
order to be woven into the base behavioral model of the component as­
sembly. Once the semantic domains of component contracts has been
reified this way, the designer can use off-the-shelf tools (such as model-
checkers or constraint solvers) to perform various kinds of design time
analysis.

REFERENCES
[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Paserone, and

A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic system design
environment. IEEE Computer, 36(4), April 2003.

[2] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins. Making components
contract aware. IEEE Computer, 13(7), July 1999.

[3] Jean Bezivin, Nicolas Farcet, Jean-Marc Jezequel, Benot Langlois, and Damien
Pollet. Reflective model driven engineering. In G. Booch P. Stevens, J. Whittle,
editor. Proceedings of UML 2003, volume 2863 of LNCS, pages 175-189, San
Francisco, October 2003. Springer.

[4] Olivier Defour, Jean-Marc Jezequel, and Nol Plouzeau. Applying CLP to predict
extra-functional properties of component-based models. In J. S. de Boer, editor,
Proceedings of Logic Programming: 20th International Conference, ICLP 2004,
number 3132 in LNCS. Springer Heidelberg, September 2004.

[5] Olivier Defour, Jean-Marc Jezequel, and Nol Plouzeau. Extra-functional
contract support in components. In Proc. of International Symposium on
Component-based Software Engineering (CBSE7), May 2004.

[6] Aagedal J.O. Quality of service support in development of distributed systems,
PhD thesis. University of Oslo, Dept. Informatics, March 2001.

[7] Wallnau K. Volume iii: A technology for predictable assembly from certifiable
compo-nents. Technical Report CMU/SEI-2003-TR-009, SEI, 2003.

[8] Jacques Klein, Loic Helouet, and Jean-Marc Jezequel. Semantic-based weav­
ing of scenarios. In proceedings of the 5th International Conference on Aspect-
Oriente d Software Development (AOSD'06), Bonn, Germany, March 2006.
ACM.

[9] B. Meyer. Applying design by contract. IEEE Computer (Special Issue on
Inheritance & Classification), 25(10):40-52, October 1992.

[10] Pierre-Alain MuUer, Pranck Fleurey, and Jean-Marc Jezequel. Weaving exe-
cutability into object-oriented meta-languages. In S. Kent L. Briand, editor,
Proceedings of MODELS/UML'2005, volume 3713 of LNCS, pages 264-278,
Montego Bay, Jamaica, October 2005. Springer.

[11] Reusnerr R.H., Schmidt H.W., and Poernomo I.H. Reliability prediction for
component-based software architecture. Journal of Systems and Software,
66:241-252, 2003.

[12] C. Szyperski. Component software, beyond object-oriented programming.
Addison-Wesley, 2nd edition, 2002.

MODEL-BASED TEST SELECTION FOR INFINITE
STATE REACTIVE SYSTEMS *

Thierry Jeron
Irisa/Inna Rennes, Campus de Beaulieu, 35042 Rennes, France
Thierry.Jeron@irisa.fr

Abstract We address the problem of otT-line selection of test cases for testing the confor­
mance of a black-box implementation with respect to a specification of a reactive
systems. Efficient solutions to this problem have been proposed in the context
of fmite-state models, based on the ioco conformance testing theory. WQ ex­
tend them in the context of infinite state specifications, modelled as automata
extended with variables. We consider the selection of test cases according to test
purposes describing abstract scenarios that one wants to test. The selection of
program test cases then consists in syntactical transfonnations of the specifica­
tion model, using approximate analysis.

1. INTRODUCTION AND MOTIVATION
Testing is the most used validation technique to assess the correctness of

reactive systems. For more than a decade, model-based testing (see e.g. [1])
advocates the use of models to formalize this vaUdation activity. The formal­
ization relies on precise models of specifications, implementations and test
cases, a formal definition of correctness, required properties of test cases with
respect to correctness, and test generation algorithms.

In this paper we address the generation of test cases in the framework of
conformance testing of reactive systems [6]. Conformance testing consists
in checking that a black-box implementation of a system, only known by its
interactions with the enviromnent, behaves correctly with respect to its specifi­
cation. Conformance testing then relies on experimenting the system with test
cases, with the objective of detecting some fauhs with respect to the specifica­
tion's external behaviour.

We consider models of reactive systems, called Input/Output Symbolic Tran­
sition Systems (ioSTS), which are automata extended with variables, with dis-

*This paper is partly based on [11,8, 12].

Please use the foil owing format when citing this chapter:

Jeron, T., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Model-Driven Design to

Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R., Pereira C.,

Thiagarajan PS. , (Boston: Springer), pp. 35-44.

36 From Model-Driven Design to Resource Management for Distributed Embedded Systems

tinguished input and output actions, and coiTesponding to reactive programs
without recursion. Their semantics can be defined in terms of infinite state In­
put/Output Labelled Transition Systems (ioLTS). For ioLTS, the ioco testing
theory [13] defines conformance as a partial inclusion of external behaviours
(suspension traces) of the implementation in those of the specification. Several
research works have considered this testing theory and propose test generation
algorithms. We focus on off-line test selection where a test case is built from a
specification and a test purpose (representing abstract behaviours one wants to
test), and further executed on the implementation. Test cases are built directly
from the ioSTS model rather than constructing test cases from the enumerated
ioLTS semantic model. This construction reHes on syntactic transfonnations of
the specification model, guided by an approximate analysis of the set of states
co-reachable from a set of final state.

2. ioSTS: A MODEL OF REACTIVE SYSTEMS
Syntax of the ioSTS model. We propose a model called ioSTS for In­
put/Output Symbolic Transition Systems. It extends labelled transition sys­
tems for modelling imperative programs without recursion and communicat­
ing wath their environment. An ioSTS is made of variables, input and output
actions caixying communication parameters carried by actions, guards and as­
signments. In ioSTS, a data d (variable or communication parameter) has a
type type{d), with values in Dorn{d). For a data set B ~ { d i , . . . , dn}, we
note Dorn{B) =•- Dom{di) x • • • Dorri{dn)^ A predicate (j) (e.g. a guard) on a
data set B defines the subset of vectors in Dom{B) satisfying 0.
D E F I N I T I O N 1 (loSTS) An input/output symbolic transition system fioSTS)
is a tuple M - {D, G, L, fi, S, T) where

m D — VUP is a finite set of data partitionned into variables V and com­
munication parameters P. We note V — Do7n{V) andU. — Dom{P).

m G called the initial condition is a predicate on variables V.

• L is a finite set o/locations, with l^ G L the initial location.
• S — E^ U S- is the finite alphabet of actions partitionned into inputs

S ' a/7 J outputs YJ' ^ . An action a e Ti is characterized by its signature
sig{a) — (pi? • •' 5p/c) ^ P^ sp^c^fyi^g fyW^ of communication param­
eters carried by the action a. We note II^ — Dom{sig{a)).

m T is a finite set of symbolic transitions. A transition is a tuple t =
(/, a, G, A, l!) defined by: its origin and destination locations I and I' €
L; an action a ^11; a guard G is a predicate on V U sig{a): an assign­
ment A, of the form {x := A^)xc:V such that, for each x G V, A^ is an

^Tlie general model also considers interaal actions

From Model-Driven Design to Resource Management for Distributed Embedded Systems 37

expression on V U sig{a) defining the evolution of variables .̂ We note
Idy the identity assignment [x :~ ^^xev-

Semantics of ioSTS. The semantics of .M ~ (.D, 0 , L, /^, S, T) is an in-
put/ouput labelled transition system (ioLTS) \M\ — (Q, Q^, A, —>), where:

« Q = L X V is the set of states and Q^ — f^ xQ its subset of initial states;

m A - A- U A- s.t. for # e {?,!}, A# - {(a, 7r)\a G S j , TT G n,,} is the
set of valued actions partitionned into valued inputs A^, and outputs A',

• —>C Q X A X Q is the smallest relation defined by the following rule:

{Uu).{l\i^')eQ (a ,7 r)GA /.. ̂ a , a , 6 \ / t f) G T G{U,TI)--true ^^ ^ A (K TT)

((/ , ^) , (a , 7 r) , (l ' , z /)) G -

Intuitively, the ioLTS semantics of an ioSTS enumerates all possible states
(pairs q ~ {Lu) composed of a location and the vector of values of variables)
and valued actions (pairs a — (a, TT) composed of an action and the vector
of values of its communication parameters) between states. The rule means
that in a state (/, z/), a transition t = (̂ , a, G, A^ V) is fireable if there exists a
valuation TT of sig{a) such that G evaluates to true for z/ and TT. The system
then moves from with the action (a, TT) to a state (/', v') where z/' is the new
valuation of variables obtained from v and TT by the assignment A,

As usual for ioLTS, we note q —^ q^ for (q, a, gQ G—>. For a sub-alphabet
A' C A, we say that M is A^-complete in a state q if Va G Â : g A . An
ioSTS is deterministic if 0 has a unique solution and in each location I, for all
action a, for all pairs of transitions starting in I and caiTying a, the conjonction
of their guards is empty.

A run of an ioSTS M is an alternate sequence of states and valued actions
P = qoooqi • •. aji-iqn ^ Q^.(A.Q)* s. t. Wi.qi ^ ^.^-1. p is accepted
in F C Q if g.̂ G F . Runs{M) (resp. RunspiM)) denotes the set of
mns (resp. accepted runs in F) of M. When modelling the testing activity,
we need to abstract away states which are not observ^able from the environ­
ment. A trace of a run p G Runs{M) is the projection proj.^(p) of p on
actions.b Traces{M) ^ proj^s^(;runsM) denotes the set of traces of .M and
Traces p{M) ^ proj ,s^{Rimsp{M)) is the set of traces of iims accepted in F,

Visble behaviour for testing. During conformance testing, the tester stim­
ulates inputs of the system under test, and observes not only its outputs, but
also its quiescences (absence of output) using timers, assuming that timeout
values are large enough such that, if a timeout occurs, the system is indeed

^The scope of parameters is limited to one transition

38 From Model-Driven Design to Resource Management for Distributed Embedded Systems

quiescent. The tester should be able to distinguish between specified and un­
specified quiescence. But as trace semantics does not preserve quiescence in
general, possible quiescence should be made explicit on the specification by
a transfoimation called suspension [13]. This consists in adding a self-loop
labelled with a new output 6 in each quiescent state. We define suspension for
ioSTS as follows. For an ioSTS M = (D, 9, L, iP, S - S' U E-, T), the ms-
pe«5/onof.MistheioSTS A(A4) - {b,e,L,f,E^ - (S'U{(5})US-,T^,)
with T^ =- r U {(Z, 5, Gs^iJdyA) \leL} and

G ,̂/ = - V 37r € ria.G(a, TT)
{La,G,A.J/)er, a€S'-

For an ioSTS M modelling a system, the behaviour considered for testing
ist\\QnSTraces{M) ^ rrac£?5(A(.M)).

3. CONFORMANCE TESTING THEORY
We now refomiulate the ioco testing theory fi:om [13]. It mainly consits

in defining models for specifications, implementations and test cases, defining
conformance, test executions and verdicts.

Conformance relation. We assume that the specification is an ioSTS 5,
and that the behaviour of the unknown implementation could be modelled by
an (non-deterministic) ioLTS I ~ {Qj. Qj, A* U A'', —>/) with same interface.
We also assume that / is A^-complete •̂ . The conformance relation then defines
the set of correct implementation models:

/ ioco S = STraces-.ioco{S) fl STraces{I) - 0
where STraces-^ioco{S) - STmces{S) • (A- U {5}) \ STraces{S),

STraces-,ioco{S) exactly represents the set of non-confoimant behaviours: /
is non-conformant as soon as it may exhibit a suspension trace of S prolon­
gated with an unspecified outputs or quiescence. Interestingly, our foimulation
of ioco explicits the fact that conformance is a safety property of / : confor­
mance is violated if one exhibits a finite trace of/ in STraces-,ioco{S)- If/ was
known, verifying conformance would then amount to building a deterministic
non-conformance observer can{S) equiped with a set of states Fail such that
Traces^^^{can{S)) — STraces-,ioco{^)^ computing the synchronous product
of/ and can{S) and checking whether Fail is reachable.

However, as / is unknown, one can only experiment it with selected test
cases, providing inputs and checking that outputs and quiescences of / are
specified in S. This entails that, except in simple cases, conformance caimot
be proved by testing, only non-conformance witnesses can be exhibited.

^This ensures that the composition of / with a test case TC never blocks because of non-implemented
inputs.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 39

Test cases, test executions and verdicts. In our modelling framework, we
aim at building test cases in the form of ioSTSA test case for the specification
ioSTS 5 is a deterministic ioSTS TC = (D ^ V U P, Ore, ^ T C , ^rc' ^T'C =
S!p(̂ U ̂ xc^ '^Tc) with HlpQ — E'' and E | . ^ — E ' U {S} (actions are mirrored
w.r.t, S) with semantics {TCj — TC. TC is equipped with a collection of sets
of verdict locations Verdict partitionned into Fail (meaning rejection), Pass
(meaning that targetted behaviours have been reached) and Inconc (meaning
that targetted behaviours cannot been reached anymore). We also call Verdict
the collection of sets of states of TC where the location is in Verdict. We
assume that Verdict states are trap states (with no transitions) and that all states
except Verdict ones are A^^;-complete.

We model the execution of a test case TC on an implementation / by the
parallel composition of TC ~ \TC\ with A(i) (quiescences of./ are ob­
served) with synchronization on common actions. Let A(/) — (Qj, Qf, A* U
{5} U A^^^(,)) and TC - (ac,rf,,A? U Â U {d'},->,,), A(/)| |TC is
the ioLTS (Q, x QTCQP X {g?e}̂ A' U {5} U A-,-->A(/)| |TC) where, for a €

A- U {5} U A*-, (gi, gi) -->A(/)||TC (^2, ^2) iff îi ~~ 'A(/) Q2 and q[\ c ^2-

The possible rejection of) by TC is defined by the fact that A(/) \\TC may
lead to Fail in TC: TC mayfail I - TracesQ^^^^^I{/::^{1)\\TC) f^ 0 which is
equivalent to Traces{[\{l)) fl Traces^^^iJC) -7̂ 0.

Now, test generation algorithms should produce test cases with properties
relating rejection with non-confoniiance. Formally, let TS be a set of test
cases. We say that TS is complete if it is both correct and exhaustive where:

TS is correct - VI, (/ ioco S = > VTC G T5, ~^TC mayfail I),
i.e. only non-conformant implementations can be rejected by a test case in TS,

TS is exhaustive = VJ, (-(I ioco S) = > 3TC G TS, TC mayfail I).
i.e. every non-confonnant implementation can be rejected by a test case in TS.

Using the definitions of I ioco 5 and TCJ mayfail / , one can now prove:
TS is correct <=> U^TGTS' ^^^^^ '̂̂ Fail(-̂ ^)̂ - STraces~,ioco{S) and
TS is exhaustive <̂ =:̂ [jrp^^rj.^ Tracesj^^^i{TC)'D STraces--.ioco{S).

Interestingly, if one considers the non-confoimance obsei*\̂ er can{S) as a
test case (by mirroring its actions), as Tracesip^^Y{can{S)) — STraces-.ioco{S),
it immediately follows that the singleton {can{S)} is a complete test suite, in
some sense the most general testing process for conformance w.r.t. S. More­
over, all correct test cases should be sub-observers of can{S), while an ex­
haustive test suite must reject all implementations rejected by can(S). In feet,
all test generation algorithms for ioco producing complete test suites can be
understood as producing an infinite number of unfoldings of can{S). But in
practice, can{S) cannot be used directly as a test case. One wants to select in­
dividual test cases focussed on some particular behaviour. Selection of a sound
test suite will then be based on the selection of sub-behaviours of can{S). The

40 From Model-Driven Design to Resource Management for Distributed Embedded Systems

selection algorithm should remain Ifmii exhaustive: for any non-conformant
implementation, one could generate a test case that could reject it.

4. TEST SELECTION FOR ioSTS

At the end of the section an example illustrates the principles of test se­
lection. As explained previously, test selection consists in extracting a sub-
observ êr of the non-conformance observer can{S). The first operation consists
in constructing the ioSTS can{S) such that |caw(<S)| — ca??(|5'|). When S
is detemiinistic (or determinized) ^, this is easily done by adding, in every lo­
cation I and for all output a, a new transition (/,a, Gp^{j,/riv^Fail) where

^Fail ~ "^y(laG Ai')eT^ ^^^ ^^^^ ^^ ^^^^ location.
In this paper we focus on the selection of test cases by test puq^oses de­

scribing some abstract behaviour one wants to test. We define test purposes
as ioSTS equipped with a set of accepting locations playing the role of a non
intrusive observ êr. Its set of variables consists of its set of proper variables and
the set of variables of the specification that it may observe, but cannot modify.

A Test Purpose for a specification ioSTS S == {V U P, G, L, l^\ S, T) is an
ioSTS TV = (Vp U V U P, G T P , LTP. l%p, S U {5}, TTP) equipped with a
distinguished set of locations Accept C Lpp. We assume that TV is complete
in all locations QXCQ^X Accept (for each action a the conjunction of guards of all
transitions carrying a is true) and cannot modify variables in V (assignments
to these variables are the identity assignment).

The role of the test puipose is to select suspension traces of can{S) ac­
cepted by TP, The usual way to define this intersection for ioLTS is to
perform a synchronous product. We define a corresponding syntactic opera­
tion on ioSTS where transitions with same actions synchronize on the con­
junction of their guards. Formally, the synchronous product of can{S) —
(FUP, e , LU {Fail}, f, S, Te) and TV - (V U V^UP O T P , LTP, QTP^^^

{S}, TTP) is the ioSTS can{S) x TV = (F U Vp U P, G A G T P , L U {Fail} x
LTP. {l^\ 4 P) , S , r) where ((/j. J2), a, Gj. A Go. Ai; .42, (l[, l^)) G T' if and
only if (Zi, a, Gi.Ai, l[) € T̂ A (̂ 2, a, G2, A2,12) € TTP and Ai] A2 is the
sequential composition of assignments affecting disjoint sets of variables.

TV is non-intmsive, thus Traces{can{S) x TV) — Traces {can {S)) and
Tracesj^^^^^j^J^can{S) x TV) = Traces-p^^i{can{S)) — STraces-.ioco{S)
meaning that can{S) x TV is a non-confoi*mance observer. We also have
Tracesj^^^^^^^pf{can{S) x TV) ~ STraces{S) H Traces^^^^^^^{TV) mean­
ing that can{S) x TV is an observ êr of traces accepted by TV, restricted to

"̂ For the sake of simplicity, we restrict here to deterministic ioSTSspecifications. Non-deterministic
ioSTScan be handled at least for a sub-class of ioSTS where non-determinism can be solved with bounded
lookahead [9].

From Model-Driven Design to Resource Management for Distributed Embedded Systems 41

suspension traces of <$. Thus, depending on the considered distinguished loca­
tions Fail X LTP or L X Accept, the ioSTS observer can{S) x TV can play
two different roles.

But can{S) x TV is just an unfolding oican{S) from which we now need to
select traces by focussing on traces accepted in Accept, Ideally, we want to se­
lect exactly STraces{S) D Traces^^^^^^^{TV), plus unspecified outputs prolon­
gating these traces in STraces-^.ioco{S). However we consider non-controllable
system models, for which an input does not determine an unique output. After
a trace, the tester should then consider all possible outputs: those from which
Accept is reachable or Fail is reached, but also those after which Accept is not
reachable anymore. In this last case, we want to detect this divergence as soon
as possible, and set the Inconc verdict. This reduces to the problem of comput­
ing the set coreach{Accept) of states co-reachable from L x Accept. This is
easy for finite state systems and solved with graph algorithms. However, this
problem is undecidable for ioSTS models.

Our solution, implemented in the STG tool [3], consists in computing an
over-approximation coreach^ 2 coreach{Accept) represented by a predicate.
This is provided by an interface with the NBac tool [7] using abstract interpre­
tation [4]. For any assignment A of a transition /. G T\ we also compute an
over-approximation of the set of values for variables and parameters allowing
to stay in coreach.^ when firing t, noted pre^{A){coreach^). In other words
it is a necessary condition to go in coreach{Accept) by t. Its negation is thus a
sufficient condition to leave coreach(Accept). The selection of a test case TC
from can{S) x TV then consists in miiToring actions, transforming Accept lo­
cations into Pass and modifying the transitions in T ' into TTC' with the two
following rules:

{l,a,G,AJ)eT
'^' (Z, a, G A 'pre''{A){coreach''), A, V) € TTC

{La, a, A J') eT a e E i
Inconc; •

(L a, G A -^pre°'{A){corexich'^), A,Inconc) G TTC

The effect of rule (Keep) is to discards all (semantic) transitions labeled by
a (controllable) input that certainly exit coreach{Accept), and nile (Inconc)
"redirects" to a new location Inconc all transitions labelled by an (uncontrol­
lable) output that certainly exit coreach{Accept). The test case can be fiirther
simplified (without modifying its semantics) with an over-approximation of
its reachable states reacW^{Q A &TP)' Notice that these analysis can be im­
proved using the dynamic partitionning facility of NBac, allowing to separate
locations with respect to the analysis.

Test case properties. As can{S) is sound and is not modified by the syn­
chronous product and selection, all test cases are sound. Limit exhaustiveness
comes from the following construction: for any non-conformant implementa-

42 From Model-Driven Design to Resource Management for Distributed Embedded Systems

tion, there exists a trace a.a in T T(icesi n STrciccs-nioco (S), It then suffices to
construct a test purpose TV such that the trace a.a leads to Accept. The test
case obtained from S and TV then may reject L

What is lost by the over-approximation of co'reach{Accept), compared with
an (hypothetical) exact computation, is the hability to detect infeasible traces
to Accept as soon as this happens. Of course, the more precise is the approxi­
mation, the sooner is the detection [8].

Simple example.

X = y = 0

p = y — X Ap > 2
\ok{p)

p = y — XAp < 2
\nok{p)

p = y — X /\p >2
\ok{p)

p = y — X Ap <2
\nok{p)

ilotaernnse

Figure 1. (Left) ioSTS S reading and comparing Uvo values, (Right) canonical tester can{S).

r\^ ^ - (p -2Ax>3)A
(W ^ p = y-xAp>2

yT"^ \ok(p)

Figure 2. (Left) ioSTS test purpose TV. (Right) Synchronous product can{S) x TV.

D\^:^i::y] - (p = 2 A a; > 3)A
Cg4V.^ p = 2 / - x A p > 2

.- ^ r - ' \ok{p)

^inip) r ^ -finip)

p = y- X Ap <2
\nok{p)

p = 2 A a; > 3A
p = y — X Ap>2

[lotherwise

A
I P ins O

Figure 5. (Left) Computation of coreach'^. (Right) Resulting test case TC.

Test execution:. Test cases produced so far are ioSTS. In particular the val­
ues of communication parameters of test cases are not instanciated. During test
execution, values of communication parameters have to be chosen for outputs

From Model-Driven Design to Resource Management for Distributed Embedded Systems 43

of the test cases, among values satisfying the guard (e.g. p = 5 for p > 3 in
the example). This is simply done by a constraint solver. Conversely, when
receiving an input from the implementation, as the test case is input complete
and deterministic, one has to check which transition can be fired, by checking
the guard with the value of the received communication parameter (e.g. go to
Pass is p ~ 2, and Fail otherwise).

5. CONCLUSION AND PERSPECTIVES
There is still very few research work on model-based test generation wdiich

are able to cope with models containing both control and data without enu­
merating data values. Some exist however in the context of the ioco testing
theory. In [10] the authors use selection hypotheses combined with operation
unfolding for algebraic data types and predicate resolution to produce test cases
from Lotos specifications. The paper [5] lifts the ioco theory from LTS to STS
(Symbolic Transition Systems) but addresses the on-line test generation prob­
lem where next actions of test cases are computed during execution. In [2] the
authors start with a specification model similar to ioSTS, abstract the model in
a finite state one, use our TGV tool to generate test cases in the abstract do­
main, and then solve a constraint programming problem in the concrete model.

In the present paper, we have presented an approach to the ofi-line genera­
tion of test cases from specification models with control and data (ioSTS) and
test puiposes in the same model. The main advantage of this test generation
technique is to avoid the state explosion problem due to the enumeration of
data values. Test generation reduces to syntactic operations on these models
and an over-approximate analysis of the co-reachable states to a target location.
Test cases are generated in the form of ioSTS, thus representing uninstanciated
test programs. During execution of test cases on the implementation, con­
straint solving is used to choose output data values. For simplicity, the theory
exposed in this paper is retricted to deterministic specifications. However non-
determnistic specifications can be taken into account if ioSTS have no loops of
internal actions and have bounded lookahead.

Among the perspectives of this work, we expect to consider more powerful
models of systems with features such as time, recursion and concurrency. For
test generation, one problems to address in these models is partial observability,
which entails the identification of detenninizable sub-classes corresponding to
applications. We also think that the ideas of this technique can also be used
in other contexts, in particular for structural white box testing where test cases
are generated from the source code of the system. One of the main problems
of these techniques which is to avoid infeasible paths, could be partly solved
by techniques similar to ours.

44 From Model-Driven Design to Resource Management for Distributed Embedded Systems

ACKNOWLEDGMENTS
I wish to thank the Organizing Committee of DIPES for this invitation, as

well as all my colleagues who participated in this work.

REFERENCES
[I] M. Broy, B. Jonsson, J.-R Katoen, M. Leucker, and A. Pretschner, editors. Model-Based

Testing of Reactive Systems: Advanced Lectures, volume 3472 ofLNCS. Springer, 2005.

[2] J. R. Caiame, N. lousdnova, J. van de Pol, and N. Sidorova. Data abstraction and con­
straint solving for conformance testing. In Proc. of the 12th Asia-Pacific SoftM>are En­
gineering Conference (APSEC 2005), Taipei, Taiwan, pages 541-548. IEEE Computer
Society, December 2005.

[3] D. Clarke, T. Jeron, V. Rusu, and E. Zinovieva. STG: a s}^bolic test generation tool. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS*02), volume
2280 ofLNCS, pages 470-475, Grenoble, France, avril 2002.

[41 P. Cousot and R. Cousot. Abstract intrepretation: a unified lattice model for static analysis
of prognims by construction or approximation of lixpoints. In 4*̂ ACM Symposium on
Principles of Programming Languages, pages 238-252, 1977.

[5] L. Frantzen, J. Tretmans, and T. Willemse. Test generation based on symbolic speci­
fications. In 4th International Workshop on Formal Approaches to Testing of Software
(FATES 2004), Linz, Austria, volume 3395 oiLNCS, Springer-Verlag, 2004.

[6] ISO/IEC 9646. Conformance Testing Methodology- and Framework, 1992.

[7] B. Jeannet. Dynamic partitioning in linear relation analysis. Formal Methods in System
Z)e67gw,23(l):5-37,2003.

[8] B. Jeannet, T. Jeron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approx­
imate analysis. In //*̂ ^ Int. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS'05), Edinburgh, Scottland, volume 3440 ofLNCS. Springer,
april 2005.

[9] T. Jeron, H. Marchand, and V. Rusu. Symbolic determinisation of extended automata.
In 4th IFIP International Conference on Theoretical Computer Science, 2006, Santiago,
Chile. SSBM (Springer Science and Business Media), August 2006.

[10] G. Lestiennes and M.-C. Gaudel. Testing processes from formal specifications vvith in­
puts, outputs and data t>'pes. In 13th International Symposium on Software Reliability
Engineering (ISSRE'02), Annapolis, Maryland. IEEE Computer Society Press, 2002.

[11] V. Rusu, L. du Bousquet, and T. Jeron. An approach to symbolic test generation. In Inter­
national Conference on Integrating Formal Methods (IFM'OO), volume 1945 of LNCS,
pages 338-357. Springer Verlag, November 2000.

[12] V. Rusu, H. Marchand, and T Jeron. Automatic verification and confonnance testing
for validating safety properties of reactive systems. In John Fitzgerald, Andrzej Tarlecki,
and Ian Hayes, editors, Formal Methods 2005 (FM05), volume 3582 ofLNCS. Springer,
juiilet 2005.

[13] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools, 17{3):103-120, 1996.

CONTINUOUS ENGINEERING OF
EMBEDDED SYSTEMS

Bernhard Steffen ^, Tiziana Margaria^
Chair of Programming Systems, Universitdt Dortmund (Germany)
Chair of Service and Software Engineering, Universitdt Potsdam (Germany)

Abstract We investigate the late phases of the embedded systems' Ufe cycles, in
particular the treatment of change requests, the integration of legacy
components, and the problem of emerging platforms. We propose to
tackle these issues in a model-driven design paradigm, on the behavioral
models, and to employ techniques from automata theory, model check­
ing and automata learning. The main practical impact of our approach
is its support of the systematic completion and update of user/customer
requirements, which by their nature are quite partial and concentrate on
the most prominent scenarios. Our technique generalizes these typical
requirement skeletons by extrapolation and it indicates via automati­
cally generated traces where the requirement specification is too loose
and additional information is required. This works in the initial phases
of system development, but also in case of change requests, where our
technique hints at possible problems with their realization (feature in­
teractions) , and helps to keep the requirement model in synchrony along
the chain of new releases.

1. MOTIVATION
The bulk of research concerning embedded systems focusses of the early
stages of the systems' hfe cycles. Today's systems require unacceptable
efforts just for deployment, typically caused by incompatibilities, feature
interactions, and by the sometimes catastrophic behavior of component
upgrades, which no longer behave as expected. This is particularly true
for embedded systems, with the consequence that some components' life­
times are 'artificially' prolonged far beyond a technological justification,
for fear of problems once they are substituted or eliminated.

The time after the first deployment causes the majority of the overall
costs of the system, but is hardly addressed, as is the integration of legacy
components. It is a major research challenge to provide systematic and

Please use the foil owing format when citing this chapter:

Steffen, B., Margaria, T., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Mod­

el-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L.,

Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 45-54.

46 From Model-Driven Design to Resource Management for Distributed Embedded Systems

r
jABC's AMDD

iHiil
Heterogeneous Service Models^

Integration as
IConsistency/CompatJbilityi

GlobalSLG ^^S

Interpretation/Compilation/Synthesis

Figure, 1. The AMDD Process in the jABC

consistent support to the later phases of the hfe cycle as well as system
construction with legacy components. Prerequisite in this direction is
the development of modelling levels that capture these aspects.
Here we investigate this situation under three perspectives, that treat

1 changing requests: in particular, the consistent integration of new
requirements.

2 legacy components: how can we increase our confidence when deal­
ing with components lacking specification.

3 emerging platforms: how can we separate the two issues above from
the technological details required for effective technology mapping.

Starting point for our analysis is an aggressive version of model-driven
development (AMDD) [14], which moves most of the recurring problems
of compatibility and consistency of system design, implementation, and
evolution from the coding and integration levels to the modelling level
(Fig. 1). Being a paradigm of system design, it inherently leaves a high
degree of freedom in the design of adequate settings. We propose to treat
the first two issues at the level of behavioral models, and use automata
theory, model checking, and automata learning to consistently deal with
looseness of requirements, uncertainties of legacy components, and the
consequences of change requests. The third point coincides with the
technology mapping issue discussed in the context of AMDD [14].

The main practical impact of the technique proposed in this pa­
per is its ability to support the systematic completion and update of
user/customer requirements, which by their nature are typically very

From Model-Driven Design to Resource Management for Distributed Embedded Systems 47

partial and concentrate on the most prominent scenarios. Our tech­
nique generahzes these typical requirement skeletons by learning-based
extrapolation, and it indicates via automatically generated traces where
the requirement specification is too loose and additional information is
required. This technique can also be used for the construction of behav­
ioral models for third party/legacy components [5; 12].

This works in the initial phases of system development, but also with
change requests, where our technique hints at possible problems with
their realization (feature interactions), and helps to semi-automatically
keep the requirement model in synchrony along the chain of new releases.

In the following, Sect. 2 briefly sketches our tool landscape, based on
the jABC Modelling Framework, and Sect. 3 the essential features of
automata learning. Then Sect. 4 presents our method of learning-based
long-term requirement engineering: the principle, the simple monotonic
case of requirement completion, and the non-monotonic case of require­
ment updates. Finally Sect. 5 gives our conclusions and perspectives.

2. BASICS CONCEPTS OF T H E jABC

jABC [6] is a Java-based framework for service development along the
AMDD paradigm [14]. Its central model structure are hierarchical, flow
chart-Uke graphs called Service Logic Graphs (SLGs) [13]. They model
the application behavior in terms of the intended process flows, based on
coarse granular building blocks called SIBs (Service-Independent Build­
ing blocks) which are to be understood directly by the application ex­
perts - independently of the structure of the underlying code, which in
our case is typically written in Java/C/C-|-+. The component models
(single SIBs or hierarchical subservices), the feature-based service mod­
els called Feature Logic Graphs (FLGs), and the Global SLGs modelHng
applications are all hierarchical SLGs. Additionally, the jABC supports
several model specification styles, including

1 two modal logics, mu-calculus and monadic second order logic on
strings [19], to abstractly and loosely characterize valid behaviors
of finite and parametric systems, resp., which come with plugins
for the graphical, pattern-based definition of constraints [7],

2 a classification scheme for building blocks and types, useful e.g.
for service discovery in distributed service environments [11], and

3 model-level and source code-level analysis and consistency verifi­
cation mechanisms based on these specifications [2].

In this sense, the jABC is an instance of actor-based modelling environ­
ments according to [3].

48 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Predecessors of jABC have been used since 1995 to design, among oth­
ers, industrial telecommunication services [15], Web-based distributed
decision support systems [8], and test automation environments for
Computer-Telephony integrated systems [5], and most recently to equip
the Ricoh AFICIO printer series with a flexible process management.

jABC allows users to develop services and applications by composing
reusable building-blocks into (flow-)graph structures. An extensible set
of plugins provides additional functionalities to adequately support all
the activities needed along the development lifecycle, like e.g. anima­
tion, rapid prototyping, formal verification, debugging, code generation,
monitoring, and evolution. This process does not substitute but rather
enhance other modelling practices like the UML-based RUP 17, which
is in fact used in our process to design the single components.

jABC offers a number of advantages that play a particular role when
integrating off-the-shelf, possibly remote functionalities.

• Agility. We expect requirements, models, and artifacts to change
over time, therefore the process supports evolution as a normal pro­
cess phase by various means, like, e.g., model checking, monitoring-
based consistency checking, and requirement completion/update.

• Consistency. The same modelling paradigm underlies the whole
process, from the very first steps of prototyping up to the final
execution, guaranteeing traceability semantic consistency.

• Verification. With techniques like model checking and local checks
we support the user to consistently modify his model. The basic
idea is to provide automatic checking mechanisms for previously
defined local or global properties that the model must satisfy.

• Service orientation. Legacy or external features, applications,
or services can be easily integrated into a model by wrapping the
functionality into building blocks to be used inside the models.

• Executabil ity. The models can be executed in various modes:
executions can be as abstract as guided documentation browsing
and as complex as the concrete run of the final implementation.

Several applications have shown how these properties are exploited in
different application areas, like e.g. [9; 4; 8; 10].

3. AUTOMATA LEARNING
Machine learning deals in general with the problem how to automati­

cally generate a system's description. Besides the synthesis of static soft-

From Model-Driven Design to Resource Management for Distributed Embedded Systems 49

and hardware properties, in particular invariants, the field of automata
learning is of particular interest for soft- and hardware engineering.

Automata learning tries to construct a deterministic finite automaton
(see below) that matches the behavior of a given target automaton on
the basis of observations of the target automaton and perhaps some
further information on its internal structure. The interested reader may
refer to [18] for details, here we only summarize the basic aspects of our
realization, which is based on Angluin's learning algorithm i*[l] .

L*, which is an active learning algorithm, learns finite automata by
actively posing membership queries and equivalence queries to the tar­
get automaton in order to extract behavioral information, and refining
successively an own hypothesis automaton (HA) based on the answers.
Membership queries test whether a string (a potential run) is contained
in the target automaton's language (its set of runs), and equivalence
queries compare the HA with the target automaton for language equiva­
lence, in order to determine whether the learning procedure has (already)
successfully completed and the experimentation can stop.

In its basic form, L* starts with the one state HA that treats all words
over the considered alphabet (of elementary observations) alike, and
refines it on the basis of query results iterating two steps. Here, the dual
way of how L* characterizes (and distinguishes) states is central:

• from below^ by words reaching them. This characterization is too
fine, as different words may well lead to the same state.

• from above, by their future behavior wrt. a dynamically increasing
set of words. These future behaviors are essentially bitvectors: a
' r means that the corresponding word of the set is guaranteed to
lead to an accepting state and a '0' captures the complement. This
characterization is typically too coarse, as the considered sets of
words are typically rather small.

The second characterization directly defines the HAs: each occurring
bitvector corresponds to one state.

The initial HA is characterized by the outcome of the membership
query for the empty observation. Thus it accepts any word if the empty
word is in the language, and no word otherwise. Next, the learning
procedure (1) iteratively establishes local consistency, after which it (2)
checks for global consistency.

Local Consistency. This is an automatic model completion loop,
that iterates two phases: (a) checking whether the constructed HA is
closed undeT the one-step transitions, i.e., each transition from each state

50 From Model-Driven Design to Resource Management for Distributed Embedded Systems

of the HA ends in a well defined state of this very automaton. And (b)
checking consistency according to the bitvectors characterizing the fu­
ture behavior as explained above, i.e., whether all reaching words with
an identical characterization from above have the same one step transi­
tions. If this fails, a distinguishing transition is taken as an additional
distinguishing future that resolves the inconsistency, splitting the state.

Global Equivalence. After local consistency, an equivalence query
checks whether the language of the HA coincides with that of the target
automaton. If this is true, the learning procedure successfully termi­
nates. Otherwise the equivalence query returns a counterexample, i.e.,
a word which distinguishes the hypothesis and the target automaton.
This counterexample gives rise to a new cycle of modifying the HA and
starting the next iteration.

4. LEARNING-BASED REQUIREMENTS
M A N A G E M E N T

Key towards continuous engineering is the treatment of new/changing
requirements. Our learning-based approach to requirement management
is organized to capture three dimensional requirement evolution:

• Use cases: individual 'runs' of the intended system.

• Temporal properties: global constraints that capture safety and
liveness properties of the considered system.

• Structure requirements: system properties like symmetry between
technical components, determinacy of individual behaviors.

Change request may concern all three dimensions, although individual
change requests typically belong to one. This means in particular that
the other dimensions remain unchanged, which drastically enhances the
stability of upgrading procedures.

It is the central data structure of active automata learning, the ob­
servation table, which, slightly enhanced, enables the incremental and
evolutionary model construction. It does not only comprise the actual
HA, but also the concrete evidence which lead to its construction. Thus
it allows us to distinguish between the model structure based on con­
crete observations and the model structure which arose in the course of
extrapolation: the HAs are the state-minimal automata consistent with
the actual observations. As such, they are neither an under- nor an over-
approximation: they may as well allow (extrapolated) behavior, which
the considered system will never engage in, as also refuse behavior the
considered system is capable of.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 51

The enhanced observation tables are adequate as a means for change
management at the requirement level: they indicate how to cover new or
changing requirements without violating the primary model structure.
The basic intuition behind our approach is the following technique for
completing and changing requirement specifications.

4.1 COMPLETING REQUIREMENT
SPECIFICATIONS

Requirement specifications in terms of individual traces are by their na­
ture very partial and represent only the most prominent situations. This
partiality is one of the major problems in requirement engineering: it
often causes errors in the system design that are difficult to fix. Thus
techniques for systematically completing such partial requirement spec­
ifications are of major practical importance.

We propose a method for requirements completion based on automatic
(active) automata learning that in essence

• initializes the learning algorithm with the set of traces constituting
the requirement specifications, and

• constructs a consistent behavioral model by establishing the local
consistency introduced in the previous section.

This way, we build a finite state behavioral model which extrapolates
the given requirement specification: it comprises all 'positive' traces of
the specification, and rejects all forbidden traces. All the other potential
traces are consider as 'don't cares', in order to construct a corresponding
state minimal HA. In particular, although the learning procedure by its
nature will only investigate finitely many traces, the constructed HA will
typically accept infinitely many traces, since the extrapolation process
introduces loops.

For this method to work, a number of membership queries need to be
answered. Both, establishing closure of the model, as well as establishing
the consistency of the abstraction of reaching words into states (i.e.,
of the characterization from above introduced in the previous section)
can only be achieved on the basis of additional information about the
intended/unknown system. This is not unexpected, rather even desired
(at least to some extent): the posed membership queries directly hint at
the places where the given requirement specification is partial. On the
other hand, it is not practical: the number of such membership queries
is the major bottleneck of active learning, even when its generation is
fully automated. The execution of membership queries is interactive,
and the effort unacceptable.

52 From Model-Driven Design to Resource Management for Distributed Embedded Systems

We observed that the number of membership queries can be drasti­
cally reduced on the basis of orthogonally given expert knowledge about
the intended/unknown system. We could show that already the follow­
ing three very general structural criteria, prefix closure^ independence of
actions and symmetry, were sufficient to reduce the number of member­
ship queries by several orders of magnitude [5; 12].

This idea, originally designed for the optimization of the treatment of
'use case'-based requirement completion, allows us to also capture the
other two dimensions of requirement specification:

Temporal properties:. global constraints that capture safety and
liveness properties of the system. Besides typical example runs, applica­
tion experts are also able to formulate many necessary safety conditions,
be it on the basis of required protocols, or the exclusion of catastrophic
states. Adding these safety requirements in terms of temporal logics
to our specification can automatically answer a huge number of mem­
bership and equivalence queries, via model checking. This way, these
properties are automatically taken care of during model construction.

Structure requirements:. concern the shape of the overall sys­
tem. The nature of the system to be learned often leads to structural
constraints, like symmetry between technical components, or determi-
nacy of individual behaviors. These constraints can be automatically
taken care of by corresponding operations on automata, which add this
structure to the observed behavioral skeleton.

4.2 CHANGING R E Q U I R E M E N T
SPECIFICATIONS

So far our learning scenario was monotonic: observations made once are
guaranteed to remain valid. Thus it might only happen that

• new observations revive the learning process, and/or

• assumed temporal of structural properties turn out to be false

forcing us to revise the hypothesis model. In both cases we can incre­
mentally deal with membership queries - the major bottleneck - and in
fact the classical observation table supports this incremental treatment.

In contrast to requirement completion, requirement update is non­
monotonic, and may have a destructive effect on the observations made.
It may force us to discharge some results of previously answered member­
ship queries. There are two extreme approaches (and of course numerous
compromises) to do so:

From Model-Driven Design to Resource Management for Distributed Embedded Systems 53

• start the learning procedure from scratch, which is of course not
incremental, but inherits all the nice properties of automata learn­
ing, like 'the HA is a state-minimal representative of all automata
consistent with the made observations'.

• continue the learning process as if it were monotonic, only question
previous query results in case there is a conflict, and in case of
conflict give the new observation precedence.

This approach is incremental, but unfortunately conflict resolution
is not as easy as it might seem: a new trace may well be in conflict
to quite a number of traces. Perhaps even worse, an old (no longer
valid) observation may not be conflicting with the new observa­
tion but make the hypothesis model 'explode'. We are currently
investigating various strategies to overcome these problems.

On the other hand, if we maintain knowledge about which queries were
answered by model checking or the assumption of structural properties
(our enhancement of the observation table), one can rather comfortably
deal with the change of these kinds of requirements.

5. CONCLUSIONS AND PERSPECTIVES

We have presented an approach to support the systematic completion
and update of user/customer requirements along a system's life cycle.
This method, mainly based on automata learning, elegantly comple­
ments our behavioral model construction for legacy systems, and pro­
vides a powerful support for the late phases of the systems' life cycles.

Currently, we are investigating how to eSiciently deal with non-mono-
tonic updates. Due to the three dimensional structure of the considered
space of requirement specification, we do not expect a unique answer.
In fact, we believe that, in practice, one will very much depend on ad­
ditional information about which kind of changes have been made, in
order to derive an eflicient strategy for learning-based model update.

REFERENCES
[1] D. Angluin. Learning regular sets from queries and counterexamples. Informa­

tion and Computation, 2(75):87-106, 1987.

[2] A.L. Lamprecht, T. Margaria, B.Steffen: Data-Flow Analysis as Model Check­
ing within the jABC, Proc. CC'06, 15th Int. Conf. on Com-piler Construction,
Vienna (A), March 2006, LNCS, 3923, Springer Verlag, pp. 101-104.

[3] E. Lee, S. Neuendorffer, M. Wirthlin. Actor-oriented design of embedded hard­
ware and software systems Journal of circuits, systems, and computers. 2002.

[4] M. Hermann, T. Margaria, T. Mender, R. Nagel, M. Schuster, B. Steffen, H.
Trinh: The Jabc Approach To Collaborative Development of Embedded Applica-

54 From Model-Driven Design to Resource Management for Distributed Embedded Systems

tions^ CCE'06, Worksh. on Challenges In Collaborative Engineering (Industry
day), Prag, April 2006.

[5] H. Hungar, T. Margaria, B. Steffen: Test-Based Model Generation for Legacy

Systems, Proc. IEEE ITC'03, Charlotte, 2003, IEEE CS Press, pp.971-980.

[6] jABC Webseite: www.jabc.de
[7] S. Jorges, T. Margaria, B. Steffen: FormulaBuilder: A Tool for Graph-based

Modelling and Generation of Formulae, Proc. ICSE 2006, 28th ACM-IEEE Int.
Conf. on software Engineering, Shanghai (CHN), May 2006, to appear.

[8] M. Karusseit, T. Margaria: Feature-based Modelling of a Complex, Online-Re-
configurable Decision Support Service, WWV'05, 1st Int. Worksh. Automated
Specification and Verification of Web Sites, Valencia, March 2005, ENTCS 1132.

[9] C. Kubczak, R. Nagel, T. Margaria, B. Steffen: The jABC Approach to Media­
tion and Choreography, Semantic Web Services Challenge 2006, Phase I Work­
shop, DERI, Stanford University, Palo Alto, March 2006.

[10] T. Margaria, C. Kubczak, M. Njoku, B. Steffen: Model-based Design of Dis­
tributed Collaborative Bioinformatics Processes in the jABC, IEEE ICECCS
2006, Stanford, Aug. 2006, to appear.

[11] T. Margaria, R. Nagel, B. Steffen: Remote Integration and Coordination of Ver­
ification Tools in JETI, Proc. IEEE ECBS 2005, April 2005, Greenbelt (USA),
IEEE CS Press, pp. 431-436.

[12] T. Margaria, H. Raffelt, B. Steffen: Knowledge-based relevance filtering for ef­
ficient system-level test-based model generation, Innov. in System and Software
Engineering - a NASA Journal, Vol. 1(2), pp.147-156. Springer Verl., Sept. 2005.

[13] T. Margaria, B. Steffen: Lightweight Coarse-grained Coordination: A Scalable
System-Lev el Approach, STTT, Int. Journal on Software Tools for Technology
Transfer, Special section on Formal Methods for Industrial Critical Systems,
Vol.5, N.2-3, 2004, Springer Verlag, pp.107-123.

[14] T. Margaria, B. Steffen: Aggressive Model-Driven Development: Synthesizing
Systems from Models viewed as Constraints, Workshop on Software Engineering
for Embedded Systems: From Requirements to Implementation, The Monterey
Workshop Series, Chicago, September 2003.

[15] T. Margaria, B. Steffen, M. ReitenspieB: Service-Oriented Design: The Roots, IC-
SOC 2005: 3rd ACM SIGSOFT/SIGWEB Int. Conf. on Service-Oriented Com­
puting, Amsterdam, Dec. 2005, LNCS 3826, pp. 450-464, Springer V..

[16] H. Raffelt, B. Steffen, T. Berg: LeamLib: A Library for Automata Learning and
Experimentation, Proc. FMICS 2005, 10th ACM Workshop on Formal Methods
for Industrial Critical Systems, Lisbon, Sept. 2005, ACM Press, pp.62-71.

[17] Rational Unified Process, http://www-306.ibm.com/software/awdtools/rup/

[18] B. Steffen and H. Hungar, Behavior-based model construction. In S. Mukhopad-
hyay and L. Zuck, editors, Proc. 4th Int. Conf. on Verification, Model Checking
and Abstract Interpretation, LNCS 2575, Springer 2003, pp.5-19.

[19] C. Topnik, E. Wilhelm, T. Margaria, B. Steffen: jMosel: A Stand-Alone Tool
and jABC Plugin for M2L(Str), Proc. SPIN'06, 13th Int. SPIN Works, on Model
Checking of Software, Vienna, April 2006, LNCS 3925, Springer V., pp.293-298.

PROTOTYPING AN AMBIENT LIGHT SYSTEM
A CASE STUDY

Henning Zabel and Achim Rettberg
University of Paderbom/C-LAB, Germany
•[henning.zabel, achim.rettberg3'@c-lab.de

Abstract: This paper describes an indirect room illumination system which is called Am­
bient Light System (ALS). By illumination an object or room in a deliberate
manner a certain mood or emotion could be evoked. For example by watching
a music video on a television (TV) the room illumination can support the spirit
of the music song. The realized room lightning is based on LEDs and enables
the illumination with a wide range of RGB colors. The use of LEDs enforces
special requirements for power supply, cooling and controlling. In our approach
the colors depends on a TV video signal. We propose a hardware setup for
driving and controlling a set of LED based lights and a software for capturing
and analysing video signals to calculate a representative color, that is used as
illumination color.

1. THE AMBIENT LIGHT SYSTEM
The development of an ambient light for room lightning is an interesting

feature for modem devices, like televisions or music players. Ambient light
offers to visualize more visual effects of videos or the spirit of a music song.
The ambient light system (ALS) is able to grab a video and light a room with
power LEDs in the color shown in the video. The calculation of the lightning
is based on the majority of pixels shown in the video. This approach is similar
to the idea of the Ambilight© (see [2]) developed by Philips for televisions.
Ambilight is an ambient lighting feature that projects a soft light onto the wall
behind the TV. The user is able choose from different preset colors and white
tones, or it can be fully personalized using the custom settings. Furthermore,
Ambilight simply allows adjusting the back light color based upon the action
on the screen. In contradiction to the Ambilight, we are able to illuminate the
entire room with a specific color. Besides this, due to the flexibihty of our ALS
it is adaptable to other systems.

Please use the following format when citing this chapter:

Zabel, H., Rettberg, A., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Model-Driv­

en Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado

R , Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 55-64.

56 From Model-Driven Design to Resource Management for Distributed Embedded Systems

If '̂

[/
M»»WTOIIIIOTIIIIIIIIIIIIIIiillliyi^^

Figure 1. Top view of the ACLAB.

The developed ALS illuminates an entire room, see figure 1, with a specific
RGB color. As shown in the figure the room is equipped with nine LED-
based lights. Seven of them are mounted on the wall and illuminates the room
by indirect lightning. The two other lights are mounted behind our Plasma
television to illuminate the left and right side of the wall behind the TV.

The ALS is realized partly in software and in hardware. The top-level view
is depicted in figure 2. One software part of the ambient light system (ALS)
runs on a standard PC with a PCI TV-card. The ALS is able to grab the video
and analyses the pixels from the left and the right area of the captured frame.
This introduces stereo lightning within ALS. The data for the lights generated
by the ALS is sent by over CAN interface to control boards.

2. PC SOFTWARE CONTROLLER
The software of ALS is split into two parts. The first one run on a PC and the

second on a set off microprocessors, see section 3. The graphical user interface
of the software part running on a PC is presented in figure 3. This component
calculates the color mean value. This is sent to the lights to illuminate a room.
The Java Media Framework, see [4] is used to grab the video signal.

The frames are grabbed with the smallest possible resolution (80x60) sup­
ported by the hardware. At least only a small resolution is enough to extract
an average color from the frame and reduces the processing costs. By the
implementation of a VideoRenderer class the single frames are directed to the
frame processing. The frame processing consist of several stages (see figure 4),

From Model-Driven Design to Resource Management for Distributed Embedded Systems 57

capture frames

send colors

Serial-CAN Adapter

Figure 2. Ambient Light System (ALS).

Figure 3. Mainwindow of ALS PC Software.

where as each of them can be parameterized by the graphical user interface
(see figure 3). The last stage results in an average color value that is transmit­
ted via a RS232/CAN interface to the control boards with a communication
API (see [1]) for further processing.

58 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The frame processing stages perform different analysis on the frames that
are presented in detail in the following:

• In the first stage brightness, saturation and gamma corrections of the
frames are applied depending on the settings given by the user in the
graphical user interface. Dark or to bright videos can be corrected to
achieve a proper room illumination.

• From the complete frame masks are calculated to extract significant pix­
els. Criteria for significant pixels are: (1) high differences (frame dif­
ference), (2) high saturation and (3) high brightness. Firstly, all these
characteristics for each pixel are evaluated and in a second path the mask
is constructed. Within this mask only those pixels are marked that are
above a threshold, the others are set to zero. The threshold results from
a constant and the mean value for the specific characteristic. The mask
for the characteristics are depicted in the control window (see figure 5,
right up: difference, left down: saturation, right down: brightness and
left up: combination of all three).

Depending on the mask selection all pixels are kept that are marked by
one of the masks. Unmarked pixels are set to the color black.

• Out of the frame a representative color value is calculated. This can
be either the mean value of all colors within the picture or one from
a predefined palette. This palette contains gray values and colors that
consists of not more than two base colors. These colors can be mixed

mask pixels

i)
color balance

for picture

{}
Pixelbuffer

^^

high differences
high saturation
bright colors

^ " ^ brightness
contrast ,.̂ ^^^
gamma ^^"~"^-^

average color

^
filter over time

{}
color balance

[for each base color

O
Video Capture

Java Media Framework

^

commAPI
(rxb()

Java Virtual Machine

Figure 4. ALS PC Software Architecture.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 59

^liiiliiliiHiBiillllt^^^
iiiiBHilHSl^BiilBj
BHiHI^HBi^HMiil
p||HliiiiJiiK|^i^ii

Figure 5. ALS Picture Analysis.

easier as all others. Each pixel of a frame is assigned to one of the palette
colors. The occurrence of each palette color is counted and than the most
common color is used as representative. These calculation is performed
for the left and right side of the frame.

During mean value calculation dark areas decrease the brightness of the
representative color very strong. This reduces the illumination of the
room and with it the effect of the ambient light. Therefore, it is neces­
sary that the color has a specific brightness to be involved in the above
mentioned calculation. By this, the color black is ignored in general and
with it the above unmarked pixels.

• A video card can introduce noise in the captured frames. To filter this
noise it is possible to calculate a mean value of the representative color
over a specified time period (fading). If the current representative color
differs from the mean value more than by a user defined value then this
value will be taken. In this case the calculation of mean value resets.
This allows on the one hand the reduction of noise and jitter that results
from weak color changes and on the other hand direct color switching at
scene changes.

• To realize a color balance between the calculated representative color
value and the real color value that illuminates the room it is necessary
to adjust each base color. This can be done by adjusting the brightness,
saturation and most important the gamma value. The calculated color
values are transmitted via a serial interface to an RS232/CAN converter.
This serial interface is accessed with an implementation of the commu­
nication API (see [1]) from SUN.

60 From Model-Driven Design to Resource Management for Distributed Embedded Systems

3. HARDWARE CONTROLLER BOARDS
Besides the software part on a PC, we use a small controller running on a

board (see [3]) with an ATMEL microprocessor AT90CAN128 to control the
lights. Each board can handle up to two lights, therefore, to illuminate the
room with nine lights five of these controller boards are needed. These boards
are built in a central control unit. The lights consists of three high-power LEDs
mounted on heat sink and a driver board.

The control unit is connected to the PC with a CAN interface. The controller
transmit the brightness for each color by a pulse width modulated (PWM) sig­
nal to the driver boards in the lights. The driver boards modulates the power
supply of the LED with this signal. The energy for the high-power LEDs come
from a 12F power supply unit. This is depicted in figure 6. Furthermore, the

AT90CAN128
Controller Board

i

12V

CAN with
rgb data

PWM signals

rn—Prt U U I
FAN signal
temperature

PWM modulated
power supply

1—A A—•!
LED Driver

Board

12V
.

12V Power

Sup >piy

u u ;
heat sink

temperature

FAN Power

RGB LED's
on heat sink

^ M
cooling FAN

Figure 6. ALS Controller Board.

controller observes the heating of the lights by switching a fan on and off. If
the temperature rises above 50° Celsius an emergency shutdown is executed
and the light is completely switched off.

3.1 CONTROLLER BOARDS
The controller boards (see figure 7) are assembled on a backplane, that sup­

plies them with power and connects them to the CAN bus. Each controller
board has two serial interfaces. Additional, the backplane connects the con­
troller boards in a daisy chain by the serial interfaces. This communication
channel is used for enumerating the boards. Thus, the boards are given a
unique ID and with it the lights can be identified. The enumeration is initi­
ated by the first board in the chain. It is identified by a shortened input pin.
This allows using the same software on all boards. During the development of
the control software color and control data is transmitted via this serial con­
nection. Whereas, commands that don't belong to a locally connected light
are forwarded to the next board in the chain. Theoretically it is possible to ex­
tend this system by further controller boards and lights. In practice, the latency

From Model-Driven Design to Resource Management for Distributed Embedded Systems 61

Figure 7. Controller boards with Atmel Processor.

of the communication through different controller boards limits the maximal
number.

3.2 DRIVER BOARDS AND LIGHTS
As mentioned before the light uses three high-power LEDs as light source.

Each LED has a power of 5 W. To achieve the major part of the RGB color
palette one red, one green and one blue LED is used. Not all power is emitted
as light and, therefore, the lights has to be cooled. For this the LEDs are
mounted on a big heat sink, see figure 8. At the bottom of each light case a
driver board is installed.

Figure 8. Light components: left the driver board and right the LEDs mounted on a heat
sink.

62 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The driver board adjusts the 12 V power supply to the power supply of the
LEDs, 3.4 V for green and blue and 2.5 V for red. This is efficiently done by the
use of a DC-DC switching power supply. The power supply for each LED is
switched on/off via the PWM modulated signal of the controller by a BUZl la
MOSFET. Although a single diode consumes 1.4 A current, only 1.5 A current
on the 12 V power supply is needed because of the switching power supply.
Therefore, the voltage drop in the supply wires is kept low, that means, we
achieve a less power dissipation by powering the LEDs. Additionally, a fan
and temperature sensor is installed in the lights to measure and control the
temperature of the diodes during operation. At 40°C the fan is activated and
at 50° C the LEDs are switched off. This helps to extend the life time of the
diodes. The fan is controlled by a signal of the controller board.

4. EVALUATION
The system is evaluated based on three problem areas, that are namely: la­

tency, color balance and color matching.

4.1 LATENCY
The latency is the time between capturing the frame and the illumination

of the room with the representative color. This time includes the time that is
needed for the PC software to capture and analyse the frame and to transmit it
to the CAN bus and finally the time needed by the controller boards for reacting
on the CAN message.

The software on the controller consists of one main loop that handles the
communication and executes the transmitted commands. With the help of the
hardware timer the time consumption of one loop is measured and the maxi­
mum value is stored. This value converges over time and represents the worst-
case execution time of the loop. The measured clock rate is 4900 Hz. The
registers for PWM modulation are updated at a clock rate of 1 Khz, so the
maximal latency for reaction is 1.2 ms, which is sufficient enough for the ap­
plication.

The time-shift of the PC software is about 5 pictures, that means, the illumi­
nation data arrive 5 pictures later than the frames shown on the TV. Neverthe­
less, the frame rate of 25 fps for PAL is achieved. For testing a video is used
that switch between different base colors every 5 sec. shown in full screen.
The value of 5 pictures is a subjective impression when watching this video
compared with the illumination of the room. A more precise measurement, for
example by recording TV and the back light, is required.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 63

4.2 COLOR BALANCE
The RGB value of the representative color is represented by three 8 bit val­

ues, one for each color. Also the PWM register on the controller boards have a
width of 8 bit. But in normal the RGB value can not directly be used, because
a color balance has to be applied, similar as it has to be done by crt monitors.
For this, it is possible to correct the brightness, saturation and the gamma value
for each base color. Adjusting the gamma value is most important.

The balance is adjusted manual by comparing different colors on a crt mon­
itor with their relating illumination of the room. The easiest way is to start
adjusting colors that are a combination of only two base colors. If reducing
their saturation step by step the color tone should not change until the color
white is reached. The colors yellow and orange are problematic, because they
are both a mix ofred and green.

Simply by appliing the gamma correction to each base color, good results in
color representation are achieved. Because each value is only 8bit wide, this
correction can be precalculated and stored in arrays. The adjustment during
runtime then simply is an access to this array and avoids further calculations.

4.3 COLOR MATCHING
The problem of color matching is the question is the representative color

really representative, that means, does it really enhance the impression of the
video picture. This is very hard to answer, because it heavily depends on the
subjective impression of the viewer and also on the presented video.

When watching life music videos with a stage illumination containing strobe
lights good results could be achieved by masking the frame with high dif­
ference and saturation. When disabling the mean value of the representative
color over time the stage illumination is transfered in the entire room. In that
case, the viewer gets the impression of being on stage. During repeating color
switches that takes less than 5 frames the above mentioned latency leads to a
phase shift between the room illumination and the TV. At the worst case the
illumination alternates between the TV and the lights. This stresses the eyes
extremely.

When watching movies it is more pleasant if averaging the representative
color over time for about a second. For scenes with less movements (means
less color changes) this reduces flickering of the ambient light and also avoids
noise produced by the frame grabber card. On the other side, lightnings and fast
color switches are desired on rapidly changing scenes. For example laser gun
shots in science fiction movies should be immediately visible for the audience.
Finding an adequate level at which the calculation of the representative color
mean value is aborted, is a complicated challenge.

64 From Model-Driven Design to Resource Management for Distributed Embedded Systems

5. CONCLUSION AND OUTLOOK
This paper presents the ambient light system (ALS). ALS allows the grab­

bing of a video stream and the calculation of the color mean value for lightning
a room with power LEDs. The mean value calculation is adaptable by different
mask computations. Therefore, with ALS the user is able to adapt the lightning
to his needs. ALS consists of a hardware and software part. For the hardware
two boards are developed, the driver board for the low level control of the
LEDs and the backplane in the ALS control unit. The software is divided into
a real-time controller and a PC process which analyses the captured frame from
video signal to calculate a representative color. On the hardware a maximal la­
tency of 1.2 ms is achieved, which is noticeable smaller than the time for one
frame (40 ms). The latency of 5 frames of the PC process is only a subjective
measurement. Therefore, the overall latency of our ALS is not precisely de­
terminable. Nevertheless, the latency could be measured by recording the TV
together with the illuminated wall. The difference of the time between the TV
shows a single color in full screen and the time point when this color is visible
on the wall is more precise value for this latency. This test should be done
by displaying colors from a small palette to clearly assign the recorded colors
to one of the palette. Additionally, the PC process supports color balance and
color matching. With our approach of manual adjustment the color balance
achieved sufficient results. The color matching is still an open problem.

As further work, it is planned to replace the PC process step by step with
suitable hardware, like FPGAs for frame processing and when needed addi­
tional controller boards. For example calculation of mean value of the repre­
sentative color over time and performing of the color balance can be integrated
into the software part running on the controller board.

ACKNOWLEDGMENTS
The following people are involved in the development and assembling pro­

cess and gave some really useful hints and ideas (mentioned in alphabetical
order): Philip Adelt, Dirk Hopmann, Bemd Kleinjohann, Alexander Krupp,
Christoph Loser, Wolfgang Muller, Stefan Rose and Robbie Schafer.

REFERENCES
[1] KeaneJarvi. Communication API for Java: RXTX. http://users.frii.com/

jarvi/rxtx/download.html.

[2] Philips Electronics N.V. Learn about Picture and Sound, http://www.flattv.philips.com/
index.cfm?ei;ent = mainSzcaUd = ISzsubcaUd = 2Szpage = pg3.

[3] Paderkicker. ATMEGA128-Board, Rev. 0.2. University of Paderbom/C-LAB, 2005.
[4] Inc. Sun Microsystems. Java Media Framework API (JMF), Version 2.1.1 e.

http://java.sun.com/products/java-media/jmf/index.jsp, 2006.

THE PADERKICKER TEAM: AUTONOMY
IN REALTIME ENVIRONMENTS

Willi Richert, Bernd Kleinjohann, Markus Koch, Alexander Bruder,
Stefan Rose, and Philipp Adelt
Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderbom, Germany

richert@c-lab.de

Abstract: The Paderkickers are a robot soccer team that makes heavy use of au­
tomotive technology Uke C167 micro-controllers or communication over
CAN bus. All sensor data is processed on these decentralized embedded
nodes to yield a high degree of reliability and hardware layer abstrac­
tion. In this paper, we describe how the complex system copes with
perception and action in real-time and integrates it in the higher strat­
egy layer to achieve autonomous behavior.

1. INTRODUCTION
The Paderkicker team [8] consists of five robots (Fig. 1) that already

participated successfully in the German Open competition in 2004 and
2005, and the Dutch Open 2006. Currently, last preparations for the
RoboCup 2006 World Championships are in progress.

Our platform asks for the whole range of research issues needed for a
successful deployment in the real world. This includes embedded real­
time architectures [2, 5, 14-17], real-time vision [2, 14-17], learning and
adaptation from limited sensor data, skill learning and methods to prop­
agate learned skills and behaviors in the robot team [13, 12, 9]. However,
our goal is not to carry out research for specific solutions in the robotic
soccer domain, but to use and test advanced techniques from different re­
search projects. The Paderkicker platform serves as a test bench for the
collaborative research center 614 (funded by the Deutsche Forschungs-
gesellschaft). Furthermore, the knowledge in vision, motion and object
tracking is currently used in the AR PDA (Bundesministerium fiir Bil-
dung und Forschung) project [11].

Please use the foil owing format when citing this chapter:

Richert, W., Kleinjohann, B., Koch, M., Bruder, A., Rose, S., Adelt, R, 2006, in IFIP International Federation for Informa­

tion Processing, Volume 225, From Model-Driven Design to Resource Management for Distributed Embedded Systems,

eds. B. Kleinjohann, Kleinjohann L., Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 65-74.

66 From Model-Driven Design to Resource Management for Distributed Embedded Systems

VIA EPIA M-Series
MinMTX

;.1

Image Processing
TriMedia 1100

%%%%

Movement Control and Sensor Analysis Camera Control
Measurement and Ball control

(Odometric System)

Figure L The Paderkicker team. Figure 2. The Paderkicker architec­
ture.

2. ROBOT OUTLINE
The robots (Fig. 1) have differential drive (2*75W) allowing for a

maximum speed of 2.5 m/s. Instead of omni-vision we use four standard
cameras for improved recognition of far away objects. As the colored
marker objects at the corner will be removed in the near future the robots
will have to distinguish far away line markers. We use a slide driven by an
elastic band to shoot the ball. For the proper positioning of the ball prior
to shooting the robot can use two side wise rolls and one above the ball,
all of them electrically driven in both directions if needed. The central
processing unit in our robot architecture (Fig. 2) is a PC compatible
board which boots real-time Linux. The main process on the PC is
Paderkicker's Brain module written in Java, which is the central instance
to process the accumulated perception and choose the correct actions.
This is possible, because all time-consuming processing is sourced out
to the diverse distributed controllers. The system still has very low
processor load. The Java process is assisted by a Particle Filter process
(C4-+) which sits between the vision sensor and Brain, calculating the
global robot position, relative ball position, and obstacles. Thereby, we
have two ball positions the behavior system can operate with: a fast
inaccurate one for approaching the near ball for better reactivity and a
delayed, accurate and more stable one for moving towards the ball that
is more than 2,5m away. Furthermore, Brain connects to a separate
Jess [7] process, a rule engine similar to CLIPS but written in Java. The
Jess instance has the task to switch between strategies (Attack, Defend,

From Model-Driven Design to Resource Management for Distributed Embedded Systems 67

etc.) dependent on team variables like e.g. "our team possesses the ball"
or "enemy in goal area".

2.1 HARDWARE
Paderkicker robots make use of automotive technology like C167 16bit

micro controllers and communication over CAN bus. Furthermore ded­
icated hardware is used for image processing. Self designed PCBs are
integrated for voltage and temperature control. All incidental sensor
data is processed on these decentralized embedded nodes for better reli­
ability and hardware layer abstraction. The extracted data is reported
to the central processing node, a Mini-ITX board with a VIA EPIA
IGHz CPU running real-time Linux.

Research is done mainly in the area of real-time image processing. An
optimized algorithm for low latency real-time color segmentation [16]
which even performs well on a PDA is implemented on a Trimedia TM
1100 video processing board running at only 100 MHz. Four rotatable
analog cameras are used to cover the whole 360° view instead of omni-
vision resulting in an overall higher resolution. Hence, we are capable
of seeing distant objects much better. Higher visual coverage of the
environment will become more important in the near future when the
field will likely be extended in size. All four cameras are connected to
the Trimedia Board. The data stream of one camera is evaluated at a
time and the extracted objects are delivered at a speed of up to 20 fps
over RS232 to the Mini-ITX board. Additionally, object recognition and
tracking [2] are a prerequisite for accurate self localization. Combining
oiu: real-time color segmentation algorithm and the implemented edge
vectorizer [17] we can easily feed our real-time particle filter [10] with
the crucial data needed to provide our world model with the absolute
robot position.

The central node of our hardware layer is the Mini-ITX board running
a Timesys Linux kernel (2.6 series) on a linux system built from scratch.
The board is connected to the robot's actuators via the CAN bus. With
three C167 boards we handle the drive control, odometry, ball control
(rolls), and camera positioning. Voltage and temperature sensors are
read out over USB. The base system is placed on a compact jflash card,
mutable configuration data resides on a USB stick. Finally, we use a
WLAN USB module to communicate with a central server that routes
the messages to the proper robot peer. With this hardware architecture,
the system is able to provide the behavior and strategy level with all the
necessary information it needs.

68 From Model-Driven Design to Resource Management for Distributed Embedded Systems

2.2 SOFTWARE
Our software behavior system breaks down into four independent

modules (Fig. 3):

World model module We use particle filters for every robot and com­
munication between the team members to update their world state,
that includes the state of the robot and some features from the
team members.

Strategy module Depending on the world model the strategy module
decides the current strategy independently for every robot. Strate­
gies include e.g. Defend^ Attack^ but also standard situations like
Kick off or Penalty, This is done by the aforementioned rule en­
gine (cf. Section 3.1).

Tactics module Every strategy is realized by a finite state machine
that carries out the tactics. Its states are, e.g., Ball facing, or Stay
between goal and opponent.

Behavior module This module executes the actual actions. It is be­
havior based in terms of Arkin's Motor Schemes [1]. Our behavior
system [4] allows for a distinction between cooperative and com­
petitive behaviors and behavior control through time excited eval­
uation functions. It consists of a set of low-level behaviors that
have to be combined in order to result in a vector that can be sent
to the actuators.

''.'

i'
• ^ ^

h ",;-;'

\-i-''h.
• : . ' " . ' . . . '

"\?^
^̂1
' " " i

\;-,/

V J

->\

L-

\~^I-

^ ' v V . \ ^ MM l : : ; / H % \
MoveToBall

Figure 3. Information flow in the Paderkicker.

Every major tactic like attacking the opponent or defending the own
goal has been modelled as a separate automaton. The selection of the

From Model-Driven Design to Resource Management for Distributed Embedded Systems 69

proper automaton is the task of a rule engine implemented in Jess that
keeps track of robot and team state changes (Fig. 3). In this way, the
RoboCup soccer rules could be implemented very quickly and we could
concentrate on the behavior details.

2.3 THE MESSAGE FORMAT:
CONNECTING HARDWARE AND
SOFTWARE

With the decentralized approach the systems autonomy is delegated
to the dedicated hardware boards, every board has one task to accom­
plish and is responsible for it. This leads to a more complex information
exchange mechanism needed to provide all subsystems with needed in­
formation in time. In addition, there are different bus systems to pass
information over — CAN bus, RS 232, USB and T C P / I P for communi­
cation between robots. For this domain, a special message format has
been designed that can be used on all bus systems in the Paderkicker
architecture (Fig. 4). This message format turned out to be robust and

4 bit 4bit abit 2bit 14bit
Sender Receiver Message ID Typ Length

0 = CANBUS.
t = BEHAVIOUR „ ^ „
2 = SERVER I'SIL,̂ ^̂
$ = f ix ROUTER typ: l * ^ S 3 r

»TRJMEC«A
S»APPt£T
esCtPS
7=BROADCAST

= «<lfO
*Pa.L

Figure 4- The message format.

computationally cheap. Every message is preceded by three bytes OxFF
as a message start delimiter. Thereby, every subsystem is able to figure
out the starting point of messages in continuous data streams with low
processing overhead. With the Message ID field it is possible to extend
the current message set by not yet foreseen message possibilities.

3. TEAM OUTLINE
The mission of the RoboCup project is to "develop a team of fully

autonomous humanoid robots that can win against the human world
champion team in soccer" by 2050 [3]. To decrease the gap of robots
ability today and the mentioned honor future goal we have to focus on
different substantial skills. A robot on one hand must be capable of act­
ing fully autonomously under a dynamic environment and on the other
hand needs to cooperate with other team members to have a chance to

70 From Model-Driven Design to Resource Management for Distributed Embedded Systems

win a soccer game. We will focus on these two important points on the
layer of strategy. The complexity of such a project will spread quickly to
different other problems like a union world model, exchange of percep­
tions between teammates, role negotiation, to play by the competition
rules and to handle uncertainty. The strategy level of both bases on
the rule-based system Jess [7] which is used as an expert system for
RoboCup and interacts closely with other components of the robot and
even over the whole team.

3.1 STRATEGY LAYER
For the strategy layer of the Paderkicker we use a rule-based system

for tactics on a higher level of the robotic architecture. The planning on
that layer is very intuitive by using expert system declarative program­
ming methodology. So the expert knowledge is well human readable
and acts in a manner of what's to be solved and not procedural how
this should happen. We prefer to program like first mentioned and rely
on the ability of the expert system to reason even under incomplete
world information [6]. First we want to mention the interaction between
the rule-based system and the other components of the robotic software
architecture.

Architecture and Interfaces. The overall rule-based system archi­
tecture is shown in Fig. 5. Beginning at the left side of the figure the
expert system core architecture is shown. It consists of different mod­
ules. The working memory holds the facts and variables of the actual
world model (Here: It is unknown if the ball is in the perception range
of the robot). The rule-base holds the domain specific expert knowledge
coded into rules. (Here: If the ball is in range then change the role of
the robot to offender.) The pattern matcher matches the rule premises
against the facts in working memory and creates an agenda for execution
of the activated rules. Now the interface to the rest of the robot comes
into account on the right side of the figure. The rule-based system is
fed for example by the perception module of the behavior system. The
perceptions are preprocessed and appended into the working memory
as facts independently of the inference machine. This is solved by an
observer in Java. For example if the perception system recognizes a
ball in range then the observer reflects this as a fact into the working
memory. The way back to the behavior system and later on to the ac­
tuators is done by extending Jess with so called User-Functions which
implement a Transmitter to the behavior system. In our example if the
ball is in range the rule will fire and change the role of the robot via the
change-transmitter to offender. This closes the circle of interaction.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 71

Jess inference Engine

Pattern Matcher

Agenda

Obsen/er

Woricing iMemory
(balllnRange unknown)

Ruie-i>ase
If (balllnRange true) then (change destiny

offender)

Beliavior System

_ i
1

i

Perception

Execution Change Transmitter

Figure 5. The rule engine allows for autonomy at the strategy level.

In future enhancements we think about using the capabilities of shad­
owed facts in Jess, which are automatically updated by core rule system
mechanism. The way from the expert system to the lower layers is
done by extending the Jess functionality by special user-functions which
transmits the automation activation and other commands.

Teammate Knowledge. The teammate knowledge base holds the
facts and rules which are relevant for one autonomous robot on its own.
The rule-base reasons on states of the robot world that are mapped
to facts of the expert system. In addition, it reasons on requirements
which can be created inside the expert system itself or outside, like
other team members or a team server. The interaction with a team
server is particularly important for mixed teams like the mixed team of
Paderkicker and Tech United participating in the world championship in
Bremen this year. The teammate expert system activates and monitors
the different tactics (finite state machines) which are required to handle
typical situations in RoboCup.

Team Knowledge. There are different ways to form a team out of
individual soccer robots. One way is to create one dedicated server pro­
cess that distributes roles and commands to the teammates. Another
way is to design the expert system in a distributed way, so that every
robot has the same rule base and there are special rules for team de­
cisions that every teammate makes an independent decision in a given
situation. We started with the second solution, implementing our team

72 From Model-Driven Design to Resource Management for Distributed Embedded Systems

play as a distributed expert system. That way, we have to handle a lot
of special rules for rule assignment and additionally have to hold every
piece of information redundant in every database. For the RoboCup
world championship in Bremen we need to build a mixed team where
both teams — the Paderkickers and TechUnited Eindhoven — have
completely different hard- and software. This led to the introduction
of a team server that holds a separate Expert System for cooperation
of robots from different universities. The team server acts on a coach
level like in real soccer games. The different robots register at the team
server and transmit facts which are important for a coach. Examples of
these facts are the robots' positions and the position of the ball on the
playground.

3-2 CONNECTING TEAMS
In order to be able to connect with other soccer robot teams to form

one team, a team server serves as a central point, featuring a simple and
easy-to-adopt team message format. This was necessary, since other
teams should not have to bother with the message format peculiarities
that stem from our robots' unified communication including CAN-bus,
a serial line, etc. The new team message format thus only supports
messages that are dedicated to inter-team communication, world model
exchange und routing referee commands between the different teams. It
is now being evaluated with TechUnited, the Robocup midsize league
team of Eindhoven and Delft.

4. OUTLOOK

At the moment we are redesigning our platform (Fig. 6) having now
omni-wheels, allowing for better vision capabilities and supporting inter-
team connection for building mixed teams.

Concerning the demanding needs for line detection and higher frame
rates the Trimedia processor and the RS232 connection are bottlenecks.
Therefore current research takes place in the field of image processing on
FPGA where color segmentation and line detection is to be integrated to
deliver extracted 2D features easily at speeds of more than 50 fps. A self
designed PCB with a FPGA and USB as well as the image processing
circuit meet these needs and will be integrated in the near future.

Another purpose of our Paderkicker soccer team is the investiga­
tion of appropriate means to propagate learned knowledge in teams of
robots [13, 12, 9]. Currently, we develop a framework that enables robots
in a team to find their most natural skills. As every robot has a different
perception stream the sensorimotorical couplings will be learned much

From Model-Driven Design to Resource Management for Distributed Embedded Systems 73

Figure 6. The new platform with a more robust chassis, better vision capabili­
ties, omnidirectional drive, a stronger shooting device (right side), and a software
architecture that supports inter-team cooperation.

faster by decentralizing the "babbling phase", in which they find out
basic behaviors by trial and error. These can then be propagated to
other team members.

5. CONCLUSION
With the platform described in this paper we achieve the two conflict­

ing goals in the soccer domain needed to reach true autonomy: quick
response rates for high reactivity and more complex but less frequent
deliberation processes. Components that are subject to quick changes
in the environment are arranged in a decentralized manner and are lo­
cated on specialized hardware. Those processes that do not need that
fast update cycles like team communication, planning or processing at
the higher levels are located at the Mini-ITX, allowing for faster devel­
opment cycles but slower execution time. This architecture has evolved
naturally out of the needs to combine a fault tolerant embedded system
with fast development cycles for behavior exploration.

REFERENCES

[1] R. C Arkin. Motor schema based navigation for a mobile robot: An approach to
programming by behavior. In Proceedings of the IEEE Conference on Robotics
and Automation, 1987.

[2] D. Beier, R. Billert, B. Briiderlin, Bernd Kleinjohann, and Dirk Stichling.
Marker-less vision based tracking for mobile augmented reality. In Proceed-

74 From Model-Driven Design to Resource Management for Distributed Embedded Systems

ings of the Second International Symposium on Mixed and Augmented Reality
(ISMAR 2003), 2003.

[3] H.-D. Burkhard, D. Duhaut, M. Fujita, P. Lima, R. Murphy, and R. Rojas. The
road to robocup 2050. IEEE Robotics and Automation Magazine, 9(2):31-38,
2002.

[4] Natascha Esau, Bernd Kleinjohann, Lisa Kleinjohann, and Dirk Stichling. MEXI
- machine with emotionally extended intelligence: A software architecture for
behavior based handling of emotions and drives. In Proceedings of the 3rd In­
ternational Conference on Hybrid and Intelligent Systems (HIS'03), 2003.

[5] Natascha Esau, Bernd Kleinjohann, Lisa Kleinjohann, and Dirk Stichling. Visi-
track - video based incremental tracking in real-time. In 6th IEEE International
Symposium on Object-oriented Real-time Computing (ISORC '03), 2003.

[6] Ernest Friedman-Hill. Jess in Action : Java Rule-Based Systems (In Action

series). Manning Publications, December 2002. ISBN 1930110898.

[7] Ernest Friedman-Hill. Web site for the software Jess, 2005.
http://herzberg.ca.sandia.gov/jess/.

[8] Bernd Kleinjohann. The Paderkicker Team, 2006. http://paderkicker.upb.de.
[9] Markus Koch, Willi Richert, and Alexander Saskevic. A self-optimization ap­

proach for hybrid planning and socially inspired agents. In Second NASA
GSFC/IEEE Workshop on Radical Agent Concepts, 2005.

[10] Cody C. T. Kwok, Dieter Fox, and Marina Meila. Real-time particle filters. In
Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, NIPS, pages
1057-1064. MIT Press, 2002. ISBN 0-262-02550-7.

[11] Christian Reimann. Kick-Real - a mobile mixed reality game. In ACE2005,
ACM SIGCHI International Conference on Advances in Computer Entertain­
ment Technology, 2005.

[12] WiUi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Evolving agent soci­
eties through imitation controlled by artificial emotions. In M. Huang, X.-P.
Zhang, and M. Huang, editors, ICIC 2005, number 3644 in LNCS, pages 1004-
1013. Springer-Verlag Berlin, 2005.

[13] Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Learning action se­
quences through imitation in behavior based architectures. In Systems Aspects
in Organic and Pervasive Computing - ARCS 2005, number 3432 in LNCS,
pages 93-107. Springer-Verlag Berfin, 14 - 17 March 2005.

[14] Dirk Stichling. VisiTrack - Inkrementelles Kameratracking fur mobile Echtzeit-
systeme. PhD thesis, Universitat Paderborn, Fakultat fiir Elektrotechnik, Infor-
matik und Mathematik, 2004.

[15] Dirk Stichling and Bernd Kleinjohann. CV-SDF - a model for real-time com­
puter vision applications. In IEEE Workshop on Application of Computer Vi­
sion. IEEE, December 2002.

[16] Dirk Stichling and Bernd Kleinjohann. Low latency color segmentation on em­
bedded real-time systems. In Bernd Kleinjohann, K.H. Kim, Lisa Kleinjohann,
and Achim Rettberg, editors, Design and Analysis of Distributed Embedded Sys­
tems. Kluwer Academic Publishers, 2002.

[17] Dirk Stichling and Bernd Kleinjohann. Edge vectorization for embedded real­
time systems using the CV-SDF model. In Proceedings of the 16th International
Conference on Vision Interfaces (VI 2003), June 2003.

MODULAR COMPILATION
OF SYNCHRONOUS PROGRAMS

Klaus Schneider, Jens Brandt, and Eric Vecchie
University of Kaiserslautern
Department of Computer Science
Reactive Systems Group
P.O. Box 3049, 67653 Kaiserslautern, Germany
http://rsg.informatik.uni-kl.de

Abstract: We present a new method for modular compilation of synchronous programs
given in imperative languages like Quartz or Esterel. The main idea of our
approach consists of computing sequential jobs that correspond with control flow
locations of the program. Each job encodes that part of an instantaneous reaction
that is triggered by the activation of the corresponding control flow location. The
special consideration of the initial job that is executed at initial time yields a
simple method for modular code generation.

Keywords: synchronous languages, modular compilation

1. INTRODUCTION
Synchronous languages [13], [2] like Esterel [3] and its variants [14], [19] are
particularly interesting for system design: First, it is possible to generate both
efficient software and hardware from the same synchronous program. Second,
it is possible to determine tight bounds on the reaction time by a simplified
worst-case execution time analysis [15]. Third, the formal semantics of these
languages allows one to formally prove (1) the correctness of the compilation
and (2) the correctness of particular programs with respect to given formal
specifications [18], [19], [21].

Although several success stories have been reported [12], there is still a
need for further research on efficient and modular compilation of synchronous
languages. In the past years, several different compilation techniques have
beendeveloped[9], [17], [11]:

Please use the foil owing format when citing this chapter:

Schneider, K., Brandt, J., Vecchie, E., 2006, in IFIP Litemational Federation for Information Processing, Volume 225,
From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjo-
harm L., Machado R., Pereira C, Thiagarajan PS., (Boston: Springer), pp. 75-84.

76 From Model-Driven Design to Resource Management for Distributed Embedded Systems

• The first compilers translated the program to an extended finite state ma­
chine whose transitions are endowed with corresponding code fragments
[6]. The disadvantage is the potential state-explosion problem; the ad­
vantage is the very fast execution time of the generated code.

• Polynomial compilation was first achieved by a translation to equation
systems [16], [18], [21] that symboHcally encode the automata. The
idea behind this approach is to consider control flow locations instead of
entire control states ̂ This approach is successfully used for hardware
synthesis and it is still the core of conmiercial tools [12], although the
generated software is sometimes comparably slow.

• A third approach has been followed by the Saxo-RT compiler [8], [7]
of France Telecom, which translates the program into an event graph.
Hence, an event driven simulation scheme can be used to generate code,
which is compiled into efficient C code.

• A fourth approach is based on the translation of programs into concur­
rent control data flow graphs [11], [17], [9], [10], [23], whose sizes de­
pend linearly on the given program. At each instant, the control flow
graph is traversed until active nodes are found to trigger the execution of
the corresponding subtree.

All of the above approaches have been developed to optimize the compila­
tion time, as well as the size and the execution time of the generated code.
However, with the exception of [23], essentially none of the above compila­
tion techniques considered a modular compilation, which is standard for all
sequential programming languages.

Modular compilation of synchronous programs is not at all straightforward:
A previously compiled module may start or end with an incomplete macro step
whose micro steps can interact with the micro steps of later added modules.
Hence, to achieve a modular compilation, the surface of each module must
be known: The surface [4], [22] of a statement consists of those micro steps
that are executed at initial time before the first control flow location is reached.
Surfaces are the essential information for combining pre-compiled statements.

For this reason, we have developed a completely new compilation technique,
which has different advantages [20]. Our compiler splits the given program
into so-called jobs that correspond with the control flow locations of the pro­
gram. Hence, we simply execute those jobs that correspond with the currently
active control flow locations. To this end, we have to take care of mutual
dependencies that have to be checked by causality analysis. An important sim-

^We distinguish between a control flow state that consists of a boolean vector of control flow locations. A
control flow location is a statement of the program that can hold the control flow for an instant of time. In
case of Esterel, control flow locations are essentially pause statements.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 11

plification is obtained by our compilation technique since each job consists of
purely sequential code.

For modular compilation, the job-based compilation technique has the ad­
vantage that the surface of the compiled module is explicitely given as the
unique initial job. Thus, modular compilation is basically achieved by taking
the union of the set of jobs and declaring the new initial job as the new surface.

The paper is organized as follows: in the next section, we briefly describe
the Esterel/Quartz language that we consider in this paper. We then define the
syntax and semantics of an intermediate language that we use to represent the
sequential jobs, and we explain the key idea of our job-based compiler. After
this, we illustrate the job-based compilation by means of a small example.
Then, we explain in detail how modular compilation can be achieved with
the job-based code. Finally, we discuss the advantages of our new compilation
technique for modular compilation and conclude with a short summary. Details
of the compiler are given in [20].

2. THE SYNCHRONOUS LANGUAGE Quartz
Quartz [18], [19], [20] is a descendant of Esterel that shares its basic model
with its ancestor Esterel. In this paper, we rely on the common statements and
therefore only consider the following:

DEFINITION 1 [Statements of Quartz] The set of statements o/Quartz is the
smallest set that contains the following statements, provided that S, Si, and S2
are also statements of Quartz, i is a location variable, x is an event variable,
y is a state variable, a is a Boolean expression, and a is a type:

nothing (empty statement)
emit X and emit next{x) (boolean event emissions)
y = T and next{y) = r (assignments)
i : pause (consumption of time)
if{cr) Si else S2 (conditional)
Si; S2 (sequential composition)
Si II S2 (synchronous concurrency)
do S while{a) (iteration)
[weak] suspend S when [immediate]{a) (suspension)
[weak] abort S when [immediate]{a) (abortion)
{a y; S} (local variable y with type a)

There are two kinds of (local and output) variables in Quartz, namely event
and state variables: State variables y are persistent, i.e., they store their current
value until an assignment changes it, while event variables take a default value
if no assignment is made. Executing a delayed assignment next{y) = r means
to evaluate r in the current macro step (environment) and to assign the obtained

78 From Model-Driven Design to Resource Management for Distributed Embedded Systems

value to y in the following macro step. Immediate assignments update y in
the current macro step and are therefore rather equations than assignments. As
most events are of Boolean type, we use the statements emit x and emit next{x)
as macros for y = true and next{y) = true, respectively.

There is only one basic statement that defines a control flow location, namely
the pause statement^. For this reason, we endow pause statements with unique
Boolean valued location variables £ that are true iff the control is currently at
location £ : pause.

The semantics of the statements is the same as in Esterel. Due to lack of
space, we do not describe their semantics in detail, and refer instead to [19],
[18], and, in particular, to the Esterel primer [5], which is an excellent intro­
duction to synchronous programming.

3. COMPUTING JOBS FOR PROGRAMS
In this section, we describe the computation of an equivalent set of jobs for a
given Quartz program. As already outlined, the overall idea of the proposed
code generator is as follows: For each control flow location i of the program,
a job Si is computed that has to be executed iff the control flow resumes the
execution from location i. Of course, several jobs may have to be executed in
one macro step since several locations can be active at once.

3.1 THE JOB LANGUAGE
In principle, a job Si consists of a set of guarded actions and guarded schedule
statements (see below) to implement the data flow and the control flow of the
program, respectively. However, we do not compute simple sets of guarded
statements. Instead, we additionally use conditional and sequential statements
to allow sharing of common conditions. Moreover, we use statements for bar­
rier synchronization to implement the concurrency of synchronous programs.

DEFINITION 2 [Job Language] The set of Job statements is the smallest set
that contains the following statements, provided that S, Si, and S2 are also
Job statements, £ is a location variable, x is an event variable, y is a state
variable, a is a Boolean expression, and X is a lock variable (having integer
type):

• n o t h i n g (empty statement)
• emit xandemi-t ney:t{x) (event emissions)
• y = r and ney:t{y) = r (assignments)
• i n i t (x, To) (initialize local variable)
• schedule(£) (resumption at next reaction)

^To be precise, immediate forms of suspend also have this ability.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 79

• reset(A) (reset a barrier variable)
• j oin(A) (apply for passing barrier)
• ba r r i e r (A , c) (declare barrier X)
• i f (cr) Si e l s e 52 (conditional)
• ^ i ; 52 (sequential composition)

Note that there is no longer a parallel statement and also the abort/suspend
statements are no longer required. Moreover, there are no loops, since we
can implement them by the help of schedule statements (explained below).
Furthermore, all job statements are instantaneous^.

The atomic statements no th ing , emit x, emit next(a;), y = T, and
next(y) = r have the same meaning as in Quartz programs. The meaning
of conditionals and sequences is also the same as in Quartz. The statement
in i t (x , ro) replaces a local variable declaration as follows: when executed,
it first removes x from the current context as well as pending (delayed) assign­
ments to X, and then gives x the initial default value TQ.

The schedule(£) statement corresponds with a control flow location i of
the Quartz program. When executed, it simply puts the label i in the schedule,
so that the runtime environment will execute the corresponding job Se in the
next reaction step. Note, however, that schedule(^) is instantaneous, so
that schedule(£i); schedule(^2) will at once put both ii and £2 to the
schedule for the next reaction step.

The statements r e s e t (A), join(A), and ba r r i e r (A , c) are used to im­
plement concurrency based on barrier synchronization. ba r r i e r (A , c) de­
clares a barrier with an integer lock variable A and an integer constant c as
threshold. Executing this statement checks whether X > c holds, and if so,
it immediately terminates, so that a further statement 5 can be executed in a
sequence like b a r r i e r (A, c); 5. If A < c holds, the execution stops, so that
the control thread terminates.

Executing r e s e t (A) simply resets A = 0, and join(A) first increments A
and then invokes a fimction fx that is associated with the barrier whose lock
variable is A. Usually (and in our compiled jobs always), it is the case that the
code of function fx is a sequence ba r r i e r (A , c); 5 with some statement 5.

Using the statements for barrier synchronization, it is straightforward to ex­
ecute parallel code on a uniprocessor machine: We associate with each parallel
statement a barrier with lock variable A and threshold c = 2 that is reset when
the parallel statement is started. When a thread of the parallel statement ter­
minates, it executes a j oin(A) statement. If both threads have executed their
final j oin(A) statements, the barrier will be passed, so that the code following

^The job language is therefore also a synchronous language on its own, which is however not meant to be
offered to the programmer. Instead, it is used as an intermediate language that could, in principle, be the
target for many synchronous languages.

80 From Model-Driven Design to Resource Management for Distributed Embedded Systems

the associated b a r r i e r (A, c) statement in the function fx associated with the
barrier can be executed.

The implementation of the barrier synchronization for other architectures
may (and must) be different. Hence, it depends on the platform that is used to
execute the program, while our jobs remain architecture-independent. Differ­
ent implementations for barrier synchronization already exist [1] for hardware,
software on multiprocessors, and software on uniprocessors, so that our jobs
can be executed on all of these platforms.

3.2 COMPUTING JOBS
The computation of the jobs of a statement is done in a single pass using a
recursive fiinction Jobs(-, •, •). To compile a statement 5, we start the function
call Jobs(S', nothing, {}), which computes a tuple {Sa, V, T) with the follow­
ing meaning:

• Sa is the surface statement of 5, i.e., that code that is executed when S is
initially started (which is often viewed as being started from an invisible
'boot' control flow location £«)•

• P is a set of pairs (£, Si) such that St is the job that is associated with
control flow location i.

• .7̂ is a set of pairs (A, S\), where A is the lock variable of a barrier and
S\ is of the form b a r r i e r (A, c); S" with some threshold c (hence, S'
is the job that is executed when the barrier is passed).

The execution of the initial call Jobs(S, nothing, {}) will produce subsequent
calls Jobs(5, Sy^, J) with statements S, Sjj with the following meaning: During
the function calls, the statement that has to be compiled has been transformed
to an equivalent one that is now of the form S', Sr^. Moreover, the set J is either
{} or a singleton set {A}. In the latter case, we have to immediately execute
j oin(A) to apply for passing the barrier A as soon as S; Srj terminates. If A
is large enough, the barrier can be passed and the job 5A associated with the
barrier will be immediately executed.

In principle, our compilation procedure performs a symbolic execution of
the statement, and each recursive call corresponds with a SOS rule that de­
fines the semantics of Quartz, which allows us to easily verify its correctness.
The recursion is made primarily on S, and secondarily on Sr^. Details of the
compilation are given in a forthcoming publication and also in [20].

4. AN ILLUSTRATING EXAMPLE
A difficult example program (with event input i and event outputs a, b, and c)
is given in Figure 1. This program suffers from a schizophrenia problem, since
the scope of the declaration of the local variable x can be left and re-entered in

From Model-Driven Design to Resource Management for Distributed Embedded Systems 81

module Schizo(event i,&a,&b,&c) {
loop

{bool x;
if{i) {

next(x) = true;
ql:pause;

}

abort {
emit a; || if(not(x)) emit b;

else q2:pause;
emit c;
q3:pause;

} when(not(i));

Figure 1. A Challenging Example with a Schizophrenic Local Declaration.

void f start 0 {
init(x,false);
if(i) {

next(x) = true;
schedule(ql);

} else {
reset (_linb4) ;
emit a;
join(lmb4);
if(~x) {

emit b;
join(_lmb4);

} else
schedule(q2);

}
}

void f_ql() {
reset(_lmb4);
emit a;
join(lmb4);
if(~x) {

emit b;
join(_lmb4);

} else
schedule(q2);

}

void g lmb4() {
barrier(_lmb4,2);
emit c;
schedule(q3);

Li

void f q2() {
if(~i) {
init(x,false) ;
reset(_lmb4);
emit a;
join(lmb4);
if(~x) {

emit b;
join(_lmb4);

} else
schedule(q2);

} else
join(lmb4);

}

void f q3() {
if(~i) {

init(x,false);
reset(_lmb4);
emit a;
join(lmb4);
if(~x) { 1

emit b;
join(_lmb4);

} else
schedule(q2);

} else {
init(x,false);
next(x) = true;
schedule(ql);

}
b 1

Figure 2. Sequential Jobs for Module Schizophrenia (Figure 1).

the same macro step. It is well-known that a statement may be entered more
than once in a single macro step if the module is called in a surrounding context
where the module is nested in several loops.

Figure 2 shows the resulting jobs that are obtained by compilation of this
module. As can be seen, our code generator has constructed functions f _ql,
f _q2, and f _q3 for each control flow location as well as for the boot location
(function f __start) . Moreover, there is a continuation function g__lmb4 to
implement the termination of the parallel statement.

Note that the schizophrenic local declaration is correctly implemented due
to the initialization statements that are called in the correct order.

5. MODULAR COMPILATION
Since a previously compiled module may start or end with incomplete macro
steps, it is possible that these micro steps can interact with the micro steps of

82 From Model-Driven Design to Resource Management for Distributed Embedded Systems

of a surrounding calling module. Hence, we have to consider the potentially
incomplete initial and final macro steps of the modules in order to compile
them in a modular way. In particular, we have to combine the incomplete
macro steps to a complete macro step of the entire module.

The job-based compilation technique presented above lends itself well for
this purpose: Assume we have to compile a module M with body statement
S for later use. To this end, we first replace the usually used initial function
call Jobs(S', nothings {}) for the module's body statement S with the extended
function call Jobs(5, nothing, {A^}) with a new lock variable A5. Hence,
when M terminates, it immediately calls a corresponding continuation func­
tion gxg with job statement Sx^. Since gxg is not available in the compiled
code of M, the runtime environment has to add such a function (with Sxs '-=
no th ing) when M is executed without a further context module.

Now assume M is instantiated in a surrounding module M^ Then, the job-
based compilation function works as follows: The function call Jobs(S', Srj, J)
is replaced by (1) Jobs(S', nothing, {^s}) and (2) Jobs(5^, nothing, J) . Since
(1) is what we already compiled in the previous compilation run for module
M, we can simply read'̂ the compilation result (S'a, P , J^) from the file that
contains the results of the previous compilation run. Call (2) is obtained by
normal compilation and will thereby generate a triple {S^,V^,J^), The final
result is then (S'a, P U P^, .7=' U Ĵ ^ U {(A5, barr ier (A5,1) ; 52)}), i.e., we
use the initial job 52 of 5?̂ as the continuation function for the barrier Â -.

Hence, modular compilation can be simply integrated with the job-based
compilation technique. The only fact we have to verify is that Jobs(5, S-q, J)
is equivalent to (5^, VyJV'^.TUJ^D {(A5, barr ier (A5,1) ; Si)}), where
(1) A5 is a new barrier variable, (2) (S'a, V, T) = Jobs(S', nothing, {A5}), and
(3) (52, P^, T"^) = Jobs(5ry, nothing, J) holds.

Note that during the compilation of the context module M', the jobs V that
have been generated by the previous compilation run of M may be modified
due to surrounding abortion or suspension statements. These statements have
to abort or suspend the job's execution whenever the corresponding abortion
or suspension condition holds. Since this is done in the usual job-based com­
pilation as well, we need not discuss this issue further, but we want to note that
it may be necessary to modify the jobs V. Moreover, several module calls to
M may even require copies of the jobs V.

Another problem is posed by causality analysis: Although all modules can
be checked independently of each other, a complete causality analysis can be
only performed after all modules have been linked together. Hence, causality
analysis has to be done after the complete compilation. Nevertheless, it may

"* Clearly, substitutions may be necessary due to the given arguments of the module instantiation.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 83

be additionally done as well on single modules after their local compilation in
order to speed up the final causality analysis.

Equation-based code can be integrated in the modular compilation scheme
as well: The compiler just wraps the equations into two jobs: All initial equa­
tions define the initial job, and the transition equations define the main job
Jmain- Both jobs coucludc with a check whether at least one control flow loca­
tion is active: If such a location exists, jmain is scheduled again, otherwise, the
exit continuation fiinction is joined.

6. SUMMARY
In this paper, a very simple code generation scheme has been presented that is
based on splitting the given program into sequential jobs that correspond with
the control flow locations of the program. Additionally, continuation functions
are required in order to avoid an exponential blow-up of the code, and to effi­
ciently execute parallel statements on uniprocessor systems.

In particular, we have shown in this paper that our compilation technique is
suited for modular compilation, since the jobs explicitly contain the surface of
the program given as the initial job f _ s t a r t . Modular compilation is not as
simple as known from sequential programming languages, since a reprocess­
ing of the compiled module cannot be avoided. However, the main benefits
of modularization remain: Compiled and potentially highly-optimized com­
ponents can be distributed and reused. Moreover, they can be shared without
revealing their source codes, since the generated jobs are a rather low-level
(but still adaptable) description from which the original code cannot be recon­
structed.

REFERENCES
[1] ANDREWS, G. Concurrent Programming - Principles and Practice. The Ben-

jamin/Cummings Publishing Company, Redwood City, CaUfomia, 1991.

[2] BENVENISTE, A. , CASPI, P., EDWARDS, S., HALBWACHS, N . , LE GUERNIC, P., AND

DE SiMONE, R. The synchronous languages twelve years later. Proceedings of the IEEE
91, 1 (2003), 64-83.

[3] BERRY, G. The foundations of Esterel. In Proof, Language and Interaction: Essays in
Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT, 1998.

[4] BERRY, G. The constructive semantics of pure Esterel. http://v^^ww-
sop.inria.fr/esterel.org, July 1999.

[5] BERRY, G. The Esterel v5_91 language primer, June 2000.

[6] BERRY, G., AND GONTHIER, G. The Esterel synchronous programming language: De­
sign, semantics, implementation. Science of Computer Programming 19, 2 (1992), 87-
152.

[7] CLOSSE, E. , POIZE, M. , PULOU, J., SIFAKIS, J., VENTER, P., WEIL, D. , AND

YoviNE, S. TAXYS: A tool for the development and verification of real-time embed-

84 From Model-Driven Design to Resource Management for Distributed Embedded Systems

ded systems. In Conference on Computer Aided Verification (CAV) (Paris, France, 2001),
vol. 2102 of LNCS, Springer, pp. 391-395.

[8] CLOSSE, E., POIZE, M. , PULOU, J., VENIER, P., AND WEIL, D . SAXO-RT: Interpret­

ing Esterel semantics on a sequential execution structure. Electronic Notes in Theoretical
Computer Science (ENTCS) 65, 5 (2002). Workshop on Synchronous Languages, Appli­
cations, and Programming (SLAP).

[9] EDWARDS, S. An Esterel compiler for large control-dominated systems. IEEE Trans­
actions on Computer Aided Design of Integrated Circuits and Systems 21, 2 (February
2002), 169-183.

[10] EDWARDS, S. ESUIF: An open Esterel compiler. Electronic Notes in Theoretical Com­
puter Science (ENTCS) 65, 5 (2002). Workshop on Synchronous Languages, Applica­
tions, and Programming (SLAP).

[11] EDWARDS, S., KAPADIA, V., AND HALAS, M . Compiling Esterel into static discrete-
event code. In Synchronous Languages, Applications, and Programming (SLAP)
(Barcelona, Spain, 2004).

[12] ESTEREL TECHNOLOGY. Website, http://www.esterel-technologies.com.

[13] HALBWACHS, N. Synchronous programming of reactive systems. Kluwer, 1993.

[14] LAVAGNO, L. , AND SENTOVICH, E . ECL: A specification environment for system-level
design. In International Design Automation Conference (DAC) (New Orleans, Louisiana,
USA, 1999), ACM, pp. 511-516.

[15] LOGOTHETIS, G., AND SCHNEIDER, K. Exact high level WCET analysis of syn­
chronous programs by symbolic state space exploration. In Design, Automation and Test
in Europe (DATE) (Munich, Germany, March 2003), IEEE Computer Society, pp. 196-
203.

[16] PoiGNE, A., AND HOLENDERSKI, L. Boolean automata for implementing pure Esterel.
Arbeitspapiere 964, GMD, Sankt Augustin, 1995.

[17] POTOP-BUTUCARU, D., AND DE SiMONE, R. Optimizations for faster execution of
Esterel programs. In Formal Methods and Models for Codesign (MEMOCODE) (Mont
Saint-Michel, France, 2003), IEEE Computer Society, pp. 227-236.

[18] SCHNEIDER, K. A verified hardware synthesis for Esterel. In Workshop on Distributed
and Parallel Embedded Systems (DIPES) (SchloB Ehringerfeld, Germany, 2000), F. Ram-
mig, Ed., Kluwer, pp. 205-214.

[19] SCHNEIDER, K. Embedding imperative synchronous languages in interactive theorem
provers. In Conference on Application of Concurrency to System Design (ACSD) (New­
castle upon Tyne, UK, June 2001), IEEE Computer Society, pp. 143-156.

[20] SCHNEIDER, K. The synchronous programming language Quartz. Internal Report to
appear. Department of Computer Science, University of Kaiserslautem, 2006.

[21] SCHNEIDER, K. , BRANDT, J., AND SCHUELE, T. A verified compiler for synchronous
programs with local declarations. Electronic Notes in Theoretical Computer Science
(ENTCS) (2006).

[22] SCHNEIDER, K. , AND WENZ, M . A new method for compiling schizophrenic syn­
chronous programs. In Conference on Compilers, Architecture, and Synthesis for Em­
bedded Systems (CASES) (Atlanta, USA, November 2001), ACM, pp. 49-58.

[23] ZENG, J., AND EDWARDS, S. Separate compilation of synchronous modules. In Inter­
national Conference on Embedded Software and Systems (ICESS) (Xian, China, 2005).

TRENDS IN TIMING ANALYSIS

Bjorn Lisper
Dept. of Computer Science and Electronics
Mdlardalen University
P.O. Box 883
SE-721 23 Vdsterds
Sweden

bjorn.lisperOmdh.se

Abstrac t Static Worst-Case Execution Time (WCET) analysis aims to find safe
upper bounds to the execution time of a program. We give a brief status
report on the field of static W C E T analysis, and we then present a
personal perspective on the current and anticipated forthcoming trends
in the area.

Keywords : Real-time System, Timing Analysis, Program Analysis

1. INTRODUCTION
A Worst-Case Execution Time (WCET) analysis finds an upper bound

to the largest possible execution time of a computer program, or a
time-critical part of a program. Reliable WCET estimates are crucial
when designing and verifying embedded and real-time systems, espe­
cially safety-critical ones.

The WCET is often estimated through measurements. Estimates ob­
tained in this way are, however, not reliable in general. An alternative
is static WCET analysis, which determines a timing bound from mathe­
matical models of the software and hardware. If the models are correct,
then the analysis will derive a timing bound that is safe, i.e., greater
than or equal to the true WCET.

In this paper, we discuss WCET analysis, its current status, and
trends. What can be achieved today? How will trends in hardware
and software affect the field? What is needed to turn WCET analysis
into a widespread technique? This is a personal perspective, and we
make no claims of completeness and scientific rigor.

The rest of this paper is organized as follows. In Section 2 we describe
briefly what WCET analysis is, which basic approaches there are, and

Please use the following format when citing this chapter:

Lisper, B., 2006, in IFIP International Federation for Information Processing, Volume 225, From Model-Driven Design to

Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R., Pereira C.,

Thiagarajan PS. , (Boston: Springer), pp. 85-94.

86 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Program development r~~^ rW^^^^mTs

' 3 f Object F i t e \ \ \ C ^

i N M Compiler ^ - # 4 ^^^^^ ^'^ > ^ Linker

Figure 1. Embedded program development and static W C E T analysis.

give a short account for the current status of the field. In Section 3 we
discuss how trends in hardware architecture will affect WCET analysis.
Section 4 provides a similar discussion as regards software, and require­
ments on WCET analysis. In Section 5, we monitor the research trends
in WCET analysis. In Section 6, finally, we wrap up.

2 . WCET ANALYSIS
Static WCET analysis is usually divided into three phases: a (fairly)

machine-independent flow analysis of the code, where information about
the possible program execution paths is derived, a low-level analysis
where the execution times for sequences of instructions are decided from
a performance model for the target architecture, and a final calculation
phase where the flow and timing information are combined to yield a
WCET estimate. See Figure 1.

The purpose of the flow analysis phase is to find constraints on the
possible execution paths of the program, like upper Hmits to loop itera­
tions, infeasible path constraints, etc. Automatic flow analysis calculates
this information with Uttle or no manual intervention. It is in general
impossible to derive exact information. Automatic methods therefore
calculate approximate flow information, and allow additional informa­
tion as manual annotations (3, 13, 14).

Flow analysis can be done on source code, on compiler-intermediate
code, or on binary code. In the first two cases, the flow information must
somehow be mapped to the binary code. Approaches include abstract
interpretation to bound the values of execution counters (7), pattern-
matching (8, 24), symbolic execution (17), and the use of Presburger
Arithmetics to identify loop parameters (3).

Today, most processors use performance-enhancing features such as
pipelines^ caches^ branch predictors^ and instruction-level parallelism.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 87

These features unfortunately yield complex timing models. Low-level
analysis research mostly concerns methods to deal with such timing
models.

The timing effects of pipelines are mostly local, and can be handled
quite well (4). Caches are harder to analyze, since they yield a global,
history-dependent timing model, where memory access times depend
on the current contents in the cache. A cache analysis attempts to
predict the contents of the cache (6). Instruction streams often are quite
easy to predict, and thus instruction caches can often be handled quite
well, whereas data caches often are subject to more dynamic memory
accesses, and thus are harder to analyze. Branch predictors, like caches,
yield history-dependent performance models, and low-level analyses for
branch predictors attempt to estimate their states (2).

Modern high-end processors use instruction-level parallelism, often
through a superscalar architecture. Such architectures are hard to ana­
lyze w.r.t. timing properties, due to their dynamic instruction schedul­
ing. Nevertheless, attempts have been made (15).

The final step in WCET analysis is to calculate a WCET estimate
from flow and timing information. Three common methods are tree-based
calculation (18), path-based calculation (8, 23), and IPET (Implicit Path
Enumeration Technique) (14, 21). IPET is the most common calculation
method today, and it calculates a WCET bound by solving an integer
linear programming problem.

WCET analysis is currently taking the step from research to industrial
use. Three commercial tools exist, which are mainly used in automotive
and avionics industry to analyze hard real-time systems. The technique
is, however, not yet widely adopted.

For reasonably simple embedded processors, with pipehne but without
cache, the current tools can provide WCET estimates which are typically
5-10% larger than the largest measured execution time. However, most
programs today require extensive manual annotations, constraining the
program flow, to get there. The annotations often require deep under­
standing of the code, and they are cumbersome to make. More complex
processor architectures can also be handled, but for a more hmited set
of programs, and analysis times grow rapidly. The practical limit today
seems to be at the level of processors like Motorola ColdFire 5307 and
PowerPC 755 (24).

3. HARDWARE
We see a trend towards even more complex processor architectures,

with more advanced features enhancing the overall performance. Em-

^8 From Model-Driven Design to Resource Management for Distributed Embedded Systems

bedded systems tend to migrate towards more complex processors. There­
fore, future WCET analysis methods must be able to keep up with the
development of high-performance architectures.

There is an inherent conflict between analyzability and modern per­
formance-enhancing features. These features typically make the proces­
sor adapt dynamically to run the code at hand faster, through caches,
branch predictors, etc. They typically record the execution history into
a complex internal processor state. The more complex the internal state,
the harder the timing analysis. Not only does it become harder to es­
timate the WCET with good precision, the difference between the true
WCET and the average execution time also tends to increase.

On the other hand, a trend in embedded systems is to put more of
the architecture under software control, in order to cut corners in chip
cost, and to allow for smart optimizations. Two examples are software-
controlled cache locking, and scratchpad memories. Both allow a more
explicit handling of on-chip memory, which is beneficial for analyzabil­
ity (26, 25).

Unwanted interaction between hardware features can hurt the analy­
sis. A modularized WCET analysis is often less costly. For instance, the
analysis is simplified if the cache behaviour can be analyzed separately,
to provide information about hits and misses, which then is used in the
further low-level analysis. If more misses always implies longer execution
time, then the cache analysis can safely assume that a memory access is
a miss if it is not surely found to be a hit, which makes the analysis less
complex. However, for superscalar processors, a cache miss may yield
a shorter execution time (17). This is due to the dynamic instruction
scheduling, where a delayed release of an instruction in the end may
give a better schedule. Unwanted interactions of this kind necessitate
a more integrated low-level analysis, which can be very detrimental to
performance since the sets of possible hardware states grow rapidly.

Another kind of unwanted interaction is due to sharing of resources
which have a stateful timing model For instance, if a processor has
separate instruction and data caches, then the analysis of one cache
may be precise even if the other is not. However, some processors have
a shared cache: a poor cache hit/miss estimation for one of the access
streams will then typically pollute the information about the whole cache
contents, even if the other access stream could have been accurately
analyzed. As a result, the total cache analysis will be less precise.

A very important paradigm shift in processor architecture is the in­
troduction of multicore processors, where a single chip hosts a multipro­
cessor. High-end PC's already have dual-core Pentiums, and in a few

From Model-Driven Design to Resource Management for Distributed Embedded Systems 89

years multicore processors are likely to prevail. This changes the rules
of the game radically.

On the positive side, the processor cores will be simpler than current
high-performance processors. Thus, that part of the low-level analysis
will be simpler. On the other hand, the processors will often have shared
resources, like buses, and cache memories. Since different threads will
access these resources, the concurrency will lead to a combinatorial ex­
plosion of possible state transitions, which then yields both long analysis
time and poor precision.

A big problem is that all current WCET analysis methods assume a
strictly sequential execution model. In general, the real-time research
community seems to assume that parallel hardware is to be utilized by
sequential tasks running on different processors. This assumption is very
doubtful: computationally heavy tasks are advantageous to parallelize,
and most likely this will happen. WCET analysis for parallel programs
must then be developed in order to analyze such tasks.

4. SOFTWARE AND REQUIREMENTS
Traditionally, time-critical embedded applications have been program­

med in C or assembler, and current WCET analysis methods mostly
target C or code generated from C. This is imperative code, which of­
ten has a reasonably simple structure. Such code is relatively easy to
analyze. Whole programs are typically analyzed, which means that the
tool has full information about the code.

However, there is a migration to higher levels of abstractions. Higher
level programming languages^ such as object-oriented (0 0) languages,
become more used. Model-based design, where code is generated from
models, is rapidly gaining ground in many application areas. Component-
based software engineering, where program components are reused and
combined, is also a strong trend.

Higher-level programming languages give rise to new problems. The
control structure typically becomes more dynamic. For 0 0 languages,
with methods rather than functions, methods are accessed indirectly
through a method table. This makes it harder to reconstruct the con­
trol flow. Data structures also tend to be more dynamic, and memory
management might be automatic. It is then harder to decide the adresses
of memory accesses, which makes it much harder to predict the memory
access times.

Some high-level languages, like Java, are implemented on virtual ma­
chines. These machines introduce an additional abstraction layer be­
tween the program and the hardware, which makes analysis harder. If

90 From Model-Driven Design to Resource Management for Distributed Embedded Systems

the implementation uses just-in-time compilation, then it will be very
hard to predict the actual instructions executed. WCET analysis of
JVM code has been attempted (19), but the results have not been too
encouraging.

However, many programs written in high-level languages do have a
quite static structure. The abstraction mechanisms may be used to sup­
port reuse over different static conjfigurations, rather than for truly dy~
namic run-time behaviour. For such programs, program analyses may be
able to uncover the static structure, as well as other properties like sizes
of computed data structures (9). Program specialization techniques,
such as partial evaluation (10), may also yield more analyzable (and
also faster) programs. Declarative languages are particularly amenable
to program analysis and transformation, due to their clean semantics.

Model based design, where code is generated from models, poses new
challenges and possibilities as regards WCET analysis. Since different
tools, for different purposes, generate very different code, the challenges
will be very tool-specific. For instance, code generated for a state ma­
chine is Hkely to be highly unstructured, whereas control system code
generated from a simulation model should have a more regular structure.
The way a tool chooses to implement a model feature, like a FSM, can
also have a great impact on the WCET analyzability.

Obviously, WCET analysis of generated code should use tool-specific
information about how the code is generated whenever possible. It may,
for instance, be the case that a tool generates code where the loop iter­
ation bounds are directly related to the size of a matrix in the model.
Annotations bounding the loop iterations can then be automatically gen­
erated from the model. Experiments in this direction have been done
for Simulink (12).

Component-based software engineering (CBSE) is gaining ground. It
emphasizes the structuring of software into reusable components, with
well-defined interfaces. There are many different component models,
ranging from quite static models, where components are statically con­
figured, to very dynamic models where components can be swapped at
runtime.

A key feature is communication. Since the component model typically
is independent of the component implementation language, and even the
host processor, the communication often includes marshaling of data
between different formats. This is especially noticeable for distributed
component models, where middleware like CORBA is common.

There is an increasing interest in CBSE for embedded systems. This
raises the issue of how to analyse such software w.r.t. timing. Again,
there are a number of problems. First, components may be "black

From Model-Driven Design to Resource Management for Distributed Embedded Systems 91

boxes", with little information about the code. Second, reusable com­
ponents may be heavily parameterized. If the WCET is parameter-
dependent, then a single upper bound may be very untight. Third,
complex communication protocols may make the component communi­
cation very hard to analyze.

These problems must be solved to make WCET analysis useful for
component-based software systems. Conversely, component models for
hard real-time systems should be designed to be analyzable.

Little attention has been paid to the role of WCET analysis in the
software development process. The current tools require compiled bi­
naries, and can thus be applied only late in the development process.
However, timing-aware software design is often done with time budgets,
where different software parts are given maximal execution times. It
is then very interesting to estimate the execution time early, before the
complete binaries are available, to help set up these budgets. Thus, there
seems to be a market for early, approximate WCET analysis, using, say,
incomplete source code and crude performance models.

For high performance processors, the current WCET estimates tend
to be very pessimistic compared with the average execution time. Many
apphcations, especially in areas like telecommunications and multimedia,
have Quality of Service (QoS) requirements. Infrequent deadhne viola­
tions are then not harmful, and some violations are typically allowed
in order to utilize the hardware better. For such systems, it would be
more appropriate to derive statistical estimates for violations of given
deadlines, rather than absolute upper WCET bounds. A step in that
direction is the pWCET framework for probabilistic WCET analysis (1).

5. WCET ANALYSIS TECHNIQUES
What developments can be expected in WCET analysis? We be­

lieve that there is a need for approximate WCET analyses, with some
kind of probabilistic guarantees. This is due to the demands from the
large set of QoS-oriented applications, as well as the wish to introduce
timing analysis early in the tool chain. We also believe that hybrid
analyses, involving both static analysis and measurements, will be fur­
ther developed. Such analyses can avoid the costly and pessimistic low-
level analysis, at the price of not obtaining absolutely safe upper WCET
bounds. For single-path programs, measurements can give safe and ac­
curate WCET estimates, and a single-path programming style has been
advocated (20). The aforementioned probabilistic WCET analysis (1)
also includes measurements.

92 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Traditional, static low-level analysis is also developing. A very in­
teresting trend is the incorporation of methods from model checking
to handle very large state spaces. For instance, BDD's have been pro­
posed (27).

WCET-aware compilation attempts to improve the WCET, or its an-
alyzability, rather than average performance. An example is dynamic
cache locking to keep the cache contents predictable (25).

An important aspect of WCET analysis tools is their usability. Cur­
rent tools require many manual annotations, in particular to constrain
the program flow. To give flow information manually is cumbersome,
and requires a deep understanding of the code. This restricts the us­
ability of the tools (5). The level of automation must be raised, which
requires better methods in automatic flow analysis.

However, to find tight flow information is difficult. Loop bounds may
depend in complex ways on inputs, pointers, etc. Flow analysis of binary
code is especially difficult. If the compiler can map flow information
from the source code to the binaries, then this problem is alleviated. In
particular, manual annotations are best given on source code level, and
they cannot be completely avoided in general. Studies in this direction
have been made (11), but production compilers must adopt this kind of
technique if it is to have any impact on real practice.

Another option is parametric WCET analysis (16). Such an analysis
computes a formula for the WCET bound rather than a single num­
ber. Code with input-dependent WCET is common in many applica­
tions (22). A parametric analysis can also help analyze the sensitivity of
the WCET w.r.t. different parameters, which is useful when developing
code with time budgets.

6. CONCLUSIONS
WCET analysis is a maturing technology that is currently being in­

troduced in industry. However, it is not widely established yet. While
promising and important, many challenges remain to meet before the
technique will be adopted on a wider basis. The most important chal­
lenges are to keep up with the hardware development, to increase the
level of automation of the analysis, and to widen the scope to include
also soft real-time systems with QoS requirements.

The ability to meet these challenges depends on hardware, compilers,
and other tools which generate code. If one were to make a wish list, it
would include: WCET-aware compilers, with the ability to map program
flow information from source code to binary code, and hardware which
avoids shared resources and hidden stateful features to improve average

From Model-Driven Design to Resource Management for Distributed Embedded Systems 93

performance. For future multicore processors, we wish for mechanisms to
partition shared resources, like caches or scratchpad memories, between
tasks.

ACKNOWLEDGMENTS
I want to thank Jan Gustafsson, Andreas Ermedahl, and Christer

Sandberg for their valuable comments.

REFERENCES

16]

[7]

[8]

[9;

[lo;

[11

[12:

[13;

Guillem Bernat, Antoine Colin, and Stefan M. Fetters. W C E T analysis of prob­
abilistic hard real-time systems. In Proc. 2^^ IEEE Real-Time Systems Sym,-
posium, 2002.

Prangois Bodin and Isabelle Puaut . A WCET-oriented static branch prediction
scheme for real time systems. In Proc. 17^^ Euromicro Conference of Real-Time
Systems, pages 33-40, July 2005.

Bound-T tool homepage, 2006. www.tidorum.f i / b o u n d - t / .

Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, Sweden, April 2002.

Andreas Ermedahl, Jan Gustafsson, and Bjorn Lisper. Experiences from in­
dustrial W C E T analysis case studies. In Reinhard Wilhelm, editor, Proc. 5*^
Int. Workshop on Worst-Case Execution Time Analysis, pages 19-22, Palma de
Mallorca, July 2005.

Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Systems, 17:131-181, 1999.

Jan Gustafsson, Andreas Ermedahl, and Bjorn Lisper. Towards a flow analysis
for embedded system C programs. In Proc. l(f^ IEEE Int. Workshop on Object-
oriented Real-time Dependable Systems, Sedona, USA, February 2005.

C. Healy, R. Arnold, Frank Miiller, David Whalley, and M. Harmon. Bounding
pipeline and instruction cache performance. IEEE Transactions on Computers,
48(1), January 1999.

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Proc. 23rd ACM Symposium on Principles of
Programming Languages, pages 410-423, 1996.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, Hertfordshire, UK, 1993.

Raimund Kirner. Extending Optimising Compilation to Support Worst-Case
Execution Time Analysis. PhD thesis, Technische Universitat Wien, Austria,
2003.

Raimund Kirner, R. Lang, G. Freiberger, and Peter Puschner. Fully automatic
worst-case execution time analysis for matlab/simulink models. In Proc. 14^^
Euromicro Conf. of Real-Time Systems, pages 31-40, June 2002.

Raimund Kirner and Peter Puschner. Transformation of path information for
W C E T analysis during compilation. In Proc. 1^^ Euromicro Conf. of Real-
Time Systems, pages 29-36, Delft, June 2001. IEEE Computer Society Press.

94 From Model-Driven Design to Resource Management for Distributed Embedded Systems

[14] Y-T. S. Li and S. Malik. Performance analysis of embedded software using
implicit path enumeration. In Proc. 32:nd Design Automation Conf., pages
456-461, 1995.

[15] S. Lim, J. Han, J. Kim, and S. L. Min. A worst case timing analysis technique
for multiple-issue machines. In Proc. 1^^ IEEE Real-Time Systems Symposium^
December 1998.

[16] Bjorn Lisper. Fully automatic, parametric worst-case execution time analysis.
In Jan Gustafsson, editor, Proc. 3^^ International Workshop on Worst-Case
Execution Time Analysis), pages 77-80, Porto, July 2003.

[17] Thomas Lundqvist and Per Stenstrom. An integrated path and timing analysis
method based on cycle-level symbolic execution. Journal of Real-Time Systems,
May 2000.

[18] Chang Yun Park and Alan C. Shaw. Experiments with a program timing tool
based on a source-level timing schema. IEEE Computer, 24(5):48-57, 1991.

[19] Peter Puschner and Guillem Bernat. W C E T analysis of reusable portable code.
In Proc. 1^^ Euromicro Conf of Real-Time Systems, pages 45-52, Delft, June
2001.

[20] Peter P. Puschner and Alan Burns. Writing temporally predictable code. In
Proc. 't^ IEEE Int. Workshop on Object-oriented Real-time Dependable Sys­
tems, pages 85-94, San Diego, January 2002. IEEE Computer Society.

[21] Peter P. Puschner and Anton V. Schedl. Computing maximum task execution
times - a graph-based approach. Journal of Real-Time Systems, 13(1):67-91,
July 1997.

[22] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static Timing Analysis of
Real-Time Operating System Code. In Proc. 1^^ Int. Symposium on Leveraging
Applications of Formal Methods, October 2004.

[23] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient longest
executable path search for programs with complex flows and pipeline eff^ects.
In Proc. 4*^ Int. Conf. on Compilers, Architecture, and Synthesis for Embedded
Systems, November 2001.

[24] S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation
of Pipeline Models. PhD thesis, Saarland University, 2004.

[25] Xavier Vera, Bjorn Lisper, and Jingling Xue. Data Cache Locking for Higher
Program Predictability. In Proc. Int. Conf. on Measurement and Modeling of
Computer Systems, pages 272-282, San Diego, CA, June 2003. ACM Press.

[26] Lars Wehmeyer and Peter Marwedel. Influence of onchip scratchpad memories
on W C E T prediction. In Isabelle Puaut , editor, Proc. J^^ Int. Workshop on
Worst-Case Execution Time Analysis, pages 15-18, Catania, June 2004.

[27] Stephan Wilhelm. Efficient analysis of pipeline models for W C E T computation.
In Reinhard Wilhelm, editor, Proc. ^^ Int. Workshop on Worst-Case Execution
Time Analysis, pages 19-22, Palma de Mallorca, July 2005.

TRAFFIC SCHEDULING ANOMALIES IN
TEMPORAL PARTITIONS

Luis Almeida, Paulo Pedreiras, Ricardo Marau
LSE - lEETA / DET, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Abstract: Many network protocols rely on temporal partitions to provide isolation
between different nodes (TDMA slots) or different traffic classes (multi-phase
cyclic frameworks). Typically, the duration of the slots or phases is not
correlated with the duration of packet transmissions, which is variable and
non-preemptive. Thus, it is possible that the limit of the slot or phase be
overrun by an on-going packet transmission or, if this cannot be tolerated, idle-
time must be inserted at the end of the slot or phase whenever a packet does
not fit in. Nevertheless, both situations lead to scheduling anomalies in which
the worst-case network delay does not occur necessarily with the synchronous
release of all other packets, or just the higher priority ones. This paper
highlights two such anomalies showing their origin and indicating that, in such
circumstances, it is not possible to determine the worst-case network delay
with exactitude in the general case. However, it is still possible to upper bound
the network delay and the paper shows non-optimal solutions for those cases.

Key words: real-time systems, real-time scheduling, real-time communication, distributed
real-time systems

1. INTRODUCTION

The expression scheduling anomaly in real-time processor scheduling is
typically used to refer to a counter intuitive phenomenon in which increasing
the systems resources or relaxing the application constraints can lead to
increased schedule length. In a real-time scope, this means that previously
schedulable sets may then become non-schedulable. Probably the first such
anomalies being identified were the multiprocessor scheduling anomalies
described in (Graham, 1976) and known as Richard's anomalies (Stankovic

Please use the following format when citing this chapter:

Almeida, L., Pedreiras, P., Marau, R., 2006, in IFIP Intemational Federation for Information Processing, Volume 225,
From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjo-
harm L., Machado R, Pereira C, Thiagarajan PS., (Boston: Springer), pp. 95-104.

96 From Model-Driven Design to Resource Management for Distributed Embedded Systems

etal., 1995). The cause for such anomalies was related to the use of mutually
exclusive shared resources. A simple illustrative example is shov^n in
(Stankovic etal., 1995) in which the reduction of the execution time of one
task inverts the order by which two subsequent competing tasks, allocated to
different processors, access a shared resource. Such inversion may cause an
extra delay in the global schedule, possibly violating deadlines.

In off-line scheduled applications, the anomalies were often hidden by
optimization algorithms that would implicitly avoid them by acting upon the
task offsets and inserting idle-time where needed to delay the execution of
certain tasks. However such kind of optimization algorithms are too complex
to be used online and thus, under dynamic conditions, e.g. sporadic arrivals,
anomalies can indeed occur and generate worst-case response times that are
worse than expected. Buttazzo (2002) has shown that, when using variable
speed processors to reduce energy consumption, the anomalies can occur
even in uniprocessor systems whenever tasks synchronize in the access to
shared resources. To prevent such situation, he proposes using non-
synchronized task interactions through asynchronous buffers. He also refers
to a previous work by Mok (2000) that shows that anomalies can also occur
in variable speed uniprocessor systems with non-preemptive tasks. Recently,
Chen etal (2005) showed more anomalies in uniprocessor systems arising
from hardware configuration changes, such as processor upgrading, with
mutually exclusive shared resources and active I/O devices. In their work,
they propose three rules to prevent scheduling anomalies, namely inserting
idle-time, enforcing the same order when accessing resources and dealing
separately with passive and active resources.

Another form of anomaly can occur when using temporal partitions in
hierarchical scheduling frameworks. These have been recently studied by
Shin and Lee (2003), Bini and Lipari (2004), Almeida and Pedreiras (2004),
Davis and Bums (2005) and others. In these studies, it has become clear that
the response time of a task within a partition depends not only on the set of
interfering tasks that run within the same partition but also on the sequence
of availability periods of the respective partition. Particularly, Davis and
Bums (2005) show that the partition utilization as a fimction of the partition
period, subject to assuring the schedulability of a given task set, presents
local minima that can be very sharp in special cases. These cases correspond
to the situations in which the tasks periods are integer multiples of the
partition period and the tasks are released synchronously with the partition
instances. This leads to a good packing of the tasks within the partition and
any slight variation, either reduction or increase, in the partition period will
require a significant increase in the partition size to fulfill the same task
requirements. This is also an anomaly since reducing the partition period, i.e.
increasing computing resources, may tum schedulable tasks unschedulable.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 97

In this paper, we will address a similar case to the previous one, but
considering non-preemptive execution. This model is typical in real-time
networks used for control applications, in which communication is achieved
through single packet transfers over shared broadcast buses. In this scope,
temporal partitions have long been used either to control the access to the
shared medium, e.g. TDMA, or to separate different classes of traffic, e.g.
the multi-phase cyclic framework.

We will start by presenting our reference model and then highlighting
two anomalies that may occur in these systems. We will terminate by
presenting one technique for each case that allows bounding the anomaly
duration and consequently its worst-case impact on network induced delay.

2. SCHEDULING MODEL

We consider a communication system based on a shared broadcast bus.
The bus conveys messages which, for the purpose of this work, are
considered as single packet and thus are transmitted non-preemptively. This
is common in control networks or networks of sensors and actuators.
Moreover, we consider the bus to be time-partitioned, meaning that specific
types of communication can only occur within pre-defined intervals of time,
being suspended outside those intervals. Examples of time-partitions are
TDMA slots as in TT-CAN and TTP/C, and periodic/aperiodic phases,
sometimes referred to as synchronous/asynchronous, as in WorldFIP,
FlexRay, Ethernet POWERLINK, or the FTT protocols. Token passing
protocols, e.g. PROFIBUS, also constrain the intervals during which nodes
may access the bus, i.e., the token holding intervals. When the token holding
time expires the nodes do not issue further transmissions no matter the
number or priority of their ready messages. In this sense, the token holding
intervals of a given node also form a temporal partition.

Therefore, we consider a time-partitioned system characterized by a set
M of messages that will be scheduled within a partition 77 The message set
M is defined as in (1), containing Â periodic messages. Message w, has
maximum transmission time C/, period T,, initial offset 0i and priority Prj
either fixed or variable depending on the particular scheduling policy.

M = {m, (Q, Tu 0uPr^ i=\..N} (1)

The partition 77 is formed by an infinite periodic sequence of time
intervals or windows, during which the bus is available for transmitting the
messages of set M. The period of the windows, also called the partition
period, is ;r, and the windows duration, also called partition capacity, is

98 From Model-Driven Design to Resource Management for Distributed Embedded Systems

called w (2). In TDMA protocols, î ris the TDMA round and w is the slot
duration. In multi-phase cyclic frameworks, ;ris the micro-cycle and w is the
phase duration. Moreover, as expressed in (2), we consider two types of
partitions depending on whether the partition capacity is constant (type 1) or
variable (type 2). TDMA protocols use partitions of type 1 only, while multi­
phase cyclic frameworks normally use partitions of both types, the periodic
phase being typically of type 1 and the aperiodic phase of type 2 since it
reclaims the capacity not used by the periodic phase (Fig. 1).

n'^n\7U,W=C0m'')\ n^ = n\7t,Wmin<W<Wn,ca) (2)

TDMA round with 3 nodes Micro-cycle with 2 phases

m.i'miiiiimrmi-m^, E;^mJa».M=faTi
Bus time Bus time

Figure 1. Examples of time-partitioned buses.

Moreover, we consider the following constraints on the message set,
which are typically found in the communication systems referred before.
Firstly, the message transmission time is always substantially shorter than
the partition capacity (Vm,, Ci«w). Secondly, the message periods and
initial offsets are integer multiples of the partition period (Vm,, 3nE{l,2,...}:
Pj=n*7r and 31e{O,l,...}:0/=/*;T) and the messages are released synchro­
nously with the start of partition windows. This model is typically found in
TDMA and master-slave networks that are based on cyclic frameworks.

A helpful definition that applies to both types of partitions is to consider
the infinite sequence of partition windows, each characterized by a start and
finish instant as in (3).

n^{wk(wk\w/[X A:=0..cx)} (3)

Then, we can define the capacity of each partition window as Wk=w/f-Wk.
Notice that Wk=w \/k for type 1 partitions. Also, we can define the load of
each partition window as in (4), corresponding to the total transmission time
of the messages scheduled within Wk. Notice that Wk will be used
indistinctively to refer to the (A:+l)''̂ partition window as well as to its length.

load(w,)= ^C, (4)

An important aspect is that Wk is normally uncorrelated with {C/, /=1..A^
and thus two situations can occur when scheduling messages within a given

From Model-Driven Design to Resource Management for Distributed Embedded Systems 99

partition window, depending on whether an overrun of the partition capacity
is allowed or not. If it is not allowed, as in TDMA systems in which there
must be a strict temporal isolation between slots, a message w, is transmitted
within window Wk if its transmission completes before or at w/. Otherwise, it
is delayed to the following windows. This can lead to the insertion of idle-
time at the end of window Wk (Figure 2, top line). In other systems, typically
in periodic phases, any message that can start transmission before w/ is
actually transmitted, thus overrunning the Wk limit (Figure 2, lower line).
Despite seeming different, this latter approach can be easily converted to the
former inserted idle-time approach by considering an equivalent w{ that
equals w/plus the longest overrun and an equivalent Wk=^w{-Wk.

LffiitlJk^
^̂ 0 iiiiillp̂ ^̂ ^̂ ^̂ ^̂

^ k+1

St
^ k + 1

Inserted
Idle-Time

- • . Ovenun

Figure 2. Inserting idle-time (top line) or overrunning the window limit (lower line).

Therefore, whenever idle-time is inserted in window Wk, we have
load{wj) < Wk even when there are more messages ready for transmission.
The maximum inserted idle-time depends on the combinations of messages
that are scheduled within each window. Calculating its exact value requires
building a traffic timeline over an entire macro-cycle. However, it can be
upper bounded by the maximum transmission time among all messages or,
in some special cases, among a subset (Almeida and Fonseca, 2001).

Finally, we define the network delay ndt of message mt as the time span
between message release and end of the respective transmission.

3. SYNCHRONOUS RELEASE ANOMALY

The scheduling anomalies that we show in this section refer to the
definition of critical instant. This is a key concept in schedulability analysis
of task or message sets with arbitrary offsets. By definition (Liu and
Lay land, 1973), the critical instant is such that releasing a message at that
instant will result in its largest network delay. When such critical instant can
be determined it is sufficient to compute the message network delay for such
instant to assess the schedulability of the message set for any phasing
condition. Liu and Layland (1973) proved that, for preemptive tasks running
on a single non-idling processor, the critical instant happens when a task is
released simultaneously with all others (Earliest Deadline First scheduling).

100 From Model-Driven Design to Resource Management for Distributed Embedded Systems

or with all higher priority ones (Rate-Monotonic scheduling). This property
also holds for Fixed-Priorities scheduling in general, as well as for time
partitioned systems, as long as preemption is allowed. However, for the non-
preemptive case, as in our model, such property does not hold.

In this paper we will present two anomalies related to the critical instant.
The former one is called direct synchronous release anomaly and refers to a
situation in which the network delay of a message within a given partition
increases when the phasing of the remaining messages is non-synchronous.
The latter is called indirect synchronous release anomaly and refers to a
situation in which the partition capacity is variable and dependent on the
effective use of the capacity of another partition that has higher priority in
using the bus. This is typical in aperiodic phases with respect to periodic
ones, which are normally given higher priority. In this case, the maximum
network delay of an aperiodic message might not occur when the message is
released together with all the periodic messages. These two counter intuitive
phenomena are the motivation for this paper and will be described next.

3.1 DIRECT SYNCHRONOUS RELEASE ANOMALY

Proposition 1: When scheduling a message set M (non-preemptively)
within a temporal partition 77(;r̂ w) of type 1, i.e., with fixed capacity, using
fixed-priorities or deadlines-based criteria, the critical instant may not
coincide with the synchronous release of the messages in M.

Proof. We prove the proposition with an example. Consider a
communication system with a partition /7(;r, w) with capacity w = 5 time
units and period ;z>5 time units. Consider a set M={mi, /-I..5} of periodic
messages, sorted by decreasing priorities or later deadlines, with
transmission times C/={2,2,1,3,2} time units and period r,>3*;r. Let us
consider the first 3 availability windows {wo, wj, W2}

i)When the messages are released synchronously (^=0, /=1..5) messages
m] to m3 fit in wo, and messages m̂ and mj fit in slot wj (Figure 3).
Thus, nd4= wy^+Q and nd5= wf+C4+C5 .

ii) Consider now that message ms has initial offset 05=;r. After the
transmission of message m ,̂ messages m̂ and mj are ready but are not
scheduled since they do not fit in WQ. Then, message ms becomes ready
at w/ and is scheduled before w^ and mj because it has higher priority
or an earlier deadline. Message m̂ still fits in wi but mj is pushed
forward to W2 (Figure 3). Thus, nd4= w/+€3-^04 and nd5= W2'+C5.
In this scenario, messages m̂ and wj experience a longer response

time when <^,={0,0,;T,0,0} than with the synchronous release 0i=O,
/=1..5 thus proving the proposition. •

From Model-Driven Design to Resource Management for Distributed Embedded Systems 101

1,2,3,4,5

•••iiiiiiiMiiiBi

nds
f 1,2,4,5 ••,

— I M P

t3

?l 4 I I - \

nds
Figure 3. Direct synchronous release anomaly.

The reason for the anomaHy is the idle-time inserted in wo and w;, where
the difference Wk-load{wk)>0 is added to the schedule length. This inserted
idle-time can vary significantly with just small variations in any C/.
Moreover, it is virtually impossible to compute it exactly for all partition
windows Wk unless generating the message schedule for the whole macro-
cycle, i.e., for a number of windows equal to lcm{Ti), i=\.J^. Finally,
different messages may exhibit their worst-case network delays for different
phasings not just one particular critical instant.

3.2 INDIRECT SYNCHRONOUS RELEASE
ANOMALY

Proposition 2: When scheduling a message set ^f (non-preemptively)
within a temporal partition rt{n, Wmtm'Wmwd of type 2, i.e., with variable
capacity resulting from reclaiming unused capacity from another partition
lf{7r,w^) of type 1 that has higher priority, using fixed-priorities or
deadlines-based criteria, the critical instant for the set A^ may not coincide
with the synchronous release of the set K^ scheduled within the if.

Proof: Again, we will use an example to prove this proposition. Consider
the set Kf={ml^, /=1..5}, with ^^={2,2,3,2,2} and period T^>3''7t,
scheduled within a partition lf{7u=6,w^=5). Now consider a partition
rt{7r=6, w^mirT^.y^^max"^^) witWn wWch wc schedulc a message set
]^={mi\ct=l, Tt>l>'^7z)') with just one message. Notice that v/^ stretches
and shrinks to reclaim the unsued capacity of iP, including any inserted
idle-time. Let us consider the 3 first partition periods, with the first 3
windows of each partition {wô , w/, w;^, w/, W2̂ , v^i }•

When the messages oi Is/t^ are released synchronously (^^=0, /-1..5)
messages ml^ and m2^ fit in w^, messages ms^ and mi^ fit in slot wl^ and
message mi^ fits in w^̂ (Figure 4). Thus, the effective capacity of partition
rt in its 3 first windows is >v/=2, W7̂ =l and w^=\.

102 From Model-Driven Design to Resource Management for Distributed Embedded Systems

i) Suppose we release message mi^ also synchronously, i.e., with 0/^=0.
Since Ct=w^=l, it fits in M^/ and its network delay is given by ndt=
w/'^+C/^ (which equals TZ),

ii)Now suppose we release message mt with Ot=n. Since C7^>>v/=1, it
does not fit in wt being pushed to w^̂ . Thus, its network delay is now
given by ndt= wf^Ct-n (which equals n^C^'tCt).

Since ndt is larger in the second case, i.e., when the message is released
in an instant different from the synchronous release of the hf set in the
partition TP the proposition is proved. •

t(l,2,3,4)«,l^^ iito^^^L
h Wo .-^7^,:,, , j

Figure 4. Indirect synchronous release anomaly.

This anomaly is also caused by idle-time inserted within 77 ,̂ whose
effect is propagated to if because of the reclaiming mechanism. If i l /
included more messages we would obtain a superposition of both anomalies,
i.e., the effect of the idle-time inserted directly in Ft because of the
scheduling of set A/̂ , and the idle-time inserted in rP caused by the
scheduling of set }sP and propagated to 7 / via the reclaiming mechanism.

Moreover, it is also virtually impossible to determine the exact phasing
for a niessage within ft that will cause its worst-case network delay without
actually building the schedule of Is/P within iP for the respective macro-
cycle. Finally, there is not one single phasing that causes the worst-case
network delay for all messages in Jl/.

4. WORST-CASE NETWORK DELAY

In the previous section we have seen that using inserted idle-time, either
directly or indirectly, within temporally partitioned networks may lead to
situations in which we lose the ability to determine an exact critical instant.
This has a drastic consequence in terms of schedulability analysis, and it
shows that it is not possible, in the general case, to determine exact worst-
case network delays under the referred conditions.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 103

However, the duration of the anomalies can be upper bounded and so can
the network delays. In recent years, a few analysis were developed that
already overcome these anomalies. On the other hand, the anomalies were
not recognized as such and were not formally presented, thus not illustrating
their full impact. Other analysis were presented that fail in the cases shown
in this paper, because the anomalies were not taken into account.

For example, Almeida etal. (2002) present a simple approach for the
direct anomaly considering the maximum idle-time being inserted every
window and noticing that its magnitude cannot be larger than the longest
message. This corresponds to considering one extra message muiCurCtnax,
Tut=n\ i.e., occurring every partition window and with a length equal to the
transmission time of the longest message in the set. This was proposed for
scheduling synchronous messages under EDF within FTT-CAN. They also
present another approach that is more efficient with utilization-based schedu-
lability tests for rate-monotonic scheduling. It consists in inflating the
transmission times of the messages to Cf^wl{w-Cniax)' It is also shown that,
with fixed-priorities scheduling, the maximum inserted idle-time can be
determined from within a subset of messages. With the adapted C, and the
referred scheduling model, any existing analysis for preemptive fixed-
priorities scheduling can be used in this case but always generating sufficient
non-necessary schedulability conditions (Almeida and Fonseca, 2001).

For the indirect anomaly, it can be avoided when analysing the worst-
case network delay by not reclaiming the capacity left free within the higher
priority partition whenever idle-time could have been inserted. Thus,
whenever Wk<load{wk)<Wk-Cniax the analysis considers load(wk)=Wk. This has
been proposed in (Almeida etal, 2002) to analyse the network delay of
asynchronous messages in FTT-CAN. With these approaches, for the direct
and indirect anomalies, the worst-case network delay obtained considering
the synchronous release will always be longer than the network delays
occurring at run-time with any phasing, thus resulting in a safe upper-bound.

Examples of analysis that may fail to provide a safe upper-bound for the
worst-case network delay are the timeline analysis for cyclic frameworks
(Almeida and Fonseca, 2001), the analysis for PROFIBUS in (Cavalieri
etal, 2002) as noted in (Ferreira, 2005), and the analysis for WorldFIP in
(Tovar and Vasques, 2000).

5. CONCLUSION

Scheduling messages non-preemptively within temporaly-partitioned
networks, e.g. in TDMA, token-passing or multi-phase cyclic buses, will
generally lead to the insertion of idle-time at the end of the partitions, either

104 From Model-Driven Design to Resource Management for Distributed Embedded Systems

slots or phases. This inserted idle-time may create scheduling anomalies in
which the critical instant is not coincident with the synchronous release of
the scheduled messages. In this paper we exposed and formalized two
anomalies of this kind, one related to scheduling messages within a partition
of constant width and another one within a partition of variable width. The
paper also showed existing approaches for traffic schedulability analysis that
are robust with respect to the anomalies, as well as approaches that may fail
because the anomalies were not considered.

REFERENCES

L. Almeida, J.A. Fonseca (2001). "Analysis of a Simple Model for Non-Preemptive Blocking-
Free Scheduling". In Proceedings of the 13th Euromicro Conference on Real-Time
Systems, Delft, The Netherlands.

L. Almeida, P. Pedreiras, J.A. Fonseca (2002). "The FTT-CAN Protocol: Why and How". In
IEEE Transactions on Industrial Electronics, 49(6).

L. Almeida, P. Pedreiras (2004). "Scheduling within temporal partitions: response-time
analysis and server design", ACM Int Conf on Embedded Software (EMSOFT 2004), Pisa.

G. Buttazzo (2002). "Scalable Applications for Energy-Aware Processors". 2nd Int. Conf on
Embedded Software (EMSOFT 2002), Grenoble, France, LNCS 2491, Springer-Verlag.

S. Cavalieri, S. Monforte, E. Tovar, F. Vasques (2002). Multi-Master Profibus-DP Modelling
and Worst-Case Analysis Based Evaluation. 15* IF AC World Congress, Barcelona, Spain.

Y.-S. Chen, L.-P. Chang, T.-W. Kuo, A.K. Mok (2005). "Real-time task scheduling anomaly:
observations and prevention", ACM Symp on Applied Computing, Santa Fe, New Mexico.

R.I. Davis, A. Bums (2005). "Hierarchical Fixed Priority Scheduling", Proceedings of the
26th IEEE Real-Time Systems Symposium (RTSS). Miami, USA.

L. Ferreira (2005). "A Multiple Logical Ring Approach to Real-time Wireless-enabled
PROFIBUS Networks". PhD Thesis, Universidade do Porto, Portugal.

R. Graham (1976). "Bounds on the performance of scheduling algorithms". In E. G. CofBnan,
Jr., ed. Computer and Job-Shop Scheduling Theory. John Wiley & Sons, New York.

Giuseppe Lipari, Enrico Bini (2004). "A Methodology for Designing Hierarchical Scheduling
Systems". In Journal of Embedded Computing 1(2).

C. L. Liu, J. W. Layland (1973). "Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment". In Journal of the ACM, 20(1).

A. Mok (2000). "Scalability of Real-Time Applications". Keynote address at the 7th
International Conference on Real-Time Computing Systems and Applications.

I. Shin, I. Lee (2003). "Periodic Resource Model for Compositional Real-Time Guarantees".
Proceedings of 24* IEEE Real-Time Systems Symposium (RTSS), Cancun, Mexico.

J. A. Stankovic, M. Spuri, M. Di Natale, G. C. Buttazzo (1995). "Implications of Classical
Scheduling Results for Read-Time Systems". In Computer, June, 1995, pp. 1625.

E. Tovar, F. Vasques (2000). "Distributed Computing for the Factory-floor: a Real-Time
Approach Using WolrdFIP Networks", Computers in Industry, 44(1), Elsevier Science.

PULSED DATA STREAMS

Hermann Kopetz
Institutfur Technische Informatik, Technische Universitdt Wien, A 1040 Wien, Treitlstrasse 3

Abstract: This paper proposes a new communication primitive for distributed embedded
control systems: the pulsed data stream. A pulsed data stream is a time-
triggered cyclic unidirectional data stream that is transmitted for a short
duration at a defined phase of every cycle of a periodic control system. Since
the duration of a cycle and the phase and duration of the transmission within
each cycle are known a priori, the transmission of pulsed data-streams can be
scheduled by the network ahead of their activation in order to minimize the
end-to-end latency that is provided to an application. This paper introduces
the concept of a pulsed data stream, presents a number of practical examples
that demonstrate the utility of pulsed data streams in distributed monitoring
and control applications and hints at implementation issues of pulsed data
streams in local and wide-area networks.

Keywords: embedded system, real-time, distributed system, distributed control.

1. INTRODUCTION

The widespread availability of powerful, low-cost and dependable silicon
devices is dramatically impacting the field of distributed control in
embedded systems. The integration of MEMS sensing and actuating
elements with a micro-controller on a single silicon die makes it possible to
build an intelligent sensor/actuator node that performs front-end signal
conditioning and calibration directly at the sensor and present the sensor data
in a uniform digital format via a standardized communication protocol to a
remote processing component that executes the control algorithm. Real-time
communication issues have thus entered distributed control applications at
the lowest control-loop level. The temporal performance of the

Please use the following format when citing this chapter:

Kopetz, H., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Model-Driven Design

to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R., Pereira

C.,Thiagarajan PS. , (Boston: Springer), pp. 105-114.

106 From Model-Driven Design to Resource Management for Distributed Embedded Systems

communication protocols within a control loop has thus a direct influence on
the quality of control.

Large control systems are organized in a hierarchical manner where
control loops are closed at multiple levels. Today it is common practice that
different communication protocols are used at the different levels[l]. For
example, while at the lowest level field bus protocols, such as CAN[2], are
extensively deployed, standard Ethernet is widely used at the higher levels
within a given location. In geographically distributed control systems, such
as in power grid control, standard Internet protocols, such as TCP [3], are
deployed. At any level the temporal characteristic of the communication
protocol, such as latency and jitter, are determining parameters for the
quality of the overall control system.

In this paper a single new communication primitive, the pulsed data
stream, for the exchange of real-time data in distributed real-time control
systems is proposed. Pulsed data streams can be used at all levels of the
control hierarchy, from low-level local sensor communication up to wide-
area distributed control systems, such as the control of the power-grid[4].
Pulsed data streams form a uniform mechanism for the exchange of real­
time data among the components of a distributed control system.

This paper is organized as follows. In Section two we analyze the
communication requirements of distributed control system. Section three
introduces the concept of a pulsed data stream as a new communication
primitive for distributed control systems at all levels of the control hierarchy.
Section four presents a number of application scenarios from the field of
distributed control. Section five looks at implementation issues and
discusses three different scenarios: networks-on-chip, local-area networks
and wide-area networks.

2. TIMING AND COMMUNICATION
REQUIREMENTS OF CONTROL SYSTEMS.

In this Section we analyze the timing and communication requirements
of local and wide area digital control systems. We are looking at three
different tasks of a control system: (i) process monitoring, (ii) continuous
control, (iii) discrete control.

2.1 PROCESS MONITORING

A controlled object, e.g., a car or an industrial plant process, changes its
state as a function of time. If we freeze the time, we can describe the current

From Model-Driven Design to Resource Management for Distributed Embedded Systems 107

State of the controlled object by recording the values of its state variables at
that moment. Possible state variables of a controlled object "car" are the
position of the car, the speed of the car, the position of switches on the dash
board, and the position of a piston in a cylinder. We are normally not
interested in all state variables, but only in the subset of state variables that is
significant for our purpose [5]. In a distributed control system, e.g., a nation­
wide power grid, care must be taken that the controlled object is observed by
all sensors at the same instant of time. A necessary prerequisite for
monitoring a large controlled object is thus the availability of a global time
of sufficient accuracy at every sensor node. Other than that, monitoring does
not require real-time communication protocols that exhibit controlled delay
and jitter.

In the Final Report of the US-Canada Task force on the NE American
power outage in 2003, the following remarks are contained about
synchronization and timing of the collected data [6] p. 162: A valuable
lesson from the August 14 blackout is the importance of having time-
synchronized system data recorders. The Task Force's investigators labored
over thousands of data items to determine the sequence of events, much like
putting together small pieces of a very large puzzle. That process would
have been significantly faster and easier if there had been wider use of
synchronized data recording devices. . . . Today at a relatively modest cost,
all digital fault recorders, digital event recorder and power system
disturbance recorders can and should be time-stamped at the point of
observation using a Global Positioning System (GPS) synchronizing signal.

1.1 CONTINUOUS CONTROL

In continuous control a continuous process is sampled periodically by a
digital system—giving rise to a hybrid system. From the viewpoint of the
distributed digital control system, the progress of time is partitioned into an
(infinite) set of consecutive cycles, where within every cycle the same
sequence of periodic activities is performed: waiting for the beginning of the
next cycle, sample the inputs at the (often physically dispersed) sensors, send
the data to a component that executes the control algorithm, and finally
distribute the data to the actuators that act on the physical parameters of the
process. The instants, when these activities are started, should be highly
predictable [1], p. 19-4: Periodicity is not mandatory, but often assumed as
it leads to simpler algorithms and more stable and secure systems. Most of
the algorithms developed with this assumption are very sensitive to period
duration variations, jitter in the starting instant. This is especially the case
of motor controllers in precision machines. Simultaneous sampling of inputs
is also an important stability factor.

108 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Sampling

^_ 1 Sampled Data
Cyclic Progression, ' ^-^^m^
r\t^^' X I m^^m^\. Control Algorithm
Of Time / I i ^ B ^ \ r- 1 w c * • .

X • m^^mm' ^Calculates Setpomts

Send Setpoints

Apply Setpoint

Fig. 1: Cyclic Model of Time and phases of a control system.

Fig. 1 suggest a cyclic, not a linear model time. Cyclic systems are very
common in control systems and in biological systems [7]. The progress in
cyclic systems is inherently time-triggered. The progression of time (and
activities) within each cycle can be depicted by the concept of phase,
ranging from 0 degree to 360 degree for the full cycle. The trigger for an
activity is thus the instant when the time progresses to a defined phase start
point. Fig. 1 depicts five phase start points: the start of sampling, start
sending the sampled data, start the execution of the control algorithm, start
sending the set-points to the actuators and finally apply the set-points to the
controlled object. The interval between the start of sampling and the
application of the set-points to the controlled object should be minimized in
order to reduce the dead-time of the control loop and thus increase the
quality of control. Within every cycle of activities there are two
communication phases: the sending of input data to the control algorithm
and the sending of output data to the actuators as depicted by the shaded
areas in Fig. 1. Reducing the duration of these communication phases
reduces the dead-time in the control loop and thus increases the achievable
quality of control. Since many of the widely used communication protocols,
such as CAN, Ethernet and TCP do not minimize delay and jitter, the quality
of control in these systems is unnecessarily degraded.

2.3 DISCRETE CONTROL

Discrete control systems are basically event-driven system. A significant
state change causes control actions by the computer system. In many of the
event-driven systems, the significant state changes are relayed to the
computer system by the interrupt mechanism. However, every interrupt
driven system is in danger of overload in case the minimum time between

From Model-Driven Design to Resource Management for Distributed Embedded Systems 109

interrupts is not bounded. In order to exclude the possibility of overload by
design, a number of discrete control systems sample the significant states
cyclically and thus convert the discrete control system to a quasi continuous
system. In such a design care must be taken that the sampling interval is
smaller than the smallest duration between correct events that have to be
sensed. Such a solution rejects events at the source that are closer together
than the specified minimum interval between events and thus protects the
control system from overload caused by sensor failure.

3. PULSED DATA STREAMS

Before introducing the pulsed data stream concept, we would like to
elaborate on a fundamental conflict in the design of real-time
communication protocols.

3.1 FUNDAMENTAL CONFLICTS IN REAL-TIME
PROTOCOL DESIGN

Before designing a protocol for the transfer of real-time data between the
components of a control system, one has to make a decision between the
following two alternatives: (i) the components are assumed to be competing
with each other for communication bandwidth or (ii) the components are
assumed to be cooperating. The first alternative is the only alternative for
open system, where the set of communicating components is not known a
priori.

Independently of the characteristics of the detailed network protocol,
there is always the possibility that in alternative (\)—competition of the
components—two or even n components try to start sending messages to the
same receiver at the same instant. Since only one message can be received at
a sequential receiving port at an instant, there is the possibility that a conflict
among the n components will occur. The two possible ways to resolve this
conflict are: (a) either one message is sent immediately and the other n-1
messages are stored in the network and sent to the receiver sometimes later
when the link to the receiver is free again (this is the solution of switched
Ethernet) or (b) the network exercises dynamic back-pressure flow control
to the n-1 components that did not succeed in sending their message (this is
the solution of CAN or bus-based Ethernet). Both alternatives are
unsatisfactory from the point of view of the real-time properties of the
protocol, such as delay and jitter, because the worst-case transmission time
for a message depends on the momentary traffic generated by all
components and is much larger than the minimal transmission time, when no

110 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Other component is active. Furthermore, the jitter becomes a, global property
that depends on the behavior of all components, violating some principles of
composability [8J. Jitter-sensitive applications, such as control applications
and high-quality multi-media applications, do have problems with a
communication infra-structure that introduces significant jitter [9].

In alternative (ii), a closed-world system, the number of clients is known
a priori. The clients cooperate with each other or with a central scheduler in
order to establish a coordinated schedule, such that the communication
system is in the position to meet the requests of all clients within specified
temporal bounds. Temporal guarantees for all time-critical messages can
only be given in a closed-world system.

3.2 THE PULSED DATA STREAM CONCEPT

The pulsed data stream is a new communication concept for closed-
world distributed real-time systems. It assumes that a set of a priori known
components that are aware of a global notion of time agree on a cooperative
cyclic communication schedule, such that all transmission requests of all
partners can be satisfied without conflict.

A pulsed data stream is a cyclic data stream that transports data uni-
directionally m pulses from one sender to n a priori identified receivers at a
specified phase of the cycle for a specified duration. We call the duration
between the start of transmission and the termination of transmission at the
sender, i.e., the duration of the pulse at the sender, the active phase at the
sender. We call the duration between the start of reception and the
termination of reception at a receiver the active phase at the receiver. Pulsed
data streams are bursty, but the bursts are not sporadic, but regular and
known in advance. This common knowledge is instrumental for the
scheduling of the pulsed data stream by the network.

T\\Q pulse at the sender is characterized by the following parameters
• the set of receivers
• the duration of the cycle
• the start-instant of the pulse, expressed in the metric of global time
• the termination-instant of the pulse
• the reliability class
• security class

We call this data set ihQ pulse characterization. The amount of data that
can be transmitted during a pulse at the sender depends on the transmission
bandwidth of the sender to the network.

Before the start of a pulsed data stream, the network must be informed
about the pulse characterization in order that the required resources can be

From Model-Driven Design to Resource Management for Distributed Embedded Systems 111

reserved. Depending on the characteristics of the network (size, bandwidth,
internal protocol structure) and the current commitments to other pulsed data
streams, the network will respond with the performance parameters that can
be guaranteed for the transport of this newly requested pulsed data stream:
the transmission delay, i.e., the interval between the start of the active phase
at the sender and the start of the active phase at a receiver and the duration
of the delivery phase. The transmission delay can be very small in an on-
chip-network (in the order of nanoseconds) and substantial in a wide area
network (in the range of hundreds of milliseconds, or even seconds). The
transmission delay depends on the propagation delay of the channels and the
scheduling strategies within the network.

In many cases the data transmitted within a pulse is state data, i.e., it
informs about the current value of state variables. At the receiver, a new
version of the state data replaces the previous version (update in place). State
data is not consumed by a receiver (similar to a variable in computer
memory). There are no queues needed to handle state data. In many control
applications, the loss of a single pulse is not critical, because the receiver
will automatically take the state at the previous cycle as a replacement for
the lost pulse. The retransmission of a corrupted pulse by the network, which
will impact the timing of the delivery, is thus not a standard option in pulsed
data streams. The fact that corrupted pulse data does not have to be
retransmitted has deep implications for the design of the network protocols.

Fig. 1 depicts two pulsed data streams within a typical control loop.
Since a properly designed local area real-time communication network has a
very small transmission delay, it is not depicted in Fig. 1. The most
important property of the pulsed data stream concept concerns the a priori
knowledge about the phase of the recurring send instants. This a priori
knowledge must be used by the communication system to plan for the
provision of the predictable transport service for the pulsed data streams
within a network.

4. APPLICATION OF PULSED DATA STREAMS

In this Section we sketch a number of examples for the use of pulsed data
streams in distributed control systems.

4.1 REAL-TIME MONITORING

Many real-time monitoring applications require the periodic transmission
of sensor values to a central process monitoring facility. Two parameters are
critical for the proper operation of this application: the synchronized

112 From Model-Driven Design to Resource Management for Distributed Embedded Systems

sampling of the data and a small delay between the sense instant and the
delivery instant of the sensor data at the monitoring facility. The a priori
knowledge about the parameters of the pulsed data streams enables the
communication system to plan and reserve the required transmission
capacity for the pulsed data streams.

4.2 CLOSED LOOP CONTROL

A typical local control loop has the cycle structure of Figure 1. Two
pulsed data streams, the pulsed data stream from the sensors to the
component that executes the control algorithm and the pulsed data stream
from the control-algorithm component to the actuators must be supported by
the communication system.

In a wide area control scenario, such as power-grid control, a number of
different networks are involved in the transport of the real-time data from the
sensor components to the control center. The a-priori knowledge of the
parameters of the pulsed data streams makes it possible to align the
transmission phases of the different networks a priori, such that the overall
latency of the real-time data transmission can be optimized.

4.3 TRIPLE MODULAR REDUNDANCY

In a TMR (triple modular redundant) system three components have to
exchange pulsed data streams in order to vote on the results of the
computations and the inner state of the components. These pulsed data
streams can be coordinated a priori to minimize the latency and jitter that is
introduced by the transport service.

4.4 MULTI-MEDIA SYSTEMS

In some multi-media applications a complete frame has to be transmitted
from one component to another component before the frame processing can
be initiated. This puts a high bursty load on the communication system that
can be mitigated if the regularity of the a priori known parameters of the
pulsed data stream is taken into account in scheduling the communication.

5. IMPLEMENTATION HINTS

The implementation of pulsed data streams requires the establishment of
a system-wide global time base and a scheduler that coordinates the pulsed

From Model-Driven Design to Resource Management for Distributed Embedded Systems 113

data streams requested by the involved components. The estabUshment of a
global time of known precision is a well-understood problem that has been
implemented in a number commercial applications[10-13]. Communication
systems that are controlled by time-triggered conmiunication protocols
provide an ideal environment for the implementation of pulsed data streams.
The scheduling problems is substantially simplified if the cycle durations are
harmonic, e.g., positive powers of a smallest units. External synchronization
can be eased if one of the cycle durations is exactly the duration of the
physical second.

5.1 ON-CHIP NETWORKS

The communication network within a deeply embedded multi-computer
SoC, such as the Cell chip [14], can be implemented as a time-triggered
network. Such an on-chip time-triggered network can be expected to support
a very high bandwidth (the bandwidth of the interconnect on the cell chip is
more than 100 Gbits/second). The implementation of pulsed data streams is
trivial if such a time-triggered network is available as a network-on-chip
(NoC). In order to be able to synchronize the pulsed data streams within a
chip with off-chip networks, an external synchronization of the chip-internal
time base must be provided.

5.2 LOCAL AREA NETWORKS

TT-(time-triggered) Ethernet [13] provides an ideal environment for the
implementation of pulsed-data stream in a local area context. TT Ethernet
distinguishes between two traffic categories, i.e. open-world ET (event-
triggered) Ethernet traffic and the closed-world time-triggered traffic. ET
traffic is handled in full compliance with the Ethernet standard [15], while
TT traffic is coordinated by a scheduler and transported with a-priori known
constant latency and minimal jitter. For a detailed description of TT Ethernet
refer to [13].

5.3 WIDE AREA NETWORKS

The implementation of pulsed data streams in wide-area networks, such
as the Internet is a research challenge, since the present Internet is driven by
flexible dynamic routing algorithms that are optimized for average
performance, but do not support real-time guarantees that are required in
real-time control systems.

114 From Model-Driven Design to Resource Management for Distributed Embedded Systems

6. CONCLUSION

Pulsed data-streams are a new communication primitive for the exchange
of real-time data among the components of a distributed control system. A
pulsed data stream is a powerful abstraction that is an exact fit with the
requirements of many real-time control applications.

7. ACKNOWLEDGEMENTS

This work has been supported in part by the EU integrated research
project DECOS and by the NoE Artist II.

REFERENCES

[I] Decotignie, J., D., Which Network for Which Application, in The Industrial Communication
Technology Handbook, R. Zuwarski, Editor. 2005, Taylor and Francis: Boca Raton, p. 19/1-
19/15.

[2] CAN, Controller Area Network CAN, an In-Vehicle Serial Communication Protocol, in SAE
Handbook 1992. 1990, SAE Press, p. 20.341-20.355.

[3] Furrer, F., J, Industrieautomation mit Ethernet TCP/IP and Web -Technologic. 2003,
Heidelberg: Huthig Verlag.

[4] Birman, K.P., et al.. Overcoming Communication Challenges in Software for Monitoring and
Controlling Power Systems. Proc. of the IEEE, 2005. 93(5): p. 1028-1041.

[5] Kopetz, H., Real-Time Systems, Design Principles for Distributed Embedded Applications;
ISBN: 0-7923-9894-7, Seventh printing 2003. 1997, Boston: Kluwer Academic Publishers.

[6] Force, U.-C.T., Final Report on the August 14, 2003 Blackout in the United States and
Canada. 2004.

[7] Winfree, A.T., The Geometry of Biological Time. 2001: Springer Verlag New York.

[8] Kopetz, H. and N. Suri. Compositional Design of Real-Time System: A Conceptual Basis for
the Specification of Linking Interfaces, in ISORC 2003—The 6th International Symposium on
Object Oriented Real-Time Computing. 2003. Hakodate, Japan: IEEE Press.

[9] Reinder, J., et al. Dynamic Behaviour of Consumer Multimedia Terminals: System Aspects, in
IEEE International Conference on Multimedia. 2001: IEEE Press.

[10] Kopetz, H. and W. Ochsenreiter, Clock Synchronisation in Distributed Real-Time Systems.
IEEE Trans. Computers, 1987. 36(8): p. 933-940.

[II] Kopetz, H., Specification of the TTP/C Protocol. 1999, TTTech, A 1040 Wien,
SchonbrunnerstraBe 13.

[12] IEEE, 1588 Standard for a Precision Clock Synchronization Protocol for Network

Measurement and Control Systems. 2002.

[13] Kopetz, H., et al. The Design of TTEthernet, in ISORC 2005. 2005. Seattle: IEEE Press.

[14] Wang, D.T., Proc. of the ISSCC 2005: The CELL Microprocessor. 2005.

[15] Ethernet, IEEE Ethernet Standard 802.3 at URL: http://standards, ieee. org. 2002.

FROM TIME-TRIGGERED TO
TIME-DETERMINISTIC REAL-TIME SYSTEMS

Peter Puschner and Raimund Kimer
Vienna University of Technology, A-1040 Vienna, Austria
{peter, raimund]"@vmars.tuwien.ac.at

Abstract With the increased use of powerful, performance-optimized hardware compo­
nents in embedded systems, timing prediction is getting more and more complex.
Thus while the execution speed of software is generally increasing, it is getting
more and more difficult (if not infeasible) to perform an accurate and safe timing
analysis of software that runs on those high-end embedded computer systems.

This paper presents a very rigid software execution model for building dis­
tributed hard real-time subsystems that are time predictable. The software model
is based on the time-triggered communication model. It uses a purely time-
triggered input-output interface and relies on single-path code (code that is free
from input-data dependent control flow) in both the operating system and ap­
plication software. Tasks are only preempted at pre-plaimed task preemption
points and a simple clock synchronization keeps the operations of the hard real­
time subsystem in synchrony with the real-time enviroimient.

The proposed execution model yields software that is time-predictable by
construction. Verifying temporal correctness and tracing the timing behavior of
this software is trivial.

Keywords: Real-time systems, time-triggered architecture, determinism, time predictability.

1. INTRODUCTION
The computer architectures used in embedded systems are becoming in­

creasingly complex. Modem microcontrollers for embedded systems are built
around powerful superscalar CPU cores that use a number speedup features
including instruction pipelines, caches and branch prediction, whose actual
impact on the speedup of a particular block of code strongly depends on the
processor's execution history, i.e., the stream of instructions the processor ex­
ecuted before the block. As the number of different execution histories at each
point of a program can be enormous, an analysis of all possible behaviors of a
piece of software running on such a high-end computer is generally extremely
difficult. Consequently, worst-case execution time (WCET) analysis (i.e., as­
sessing the timing of single tasks assuming non-preempted execution) is dif-

Please use the following format when citing this chapter:

Puschner, P., Kimer, R., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Mod­

el-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjohann L.,

Machado R , Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 115-124.

116 From Model-Driven Design to Resource Management for Distributed Embedded Systems

ficult for such systems, and analyzing the timing of the whole system, i.e.,
including preemptions and their effects on overall timing, requires unmanage­
ably high efforts.

While the mentioned complexity problem might seem intuitive for highly
dynamic systems with event-triggered task activation and scheduling, it even
applies to very simple systems, e.g., time-triggered systems that use a very
simple table-driven task activation. It thus seems to become more and more
difficult to argue about timing guarantees and the system safety of embed­
ded systems. To avoid the risk of missing a critical deadline, the use of very
defensive estimates about resource needs and an over-dimensioned resource
planning are becoming a necessity, unless simpler execution models are found.

In the light of this unsatisfactory situation we started to search for a real­
time systems architecture which would have time-predictability as its number
one property, i.e., temporal correctness (the absence of timing faults) should
be easy to validate. All other properties, including performance in the classical
sense should come second. This paper presents a software/hardware architec­
ture for safety-critical hard real-time systems that came out of this work.

The only interface of the proposed architecture is a time-triggered state mes­
sage interface that blocks all asynchronous external control signals that would
otherwise disrupt the deterministic timing of the subsystem (Section 2). The
software of the proposed architecture builds on a simple task model and table-
driven static scheduling (Section 3.1) as well as on a deterministic code exe­
cution scheme (single-path code) in applications and in the operating-system
code (Section 4). The architecture further uses deterministic task preemption,
i.e., the number of instructions executed between each pair of preemptions
points is planned offline and therefore exactly known (Section 5). A simple
clock synchronization keeps the operations of the hard real-time subsystem
synchronized with the clock of the environment (Section 6).

2. THE SAFETY-CRITICAL SUBSYSTEM
INTERFACE

In this section we describe the interface of the proposed architecture. As a
prerequisite for building a time-predictable (sub)system, the interface of this
system has to be predictable as well.

The following description uses the model and terminology of the DECOS
integrated architecture (6) for which our work was originally conceived. This
does, however, not mean that our work is only useful in the context of DECOS.
On the contrary, the architecture model can be adopted to any architecture that
provides a time-triggered state message interface.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 111

2.1 THE CONNECTOR UNIT
A DECOS component consists of two separated subsystems, the safety-

critical subsystem for executing all safety-critical tasks and the non safety-
critical subsystem for performing all other, non-critical services. Both types
of subsystems are connected to the rest of the distributed computer system via
so-called connector units. The connector units realize the architectural ser­
vices of the distributed architecture, comprising the predictable transportation
of messages, the fault-tolerant clock synchronization, fault isolation, and the
consistent diagnosis of node failures (6).

..Ji

Symbols

Time-Triggered
State Message Port

Control Signal Port

Memory Element
for a Single State
Message

Synchronized Clock

Figure 1. Interfacing between the Safety-Critical Hard Real-Time Subsystem of a Component
and the Time-Triggered Communication Channel.

Within this paper our focus is on the safety-critical subsystem of a compo­
nent (see Figure 1). This is where time predictability is needed. The applica­
tion computer of this subsystem communicates with its environment solely via
the safety-critical connector unit. The connector unit provides the following
services in support of the time-predictable software architecture of the appli­
cation computer.

• The connector unit implements a temporal firewall interface (5) for all
data elements exchanged between the application computer and the com­
munication subsystem. The read and write operations of the communi­
cation subsystem access the memory elements of the temporal firewalls
only at predefined times, according to the a-priory known time-triggered
communication schedule (in Figure 1 envelopes represent the memory
elements and the arrows marked with light clocks show the accesses of
the communication subsystem to the firewalls).

The time windows during which the communication system accesses the
memory elements of the connector unit are known for each of temporal
firewall.

118 From Model-Driven Design to Resource Management for Distributed Embedded Systems

• The communication system provides a time-signal service to the appH-
cation computer. A dedicated memory element in the connector unit can
be written to set the timer (Figure 1, left). When the global system time
reaches the timer value, the connector unit sends an interrupt signal over
the signal port to the application processor.

3. A TIME-PREDICTABLE APPLICATION
COMPUTER

The timing of the actions performed by a computer system depends on both,
the software running on the computer and the properties of the hardware exe­
cuting the software (8). We therefore list the hardware and software features
that in combination allow us to make an application computer time-predictable.

3.1 HARDWARE ARCHITECTURE
A central idea of our approach is to obtain time predictability by using a

software architecture that has an invariable control flow (see below). As a
consequence of using this restrictive software model, we can allow for the use
of hardware features that are otherwise considered as being "unpredictable"
(e.g., instruction caches) and yet build systems whose timing is invariable. So
the idea is to keep hardware restrictions and modifications within limits (e.g.,
we restrict caches to direct-mapped caches but do not demand special hardware
modifications as, for example, needed for the SMART cache (2)). To support
our execution model, the following hardware properties have to be fulfilled:

• The execution times of instructions do not depend on the values of the
operands.

• The CPU supports a conditional move instruction or a set of predicated
instructions that have invariable execution times.

• Instruction caches are either direct mapped or set-associative with LRU
replacement strategy.

• Memory access times for data are invariable for all data items. (In our
view, this is the strongest limitation at the moment. We will try to relax
this in fiiture work).

• CPU has a counter that counts the number of instructions executed. The
counter can be reset and used to generate an interrupt when a given num­
ber of instructions has been completed.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 119

3.2 THE SOFTWARE ARCHITECTURE
To construct a time-predictable computer system while being not more re­

strictive about the hardware than explained above, we need to be very strict
about the software structure. In fact, the proposed software architecture does
not allow for any decisions in the control flow whose outcome has not already
been determined before the start of the system. This property is true for both
the application tasks and the operating system. Even task preemptions are
implemented in a way that does not allow for any timing variation between
different task invocations.

Task Model. The structure of all tasks follows the simple-task model found
in (4). Tasks never have to wait for the completion of an input/output opera­
tion and do never block. There are no statements for explicit input/output or
synchronization within a task. It is assumed that the static schedule of appli­
cation tasks and kernel routines ensures that all inputs for a task are available
when the task starts and that outputs are ready in the output variables when
the task completes. The actual data transfers for input and output are under
control of the operating system and are scheduled before respectively after the
task execution.

An important and unique property of our task model is that all tasks have
only a single possible execution path. By translating the code of all real-time
tasks into single-path code we ensure that all tasks follow the only possible,
pre-determined control flow during execution and have invariable timing. For
more details about the single-path translation see Section 4.

Operating System Structure. If not properly designed, the activities of the
operating system can create a lot of indeterminism in the timing of a computer
system. We have therefore been very restrictive in the design of the operating
system and its mechanisms.

Predictability in the code execution of the operating system is achieved by
two mechanisms. First, single-path coding is used wherever possible. Second,
all data that are relevant for run-time decisions of the operating system are
computed at compile time. These data include the pre-determined times for
I/O, task communication, task activation, and task switching. They are stored
in static decision tables that the operating system interprets at runtime.

Task communcation and I/O is implemented by simple read and write op­
erations to specific memory locations. As these memory accesses are pre-
scheduled together with the application tasks, no synchronization and no wait­
ing is necessary at run time.

The two greatest challenges in building a fiiUy predictable operating system
were in maintaining time-predictability in case of task preemptions and keep-

120 From Model-Driven Design to Resource Management for Distributed Embedded Systems

ing the activities of the appHcation computer in synchrony with its environment
(the rest of the system).

• To maintain the deterministic timing in the presence of preemptions it
was necessary to introduce a mechanism that allows for a precise pre­
emption when a given number of instructions have finished execution,
i.e., planning preemptions at specific times of the CPU clock turned out
to be insufiicient (see Section 5).

• The programmable time interrupt provided by the communication sys­
tem is used to synchronize the operation of the application computer
with the global time base (see Section 6).

3.3 TOOL SUPPORT
The software structure of our architecture is very specialized. Code genera­

tion for an application therefore needs to be supported by a number of tools:

• To generate single-path code, either a special compiler or a code conver­
sion tool that converts branching code into single-path code is needed.

• A tool for worst-case execution-time analysis (either a static analyzer
or a measurement tool) returns the execution times of the tasks and the
operating system routines.

• An off-line scheduler generates the tables that control all operations of
the application computer. The scheduler has to resolve all precedence
and mutual exclusion constraints between task pairs as well as tasks
and the communication system. It fiirther has to plan all preemptions,
thereby taking into account the effects of the preemptions on the system
timing.

4. DETERMINISTIC SINGLE-PATH TASK
EXECUTION

As all branches in the control flow of a task may potentially cause variable
timing, we translate the code of all tasks into so-called single-path code (9).
The code resulting from the single-path translation has only a single execution
trace, hence the name single-path translation.

The strategy of the single-path translation is to remove input-data depen­
dencies in the control flow. To achieve this, the single-path translation replaces
all input-data dependent branching operations in the code by predicated code.
It serializes the input-dependent alternatives of the code and uses predicates
(instead of branches) and, if necessary, speculative execution to select the right
code to be executed at runtime.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 121

For pieces of code with an if-then-else semantics, a similar transformation,
called if-conversion, has been used before to avoid pipeline stalls in proces­
sors with deep pipelines (1). In addition to code with if-then-else semantics
the single-path translation transforms loops with input-data dependent control
conditions. This transformation yields loops with constant iteration counts,
again with a single execution path (7).

As a prerequisite for the single-path translation of a piece of code, the upper
bounds for the number of iterations of all loops have to be available. These
numbers can either be computed by a semantic analysis of the code or can be
provided by the programmer in the form of annotations, in case an automated
analysis is not possible or available.

5. PREDICTABLE TASK PREEMPTION
The idea of predictable task preemption is to preempt each task that needs

to be preempted at the same points in time in each execution cycle of the static
schedule. By doing so, the overall timing of all repetitive executions of the
cyclic schedule would also be invariable.

Our original plan was to implement the predictable task preemption by using
the CPU clock for task preemptions, i.e., preempt tasks always when the CPU
clock assumed one of the values given in the preemption-time tables of the op­
erating system. It turned out, however, that on hardware with instruction cache
this simple preemption strategy does not guarantee temporal predictability. It
may lead to oscillating task execution times, see (3).

Figure 2 shows the execution of two tasks, Ti and T2. Ti preempts T2 at the
pre-scheduled time marked by the dashed line on the left. T2 resumes after Ti
has completed its execution. Let us assume that Ti and T2 execute instructions
that map to the same cache line of a direct mapped cache (T2 executes these
instructions twice, e.g., in a loop). The execution of these conflicting instruc­
tions is marked by the dark boxes; upon a cache miss, the execution time of
the instruction increases, which is shown by the striped boxes.

Let us assume the very first activation of our schedule leads to the execution
shown in Scenario A. The first access of T2 to the conflicting cache line leads
to a cache miss, and so do the other accesses by Ti respectively T2 (The latter
misses are due to the order in which the tasks access memory).

When the schedule is repeated, T2 has a cache hit on the first memory access.
So T2 makes faster progress and the second access to the conflicting address
occurs before T2 is preempted, thus resulting in a hit, too. Ti then executes
with a cache miss, and as T2 has already completed its two critical memory
accesses, the instruction of Ti remains in cache (see Scenario B). On the next
execution of the schedule, T2 has a cache miss when accessing the conflicting

122 From Model-Driven Design to Resource Management for Distributed Embedded Systems

T2

T2

H

1 1

m

m

m 1

ID

Scenario A

Scenario B

Figure 2. Task preemption by clock interrupt.

address, and so Scenario A is repeated. Following Scenario A, Scenario B
happens again, and so on. The timing does not stabilize.

We found that preempting tasks based on the number of instructions exe­
cuted yields the desired time-predictable behavior. So instead of using a clock
we count the number of instructions completed. Preemptions happen when the
value of this counter matches an entry in the scheduling table.

T2

First cycle

m All other
cycles

Figure 3. Task preemption by instruction counter.

Figure 3 shows the schedule for our example, using an instruction counter.
Still, the timing of the second execution of the schedule differs from the first,
in which we have an initial cache miss. From the second execution on, how-

From Model-Driven Design to Resource Management for Distributed Embedded Systems 123

ever, the execution always starts from the same cache state and has a constant
execution time.

6. MAINTAINING SYNCHRONY WITH THE
GLOBAL CLOCK

To keep in phase with the rest of the system, the execution of all actions of
the application computer has to be synchronized to the global time reference
that is provided by the time-triggered communication system. Deviations of
the local clock from the global time are corrected. This clock synchronization
uses the clock signal from the communication subsystem. Whenever the pro­
grammed timer expires the clock of the application computer is reset and a new
round of the execution cycle is started.

In order to maintain the time predictability of the software, the clock syn­
chronization must not interfere with the software execution on the application
computer (i.e., the clock signal, that it is not in synchrony with the CPU clock,
must not preempt any software running). As a consequence, the application
computer has to be idle when a clock signal arrives. This is achieved by us­
ing schedules that consist of alternative intervals of task activity and inactivity,
where the latter are used as synchronization windows. Clock synchronization
interrupts have to be configured such that the clock signals arrive inside the
synchronization windows even in case of the worst-case deviation of the local
time from the global time.

7. SUMMARY AND CONCLUSION
In this paper we described a software architecture for safety critical hard

real-time systems. This software architecture relies on time-triggered com­
munication and uses the static task-activation scheme of a cyclic executive.
Further, the operating system design and the single-path translation of code,
together with a task preemption mechanism that triggers preemptions based
on the number of instructions executed and the simple master clock synchro­
nization make it possible to build fully time-deterministic computer systems
on powerfiil, state-of-the-art hardware. These computer systems are easy to
analyze for their timing and their timing properties and correctness can eas­
ily be traced. So they can safely be used in time-critical systems for which
temporally correct behavior has to be guaranteed.

ACKNOWLEDGMENTS
This work has been supported in part by the European 1ST project ARTIST2

under project No. IST-004527 and the European 1ST project DECOS under
project No. IST-511764.

124 From Model-Driven Design to Resource Management for Distributed Embedded Systems

REFERENCES
[1] Allen, J., Kennedy, K., Porterfield, C, and Warren, J. (1983). Conversion of Control

Dependence to Data Dependence. In Proc. 10th ACM Symposium on Principles of Pro­
gramming Languages, pages 177-189.

[2] Kirk, D. B. (1989). Smart (strategic memory allocation for real-time) cache design. In
Proc. 10th Real-Time Systems Symposium, pages 229-237, Santa Monica, CA, USA.

[3] Kimer, Raimund and Puschner, Peter (2006). Time-Predictable Task Preemption in Real-
Time Systems with Instruction Cache. Research Report 27/2006, Technische Universitat
Wien, Institut fkr Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

[4] Kopetz, H. (1997). Real-Time Systems. Kluwer Academic Publishers.

[5] Kopetz, Hermann and Nossal, Roman (1997). Temporal Firewalls in Large Distributed
Real-Time Systems. In Proc. 6th IEEE Workshop on Future Trends of Distributed Com­
puting Systems, pages 310-315.

[6] Obermaisser, Roman, Peti, Philipp, and Kopetz, Hermann (2005). Virtual Networks in
an Integrated Time-Triggered Architecture. In Proc. 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 241-253.

[7] Puschner, Peter (2002). Transforming execution-time boundable code into temporally
predictable code. In Kleinjohann, Bemd, Kim, K.H. (Kane), Kleinjohann, Lisa, and Ret-
tberg, Achim, editors, Design and Analysis of Distributed Embedded Systems, pages 163-
172. Kluwer Academic Publishers. IFIP 17th World Computer Congress - TCIO Stream
on Distributed and Parallel Embedded Systems (DIPES 2002).

[8] Puschner, Peter and Bums, Alan (2000). A review of worst-case execution-time analysis.
Journal of Real-Time Systems, 18(2/3): 115-128.

[9] Puschner, Peter and Bums, Alan (2002). Writing temporally predictable code. In Proc.
7th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems,
pages 85-91.

LAZY SCHEDULING FOR
ENERGY HARVESTING SENSOR NODES

C. Moser\ D. Brunelli^, L. Thiele\ L. Benini^

Computer Engineering and Networks Laboratory
Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
2
Department of Electronics, Computer Science and Systems

University of Bologna, Italy

Abstract The paper studies the case of a sensor node which is operating with the power
generated by an environmental source. We present our model of an energy driven
scheduling scenario that is characterized by the capacity of the node's energy
storage, the deadlines and the power dissipation of the tasks to be performed.
Since the execution of these tasks requires a certain amount of energy as well
as time, we show that the complexity of finding useful scheduling strategies is
significantly increased compared to conventional real-time scheduling. We state
online scheduling algorithms that jointly account for constraints arising fi-om
both the energy and time domain. In order to demonstrate the benefits of our
algorithms, we compare them by means of simulation with the classical Earliest
Deadline First Algorithm.

1. INTRODUCTION
Wireless sensor networks have been the subject of intensive research over

the past several years. As for many other battery-operated embedded systems,
a sensor's operating time is a crucial design parameter. As electronic systems
continue to shrink, however, less energy is storable on-board. Research con­
tinues to develop higher energy-density batteries and supercapacitors, but the
amount of energy available still severely limits the system's lifespan. Recently,
energy harvesting has emerged as viable option to power sensor nodes: If nodes
are equipped with energy transducers like e.g. solar cells, the generated energy
may increase the autonomy of the nodes significantly.

In [6], technologies have been discussed how a sensor node may extract
energy from its physical environment. Moreover, several prototypes (e.g. [2,
3]) have been presented which demonstrate both feasibility and usefulness of
sensors nodes which are powered by solar or vibrational energy.

Please use the following format when citing this chapter:

Moser, C, Brunelli, D., Thiele, L., Benini, L., 2006, in IFIP Intemational Federation for Information Processing, Volume
225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm,
Kleinjoharm L., Machado R., Pereira C, Thiagarajan PS., (Boston: Springer), pp. 125-134.

126 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The authors of [4] propose algorithms for tuning a node's duty cycle de­
pendent on the parameters of the energy source. Nodes switch between ac­
tive and sleep mode and try to achieve perpetual operation. Other approaches
addressed offline scheduling with regenerative energy by means of Dynamic
Voltage Scaling (DVS) [1, 7]. In contrast to this work, we present online algo­
rithms to dynamically schedule arriving tasks and thereby, we are not restricted
to a certain technique like Dynamic Voltage Scaling.

In [5], Lazy Scheduling Algorithms (LSA) have been presented for the first
time. The latter work primarily focuses on proving the optimality of LSA and
derives schedulability conditions from that proof. This paper, on the other
hand, presents a detailed description of the algorithms as well as extensive
simulative studies revealing the benefits of this new scheduling discipline.

The Earliest Deadline First (EDF) algorithm has been proven to be optimum
with respect to the schedulability of a given taskset in traditional time-driven
scheduling. The following example shows why greedy scheduling algorithms
(like EDF) are not necessary optimal in the context of this paper.

^ time

Figure 1. Greedy vs. Lazy Scheduling.

Imagine a sensor node with an energy harvesting unit that replenishes a
battery with constant power. Now, this node has to perform an arriving task
that has to be finished until a given deadline. In Figure 1, the arrival time and
deadline of this task are depicted by "long" -up and down- arrows respectively.
Meanwhile, a less energy-intensive task has to be executed within a short time
interval that is again given by an arrival time and a deadline (indicated by the
"short" arrows). As depicted in the top diagram, the EDF scheduler violates
the deadline of the second task since it uses greedily the stored energy to drive
the first, energy-intensive task. When the energy is required to execute the
second task, the battery level is not sufficient to meet the deadline. In this
example, however, a scheduling strategy that hesitates to spend energy meets
both deadlines. The bottom plot illustrates how the Lazy Scheduling paradigm
described in this paper outperforms a naive, greedy approach like EDF in the
described situation.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 127

2. PROBLEM STATEMENT
Let us consider a sensor node as depicted in Fig. 2. In tlie following, the

single components of this node will be explained in detail.

^Sensor Node ^
Energy S o u r c e ^

H

/^ Energy Storage ^

I C j 'ĉ

,(t)

(t)

;' Task

Lb. J
/""task

LhJ

Pc(t)

''^^^"•jl/n^^TsdieduieF"^ ^ / Scheduled'tasks***.

^y^vh'h

Figure 2. Scheduling Scenario.

2.1 ENERGY SOURCE
We denote Pi/(t) the charging power that is actually fed into the energy

storage and hence incorporates all losses due to power conversion. Next, the
corresponding energy EH scavenged in the time interval [̂ 1,̂ 2] is given by the
integral Effiti, ts) = £ ' P/f(t)dt .

2.2 ENERGY STORAGE
We assume an ideal energy storage (e.g. a battery) that may be charged up

to its capacity C , i.e., Ec{t) < C. According to the scheduling policy of
the sensor node, power Ps{t) and the respective energy Es(ti^t2) is drained
from the storage to execute tasks. In particular, if the node decides to assign
power Pi{t) to the execution of task Ji during the interval [̂ 1,̂ 2], we denote
the corresponding energy Ei{ti^t2). If no tasks are executed and the storage is
consecutively replenished by the energy source, an energy overflow occurs.

2.3 TASK SCHEDULING
As illustrated in Fig. 2, we use the notion of a task scheduler that assigns

energy Ec from the storage to arriving tasks. Only one task is executed at the
same time and preemptions are allowed. For the sake of simplicity, we bound
the power consumption of all tasks to the maximum value pd. In other words,
we introduce the abstraction of a single processing device that determines how
much power Ps{t) it uses at any moment in time, i.e.

0<Ps{t)<Pd.

128 From Model-Driven Design to Resource Management for Distributed Embedded Systems

A task is characterized by its arrival time â , its energy demand ê and its
deadline di. The effective starting time Si and finishing time fi of a task are
dependent on the scheduling strategy used: A task started at time Si will finish
as soon as the required amount of energy ê has been consumed by it. We can
write

fi =min{ t : Ei{si,t) = e j .

Tasks are considered to be preemptive i.e. the currently active task may be
interrupted at any time and continued at a later time. If the fiill processing
power p^ is continuously assigned to a single task J ,̂ the task is finished after
a minimum execution time wi^rnin = f̂ -

3. LAZY SCHEDULING WITH Pd = oo
We start with a node that executes tasks with infinite power pd = +CXD. This

theoretical model of a node which runs a task in zero time can be a good ap­
proximation for many practical scenarios. If processing times wi are negligible
compared to the time to recharge the battery (i.e. pd ^ Pni^))^ the assumed
model can be regarded as reasonable.

Moreover, we assume the processing device on the sensor node to select
between three power modes. The node may process tasks with the maximal
power Ps{^) = Pd or not at all iPs{t) = 0). In between, the node may choose
to spend only the currently incoming power P/f (t) from the harvesting unit on
tasks. Altogether, we consider a node that decides between Ps{t) = PH{t)^
Ps = 0 and Ps = +oc to advance arriving tasks.

As already indicated in the introduction, the naive approach of scheduling
tasks with the EDF algorithm may result in unnecessary deadline violations.
Given a node with pd = oo, LSA avoids spending energy on tasks too early
by executing all tasks at their deadline. At time dj, task J's remaining amount
of unprocessed energy {ej — Ej{aj^dj)) is drained fi-om the energy storage
with Ps = oo. Only if we hit the capacity limit (Ec{t) = C) at some time t,
we execute the task with the currently earliest deadline using power Ps{t) =
PH{t)' The above two rules formulated as pseudo-code are shown in Alg. 1.

In the next section we will see that Alg. 1 is an optimal algorithm for re­
specting the deadlines of an arbitrary taskset. Note that it degenerates to an
earliest deadline first (EDF) policy, if C = 0. On the other hand, we find an
as late as possible (ALAP) policy for the case of C = 4-cx).

4. LAZY SCHEDULING WITH FINITE p^
Using a device with finite power consumption pd, one has to take into

account finite execution times wu too. Obviously, starting at a task's dead­
line dj is not appropriate anymore and also determining straightforward start­
ing times Sj = dj — ^ does not help: Already a second task J^ arriving shortly

From Model-Driven Design to Resource Management for Distributed Embedded Systems 129

Algorithm 1 (Lazy Scheduling for pd = oo)
Require: maintain a set of indices i £ Q of all ready but not finished tasks Ji

whUe (true)
dj 4= min{di - i € Q};
process task Jj with power Psii)',
t -^ current time;
if t = afc then add index k to Q;
if t = fj then remove index j from Q;
\ft = dj then Ec (t) ^ Ec (t) - Cj + Ej (aj, t);

remove index j from Q;
Ps{t)<=0;

if Ec{t) = Cthen Ps{t) <= Pnit);

after Sj and having an earlier deadline dn < dj inevitably causes a deadline
violation. Clearly, this kind of timing conflict can be solved by starting tasks
earlier. In doing so, however, we risk to run into energy conflicts as pointed
out in the introduction. In the following, we focus on finding optimal start­
ing times Sj for a task Jj that balance the time and energy constraints for our
scheduling scenario.

In order to find an optimal starting time Sj for task Jj, LSA requires the
knowledge of the incoming power flow Pif(t) for all fiiture times t < dj.
In addition we make the realistic assumption that Pff(t) < pd, that is, the
incoming power Pi/(t) from the harvesting unit never exceeds the power con­
sumption Pd of a busy node. Finding usefiil predictions for the power P/f (t)
can be done for example by analyzing traces of the harvested power over a fi­
nite duration. If these measurements of the past are also representative for the
fiiture, the prediction will be close to the real value of Pnit).

At first, we consider task Jj illustrated in Fig. 3. We calculate the starting
time s'j as

Ec{aj)-i-EH{aj,dj)
SA (Zn .

^ Pd

Once again, we assume that a second task Jn arrives after Jj but has to finish
before Jj (dn < dj). Since at the time of its arrival task J„ has an earlier
deadline, it is reasonable to adhere to the well-known EDF policy and interrupt
execution of task Ji. At this point, we demonstrate that starting task Jj before
or after 5̂ may lead to unnecessary deadline violations.

On the one hand, starting before 5̂ ensures the completion of task Ji whereas
task Jn may "starve" because of missing energy and thus finishes after its dead­
line. Fig. 3 illustrates that a too early starting time may cause this conflict since
the nested task Jn has to process with the harvested power flow Pff (t) instead
of Pd. Note that in the diagrams also the energy/power assigned to the re­
spective tasks is displayed. On the other hand, starting after 5̂ can result in
deadline violations due to lack of time while a sufficient amount of energy is

130 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Stored on the node. As depicted in Fig. 3, task Jj violates its deadline if the
complete energy Ec{aj) + EH{(IJ, dj) is needed to process tasks Jj and Jn-

j T^ execution of task j

^ ^ execution of task n

Figure 3. Starting execution of task Ji before or after s*.

If the complete energy Ec{aj) + EH{(IJ, dj) is available during the interval
of full utilization, the starting time s'j is certainly optimal considering both
energy and time constraints. But what happens if the stored energy Ec reaches
its maximum value C before the starting time Sj? - Of course, the overflowing
part of the energy Enictj^ s'j) is used in an EDF-manner to execute task Jj.
As a consequence, only energy C + EH{S*J^ dj) can be processed continuously
with pd and it is not possible to maintain full utilisation of the device until
the deadline dj. A better, lazier starting time s'j can be found by numerically
solving the following equation (see Fig. 4):

EH{aj, s'j) -C = Eniaj, dj) + {s'j - dj)pd

E^{a,)+EJa^,dp|

Figure 4. Recalculation of the starting time due to storage limitation.

If we now choose the maximum starting time Sj = max f 5 ,̂ 5̂ j we have fi­
nally found the optimal starting time. The calculation of Sj must be performed
once the scheduler selects the task with the earliest deadline. Then, LSA ei­
ther executes task Jj with power p^ if the current time t > Sj, or it adheres to
the EDF strategy with Ps{t) = Pnit) if the storage is full. Alg. 2 shows the
pseudo-code for LSA with constant power consumption pd.

If the scheduler is not energy-constraint, i.e. if the available energy is more
than the device can consume with power p^ within [aj, dj], the starting time Sj

From Model-Driven Design to Resource Management for Distributed Embedded Systems 131

Algorithm 2 (Lazy Scheduling with pd = const,)
Require: maintain a set of indices i £ Q of all ready but not finished tasks J,

Ps{t)<=0;
whUe (true)

dj <= min{di : i G Q};
calculate Sj;
process task Jj with power Ps (t);
t <= current time;
ift = ak then add index k to Q;
if t = fj then remove index j from Q;
if Ec{t) = C then PsW <^ P^W;
if t > Sj then P5(t) <= pd\

will always be before the current time t. Then, the resulting scheduling policy
is EDF, which is reasonable, because only time-constraints have to be satisfied.
On the other hand, whenever the sum of stored energy Ec and generated en­
ergy EH is small, the scheduling policy changes towards an ALAP policy. In
doing so, LSA avoids spending scarce energy on the "wrong" tasks too early.
In summary, LSA can be regarded as an adaptive, energy-clairvoyant algorithm
that schedules tasks in an Earliest Deadline First fashion.

THEOREM 1 (OPTIMALITY OF LAZY SCHEDULING, PS = const,) If the
Lazy Scheduling Algorithm cannot schedule a given taskset, then no other
scheduling algorithm can. This holds even if the other algorithm knows the
complete taskset in advance.

The proof of Theorem 1 is omitted due to space constraints, but can be found
in [5]. As a direct consequence of its optimality, LSA successfully schedules a
taskset with the minimum possible capacity C.

5. SIMULATION RESULTS
We implemented the Lazy Scheduling Algorithm LSA as well as the Earliest

Deadline First EDF algorithm in a simulation framework. Since LSA and EDF
may exhibit identical behaviour for a taskset in dependency of p^, we run all
simulations in this section with power p^ = oo. Figure 5 shows the harvested
power PH{^) generated by a random number generator for 1000 time units.

Since the performance of a given algorithm will be severely affected by the
properties of the arriving tasks, we performed all simulations in this section for
two different tasksets: Taskset Ti consists of 30 periodic tasks with a common
period of 300 time units. Initial phases, energy demands and relative deadlines
of the tasks are randomly assigned by a random number generator. Taskset T2
consists of 8 periodic tasks, also with a common period of 300 time units. In
contrast to taskset Ti, phases, energies and deadlines of taskset T2 are manu­
ally assigned. Figure 5 displays the respective values of taskset T2 within one
period.

132 From Model-Driven Design to Resource Management for Distributed Embedded Systems

200 400
JXll

5.1

Figure 5. Randomly generated power curve PH (t) and taskset T2.

TIME UNTIL FIRST DEADLINE VIOLATION
We are now interested in the first deadline that cannot be hold with a cer­

tain scheduling strategy. With the help of some ofiline analysis, we tuned the
amplitude of the power source Pif(t) to enforce early deadline violations of
tasksets Ti and T2 respectively. We assume EciO) = C, i.e. at the begin­
ning of the simulation the battery is fully charged. After a deadline violation
is detected, the simulation terminates.

A first simulation result is depicted in Fig. 6 for taskset Ti. Obviously, both
curves are monotonically increasing since a longer time is needed to deplete
the battery if the initial energy Ec{0) = C is higher. Due to the optimality of
LSA, the time of the first deadline violation with EDF is always earlier than
with LSA. Though, for some values of the capacity C, the difference between
LSA and EDF is very low.

taskset T̂
^JLO

18C0

1600

1400

1200

1000

800

600

400

200

taskset T^

'

WBMlt/*^*®^*"***'**^

8»

r 1
H

„

1
j

\
E D F L

» LSAt

Figure 6. Time t until the first deadline of taskset Ti /T2 is violated.

The same simulations have been repeated for taskset T2 (see Fig. 6). For
values of the capacity over 60, both algorithms schedule taskset T2 without
deadline violations in the simulated time (t < 2000). For capacities between

From Model-Driven Design to Resource Management for Distributed Embedded Systems 133

40 and 60, however, we find significant differences between LSA and EDF.
Clearly, taskset T2 is tailored to the weak points of EDF. But the principal
arrangement of taskset T2 is not unreasonable if tasks for radio communication,
sensor activity or data processing have to be executed on the same device.
Large differences of the tasks' energy demands and overlapping arrival times
and deadlines are the ideas underlying taskset T2.

5.2 NUMBER OF VIOLATED DEADLINES
Another approach is to disregard missed deadlines and to count only the

number of violations. We decided to use an extended version of the LSA algo­
rithm that continues task execution even after a deadline violation. To this end,
the scheduler drains P/f (t) from the storage until the task is finally finished.

Fig. 7 presents the number of recorded deadline violations that occurred dur­
ing a period of 3000 time units for taskset Ti. Since Lazy Scheduling makes
the best use of the scavenged energy, it outperforms EDF for all capacities. The
difference between LSA and EDF is varying between 0 and 9 deadline viola­
tions in the considered interval. For high values of C, no deadline violations
could be detected for both algorithms because of the high energy availability.

taskset L

40

35

n 30

25

20

15

10

5

0

taskset T^

EDFJ
>-•—LSAjj

i

'

10 20 30 40 50

c

Figure 7. Number n of violated deadlines of taskset Ti /T2.

For taskset T2, LSA performs significantly better in terms of violated dead­
lines than EDF. Especially for values of C between 10 and 20, LSA's energy
management pays off. On the other hand, for a given number n of violated
deadlines, a much higher capacity C is necessary under EDF scheduling. For
example, to obtain n = 0 deadline violations, LSA requires a capacity C = 24
while EDF needs a 25% higher capacity (C = 30) to respect all deadlines.

134 From Model-Driven Design to Resource Management for Distributed Embedded Systems

6. CONCLUSION
In this paper, we studied the case of an energy harvesting sensor node that

has to schedule a set of real-time tasks. These tasks require a certain amount
of energy as well as time to complete. We have discussed Lazy Schedul­
ing Algorithms for online scheduling. However, LSA algorithms are energy-
clairvoyant, i.e., the profile of the energy generated in the future has to be
known to the scheduler in advance. Finally, simulation results demonstrate
how LSA outperforms the Earliest Deadline First Algorithm and that signifi­
cant reductions of the battery size are possible when running LSA.

ACKNOWLEDGMENTS
The work presented in this paper was partially supported by the National

Competence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant number 5005-67322. In addition, this research has
been founded by the European Network of Excellence ARTIST2.

REFERENCES
[1] A. Allavena and D. Mosse. Scheduling of frame-based embedded systems with recharge­

able batteries. In Workshop on Power Management for Real-Time and Embedded Systems
(in conjunction with RTAS 2001), 2001.

[2] Y. Ammar, A. Buhrig, M. Marzencki, B. Chariot, S. Basrour, K. Matou, and M. Renaudin.
Wireless sensor network node with asynchronous architecture and vibration harvesting
micro power generator. In sOc-EUSAI '05: Proceedings of the 2005 joint conference on
Smart objects and ambient intelligence, pages 287-292, New York, NY, USA, 2005. ACM
Press.

[3] X. Jiang, J. Polastre, and D. E. Culler. Perpetual environmentally powered sensor net­
works. In Proceedings of the Fourth International Symposium on Information Processing
in Sensor Networks, IPSN 2005, pages 463-468, UCLA, Los Angeles, California, USA,
April 25-27 2005.

[4] A. Kansal, D. Potter, and M. B. Srivastava. Performance aware tasking for environmen­
tally powered sensor networks. In Proceedings of the International Conference on Mea­
surements and Modeling of Computer Systems, SIGMETRICS 2004, pages 223-234, New
York, NY, USA, June 10-14 2004. ACM Press.

[5] C. Moser, D. Brunelli, L. Thiele, and L. Benini. Real-time scheduling with regenerative
energy. In 18th Euromicro Conference on Real-Time Systems, ECRTS 2006, Dresden,
Germany, July 5-7 2006.

[6] S. Roundy, D. Steingart, L. Frechette, P. K. Wright, and J. M. Rabaey. Power sources for
wireless sensor networks. In Wireless Sensor Networks, First European Workshop, EWSN
2004, Proceedings, Lecture Notes in Computer Science, pages 1-17, Berlin, Germany,
January 19-21 2004. Springer.

[7] C. Rusu, R. G. Melhem, and D. Mosse. Multi-version scheduling in rechargeable energy-
aware real-time systems. In 15th Euromicro Conference on Real-Time Systems, ECRTS
2003, pages 95-104, Porto, Portugal, July 2-4 2003.

TRANSIENT PROCESSOR/BUS FAULT TOLERANCE
FOR EMBEDDED SYSTEMS

With hybrid redundancy and data fragmentation

Alain Girault^, Hamoudi Kalla^, and Yves Sorel^

INRIA Rhone-Alpes, 655 avenue de VEurope, 38334 Saint-Ismier cedex, FRANCE
Alain.GJrault@inrialpes.fr

IRISA, Campus Universitaire de BeauUeu, 35042 Rennes Cedex France Cedex, FRANCE
Hamoudi.Kalla@irisa.fr

^INRIA Rocquencourt, B.R105 - 78153 Le Chesnay Cedex, FRANCE
Yves.Sorel@inria.fr

Abstract We propose an approach to build fault-tolerant distributed real-time embedded
systems. From a given system description (application algorithm and architec­
ture) and a given fault hypothesis (type and number of faults to be tolerated),
we generate automatically a static fault-tolerant multiprocessor schedule of the
algorithm components on the target architecture, v^hich minimizes the sched­
ule length, and tolerates transient faults of both processors and communication
media. Our approach is dedicated to heterogeneous architectures with multi­
ple processors linked by several shared buses. It is based on hybrid redundancy
and data fragmentation strategies, which allow fast fault detection and handling.
This scheduling problem is NP-hard and we rely on a heuristic algorithm to ob­
tain efficiently an approximate solution. Our simulation results show that our
approach generally reduces the schedule length overhead.

Keywords: real-time embedded systems, safety-critical systems, transient faults, scheduling
heuristics, hybrid redundancy, data fragmentation, heterogeneous architectures.

1. INTRODUCTION
Today, embedded real-time systems invade many sectors of human activ­

ity, such as transportation, robotics, and telecommunication. The progresses
achieved in electronics and data processing improve the performances of these
systems. As a result, the new systems are increasingly small and fast, but
also more complex and critical, and thus more sensitive to faults. Due to catas­
trophic consequences (human, ecological, and/or financial disasters) that could
result from a fault, these systems must be fault-tolerant. This is why fault-
tolerant techniques are necessary to make sure that the system continues to

Please use the following format when citing this chapter:

Girault, A., Kalla, H., Sorel, Y, 2006, in IFIP Intemational Federation for Information Processing, Volume 225,
From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Klein-
joharm L., Machado R., Pereira C, Thiagarajan PS., (Boston: Springer), pp. 135-144.

136 From Model-Driven Design to Resource Management for Distributed Embedded Systems

deliver a correct service in spite of faults [1]. A fault can affect either the
hardware or the software of the system. Thanks to formal validation tech­
niques, such as model-checking and theorem proving, a lot of software faults
can be prevented. Although software faults are still an important issue, we
chose to concentrate on hardware faults. More particularly, we consider pro­
cessor and bus faults. A bus is a multipoint connection characterized by a
physical medium that connects all the processors of the architecture. As we
are targeting embedded systems with limited resources (for reasons of weight,
volume, energy consumption, or price constraints), we investigate only soft­
ware redundancy solutions based on scheduling algorithms.

The paper is organized as follows. Sections 2 and 3 describe respectively re­
lated work and system models. Section 4 states the faults assumptions and our
fault-tolerance problem. Section 5 presents our approach for providing fault-
tolerance, and Section 6 details the performances of our approach. Finally,
Section 7 concludes the paper and proposes future research directions.

2, RELATED WORK
The literature about fault tolerance of distributed embedded real-time sys­

tems is very abundant. Yet, there are very few methods that manage to tol­
erate both processor and bus faults. Here, we present related work involving
scheduling heuristics to tolerate processor faults, bus faults, or both.
Processor faults. Several scheduling heuristics have been proposed to tol­
erate exclusively processor faults. They are based on active software redun­
dancy [2, 3] or passive software redundancy [4-6]. In active redundancy, mul­
tiple replicas of a task are scheduled on different processors, which are run in
parallel to tolerate a fixed number of processor faults. [2] presents an off-line
scheduling algorithm that tolerates a single processor faults in multiprocessor
systems, while [3] tolerates multiple processor faults. In passive redundancy,
also called primary/backup approach, a task is replicated into one primary and
several backup replicas, but only the primary replica is executed. If it fails, one
of the backup replicas is selected to become the new primary. For instance, [5]
presents a scheduling algorithm that tolerates one processor fault.
Bus faults. Techniques proposed to tolerate exclusively buses faults are
based on proactive or reactive schemes. In the proactive scheme [7,8], multiple
redundant copies of a message are sent along distinct buses. In contrast, in the
reactive scheme [9], only one copy of the message, called primary, is sent; if it
fails, another copy of the message, called backup, will be transmitted.
Processor and bus faults. Few techniques have been proposed to tolerate
both processor and bus faults [10-12]. In [10], faults of buses are tolerated
using a TDMA (Time Division Multiple Access) communication protocol and
an active redundancy approach, while faults of processors are tolerated using a

From Model-Driven Design to Resource Management for Distributed Embedded Systems 137

hardware redundancy approach. The approach proposed in [11] tolerates only
a specified set of processor and bus permanent faults. The method proposed
in [12] is only suited to one class of algorithms called fan-in algorithms. Our
approach is more general since it uses only software redundancy solutions, i.e.,
no extra hardware is required, because hardware resources in embedded sys­
tems are limited. Moreover, our approach can tolerate up to a fixed number
of arbitrary processor and bus transient faults. This is important since tran­
sient faults [13] are increasingly the majority of faults in logic circuits, due to
radiation, energetic particles, and so on.

3. SYSTEM DESCRIPTION
In this section, we present the system models (algorithm and architecture),

and define the execution characteristics of the algorithm on the architecture.
Algorithm model. The algorithm is modeled by a data-flow graph, called
algorithm graph and noted Alg. Each vertex oi Alg is an operation and each
edge is a data-dependency. A data-dependency (oi t>02) corresponds to a data
transfer from a producer operation oi to a consumer operation 02, defining a
partial order on the execution of operations. We say that 02 is a successor of 01,
and that oi is a predecessor of 02. An operation of Alg can be either an external
input/output operation or a computation operation. Operations with no prede­
cessor (resp. no successor) are the input interfaces (resp. output), handling the
events produced by the sensors (resp. actuators). The inputs of a computa­
tion operation must precede its outputs. Moreover, computation operations are
side-effect free, i.e., the output values depend only of the input values.

Figure l(left) is an example oi Alg, with seven operations: Ini and In2
(resp. Outi) are input (resp. output) operations, while A, B, C and D are
computation operations. The data-dependencies between operations are de­
picted by arrows. For instance the data-dependency [A > D) can correspond to
the sending of some arithmetic result computed by A and needed by D.

Figure 1. Example of an algorithm graph (left) and an architecture graph (right).

Architecture model. The architecture is composed of two principal com­
ponents: a processor and a bus. A processor Pi consists of an operator opi,
a memory resource rui of type RAM (Random Access Memory), and several
communicators cij. A bus Bi consists of one communicator for each existing

138 From Model-Driven Design to Resource Management for Distributed Embedded Systems

processor and one memory resource Si of type SAM (Sequential Access Mem­
ory). Each operator executes sequentially a set of operations of .4/^, and reads
and writes data from and into its local memory. Each communicator of each
processor cooperates with each other in order to execute sequentially transfers
of data stored in the memory between processors through a SAM.

The architecture is modeled by a non-directed graph, called architecture
graph and noted Arc. Vertices of Arc are: operators, conmiunicators, and
memory resources. Edges of Arc are connections between these components.
Figure 1 (right) gives an example of ^rc , with three processors Pi, P2, and
P3, and two buses Pi={5i,cii,C2i,C3i} and B2={s2, cu, C22,032}, where
each processor Pi is made of one operator opu one local memory rrii, and two
communicators cn and 0̂ 2.
Execution characteristics. We target systems based on a cyclic execution
model; this means that a fixed schedule of the operations of Alg is execiited
cyclically on Arc at a fixed rate. This schedule must satisfy one real-time
constraint Titc and a set of distribution constraints Vis. In our execution
model £xe, we associate to each operator op a list of pairs (o, d/op), where d is
the worst case execution time (WCET) of the operation o on op. Also, we as­
sociate to each communicator c a list of pairs {dpd, d/c), where d is the worst
case transmission time (WCTT) of the data-dependency dpd on c. Since we
target heterogeneous architecture, WCET (resp. WCTT) for a given operation
(resp. data-dependency) can be distinct on each operator (resp. communica­
tor). Specifying the distribution constraints Vis amounts to associating the
value "CXD" to some pairs of &e: (o, 00/op) meaning that o cannot be executed
on op. Finally, since we produce static schedules, we can compute their length
and compare it to the real-time constraint Tltc.

4. FAULT MODEL AND SCHEDULING PROBLEM
In our fault hypothesis, we assume only hardware faults and a fault-free

software. We consider only transient processor and bus faults. Transient faults,
which persist for a "short" duration, are significantly more frequent than other
faults in systems [13]. Permanent faults are a particular case of transient faults.
We assume at most Mpf processor faults and Afbf buses faults can occur in
the system, and that the architecture includes at least Afpf+l processors and
J\fbf+\ buses. Our problem is therefore formally stated as:
PROBLEM 1 Given:

• a distributed heterogeneous architecture Arc composed of a set V of
processors and a set B of buses: P = {..., P^,.. .}, S = { . . . , Bj , . . .}

• an algorithm Alg composed of a set O of operations and a set £ of
data-dependencies: O =={..., o^,..., Oj,...}, 5 = {..., (ô >Oj),...}

• all the execution characteristics £xe of the algorithm components of Alg
on the architecture components of Arc,

From Model-Driven Design to Resource Management for Distributed Embedded Systems 139

• a real-time constraint Titc (schedule length), and several distribution
constraints Vis,

• a number Npf <\V\ of processor faults that may affect the system,
• a number Nhf < \B\ ofbusfaidts that may affect the system,

find a multiprocessor static schedide of Alg on Arc, which minimizes the
schedule length, and tolerates up to Afpf processor and Nhf bus faults with
respect to Tito, £xe, and Vis,

5. THE PROPOSED APPROACH

Our solution is based on hybrid redundancy and data fragmentation tech­
niques. In the aim to minimize communication overhead, we use active re­
dundancy to tolerate processor faults, and passive redundancy to tolerate bus
faults. The reason why to use data fragmentation is to minimize the fault de­
tection latency, i.e, the time it takes to detect a fault.
Hybrid redundancy and data fragmentation. In order to tolerate J\fpf
processor and Nhf bus faults, each operation is replicated in Afpf+l replicas
scheduled on J\fpf+l distinct processors. The replica with the earliest ending
time is the primary replica, while the other ones are the backup replicas. The
earliest ending time is the sum of the earliest starting time (computed in ab­
sence of faults) plus the operation's WCET. The data of each data dependency
is fragmented into Afbf+l packets, sent by the primary replica of the data-
dependency source via Mbf+\ distinct buses to each of the A/p/+l replicas of
the data-dependency destination. For example, in the schedule of Figure 2b,
operations oi and 02 of Figure 2a are replicated into three replicas to tolerate
two processors faults (A/p/=2), and the data of the data-dependency (oi 002)
are fragmented into two packets to tolerate one bus fault (A/b/=l).

0—H®

Pi
f ' v ^ = î

m
AJ

Bi B2

m data^ I

-P3 P4

i;,''5--^**„.

LiJ
FH
l l jTVV

1 "' 1

(a) Alg. (b) Multiprocessor schedule of Alg onto ATX:.

Figure 2. Tolerating two processors and one bus faults.

Figure 3 illustrates these principles in the general case where Mpf>\ and
Nhf > 1. Only the primary replica of each operation Oj sends all the fragmented
data ''data^^'\ of each of its data outputs, in parallel via A/̂ /-f-l buses to all the
replicas of all its successor operations in Alg.
Communication mechanism. Each operation receives each of its data in­
puts via Nbf+l buses; when it has received all the packets of each data in­
put, it defragments these packets and starts its execution. In some cases, the

140 From Model-Driven Design to Resource Management for Distributed Embedded Systems

replica of an operation will only receive some of its inputs once, through an
intra-processor communication; this will occur whenever one of its predeces­
sor operations has one of its replicas scheduled on the same processor.

B,s/bf+i B2 Bi

0̂ ^̂
M>/-fi

(a) Alg.

Figure 3.

(b) Multiprocessor schedule oiAlg onto Arc.

Tolerating jVpf processors and Mbf buses faults.

backups

Transient fault recovery and handling. In Figure 3, three cases can occur:
1. All the packets data^ sent by o^- are received: in this case, each replica
of Oi defragments these packets and starts its execution. Also, each replica
of Oj receives a copy of these packets, which it ignores.
2. None of the packets datoT^ sent by o^. are received: this concerns J\fbf+\
packets, and as no more than J\fbf buses faults may occur in the system (by
hypothesis), this means the failure of the processor Pi executing the replica oj.
To deal with this failure, one backup replica among the J\fpf other replicas of
Oj is selected to re-send all the packets datd^ via the same buses. Since the
fault of processor Pi can be transient, it is not marked as faulty by the other
processors. This scheme can be improved by deciding that, if a processor
remains faulty during some number of consecutive executions of the schedule
(e.g., 5), then its fault is permanent and this processor is permanently removed
from the schedule.
3. Some packets {dataJ^,..., data^} sent by o^ are not received: let data"
be this set of missing packets, and B~={B'^^..., B^} be the set of the buses
that were supposed to transmit them. Since other packets have been received,
it means that Pi, the processor executing o^ is not faulty, and hence that the
buses of B" are faulty. Therefore, the same replica o^ re-sends the packets
data~ via other buses chosen among the set B\B~. Since the fault of the
buses ofB~ can be transient, they are not marked as being faulty. This scheme
can be improved with a similar approach as in step 2.

In summary, this communication mechanism yields three advantages: ® fast
fault detection; ® fast distinction between processor and bus faults; and (D fast
fault recovery.

We have implemented these principles in a greedy list scheduling heuristic,
called FT-AAA (Fault-Tolerant Adequation Algorithm Architecture). In the
following algorithm of FT-AAA, the superscript numbers in parentheses refer

(n)

to the steps of the heuristic, e.g., O ĉ/led*

From Model-Driven Design to Resource Management for Distributed Embedded Systems 141

ALGORITHM FT-AAA
- Inputs - Alg, Arc, jVpf, J\fbf, Exe, lUc, and Vis;

- Output - a fault-tolerant multiprocessor static schedule; TXTTTTAT TTATT r^xi

Initialize the sets of candidate operations Ocand and scheduled operations Osched-

^cand '~ {operations of Alg without predecessors};
(1)

(n)

O
sched

^''^ O'rZ.^^ ''o SELECTION

- Select for each candidate operation Ocand ofO^Jj^^^ a set Vhest ofN'pf+l processors that
minimizes the dependable schedule pressure (Equation (I));

- Select for each candidate operation Ocand ofO^^^l^^, among the processors Vbest{ocand),
the best processor Pbest that maximizes the dependable schedule pressure;

- Select, among all the pairs {ocandi Pbest
), the best pair {ohest, Phest) that maximizes the

dependable schedule pressure;
DISTRIBUTION AND SCHEDULING

- Let Vhest{obest) be a best set ofMpf-^l processors ofohest computed at the *'Selection"
step;

- For each Oj, predecessor of Oh&st, fragment the data of the data-dependency {o]\>Ohest)
into J\fbf+1 packets datd^;

- Schedule the packets data^ of each data-dependency on ^fbf+l distinct buses;

- AddA^pf replicas ofobest into Alg;

- Schedule each replica 05̂ ^̂ on the processor Pbest ofVbest{obest)-

I : UPDATE SETS
- update the sets of candidate and scheduled operations for the next step (n + 1) .*

^sched — ^sched ^ iObest^,

^cand '— ^cand ~ \Obest} U

\onew € {successors of Obest} | {prcdcceSSOrS of O-nexu) Q ^ i c S } ' *

end While g ^ j ^ ^ P r^^^ ALGORITHM

The algorithm of FT-AAA is divided in four main steps:

Initialization step. The set of candidate operations O^^^^ is initialized as
the operations without predecessor. Later, an operation is said to be a candidate
if all its predecessors are already scheduled. The set of scheduled operations

(1)
Osched is initially empty.

(n)
Selection step. For each candidate operation Ocand ^ O^and^ ^ ^^^ T^best
of A/p/+l processors is selected among all the processors of P to schedule
Afpf-^l replicas of Ocand- The selection rule is based on the dependable sched­
ule pressure function, noted cr̂)̂. It is computed, for each operation o :̂̂ 0^^^^
and each processor Pj c V, as follows:

aW(o,,P,):^5i5^. + 5i:)-i?(-i) (1)

142 From Model-Driven Design to Resource Management for Distributed Embedded Systems

(n)

where S^.p. is the earliest time at which operation Oi can start its execution
—(n)

on processor Pj, S^. is the latest start time from end of Oi (defined to be the
length of the longest path from the output operations to oO, and i?^""^) is the
schedule length at step (n—1). The set Vbest of each Ocand^O^^^^ is composed
of the J\fpf+l processors that minimize a^'^\ Then, among all O^^^ ,̂ the most
urgent candidate oijesu with a processor P^est ^ 'Pbestiobest) that maximizes
this function, is selected to be replicated and scheduled.
Distribution and scheduling step. This step involves first replicating the
best candidate Obest into Afpf + 1 replicas, and second scheduling each replica
o^^g^ of Obest respectively on the processor P^^^^ of Vbest- Before scheduling
each of these replicas, the data of each data-dependency are fragmented into
Afbf-hl packets that are scheduled on Mhf+\ distinct buses.
Updating step. The scheduled operation Obest is removed from O^^^ ,̂ and
the operations of ^Z^ which have all their predecessors in the new set of sched­
uled operations are added to this set.

6. SIMULATIONS
To evaluate FT-AAA, we have implement it in SYNDEX, a CAD tool for

optimizing and implementing real-time embedded systems (h t t p : //www.
syndex. org). Then, we have applied the FT-AAA heuristic to a set of ran­
domly generated algorithm graphs and an architecture graph composed of five
processors {\V\ — 5) and four buses (|i3| = 4). In our simulations, we study
the impact of A/p/, AT?/, the number of operations Â , and CCR (Communi­
cation to Computation Ratio) on the schedule length overhead introduced by
FT-AAA, computed by Equation (2):

overhead - l^^gth(FT-AAA(Arp/A/t/)) - length(AAA)
length(AAA)

where FT-AAA takes as parameter the numbers of processor and bus faults
{Mpf.Nlf), AAA is exactly FT-AAA(0,0), and "length" is a function that
computes the schedule's length.
Impact of Afbf and N. We have plotted in Figure 4 the average overheads
on the schedule length of 100 random algorithm graphs for each iV, A/}>/=0,
CCR=\, and A/^/=l, 2, 3. This figure shows that the average overhead is very
low (between 6% and 18%) and increases slightly with iV. This is due first
to A/p/=0, i.e., operations of Alg are not replicated, and second to the use of
passive redundancy of communication. Also, for the three values of Mhf, the
heuristics FT-AAA(0,1), FT-AAA(0,2) and FT-AAA(0,3) bear almost similar
results with no significant advantage between the three variants.
Impact of A/p/ and N. We have plotted in Figure 5 the average overheads
on the schedule length of 100 random Alg for each N, J\fbf=0, CCR=l,

From Model-Driven Design to Resource Management for Distributed Embedded Systems 143

and Mpf=\, 2. This figure shows that the average overhead when A'p/^l
is 45%, while for J\fpf=2 it is 75%. These figures are much lower than the
expected 100% when all computations are scheduled twice, and 200% when
all computations are scheduled thrice. It also shows that the performances of
FT-AAA decrease when J\fpf increases. This is due to the fact that FT-AAA
uses the active redundancy of operations. However, for the two values of Mpf,
FT-AAA(A/'̂ /,0) produces almost no significant difference between the over­
heads obtained for the different values of Â .
Impact of CCR, We have plotted in Figure 6 the average overheads on
the schedule length of 100 random Alg for A^=40, Afpf=l, Mf=1,2,3, and
each CCR. Thanks to the data fragmentation, this figure shows that, when the
communications are less expensive than the computations (CCR < 1), the per-
foimances are almost identical foTAfbf=l to 3. In contrast, when the communi­
cations are more expensive {CCR > 1), the performances decrease when Afbf
increases. Also, for Afbf<2, CCR has no significant impact on the perfor­
mances of FT-AAA; again this is due to the data fragmentation. It is not true
anymore when A/7?/>3, because the number of buses, 4, becomes limitative.

I 0.6

MMpM&NhM
MAfpf=o&Mf=\

Figure 4. Impact ofAfbf and N. Figure 5. Impact ofNpf and A^

Figure 6. Impact of CCR.

7. CONCLUSION
We have proposed in this paper a solution to tolerate transient faults of

both processors and communication media in distributed heterogeneous ar­
chitectures with multiple-bus topology. Our solution, based on hybrid redun­
dancy and data-fragmentation strategies, is a list scheduling heuristic, called

144 From Model-Driven Design to Resource Management for Distributed Embedded Systems

FT-AAA. It generates automatically a multiprocessor static schedule of a given
algorithm on a given architecture, which minimizes the schedule length, and
tolerates up to Afpf processors and up to Afbf buses faults, with respect to
real-time and distribution constraints. The communication mechanism, based
on data-fragmentation, allows the fast distinction between processor and bus
faults, the fast detection of faults, and the fast handling of faults. Simulations
show that our approach can generally reduce the schedule length overhead.
Currently, we are working on an improved solution to take sensors/actuators
faults into account.

REFERENCES
[1] p. Jalote. Fault-Tolerance in Distributed Systems, Prentice Hall, Englewood Cliffs, New

Jersey, 1994.
[2] K. Hashimoto, T. Tsuchiya, and T. Kikuno. Effective scheduling of duplicated tasks for

fault-tolerance in multiprocessor systems. lEICE Trans, on Information and Systems,
E85-D(3):525-534, March 2002.

[3] A. Girault, H. Kalla, M, Sighireanu, and Y. Sorel. An algorithm for automatically ob­
taining distributed and fault-tolerant static schedules. In International Conference on De­
pendable Systems and Networks, DSN'03, San-Francisco, USA, June 2003. IEEE.

[4] K. Ahn, J. Kim, and S. Hong. Fault-tolerant real-time scheduling using passive repli­
cas. In Pacific Rim International Symposium on Fault-Tolerant Systems, Taipei, Taiv^an,
December 1997.

[5] X. Qin, H. Jiang, and D. R. Swanson. An efficient fault-tolerant scheduling algorithm for
real-time tasks with precedence constraints in heterogeneous systems. In International
Conference on Parallel Processing, pages 360-386, Vancouver, Canada, August 2002.

[6] Y. Oh and S. H. Son, ScheduUng real-time tasks for dependability. Journal of Operational
Research Society, 48(6):629-639, June 1997.

[7] N. Kandasamy, J.P. Hayes, and B.T. Murray. Dependable communication synthesis for
distributed embedded systems. In International Conference on Computer Safety, Reliabil­
ity and Security, SAFECOMP'03, Edinburgh, UK, September 2003.

[8] S. Dulman, T. Nieberg, J. Wu, and P. Havinga. Trade-off between traffic overhead and
reliability in multipath routing for wireless sensor networks. In Wireless Communications
and Networking Conference, 2003.

[9] B. Kao, H. Garcia-MoHna, and D. Barbara. Aggressive transmissions of short messages
over redundant paths. IEEE Trans, on Parallel and Distributed Systems, 5(1): 102-109,
January 1994.

[10] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112-126, October 2003.

[11] C. Dima, A. Girault, and Y. Sorel. Static fault-tolerant scheduling with "pseudo-
topological" orders. In Joint Conference FORMATS-FTRTFT'04, volume 3253 ofLNCS,
Grenoble, France, September 2004. Springer-Verlag.

[12] R. Vaidyanathan and S. Nadella. Fault-tolerant multiple bus networks for fan-in algo­
rithms. In International Parallel Processing Symposium, pages 674-681, April 1996.

[13] M. Pizza, L. Strigini, A. Bondavalli, and F. Di Giandomenico. Optimal discrimination
between transient and permanent faults. In 3rd IEEE High Assurance System Engineering
Symposium, pages 214-223, Bethesda, MD, USA, 1998.

DISTRIBUTED TIMED MULTITASKING - A
MODEL OF COMPUTATION FOR HARD REAL­
TIME DISTRIBUTED SYSTEMS

Christo Angelov^ and Jesper Berthing^
^Mads Clausen Institute for Product Innovation, University of Southern Denmark, Grundtvigs
Alle 150, 6400 Soenderborg, Denmark; ^Danfoss Drives A/S, Uisnaes 1,
6300 Graasten, Denmark

Abstract: The paper presents a new type of system architecture for distributed embedded
systems, whereby a system is composed from embedded actors that
communicate transparently by exchanging labeled messages (signals),
independent of their allocation onto network nodes. Signals are exchanged at
precisely specified time instants in accordance with the concept of Timed
Multitasking, whereby actors can be viewed as real-time tasks with event-
triggered input and output drivers activated by timing or external events. The
combination of actors, signal-based communication and timed multitasking
has resulted in a new operational model - Distributed Timed Multitasking
(DTM). The latter has been used to derive a task execution model and
requirements specifications for a real-time kernel, which have been used to
develop the timed-multitasking version of the HARTEXkQWiQX. In this context,
the paper presents a discussion of specific implementation issues related to the
execution of periodic and sporadic tasks under DTM.

Keywords: hard real-time distributed systems; actor-based architecture; signal-based
communication; timed multitasking

1. INTRODUCTION

There are essentially two approaches to task scheduling for dependable
embedded systems: static scheduling and predictable dynamic scheduling,
i.e. rate-monotonic or deadline-monotonic scheduling '̂̂ . Static scheduling
provides for deterministic and highly predictable behaviour under hard real­
time constraints. That is why it is widely used in safety-critical systems, e.g.
aerospace and military systems, automotive applications, etc. However,

Please use the following format when citing this chapter:

Angelov, C , Berthing, J., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Mod­

el-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjohann, Kleinjohann L.,

Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 145-154.

146 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Static scheduling has a major disadvantage: its application results in closed
systems that are generally difficult to re-configure and maintain. This is in
contradiction to the requirement for an open and flexible system architecture
that ought to support software reuse and reconfiguration.

The second approach is inherently more flexible but unfortunately,
dynamic scheduling is plagued by another problem, i.e. task execution jitter,
which is largely due to interrupts and task preemption. That is ultimately
demonstrated as input/output jitter, which is detrimental to control system
operation.

The above problem can be overcome through a new scheduling paradigm
known as Timed Multitasking (TMf. This is a generalized event-driven
execution model that accommodates timing, external and internally
generated events, which goes beyond pure time-triggered models such as
Giotto^. Timed Multitasking eliminates task execution jitter via split-phase
execution of tasks, whereby task I/O drivers are executed atomically at
precisely specified time instants (i.e. task release and deadline instants),
whereas application tasks are executed in a dynamic scheduling
environment. Hence, task jitter is of no consequence, as long as the tasks
finish execution before their deadlines. Ultimately, timed multitasking
makes it possible to engineer real-time systems combining high flexibility
inherent to dynamic scheduling and predictable operation, which is typical
for statically scheduled systems.

Unfortunately, the existing implementation has a number of limitations:

• It supports only local communication via interconnected ports
implemented as shared data structures^, whereby an output driver of the
producer task has to explicitly invoke the input driver of the receiver task
in order to send an event (message) into the input port of the receiver
task.

• Consequently, the communication pattern is "hardwired" in the code of
I/O drivers and cannot be reconfigured without reprogramming.
Obviously, this technique is also not quite suitable for implementing one-
to-many multicast or broadcast communication.

• The implementation outlined in the paper^ uses conventional (blocking)
techniques for exclusive access to input port data structures. These are
not appropriate for hard real-time tasks, which are often implemented as
non-blocking basic tasks.

• Another limitation comes from the fact that each task has to use its own
set of timers (e.g. period and deadline timers), which could result in
considerable kernel overhead. That overhead might be substantially
reduced by developing an integrated time manager, featuring
simultaneous execution of identical operations involving different tasks
(e.g. release simultaneously multiple tasks at a particular time instant) ̂ .

From Model-Driven Design to Resource Management for Distributed Embedded Systems 147

The above observations have motivated research that resulted in an
extended version of timed multitasking - Distributed Timed Multitasking
(DTM), which has been developed in the context of the COMDES-II
framework. The latter is characterized by an actor-based component model
featuring transparent signal-based communication between actors, which is
independent of their allocation onto network nodes.

This paper presents Distributed Timed Multitasking and its
implementation in HARTEXm - a timed-multitasking version of the
HARTEX kernel. The rest of the paper is structured as follows: Section 2
presents Distributed Timed Multitasking, and the related task execution
model, which has been used to derive the requirements specifications for the
ii4i^r£X7Mkernel. Section 3 presents a discussion of implementation issues,
focusing on event management for periodic and sporadic tasks executed in a
timed multitasking environment. The concluding section presents a summary
of the main features of Distributed Timed Multitasking and its implications
for embedded software design.

2. DISTRIBUTED TIMED MULTITASKING

Distributed Timed Multitasking has been developed in the context of
COMDES-II - an actor-based version of the COMDES framework^ The
latter defines a hierarchy of executable models, such as function blocks,
activities and function units that can be used to configure embedded control
systems.

Under COMDES-II, the control system is composed from a number of
(possibly distributed) embedded actors, whereby system structure is modeled
by a data flow diagram specifying constituent actors and their interactions
(see Fig. 1). Actors are logically grouped together into subsystems (function
units), such as Sensor Unit, Control Unit, etc., that may reside in one or
more network nodes. This solution provides for greater flexibility in
comparison with the original version of the framework where a function unit
is conceived as high-level component (software integrated circuit) that has to
be always allocated on a particular network node.

Actors interact by exchanging labeled messages (global signals) within
various types of distributed transactions. Communication between actors is
transparent, i.e. independent of their allocation on network nodes. It follows
the producer-consumer model of communication within one-to-one and one-
to-many interactions involving local and/or distributed actors.

Signals are exchanged at precisely-specified time instants in accordance
with the concept of Timed Multitasking, whereby actors can be viewed as
application objects (tasks) with event-triggered inputs and outputs that can

148 From Model-Driven Design to Resource Management for Distributed Embedded Systems

be activated by various types of periodic and sporadic events, depending on
the type of transaction (e.g. Fig. 2). This figure shows a distributed phase-
aligned transaction, involving actors Sensor (S), Controller (C) and Actuator
(A), whereby the process variable is sampled at the start of the period and the
output is actuated upon the deadline of the transaction.

Sensor unit

;lipisrtay]'-

^.enor ;:

A 1

1 1 — (
Proc
varia

1

ess
bie

Control unit

'SMpervlsor
mode

— •
lCo&llef>

Control
signal

Actuator unit

'if^Mmpi^^^

Figure 1. Actor diagram of a distributed embedded system.

Periodic event Deadline event

c\-h

C

c

Y
T ^ 1

i Meissage arrive

1 f

i ^
\ 1

D<T

^ \
i

il event

f

'
• }

I

\ 1

i

•

1

;

r

r
i ^

T

Transaction deadline

Figure 2. Periodic phase-aligned transaction with precisely specified I/O actions.

Accordingly, an actor is composed from input signal drivers, signal-
processing block (SPB) and output signal drivers. An input driver transforms
an external signal (i.e. physical input signal or global signal) into a subset of
local input signals that are sent to the SPB. The latter processes local signals
supplied by one or more input drivers, and generates local output signals,
which are passed on to one or more output drivers. An output driver
transforms a subset of internal output signals into an external - physical
output or global signal.

The signal-processing block is mapped onto a non-blocking (basic) task,
which is executed in a dynamic preemptive-priority scheduling environment,

From Model-Driven Design to Resource Management for Distributed Embedded Systems 149

whereas input and output drivers are executed atomically at precisely
specified time instants. This mode of operation is known as split-phase
execution of real-time tasks (see Fig. 3), and it follows from the adopted
timed multitasking model of computation.

? SPB task release event SPB task deadline event

< ^ SPB task ^

Input signal drivers

Input drivers

Output signal drivers

Deadline

Output drivers

Input signals Output signals

Figure 3. Split-phase execution of actor under Distributed Timed Multitasking.

In particular:

• The actor task is released by an execution trigger; this may be any kind
of event, e.g. periodic timing event, external interrupt, message-arrival
event, etc., depending on the type of transaction executed.

• Input drivers are executed when the task is released, whereas output
drivers are executed when the task deadline arrives or when the task
comes to an end, if no deadline has been specified.

Consequently, task jitter is effectively eliminated, provided the task is
schedulable and always comes to an end before its deadline. That technique
can be extended to distributed transactions as illustrated by Fig. 2, which
shows a distributed phase-aligned transaction executed under Distributed
Timed Multitasking. Such transactions usually suffer from input and output
jitter, which is due to task release and termination jitter, as well as
communication jitter. This is a serious problem, which complicates
schedulability analysis and affects system operation. However, in our case
I/O jitter is eliminated, as long as the transaction comes to an end before its
deadline. That is because the process variable is always sampled at the start
of the period, and the output signal is generated at the transaction deadline
instant.

150 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The DTM model has been used to develop a task execution model that
might be implemented within a timed-multitasking kernel. In particular, such
a kernel must support the split-phase execution of tasks and I/O drivers in
the context of distributed transactions. This model can be represented as a
virtual node, which resides in a physical node and is executed under the
node-resident real-time kernel (see Fig. 4).

Physical node

o

Figure 4. Task execution model: the //^/^r^LYjM virtual node.

The virtual node contains a subset of actor tasks, which communicate
with the outside world via an Interface shell consisting of input and output
signal drivers. Input drivers are used to receive input signals that may be
physical or communication signals (i.e. labeled messages). These are
decomposed into local variables that are processed by actor tasks. Output
drivers are used to generate output signals from local variables that are
computed by actor tasks. These may be either physical or communication
signals (messages).

Communication signals are exchanged transparently between actors
residing in the same or different virtual/physical nodes by means of kernel
primitives broadcast (SIGNAL_NAME) and receive (SIGNAL NAME),
which are invoked within output and input signal drivers, respectively^. The
above primitives constitute the task interaction layer of a real-time
communication protocol built on top of a Controller Area Network. The
underlying layers of the protocol provide a deterministic priority-driven
environment supporting predictable communication between remote actors.
This is largely due to specific CAN features, such as priority-driven bus
arbitration, content-oriented message addressing and acceptance filtering,
which provide adequate hardware support for signal-based communication.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 151

3. IMPLEMENTATION OF DISTRIBUTED TIMED
MULTITASKING IN THE HARTEXTM KERNEL

The task execution model has been used to derive requirements
specifications for the timed multitasking version of the HARTEX kernel. In
particular, it is obvious from the above model that the kernel has to manage
several types of software entity: events, activity tasks and task I/O drivers,
and it must provide support for task interaction via signal-based
communication.

Accordingly, the kernel is built from dedicated components
implementing subsystems such as Event Manager, Task Manager, Task I/O
Manager and Software Bus. This is the minimum configuration needed in
order to implement the presented task execution model. Another component
that has been included in the kernel configuration is the so called Static Time
Manager, which can be used to efficiently implement timed multitasking for
multiple periodic tasks (transactions) using Boolean vector processing
techniques^.

Boolean vector processing is a common feature of all HARTEX
subsystems. Boolean vectors (bit-strings) have been substituted for
conventional linked-list queues throughout the kernel, resulting in
considerable reduction of system overhead and constant execution time of
kernel functions, independent of the number of tasks involved '̂̂ . In
particular, the kernel operates with the following vectors:

The Event Vector (EV) is used to register primary events generated by
interrupt service routines, which are subsequently processed by the Event
Manager. Events are recognized only if they are enabled by the
corresponding bit-mask stored in the Enabled Events Vector (EEV). The
processing of events results in the generation of task execution requests,
which is accomplished by setting the corresponding task bits in the Active
Tasks Vector (ATV). Released tasks are then executed following a task state
transition diagram implemented by the Task Manager, using two additional
vectors - the Enabled Tasks Vector (ETV) and the Preempted Tasks Vector
(PTVf. The Input Drivers Vector (IDV) and the Output Drivers Vector
(ODV) are used to register I/O driver execution requests that may be
generated by either the Event Manager or the Static Time Manager. In
addition, the Software Bus employs Boolean vector semaphores that can be
used to broadcast an event to one or more receiver tasks^.

Distributed Timed Multitasking is an event-driven model, which can be
implemented by means of standard event-processing techniques supported
by the HARTEX Ey^nX Manager. The latter provides a unified mechanism of
processing external and timing events via event counters and event control
blocks (see Fig. 5).

152 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Event_manager() {
for all enabled events registered in Event Vector {

reset Event Vector bit;
decrement event_counter;
if(event_counter != 0) return;
else {
if(not_free_running) disable event_counter;
switch(event_type) {
case ^release_event'
if(task_has_deadline)start deadline timer;

// enable timer event counter
release task triggered by event;

// register task in ATV
register task input drivers in IDV;
release Task I/O Manager;
break;

case Meadline_event'
generate a deadline violation vector (DVV) and
disable task if it has not finished execution;
send DVV to deadline violation handler (if
non-empty);
register task output drivers in ODV if the
task has finished before its deadline;
release Task I/O Manager;
break;

} //end switch
event_counter = threshold; //reinitialize counter

} //end else
} //end for all
preempt(); //invoke the Task Manager;

} //end Event Manager

Figure 5. Event Manager operation.

The event control block (ECB) specifies an event threshold, i.e. the
number of primary events that must be counted before an event-related
operation is executed, such as release task(s), signal task deadline violation,
signal-and-release task(s) via a Boolean vector semaphore, etc., depending
on event type. Event control blocks are processed by the Event Manager,
which is invoked from within interrupt service routines after the primary
events have been registered in the EV. Events are processed in priority order,

From Model-Driven Design to Resource Management for Distributed Embedded Systems 153

which is indicated by the bit positions of event flags within the Event
Vector.

The Task I/O Manager is implemented as a system task whose priority is
higher than the priority of actor tasks. When invoked, it executes atomically
the output drivers of tasks registered in ODV and/or input drivers of tasks
registered in IDV before exiting, whereupon the Task Manager (re)activates
the highest priority actor task registered in the ATV.

The presented technique makes it possible to execute task output drivers at
deadline instants. However, if no deadline is specified the drivers must be
invoked at the end of task execution. This option is implemented in the
primitive task_exit(), which is invoked when the task comes to an end.

t ask_exi t () {
reset task bit in ATV;//remove task from system queue
if(! task_has_deadline) {
register task output drivers in ODV;
release Task I/O Manager; }

}

The techniques discussed above outline a general solution that can be used
to implement timed multitasking in a single-computer environment. It can be
extended to distributed systems if local clocks are properly synchronized,
e.g. by using a sync message generated by a synchronization master node or
globally synchronized clocks.

The presented solution provides for a unified event-driven approach
towards the implementation of timed multitasking. Unfortunately, its use
may result in increased overhead when the kernel has to execute multiple
periodic tasks, since each task needs at least two timers, i.e. a period and
deadline timer. This problem has been solved by developing another type of
kernel component - the Static Time Manager (alternatively called the Drum
Sequencer). It provides an operational environment for multiple periodic
tasks executing under Distributed Timed Multitasking, using only one timer
per network node and sophisticated Boolean vector processing techniques^.

4. CONCLUSION

The paper has presented a new operational model for distributed
embedded systems, which has been developed in the context of the
COMDES-II framework. The latter specifies a software architecture for
distributed control systems, whereby the system is conceived as a
composition of embedded actors that communicate transparently by

154 From Model-Driven Design to Resource Management for Distributed Embedded Systems

exchanging labeled messages (signals), independent of their allocation onto
network nodes.

Signal-based communication is combined with timed multitasking,
whereby actors are mapped onto real-time tasks and signals are exchanged
by means of signal drivers. The latter invoke kernel primitives that constitute
the task interaction layer of a real-time communication protocol, which is
used to transparently exchange signals between local and/or remote tasks.
Signal drivers are triggered at precisely specified time instants, e.g. task
release and deadline instants, within a distributed transaction involving two
or more communicating actors.

The combination of actors, signal-based communication and timed
multitasking has resulted in a new operational model - Distributed Timed
Multitasking (DTM). The latter has been used to derive a task execution
model and requirements specifications for the timed-multitasking version of
the HARTEXkQxnQl.

Distributed Timed Multitasking presents a unique combination of
features, such as flexible task scheduling, transparent communication and
predictable behaviour, which can be used to engineer open, and at the same
time - safe and predictable embedded systems.

REFERENCES

[1] Liu, J.W.S.: Real-Time Systems. Prentice Hall (2000)
[2] Kopetz, H.: Real-Time Systems. Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers (1997)
[3] Liu, J., Lee, E.A.: Timed Multitasking for Real-Time Embedded Software. IEEE Control

Systems Magazine: Advances in Software Enabled Control, February (2003), pp. 65-75
[4] Henzinger, T.A., Horowitz, B., and Kirsch, CM.: Embedded Control Systems

Development with Giotto. Proc. of the Conference on Languages, Compilers and Tools
for Embedded Systems LCTES'Ol, Salt Lake City, USA (2001)

[5] Angelov, C, and Sierszecki, K.: A Software Framework for Component-Based
Embedded Applications. Proc. of the Asia-Pacific Software Engineering Conference
APSEC'2004, Busan, Korea, Dec. 2004, pp. 655-662

[6] Angelov, C, Ivanov, L, and Bums, A.: HARTEX - a Safe Real-Time Kernel for
Distributed Computer Control Systems. Software: Practice and Experience, vol. 32, N3,
(2002), pp. 209-232

[7] Angelov C, Berthing J., and Sierszecki K.: A Jitter-Free Operational Environment for
Dependable Embedded Systems, in: A. Rettberg et al. (Eds.): From Specification to
Embedded Systems Application. Springer (2005), pp. 277-288

ITERATIVE REFINEMENT APPROACH FOR
QOS-AWARE SERVICE CONFIGURATION

Luis Nogueira, Luis Miguel Pinho
IPP Hurray Research Group, Polythecnic Institute of Porto, Portugal
luis@dei.isep.ipp.pt, lpinho@dei.isep.ipp.pt

Abstract In heterogeneous environments, diversity of resources among the devices
may affect their ability to perform services with specific QoS constraints,
and drive peers to group themselves in a coalition for cooperative ser­
vice execution. The dynamic selection of peers should be influenced
by user's QoS requirements as well as local computation availability,
tailoring provided service to user's specific needs. However, complex
dynamic real-time scenarios may prevent the possibility of computing
optimal service configurations before execution. An iterative refinement
approach with the ability to trade off deliberation time for the quality
of the solution is proposed. We state the importance of quickly finding
a good initial solution and propose heuristic evaluation functions that
optimise the rate at which the quality of the current solution improves
as the algorithms have more time to run.

1. INTRODUCTION
The amount of data produced by a variety of data sources and sent

to end systems to further processing is growing significantly. There
are several examples of sensors being installed to continuously measure
environmental properties and disseminate data streams. These applica­
tions are pushing the limits of traditional data processing infrastructures
[15]. The challenges become even more critical when coordinated con­
tent analysis of stream data from multiple sources is necessary [3]. This
calls for an architecture that supports the distribution of the process­
ing task to different nodes in order to be able to cope with increasing
resource requirements.

At the same time, quality-aware processing of those data streams is
increasingly being considered an important user demand, receiving wide
attention in real-time research. Unfortunately, in most systems, users do
not have any real influence over the QoS they can obtain, since service

Please use the foil owing format when citing this chapter:

Noguera, L., Pinho, L.M., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Mod­

el-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L.,

Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 155-164.

156 From Model-Driven Design to Resource Management for Distributed Embedded Systems

characteristics are fixed when the systems are initiated. Furthermore,
users can differ enormously in their service requirements as well as appli­
cations in the resources which need to be available to perform a service
with a specific level of quality. Therefore, there is an increasing need for
customisable services that can be tailored to user's specific requirements
[14]. A QoS negotiation model is the key to build predictable, gracefully
degradable services for real-time applications [1].

This paper addresses the growing demand on resources and perfor­
mance requirements by allowing resource constrained devices to cooper­
ate with more powerful or less congestioned neighbour nodes to meet
resource allocation requests and handle stringent constraints, oppor­
tunistically taking advantage of global network resources and processing
power.

We are primarily interested in dynamic scenarios where new tasks
can appear while others are being executed, the processing of those tasks
has associated real-time execution constraints, and service execution can
be performed by a coalition of neighbour nodes. Such scenarios may
prevent the possibility of computing optimal resource allocations before
execution. Instead, nodes should negotiate partial, good-enough service
proposals that can be latter refined if time permits. Moreover, taking
the cost of decision-making into account is not an easy task, since the
"optimal" level of deliberation varies from situation to situation. It is
therefore beneficial to build systems that can trade off computational
resources for quality of results.

We propose and evaluate new anytime algorithms for coalition for­
mation and service proposal formulation with the ability to trade off
deliberation time by the quality of the solutions. The proposed algo­
rithms can be interrupted at any time and provide a solution and a
measure of its quality. This quality is expected to improve as the run
time of the algorithms increase. A higher adaptation to changing condi­
tions in dynamic environments is thus introduced by allowing flexibility
in the execution times of the algorithms.

The conformity of both algorithms with the desired properties of any­
time algorithms and the validation through extensive simulations of the
design decisions of our approach is detailed in [11]. The achieved results
emphasise our believe that use of anytime algorithms for coalition for­
mation and service proposal formulation significantly improve the ability
of our framework to adapt to changes in a dynamic heterogeneous envi­
ronments.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 157

2. RELATED WORK
The quality of the outputs may depend on the available amount of

resources. For example, in multimedia applications, higher network and
CPU bandwidth produces better audio and video quality, at higher res­
olutions and/or higher frame rates. As such, researchers have been
proposing and optimising several techniques for resource management
in resource constrained devices.

Computation offloading to a remote machine has been explored to
achieve power and performance gains [6, 7, 13]. The authors conclude
that the efficiency of an application execution can be improved by care­
ful partitioning the workload between a device and a fixed neighbour.
Optimal application partitioning depends on the trade off between the
computation workload and the communication cost. However, a method
for finding and selecting the best subset of service providers among the
set of neighbour nodes is still missing. Also, to the best of our knowl­
edge, previous work in offloading do not take into consideration QoS
constraints imposed by users in their service requests. Since different
users can access multiple devices at the same time, supporting users'
QoS preferences in service execution is a key issue.

Work on applications' decomposition into tasks has, for example, been
reported in [3, 9, 16]. Interpretation of QoS constraints and consequent
mapping on resource parameters as been described, for example, in [12,
4, 5]. We focus on proposing a generic model that enables a distributed
QoS-aware service allocation, with the ability to adapt to dynamically
changing system conditions.

Our preliminary work [10] proposes a system where heterogeneous
nodes organise themselves into a coalition for cooperative service execu­
tion, dictated by computational capabilities. However, the assumption
that the algorithms can have all the time they need to compute their
outputs was used.

The work on anytime algorithms [2, 17] recognises that the compu­
tation time needed to compute optimal solutions will typically reduce
the overall utility of the system. An anytime algorithm is an iterative
refinement algorithm that can be interrupted and asked to provide an
answer at any time. It is expected that the quality of the answer will in­
crease (up to some maximum quality) as the anytime algorithm is given
increasing time to run, offering a trade off between the quality of the
results and computational requirements. Associated with an anytime
algorithm is a performance profile, a function that maps the time given
to an anytime algorithm (and in some cases input quality) to the quality
of the solution produced by that algorithm.

158 From Model-Driven Design to Resource Management for Distributed Embedded Systems

3. TIME-BOUNDED COALITION
A coalition formation process should enable the selection of individual

nodes that, based on their own resources and availability, will constitute
the best group to satisfy user's QoS requirements Q associated with
service S. The anytime approach proposed here extends the algorithm
introduced in [10] by allowing it to return many possible approximate
answers and a measure of their qualities for a given input of service
proposals to evaluate. Those service proposals are sent by neighboin:
nodes, in reply to a cooperative service execution request with associated
user's QoS constraints that this node is not able to fulfil by itself.

We consider a user's service request to be formulated through the rela­
tive decreasing importance of a set of QoS dimensions [10]. Furthermore,
for each dimension a relative decreasing importance order of attributes,
and possible values for each attribute, is also specified. As a result, the
user is able to express acceptable compromises in QoS and their relative
importance.

All admissible proposals are evaluated according to user's QoS pref­
erences, measuring the distance between requested and proposed values
[10]. The best proposal is the one that contains the attributes' values
more closely related to user's preferences, in all QoS dimensions.

Time-bounded coalition formation implies trying to quickly find a
good initial solution and gradually improve that solution if time permits.
The selection of the next candidate proposal to be evaluated from the
set of available proposals should be done in a order that maximises the
expected improvement in solution quality. It is necessary to make a trade
off between search effort and solution quality explicitly in the heuristic
selection of the next candidate proposal so that we can optimise search
effort directly, rather than relying in arbitrary proposal evaluation. As
such, for each taisk Ti we select the next candidate proposal Pki from the
set of received proposals Pi to be evaluated for task T ,̂ as the one sent
by node N^ that has the greatest local reward Rk-

The local reward i?/. is an indicator of node's local QoS optimisation,
according to the set of tasks being locally executed and their QoS con­
straints. We claim that the local reward achieved by a node should be
used to guide the coalition formation process, since nodes with higher
local reward have a higher probability to be offering service closer to
user's request under negotiation.

The anytime coalition formation algorithm, seeking distributed QoS
optimisation, is described in Algorithm 1. Since the formation of a
coalition is aimed at maximising the benefits associated to a cooper­
ative service execution, the quality of each generated coalition can be

From Model-Driven Design to Resource Management for Distributed Embedded Systems 159

measured by using the evaluation values of the best proposals for each
service's task.

^coalition
\coalition\

\s\ ,

\coalition\
y . 1 - Bestp,
^ \coalition\

For an empty set of proposals the quality of the coalition is zero. Note
that the quality of the coalition is also zero, if there are not any proposals
for one or more tasks Ti of service S.

Algorithm 1 Iterative coalition formation
for each Ti G S do

Select next candidate proposal PKI^ maximising local reward
Ep^. = evaluate{Pki)
if Ep^. — Bestp. > a then

Bestp, = Ep,.
Update coalition with N^ for task Ti

else if 0 < Ep^^. — Bestp. < a and Rp^. > Rsestp. then
Bestp, = Ep^.
Update coahtion with Nk for task Ti

end if
end for

The algorithm continues, if time permits, to evaluate received service
proposals trying to improve the quality of the current solution. It is
possible that another node, while achieving a lower local reward, pro­
poses a better service for the specific request under negotiation. The
service proposal formulation algorithm, described in the next section,
always suggests the best solution for a particular user, even if it has to
degrade the provided level of service of previous existing tasks. It is
the responsibility of the coalition formation algorithm to select between
similar proposals (whose evaluation values differ in less than a) those
nodes that achieve higher local rewards, promoting load balancing.

The algorithm terminates when it finds that the quality of a coalition
cannot be further improved or the local reward of each node that belongs
to that coalition is maximum.

4. TIME-BOUNDED SERVICE PROPOSAL
Requests for cooperative service execution arrive dynamically at any

node. Each user's request is formulated as a set of acceptable multi­
dimensional QoS levels in decreasing preference order. To guarantee the

160 From Model-Driven Design to Resource Management for Distributed Embedded Systems

request locally, the node executes a local QoS optimisation algorithm de­
scribed in Algorithm 2. Conventional admission control schemes either
guarantee or reject each request, implying that future requests may be
rejected because resources have already been committed to previous re­
quests. We use a QoS negotiation mechanism that , in cases of overload,
or violation of pre-run-time assumptions guarantees graceful degrada­
tion. In our model, guaranteeing a user's request is the certification
that the service will be provided in one of the QoS levels expressed in
the request.

A service configuration proposed for a specific task Ti will achieve
a reward r̂ determined by the proximity of the proposal with respect
to the QoS preferences specified in user's service request. Its value is
maximum if the task is being served at the highest requested level in
all QoS dimensions. Otherwise, it is affected by a penalty factor that
increases with the distance for user's preferred values [10].

As introduced in the previous section, each node sends along with
the service proposal a measure of global satisfaction resulting from its
proposal acceptance. The local reward Rj expresses a degree of global
satisfaction for all the users that have tasks being executed by a partic­
ular node Nj, with specific QoS levels. For a node Nj, the local reward
Rj = d ^ ^ ^ i ^ T j / n achieved by a set of tasks is determined combining
the reward of each task being locally executed as a measure of global
satisfaction of the proposed solution.

Unless all tasks are executed at their highest QoS level, there is a
difference between the actual local reward achieved by the currently
selected QoS levels and the maximum possible local reward that would
be achieved if all local tasks were executed at their highest requested QoS
level. This difference can be caused by either resource limitations, which
is unavoidable, or poor load balancing, which can be improved by sending
actual local rewards in service proposals, and selecting, for proposals
with similar evaluation values, those nodes that achieve higher local
rewards. Selecting the node with higher local reward for similar service
proposals, not only maximises service satisfaction for a particular user,
but also maximises global system's utility, since a higher local reward
clearly indicates that the previous set of tasks being locally executed had
to suffer less QoS degradation in order to accommodate the new task.

In [8], it was demonstrated that the QoS optimisation problem in­
volving multiple resources and multiple QoS dimensions is NP-hard. An
optimal solution based on dynamic programming and an approximation
scheme based on a local search technique was presented. However, the
computation time needed to find an optimal solution can reduce the over­
all utility of the system. In addition, the deliberation cost is dependent

From Model-Driven Design to Resource Management for Distributed Embedded Systems 161

on local resources' availability and user's QoS constraints. Therefore, it
is beneficial to build systems that can trade the quality of results against
the cost of computation [17].

The proposed anytime algorithm considers two different scenarios
when formulating a service proposal. The first one involves guaran­
teeing the new task without changing the level of service of previously
guaranteed tasks. The second one, due to node's overload, demands
service degradation in existing tasks in order to accommodate the new
requesting task. Our local QoS optimisation (re)computes the set of
QoS levels for all local tasks, including the new requested one. Offering
QoS degradation as an alternative to task rejection has been proved to
achieve higher perceived utility [1].

The algorithm iteratively work on the problem of finding a feasible
service configuration that maximises user's satisfaction and produces
results that improve in quality over time. Equation 2 shows how the
quality of each generated feasible configuration Qconf is calculated by
considering the reward achieved by the service proposal configuration for
the new arriving task VTa, the impact on the provided QoS of previous
existing tasks and the value of the previous generated feasible configu­
ration Q'^Q^f^ Initially, Q'^^^^^ is equal to zero.

Qconf = [rn * ^ ^ " ^ j (2)

When a new service request arrives, the algorithm starts by maintain­
ing the QoS levels of previously guaranteed tasks and by selecting the
worst requested QoS level, for all dimensions, for the new arrived task.
As such, the reward of the initial service configuration for the new task
is low (the exact value is determined by the penalty factors used in a
particular system), affecting node's local reward. On the other hand,
the impact of this new task on the provided level of previously existing
tasks is inexistent. Also, this initial solution is the service configuration
that has a higher probability of being feasible, considering the new ar­
rived task. The algorithm continues to improve the quality of the initial
solution, conducting the search for a better feasible solution in a way
that maximises the expected improvement in solution's quality. When
there are enough resources the algorithm selects, from the set of possible
upgrades, the next configuration thatmaximises the reward achieved by
the new arrived task. When QoS degradation is needed, it selects the
configuration that minimises the decrease in local reward.

At each iteration the algorithm produces a new service configuration
that may not be feasible due to local resources availability and user's QoS

162 From Model-Driven Design to Resource Management for Distributed Embedded Systems

constraints expressed in request. Since a service proposal can only be
considered useful within a feasible set of configurations, the algorithm,
if interrupted, always returns the best found feasible solution. However,
each intermediate configuration, even if not feasible, is used to calculate
the next solution, minimising search effort.

When the new task can be accommodated without degrading the QoS
of previously existing tasks, the algorithm incrementally selects the con­
figuration that maximises the increase in obtained reward, according
to user's QoS preferences expressed in his request. When QoS degra­
dation is needed, the algorithm incrementally selects the configuration
that minimises the decrease in obtained reward of all tasks.

Algori thm 2 Iterative service proposal formulation
Each task Ti being locally executed has associated a set of user QoS
constraints Q \
Each QL = {QL[0] , . . . , Q L W } is a finite set of n quality choices for the

j ^ ^ attribute of the k^^ QoS dimension associated with task T ,̂ expressed
in decreasing order of preference.

Step 1: Improve QoS level of the new arrived task Ta
Select the worst requested QoS level, in all j attributes of all k dimen­
sions, Q%j[n], for task T^.
Maintain level of service for all previously guaranteed tasks.
while the new set of tasks is feasible do

for each k QoS dimension in Ta receiving service at Q^ • [m] > Qkj [0]
do

Determine the utility increase by upgrading attribute j to m — 1
Find maximum increase and upgrade attribute to the m — I's
level

end for
end while
Step 2: Find global minimal degradation to accommodate Ta
Select for all k dimensions of task Ta the final result of Step 1, Q%j[m]
while the new set of tasks is not feasible do

for each task Ti receiving service at Q L [m] > Q\.- [n] do
Determine the utility decrease by degrading attribute j to m + 1
Find task Tmin whose reward decrease is minimum and degrade
attribute j to the m + I's level

end for
end while

The algorithm terminates when the time for the reception of proposals
has expired (this time is sent in user's request), when it finds a set of

From Model-Driven Design to Resource Management for Distributed Embedded Systems 163

feasible QoS levels and the quality of the solution can not be further
improved, or when it finds that, even at the lowest QoS level for each
task, the new set is not feasible. In this case the new arrived task is
rejected. When it is not possible to find a feasible solution to include
the new task within available time, the node continues to serve existing
tasks at their current QoS levels and does not send any service proposal
to the requesting node.

The algorithm always improves or maintains the quality of the solution
as it has more time to run. This is done by keeping the best feasible
solution so far, if the result of each iteration is not always proposing a
feasible set of tasks.

5. CONCLUSIONS AND F U T U R E W O R K
Resource constrained devices may need to cooperate with neighbour

nodes in order to fulfil complex services, with specific user's QoS con­
straints. Given a set of tasks to be executed, we consider situations
where a service is assigned to a group of nodes for cooperative execution
in a dynamic heterogeneous environment.

This paper proposes algorithms for coalition formation and service
proposal formulation with the ability to trade off deliberation time for
quality of results. At each iteration, the search of a better solution is
guided by heuristic evaluation functions that optimise the rate at which
the quality of the current solution improves overtime. These capabilities
are essential for successful operation in dynamic real-time environments,
as it may not be feasible to compute an optimal answer before providing
a solution for a cooperative service execution.

The proposed anytime algorithms significantly improve the abihty of
our framework to adapt to changes in dynamic environments by allowing
flexibility in the execution times of the algorithms. A complete integra­
tion in the existing framework is under development.

ACKNOWLEDGMENTS
This work was supported by FCT, through the CISTER Research

Unit (FCT UI 608) and the Reflect project (POSI/EIA/60797/2004).

REFERENCES

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. Qos negotiation in real-time
systems and its application to automated flight control. IEEE Transactions on
Computers, Best of RTAS '97 Special Issue, 49(11):1170-1183, November 2000.

[2] T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings
of the 7th National Conference on Artificial Intelligence, pages 49-54, 1988.

164 From Model-Driven Design to Resource Management for Distributed Embedded Systems

[3] Viktor S. Wold Eide, Prank Eliassen, Ole-Christoffer Granmo, and Olav Lysne.
Supporting timeliness and accuracy in distributed real-time content-based video
analysis. In Proceedings of the 11th ACM international conference on Multime­
dia, pages 21-32. ACM Press, 2003.

[4] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara. Qos mapping between
user's preference and bandwidth control for video transport. In Proceedings
of the 5th International Workshop on Quality of Service, pages 291-302, New
York,USA, 1997.

[5] Vera Goebel and Thomas Plagemann. Mapping user-level qos to system-level qos
and resources in a distributed lecture-on-demand system. In IEEE Computer
Society, editor. Proceedings of The 7th IEEE Workshop on Future Trends of
Distributed Computing Systems, page 197, 199.

[6] Xiaohui Gu, Alan Messer, Ira Greenberg, Dejan Milojicic, and Klara Nahrst-
edt. Adaptive offloading for pervasive computing. IEEE Pervasive Computing
Magazine, 3(3):66-73, 2004.

[7] Ulrich Kermer, Jamey Hicks, and James Rehg. A compilation framework for
power and energy management on mobile computers. In 14th International
Workshop on Parallel Computing, pages 115-131, 2001.

[8] Chen Lee, John Lehoczky, Dan Siewiorek, Ragunathan Rajkumax, and Jef
Hansen. A scalable solution to the multi-resource qos problem. In 20th IEEE
Real-Time Systems Symposium, pages 315-326, 1999.

[9] L. Marcenaro, F. Oberti, G. L. Foresti, and C. S. Regazzoni. Distributed ar­
chitectures and logical-task decomposition in multimedia surveillance systems.
Proceedings of the IEEE, 89(10) :1419-1440, October 2001.

[10] Luis Nogueira and Luis Miguel Pinho. Dynamic qos-aware coalition formation.
In Proceedings of the 19th IEEE International Parallel and Distributed Process­
ing Symposium, Denver, Colorado, April 2005.

[11] Luis Nogueira and Luis Miguel Pinho. Time-bounded distributed qos-aware ser­
vice configuration in heterogeneous cooperative environments. Technical report,
IPP Hurray Research Group. Available at http://hurray.isep.ipp.pt/, January
2006.

[12] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation
model for qos management. In Proceedings of the 18th IEEE Real-Time Systems
Symposium, page 298. IEEE Computer Society, 1997.

[13] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. Sav­
ing portable computer battery power through remote process execution. Mobile
Computing and Communications Review, 2(1): 19-26, 1998.

[14] Sven Schmidt, Thomas Legler, Daniel Schaller, and Wolfgang Lehner. Real-time
scheduling for data stream management systems. In 17th Euromicro Conference
on Real-Time Systems (ECRTS'05), pages 167-176, 2005.

[15] Michael Stonebraker, Ugur Cetintemel, and Stan Zdonik. The 8 requirements

of real-time stream processing. SIGMOD Record, 34(4):42-47, 2005.
[16] Cheng Wang and Zhiyuan Li. Parametric analysis for adaptive computation

offloading. In Proceedings of the ACM SI GPL AN 2004 Conference on Program­
ming Language Design and Implementation, pages 119-130. ACM Press, 2004.

[17] Shlomo Zilberstein. Using anytime algorithms in intelUgent systems. Artificial
Inteligence Magazine, 17(3):73-83, 1996.

A FAST AND EFFICIENT ISOMORPHIC TASK
ALLOCATION SCHEME FOR K-ARY N-CUBE
SYSTEMS

D.Doreen Hephzibah Miriam ^ T.Srinivasan^
^ Postgraduate Student, Sri Venkateswara College Of Engineering
^Assistant Professor, Department of Computer Science and Engineering
Sri Venkateswara College Of Engineering, Sriperumbudur, India- 602 105.
doreenhm@gmail. com, tsrini@svce. ac. in

Abstract: A good task allocation algorithm should find available processors for incoming
jobs, if they exist, with minimum overhead. Due to its topological generality
and flexibility the k-ary n-cube architecture has been chosen for the task
allocation problem. We propose a fast and efficient isomorphic processor
allocation scheme for k-ary n-cube systems by using isomorphic partitioning
where the processor space is partitioned into higher dimensional isomorphic
subcube and by using Subcube recognition ability algorithm (SRA) which uses
simple coordinate calculation and spatial subtraction. Thus the proposed
scheme seeks to reduce the search space drastically, and hence can locate a
free subcube very quickly providing scalable, faster, processor allocation,
complete recognition ability with minimal overhead and minimizes the
fragmentation

Keywords: Full subcube recognition, k-ary n-cube systems, isomorphic partitioning,
processor allocation.

1. INTRODUCTION

As the incoming tasks to a system can involve different topologies, the k-
ary n-cube is desirable to accept and execute topologically different tasks.
An exact number of processors with a particular topology must be allocated
to an incoming task. That is, processor allocation in a k-ary n-cube system
concerns not only about the dimension (m, 0 < m < n) but also about the
amount of processors in each dimension (r, 2< r< k), apparently more
complicated than that in a binary system.

Please use the following format when citing this chapter:

Miriam, D.D.H., Srinivasan, T., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From
Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm
L., Machado R., Pereira C, Thiagarajan PS., (Boston: Springer), pp. 165-174.

166 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The processor allocation problem is much more challenging for k-ary
n-cube networks than hyper cubes or meshes because reducing fragmentation
within the system involves recognizing both the dimension of the network
(as in hypercubes) and the number of processors in each dimension(as in
meshes). However, existing processor allocation strategies for the k-ary n-
cube [6] - [9] system either recognize only the dimensionality of the
subcubes or allow arbitrary partition sizes at the cost of complex search
operationsA critical attribute of a processor allocation algorithm is its ability
to find available subcubes for incoming requests is called the subcube
recognition ability. An allocation algorithm is said to have complete subcube
recognition ability when it always find a free subcube for an incoming job if
one is available.

The rest of the paper is organized as follows: Section 2 presents the
pertinent preliminaries. Section 3 presents earlier allocation algorithms in
Mesh systems, Hypercube systems, k-ary n-cube systems. Section 4 presents
the proposed isomorphic allocation strategy. Section 5 reports the
experimental results. Finally, concluding remarks are discussed in Section 6.

PRELIMINARIES

2.1 NOMENCLATURE

A k-ary n-cube denoted by Qk", has k" nodes each of which is identified
by n tuple (an-i,.. ..,ai,ao) of radix k. where ai represents the node's position in
the i* direction.

Definition 1: A (two-dimensional) subcube S(p,q) in the k-ary 2 -cube
M(w,h) such that l<p<w and l<q<h.A subcube is identified by its base and
end and is denoted by S[base, end]. Figure 1 depicts a 8 ary 2 cube systems,
two busy subcube are indicated in green circles Si [(3,4),(6,6)] and S2
[(0,0),(1,3)].

Definition 2: The coverage of a busy subcube P with respect to a job J,
denoted as ^ p,j is a set of processors such that the use of any node in ^ p,j as
the base of a free subcube for the allocation of J will make the job J to be
overlapped with p.The coverage set with respect to J denoted Cj is the set of
the coverages of all the busy subcubes.

Definition 3: The reject area with respect to a job J, Rj is a set of
processor such that the use of any node in Rj as the base of a free subcube
for the allocation of J will make the job J cross the boundary of the k ary n-
cube systems.

Definition 4: The base block with respect to a job J is a subcube whose
nodes can be used as the bases of free subcubes to accommodate the job J.
The base set with respect to a job J,Bj is a set of disjoint base blocks with

From Model-Driven Design to Resource Management for Distributed Embedded Systems

Cube ^Systems
167

respect to J. The coverage of two allocated subcubes, the reject area are
shown in Figure 2.

S2[(0,0),(l,3)] ^

Si[(3,4),(6,6)l

Coverage for
S2 [(0,0),(1,3)]

"• Reject Area

[(0,7),(7,7)],

[(7,0),(7,7)]

Coverage for

Si[(2,3),(6,6)]

Fig 1: A 8-ary 2- cube system

with allocated sub cube

Fig. 2: Coverage of two allocated subcubes,

the reject area of 8- ary 2 -cube systems

3. PREVIOUS WORKS

3,1 MESH SYSTEMS

3.1.1 FIRST - FIT (FF)/ BEST - FIT (BF):

These were proposed in [1] to improve the FS Strategy. It maintains a
busy array representing the allocation status of the mesh The BF is identical
to FF except that BF selects the base in such a way that it has maximum
number of busy neighbors. This scheme does not have recognition complete
algorithm and excessive runtime overhead due to the manipulation of the
array.

3.1.2 FREE LIST: [FL]

The key idea of this scheme proposed in [2] is to maintain a FL list of free
sub meshes in the system. This scheme is that it is complicated to update the
free list when a sub mesh is released in order to maintain a list of largest
possible disjoint free sub mesh and recognition completeness is not achieved.

3.1.3 QUICK ALLOCATION

The basic idea of QA proposed in [3] provides complete sub mesh
recognition ability with minimal overhead. For each row it defines covered
segment. Column wise scan is avoided. Problems in Quick Allocation are the
construction of Covered segment requires a series of row wise scan operation
which can be a performance bottleneck.

168 From Model-Driven Design to Resource Management for Distributed Embedded Systems

3.2 K -ary n- cube systems

3.2.1 SLICE PARTITIONING:

Slice partitioning scheme proposed in [4],[5],[6] are shown in Figure
3(a).Jobs requesting different sizes are allocated to one or more partitions of
base k and the remaining nodes will be wasted results in internal
Fragmentation.

3.2.1.1 EXTENDED BUDDY [EB] AND EXTENDED GRAY CODE
[EGC]

EB and EGC as proposed in [4], [5] in which higher dimensions
partitioned into lower dimensional subcube. Links as well as the processors
are underutilized and have longer intemodes distance.

3.2.1.2 K-ARY PARTNER AND MULTIPLE GC

K-ary Partner and Multiple GC as proposed in [6], [5] enhances Sub cube
recognition ability over EB and EGC. They utilize the fragmented nodes to
form a slice along the other dimension. All these strategies limit the job size
to be base k.

3.2.2 JOB PARTITIONING

Job partitioning as proposed in [7],[8] are shown in Figure 3(b).It address
the internal fragmentation problem by allowing arbitrary partition sizes
rather than restricting them to base - k. The allocation algorithm searches the
processor space to find an available subcube for the job by sliding a window
frame.

3.2.2.1 EXTENDED FREE LIST (EFL) AND EXTENDED TREE
COLLAPSING (ETC)

EFL and ETC as proposed in [7],[8].These algorithm improves subcube
recognition ability compacted to Sniffing Strategy. For Allocating 4 ary 2
cube job request in an 8 ary cube includes the cases along the other
dimensions. Here, the total number of window positioning is n times of the
sniffing strategies.

From Model-Driven Design to Resource Management for Distributed Embedded Systems

Cube Systems

169

4. PROPOSED WORK

4.1 THE MAIN APPROACH

The processor allocation algorithm proposed in this paper has complete
subcube recognition. This scheme achieves recognition completeness by
isomorphically partitioning the k -ary n - cube Systems and manipulating
the orientation of the subcube request using SRA algorithm which even
reduces both internal and external fragmentation.

oi [l.X,,LijnL..A IJ

lts^»««t^l m>ik̂ cm hi;

EB,. EQC Sljralegbs k-'Ms Fanner. M«t̂ ipl« GC Stra^ îiles

.t..,..i, ;„.«. . . .<.^.,i ..., j*H8f*'"'j>'̂ "'j><^"7/'" dMi^ \n tf*e vt^wM t:«s«.

Siulfmg S îsstegics

im

EFLx ETC Simlcpes

Fig 3; Slice and job-based allocation strategies on an 8-ary 3-cube system, (a) With slice
partitioning, (b) With job-based partitioning

4.2 ISOMORPHIC ALLOCATION STRATEGY

We now introduce the isomorphic allocation strategy for Q \ . The basic
idea is Isomorphic partitioning recursively partitions a k-ary n-cube into 2"
number of k/2' ary n-cubes where i is the partition step. Processor space is
partitioned into higher dimensional isomorphic subcubes and keeping the
same order of dimension. Graphical representation of isomorphic
partitioning is shown in Figure 4. The basic allocation strategy in produces
isomorphic subcube partitions and the job requests to be isomorphic (Q\).
Isomorphic partitioning improves Subcube recognition capability,
Fragmentation reduction, Complexity compared to other methods.

170 From Model-Driven Design to Resource Management for Distributed Embedded Systems

1 1 f 1 1 f! ftftffl
ra¥ffl mm WW \HW
W] 1 n 11 [K

3fil i^fSiliotysa^ ttxp

Fig 4: Isomorphic partitioning of an 8-ary 3-cube (8 x 8 x 8).
The resulted partitioned subcubes are said to be "isomorphic" (i-e) n-cube

thus they retain properties of k-ary n-cube network Symmetry, Low node
degree (2n),Low diameter (kn)

m%^^

(My

Qr Q̂^ Q Qr Qr Qr Q>

(0^) (0,A) (i^^ (UJ m) (0,A) i\^
^y - ' - ' ^yY^^^ I''' Partitioai

5ykcjt!.̂

Fig 5 Representation of the isomorphic partitioning of Q̂ 2- (a) Subcubes in Q̂ 2-

(b) 4-ary tree representation of Q \ .

Isomorphic allocation strategy assigns a subcube partition to a job
requesting a 2 -̂ary n-cube in a 2''-ary n-cube system, where a < k.Figure 5a
shows the subcubes in an 8-ary 2-cube system (8x8 mesh). They can also be
described by a 2"-ary tree (4-ary tree in this example) with k partition steps
(three steps in this case), as in Figure 5b.

Consider a subcube A consisting of one node whose address is (3, 5) in
Figure 5. (Note that the digits are ordered from right to left, i.e., (ai, ao).) .A
binary representation of the node is (011, 101). Since Q̂ 2 = H2 9 H2 0 H2,
the node can alternatively be represented by ((0, 1), (1, 0),(1, 1)), where (0,
1) is the address of the node in the first sub graph Hi.i^, 0) is the one in the
second H2, and (1 ,1) is the one in the third H2. In other words, the subcube A
can be addressed by selecting (0, 1) Q'̂ 2 subcube after the first partition step,
(1, 0). Q̂ 2 subcube after the second partition step, and, finally, (1,1) Q̂ 2
subcube after the third partition step. Similarly, subcube B in Figure 5 can be
identified by ((1 , 0),(1 , 1))=(11,01)=(11*,01*). In general, a node in a k -
ary n-cube, Q\ , is denoted by an n-tuple (a n-i, 5ai,ao) where ai G E k. We
can also denote the node in a full binary representation as

yd n-l jan-l ...an-1 5 .,a/"a/^'...arW'W^^.ao<^'>)
where aî ^ G Ŝ The superscript j in each binary number denotes the partition
step.

From Model-Driven Design to Resource Management for Distributed Embedded Systems

Cube Systems

4.3 SUBCUBE RECOGNITION ABILITY (SRA)
ALGORITHM.

171

The proposed scheme achieves recognition completeness by manipulating
the orientation of the subcube request. The proposed scheme quickly finds
the base set through simple coordinate calculation and spatial subtraction.
First using simple coordinate calculation determine the reject area (Rj) and
coverage (Cj) with respect to job that is to be allocated using the busy list,
job size, and the system size. The allocation scheme first determines U - Rj
and inserts the set difference into the candidate list as initial candidate block.
Given an Rj with a sink <Xs ,ys>?the initial candidate block is a subcube If
[<0,0>,< Xs-l,ys-l>.The initial candidate block along with the coverage with
which it intersects is placed in the tray. The coverage in Cj is then spatially
subtracted fi'om the initial candidate block.

A spatial subtraction between 2 subcubes is illustrated in Figure 6.The
pink and the white rectangles in the figure represent the subtrahend and
minuend subcubes respectively.

The newly created candidate block after a spatial subtraction replaces the
old block in the candidate list. When more than one candidate block is
generated after the spatial subtraction, the length of the candidate list
increases and so does the search space. The key idea is to implement the
candidate list as a tray. A candidate block on the top of the tray is always
compared with the next coverage in the coverage set to see if they intersect
with each other. When a new set of candidate blocks is generated after the
spatial subtraction, these new candidate blocks are pushed on to the tray
replacing the top element. Associated with each candidate block is a pointer
to the next coverage that the candidate block should be compared with.
When a candidate block is compared with a null pointer appears on the top of
the tray, the desired base block is obtained. The node at the top - left comer
of the base block is returned as the base of a free subcube.If no such
candidate block is found, then the allocation fails. We call this scheme
Subcube Recognition Ability (SRA) Algorithm.

<A.end.x,A.end.y>

<B.end.x,B.end.y>

<B.base.x,B.base.y>

<A.base.x,A.base.y>

A-B=

L:<A.base.x,A.base.y>,

<B.base.x-l, A.end.y>

R:<B.end.x+l, A.base.y>,

<A.end.x,A.end.y>

U: <B.base.x, B.end.y+1>,

Fig 6:Spatial subtraction between two 2D subcubes (A-B)

Subcube Recognition Ability (SRA) Algorithm
Notations

172 From Model-Driven Design to Resource Management for Distributed Embedded Systems

1.
2.

3.
4.
Allocation
1.
2.
3.
4.
5.

Cj [i] denotes the i* coverage set Cj ,where i > 1.
f coverage denotes the coverage that the candidate block/that the is to
be compared with.
traytop represent the candidate block on top of the tray.
next(k) returns k + 1 if Cj [k+l]exists.Otherwise,it returns null.

Construct the coverage set Cj w.r.t.job J
Determine the initial candidate block initial
Initial <- next(O).
Push initial on to the tray.
While the tray is not empty do
If traytop coverage is Hull then return the base of traytop
Else A: 4 - traytop coverage

If traytop intersects with Cj [k] then
Pop up traytop from the stack.
Spatially subtract Cj [k] from traytop
For each new candidate block/created by the spatial subtraction,

J coverage ^ X\QYX\K.)

push/onto the tray.
^\^QneXt(traytOp coverage) ̂ traytop coverage

6. If all the orientation of J are considered then return fail.

The allocation of J(2,2) using the SRA algorithm is illustrated .,where a Si
(4,3) and S2(2,4) are allocated in 8 -ary 2 - cube systems. The coverages of
two subcubes Si [(3,4) ,(6,6)] and S2 [(0,0),(1,3)] are Ci [(2,3),(6,6)] and C2
[(0,0),(1,3)] respectively. First the Reject area Rj [(0,7),(7,7)],[(7,0),(7,7)] is
calculated then sink with the <7,7> is determined. Then the initial candidate
block Ii [<0,0>,<6,6>] is obtained using the sink and pushed on to the tray
with Ci is shown in Figure 7.

, , Coverage for S2l(0,0),(l,3)] Tray
I ^ ^ ^ i i ^ ^ ^ —ggig—

L , . Reject Area

[(0,7),(7,7)],[(7,0),(7,7

• Initial Candidate Block I]

^^ Coverage for Si
[(2,3),(6,6)1

C,

Candidate Next

block coverage

Fig 7: Initial candidate block in first step

Since Ii and Ci intersect a spatial subtraction is carried out and two new
candidate blocks , I2 [<0,0>,<6,2>] and I3 [<0,3>,<1,6>] with the coverages
C2 are pushed onto the tray replacing Ii. I2 intersects with C2 and hence a new
candidate block I4 [<(2,0),(6,2)>] is created after spatially subtracting C2
from B2 .Since there are no more coverages to compare with, a null pointer is
pushed with I4 indicating that I4 is the first base block named as Bi .Any node
in Bi can be used as a base for J. Similarly we find B2 [<0,4>,<1,6>] are
shown in fig 8. An obvious advantage of this versatility is that we can reduce

From Model-Driven Design to Resource Management for Distributed Embedded Systems

Cube !Systems
173

the allocation overhead significantly while preserving the behavior of the
allocation scheme being evaluated.

Coverage for S2

iig^^

l ^ ^ ^ ^ ^ i ^ ^ ^

Tray

Base Block 2 [(0,4),(1,6)]
" Reject Area
r(0,7),(7,7)l,r(7,0),(7,7)l

Coverage

' [(2,3),(6,6)]

Base Block 1

[(2,0),(6,2)]

for Si

I4

h

nul

nul

Candidate Next

block coveraee

Fig 8: Allocation of 2 x 2 jobs in 8 -ary 2 - cube systems.

5. EXPERIMENTAL RESULTS

The experimental results of Subcube recognition ability algorithm SRA,
Emulated Quick allocation EQA, and Emulated First fit EFF are compared
with that of a QA for uniform job size distribution. The allocation overhead
and average job response time of the four policies are plotted with respect to
system loads are shown in Figure 9.

Table 1. Performance evaluation of Four allocation scheme

SYSTEM

LOAD

1

2

3

4

5

6

EFF

0.0222

0.0353

0.0489

0.0656

0.084

0.1116

EQA

0.0228

0.0369

0.0523

0.0688

0.0989

0.1221

QA

0.0200

0.0284

0.0378

0.0486

0.0692

0.0850

SRA

0.0170

0.0247

0.0338

0.0458

0.0592

0.0785

Figure 10. shows the variations in mean response time w.r.t system
utilization for a 4-ary 2-cube (Q'̂ 2).The proposed scheme outperforms.

Fig 9: Performance evaluation of four

allocation schemes for allocation overhead

Fig 10. Comparison of mean

response time in a Q'̂ 2systems

174 From Model-Driven Design to Resource Management for Distributed Embedded Systems

6. CONCLUSIONS

This paper addresses the processor allocation problem for k-ary n-cube
systems. Our proposed isomorphic partitioning efficiently divides a system
into the same dimensional subcubes so that the external as well as internal
fragmentation is minimized. Moreover, the resulting partitions are
characterized by the same order of dimension as the whole system and, thus,
retain the advantages of high order architecture. The isomorphic partitioning
mechanism is a novel method for partitioning a k-ary n-cube topology. The
proposed allocation algorithm Subcube Recognition ability (SRA) finds a
free subcube quickly by reducing the search space drastically through the use
of simple coordinate calculation and spatial subtraction. The main objective
in developing the algorithm is to speed the allocation process while
achieving the maximum attainable performance by guaranteeing complete
subcube recognition ability. Experimental results shows that the Subcube
Recognition ability algorithm is faster than any allocation scheme reported in
literature by showing in the graph plotted System load vs. Allocation
overhead.

REFERENCES

[1] Y. Zhu, "Efficient Processor Allocation Strategies for Mesh-Connected Parallel Computers," J.
Parallel and Distributed Computing, vol. 16, pp. 328-337,1992

[2] T. Liu, W. Huang, F. Lombardi and L.N. Bhuyan, "A Submesh Allocation Scheme for Mesh
Connected Multiprocessor Systems," Proc.International Conference on Parallel Processing, vol. II,
pp. 193-200, 1995.

[3] S. Yoo, H. Y. Youn and B. Shirazi, "An Efficient Task Allocation Scheme for 2D Mesh
Architectures," IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 9, pp. 934-938,
1997.

[4] v. Gautam and V. Chaudhary, "Subcube Allocation Strategies in a K-Ary N-Cube," Proc. Int Y Conf.
Parallel and Distributed Computing and Systems, ^^. 141-146, 1993.

[5] G. Dommety, V. Chaudhary, and B. Sabata, "Strategies for Processor Allocation in k-Ary n-Cubes,"
Proc. Int'I Conf. Parallel and Distributed Computing and Systems, pp. 216-221, 1995.

[6] K. Windisch, V. Lo, and B. Bose, "Contiguous and Non-Contiguous Processor Allocation
Algorithms for k-Ary n-Cubes," Proc. Int'I Conf. Parallel Processing, 1995.

[7] H.L. Chen and C.T. King, "Efficient Dynamic Processor Allocation for k-Ary n-Cube Massive
Parallel Processors," Computers Math. Applications, pp. 59-73,1997.

[8] P.J. Chuang and CM. Wu, "An Efficient Recognition-Complete Processor Allocation Strategy for k-
Ary n-Cube Multiprocessors," IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 5, pp. 485-
490, May 2000.

[9] T.Srinivasan, PJS.Srikanth, K.Praveen, L.Harish Subramaniam,"?aia[\Q\ AI Game Playing
Approach for Faster Processor Allocation in Hypercube Systems using Veitch diagram", Proc. of
Ilth IEEE International Conference on Parallel and Distributed Systems - ICPADS 2005, pp.536-
542, July 2005.

COMMUNICATION-AWARE
COMPONENT ALLOCATION ALGORITHM
FOR A HYBRID ARCHITECTURE *

Marcelo Gotz, ^ Achim Rettberg ^ and Carlos Eduardo Pereira ^

Heinz Nixdorf Institute
University ofPaderbom, Germany
mgoetz(5)uni-paderborn.de

'^C-LAB
University ofPaderbom, Germany
achim(a)c-lab.de
o

Electrical Engineering Department
UFRGS, Brazil
cpereira(5)ece.ufrgs.br

Abstract High computational performance and flexibility are the requirements of nowa­
days embedded systems and they are increasing constantly. A single architec­
ture must be able to support different application with dynamically requirements
(changing environments). As an operating system (OS) is desired to provide
support for such systems, it has to use the available resources in an optimal way
(competing with the application), since an embedded system architecture usually
lack in resources. Therefore, we present here our approach towards a reconfig-
urable RTOS that is able to distribute itself over a hybrid architecture (compris­
ing FPGA and CPU). In this paper we will concentrate in the strategies used to
allocate the OS services over a hybrid architecture, taken into consideration the
used resources in the running domain (CPU or FPGA) and the conmiunication
costs.

Keywords: Reconfigurable Computing, System-on-Chip, Real Time Operating System

*This work was developed in the course of the Special Research Initiative 614 - Self-optimizing Concepts
and Structures in Mechanical Engineering - University of Paderbom, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft.

Please use the foil owing format when citing this chapter:

Gotz, M., Rettberg, A., Pereira, C.E., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From
Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L.,
Machado R, Pereira C, Thiagarajan PS., (Boston: Springer), pp. 175-184.

176 From Model-Driven Design to Resource Management for Distributed Embedded Systems

1. INTRODUCTION
Embedded systems are increasingly requiring more computational perfor­

mance and flexibility due to the growing application complexity and changing
environments where these systems are inserted. Additionally, the used execu­
tion platforms are usually lacking in resources, which make the instantiation
of a complete system a challenge for a system developer.

In counterpart, the development of an execution platform for such systems
may profit from modem Field Programmable Gate Arrays (FPGAs), like the
Virtex-II Pro, where a CPU is hardcore embedded into the fabric. Thus, high
computation performance can be achieved by implementing components in
hardware. Additionally, flexibility is provided due to availability of a CPU and
the partial reconfigurable capability of such devices.

In order to easier the activities of the user when developing the application,
the used Operating System (OS) needs to tackle the underlying platform prop­
erly. Actually, the reasons to use an OS for a Reconfigurable Systems-on-Chip
(RSoC) are not different from those for running an OS on any system ([3]).

Towards this objective, we are developing a reconfigurable RTOS that is
able to distribute itself over a hybrid architecture, which comprises a CPU and
a FPGA. In changing environments, where application requirements are dy­
namic, the RTOS needs to provide the services currently needed by the running
application. However, due to the lack of resources of the underlying platforms,
a complete instance of a RTOS is usually not possible. Therefore, we pro­
pose to reconfigure the RTOS at run-time over the hybrid architecture in order
to better use the available resources, which is also shared by the application
tasks.

Our proposal fits into the scope of an in-house ongoing research, where
support for self-optimizing systems is being studied. For such systems, a self-
optimizing RTOS is also required. In this paper, however, we will concentrate
on the strategies used to allocate the OS services over the hybrid architecture,
taken into consideration the used resources in the running domain (CPU or
FPGA) and the communication costs.

The remaining of this paper is organized as follows. Section 2 describes
the related work, followed by a detailed discussion of the RTOS we are using
(Section 3) including a briefly description of the previous OS service allocation
algorithm. In this section, we also describe the execution platform. We then
present our communication-aware allocation algorithm is Section 4. There, the
clustering and the allocation of the components are described. In Section 5 we
present the evaluation results and we finalize in Section 6 with our conclusions.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 111

2. RELATED WORK
The overhead added by the operating system used for embedded systems

need to be carefully considered due to the usual lack of resources provided by
the underlying platform. However, up to now all approaches have been based
on implementations that are static in nature, see [9], [8], [7], [10] and [11], It
means that they do not change at run-time, even when application requirements
may significantly change.

Reconfigurable hardware/software based architectures are very attractive
for implementation of run-time reconfigurable embedded systems. The hard­
ware/software allocation of applications tasks to dynamically reconfigurable
embedded systems (by means of task migration) allows for customization of
their resources during run-time to meet the demands of executing applications,
as can be seen in [6].

An example of this trend is the Operating System for Reconfigurable Sys­
tems (OS4RS) ([13]). This work proposes an operating system for a heteroge­
neous reconfigurable System-on-Chip (SoC). It aims to provide an on-the-fly
reallocation of specific application tasks, over a hybrid architecture, depend­
ing on the computational requirements and on the Quality of Service (QoS)
expected from the application. Nevertheless, the RTOS itself is still static.
Moreover, the reconfiguration time cost is not a big issue in the design.

Additional research efforts spent in reconfigurable computing field are only
focusing on application level, leaving to the RTOS the responsibility to provide
the necessary mechanisms and run-time support. The works presented in [1],
[14] and [12] are some examples of RTOS services to support the (re)location,
scheduling and placement of application tasks on an architecture composed by
FPGA with or without an CPU. In our proposal, we expand those concepts and
propose new ones to be appHed in the RTOS level. Thus, the RTOS can profit
from the reconfigurable hybrid architecture in order to make a better usage
of the available resources in a flexible manner. Moreover, from our knowl­
edge there are no other works dealing with on-line RTOS services migration
between hardware and software execution environments.

Nevertheless, note that in our currently approach, we do not consider that a
OS service may be preempted in CPU and resumed at FPGA (or vice-versa).
This is different from [13]. In our approach the migration occurs when the
OS component is not being used. Beside that, we focus on OS component
migration instead of application tasks. In [4] we show how a migration may
dynamically be executed without requiring service preemption during migra­
tion.

178 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Figure 1. Proposed microkernel based architecture.

3. PRELIMINARIES
Our RTOS is composed of a set of services that may run either on the CPU

or on the FPGA. Therefore, the reconfigurable services are provided in two
implemented versions: software and hardware. In our approach, most of the
application tasks run on the CPU and only application critical tasks use FPGA
resources.

The target RTOS architecture follows the microkernel concept, where appli­
cation and operating system services are seen as components running on top
of a small layer which provides basic functionalities. The Figure 1 shows ab­
stractly our architecture. Additionally, the communication infrastructure layer
provides the necessary support to allow the communication among compo­
nents running over the hybrid architecture in an efficient manner. More details
about this topic are provided in Section 3.3.

Without loss of generality, we assume that over the hybrid architecture the
OS services are seen as components, which uses system resources (FPGA area,
CPU workload and communication bandwidth). This view is enforced by the
usage of the microkernel architecture model.

3.1 PROBLEM STATEMENT
From a higher point of view, we can see two major problems related with

the OS services: their allocation and their reconfiguration. The allocation of
the OS services over the hybrid architecture should be done in such a way to
optimize the used resources (including the communication costs). This is the
focus of the current paper.

Nevertheless, as we considered a changing environment, this allocations
need to be continuously evaluated. Whenever the OS components allocations
are required to change, a system reconfiguration happens. This reconfiguration
activity needs to be carried out respecting the correctness of the running appli­
cation. In a real-time system, it means that the reconfiguration activities can
not violate any time constraint of the running tasks. This problem is handled

From Model-Driven Design to Resource Management for Distributed Embedded Systems 179

by modelling theses activities as aperiodic jobs and scheduled together with
the running tasks using, therefore, a server ([4]).

3.2 COMMUNICATION UNAWARE ALLOCATION
ALGORITHM

A heuristic algorithm presented in [5] determines the allocation OS com­
ponents. Although presenting good performance, this algorithm does not take
into consideration the communication costs. It decides at run-time where to
place each OS component taking into consideration its current cost and the
remaining available system resources. Here, the resources are: FPGA area
(for components being located in hardware) and CPU processor utilization (for
components being located in software). Thus, the system has to locate the
RTOS components in a limited FPGA area (Amax) and limited CPU processor
workload (Umax)-

Every component i has an estimated cost Cij, which represents the percent­
age of resource from the execution environment used by this component. On
the FPGA (j = 2) it represents the circuit area needed by the component and
on the CPU (j = 1) it represents the processor load used by it. The heuristic
mentioned above minimizes a objective cost function (Equation 1) subjected
to a system resources constraints (Equations 2 and 3).

2 n

j = l z=l

n

U = Y^ Xi^lCi^l < Umax (2)
i=l
n

^ = ^ ^2,2Cz,2 < Amax (3)
z=l

Besides these constraints, an additional one is defined in order to maintain
a balanced resource utilization: B = \wiU — W2A\ < <5. Where S is the max­
imum allowed unbalanced resource utilization between CPU and FPGA. We
also consider that a component i can be assigned just to one of the execution
environment. Thus, Y^'j=i Xij = 1 for every i = 1,..., n. The weights wi and
W2 are used to proper compare the resource utilization between two different
execution environments.

Due to the application dynamism, the assignment decision needs to be checked
continuously. Whenever the specified constraint 6 is no longer fulfilled, a sys­
tem reconfiguration takes place. This implies that a set of RTOS component
needs to be relocated (reconfigured) by means of migration. In other words, a
service may migrate from software to hardware or vice-versa.

180 From Model-Driven Design to Resource Management for Distributed Embedded Systems

FPGA

(a) Architecture overviwe

Slotn

(b) OS service slot template

Figure 2. System architecture.

The working algorithm is composed of two phases. First, starting from an
empty CPU and FPGA utilization, the components having the smallest costs
are selected first and placed on either CPU or FPGA, trying to keep the re­
source utilization between these two execution domains the same. In the sec­
ond phase (based on Kemighan-Lin [2]), the allocation is refined by changing
the previous location of a component pair (each one locate in different exe­
cution domain). This last phase is used in order to improve the balance of
resource used and achieve the constraint 5.

3.3 EXECUTION PLATFORM
The kern of our architecture is a Virtex-II Pro fabric, which can be par­

tially reconfigured at run-time and provides additionally a hardcore embedded
processor. In Figure 2(a) we show the embedded system architecture in more
details. The reconfigurable part of the FPGA is divided in n slots. Each slot
provides a OS service framework (Figure 2(b)). The local memory is used to
support the communication between local components and the global shared
memory is used to perform the communication with components running on
the CPU. The local controller is used to manage the access to the local memory
and the global controller, which together with its counterpart in software, per­
forms the communication infrastructure mentioned in Section 3. The slots are
connected using Busmacros. In order to program the FPGA slots, the reconfig­
uration port is used, which may be local (by using the ICAP Xilinx entity) or
an external Run-Time Reconfiguration (RTR) controller.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 181

4. COMMUNICATION-AWARE ALLOCATION
ALGORITHM

The new algorithm is build on top of the already available allocation heuris­
tic shortly described in Section 3.2. The idea is to group those components
together who present lower communication costs when located at same exe­
cution domain. After this clustering process, we do apply the allocation al­
gorithm, where not only single components are assigned to CPU or ITGA,
but also meta-components (cluster of components). The previous algorithm is
slightly modified in its second phase, when the components assignments are
refined, in order to avoid the grouping of made at first.

4.1 DEFINITIONS AND NOTATIONS
The new allocation algorithm is based on component clustering. There­

fore, we model our system as an undirected weighted graph G = {V^£),
The edges in £ represent the communication costs CM between two differ­
ent components. Note that CM depends on two main factors: a static one,
related with the architecture (time to deliver a message) and a factor related
to the amount of data changed between two components, which is dynamic
and depends on the application. Additionally, as each component may be lo­
cated in one of two different execution environments, the communication cost
CM performed between two components is noted by three different values
CM = {C«, Cp, C^}:

• Ca, when both are on SW domain;

• Cp, when both are on HW domain;

• Cry, when both are in different domains.

The Figure 3 shows a sample of such a graph. The grey nodes in the graph
may be seen as the OS services primitives (API) that are made available for
the application tasks (running in software). Note that such node do not have
allocation costs as they only is used to properly represent the communication
cost between an application task and an OS service.

To measure the connection degree between two communicating compo-
nents, we define the local preference metric, pi = 2c~TU^Tc~' ̂ ^ich is cal­
culated using CM (pi = f{Ca^ Cp^ Cj)). The metric pi compare the com­
munication cost between two components when both are placed in the same
execution domain in comparison with the case where each of them are placed
in different execution domains.

We also define a global preference metric, pg, which is pi multiplied by
a global factor (see Equation 4). This metric enable us to compare all local
preferences with each other by doing the clustering process.

182 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Figure 3. Sample of an OS component graph.

Figure 4. Example of a two component being clustered.

pg = (•
O/-/

-)pi

4.2 CLUSTERING COMPONENTS

(4)

The proposed clustering algorithm starts searching for the biggest global
preference value, pg', among all edges and tries to cluster the two related com­
ponents, o and p, respecting two conditions:

• Components o and p have not been clustered;

• (co,i + Cp,i, Co,2 + Cp^2) < (Ai, A2), where Ai and A2 are the maxi­
mum component costs allowed when performing the combination of o
and p. This criterium is used to avoid the deprecation of the allocation
algorithm when the allocation costs of the formed components increase.

If a cluster is formed, the two involved components are combined and the
search is executed again. This method is repeated until no more components
are free for clustering.

When two components are grouped together, a new one is generated T*.
The Figure 4 shows an example. For this case, the CM* will be generated as
follows: CM* = CMi^s + CM2,3. Thus, pg* is calculated using this new
value CM*: pg* = f{C^, C^, C*), Note that the communication costs, Ca
and C^, between Tl and T2 (from the example) are no longer considered for
the pg evaluation. Nevertheless, they are stored and used during the balance
improvement executed in second phase of the original algorithm ([5]).

From Model-Driven Design to Resource Management for Distributed Embedded Systems 183

15

•s

1.
1

-6

-10

\

-

;-._^^

-e-sw
- * - HW
- + - SW-HW

, 1 1 1 1 1 1 1 1 1

0 1 2 3

Figure 5. Evaluation results comparison.

4.3 COMPONENT ALLOCATION
When the clustering process ends, we apply the allocation algorithm, which

is basically the same one presented in [5]. However, in the second phase of
this algorithm, where the allocation decision is refined in order to fulfil the S
constraint (balance improvement), we use the stored Ca and Cp costs. Thus, a
pair of components is allowed to change their location, only if this change will
improve the balancing and also represent a reduction of the communication
costs inside the execution domain.

5. EVALUATION RESULTS
For the evaluation of our algorithm, we did implement it using the MAT-

LAB tool. We create the same environment used in the evaluation of the origi­
nal algorithm and compare the communication costs achieved by the allocation
with and without the clustering process. For our case, we generate randomly
the communication graphs of n = 20 components respecting the following
relation: Ca < Cp < C^, which corresponds what we have observed in
our architecture. (The communication costs across execution domains are the
most expensive ones). The Figure 5 presents the results of the evaluation in
every execution domain and also between them. It indicates in percentage, the
increase of communication costs for a case using the clustering process in re­
lation to the case where cluster was not used. Therefore, a negative percentage
value indicates that a reduction of the communication costs was achieved. The
results were performed for different number of clustered (folding) formed.

184 From Model-Driven Design to Resource Management for Distributed Embedded Systems

6. CONCLUSIONS
The paper presents a communication-aware allocation algorithm that is used

for mapping OS services (components) of a system to FPGAs or CPUs. We
give an idea how to evaluate the communication between the tasks and show
how to cluster the tasks. This work is based on the approach presented in [5]
and its extension is right now under development, but will be ready for the final
version of the paper if it will be accepted.

REFERENCES
[1] Krishnamoorthy Baskaran, Wu Jigang, and Thamipillai Srikanthan. Hardware partition­

ing algorithm for reconfigurable operating system in embedded systems. In Sixth Real-
Time Linux Workshop, November 2004. Singapore.

[2] Petru Eles, Krzysztof Kuchcinski, and Zebo Peng. System Synthesis with VHDL: A Trans­
formational Approach, chapter 4, pages 114-119. Kluwer Academic Publishers, 1998.

[3] Frank Engel, Ihor Kuz, Stefan M. Petters, and Sergio Ruocco. Operating Systems on
SoCs: A Good Idea? In ERTSI Workshop, 2004.

[4] Marcelo Gotz and Florian Dittmann. Scheduling Reconfiguration Activities of Run-time
Reconfigurable RTOS Using an Aperiodic Task Server. In Proc. of the ARC 2006, Delft,
The Netherlands, March 2006.

[5] Marcelo Gotz, Achim Rettberg, and Carlos E. Pereira. Towards Run-time Partitioning of
a Real Time Operating System for Reconfigurable Systems on Chip. In Proc. oflESS,
Manaus, Brazil, August 2005.

[6] J. Harkin, T. M. McGinnity, and L. P. Maguire. Modeling and optimizing run-time re­
configuration using evolutionary computation. Trans. Embedded Comp. Sys., 3(4), 2004.

[7] Paul Kohout, Brinda Ganesh, and Bruce Jacob. Hardware support for real-time op­
erating systems. In International Symposium on Systems Synthesis. Proc. of the 1st
lEEE/ACM/IFIP Inter. Conf. on HW/SW codesign and system synthesis, 2003.

[8] P. Kuacharoen, M. Shalan, and V. Mooney. A configurable hardware scheduler for real­
time systems. In ERSA, pages 96-101, June 2003.

[9] J. Lee, K. Ingstrom, A. Daleby, Tommy Klevin, V.J. Mooney III, and Lennart Lindh. A
comparison of the rtu hardware rtos with a hardware/software rtos. In ASP-DAC, January
2003.

[10] Jaehwan Lee, Kyeong Ryu, and V. J. Mooney III. A framework for automatic generation
of configuration files for a custom hardware/software rtos. In ERSA, June 2002.

[11] Lennart Lindh and Frank Stanischewski. Fastchart - a fast time deterministic cpu and
hardware based real-time-kernel. In EUROMICRO, 1991.

[12] Jean-Yves Mignolet, Vincent Nollet, Paul Coene, Diederik Verkest, Serge Vemalde, and
Rudy Lauwereins. Infrastructure for design and management of relocatable tasks in a
heterogeneous reconfigurable system-on-chip. In DATE, pages 10986-10993, 2003.

[13] V. Nollet, P. Coene, D. Verkest, S. Vemalde, and R. Lauwereins. Designing an operating
system for a heterogeneous reconfigurable soc. In IPDPS, Washington, DC, USA, 2003.
IEEE Computer Society.

[14] Grant Wigley and David Kearney. The development of an operating system for reconfig­
urable computing. In FCCM, pages 249-250, April 2001.

MULTI-OBJECTIVE DESIGN SPACE EXPLORATION
OF EMBEDDED SYSTEM PLATFORMS

Jan Madsen, Thomas K. Stidsen, Peter Kjaerulf, Shankar Mahadevan
Informatics and Mathematical Modelling
Technical University of Denmark
"{jan,tks,sm]-@imm.dtu.dk

Abstract In this paper we present a multi-objective genetic algorithm to solve the problem
of mapping a set of task graphs onto a heterogeneous multiprocessor platform.
The objective is to meet all real-time deadlines subject to minimizing system cost
and power consumption, while staying within bounds on local memory sizes and
interface buffer sizes. Our approach allows for mapping onto a fixed platform
or onto a flexible platform where architectural changes are explored during the
mapping.

We demonstrate our approach through an exploration of a smart phone, where
five task graphs with a total of 530 tasks after hyper period extension are mapped
onto a multiprocessor platform. The results show four non-inferior solutions
which tradeoffs the various objectives.

1. INTRODUCTION
Modem embedded systems are implemented as heterogeneous multiproces­

sor systems often realized as a single chip solution, System-on-Chip (SoC).
Given the high development cost and often short time-to-market demands,
these systems are developed as domain specific platforms which can be re­
configured to fit a particular application or set of applications. They are typ­
ically designed under rigorous resource constrains, such as speed, size and
power consumption. Determining the right platform and efficiently mapping
a set of applications onto it, requires hardware/software partitioning, hard­
ware/software interface, processor selection and communication planing.

In this paper, we address the following problem:

Given a set of applications with individual periods and deadlines, and a heteroge­
nous multiprocessor architecture on which to execute the applications, determine
a mapping of all tasks on processors and all communications on communication
links, such that all deadlines are met subject to power consumption, memory
size, buffer sizes of network adapters and overall component cost.

By mapping we mean the allocation of tasks in space and time, i.e. the deter­
mination of which tasks to execute on a given processor as well as the detailed

Please use the following format when citing this chapter:

Madsen, J., Stidsen, T.K., Kj^rulf, P., Mahadevan, S., 2006, in IFIP Intemational Federation for Information Processing,
Volume 225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjo-
harm, Kleinjoharm L., Machado R., Pereira C, Thiagarajan PS., (Boston: Springer), pp. 185-194.

186 From Model-Driven Design to Resource Management for Distributed Embedded Systems

time schedule of each task, and hkewise for the communications on commu­
nication links.

We address two different variations of the problem;

1 Fixed platforms, i.e. no changes of type or number of processors nor any
interconnection topology. Hence, the focus is on mapping the applica­
tions onto the platform. This variation corresponds to the case where
we want to re-use an existing platform, which is often the case when
moving from one generation to the next of a product family.

2 Flexible platforms, i.e. the types and/or number of processors may be
changed and the interconnection topology may be changed by adding or
removing buses and bus bridges. This variation corresponds to the case
where we may change the platform to better fit the requirements of the
application.

To demonstrate the capabilities of our approach, we will explore the design
of a smart phone, i.e., a heterogeneous multiprocessor platform running five
applications with a total of 114 tasks: MP3, JPEG Encoder, JPEG Decoder,
GSM Encoder and GSM Decoder. We will demonstrate how our approach can
lead to improved solutions for both variations of the optimization problem and
in particular for the co-exploration of the architecture selection and application
mapping.

The rest of the paper is organized as follows; Section 2 discusses related
work. Section 3 presents the application and architecture models. In Section 4
and 5 we present details of our exploration framework. Section 6 present the
design space exploration case study of a smart phone. Finally, we present the
conclusions in Section 7.

2. RELATED WORK
Static scheduling algorithms for mapping task graphs onto multiprocessor

platforms have been studied extensively. A good survey of various heuristic
scheduling methods can be found in [5].

Recently, Genetic Algorithms (GA) have been applied to multiprocessor
co-synthesis problems due to their property to escape local optima [3, 6-8].
In [6], the goal of the GA-based scheduler is to minimize completion time of
all tasks. Although some processor characteristics are taken into account, the
approach only addresses homogeneous platforms. In [7] the objectives are to
minimize the number of processors required and the total tardiness of tasks
for real-time task scheduling. In MOCAG [3] the objectives are extended to
also include power consumption beside system price (cost) and task comple­
tion time. The approach showed very good results in particular for large sys­
tems. The approach described in [2] minimizes schedule length (i.e. the sum
of computation, communication and processor wait times) in mixed-machine
distributed heterogeneous computing platforms executing up to 200 tasks. The
approach uses a fast heuristic with the GA optimization, thereby reducing the
exploration time as compared to traditional GA. The approach presented in [8]

From Model-Driven Design to Resource Management for Distributed Embedded Systems 187

emphasize energy minimization through the use of dynamic voltage scahng
provided by the processors. It is applied to heterogeneous multiprocessor SoC
platforms.

Our approach is similar to [2] and [8], but we use a more detailed com­
munication exploration, and in addition to cost, completion time and energy,
we explore memory and buffer constrains - with true multi-objective optimiza­
tion.

3. MODELS
In this section we present the application model and the architecture model

on which to execute the application. Both are inputs to our exploration envi­
ronment.

3.1 APPLICATION MODEL
We consider a real-time application to be modelled as a task graph (ex­

pressed as a directed acyclic graph) GT — VT.ET), where Vr — {r^ : \
< i < n} is the set of schedulable tasks, and ET — {ej - I < j < k} is the set
of directed edges representing the data dependencies between the tasks in VT,
i.e., if r̂ -< TJ then (r^, TJ) G ET- The weight of an edge indicates the size of
the message to be transferred between two tasks. Figure la shows a example
of an application task graph. Each task r̂ G Vr is characterized by a five tuple
{di^Ti^ Ci^ei^rrii), i.e. the exact fianctionality of the task is abstracted away.
The relative deadline, di, and the period, T ,̂ are given by external require­
ments of the application and, hence, are independent of runtime input values,
intermediate results or configurations of processing elements. However, the
execution time, Q, the consumed energy, e ,̂ and the memory usage, m^, are
all determined by the actual mapping of the task onto a particular processor.

/ '^^..lA

j^ inlerface ^

f s.

interface j

^ ^ \ s u

inlcrtacc

Pt:^,yp

inicrflicc ^

2zzz_zz)-cix:

a) b)

Figure L Models, a) Application task graph, b) Architecture graph with 4 PEs, 2 busses and
a bus bridge.

The deadline of a real-time application, DT, is represented by the deadline
of the task(s) in VT with no successors, i.e. no outgoing edges. The task graphs
for the different applications are unfolded to cover the hyper period of the
complete application. If the different task graphs have different deadlines the
period of the hyper period is the least common multiple of all task graphs
periods. An instance of a task graph cannot start before the preceding instance
has completed its execution.

188 From Model-Driven Design to Resource Management for Distributed Embedded Systems

3.2 ARCHITECTURE MODEL
We consider a heterogeneous multiprocessor architecture to be modelled as

an architecture graph GA = (VA.EA)^ The vertices represent three differ­
ent types of components, VA — VPE U VL U VB, where VPE — {PEq : 1
< q < m} is the set of processing elements (PEs), VL = {̂ ^ • 1 < '̂ < 0 î
the set of buses which makes up the interconnection network, and VB — {bk -
I < k < r} is the set of bus bridges. Processing elements can be any of ded­
icated hardware accelerators {PEASIC)^ reconfigurable devices {PEFPGA),

or general purpose processors (PEQPP). Each PE is characterized by a tu­
ple {fi, rrii), where fi is the operating frequency of the processor and rui is
the maximum size of the local memory of the processor. Figure lb shows a
example of an architecture graph.

The mapping of the individual tasks, determines if a task will be imple­
mented as hardware logic, ASIC and/or FPGA, or as software running on a
GPP. Consequently, by choosing a different processor, the execution charac­
teristics of the task may be changed, which in turn will affect the scheduling
of the succeeding tasks; and eventually the completion time of the application.

The interconnections are formed by a (possible hierarchical) network of
buses connected through bridges. The communication between two tasks
mapped to the same PE is done via accessing shared memory, i.e. we as­
sume that each processing element has local memory, and its access time is
negligible. The communication delay between two tasks mapped to differ­
ent PE's is the property of the size of the message, the sizes of the interface
buffers, and the bandwidth of the bus.

Processing elements are connected to buses through network adapters. A
network adapter may include buffers, allowing for communication to take
place concurrently with computation.

4. DESIGN SPACE EXPLORATION
To solve the presented multi-objective optimization problem, we have used

the PISA framework [1] to create a multi-objective Genetic Algorithm (GA).
We take as input the set of application task graphs and an architecture graph
as described in Section 3. The GA is responsible for design instantiations,
i.e. the selection of VA, and the assignment of the set of tasks VT onto the set
of processing elements VPE G VA- The selection process can be skipped if
the user is only interested in a mapping onto 3. fixed platform, otherwise the
platform will be regarded as flexible.

A GA is an iterative and stochastic process that operates on a set of indi­
viduals (the population). Each individual represents a potential solution to the
problem being solved, and is obtained by decoding the genome of the indi­
vidual. Initially, the population is randomly generated (in our case based on
the input graphs). Each individual in the population is assigned a fitness value
which is a measure of its goodness with respect to the problem being con­
sidered. This value is the quantitative information used by the algorithm to
guide the search for a feasible solution. The basic genetic algorithm consists

From Model-Driven Design to Resource Management for Distributed Embedded Systems 189

of repeated execution of three major stages: selection, reproduction, and re­
placement. Each iteration is called a generation. During the selection stage,
individuals with a high fitness value has a higher probability of being selected
to create of spring through crossover. A new population is then created by per­
forming crossover followed by mutation. Finally, individuals of the original
population is substituted by the newly created individuals in such a way that
the most fit individuals are kept deleting the worst ones. A thorough descrip­
tion of genetic algorithms may be found in [4]. There are two important issues
which have to be addressed when formulating a problem to be solved by a GA;
the representation, i.e. the encoding/decoding mechanism of the genom of an
individual, and the evaluation of the fitness of an individual. These issues will
be explained in the following sections.

Bridges:

^^^KiA P£\.p,, /^^ASIC /"^^ii-p

1

0

1

0

1 2

0

1

0

1

^^^ri'UA

inteitacc .

A

PE^,,

inteitacc >

1
C l^)

P£,,p,
3 4 2

M X H I
1 2 3

Tusk Assignments

b)

Figure 2. a) Example of a mapping, and b) the corresponding GA representation.

4.1 DESIGN REPRESENTATION
In order for the GA to optimize the designs, each design must be represented

as an individual. Figure 2 shows a mapping of an application graph onto an
architecture, and the corresponding representation. Each individual consists
of two parts: A part specifying the architecture and a part specifying the task
assignment. In Figure 2b the architecture representation part contains an ar­
ray of the deployed processing elements, in this example four PEs of three
different types {GPP, ASIC and FPGA). The connection between the PEs
is given by the 2D matrix. Each row corresponds to a bus and each element
in the row indicates if the corresponding PE is connected to the bus ('!') or
not ('0'). The bridges which are connecting the busses, are defined as a bridge
matrix, where each row represents a bridge and the elements indicates which
busses the bridge connects. The task assignment is given as an array, where
each index identifies a task and the corresponding element identifies the index
of the PE to which the task is assigned.

The chosen representation is problem specific and uses internal references.
The tasks do not identify which PE to use, but rather the index of the PE in

190 From Model-Driven Design to Resource Management for Distributed Embedded Systems

the PE array. Hence, if the type of a PE is changed for an entry, all tasks
referring to this index, will have their executing PE changed.

4.2 GENETIC OPERATORS
Initially, a set of individuals are instantiated with unique architecture and

application mapping in order to form a population. During each generation we
can apply one or more of the following five types of genetic operators,

• Change PE: Randomly select an existing PE and change it's type, and
randomly select a bus and change its type.

• Add PE: Add a new PE to a randomly selected bus, and assign [vyi]
tasks randomly selected from the other PEs.

• Remove PE: Remove a PE from a randomly selected bus, and dis­
tribute its tasks among the remaining PEs.

• Crossover: Crossover on PE types and tasks mapped to PE. This op­
erator copies the mapping and P£'-type from one individual to a PE in
another individual.

• Randomly Re-assign Task: Move [1;4] randomly selected tasks from a
PE to another randomly chosen PE.

• Heuristically Re-assign Task: Identify the task graphs which have tasks
missing their deadlines, and select a task from these and move it to a
PE with no deadline violation.

The first four of the genetic operators enables the GA to find any solution in
the problem space. The fifth mutation operator adds a more focused search re­
garding deadlines and workload balancing. Neither of these operators change
the cardinality of VL, however the GA has full flexibility to reorganize the ex­
isting interconnect topology. After applying these operators to individuals, the
outcome needs to be evaluated. This is done by a scheduling algorithm which
is responsible for determining the start- and the end-times of the computation
and communication activities. The scheduling algorithm will be presented in
the next section.

5. SCHEDULING
The scheduling task is NP-hard, and it has to be performed for each indi­

vidual constructed by the GA algorithm. Hence, a fast scheduling method is
central for good performance. For a survey of different scheduling algorithms
see [5]. We have chosen to use a static list scheduling algorithm which requires
a priority for each task. We use a mix of the so called t-levels and b-levels: The
t-level of a task is the earliest start time of that task whereas the b-level is the
latest start time if time limits are to be satisfied. We use a linear combination
of the two measures to produce a task priority-list.

During scheduling tasks are selected from the start of the priority-list but
with two important sub conditions

From Model-Driven Design to Resource Management for Distributed Embedded Systems 191

1 For a task to be selected for scheduling, all of its preceding tasks have
to have been scheduled already.

2 Tasks with smallest 'earliest start time' is scheduled before other tasks.

5.1 SCHEDULING ALGORITHM
In Figure 3 we outline the pseudo code for the list scheduling algorithm.

The list scheduling algorithm initially calculates the t- and b-levels to initial­
ize the Priority-List (1). Then the list NumJJnschedueld-Predecessors
is initialized (2). Then the current task to schedule Ty is set to the task with the
highest priority which also satisfies sub-condition 1) and 2) (3). In the main
loop, first the earliest possible starting time for the task is found (5). Then Ty is
scheduled to start at this time (6). Afterwards the NumJJnschedueld-Pre­
decessors is updated (7). Then the task with the highest priority satisfying
sub-condition 1) and 2) is selected as the next task Ty to schedule (8). Fi­
nally the Earliest Communication Time (ECT) for all predecessors to Ty are
found, in order to find earliest ready communication resources for mapping
and scheduling (9).

Calculate Priority-List,
Initialize Num-Unschedueld-Predecessors[.]
Set Ty to the first task in Priority-List satisfying sub condition 1) and 2)
repeat

Find earliest starting time for Ty
scheduled Ty
Update Nurri-Unschedueld-Predecessors [..]
Set next ready task in Priority-List to Ty
Calculate ECT to Ty

until All tasks scheduled

Figure 3. Scheduling Algorithm

Example: Consider a given inter-task communication: {Tx^Ty) G Vr (Fig­
ure 4a), such that TX -< Ty, and {PEi, PE^) G VPE, where TX -^ PEi and
Ty —> PE^. Further we assume that the network adapter in PEs has no buffers,
while PEi has both input and output buffers. For the schedulable resources
and their interconnectivity, we associate /̂ ; G VL a vector of items in the topol­
ogy set i.e. direct bus (one item) or bridged bus (3 or more items) connecting
PEi with PEs, In this case, ly consists of 3 items: local buses of PEi and
PEs, li and I2, and the bridge, 61, between /i and /2- Further, we assume the
bandwidth of I2 > h. Let the message size to be transferred be m. Figure 4b
shows a snapshot of the scheduling profile during the communication of inter­
est. For clarity, we assume the transfers over the bridge to be instantaneous
and hence ignored in the figure. The shaded portions, imply that the shared
resource is busy.

192 From Model-Driven Design to Resource Management for Distributed Embedded Systems

0-i interface

""T~

^

0
1 interface i

"i ^ 1

interface

~ T ~

PE,

PE,

PEu,.,

h
/,

PE,

t >

n
CD
^

/
0 (

T,. Starts

m 1
1

1

1
1

'. n

m|

m 1
; m 1

S S
time

Ecr
b)

Figure 4. a) Mapping of two tasks, and b) calculation of Earliest Communication Time.

In the following, we are showing how ECT is calculated for the example in'
Figure 4a. First we calculate the completion time, {ctx), of r^ on PEi. For
PEi, the space in the output buffer, PE*! ^ ^ j , is found to be available, thus the
message is moved to PEi^i^uf^ freeing PEi to start executing another task r^.
Knowing the precedence constraints and the ordering in the Priority Xist,
we calculate the earliest possible start time, rty, for Ty on PE^. ECT is set
to the furthest time when either the communication is possible {TX completes
on PEi) or required (Ty ready to start on PE^), i.e. ECT = rty. Then we
find the topology set, ly, connecting PEi with PE^, which is {h.h}- We
evaluate the availability of each of the busses of ly. Although /i is available,
the earliest time at which communication can be scheduled is when 12 is also
available. This dictates the ECT. Overall the communication speed is dictated
by the slower bus, keeping the output buffer, PEi^i^^f occupied. The actual
start time of r̂ ^ is after the message m has been received. D

5.2 MEMORY ISSUES
During scheduling both interface buffers and local memory are taken into

account.
Interface buffers of a processor can be used in two ways 1) to store data

coming from the bus to the processor and 2) to store data going from the pro­
cessor to the bus. It is assumed that buffers can not block. This means that
even if a communication task can not be stored in the buffer (e.g. buffer is
full), the buffer can still send data to the bus.

When tasks are mapped to processors, the static and dynamic memory con­
sumption of the tasks are taken into account. This assures that the number
of tasks mapped to a PE will always fit within the available size of the local
memory. The local memory size for each PE is specified as a constraint in
the input. However, during scheduling data waiting to be sent to the bus may
have to be saved in the local memory of the processors, for instance in the
case where the corresponding buffer is full. This can cause a violation of the

From Model-Driven Design to Resource Management for Distributed Embedded Systems 193

memory constraint on a given processor. This memory violation is one of the
objectives optimized in the multi-objective GA algorithm.

6. CASE STUDY
In this section we explore a smart phone [8] running 5 applications (JPEG

encoder and decoder, MP3, and GSM encoder and decoder) with a total of 114
tasks.

After expanding the task graphs into a hyper period, we have a total of 530
tasks to schedule. The GA was run for 100 generations which corresponds
to approximately 10 min of run time. In each generation 100 individuals was
evaluated. Hence, 10.000 solutions were explored, resulting in four interesting
architectures (see figure 5) on the approximated pareto front.

Table 1 lists the cost, energy consumption and memory violation for each
of the four architectures.

id J
"T66l

171
184

187

1 cost($)
1396

1048
1396

1596

Energy (J)

22.0

29.0
24.6

22.0

Memory violation (Bytes)

1344

0
0

612

Table I. Characteristics of four solutions on the approximated pareto front.

The two architectures id 166 and id 184 are identical, but with a different
mapping of tasks to processors. This gives id 166 a smaller energy consump­
tion with the cost of a memory violation. The cheapest architecture is id 171,
this is however the solution with the largest energy consumption. With regard
to energy consumption id 187 is the cheapest but at the same time the most
expensive architecture.

As there is no guarantee for optimal solutions the selection of architectures
will only be an approximation to the pareto front. However, the experiment
shows how the algorithm is a powerflil tool to explore the design space for
embedded system architectures with both one and multiple busses.

7. CONCLUSIONS
The design of a heterogenous multiprocessor system, is accomplished either

by design reuse or incremental modification of existing designs. In this paper,
we have presented a multi-objective optimization algorithm which allows to
optimize the application mapping on to an existing architecture, or optimize
the application mapping and architecture during development. Our algorithm
couples GA with list scheduler. The GA allows to instantiate multiple designs
which are then evaluated using the scheduler. The outcome is an approximated
pareto front of latency, cost, energy consumption and buffer and memory uti­
lization. The case study has shown, that maximum gains are achieved when
optimizing both architecture and application simultaneously.

194 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Architecture: id 166, id 184

Archit

Arch it

^ interfiice

1

ecturc: id 171

^ ''Gf'TO

interface j

1
c

ecturc: id 187

^^GPPO

^ interface

1
'rnisi

^^AS.C-.

^ interface

1

''^"-ASIO

interface

1

/ '^ASIC.

interface

1

^/i\s.c..

^ inteiface

1

>

interface

1

H - T B - I -

^/^AS.C.

^ interface

1
c

^/^AS.c:,

^ interface

1
)

^^ASIC'3

interface

1
;
H~in-

/ ' ^ A S . O

interface

1
c

'ni 's i

MIUHI

^^AS.C-.

^ interface

1

/ ' ^ A S . c :

interface

1

,
)

^
)

Figure 5. Non-inferior architectures from the optimization runs.

8. ACKNOWLEDGEMENT
This work has been supported by the European project ARTIST2 (IST-

004527), Embedded Systems Design.

REFERENCES

[1]

[2]

[3]

Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. PISA — a platform
and programming language independent interface for search algorithms. In Carlos M. Fon-
seca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors, Evo­
lutionary Multi-Criterion Optimization (EMO 2003), Lecture Notes in Computer Science,
pages 494 - 508, Berlin, 2003. Springer.

Muhammad K. Dhodhi, Imtiaz Ahmad, Anwar Yatama, and Ishfaq Ahmad. An integrated
technique for task matching and scheduling onto distributed heterogeneous computing sys­
tems. In Journal of Parallel and Distributed Computing, pages 1338-1361. Elsevier Sci­
ence, 2002.

Robert P. Dick and Niraj K. Jha. MOGAC: a multiobjective genetic algorithm for
hardware-software cosynthesis of distributed embedded systems. In Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pages 920-935. IEEE, 1998.

[4] D. E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley, 1989.

[5] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Computing Surveys, 31(4):406-471, 1999.

[6] Ceyda Oguz and M.Fikret Ercan. A genetic algorithm for multi-layer multiprocessor task
scheduling. In IEEE Region 10 Conference (TENCON), pages 168-170. IEEE, 2004.

[7] Jaewon Oh and Chisu Wu. Genetic-algorithm-based real-time task scheduling with multi­
ple goals. In Journal of Systems and Software, pages 245-258. Elsevier, 2004.

[8] Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. System-Level Design Tech­
niques for Energy-Efficient Embedded Systems. Kluwer Academic Publishers, 2004.

DYNAMIC MEMORY MANAGEMENT FOR EMBEDDED
REAL-TIME SYSTEMS

A. Crespo, I. RipoU, M. Masmano
Universidad Politecnica de Valencia
46022 Valencia, Spain
{acrespo,iripoll,mmasmano]-@disca.upv.es

Abstract Dynamic memory storage has been widely used during years in computer sci­
ence. However, its use in real-time systems has not been considered as an im­
portant issue because the spatial and temporal worst case for allocation and deal­
location operations were unbounded or bounded but with a very large bound.

TLSF (Two Level Segregated Fit) is a new allocator has been designed specif­
ically to meet real-time constraints. These constraints are addressed in two axis:
Time and Space. While the temporal behaviour of TLSF is excellent, 0(1), the
spatial behaviour is as the best of the known allocators. The spatial constraint is
specially required in embedded systems with mitided resources. An efiicient and
guaranteed use of memory is needed for these systems. In this paper we compare
the temporal and spatial performances of the TLSF allocator comparing it with
the most relevant allocators.

Keywords: Dynamic memory allocation, real-time systems, embedded systems

1. INTRODUCTION
Dynamic storage allocation (DSA) algorithms plays an important role in

modem software engineering paradigms (object oriented paradigm) and tech­
niques. Additionally, it allows to increase the flexibility and functionalities of
the applications. In fact, there exist in the literature a large number of works
and references to this particular issue. However, in the real-time community
the use of dynamic memory techniques has not been considered as an impor­
tant issue because the spatial and temporal worst case for allocation and deal­
location operations were insufficiently bounded. It is significant the reduced
number of papers about this topic in most relevant real-time events.

Nevertheless, it is not wise to ignore the use of dynamic memory in real-time
applications just because it is believed that it is not possible to design an alloca­
tor that matches the specific needs of a real-time system. To take profit of, these
advantages for the developer of real-time systems a deterministic response of

Please use the following format when citing this chapter:

Crespo, A., Ripoll, I., Masamano, M., 2006, in IFIP Intemational Federation for Information Processing, Volume 225,
From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjo-
harm L., Machado R., Pereira C, Thiagarajan PS., (Boston: Springer), pp. 195-204.

196 From Model-Driven Design to Resource Management for Distributed Embedded Systems

the dynamic memory management is required. This requirement impHes the
use of dynamic memory mechanisms completely predictable. Allocation and
deallocation are the basic mechanisms to handle this issue. Additionally to the
temporal cost of these operations is the memory fragmentation incurred by the
system when dynamic memory is used. Fragmentation plays an important role
in the system efficiency which is more relevant for embedded systems.

TLSF [4] is a new allocator has been designed specifically to meet real­
time constraints. These constraints are addressed in two axis: Time and Space.
While the temporal behaviour of TLSF is excellent, 0(1), the spatial behaviour
is as the best of the known allocators. In this paper we compare the temporal
and spatial performances of the TLSF allocator comparing it with the most
relevant allocators.

1.1 DSA AND REAL-TIME REQUIREMENTS
The requirements of real-time applications regarding dynamic memory can

be summarised as:

• Bounded response time. The worst-case execution time (WCET) of
memory allocation and deallocation has got to be known in advance and
be independent of application data. This is the main requirement that
must be met.

• Fast response time. Besides, having a bounded response time, the re­
sponse time has got to be short for the DSA algorithm to be usable. A
bounded DSA algorithm that is 10 times slower than a conventional one
is not useful.

• Memory requests need to be always satisfied. No real-time applica­
tions can receive a null pointer or just be killed by the OS when the
system runs out of memory. Although it is obvious that it is not possible
to always grant all the memory requested, the DSA algorithm has got to
minimise the chances of exhausting the memory pool by minimising the
amount of fragmentation and wasted memory.

• Efficient use of memory. The allocator has got to manage memory
efficiently, that is, the amount of wasted memory should be as small as
possible.

2. DYNAMIC STORAGE ALLOCATION
ALGORITHMS

This section presents a categorisation of existing allocators and a brief de­
scription of the most representative ones, based on the work of Wilson et al.
[13] which provides a complete taxonomy of allocators.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 197

Considering the main mechanism used by an allocator, the following cat­
egorisation is proposed [13]. Examples of each category are given. In some
cases it is difficult to assign an allocator to a category because it uses more
than one mechanism. In that case, tried to determine which is the more rele­
vant mechanism and categorise the allocator accordingly.

Sequential Fits: Sequential Fits algorithms are the most basic mechanisms.
They search sequentially free blocks stored in a singly or doubly linked
list. Examples are first-fit, next-fit, and best-fit. First-fit and best-fit are
two of the most representative sequential fit allocators, both of the are
usually implemented with a doubly linked list.

Segregated Free Lists: These algorithms use a set of free lists. Each of these
lists store free blocks of a particular predefined size or size range. When
a free block is released, it is inserted into the list which corresponds to
its size. There are two of these mechanisms: Simple Segregated storage
and Segregated

Buddy Systems: Buddy Systems [2] are a particular case of Segregated free
lists. Being H the heap size, there are only log2{H) lists since the heap
can only be split in powers of two. This restriction yields efficient split­
ting and merging operations, but it also causes a high memory fragmen­
tation. The Binary-buddy [2] allocator is the most representative of the
Buddy Systems allocators, which besides has always been considered as
a real-time allocator.

Indexed Fits: This mechanism is based on the use of advanced data structures
to index the free blocks using several relevant features. To mention a
few examples: algorithms which use Adelson-Velskii and Landin (AVL)
trees [10], binary search trees or cartesian trees (Fast-Fit [12]) to store
free blocks.

Bitmap Fits: Algorithms in this category use a bitmap to find free blocks
rapidly without having to perform an exhaustive search. TLSF and Half-
fit [6] are examples of this sort of algorithms. Half-fit groups free blocks
in the range [2% 2*'̂ [̂ in a list indexed by i. Bitmaps to keep track of
empty lists jointly with bitmap processor instructions are used to speed­
up search operations.

Hybrid allocators: Hybrid allocators can use different mechanisms to im­
prove certain characteristics (response time, fragmentation, etc.) The
most representative is Doug Lea's allocator [3], which is a combination
of several mechanisms. In what follows this allocator will be referred to
as DLmalloc.

198 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Table 1 summarises the temporal costs of the worst-case allocation and deal­
location of these algorithms

Table 1. Worst-case costs

First-fit/Best-fit
Binary-buddy
AVL-tree
DLmalloc
Half-fit
TLSF

Allocation

O (^)
0(l0g2 (^))

0(1.44 log2 (^))
O(^)
0(1)
0(1)

Deallocation
0(1)

0(log2 (^))
0(3-1.44 1og2(^))

0(1)
0(1)
0(1)

Although the notion of fragmentation seems to be well understood, it is
hard to define a single method of measuring or even defining what fragmen­
tation is. In [13] fragmentation is defined as "the inability to reuse memory
that is free". Historically, two different sources of fragmentation have been
considered: internal and external. Internal fragmentation is caused when the
allocator returns to the application a block that is bigger than the one requested
(due to block round-up, memory alignment, unablility to handle the remaining
memory, etc.). External fragmentation occurs when there is enough free mem­
ory but there is not a single block large enough to fulfill the request. Internal
fragmentation is caused only by the allocator implementation, while external
fragmentation is caused by a combination of the allocation policy and the user
request sequence.

Attending to the reason an allocator can not use some parts of the memory,
three types of wasted memory, usually called fragmentation can be defined: it
Internal fragmentation when the allocator restricts the possible sizes of allocat-
able blocks because of design constraints or efficiency requirements; External
fragmentation: The sequence of allocation and deallocation operations may
leave some memory areas unused since; and, wasted memory which corre­
sponds to the memory managed by the allocator that can not be assigned to the
application . In fact, the wasted memory at any time is the difference between
the live memory and the memory used by the allocator at that time.

The following table summarises the worst-case memory requirements for
several well known allocation policies (see [7-9, 2]).

The table shows the heap size needed when the maximum allocated memory
(live memory) is M and the largest allocated block is m, Robson also showed
that an upper bound for the worst-case of any allocator is given by: M x m.

The other allocation algorithms will have a fragmentation depending on the
implemented policy. While AVL-tree, DLmalloc and TLSF tends to a good fit
policy, Half-fit implements a binary buddy policy.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 199

Table 2. Fragmentation worst-case

Heap size

First-fit i^Er=i(ir
Best-fit M{m - 2)

Binary-buddy A^(l + log2 m)

However, several studies [11, 5] based on synthetic workload generated
by using well-known distributions (exponential, hyper-exponential, uniform,
etc.). The results obtained were not conclusive; these studies show contradic­
tory results with slightly different workload parameters. At that time, it was
not clear whether First-fit was better than Best-fit.

Johnstone and Wilson [1] analysed the fragmentation produced by several
standard allocators, and concluded that the fragmentation problem is a problem
of "poor" allocator implementations rather than an intrinsic characteristic of
the allocation problem itself A

The policy used to search for a suitable free blocks in Half-fit and TLSF
introduces a new type of fragmentation or incomplete memory use as it is called
in [6]: free blocks larger than the base size of the segregated list where they
are located, will not be used to serve requests of sizes that are one byte larger
than the base size.

TLSF is a bounded-time, Good-fit allocator. The Good-fit policy tries to
achieve the same results as Best-fit (which is known to cause a low fragmen­
tation in practice [1]), but introduces implementation optimisations so that it
may not find the tightest block, but a block that is close to it. TLSF imple­
ments a combination of the Segregated and Bitmap fits mechanisms. The use of
bitmaps allow to implement fast, bounded-time mapping and searching func­
tions.

3. TLSF
In a previous paper [4], the authors described a preliminary version of a

new algorithm for dynamic memory allocation called TLSF (Two-Level Seg­
regated Fit). We now present a slightly improved version of the algorithm that
maintains the original worst-case time bound and efficiency, and reduces the
fragmentation problem in order to make TLSF usable for long-lived real-time
systems.

TLSF is a bounded-time. Good-fit allocator. The Good-fit policy tries to
achieve the same results as Best-fit (which is known to cause a low fragmen­
tation in practice [1]), but introduces implementation optimisations so that it
may not find the tightest block, but a block that is close to it. TLSF imple­
ments a combination of the Segregated and Bitmap fits mechanisms. The use of

200 From Model-Driven Design to Resource Management for Distributed Embedded Systems

bitmaps allow to implement fast, bounded-time mapping and searching func­
tions.

The TLSF data structure can be represented as a two-dimension array. The
first dimension splits free blocks in size-ranges a power of two apart from
each other, so that first-level index i refers to free blocks of sizes in the range
[2%2̂ +̂ [. The second dimension splits each first-level range linearly in a num­
ber of ranges of an equal width. The number of such ranges, 2^, should not
exceed the number of bits of the underlying architecture, so that a one-word
bitmap can represent the availability of free blocks in all the ranges. According
to experience, the recommended values for C are 4 or, at most, 5 for a 32-bit
processor. Figure 1 outlines the data structure for £ = 3.

f ix 0 1 SL_bitmaps[]

31 2^' +0*22« 2^V1 *228 2^' +2*2^ 2^' +3*2^^ 2^^4*2^^ 2^V5*2^ 2^^+6*2^ 2^^7*228 00000000

110...1...0
FL_bitmap

Figure 1. TLSF data stmctures example.

TLSF uses word-size bitmaps and processor bit instructions to find a suitable
list in constant time. For example, using the^^ instruction, which returns the
position of the first (least significat) bit set to 1, it is possible to find the smaller
non-empty list that holds blocks bigger or equal than a given size; and the
instruction yZy (returns the position of the most significant bit set to 1) can be
used to compute the [log2(ic)J function. Note that it is not mandatory to have
these advanced bit operations implemented in the processor to achieve constant
time, since it is possible to implement them by software using less than 6 non­
nested conditional blocks (see glibc or Linux implementation).

Given a block of size r > 0, the first and second indexes {fl and si) of
the list that holds blocks of its size range are: fl = [log2 (r)J and si —
[(r - 2-^0/2-^^~^J. For efficiency reasons, the actual function used to cal-

From Model-Driven Design to Resource Management for Distributed Embedded Systems 201

cualte si is {r/s^^~^) — 2^. The fUnction mappingJnsert computes efficiently
/ / and si:

4. TEMPORAL ANALYSIS
In this analysis we compare the performance of TLSF with respect to the

worst-case scenario. To evaluate the temporal cost we have analysed the worst-
case scenario for each allocator and we have measured the cost of all of them
under it. A description of the worst-case scenarios of each allocator can be
found in [4].

The memory heap size was set to 4Mbytes, and the minimum block size is
16bytes. All testing code is available at httpi/Zrtportal.upv.es/rtmalloc/

Table 3. Worst-case (WC) and Bad-case (BC) allocation

Malloc
Processor instructions
Number of cycles

FF
81995

1613263

BF
98385

1587552

BB
1403
3898

DL
721108

3313253

AVL
3116

11739

HF
164

1690

TLSF
197

2448

Table 3 show measurements of a single malloc operation after the worst-
case scenario has been constructed. Every allocator has been tested for each
worst-case scenario. The result of an allocator when tested in its worst-case
scenario is printed in bold face in the tables. The results show that each allo­
cator performs badly in its theoretical worst-case scenarios. This can be easily
seen in table 3(b) (instruction count).

As expected, First-fit and Best-fit perform quite badly under their worst-case
scenarios. The low data locality produces a high cache miss ratio which makes
the temporal response even worse than expected, considering the number of
instructions executed. The number of cycles per instruction (CPI) is high: 19
for First-fit and 16 for Best-fit.

The DLmalloc allocator is a good example of an algorithm designed to op­
timise the average response time, but it has a very long response time in some
cases. DLmalloc tries to reduce the time spent coalescing blocks by delaying
coalescing as long as possible; and when more space is needed coalescing is
done all at once, causing a large overhead on that single request. DLmalloc
has the largest response time of all allocators, and therefore it is not advisable
to use in real-time systems.

Half-fit, TLSF, Binary-buddy and AVL show a reasonably low allocation
cost. Half-fit and TLSF being the ones which show the most uniform response
time, both in number of instructions and time. Half-fit shows the best worst-
case response; only TLSF is 20% slower. Although Half-fit shows a fast,
bounded response time under all tests, it suffers from a considerable theoretical
internal fragmentation.

202 From Model-Driven Design to Resource Management for Distributed Embedded Systems

As explained in the fragmentation section, Half-fit provides a very good
worst-case response time at the expense of wasting memory. Half-fit is supe­
rior in all respects to Binary-buddy. Half-fit is faster than Binary-buddy and
handles memory more efficiently.

5. FRAGMENTATION EVALUATION
In order to analyse the fragmentation incurred by the allocators, we have

defined a periodic task model which includes the memory requirement of each
task. Using this task model, the allocators have been evaluated under different
situations.

Let r = {Ti, ...,Tn} be a periodic task system. Each task Ti e r has the
following temporal parameters Ti = {ci,Pi,di^gi,hi), Where Q is the worst
execution time, pi is the period; di is the deadline, gi is the maximum amount
of memory that a task Ti can request per period; and hi is the longest time than
task can hold a block after its allocation (holding time).

In this model a task Ti can ask for a maximum of ̂ ^ bytes per period which
have to be released no later than hi units of time.

To serve all memory requests, the system provides an area of free memory
(also known as heap) ofH bytes. The symbol r denotes the memory size of an
allocation request, subindexes will be used to identify the activation that made
the request, k is the maximum amount of live memory required by task T^

C = Y17=o ^i ^^^^ ^^ ^^^ maximum amount of memory need by the periodic
task system r.

The simulation model has been focused on studying the behaviour (spatial
response) of the allocators when they are executed in our memory model and
how the use of a holding time (h) and a maximum amount of memory per
period (g) affects each real-time allocator. It is important to note that we have
executed 50,000 u.t. (steps) of simulation in all the simulations of this section,
moreover, each test has been repeated at least 100 times with different seed for
the random generator. That is the reason that we have written up our results as
an average, followed, when required by a standard deviation.

To measure fragmentation we have considered the factor .F, which is calcu­
lated as the point of the maximum memory used by the allocator relative to the
point of the maximum amount of memory used by the load (live memory).

In order to evaluate the fragmentation generated by each allocator three dif­
ferent tests have been designed. First test (Test 1) consist in 100 periodic tasks
with harmonic periods where the allocation size r̂ and the maximum mem­
ory per period gi of each task has been generated using uniform distribution
in the range of (16, 4096) and (8, 2048), respectively. The holding time hi of
each task has also been calculated with an uniform distribution, uniform(4. •
Pi, 12 ' Pi). Second test (Test2) uses 200 periodic tasks with non harmonic

From Model-Driven Design to Resource Management for Distributed Embedded Systems 203

periods, with r̂ = umform{100, 8192), gi = uniform{20Q, 16384), hi =
uniform{4: • p^, 6 • pi), to generate gi, we have used the same constraint as
in Test 1. Third test (Test3) is only conformed by 50 periodic tasks with non
harmonic periods. As in the previous tests, we have used an uniform dis­
tribution to calculate the parameters of the tasks with the next values: r̂ =
wm/orm(1024,10240), '̂i = uniform{20A8, 20480), hi = uniform{pi, 16-
Pi), to generate gi, we have used the same constraint as in Test 1.

Table 4 shows the fragmentation obtained by each allocator under these
randomly-generated tests.

Table 4. Fragmentation obtained by randomly-generated tests

FF BF BB HF TLSF
Testl Avg.

Std.Dev.
Test2 Avg.

Std.Dev.
Tests Avg.

Std.Dev.

100.01
4.96

85.01
4.92

112.51
8.53

4.64

0.61
4.54
0.67
7.01
1.13

46.37
0.74

45.00
0.98

48.63
1.90

82.23
1.06

75.15
1.52

99.10
2.61

4.33
0.55
4.99
0.59
7.69
0.98

The results of these tests show that, overall, TLSF is the allocator that
requires less memory (less fragmentation) closely followed by Best-Fit. As
shown, TLSF behaves better even than Best-Fit in most cases, that can be ex­
plained due that TLSF always rounds-up all petitions to fit them to any existing
list, allowing TLSF to reuse one block with several petitions with a similar size,
independenly of their arrival order. On the other hand, Best-Fit always splits
blocks to fit the requested sizes, making impossible to reuse some blocks when
these blocks have previously been allocated to slightly smaller petitions.

On the other hand we have Binary-Buddy and Half-Fit, both of them with a
fragmentation of up to 99.10% in the case of Half-Fit and 69.59% in Binary-
Buddy. As expected, the high fragmentation caused by Binary-buddy is due
to the excesive size round up (round up to power of two). All wasted memory
of Binary-buddy is caused by internal fragmentation. Half-Fit's fragmentation
was also expected because of its incomplete memory use. As can be seen, both
allocators are quite sensitive request sizes that are not close to power of two,
causing a high fragmentation, internal fragmentation in the case of the Binary-
Buddy and external one in the Half-Fit case.

6. CONCLUSIONS
TLSF is a dynamic storage allocator designed to meet real-time require­

ments. This paper has focused on the evaluation of the TLSF in two axis:
Time and Space.

204 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The temporal cost of the TLSF is constant which is demonstrated in the
experiments. The main conclusion when considering spatial performance is
that TLSF algorithm performs as well as Best-fit, which is one of the allocators
that better handles and reuses memory. On the other hand Half-Fit handles
memory poorly. Half-fit achieves a very fast and constant temporal response
time at the expenses of high wasted memory.

We have also extended the already-existing periodic real-time model to in­
clude the dynamic memory allocation requirement of the tasks. Based on this
model, an experimental framework has been constructed to compare the effi-
ciency, regarding wasted memory, of several dynamic storage allocators. The
allocators used in the study were those that meet the requirements needed to
be used in real-time systems, i.e., allocation and deallocation is performed in
bounded time (constant or logarithmic time).

REFERENCES
[1] M.S. Johnstone and P.R. Wilson. The Memory Fragmentation Problem: Solved? In Proc.

of the Int. Symposium on Memory Management, Vancouver, Canada. ACM Press, 1998.

[2] D. E. Knuth. The Art of Computer Programming, volume 1: Fundamental Algorithms.
Addison-Wesley, Reading, Massachusetts, USA, 1973.

[3] D. Lea. A Memory Allocator. Unix/Mail, 6/96, 1996.

[4] M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: A new dynamic memory allocator
for real-time systems. In 16th Euromicro Conference on Real-Time Systems, pages 79-88,
Catania, Italy, July 2004. IEEE.

[5] Norman R. Nielsen. Dynamic memory allocation in computer simulation. Commun.

^CM, 20(ll):864-873, 1977.

[6] T. Ogasawara. An algorithm with constant execution time for dynamic storage allocation.

2nd Int. Workshop on Real-Time Computing Systems and Applications, page 21, 1995.

[7] J. M. Robson. An estimate of the store size necessary for dynamic storage allocation.
Journal of the Association for Computing Machinery, 18(3):416-423, 1971.

[8] J. M. Robson. Bounds for some functions concerning dynamic storage allocation. Journal
of the Association for Computing Machinery, 21 (3):491-499, 1974.

[9] J. M. Robson. Worst case fragmentation of first fit and best fit storage allocation strate­
gies. Comput. J, 20(3):242-244, 1977.

[10] R. Sedgewick. Algorithms in C. Third Edition. Addison-Wesley, Reading, Massachusetts,
USA, 1998.

[11] J.E. Shore. On the External Storage Fragmentation Produced by First-Fit and Best-Fit
Allocation Strategies. Communications of the ACM, 18(8):433-440, 1975.

[12] C. J. Stephenson. Fast fits: New methods of dynamic storage allocation. Operating
Systems Review, 15(5), October 1983. Also in Proceedings of Ninth Symposium on
Operating Systems Principles, Bretton Woods, New Hampshire, October 1983.

[13] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic Storage Allocation: A
Survey and Critical Review. In H.G. Baker, editor, Proc. of the Int. Workshop on Mem­
ory Management, Kinross, Scotland, UK, Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, 1995. Vol:986, pp:l-116.

RELIABILITY-AWARE POWER MANAGEMENT
OF MULTI-CORE PROCESSORS *

Jan Haase, Markus Damm, Dennis Hauser, Klaus Waldschmidt
J. W. Goethe-Universitt Frankfurt/Main, Technical Computer Sc. Dep.,
Box 11 19 32, D-60054 Frankfurt/Main, Germany
{haaseldammldhauserlwaldschjQti.informatik.uni-frankfurt.de

A b s t r a c t : Long-term reliability of processors is experiencing growing attention
since decreasing feature sizes and increasing power consumption have a
negative influence on the lifespan. The reUabiUty can also be influenced
by Dynamic Power Management (DPM), since it affects the processor's
temperature.

In this paper, it is examined how different DPM-strategies for Multi-
Core processors alter their lifespan. By simulating such a Multi-Core
system using the Self Distributing Virtual Machine (SDVM), thus ex­
ploiting dynamic parallelism, it is shown that its long-term reliability
can be influenced actively with different DPM strategies.

Keywords : Adaptivity; Power Management; Reliability; SDVM.

1. INTRODUCTION
The long-term reliability resp. lifespan of microprocessors hasn't been

much of an issue in the past, since a processor was usually obsolete due
to technological aging (and has been replaced) before it began to fail.
This is about to change for several reasons. First, microprocessors and
multi-core processors are nowadays combined with other components as
complete systems on chip (SoCs) or networks on chip (NoCs). Therefore
the processor cannot be replaced easily. Secondly, smaller feature sizes
and increasing power densities lead to a higher vulnerability to wear-
out based failure mechanisms like electromigration or stress migration.
The international technology roadmap on semiconductors (ITRS) sees a
trend that is threatening "the nearly unlimited lifetime and high level of
reliability that customers have come to expect" [1]. The approaches to
tackle this problem are mostly design-centric. RAMP [2], for example,
is a model to determine lifespan estimates depending on the architecture

* Parts of this work have been supported by the Deutsche Forschungsgemeinschaft (DFG).

Please use the following format when citing this chapter:

Haase, J., Damm, M., Hauser, D., Waldschmidt, K., 2006, in IFIP Intemational Federation for Information Processing,

Volume 225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjo-

harm, Kleinjoharm L., Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 205-214.

206 From Model-Driven Design to Resource Management for Distributed Embedded Systems

of a processor. In a subsequent paper, however, the authors extend
their approach to a so called Dynamic Reliability Management [3], whose
idea is to adjust a processor at runtime (e.g. by voltage scaling) to
meet a certain reliability target, though no algorithms for this cause are
proposed. Apart from this, no further concepts or algorithms for dynamic
reliability management do yet exist.

Our remedy to this problem has two ingredients: Dynamic power man­
agement (DPM) and parallel computing. It has been noted in [4] that
DPM schemes affect a processor's reliability, since it directly affects a
processor's temperature. The essential failure mechanisms like electro-
migration, corrosion, time-dependent dielectric breakdown (TDDB), hot
carrier injection (HCI), surface inversion, and stress migration are more
or less temperature dependent [5]. While DPM tends to lower a pro­
cessor's temperature, which is beneficial, it also leads to the unfavorable
effect of temperature cycling, i.e. frequent heating up and cooling down.

Dynamic power management on multi-core processors, however, has
a lot more possibilities to scale the power consumption of a chip: Aside
from clock frequency reduction (along with dynamic voltage scaling or
adaptive body biasing), whole cores can be switched off without disrupt­
ing the execution of applications. Since the workload and thus DPM in
parallel computing environments also depends on the parallelizability of
an application, it seems to be obvious that this can be done efficiently
only with a dynamic approach.

The SDVM (Self Distributing Virtual Machine) as a middleware for
the dynamic, automatic distribution of code and data over any network of
computing resources seems to be an ideal choice to be run on multi-core
processors in NoCs. In particular, it supports adding and removing of
computing resources at runtime, making the implementation of the afore­
mentioned dynamic power management on multi-core processors possible
in the first place. To permit DPM on an SDVM-driven multi-core proces­
sor, an appropriate power managing mechanism has been implemented,
which scales the performance of the cores according to the current work­
load. The reliability-awareness is then achieved by appropriate power
management policies.

The goal of this paper is to examine the potential of such reliability-
aware power management strategies for multi-core processors by simula­
tion.

2. SDVM - A MIDDLEWARE FOR POWER
OPTIMIZED SOCS

The Self Distributing Virtual Machine (SDVM) [6] was designed to
feature undisturbed parallel computation flow while adding and remov­
ing processing units from computing clusters. These clusters may consist

From Model-Driven Design to Resource Management for Distributed Embedded Systems 207

ID

I I 1 1 1
input parameters
1 1 1 1 1

w
1 1 1 1 1
target addresses

1 1 1 I I
MicroFrame

^ ID

aouote fomb«g<(imj!>le a, double b. int NK

(ioubteT125K2S).

T;0l0] = <b-a>-(f1(a:i-K1(b;v,'2,
r(N>ZS)reti;mO;
(«<i-1;i<=^N•,^•+H

MicroThread

Figure 1. The Miciothread contains a code fragment whereas the Micro/rame con­
tains the parameters needed to execute the corresponding code fragment, as well as
the IDs of other Microframes the results of the execution then should be sent to.

of several processing cores or even full-grown computers, and any con­
nection network topology is supported.

The SDVM is a middleware, implemented as a daemon to be run
on each participating machine or processor, creating a site each. The
sites communicate by sending messages. Applications must be cut to
convenient application fragments, the microthreads^ which can be exe­
cuted on any site. The SDVM follows the dataflow principle, therefore a
microthread is executable if it has received all its needed input param­
eters. These parameters are collected in a special data structure, the
microframe (see Fig. 1). Data, and code, is automatically sent to the
sites where it is needed. Therefore, the SDVM is actually real parallel
processing though it may look like a multi-threaded concept.

The SDVM supports growing and shrinking the cluster at runtime.
When a site is out of work, it requests executable microframe/micro-
thread pairs from other sites automatically. This behavior provides au­
tomatic load balancing, even between processing units with different pro­
cessing speeds, and offers the addition of new sites at runtime. For a de­
tailed description of the scheduling see [6]. If more processing power is
available than needed, the local memory data and possibly microthreads
are pushed out to another site and then the site can be safely shut down.

The SDVM daemon is organized in several modules with different
tasks, which are part of one of three layers:

• The execution layer, where the actual calculationd are performed.
It contains the memory (containing data and microframes), the
code storage (which contains the needed microthreads or requests
them from other sites), the processing manager, the scheduler (see
Fig. 2), and a unit for possible input and output.

• The network layer is the part of the daemon which is related to
sending messages over the network. Messages are encrypted by
a security manager to avoid eavesdropping. The energy manager
which is described in section 4 is located here.

• The maintenance layer is concerned with the organization of the
cluster and the (local) site. Modules are located here which know

208 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Figure 2. The SDVM's scheduling mechanism: The scheduUng manager receives
executable microframes (which have got all their parameters) from the attraction
memory. It then sends a code request to the code manager. When the corresponding
microthread code is locally available (possibly after getting it from another site), the
code manager informs the scheduling manager, which then puts the microframe from
the executable-queue into the ready-queue. The processing manager is always given a
ready microframe. Help requests from other site's scheduling managers are answered
by sending ready or—preferably—executable microframes.

the current composition of the cluster, the physical (IP) addresses
of other sites, data about the local site (e.g. performance data),
and the list of currently running applications and where to find
their microthreads.

The SDVM can be used to simulate a multi-core processor on a com­
puter cluster, but it may even be run on a real multi-core processor,
as well. Due to these features, the SDVM offers the convenient mecha­
nisms to support different power states of processing units in a SoC. The
thereby realized power management is described in the following section.

3. RELIABILITY AND TEMPERATURE
The long-term reliability of a processor is affected by its operating

temperature as well as thermal cycling. The effect of the temperature
can be modeled by the Arrhenius equation, which describes the influ­
ence of the temperature on the rate of chemical reactions. In terms of
MTTF(Mean-Time-To-Failure), we then have [2]

MTTF ~ e ^ (1)

where T is the operating temperature in Kelvin, k is Boltzmann's con­
stant, and Ea is the activation energy in electron volts of the precise
failure mechanism considered. The Arrhenius equation is the basis for
modeling the temperature-dependence of several failure mechanisms. For
instance, failure due to electromigration in interconnects can be modeled
with the equation [5]

MTTFEM ~ Ao(J - JcritY^eVr (2)

From Model-Driven Design to Resource Management for Distributed Embedded Systems 209

where J is the current density, Jcrit is the critical current density for
electromigration and AQ and N are empirically determined constants.
The activation energy Ea then depends on the material used for the
interconnect and varies from 0.5 to 0.9 eV [5]. Other failure mechanisms
like stress migration or hot carrier injection have different activation
energies.

With the knowledge of the physical and structural construction of
a chip, the models for different failure mechanisms can be combined
to get a model (like RAMP [2]) for the processor's reliability. As we
make no assumptions on the internal structure of the processors or the
materials used, it would make no sense to use those detailed models
for our purposes. Instead, we use equation 1 as a generic temperature-
dependant reliability measure for processors. For Ea we use a value of
0.9 eV.

The temperature of a processor depends on its power consumption,
and since dynamic power management lowers the average temperature,
it should contribute to the chip's lifespan. But, as it was noted in [4], the
switching between different power consumption levels leads to thermal
cycling, which can cause various types of failures like lifted bonds, solder
fatigue or even a cracked die [5]. The effect of thermal cycling on the
reliability of a chip can be modeled by the CofRn-Manson relation, which
computes the number of cycles to failure, Nf^ as [5]

Nf = Co' (AT)-^ (3)

where AT is the magnitude of thermal cycling, Co is a material-de­
pendant constant, and q is the empirically determined CofRn-Manson
exponent. This exponent depends on the failure mechanism considered;
we use a value of 1.9, which focuses on the reliability of the package [2].

For our purposes, we use equations 1 and 3 for a comparitive analysis
of different power management strategies to the non-powermanaged case
to get an acceleration factor (i.e. the ratio) for each of the PM-strategies
described below. Therefore, we don't need to choose a value for Co in
equation 3, since it then cancels out.

3.1 RELIABILITY AWARE POWER
MANAGEMENT

In view of the previous section, a power management strategy which is
aware of reliability issues should limit the temperature as well as temper­
ature changes. While the first is a side effect of usual power management
strategies, the latter might involve keeping a processor "powered up",
although this might not be necessary regarding performance, and is def­
initely not desirable regarding power consumption. So obviously, there's
a trade-off between power consumption, performance and reliability.

210 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Try fo (iot^le «i« mtmb«f
|cif«ctrve«@8sby

0U8*i«f<rftJK«»fof
tnanstton te HF-mode,

siTHM^ ^ S 6 , choose a
core for transttion to
LF-mod6/f»»p,
StEEP-mocfe/resp,

avef396
wof{(k>ad>MAX'?

y e s /

cores in SLEEP-
modeorOFF-

mode present ?

yes Ino

core* Jn tF-
[modepmsen!?

J y e s |

amofts those, c t̂oose \

I6fflperat««fw{mn- |
$}tJ*»»»>UM»ode/ 1

jre&p, HF-mede j »m<m9 ^ose. choose core
i vwtn lowest temperatwe fm
trsmsltkm to {.F^mode / ws|>.
SLgEP-mode/ire&p. C>FF-
mode.

(a) fast-upgrade policy (b) smooth-temperature policy

cores In SLEEP-
modeorOFF-

Ni!' no

average wort<-lQa(J
>MAX2 for more than T
sec, ana cores m U^-

mjode with temperature
<TEMP|^ presert ?

among those, choos
core with hi^esft
tertip6rdture fof tran
siaonto U-fnode

among those, chocse

among those, choose
corewnjift^est
temperature (or tran­
sition to LF-mode/
fesp,si£EP-mode/
resp. OFF-mode

(c) low-temperature policy

In the PM-state "HFM" (High Fre­
quency Mode), the core runs with maxi­
mum clock frequency and supply voltage.

The PM-state "LFM" (Low Frequency
Mode) has lower clock frequency and
supply voltage, yielding less performance
and power consumption, but full func­
tionality.

If a core is in the "SLEEP" state, it is
switched off while its state is stored, so it
can resume computation pretty quickly.
The power consumption is reduced.

The PM-state "OFF" is self-
explanatory; the state of the core
is not stored and the power consump­
tion is minimal. Resumption of the
computation takes more time than in
SLEEP-mode.

(d) four PM-states

Figure 3. Power management policies.

In our simulation, we consider two reliability aware dynamic power
management (RADPM) strategies: The low-temperature-policy, which
tries to keep the temperature as low as possible, and the smooth-temper­
ature-policy, whose goal is to restrict thermal cycling. These policies are
compared to the (reliability unaware) fast-upgrade-policy, which tries to
optimize performance and serves as a representative of usual power man­
agement strategies. The simulated computing environment is a homoge­
nous multi-core-processor with four cores. Each core has four different
Power-Management states (see Figure 3(d)).

From Model-Driven Design to Resource Management for Distributed Embedded Systems 211

Figure 3 shows diagrams describing the three PM-pohcies in detail.
Note that the parallehzation of the apphcations is influenced indirectly
by altering the PM-states and thus the performance of the different cores.

4. IMPLEMENTATION AND RESULTS
The aforementioned power management capabilities were integrated

into the SDVM by implementing the so-called energy manager. This
energy manager has a master mode and a slave mode. Only one core's
energy manager is in master mode (the master core), which then controls
the PM-states of all cores. The main task of the energy managers in slave
mode is to listen to the master core and to implement its orders, setting
the local site to the desired PM-state. If a slave energy manager observes
the absence of the master core (due to a crash or shutdown), it starts an
election of a new master core.

The basis for the decision for a new power configuration is the tem­
perature and the mean workload of each core. This information is dis­
tributed through the cluster by the SDVM's cluster manager's message
mechanism.

The test set-up simulates a homogenous multi-core processor with four
cores. To this end, the SDVM runs on a cluster of four identical com­
puters. To each PM-state, a typical power consumption value based on
an Intel Pentium M processor [7] is assigned (see Table 1).

Table 1. PM-states and their power consumption

PM-state I HF HFidZe LF hFidie SLEEP O F F

power consumption I 15 W 10 W 7.5 W 4 W 3 W 0.2 W

The temperature Tj of a core is determined out of its power consump­
tion by the formula

TJ = TA + OAJ ' PDISS (4)

Where TA is the environmental temperature, 9AJ is the thermal resis­
tance of the core, and PDISS is the power consumption. For 6AJ^ a value
oi4.b°C/W isused.

With this set-up, each PM-strategy (and the "no-PM strategy" as a
reference) was simulated using identical workloads composed of multiple
instances of a parallelized example application (Romberg integration [6]).
The results of the simulations of the PM-strategies are given in figures 4,
5, and 6 showing the workload (area chart) and the temperature (black
line) of the four cores for the fast-upgrade, smooth-temperature and low-
temperature policy respectively.

The figures 4, 5, and 6 show a clear difference between the three poli­
cies. The low-temperature policy restricts the maximum temperature to

212 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Site1 Site 2

157 314 471 628 785

runtime (s)
157 314 471 628 785

runtime (s)

Figure 4- Fast-upgrade policy.

164 328 492 656 820 984 0 164 328 492 656 820 984

runtime (s) runtime (s)

Figure 5. Smooth-temperature policy.

61°C, while with the other two pohcies a maximum temperature of 86° C
is obtained. The higher temperature of core 1 in figure 4 is caused by
the fact that the fast-upgrade policy always leaves one core in HF-mode.

Regarding thermal cycling, we see a reduction both in frequency and
magnitude by the smooth-temperature policy compared to the fast-up­
grade policy. Because of the temperature hmitation, the low-temperature
policy causes thermal cycling of lower magnitude, but also with higher
frequencies, expecially when the temperature limit is reached.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 213

Site1 Site 2

2 ^

E ^

1 11 B 9

1 II11 ira rai

fr M1 li i II1 u 11—.—II. ill. 1
165 330 495

Site 3

II ^

f'^^'^-Plll

lj3[
^ --J

llillpii
165 330 495 660 825 990 0 165 330 495 660 825 990

runtime (s) runtime (s)

Figure 6. Low-temperature policy.

Table 2. AFT^ AFTC^ mean runtime, and mean power consumption of all cores

PM-policy

n o P M
fast-upgrade

smooth-temperature
low-temperature

AFT

1
0.12
0.19
0.1

AFTC

1
3.27
1.2

3.28

mean
runtime

32.7s
35.0s
35.9s
64.8s

power
consumption

48.15 W
31.55 W
37.29 W
23.18 W

Using the models described in section 3, we computed for each policy
the acceleration factors AFT a-nd AFTC giving the acceleration of the
time to failure due to temperature and temperature cycling respectively.
Table 2 gives the means of these values over all cores, together with the
mean runtime and the mean power consumption.

The acceleration factors without power management are 1, since this
ca^e is the reference. We see that all PM-strategies are beneficial re­
garding failure due to temperature, especially the low-temperature and
the fast-upgrade policy. The fact that the low temperature policy is not
much better than the fast upgrade policy regarding AFT (despite the
lower maximum temperature) is owed to prolonged computation dura­
tions of the first whereas the latter has shorter computation durations
which leaves more time for cooling down. In view of thermal cycling,
the smooth-temperature policy is the clear winner, while the other two
policies show obvious acceleration.

This clearly shows that the reliability of a multi-core chip can be
influenced actively with PM-strategies. It should be pointed out that
such an approach is only possible using dynamic power management.

214 From Model-Driven Design to Resource Management for Distributed Embedded Systems

which in turn can be implemented only within a system which distributes
the workload dynamically, as the SDVM does. Incorporating reliability
awareness into compile-time power management schemes seems to be
almost infeasible.

5. CONCLUSION
In this paper, we proposed reliability-aware dynamic power manage­

ment (RADPM), which incorporates lifespan-controUing goals. The us­
ability of RADPM to prolong system-lifetime was demontrated by simu­
lating a multi-core chip on the Self Distributing Virtual Machine (SDVM).
The SDVM was augmented for this purpose with the so-called energy
manager, which implements different PM-policies. The basic approach,
however, could be implemented on any multi-core system which dis­
tributes the workload dynamically.

The PM-policies presented are no final solutions for RADPM, but
serve as a proof of concept, that the long-term reliability of a multi-core
chip can actually be altered deliberately with RADPM. Real implemen­
tations for RADPM on mult-icore chips could include, for example, a
"reliability account" for each core or could consider the geometric config­
uration of the cores on the chip to optimize the temperature distribution.

A new insight, however, is that parallelism may not only be used to
improve performance, but to improve reliability as well.

The SDVM's homepage containing its complete source code and doc­
umentation can be found at: h t t p : / / s d v m . t i . c s . u n i - f r a n k f u r t . d e .

REFERENCES
[1] ITRS, "Critical reliability challenges for the international technology roadmap

for semiconductors," 2003, international Sematech Technology Transfer document
03024377A-TR.

[2] J. Srinivasan, S. V. Adve, P. Bose, J. Rivers, and C.-K. Hu, "Ramp: A model
for reliability aware microprocessor design," in IBM Research Report, RC23048
(W0312-122), Dec. 2003.

[3] J. Srinivasan and et al., "The case for lifetime reliability-aware microprocessors,"
in Proc. of the 31st Annual Intl. Symp. on Comp. Architecture, 2004.

[4] K. Mihic, T. Simunic, and G. D. Micheli, "Reliability and power management of
integrated systems," in DSD - Euromicro Symposium on Digital System Design,
2004, pp. 5-11.

[5] JEDEC, "Failure mechanisms and models for semiconductor devices," 2003,
jEDEC Publication JEP122-B, Jedec Solid State Technolgy Association.

[6] J. Haase, F. Eschmann, B. Klauer, and K. Waldschmidt, "The SDVM: A Self
Distributing Virtual Machine," in Organic and Pervasive Computing -ARCS
2004: International Conference on Architecture of Computing Systems, ser. Lec­
ture Notes in Computer Science, vol. 2981. Heidelberg: Springer Verlag, 2004.

[7] Intel, "Pentium M Processor Datasheet," Apr. 2004, http:/ /www.intel .com/
design/mobile/datashts/252612.htm.

EVALUATING ENERGY-AWARE TASK
ALLOCATION STRATEGIES FOR MPSOCS

Fabio Wronski, Eduardo Wenzel Briao, Flavio Rech Wagner
Universidade Federal do Rio Grande do Sul
Instituto de Informdtica

Abstract; Because of current market trends, the evaluation of task allocation strategies in
multiprocessor system-on-chips (MPSoCs) must take into account both
performance and energy consumption. Furthermore, complex interconnection
structures, such as networks-on-chip (NoCs), must be considered. Simulators
for the evaluation of energy consumption of detailed communication patterns
in NoCs are available, as well as performance simulators that consider detailed
task execution in processors. However, in order to evaluate task allocation
strategies in MPSoCs, these two types of simulation models must be
combined, since communication and computation events interfere with each
other. Besides that, this simulator must implement low-power mechanisms,
such as dynamic voltage scaling (DVS), in order to evaluate allocation
algorithms that explore the trade-off between performance and energy. A
cycle-accurate simulation of the processor and communication behaviors,
however, would be too time-consuming, making impossible a fast exploration
of different allocation algorithms. This work presents an MPSoC simulator
that implements the appropriate abstractions for a precise evaluation of the
energy consumption of task allocation algorithms that explore DVS, which is
based on the scheduling of synthetic task graphs. A NoC mesh topology is
considered, due to its simplicity and scalability. Experiments that implement
the allocation of task graphs using different bin-packing heuristics combined
with DVS demonstrate the energy-performance design space that may be
explored by task allocation algorithms.

Keywords: Networks-on-Chip, Task Allocation, Energy Estimation, Simulation,
Multiprocessor SoCs.

Please use the following format when citing this chapter:

Wronski, E, Briao, E.W., Wagner, ER., 2006, in lEIP Intemational Eederation for Information Processing, Volume 225,
Erom Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjo-
harm L., Machado R, Pereira C, Thiagarajan PS., (Boston: Springer), pp. 215-224.

216 From Model-Driven Design to Resource Management for Distributed Embedded Systems

1. INTRODUCTION

Due to technology and market trends, multiprocessor systems-on-chip
(MPSoCs) are being increasingly used as platforms for embedded systems.
These systems require a highly scalable and parallel communication
infrastructure, such as networks-on-chip (NoCs). Especially mesh networks
have been proposed, due to their simplicity. Energy consumption is one of
the critical aspects in the design of embedded systems. Low-power
techniques, such as voltage scaling^ are essential and must also be applied in
the context of NoC-based MPSoCs.

MPSoCs run several parallel tasks, which must be allocated into the
various processors. Allocation algorithms have been usually evaluated in
terms of performance and timing metrics, but now energy consumption also
becomes a very relevant factor.

In this context, several estimation tools have been proposed. Examples are
SimDVS ,̂ for evaluating dynamic voltage scaling (DVS); CAFES ,̂ for
evaluation of communication costs; and Xpipes'*, which is based on the
Orion^ library, for energy estimation. SimDVS simulates only individual
processors, while Xpipes and CAFES simulate only the NoC infrastructure.

For the evaluation of task allocation strategies, however, both the task
scheduling and execution in the processors and the communication traffic
must be simulated together, since they interfere which each other. A cycle-
accurate simulation of the processor and communication behaviors,
however, would be too time-consuming, making impossible a fast
exploration of different allocation algorithms.

This work presents an MPSoC simulator that implements the appropriate
abstractions for a precise evaluation of the energy consumption of task
allocation algorithms that explore DVS, which is based on the scheduling of
synthetic task graphs. The simulator has been implemented in SystemC TLM
(transaction level model), which offers the required abstractions and
synchronization mechanisms.

The processor model allows the application of DVS. For the calculation of
the energy consumed by each synthetic task running in the processor, a
random parameter representing the number of switching gates per cycle has
been included in the model. For a more precise evaluation, task scheduling
costs are also considered. The energy consumed by the NoC in the
communication between tasks allocated to different processors is evaluated
by the Orion library, as in Xpipes.

In the experiments, synthetic task graphs have been allocated using simple
bin-packing heuristics. Results show the benefits of DVS, even when
inefficient allocations are applied and generate too much communication
through the network. The trade-offs between energy and performance may

From Model-Driven Design to Resource Management for Distributed Embedded Systems 217

be evaluated and suggest that reducing the communication is a good
heuristic for minimizing the energy consumption, although the combined use
of DVS brings more significant gains.

The remaining of this paper is organized as follows. Section 2 discusses
related work. The energy and task models are presented in Section 3. The
simulator implementation is discussed in Section 4. Section 5 shows
experimental results, and Section 6 draws main conclusions and discusses
future work.

2. RELATED WORK

As the dynamic power consumption is dominating in CMOS circuits,
several architecture-level simulators have been developed to evaluate and
estimate power consumption caused by the charging and discharging of the
capacitive load on each gate output of the circuit. Two techniques in the
literature are often used: calculation of power consumption by the average
number of gates switching in processor instructions^, and the calculation of
power consumption by the number of gates switching in architectural
components .̂

A simulator for NoC architectures is Xpipes"̂ . It was developed in
SystemC and consists of a customizable library of network components,
which can be configured and instantiated by the developer. The calculation
of energy is achieved using the Orion^ library. This library has low-level
capacitance models of NoC router components that allow a more accurate
estimation of dynamic power consumption. These components can be
buffers, crossbars, and arbiters.

SimDVS^ is a unified simulation environment for evaluating dynamic
voltage scaling (DVS) algorithms, which has task graphs as input. Some
models of state-of-the-art processors are already embedded in the
environment, but other models can be developed and included by the users.
However, SimDVS supports only single processors, not including models for
communication architectures like NoCs.

There are several heuristic approaches for task allocation in NoCs that try
to minimize energy consumption or optimize other metrics, under energy
constraints. Hu and Marculescu ,̂ for instance, present an approach for
applying a static task allocation strategy in NoC architectures under real­
time constraints, aiming at energy reduction. The application is modeled by a
graph based on a Communication Weight Model (CWM), where arc weights
represent the amount of bits exchanged between vertexes. Their approach,
however, does not consider the exact simulation of tasks running in the

218 From Model-Driven Design to Resource Management for Distributed Embedded Systems

processors. Besides, our work aims at the evaluation of different allocation
approaches and not at the implementation of a single approach.

The CAFES^ simulator is a framework aiming at the evaluation of
several communication models that may be used for the analysis of energy
consumption in NoC architectures. However, CAFES does not consider
scheduling costs.

In this work, scheduling costs are considered. Besides, our simulator uses
the same Orion library for power estimation as Xpipes, but we consider only
the mesh architecture with some configurable parameters, instead of a
broader library. We rely on a processor model that allows application
scheduling, using a task graph model approach similar to SimDVS, while
Xpipes uses cycle accurate models for simulating the cores. This Xpipes
approach makes high-level energy estimation from task graphs unfeasible.

3. ENERGY AND TASK MODELS

Our energy model considers only dynamic energy consumption, which is
still dominant in current technologies, although static power is becoming
important. A static energy model is being currently implemented.

In a same time interval, two different task allocations generate different
gate switching patterns in the processors and thus different dynamic energy
consumptions. In CMOS circuits, the dynamic energy consumption is
expressed as:

dd E--V.
where C is a constant that represents the gate capacitance in a given
technology; (3f is a number of gate switchings; and V^^ is the circuit supply
voltage. If voltage scaling is applied, this parameter is not fixed.

In a processor, each instruction generates a different value for a, which
depends on the previous processor state. In a system composed by n tasks
A: e A ,̂ the total a is expressed as:

^total :£jt;̂ '-

where k"''""' is the total number of switchings of task A:..
Variable V^ presents a quadratic factor, and it is thus natural that the

minimization of supply voltage leads to important energy savings. But
reducing the voltage causes the frequency operation to be reduced too,
following the equation below :̂

norm ~ r^\ r^lJ norm

From Model-Driven Design to Resource Management for Distributed Embedded Systems 219

where J3^ = V^^ IV^^ and V^^^ is the threshold vohage, /?2 = 1 - /?i, and V^^^
and f^^^ are the voltage and the frequency, both normalized regarding V^^
and f^^, For a 100 nm technology, we have /?i = 0.3.

A metric for power consumption evaluation in NoCs is Bit Energy^ .̂ It
defines the power consumed when a data bit is transferred between two
routers. This way, we define the energy spent by the transfer of a single bit
from node p^ to node Pj as:

where 77 is the number of routers in the way from p. to Pj, E^^^ is the
energy spent in the crossbar inside one router, E^ is the energy spent in
communication links, and E^ is the energy spent in the buffers. We don't
consider the energy E^^ spent in the links, since energy consumption in the
routers is much larger.

The Orion^ library implements an energy estimator for the crossbar and
the buffers inside the router. Buffers are usually responsible for 90% of the
energy consumption in the router.

The task and communication architecture models used in this work and
presented below are based on Hu and Marculescu .̂

Each application is a directed acyclic graph T - G(K^ A), where each
node k. eK is a periodic task and each arc a^, ^ ^ is a dependency or
flow of messages between tasks k^ and kj. The arc weight a^j represents
the amount of bits to be transferred between the tasks.

Each task k. G ^ is a tuple {C,T,D,a}, where C is the worst case
execution, T is the task period, D is the task deadline, and a is the
average number of gate switchings per cycle of the task in the core.

The communication architecture is represented by a directed graph
G(P,R), where each node p^ G P represents a core and each directed arc
r^j e i? is a path between p^ and Pj. A core Pj eP has its own operation
frequency /̂ f, cycle period pf and voltage supply /?f. In our work, the
communication architecture graph represents a mesh network.

4. SIMULATOR

The simulator has been implemented in SystemC, due to its support to the
development and simulation of hardware models with the appropriate
abstractions for our purposes.

The model of the routers has been implemented at the RT level and is
thus very precise in terms of timing and energy. The core model, in turn, in
fact considers only the task scheduler, which simulates the states through
which the processor goes during the execution of the synthetic tasks. This
simplification makes possible a high-level and fast evaluation of the energy

220 From Model-Driven Design to Resource Management for Distributed Embedded Systems

consumption, without requiring the development and execution of real
applications. As a drawback, accuracy is lost, since the model has a
statistical nature.

The simulator uses the RaSoC^̂ routers, designed for the synthesis of low
power and low area NoC-based embedded systems in FPGAs. The RaSoC
architecture utilizes wormhole packet switching, XY routing algorithm, and
handshake control flow. Its energy evaluation was implemented with the
Orion library. Each router has 5 bi-directional ports with input buffer size of
4 phits. The phit size is 4 bytes.

The task scheduler in each core is based on the implementation of a
priority-based scheduling kernel. The scheduling policy implements an EDF
(earliest deadline first) algorithm. For implementing the task dependencies, a
list-scheduling algorithm was combined with EDF. Additionally, the AVR̂ ^
(average rate) algorithm was implemented for DVS.

Each task is characterized with respective WCETs and gate switchings
per cycles. With these data, tasks are scheduled and their energy
consumptions are evaluated. Since the worst case execution time rarely
occurs when the task is executed, there is a slack in the scheduling. To
simulate a more realistic behaviour, a parameter called slack is used to
define a range between the best and worst case execution times. By default,
it has a value of 30%, which means that the minimum value of the best case
execution time may represent 70% of the WCET. For each task execution,
the simulator randomly chooses a value for its current execution time, within
the allowable range. In addition, the scheduler time and costs are also
considered, including the cost of an "idle task", which runs when no other
task is available.

5. EXPERIMENTS

For the experiments, synthetic task graphs generated by the TGFF tool̂ ^
has been used. The scheduler costs are obtained by simulation, with the
CACO-PS^ tool, of an API RTSĴ ^ (Real-Time Specification for Java) for the
FemtoJava^^ processor. The technology selected for the experiments is 100
nm. The NoC is a 3 x 3 mesh running at 200 MHz.

The task graphs have been allocated using the Worst-Fit and Best-Fit bin-
packing heuristics^ .̂ In bin-packing, the objective is to pack a set of items
with given sizes into bins. Each bin has a fixed capacity, and items whose
total size exceeds this capacity cannot be assigned to the bin. The goal is to
minimize the number of bins used. In an analogous way, items may
represent tasks, or entire task graphs, while bins represent processors with a
given processing capacity. The size of each item corresponds to the

From Model-Driven Design to Resource Management for Distributed Embedded Systems 221

processor utilization by the task. The Best-Fit (BF) strategy places a new
object in the bin whose remaining space will be the smallest one. The Worst-
Fit (WF) strategy, in turn, places an object in the bin whose remaining space
will be the largest one. As a consequence, WF generates a task distribution
with load balancing, while BF generates a distribution that is concentrated in
some bins.

Ten task graphs were generated with processor utilizations between 5 and
15% each, resulting in an overall utilization of 95% of one core running at
600 MHz speed and 3 V supply voltage. Each task has a WCET of 1 ms in
average. We call this the allocation A (all task graphs running in a single
processor).

In the following allocations, the task graphs have been distributed over the
NoC. In allocations B and C, each task graph has been entirely allocated in a
single processor. Allocation B used BF, while allocation C used WF. We call
these strategies BF-TG and WF-TG, respectively. A final allocation D also
used WF, but considering individual tasks within each graph (and thus using
a much finer grain for the allocation).

Table 1. Allocations and utilizations

Core

0
1
2

0
%
96
-
-

BF-TG
1
%
93
-
-

(B)
2
%
96
-
-

%
45
33
24

0
MHz

90
66
45

WF-TG (C)

%
39
30
20

1
MHz
78
60
40

%
36
27
30

2
MHz

72
54
60

WF-TK (D)
0 1 2
% % %
33 33 28
33 29 34
29 29% 34

Table 1 shows the processor utilizations resulting from these allocations.
The table represents the 3x3 matrix of processors in the NoC. With BF-TG
(allocation B), only 3 cores were used, with almost 100 % utilization each,
while with WF-TG (allocation C) the load has been distributed among all 9
processors. With WF-TK (allocation D), we could achieve a more evenly
distributed load than in allocation C, since allocation items (individual tasks)
are much smaller. However, allocation D introduces inter-processor
communication, since tasks from a single task graph have been distributed
over different processors, while allocations B and C have only intra-
processor communication.

In the first experiment, allocations A, B, and C are simulated and
compared. Allocation A maps all task graphs into a single core running at
600 MHz, while allocation B divides the graphs between 3 cores, which may
run now at 200 MHz each. Allocation C has been simulated twice. In the
first simulation, a single frequency of 90 MHz is used for all 9 cores. Since
Table 1 shows that there is a maximum utilization of 45% for a processor in
allocation C, the frequency can be reduced to 45% of the original 200 MHz.
In the second simulation of allocation C, the frequencies of the processors

222 From Model-Driven Design to Resource Management for Distributed Embedded Systems

have been individually adjusted from the original 200 MHz, proportionally
to the utilizations in Table 1. These individual frequencies are also shown in
Table 1 and vary from 40 MHz to 90 MHz.

Table 2 summarizes the results for energy consumption of the first
experiment, when task graphs run during 1 second. Results show the impact
of frequency operation reduction on system energy consumption. When the
frequency is reduced by a factor of 3 (from 600 to 200 MHz), even using 3
cores instead of one (allocation B), the consumption is reduced to 235 mJ
(28 % from the energy in allocation A). When the task graphs are divided
among 9 cores (first simulation of allocation C), all of them running at 90
MHz, the consumption is reduced to 137 mJ (16% of the value in A). When
the frequency of each processor is adjusted to the load it receives, the energy
consumption is reduced again to 111 mJ (13% of the value in A). This shows
that, when there is a bad load balancing between the processors, it is
worthwhile to apply different supply voltages.

Table 2. Expe
Tasks

Idle
Scheduling
Application

Total

riment 1 results in
(A) on 1 core at

600 MHz
0.00
3.38

842.62
846.00

mJ.
(B) on 3 cores at

200 MHz (A)
0.47
0.94

233.59
235.00

(C) on 9 cores at
90 MHz

4.93
0.27

131.79
137.00

(C)on
different

9 cores at
frequencies

0.44
0.22

110.46
111.12

As expected, allocation C is the best in this first experiment. These results
confirm the experiment of Aydin and Yang^ ,̂ which shows that a balanced
allocation is more energy efficient than a concentrated one, when a voltage
scaling approach is applied.

The energy consumption of the scheduler remains with a very low value,
due to the relationships between tasks lengths and scheduler length, since the
scheduler is called once per task in average. However, this depends on
applications and tasks, as well as on the scheduler implementation.

In the second experiment, we compare allocations C (WF-TG) and D
(WF-TK), both considering all processors running at 200 MHz. Table 3
shows the average time spent by each processor in different activities
(communicating, scheduling, executing the application, or idle). It must be
remembered that allocation C concentrates each task graph in a single
processor, so that there is no communication between processors. It can be
noticed that communication in allocation D consumed 24.45% of the
execution time, around 35% of the idle time in allocation C. With an even
smaller slack, task deadlines could be missed due to the communication
overhead. Scheduling time in allocation D is three times larger than in C,
because in this case processors also receive interference from tasks in other
processors, such that the scheduler must execute more often.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 223

Table 3. Allocations C and D at 200 MHz.

Task

Communication
Idle

Scheduling
Application

Routers
Total

Time

-

Allocation C
(%)

0.00
66.88
0.08

33.04

100.00

Energy (mJ)
0.00

44.13
0.48

239.38
0.00

283.99

Time

-

Allocation D
(%)

24.45
36.30
0.26

38.98

100.00

Energy (mJ)
164.35
24.65

1.67
289.25

10.09
490.01

The energy consumption increased around 75%, from 284 mJ in
allocation C to 490 mJ in D. This is only due to the task allocation strategy
and the communication overhead it imposes, since processors have the same
frequency. This shows that, considering the inter-processor communication
overhead, a good load balancing is not enough for energy minimization.

The energy consumed by the routers is relatively small and does not
represent a significant part in this communication overhead.

Even with its communication overhead, when allocation D is compared
to the original allocation A (a single processor running all applications and
consuming 870 mJ), there is still a reduction of almost 50% in energy
consumption. This demonstrates the necessity of mechanisms that combine
task allocation strategies that reduce communication overhead with the
voltage scaling technique.

6. CONCLUSIONS AND FUTURE WORK

This work introduced a novel model for the simulation of synthetic task
graphs that allows the evaluation and comparison of performance and energy
consumption of various task allocation strategies in NoC-based systems.
This model considers voltage scaling, which must be taken into account by
more energy-efficient allocation algorithms, and presents the right
abstractions to consider scheduling, communication, and computation costs.

As demonstrated by experiments, two different allocations that have
similar timing performances may result in very distinct energy
consumptions, because of the communication overhead that may be imposed
by the task distribution. It has been also shown that this overhead is mainly
imposed to the cores' execution, and not by the NoC itself. However, voltage
scaling may considerably mitigate this cost.

Current work includes the development of a static energy consumption
model, which will make possible a more precise evaluation of the impact of
different task allocation strategies.

This work is a first step in a project aiming at the development and
evaluation of on-line task allocation strategies for energy minimization in a

224 From Model-Driven Design to Resource Management for Distributed Embedded Systems

dynamic load environment. The allocation algorithms that have been
evaluated are very simple and could be applied on-line, without significant
overhead, although they may be still improved. In this context, DVS also
needs to be integrated to the scheduler.

REFERENCES

[I] M. Weiser, et al. Scheduling for Reduced CPU Energy, in: Symph. on OS Design and
Imp., Monterey CA, 1994, pp. 13-23.

[2] D. Shin, et al. SimDVS: An Integrated Simulation Environment for Performance
Evaluation of Dynamic Voltage Scaling Algorithms, in: Workshop on Power-Aware
Computer Systems, Springer, Cambridge, MA, 2002, pp. 141-156.

[3] C. Marcon, et al. Modeling the Traffic Effect for the Application Cores Mapping
Problem onto NoCs. in: VLSI-SoC, Perth, Australia, 2005, pp.

[4] D. Bertozzi and L. Benini, Xpipes: A Network-on-chip Architecture for Gigascale
Systems-on-Chip. IEEE Circuits and Systems Magazine, 4(2): 18-31 (2004).

[5] H. Wang. Orion: A power-performance simulator for interconnection networks, in:
ACM MICRO, Istanbul, Turkey, 2002, pp. 294-305.

[6] V. Tiwari, et al.. Power analysis of embedded software: a first step towards software
power minimization. IEEE Trans, on VLSI Systems, 2(4): 437-445 (1994).

[7] A. C. S. Beck, et al. CACO-PS: A General Purpose Cycle-Accurate Configurable
Power Simulator, in: SBCCI, Washington, DC, USA, 2003, pp. 349.

[8] J. Hu and R. Marculescu. Energy-Aware Communication and Task Scheduling for
Network-on-Chip Architectures under Real-Time Constraints, in: DATE, Washington,
DC, USA, 2004, pp. 10234.

[9] N. S. Kim, et al.. Leakage Current: Moore's Law Meets Static Power. Computer,
36(12): 68-75 (2003).

[10] T. T. Ye, et al. Analysis of Power Consumption on Switch Fabrics in Network Routers.
in: DAC, New Orleans, 2002, pp. 524-529.

[II] C. A. Zeferino, et al. RASoC: A Router Soft-Core for Networks-on-Chip. in: DATE,
2004, pp. 198-205.

[12] F. Yao, et al. A scheduling model for reduced CPU energy, in: FOCS, Washington,
DC, USA, 1995, pp. 374.

[13] R. P. Dick, et al. TGFF: task graphs for free, in: CODES/CASHE, Washington, USA,
1998, pp. 97-101.

[14] M. A. Wehrmeister, et al. Optimizing Real-Time Embedded Systems Development
Using a RTSJ-Based API. in: OTM Workshops, 2004, pp. 292-302.

[15] S. A. Ito, et al. Making Java Work for Microcontroller Applications, in: IEEE Design &
Test, Los Alamitos, USA, 2001, pp. 100-110.

[16] D. S. Johnson, Near-optimal bin packing algorithms (Cambridge, Mass., 1973).
[17] H. Ay din and Q. Yang. Energy-Aware Partitioning for Multiprocessor Real-Time

Systems, in: IPDPS, 2003, pp. 113.

INTEGRATION OF ENERGY REDUCTION INTO
HIGH-LEVEL SYNTHESIS BY PARTITIONING*

Achim Rettberg and Franz Rammig
Paderbom University
Paderborriy Germany
achim(a)c-lab.de, franz@upb.de

Abstract: The optimization of power consumption at a very high design level is a critical
step towards a power-efficient digital system design. The increasing usage of
battery-powered and often wireless portable systems is driving the demand for
IC and SoC devices consuming the smallest possible amount of energy. The aim
of the method presented in this paper is to integrate low power methods within
the scheduling process of the High-Level Synthesis by defining partitions. Start­
ing from an ControUed-Data-Flow-Graph (CDFG) the proposed method uses
standard scheduling techniques and path analysis on the graph to identify regions
that can be combined to partitions. Each partition has a controlled activation or
deactivation mechanism. That means, the partition can be switched off when it
is not used. As an example design, a part of the MPEG-2 algorithm is used.

1. INTRODUCTION
The optimization of power consumption at a very high design level is a crit­

ical step towards a power-efficient digital system design. Furthermore creating
optimal low power designs involves making tradeoffs such as timing-versus-
power and area-versus-power at different stages of the design flow. Successful
power-sensitive designs require engineers, having the ability to accurately and
efficiently perform tradeoffs. In order to achieve this, engineers require access
to appropriated low power analysis and optimization engines, which need to be
integrated with and applied throughout the entire system design flow (see [7]).

We can distinguish between dynamic and static power dissipation. Dynamic
power dissipation occurs in logic gates that are in the process of switching
from one state to another. During the switching activity of the gates, any inter­
nal capacitance associated with the gates transistors has to be charged, thereby

*This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG) in SPP Verfahren zur Ver-
lustarmen Informationsverarbeitung (VIVA), 322 1076

Please use the following format when citing this chapter:

Rettberg, A., Rammig, FJ., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Mod­

el-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L.,

Machado R , Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 225-234.

226 From Model-Driven Design to Resource Management for Distributed Embedded Systems

consuming energy. Static power consumption, however, is associated with the
logic gates when they are inactive. In this case, these gates should theoreti­
cally not be consuming any power, but in reality, there is always some amount
of leakage current passing through the transistors. That means those gates do
consume a certain amount of power. In order to integrate optimization of power
consumption at high design level it is necessary to modify the High-Level Syn­
thesis (HLS) process of the system design flow.

2. RELATED WORK
For a low power behavioral synthesis system, automatic techniques must be

developed to minimize the switching activity on globally shared busses and
register files, to select low power modules while satisfying the timing con­
straints, and to schedule operations to minimize the switching activity from
one cycle to another cycle. In the past, several algorithms for HLS have been
developed. The major objective for all these algorithms was the minimization
of the used resources to reduce chip area and the optimization of the system
delay time [4]. An interesting approach for the integration of low power tech­
niques into HLS is presented [10]. It focuses on the minimization of resources
per cycle whereby energy consumption is reduced. This could be achieved
by mapping the same operation types to a real resource. Most of the HLS
perform scheduling of the Control and Data Flow Graph (CDFG) before the
allocation of the registers and modules, like functional units, and synthesis of
the interconnects (see [6] and [13]). Additionally, timing information for the
allocation and assignment of various operations are provided. In other sys­
tems the resource allocation and binding, before scheduling, is performed to
provide more precisely the timing information during the scheduling (see [5]).
The work presented in [5] assumes that the scheduling of the CDFG has been
done and performs the register allocation before the allocation of modules and
interconnection. The work presented in [2] and [8] demonstrates that deci­
sions at the behavioral level have a significant impact on power consumption
of the final system implementation. The authors of [3] present a new technique
for power optimization of control-dominated designs. This approach is an im­
provement of the existing techniques described in [9]. For control-dominated
designs that typically consist of lots of sequential processes, scheduling is the
most critical step during HLS. In our approach, we built intelligent partitions
during scheduling. The developed approach is applicable to different target
architectures. Especially, self-controlled architectures like the one presented
in [12] are addressed. A self-controlled architecture has no global control unit;
only distributed small control parts are present in the design. The data is as­
sembled with so-called control information to direct the data content to the
operation nodes by intelligent routers. Furthermore, our approach proposes

From Model-Driven Design to Resource Management for Distributed Embedded Systems 227

mapping possibilities, to reduce resources with the effect of reducing leakage
current.

3, POWER SCHEDULER
The aim of this work is to integrate low power methods within the schedul­

ing process of the High-Level Synthesis (HLS). We call the developed system
Power Scheduler (see [11]). From the input (CDFG), a scheduled CDFG is
generated that supports low power saving. The idea is to have a partitioned
graph, whereby each partition can be activated or deactivated by a guard. A
guard could be implemented by using gated clocks, guarded evaluation or
power down in our approach.
Following, a short overview of the developed method is given in details by
specifying the different scheduling phases, but before the cost function for the
Power Scheduler is described.

3.1 COST FUNCTION
As already known from the dynamic power dissipation is the product from

the overall capacity is the square of the supply voltages and the frequency
(see [7]).

The power of a node, for example a gate, is given by the following Equation:
Pnode = 5 * CL * V^^ * fdk, whereas CL is the capacity of the node and fdk
the clock frequency. When we multiply with the switching activity a^ode of
the node we get the dynamic power dissipation of a single node: Pdyn.node =
^ * CL * V];^ * anode * fdk-

The switching activity is hard to predict during the HLS process, therefore,
we take only the worst case into account anode = 1- Now we can calculate
the total power dissipation of a design by summing up the dynamic power
dissipation of all nodes. This is given in the following Equation: Pdyn.tot =
YA=I Pdyn.h whereas n is the total number of nodes in the design. Later on,
we will see that for our approach Pdyn.node is used to calculate the dynamic
power dissipation for a partition. A partition consists of a number of nodes.
Therefore, the dynamic power dissipation of a partition p is given by: Pdyn,p =
Yl^i Pdyjy whereas m are the number of nodes inside the partition. It is
necessary to add the costs for the components (partition control unit) needed
to activate or deactivate the partition. This is illustrated in Figure 1. The left
side of Figure 1 shows an un-partitioned design. In opposite to that, the right
side shows how a control unit, a so-called guard, which activates or deactivates
the execution of this design part, controls Partition 1.

The partition control unit is always active in the part of the circuit where the
partition is embedded in opposite to the controlled partition. The power cost

228 From Model-Driven Design to Resource Management for Distributed Embedded Systems

2250

2000-

1750

•3. 1500

5 1250

I 1000
= 750

500

250

^?j/ri
mk^

.^]i^^' £^ ^ ^ ^̂ lf=T

iyi)""H Miinhfmimh iMvi^v^^uiTwh m ^lliijf/.lriimii m}fii{

§^
^:>•-i^4'^^:l^•^^--y^j1f--M^^

0 75 80 85

Delay Partition 1

Figure 1. Partition with control unit. Figure 2. Energy reduction for example
from Figure 1.

for a partition control unit (guard) of partition p is called Pgc,p' The power
costs for Pgc^p can be calculated by Pdyn.tot-

Now we can replace the number of nodes n in Equation for Pdyn,tot by the
number of partitions p of the entire design to calculate the total dynamic power
dissipation of the design and adding the additional partitioning costs.

•^design — / ^ -^dyn^p "i -^gc^p- (1)

Let us look at the example in Figure 1. What does equation 1 mean for the
example? Let the dynamic power consumption of the entire design without
partitioning Pexam = 20/jtW/MHz, Let Pdyn.Parti = 8fiW/MHz, Thus
the un-partitioned part has a dynamic power consumption of Pdyn,un-part =
12jiW/MHz, In Equation 1 the un-partitioned part of the design is also con­
sidered as a partition (Pdyn,un-part)^ but without low power control. The power
cost for the partition control is PgcParti — 1/JLW/MHZ. Here we assume the
partition control consists of a gated clock.

i n a t means , lexam' ^^ 2^j=zl ^dyn^p\ ^gc^p ^^ -^dynjUn—part i \-^dyn,Parti'T'

Pgc,p) = 12 + (8 + l)ixW/MHz - 12 4- ̂ ixW/MHz = 2l^W/MHz, but
Pexam' = 2liiW/MHz is greater than Pexam = 20/J.W/MHZ, Within this
calculation we have not considered the run-time. Therefore it is necessary to
include the run-time of the system into the Equation.

By taking the run-time of the system into account, we will calculate the
delay d of entire design and of each partition. In literature, it is well known to
evaluate different implementations of a design w.r.t low power, by calculating
the power-delay product. Equation 2 shows the power-delay product for a
partition k.

PDk = {Pdyn,k * 4) + {Pgc,k * dl), (2)

From Model-Driven Design to Resource Management for Distributed Embedded Systems 229

whereas dk is the delay of the partition and di is the delay of the part of
the circuit where partition k is embedded. Let us go back to the example.
When we assume that the entire system has a run-time of 100 cycles than the
delay for Pdyn,un-part is dun-part = 100 cyclcs. That means, the total energy
for the design without low power reduction is 20fiW/MHz * 100 cylces —
2000/2Ws = 2000/i J. The delay for the low power control of the partition
is also 100 cycles. Let us further assume that the partition is only 50 cycles
active at run-time, the delay of dparti = 50 cycles By including all this values
into Equation 2 we get: PDpartl = Pdyn.Partl * dpartl H- Pgc,p * dgc =
8fj.W/MHz * 50cycles + IfxW/MHz * lOOcycles = AOOfiWs + lOO^Ws =
500/JLWS = 500fi J and for the un-partitioned part of the system PDun-part =
Pdyn,Parti * lOOcyclcs = 12fxW/MHz^l00cylces = UOO/JWS = 1200/iJ.

The power-delay product of the entire design can now be calculated by sum­
ming up the power-delay product of all partitions (see Equation 3).

I

TPD = Y,PDa:. (3)
x=l

whereas I is the number of design partitions. For our example we get:
TPD = PDParti-^PDun-part = 5 0 0 + 1 2 0 0 / i W s = UOOJJLWS = 1700/iJ.

Remembering that, for the design without our low power reduction method
we need 2000/xJ, we got an energy reduction of 300/iJ (15 %). Obviously,
the energy reduction depends on the run-time of the system (see Figure 2). If
dpartitioni is Icss than 885 we reduce the energy, for this case.

Generally a HLS system tries to minimize the delay D and area A of a
design. With the TotalPowerDelay function we have another constraint power
P minimized by a HLS system. Therefore, we use Equation 3 as a cost function
for our approach.

3.2 SCHEDULING FLOW
The CDFG consists of two different graphs, a so called Control-Flow-Graph

(CFG) and a Data-Flow-Graph (DFG). Generally, the design of digital systems
bases on a high-level specification, which is transformed into algorithmic de­
scriptions, like C or behavioral VHDL source code. The HLS transforms the
behavioral descriptions into structural ones. During the HLS the algorithmic
description (CDFG) is transformed into internal formats. The CFG represents
the controller for the DFG which is itself the data-path of the given algorithm.
The Power Scheduler starts with a CDFG, which describes the design, with
each node corresponding to operations and control steps and each directed edge
representing data dependency and control order.
The first step of the Power Scheduler is to read the CDFG that consists of a

230 From Model-Driven Design to Resource Management for Distributed Embedded Systems

CFG and DFG, and store the graphs into the internal data format. The second
step of the Power Scheduler is to use As-Soon-As-Possible (ASAP) and As-
Late-As-Possible (ALAP) scheduling on the DFG. ASAP scheduling means
that all operations are scheduled as soon as they can processed in the sense
of time. Vice versa ALAP means that all operations are scheduled as late as
possible. If both scheduling methods are processed it is possible to calculate
the mobility of each operation within the DFG. Mobility means the degree of
freedom the operation has within the scheduling.
The next important step, the third one of the Power Scheduler, is to calculate
the pathes within the DFG. This step consists of three different phases. The
first phase examines all disjoint paths of the DFG. Eventually some of these
paths are not active during the entire run-time of the system. In the second
phase fork and join nodes of the DFG will be examined. The different paths
between the fork and join nodes are the basis for the partitioning construc­
tion, because they are alternatively active during the run-time. In the third
phase control nodes of the CFG are examined. That means, if it is applicable
to schedule them as soon as possible, different paths can be identified which
are alternatively active during run-time. The examined paths are the basis of
the partitioning and they could be, again combined to partitions. All paths are
nodes in a so called compatibility graph.
The fourth step of the Power Scheduler is to build the partitions by combining
the paths that are calculated in the second step To do this it is necessary to
examine if there are so-called conflicts between the paths. Two paths are in
conflict to each other if they are, for example, both depending from the same
fork, join or control node. That means, paths with a conflict have no edge be­
tween each other in the compatibility graph. Then a clique search algorithm [1]
is used to find cliques in the compatibility graph. Finally, a clique builds a par­
tition than can be activated or deactivated during the run-time to save energy.
From the perspective of the reader of this paper, two questions are opened.
Why is it important to build partitions to save energy instead of controlling
each single node? Why not use each calculated path as a partition? The an­
swer to both questions is the same. The insertion of activation or deactivation
mechanisms into a circuit has also power costs in the data-path as well as in the
controller. To reduce these additional costs it is necessary to combine the paths
to partitions. Nevertheless, it could be possible that after the clique approach a
partition contains only one path.

3.3 PATHS ANALYSIS
As described before the path analysis consist of three different phases. In

the first one we examine disjoint pathes, followed by path analysis between

From Model-Driven Design to Resource Management for Distributed Embedded Systems 231

Figure 3. Paths between fork-join nodes. Figure 4. Control nodes path analysis.

fork and join nodes. In the third phase the scheduling of control nodes are
important. A path is defined as follows:

D E F I N I T I O N 3.1 (P A T H) Apathpy^^y^, with i e IN, is a connection from a
source Vg to a destination node Ve to transport a data-word within the DFG
G — (V^, E^, Whereas Vg, v^ G V .̂ All nodes Vi eVd between Vg and Ve and
all nodes that are necessary to provide the correct operation of the path are
objects: Pvs,ve,i = {'^j^ * * * ? ^n} ^ith j , n G IN and index i E IN.

The index is necessary if different alternatives paths between the correspond­
ing nodes exist. Furthermore, we need the time of each path py^^y^, which is
defined as follows:

DEFINITION 3.2 (P A T H - T I M E) Let time(py^^y^^i) the time necessary to send
one data-word from the start node Vg to the end node Ve ofpy^^y^^i.

The path identification can be realized by Depth-First-Search (DPS), starting
from source to the destination node and to the primary inputs or outputs that
are necessary to realize the path.
To find all disjoint paths we modify the DFG slightly by including a virtual
source and destination node. The source node is connected by edges with the
primary inputs and constants of the DFG, because these are the only elements
from where data goes into the circuit. In similarity, all primary outputs are
connected by edges to the destination node, because output data goes only via
the primary outputs to the environment where the circuit is embedded in.
For pathes between fork and join nodes, we start with the analysis from the
fork towards the join node and add all visited nodes to the path. If we found
nodes on the path with additional inputs or outputs we follow them to their
primary inputs or outputs and add all visited nodes to the path. If we exam­
ine an already visited node, we stop with the determination for the path. For
the example given in Figure 3 the following pathes for Pfark,join,i (with i =

232 From Model-Driven Design to Resource Management for Distributed Embedded Systems

1 • • • 3) can be identified: PforkJoin,l = {*cm2, + , + } , PfarkJoin,2 = {*cmo}
and Pf(yrk,join,3 = {*cmi,+,*cj. By assuming that operation * needs two
and operation + one timestep the paths times are: tzme(p/or/c,jom,i) = 4,
time{pfcyrkjoin,2) = 2 and time{pf^k,join,3) = 5.

After the analysis of the fork and join nodes control nodes, are examined.
They are scheduled as soon as possible to allow the identification of alterna­
tive paths (see also [3] and [9]). Once more, those paths are the basis of the
partitioning and they are combined to partitions. Figure 4 gives an example for
the path analysis for control nodes. The node contr controls the join node (in
this case join corresponds to a multiplexer) and selects which of the inputs are
directed to the output. If we can schedule and execute contr before all other
nodes an additional timestep is needed, but we are able to activate only the
used input path of the multiplexer. Therefore, we get three paths for our SLnsAy-
SIS: p^Join,1 — \~^j~^J^P*cmO,join,l = {"^cmOj^^^P^cmiJoin,! — *cml5*CsJ*
The path time for these paths are: time{p^join,i) = 2, time(p*^^o jom,i) = 2
and time{p^^^^join,i) = 4.

Obviously, depending on the characteristics and timing requirements of the
design it may be not possible to schedule a control node by extending the
run-time. Furthermore, all independent graphs in the CDFG forms a path for
the partitioning. Before, we discuss the partitioning of the Power Scheduler a
design example is introduced in the next section.

3.4 PARTITIONING
The example that is used to illustrate the Power Scheduler steps is part of

the MPEG-2 algorithm. Figure 5 shows the DFG of the vertical and horizontal
conversion used for the motion estimation of MPEG-2. Besides this, the DFG
depicted in Figure Scalculates the conversion of the image format GIF 4:2:2
to GIF 4:2:0. This conversion halved the chrominance values of the MPEG-2
picture.

The path analysis for the example examines nine paths (named A to I) dis­
played in Figure 5. These paths are used for the partitioning of the design.
Hence, that independent graphs in the CDFG forms also a partition. To build
the partitions by combining the paths that are calculated by the path analysis,
we construct a compatibility graph, which is defined as follows:

DEFINITION 3.3 (COMPATIBILITY GRAPH (CO)) Let G = (Vk^Ek) be
a undirected graph, with the set of nodes Vk = t'l, 1̂2? • * * ? ^n equal to the
number of paths of the CDFG. An edge (a^, at) with ag^at E V̂ exists in Ek
if there is no conflict between the nodes.

Each path of the path analysis is a node in the compatibility graph. An edge
between two nodes exists if they have no conflict and not the same start and
end node. Two paths are in conflict to each other if they are depending from the

From Model-Driven Design to Resource Management for Distributed Embedded Systems 233

Figure 5. Partitioned design example.

8001
780
760

s *̂°
• 720
i 700
1 680
i 660

640
620
600

^jmmm -^ " ''•^'

'l/'^^^Hi ^ f 1 '̂ '̂ "

Un-partitloned Each-Path-
PartWon

A v; * ' i . ' 5 ^

^̂ y , * « '<• ^ ^

^'-'T'-r TT'i

Partitioned

• Additional Costs!

B Power-Delay j

Figure 6. Compatibility graph. Figure 7. Results for design example.

same fork, join or control node. Therefore, those paths have no edge between
each other in the compatibility graph. Furthermore, the path time is recognized.
Then a clique search algorithm [1] is used to find cliques in the compatibility
graph. The clique algorithm found three cliques for our design example (see
Figure 6). Therefore, partitions Pi = {A, F, G}, P^ = {C, D, H} and P3 =
{£", / } can be activated or deactivated during run-time to save energy. Finally,
node B builds an own partition.

4. RESULTS
First results of our proposed method are promising. For the used exam­

ple, we achieved an energy saving of 15 % in comparison to a not partitioned
design (see Figure 7). Also in opposite to a solution where each path build
a partition. Figure 7 show, that we achieve a better result. For measurement
we used the cost function given in Section 3.1. Furthermore, we implemented
the example from the partitioned CDFG in synthesizable VHDL and used the

234 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Power Compiler from Synopsis to prove our measurements. For other parts of
the MPEG-2 approach, we achieve similar results.

5. CONCLUSION
In this paper, we presented an approach for low power driven synthesis.

Thus, we use standard scheduling algorithms and implement a special parti­
tioning algorithm based on clique search. The implemented Power Scheduler
contains all developed methods and allows the integration of power saving at a
high abstraction level. The presented example, part of the MPEG-2 algorithm,
demonstrates the effectiveness of the method.

REFERENCES
[I] Carraghan, R. and Pardalos, P. M. (1990). An exact algorithm for the maximum clique

problem. In In Operations Research Letters 9, pp 375-382.

[2] Chandrakasan, A., Potkonjak, M., Rabaey, J., and Broderson, R. (1992). Hyper-lp: A
system for power minimization using architectural transformations. In Proc. oflCCAD.

[3] Chen, C. and Sarrafzadeh, M. (2002). Power-manageable scheduling technique for control
dominated high-level synthesis. In Proc. of Design Automation and Test in Europe (DATE).

[4] Gajski, D. D. and Ramachandran, L. (1994). Introduction to high-level synthesis. In IEEE
Design and Test of Computers.

[5] Knudsen, P. and Madsen, J. (1996). Pace: A dynamic programming algorithm for
hardware/software partitioning. In Proc. of IEEE International Workshop on Hard­
ware/Software Codesign.

[6] Kurdai, F. and Parker, A. (1987). Real: A program for register allocation. In Proc. of the
lEEE-ACM Design Automation Conference.

[7] Magma-Design-Automation (2004). Enabling Low Power Design Within an RTL-to-GDSII

Implementation Flow. White Paper.

[8] Mehra, R. and Rabaey, J. (1994). Behavioral level power estimation and exploration. In

Proc. oflWLPD.

[9] Monteiro, J., Devadas, S., Ashar, P., and Mauskar, A. (1996). Scheduling technique to
enable power management. In Proc. of the 33 rd Design Automation Conference, Las Vegas,
NV.

[10] Monteiro, J., Devadas, S., and Li, B. (1994). A methodology for efficient estimation of
switching activity in sequential circuits. In Proc. of the 31st Design Automation Confer­
ence, San Diego, CA.

[II] Rettberg, A. and Rammig, F. J. (2006). A new design partitioning approach for low power
high-level synthesis. In Third IEEE International Workshop on Electronic Desing, Test
and Applications (DELTA 2006), Kuala Lumpur, Malaysia.

[12] Rettberg, A., Zanella, M. C, Lehmann, T., Dierkes, U., and Rustemeier, C. (2003). Control
Development for Mechatronic Systems with a Fully Reconfigurable Pipeline Architecture.
In Proc. of the 16th Symposium on Integrated Circuits and System Design (SBCCI), Sao
Paulo, Brazil.

[13] Tseng, C. and Siewiorek, D. (1986). Automated synthesis of data paths in digital systems.
In IEEE Transactions on CAD, pp 5(3): 379-395.

A DEMONSTRATION CASE ON THE TRANSFORMATION OF

SOFTWARE ARCHITECTURES FOR SERVICE SPECIFICATION

Joao M. Femandes^ Ricardo J. Machado^, Paula Monteiro^, Helena Rodrigues^
^ Dept. Informdtica & ̂ Dept. Sistemas de Informagao
Universidade do Minho, Braga - Guimaraes, Portugal

Abstract: This paper presents a demonstration case on the successive application of a
model-based technique to assist on the refinement of software logical
architectures. The technique is essentially based on the transformation of use
cases into object diagrams. The applicability of the technique is illustrated by
presenting some results from a mobile application. For mobile software, the
definition of the underlying service-oriented architecture must consider as user
requirements the services themselves, the mobile operators entry points and
the final clients interfaces, and use them to characterize the platform. Within
the presented demonstration case, the specification of one service of the
mobile application was obtained by successively applying the technique.

1. INTRODUCTION

A Model-Driven Development (MDD) approach is a software
development technique that uses models during its execution. With MDD
approaches, the development of software is made by successively
transforming models into other models, until the final system is obtained.

This article presents the 4-Step Rule Set (4SRS) transformation technique
that employ successive transformations of the software architecture, to
satisfy the elicited user requirements. It is mainly based on the mapping of
use cases into object diagrams. The technique's iterative nature and the use
of graphical models ensure that architectures reflect user requirements [1,2].

Since the 4SRS is an MDD method, its description should contain all
elements that are usually present in any software method. It should describe

* Research funded by FCT and FEDER under project STACOS (POSI/CHS/48875/2002).

Please use the following format when citing this chapter:

Femandes, J.M., Machado, R.J., Monteiro, P., Rodrigues, H., 2006, in IFIP Intemational Federation for Information Pro­
cessing, Volume 225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B.
Kleinjoharm, Kleinjohann L., Machado R, Pereira C, Thiagarajan PS., (Boston: Springer), pp. 235-244.

236 From Model-Driven Design to Resource Management for Distributed Embedded Systems

which intermediate and final artefacts should be produced, which notations
should be used to create those artefacts and which tasks should be
performed, and in which sequence, to create the required artefacts.

4SRS associates, to each object found in analysis, a given category:
interface, data, control [3], This categorization originates object models that,
in their essence, are similar to the architectures imposed by the Model-
View-Controller [4] or by the Entity-Boundary-Controller [5] patterns.

The 4SRS technique is organized as four steps: (1) object creation, (2)
object elimination, (3) object packaging & aggregation, and (4) object
association. Additionally, the 2"̂ step is further subdivided in 7 micro-steps.
The application of the 4SRS to obtain the first logical architecture of the
demonstration case is described in [6]. After executing all 4SRS steps, the
logic architecture for the system that captures all its functional requirements
and its non-functional intentionalities is obtained. An object model shows
the distribution of significant properties of a system across its parts.

This paper addresses the problem of deriving the logic architecture of a
given platform service (called service object diagram), from a functional
refinement of the platform architectural model (called platform object
diagram), by successively executing the 4SRS technique. The 1st execution,
whose details are described in [6] supports the platform requirements
analysis by generating one platform object diagram that corresponds to the
logic architecture of the system. This paper explains, for the demonstration
case considered here, the usage of the 4SRS to derive an object diagram that
shows the services the system needs to accomplish its responsibilities.

The 2nd 4SRS execution, which this paper aims to explain, supports
service requirements analysis by generating one service object diagram that
corresponds to the logic architecture of the service to be specified.

The demonstration case is a platform for mobile applications, supporting
usability, openness, interoperability and scalability. It deploys reusable
service components to ease the development of context-aware applications
that allow citizens to perform a set of government-related activities, and to
access the most proper services at any time, anywhere.

2. MODEL-BASED TRANSFORMATIONS

The raw object diagram of the mobile application platform, shown in [6]
and obtained after applying the 4SRS, is used in this paper as a starting point
for discussing the technique. It identifies the system-level entities, their
responsibilities and the relationships among them. Its purpose is to focus at
an appropriate decomposition of the system without delving into details.

The components of that object diagram were obtained by reasoning about
the characteristics of the service-oriented platform. Applications can be built

From Model-Driven Design to Resource Management for Distributed Embedded Systems 237

on top of this architecture by specifying the right composition of services,
building a user interface, and orchestrating the data-flow among the various
components. Configuring services and applications so they can be reliably
reused and composed into larger applications is a major challenge [7].

The resulting raw object diagram (from the 1st execution) can be used in
the subsequent phases to define well-delimited sub-projects, by using
collapsing and filtering techniques. These techniques redefine the system
boundaries, giving origin, for instance, to the database project, services
formalization, or platform pattern analysis. Fig. 1 shows the collapsed object
diagram that was obtained from the raw object diagram by hiding the
packages details. Therefore, links appear at a higher level of abstraction and
the resulting object diagram is easier to be read.

{P1} external providers information I

{P3} process context |

(P5) user interface [

<«interface»»
fOOat.SJl seivtce renfetraMon

<<lnterface>>
{O0a.1.4i) mobile operatof

{P2} external providers Interface I

« d a t a »
l{O0a.1.5.«0 registered

«control.>>
|fO0a.1.4xl presantatlon

:interface»»
koOa.2.5.0 service ijscoverv
Pfotocol interface

«intetface»>
{O0a^.6.Q hrform local authorKy

<<control>>
0)a.2J.c) anomaly pfocessor

<'<control.>>
{O0a3.5.c} sefw:e ciscovef

{P4} deliver information data |

« d a t a »
{O0a.2^(0 anomaly data

Figure 1. Collapsed object diagram.

Fig. 2 shows the filtered object diagram that was obtained by using
collapsing and filtering techniques described in [1] by considering package
{P5} as a subsystem for design. This diagram was included here as an
example of how raw object diagrams can be used during the development
process to stress parts of the system and allow subsystem specification and
partition of subprojects among various teams.

In this paper, we consider the refinement of package {P5} that has given
origin to the AVAccess service. This service is a single point of contact with

238 From Model-Driven Design to Resource Management for Distributed Embedded Systems

the platform and should redirect the user to the appropriate service. In
particular, when the user intends to report a complaint, he needs to access the
AVAccess service and to select the report complaint functionality.

{P5} user interface

<<control.»
{00a.1.3.c) Information

«control»
{Da.3.7.cl thematic request

<<control"
fOt)a.1.4.c) presentation

Figure 2. Filtered object diagram for package {P5} service derivation.

Criteria illegible for filtering depend on project management issues,
functional implementation domains, etc. Fig. 3 depicts the filtering process
executed over Fig. 1 to obtain a {P5}-centric filtered object diagram. During
the filtering process, all entities not directly connected to {P5} must be
removed from the resulting filtered object diagram.

ITERATIVE ARCHITECTURAL REFINEMENT

The development of mobile applications typically follows a service-
oriented approach. A service is a software entity running on one or more
machines and providing a particular type of function to unknown clients.
These services must communicate with each other, to give rise to a
service-oriented architecture. The communication can involve either simple
data passing or two or more services coordinating some activity. Some
means of connecting services to each other is needed, so workflow is a
critical part to make services effective. When those services react to changes
on user context, applications are said to be context-aware.

For mobile applications, the definition of the underlying service-oriented
software architecture must consider the services themselves as user
requirements, as well as the mobile operators' entry points and the final
clients interfaces, and use them to characterize the platform.

{P5} can be considered as the system to be designed and apply, once
more, the 4SRS technique to support its architectural refinement (in Fig. 2).
The iterative application of the 4SRS technique suggests the construction of
a new use case diagram (called service use case diagram) that captures the
users requirements of the new subsystem to refine. From this use case
diagram, the corresponding raw object diagram is derived (called service
object diagram). This approach contrasts with the one that suggests the

From Model-Driven Design to Resource Management for Distributed Embedded Systems 239

application of design patterns [4, 8] to impose into the logical architecture a
already proven reference architectural model. Our proposal does not reject
this pattern-oriented view, only defers it into latter stages of development.

<<contrcil.»>
{00a.1.3.c) infof matron
Idtssetnlnalor

fO0a.1.5.«nWflefed sefvfces

V

2.6 jj iiffbtmtoWautht

<<contfol.»>
{0a.3.7.c] thematic request
Ipfocessof

{00a^5.c} s^ygrftscowef
Ipfotoco)

-^ ^

(P7) user data |

Figure 3. Filtered object diagram for package {P5} service derivation.

The use case diagram in Fig. 4 was created to support the architectural
refinement of {P5} to obtain the raw object diagram of the AVAccess
service. This service constitutes the example considered in this paper to
show the iterative application of the 4SRS technique. All the external entities
in this diagram correspond to architectural elements connected to package
{P5} in Fig. 2. Object {O0a.l.3.c} in Fig. 2 did not give rise to any actor in
Fig. 4, because the architectural refinement of package {P5} did not consider
the functionality that is associated with that object. The user actor is present
in Fig. 4, since it was already connected to the use cases that gave origin to
the objects inside package {P5}, during the development process described
in [6]. Actors in Fig. 4 must be viewed as external components, from the
point of view of the AVAccess service. To attain better actor semantics
within the associations with the obtained use cases, actor {O0a.3.7.c} in
Fig. 4 was specialized into two different actors: Application System Context
Aggregation Service and Application System Service Repository.

The AVAccess service is the platform component where all user requests
are redirected by default. Its service components or end services are architec­
tural components developed and deployed by the local authorities and are the
ultimate components to be accessed by the user. They appear as result of

240 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Other architectural decisions. The AVAccess service is a single point of
contact and should redirect the user to the appropriate end service. Users
usually start the interaction with the system by contacting this component.

ApplicationSyslem ApplicationSyslem
ConlsxtAggregatJon Service Repository
Service

_JUO i) add user terminal

(ijai>regis1er newuser

[JUO 2) remove u s ^ P ; ; ^

(U0.7} restore subscription

jUO.6} suspend subscription

{U0.10) un-subscribe s(

(UP 8} cbecl< subscription st

Figure 4. Use case diagram for AVAccess service.

One example of a description for the top-level use cases is next
presented. Similar descriptions were created for the other top-level use cases.
(UOJj register new user: the user provides user personal information to the AVAccess
system. Its personal information consists ofuserName, password, and, optionally, user profile
information. The AVAccess service parses user personal information and sends it to
subsystem User. The A VAccess sys-tem sends back the information on success/no success of
this operation. The information sent to the user is format-ted by the subsystem Presentation.
The system must know terminal model information.

TABULAR TRANSFORMATIONS

The execution of the 4SRS transformation steps can be supported in
tabular representations. Moreover, the usage of tables permits a set of tools
to be devised and built so that the transformations can be partially
automated. These tabular representations constitute the main mechanism to
automate a set of model transformation steps.

The table for supporting the transformation steps uses one row for each
object and one column for each step. The 1st column corresponds to the
execution of step 1. The first row allows the insertion of both the reference
and the name of the use case. The next three rows allow the insertion of one
interface, one data, and one control objects for that use case. For the
demonstration case, there is no use case refinement, so step 1 is applicable to
all (10) use cases in Fig. 4, which gave origin to 30 objects. Fig. 5 depicts 4
different rows for each of the two previously exemplified use cases.

The 2nd column corresponds to the execution of micro-step 2i. In this
micro-step, each use case is classified as one of the 8 different combinations
or patterns (0, i, c, d, ic, di, cd, icd). This classification helps on the
transformation of each use case into objects, and provides hints on which
objects to use and how to connect them. For the demonstration case, {UO.l}

From Model-Driven Design to Resource Management for Distributed Embedded Systems 241

was classified as "i", meaning that only the interface object is kept (the
control and data objects will be eliminated in micro-step 2ii). {U0.5} was
classified as "icd", which means that all objects are kept.

St«ft4^>f<xt<tm»mti

{IJ0.1} (eyi$1«r H « W in«r

{ O O l c }

j{O0.1.dl

{ 0 0 1 , !

aVQJSi} 9ub«ai l>* s«fvJc«

(O O S c l

{00 5 d)

(00 5 1)

«ta«^t«iMtott

•

,cd

«itmt»«ti«tt

-
«

-

-
-
-

register user

interface

sobscnbese^ce

defined activities

m t e r f a c r ' ' " "

^t» t kt tiU

allows the parse of the

user personal...

will process the
request subscnbe..

interface with the data
of the. .

sends the subscnbe
service information ..

tiwtti

JV '«hl*dtt^n^**^tti(im

itself

/
/

•••"/
i tself /

(CO 1 ,) - * -

i«pi*««tti)^

(00 .2 i }
(O0.3i)
(00 .4 i)

. {O0.5i(

4{O0.6.i}
/ {00 7 i}
f (00 .8 i }

{00.9 i}

{CO.101)

(O 0 9 d)

-

-
-

— T —

nnanagemment

interface

available
activities

{OO.B.d}
(00.5.i(

{ 0 0 . 5 . 0
{OO.Si}

(OO.Scl
{00 .5d)

Figure 5. Table for supporting the 4SRS technique.

The 3rd column supports the execution of micro-step 2ii. In this micro-
step one decides if each object created in step 1 makes sense in the problem
domain, since the creation of objects in step 1 was blindly executed. Objects
that are to be eliminated are marked with "x" and objects that are to be kept
are marked with "-". For the demonstration case, {UO.l} got two of its
originated objects eliminated, since they do not make sense in the problem
domain. {UO.l} is only responsible to send the new user information from
the user to other subsystems and vice versa, which means that data and
control dimensions are not within the scope of this use case.

The 4th column is dedicated to the execution of micro-step 2iii. In this
micro-step, objects that have not been eliminated from the previous micro-
step must receive a proper name that reflects both the use case from which it
is originated and the specific role of the object, considering its main
component. {OO.l.i}, for instance, was named register user interface.

The 5th column is related to the execution of micro-step 2iv. Each named
object resulting from the previous micro-step must be described, so that the
system requirements they represent become included in the object model.
These descriptions must be based on the original use case descriptions. For
the demonstration case, the following descriptions were obtained:
{OO.l.i} register user interface: allows the parse of the user personal information and sends it
to the destination subsystem, and sends back the information on success/no success of the
request.
{OO.S.c} subscribe service: will process the request Subscribe service. Will request to the user
all the additional information needed to perform the request of the user.
{OO.S.d} defined activities: interface with the data of the available activities in the system
(could be a XML file).

242 From Model-Driven Design to Resource Management for Distributed Embedded Systems

{00.5.1} subscribe service interface: sends the subscribe service information to the
destination subsystem, and sends back the information on success/no success of the request.

The 6th and 7th columns correspond to the execution of micro-step 2v.
This is the most critical micro-step of the 4SRS technique, since it supports
the elimination of redundancy, in the user requirements elicitation, and the
discovering of missing requirements. The "is represented by" column stores
the reference of the object that represents the object being analyzed. If the
analyzed object is represented by itself, the corresponding "is represented
by" column must refer to itself The "represents" column stores the
references of the objects that the object analyzed will represent. {OO.l.i}
does not delegate in other objects its representation and it additionally
represents a considerable list of other objects (each one of these objects must
refer to {OO.l.i} in their columns "is represented by").

The 8th column is related to micro-step 2vi. This is a fully "automatic"
micro-step, since it is based on the results of the previous one. The objects
that are represented by other ones must be eliminated, since its system
requirements no longer belong to them.

The 9th column is used for micro-step 2vii. Its purpose is to rename the
objects not eliminated in the previous micro-step and that represent
additional objects. For the demonstration case, object {OO.l.i} was renamed
"users management interface" to reflect the list of objects it represents.

The 10th column supports the execution of step 3. Since aggregations and
packages were not used in the demonstration case, column 10 is not filled.

The n th column supports step 4. The associations in the demonstration
case were solely derived from the use case classification in step 1. The
classification of {U0.5} as type "icd" suggests the existence of three internal
links relative to the objects generated from the same use case. However, "id"
link (between the interface and the data objects) was not allowed.
Additionally, the following two tabular transformations imposed some
constrictions to the object connectivity exercise: (1) in step 2v, it was
decided that {O0.5.i} is represented by {OO.l.i}; (2) in step 2vi, {00.5.1}
was eliminated. These two decisions imply the existence of the following
associations: (1) between {OO.S.c} and {OO.S.d}, suggested by the "icd"
classification; (2) between {O0.5.c} and {OO.l.i}, due to the transitivity of
the suggested association between {O0.5.c} and {O0.5.i} through the
delegation executed by {00.5.1} in {OO.l.i}.

5. SERVICE SPECIFICATION

Fig. 6 depicts the raw object diagram for the AVAccess service, obtained
after a new application of the 4SRS technique over the global logical
architecture of the application represented in Fig. 2. Object {O0a.4.1.i} in

From Model-Driven Design to Resource Management for Distributed Embedded Systems 243

Fig. 2 is mapped into object {OO.l.i} in Fig. 6. This object receives user
requests for user management and service subscription. In the case of use
case {U0.5}, {OO.l.i} uses the functionalities of {O0.5.d} and {OO.S.c}.

{OO.l.i} users management
interface

1 fOO.g.cl select service

{po.5.c} subscribe service |

{O0.5.d} available activities 1

Figure 6. Raw object diagram of the AVAccess service.

Object {O0a.2.2.i} in Fig. 2 maps into object {OO.l.i} in Fig. 6. This
object receives user requests in case of execution of use case {U0.9} and
object {OO.l.i} uses the functionalities associated with objects {O0.9.c} and
{OO.S.d}. The obtained raw object model (Fig. 6) constitutes the semantic
reference for the service to be designed, since it has emerged from the
software logical architecture (Fig. 2) of the platform by adopting a
complementary functional refinement at architectural level.

After obtaining this new architectural refined raw object model, the
underlying service can be described by a set of diagrams to specify the
corresponding architectural component, namely, a class diagram for the
static characterization of the service component, a statechart for the life
cycle characterization of the service, a set of activity diagrams for methods
specification and a set of sequence diagrams for interface and protocol
specification. These additional views of the same service are not generated
from the application of 4SRS technique, even though they are easier
constructed after obtaining the raw object diagram of the service (Fig. 6).

CONCLUSIONS AND FUTURE WORK

A software infrastructure for running mobile applications must find,
adapt, and deliver the right services to the user computing environment
based on his context. The current trend in software industry is for service
providers to supply reusable functions via components called services.
Building applications involves specifying the right composition of services,
building a user interface, and defining the data flow among the components.

For mobile applications, the definition of the underlying service-oriented
architecture must consider the services themselves as user requirements, as

244 From Model-Driven Design to Resource Management for Distributed Embedded Systems

well as the mobile operators entry points and the final clients interfaces, and
use them to characterize the platform. Within the presented demonstration
case, the specification of one service of a mobile application was obtained by
recursively applying the 4SRS technique. The technique has shown its
usefulness by assuring the generation of a seamless specification of the
service-oriented architecture requirements.

The proposed iterative usage of the 4SRS technique allows designers to
build a new use case diagram that captures the users requirements of the new
system to refine a service. From this use case diagram, a raw object diagram
can be derived. This approach is complementary to the use of design patterns
by allowing a functional refinement of requirements at architectural level,
considering the specific aspects of the system under design. This
transformational approach shows that model continuity is an important topic
and highlights the importance of defining a well-defined process to relate,
map and transform requirement models [9]. In the presented case, the 4SRS
has allowed the specification of one particular service, considering all the
architectural decisions previously taken to specify the platform where the
service is supposed to run, by assuring a continuous mapping between the
platform and the service models.

As future work, the 4SRS technique will be extended to consider the
transformation of objects diagrams into class diagrams, which seem a crucial
step for software-intensive systems.

REFERENCES

1. J.M. Femandes, RJ. Machado. From Use Cases to Objects: An Industrial Information
Systems. OOIS 2001, Calgary, Canada, pp. 319-328, Springer, August, 2001.

2. J.M. Femandes, R.J. Machado, H.D. Santos. Modeling Industrial Embedded Systems
with UML. CODES 2000, San Diego, California, U.S.A., pp. 18-22, 2000.

3. I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

5. I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Process.
Object Technology. Addison-Wesley, 1999.

6. R.J. Machado, J.M. Femandes, P. Monteiro, H. Rodrigues. Transformation of UML
Models for Service-Oriented Software Architectures. ECBS 2005, Greenbelt,
Maryland, U.S.A., pp. 173 182, 2005.

7. G. Banavar, A. Bemstein. Software Infrastructure and Design Challenges for
Ubiquitous Computing Applications. Communications of the ACM, vol. 45, no. 12,
pp. 92-96, 2002.

8. R. Ahlgren, J. Markkula. Design Pattems and Organisational Memory in Mobile
Application Development. PROFES 2005, Oulu, Finland, pp. 143-156, 2005.

9. R.J. Machado, I. Ramos, J.M. Femandes. Specification of Requirements Models. In A.
Aumm and C. Wohlim (Eds.), Engineering and Managing Software Requirements,
pp. 47-68, 2005.

MODEL-BASED ANALYSIS OF A
WINDMILL COMMUNICATION SYSTEM

Simon Tjell
Department of Computer Science
University ofAarhus
Denmark

Abstract This paper presents the experiences obtained from modeling and analyzing a
real-world application of distributed embedded computing. The modeling lan­
guage Coloured Petri Nets (CPN) has been applied to analyze the properties of a
communication system in a windmill, which enables a group of embedded com­
puters to share a group of variables. A CPN-based model of the system is used
to analyze certain real-time properties of the system.

Keywords: Real-time systems, communication protocol. Coloured Petri Nets, performance
analysis

1. INTRODUCTION
This paper is based on a real life product development problem from the

Danish windmill manufacturer Vestas Wind Systems [1] and proposes a so­
lution to the problem. The proposed solution is analyzed by use of a CPN-
based model of the system. The paper summarizes parts of a project [7], which
has been running for a period of one year. A modem windmill from Vestas
is controlled and monitored by a complex application consisting of a group
of inter-connected control components. Each control component implements
parts of the control algorithms, which cooperate to control and monitor the op­
eration of the windmill through a collection of physical sensors and actuators.
The components are executed in a distributed system of embedded comput­
ers connected by a network bus. The connection between the components is
established by shared access to a group of variables. Basically, a variable rep­
resents one of three values: A measurement from a sensor, the output value
for an actuator or an intermediate calculation between two components. The
correctness of the output-variables from a component is highly dependent of
the freshness and consistency of the input-variables of that component. Some
of the output-variables are used to control actuators that adjust the wings and
other physical parts of the mill. In that way, the correctness of the output-

Please use the following format when citing this chapter:

Tjell, S., 2006, in IFIP Intemational Federation for Information Processing, Volume 225, From Model-Driven Design to

Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R., Pereira C.,

Thiagarajan PS. , (Boston: Springer), pp. 245-254.

246 From Model-Driven Design to Resource Management for Distributed Embedded Systems

variables has a direct influence of the degree of wear and tear of the machinery
over time. This makes it important to optimize the method for sharing the vari­
ables in order to maximize the lifetime of the mill - and this task is the main
aim of this paper and the project it describes. A design for the communication
system and a model-based analysis of the design are provided. The following
sections of the paper are structured like this: Firstly the existing software envi­
ronment is introduced. This is followed by an identification of problems in the
existing design of the communication system. The identification is followed
by a proposal for an alternative design. The proposed redesign has been mod­
eled, simulated and analyzed. This process is described in the last section of
the paper.

2. THE DAO APPLICATION FRAMEWORK
Distributed and Active Objects (DAO) is a proprietary framework for de­

veloping windmill control applications. The framework is based on the Active
Object design pattern [5] with the addition of distributed capabilities and dy­
namic attachment mechanisms. The following list gives a description of the
key elements of the control application based on the DAO framework. The
description defines the terminology for the remaining sections of this paper.
Please refer to Figure 1 when reading the list.

1 Node: A node is an embedded computer. Each node has a kernel, which
executes a number of components. A typical system consists of up to
five nodes.

2 Kernel: The kernel has the responsibility of periodically activating the
components on its own node. The activation period for each component
is determined by a scheduling registration. The kernel continously runs
through a cycle of operations.

3 Component: A component is a software object, which complies with a
specified interface. The interface contains an activation method, through
which the component is periodically activated by the kernel. The com­
ponents contain all control algorithms used in the control application.

4 Variable: A variable has a type and a value. The value can be altered
and monitored by the components. Each variable is represented in one
original instance and a number of copies. The copies for a variable ex­
ist on nodes with components attached to that given variable. A num­
ber of components can establish dynamic attachments to each variable
for reading and/or writing (one component at a time) the value of that
variable. Variables exist in two forms on a node: Kernel variables (the
originals) and component variables (copies on which the components

From Model-Driven Design to Resource Management for Distributed Embedded Systems 247

^ l l .
Schaduling t

- '.Scrieduling registration (* J

"S^aten^

VariabI* attachmant

^^^^^

Figure J. The static structure of the DAO-framework.

operate). The kernel has the responsibiUty of copying values between
the two representations of variables.

5 Communication component: The communication component (CC) is a
specialized component that exists in one instance in every node. It dif­
fers from the regular components by being able to communicate with its
peer CCs through a network interface. The communication is performed
in order to maintain variable consistency through-out the nodes. When
the CC is activated, it performs two main tasks: It generates and sends
update messages containing values of the kernel variables to which com­
ponents on other nodes are attached and it receives the update messages
from other nodes. One message holds values for a number of variables.

6 Queues: The scan queue is used when the kernel activates a component.
The kernel does this by placing a scan command containing the ID of
the component to be activated in one of the scan queues. The choice
of scan queue determines the priority of the activation since commands
from each scan queue are consumed by a specific threads. Each thread in
the thread pool has an individual priority. When an activated component
terminates its activation, this is signaled to the kernel with a post scan
conmiand that is placed in the post scan queue. This queue is shared by
all working threads. When the kernel receives a post scan command

3. THE PROBLEM
This section gives a description of the existing communication protocol used

for communication between the nodes. The description is supplemented by a
characterization of a number of problems with this protocol. This descrip-

248 From Model-Driven Design to Resource Management for Distributed Embedded Systems

tion is followed by a proposal for a replacement communication protocol. The
communication between the nodes is performed by the communication compo­
nents in order to keep shared variable values updated. These components have
access to a communication interface through which they are able to exchange
UDP-datagrams [2] across the network. The CCs are periodically activated by
the kernel. During one activation cycle are number of messages are sent and
received.

The proposal of a new communication protocol for the DAO-framework
is relevant, because problems are being experienced with the existing CC. In
its existing design, the communication component uses a simple protocol, in
which the CCs send out messages with variable values when variable values
are changed - i.e. triggered by the event of changing values. The messages are
sent unreliably using multicast through the UDP-protocol with no detection
of lost messages. The UDP-protocol features a CRC-mechanism [2], which
makes the receiver of a message able to discard the message, if its contents
have been altered during the transmission due to electrical noise. This is the
only sort of error detection. The nature of the existing design of the CC causes
two critical problems:

1 If a message is lost during transmission this is not detected by neither
the sender nor the receiver. Messages are sent when a state changes and
when this information is lost, it results in the view of the state becoming
inconsistent between the sender and receiver(s) of the message. The
period of inconsistency continues until a new message is successfully
exchanged. This happens the next time the state is changed.

2 If a large number of variables are altered within a short period of time,
this will cause a large number of messages to be sent and received in
that period. This can cause the CCs in the DAO-nodes to consume too
much time within a given activation cycle. This can cause a skew in the
time of activation for the other components on a node, which can result
in erroneous output from the control algorithms implemented in those
components.

4. PROPOSAL FOR AN ALTERNATIVE DESIGN
It has been decided to base the proposal of an alternative design of the com­

munication protocol on the principle of Soft State signaling protocols [2]. The
discussion leading to this decision can be found in [7]. The proposed com­
munication protocol is based on a generic Soft State principle [2]. Soft State
messaging is a variant of protocols within the family of signaling protocols.
This family of protocols spans within two generically defined poles; Soft State
and Hard State protocols. Signaling protocols are applied in a wide range of
applications. Common to those applications and the specific application in

From Model-Driven Design to Resource Management for Distributed Embedded Systems 249

relation to DAO is the need to maintain a consistent view of a shared state -
where the state could be a routing table, a list of shared files or a set of vari­
ables. Soft State protocols differ from Hard State protocols by the fact that
they rely on the exchange of messages using best-eflfort-semantics as opposed
to reliably exchanging messages. The difference is observable in the way, in
which the distributed views of the state are updated across the network. In both
cases messages are sent from the sender, which is where the changing of the
state occurs to a receiver (or a group of receivers), where the state is observed.
Also, in both cases, the sender is the initiator of the message exchange. The
difference here lies in which event triggers the sending of the message with
the changed state from the sender to the receiver. In the case of the Hard State
protocols, the triggering event is the change itself- i.e. when the sender detects
a change in its local view of the state, this causes a message with the updated
state to be sent to the receiver. On the other hand, in the case of the Soft State
protocols, the triggering event is a temporal event caused by a timer running
out. Each state is associated with an update timer that causes a periodic event
trigger.

Based on the properties of the proposed communication protocol, it is consid­
ered a sane choice for replacing the existing protocol, because the proposal is
suited for addressing the two main problems with the existing protocol (the
two issues refer to the two problems described earlier):

1 All messages are periodically retransmitted. This resolves the problem
of potentially long periods of inconsistency in the case of lost messages.

2 The periods for sending messages are planned offline. This makes it
possible to predict the maximum amount of messages being exchanged
within an activation cycle and thereby predict processing overloads.

The original attachment mechanism with which attachments between compo­
nents and remote or local variables are registered is adopted and applied in
combination with the new protocol design. Each variable is assigned with an
update timer that triggers the generation of periodic update messages for that
variable. Based on knowledge of the properties of the variables, it is possi­
ble to define a method for grouping the variables based on their frequency of
modification. In this way, each variable belongs to a certain group in which all
variables share the same update rate, which is used for initializing the update
timers and thereby determine when to send update messages. Five such groups
are identified. Futhermore, the probabilistic distribution of variables in these
groups is known based on experience from the existing system. This means
that it can be estimated that each group contains a certain percentage of the
variables. This knowledge is applied when modeling the application and the
modification of the variables. While the modification rate differs between the

250 From Model-Driven Design to Resource Management for Distributed Embedded Systems

variables the swiftness of communicating changes to variable values is equally
important for all variables in order to optimize consistency.

5. MODELING AND ANALYZING THE PROPOSAL
After having chosen an appropriate communication protocol, time comes

to developing the model of the DAO-system with the proposed protocol in­
tegrated. This section describes the simulation process. An example of the
analyzed data is given. For the full set of analysis results, please refer to
[7]. The model is developed using Coloured Petri Nets (CPN) [3], which is
a formally specified modeling language with a graphical representation. CPN-
models specify the structural and behavioral aspects of (distributed) systems in
which the state is represented by places holding tokens. Places are connected
by transitions that are able to move tokens between the places of a net and
thereby modify the state of the places and the model in general. In the case of
modeling DAO and the communication protocol, the tokens represent entities
such as messages and variables. In the same way, the transitions represent ac­
tions such as sending messages and reading variables. Tokens are also used for
representing more abstract aspects of the system; delays, timers, counters etc.
Analogously, places are used to represent buffers containing message, tables
of variables and so on.

CPN-models differ from traditional Petri Nets by the fact that the tokens
have types and values - much like in standard programming languages. This
makes it possible to distinguish the tokens and simulate tokens moving around
between the places. Figure 2 shows a part of the model. Places are visualized
by ellipses and transitions as rectangles. The model consists of a hierarchi
of modules like this. This particular part of the model specifies the dynamic
behavior of a DAO-node.

The dynamic behavior of each nodes is modeled by a sequence of repeated
events, including (ordered for understandability):

1 Generation of update messages: the table of local variables is evaluated
in order to find variables with expired update timers. The current values
of these variables are collected in a new update messages and the timers
are initialized. In each case, the table of attachments from external com­
ponents is investigated - if no attachments are found, it is not necessary
to include the variable in the update message. If no variables comply
with the constraints, no update message will be generated.

2 Reception of incoming update messages: The node receives messages
through the communication channel.

3 Handling of incoming update messages: When the messages have been
received they are processed, which means that all local variables are

From Model-Driven Design to Resource Management for Distributed Embedded Systems 251

nnotl_kem«Lv»'-Jlst(v_!

J , masMot list t T '

^ T T ^ E ||R«:«iv« m«sa<,« r y — ^ E lk»«ute commands-^ ^,^, ,1^, upd . te -n& iJQiS ^ " ^ ^ L hCK; K:>H"3

Figure 2. An example of a part of the CPN-model specifying the dynamics of a node.

updated with the values from the update messages. The values in the
update messages are not necessarily different from the current values of
the variables.

4 Transmission of outgoing update messages: If an update message has
been generated, it is transfered to the communication channel.

5 Simulation of the effect of other components: The values of the local
variables are changed periodically based on the knowledge of the mod­
ification rates for each group of variables. This is done to simulate the
effect of the local components modifying the variables.

These events reflect the cycle of events that is handled by the kernel on each
node.

One of the main advantages of models expressed in CPN is the fact that they
are executable. This makes it possible to perform automated simulations while
collecting measurements from the model. In the specific case, simulation has
been applied to analyze a group of properties:

1 Consistency of the variables: The most basic purpose of the commu­
nication protocol is to maintain consistency within the group of shared
variables. The level of consistency is measured by continously perform­
ing simple counting operations that lead to a number for the percentage
of consistent variables. A variable is considered being consistent when
all its instances in all nodes share the same value. Figure 3 shows the
result of measuring the average consistency while varying the activation
period of the CC and the number of nodes. As expected, the level of

252 From Model-Driven Design to Resource Management for Distributed Embedded Systems

O 10000 2OO0O 30000

i«\ctiva«lon Per iod iMSl j '" %^^
I * & î oeSes

Figure 3. Measuring the average consistency as a fUnction of activation period.

consistency decreases when the activation period is increased, since this
will increase the magnitude of the delay that occurs between modifica­
tion of a variable values and the next-coming transmission of a periodic
update message. Furthermore, the consistency level decreases when the
number of nodes is increased. This is caused by the fact that more nodes
means more components, which results in more writing attachments for
each variable.

2 Update delay: Another measure for the quality of the CC is the delay
that occurs before all instances of a variable are updated when the value
of one of the instances is modified. This is important because the qual­
ity of the output from the control algorithms depends directly on this
property. The measurement of the delay is performed by supplying the
tokens that represent update messages with a timestamp. The timestamp
contains the time of modification for the involved variables and is used
to calculate the delay when the update message is received by a node.

3 Resource consumption: Analyzing the amount of processing time being
consumed by the CC on a node is relevant, because it directly defines
the amount of time left for activating the other components on the same
node. Measurements from the target platform have shown, that sending
and receiving messages consumes significantly more time than any other
task of the communication component. This - in combination with the
fact that the CC is continously activated with a fixed period - makes it
reasonable to estimate the amount of time being spent during each acti­
vation of the CC based on the number of messages being handled within
that activation cycle. The amount of resource consumption is measured

From Model-Driven Design to Resource Management for Distributed Embedded Systems 253

in each activation cycle by counting the number of incoming and outgo­
ing messages. The maximum consumption will occur when a CC on one
node receives messages from all other nodes and at the same time has
to send one multicast message itself This means that the maximum can
be calculated based on a collection of parameters: the variable activation
cycle, the fixed amount of time used for handling messages and the vari­
able number of nodes. For low activation frequencies, the measured level
of resource consumption is similar to the calculated maximum since it
will be necessary to send and receive messages in all activation cycles.
This is not the case, when the activation frequency is increased. This
increases the fraction of activation cycles where less or no messages are
handled. On the other hand; when the activation period becomes shorter,
each message being sent and received represents a larger fraction of the
time in the activation cycle. Measurements on the actual embedded com­
puters have shown that the action of sending and receiving messages is
the major source of CPU-time consumption on the nodes. This makes it
possible to calculate the percentage wise consumption of CPU-time of
the CC by observing the number of messages being processed within a
given activation cycle. This approximation is only feasible as long task
of processing messages is significantly costlier in time than any other
task being handled by the communication component.

Apart from these properties, the tolerance to packet loss is analyzed by vary­
ing the probability of losing packets in the communication channel connecting
the nodes while observing the influence on the properties described above.
The level of consistency and the magnitude of the update delays increase when
more packets are lost. At the same time, the resource consumption decreases
because the lost packets wont result in consumption of processing time on the
receiving nodes.

The analysis illustrates how the configuration of the system is a tradeoff
between consistency and resource consumption. With the Soft State protocol,
the level of consistency depends on the frequency of sending the periodic up­
date messages - and this frequency directly affects the amount of processing
resources being consumed by the CC. In that context, this paper and [7] are
ment to illustrate how the model-based analysis of the communication system
is applied to gain knowledge of the parameters of this tradeoff. The protocol
does not intend to guarantee fiill reliability at all times but rather a probabilistic
reliability of adjustable quality.

6. RELATED WORK
This paper is focused around two main topics: the use of Soft State protocols

for sharing states and the use of CPN-models for analyzing an industrial real-

254 From Model-Driven Design to Resource Management for Distributed Embedded Systems

time system by simulation. Related work exists within both topics. Firstly, [6]
introduces a framework for understanding and discussing the properties of Soft
State signaling protocols. The paper presents a Soft State transport protocol ac­
companied by a formal model, with which the protocol is analyzed by use of
queuing theory. In [4] a Markov-model is specified for comparing the per­
formance properties of generic Soft and Hard State protocols in combination
with hybrid variants. Both of these works are focused on the performance and
consistency issues of the protocols alone. This paper combines the protocol
technicalities with the aspects of the application and the hardware platform in
the simulation-based analysis. [8] develops CPN-models for analysing the
RSVP-protocol, which is partly based on Soft State signaling.

7. SUMMARY
This paper has described the process of identifying the problem in question

and has presented a proposal for its solution. This proposal has been modeled
and the model has been used for simulation with the purpose of analyzing its
real-time properties. CPN-models have proven to be a strong tool in this work
and their executability have eased the process of understanding the model and
thereby the existing system and the protocol that has been applied. The main
weakness of this type of analysis is the lack of a strong method for validating
the correctness of the model itself compared to what is being modeled.

REFERENCES
[1] Vestas wind systems, http://www.vestas.com.

[2] David D. Clark. The design philosophy of the DARPA internet protocols. In SIGCOMM,
pages 106-114, Stanford, CA, August 1988. ACM.

[3] Kurt Jensen. Coloured petri nets: A high level language for system design and analysis.
Lecture Notes in Computer Science; Advances in Petri Nets 1990, 483:342-416, 1991.
Newsletterlnfo: 39.

[4] Ping Ji, Zihui Ge, Jim Kurose, and Don Towsley. A comparison of hard-state and soft-
state signaling protocols. In SIGCOMM 'OS: Proceedings of the 2003 conference on Ap­
plications, technologies, architectures, and protocols for computer communications, pages
251-262, New York, NY, USA, 2003. ACM Press.

[5] R. Greg Lavender and Douglas C. Schmidt. Active object: an object behavioral pattern for
concurrent programming, pages 483-499, 1996.

[6] Suchitra Raman and Steven McCanne. A model, analysis, and protocol framework for soft
state-based communication. In 57GCOMM, pages 15-25, 1999.

[7] Simon Tjell. Modeling and analysis of a communication protocol for windmills (danish
only). Master's thesis. University of Aarhus, 2005. (http://daimi.au.dk/~tjell/thesis.pdf).

[8] M.E. Villapol and J. Billington. Modelling and initial analysis of the resource reservation
protocol using coloured petri nets. In Proc. Of the Workshop on Practical Use ofHigh-
Level Petri Nets, within the 21st International Conference on Applications and Theory of
Petri Nets, pages 91-110, 2000.

PRE-RUNTIME SCHEDULING CONSIDERING
TIMING AND ENERGY CONSTRAINTS IN
EMBEDDED SYSTEMS WITH MULTIPLE
PROCESSORS

Eduardo Tavares, Meuse Oliveira Jr, Paulo Maciel, Bruno Souza, Silvino
Neto
CIn - UFPE. Recife-PE-BraziL
(eagt, mnoj, prmm, bs) @cin.ufpe.br, silvinovvneto@yahoo.com.br

Raimundo Barreto, Romulo Preitas, Marcelo Custodio
DCC-UFAM. Manaus-AM-Brazil
{ rbarreto, devezas, mmc} @dcc.ufam.edu.br

Abstract In this paper, a pre-runtime scheduling approach for hard real-time embedded
systems with multiple processors is presented considering stringent timing and
energy constraints. This paper adopts a formal approach, based on time Petri
nets, for synthesizing feasible schedules.

1. INTRODUCTION
Some embedded systems are classified as real-time systems, where the cor­

rect behavior depends not only on the integrity of the results, but also the time
in which such results are produced. In hard real-time systems, if timing con­
straints are not met, the consequences can be disastrous, including great dam­
age of resources or even loss of human lives. Due to CPU-bound tasks, some
hard real-time embedded systems need to rely on multiple processors in order
to meet timing constraints.

In addition to timing issues, many hard real-time systems have constraints
on autonomy, since, in many cases, they need to be operated in remote ar­
eas where energy sources may be highly constrained. Therefore, such systems
cannot exceed their respective energy (or power) constraints for executing their
associated tasks. Mobile medical devices, for example, have both timing and
energy constraints that need to be satisfied. Their tasks cannot miss their xt-

Please use the following format when citing this chapter:

Tavares, E., Olivera, M., Jr., Maciel, P., Souza, B., Neto, S., Barreto, R., Freitas, R., Custodio, M., 2006, in IFIP Inter­
national Federation for Information Processing, Volume 225, From Model-Driven Design to Resource Management for
Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R, Pereira C, Thiagarajan PS., (Boston:
Springer), pp. 255-264.

256 From Model-Driven Design to Resource Management for Distributed Embedded Systems

spective deadlines, and cannot exceed a specified energy constraint in order to
prolong the battery charge usage.

Taking into account such needs, this paper provides a pre-runtime approach
based on time Petri nets [6] for synthesizing feasible schedules considering
timing and energy constraints. In order to provide a more realistic system
behavior, this work models explicitly the worst-case execution time of the dis­
patcher, since it may affect the tasks' deadline. The approach presented in this
paper is a depth-first search method that generates a partial state-space com­
puted from a time Petri net model that represents the task's constraints, thus
tackling the state-space growth inherent to such systems.

2. RELATED WORKS
Xu and Pamas [9] present a branch-and-bound algorithm that finds an opti­

mal pre-runtime schedule on a single processor for real-time process segments
with release, deadline, and arbitrary exclusion and precedence relations. De­
spite the importance of their work, real-world experimental results are not pre­
sented. Abdelzaher and Shin [1] extended Xu and Pamas' work in order to deal
with distributed real-time systems. This algorithm takes into account delays,
precedence relations imposed by interprocess communications, and considers
many possibilities for improving the scheduling lateness at the cost of com­
plexity.

In [8], Swaminathan and Chakrabarty address the problem of scheduling
tasks for minimum I/O energy consumption in hard real-time systems . The
work adopts a pre-runtime scheduling approach and employs pruning tech­
nique based on time and energy, as well as heuristic methods in order to
reduce the problem complexity. However, the proposed approach does not
support inter-task relation and does not take into account multiple processors.
AlEnawy and Aydin [2] introduce static (pre-runtime) and dynamic (runtime)
scheduling mechanisms for dealing with energy-constrained scheduling. The
proposed approach does not guarantee that all tasks will be executed, but only
selected tasks with high priority. Preemption is supported, but inter-task rela­
tions are not taken into account.

3. COMPUTATIONAL MODEL
Computational model syntax is given by a time Petri net [6], and its se­

mantics by a timed labeled transition system. A time Petri net (TPN) is a
bipartite directed graph represented by a tuple V= (P, T, F, W, mo, /) . P
(places) and T (transitions) are non-empty disjoint sets of nodes. The edges
are represented by F C (P x T) U (T x P). VK : P ^ N represents the
weight of the edges. A TPN marking rrii is a vector rrii G N ' ^ ' , and mo is
the initial marking. / : T —> N x N represents the timing constraints, where

From Model-Driven Design to Resource Management for Distributed Embedded Systems 257

I{t) = [EFT[t),LFT(t)) Vt G T, EFT{t) < LFT{t), EFT{t) is the
Earliest Firing Time, and LFT{t) is the Latest Firing Time.

An extended time Petri net with energy and priorities is represented by Vs =
{V, £, TT). V is the underlying time Petri net, £:: T -^ R+ U {0} is a function
that assigns transitions to energy consumption values, and TT : T —> N is a
priority function.

A set of enabled transitions is denoted by: ET{rni) = {t G T | mi{pj) >
W{pj^t)}, ^pj G P, The time elapsed, since the respective transition en­
abling, is denoted by a clock vector ci G N'^-^^"^*)!. The dynamic firing
interval (Joify) is dynamically modified whenever the respective clock vari­
able c{t) is incremented, and t does not fire. /ip(t) is computed as follows:
I^{t) = {DLB{t),DUB{t)), where DLB(t) = max{Q,EFT{t) - c{t)),
DUB{t) = LFT{t) - c(t), DLB{t) is the Dynamic Lower Bound, and
DLB{t) is the Dynamic Upper Bound.

Let Ve be a time Petri net, C be the set of all clock vectors in Vs, and M^
be the set of reachable markings of P^;. The set of states 5 ofVs is given by
5 C (M X N I ^ ^ (^) I X M), that is, a single state is defined by a triple (m, c, e),
where m is a marking, c is its respective clock vector for ET{m), and e is the
accumulated energy consumption up to this state.

FT{s) is the set of fireable transitions at state 5 defined by: FT{s, Cmax) =
{ti G ET{m) I (e < e^ax)A (7r(t̂) = min(7r(tfc))A {DLB{ti) < mm{DUB{tk)))
, ytk G ET{m)}. ThQfiring domain for t at state 5, is defined by the interval:
FDs{t) = [DLB{t),mm{DUB(tk)% Vt̂ G ET{m),

A timed labeled transition system (TLTS) is a quadruple C= {S, E, -^, 5o),
where 5 is a finite set of states, S is an alphabet of labels representing actions,
-> C 5 X S X 5 is the transition relation, and 5o G 5 is the initial state.

The semantics of a TPN V is defined by associating a TLTS £ p = (5, S, ^ ,
5o): (i) S is the set of states of 7̂ ; (ii) E C (T x N) is a set of actions labeled
with (t, 6) corresponding to the firing of a firable transition (t) at time (6) in the
firing interval FD{t), \/s G S; (iii) -^ C S' x S x 5 is the transition relation;
(iv) So is the initial state of P .

4. SPECIFICATION MODEL
Let T be the set of tasks in a system. A periodic task is defined by r̂ =

{phi^ Ti, Ci^ di^pi, proci), where phi is the initial phase; r̂ is the release time;
Ci is the worst case computation time required for execution of task r ;̂ di is the
deadline; pi is the period; and proci is the processor allocated to such task. A
task is classified as sporadic if it can be randomly activated, but the minimum
period between two activations is known. Pre-runtime scheduling can only
schedule periodic tasks. However, Mok [7] has proposed a translation from
sporadic to periodic tasks. A task Ti precedes task TJ, if TJ can only start exe-

258 From Model-Driven Design to Resource Management for Distributed Embedded Systems

cuting after r̂ has finished. This work considers that communication between
tasks allocated to the same processor is treated as a precedence relation. A task
Ti excludes task TJ, if no execution of TJ can start while task r̂ is executing. If
it is considered a single processor, then task r̂ could not be preempted by task

When adopting a multiprocessing environment, all inter-processor commu­
nications have to be taken into account, since these communications affect the
system predictability. A inter-processor communication is represented by a
special task, namely, communication task, which is described as follows. Let
fim G A^ be a communication task defined by fim = ('̂ z? TJ, dm, busm), where
r̂ G T is the sending task, TJ ET is the receiving task, ctm is the worst case
communication time, busm G ;B is the bus, where B is the set of buses, and
proci 7̂ procj.

5- MODELING REAL-TIME SYSTEMS
In this work, the proposed modeling adopts a formal method for describing

systems with timing constraints. The proposed modeling applies composition
rules on building blocks models. For lacking of space, this section aims to
present just an overview. For more details the reader is referred to [3].

5.1 TASKS MODELING
The considered building blocks are: (i) Fork; (ii) Join; (iii) Periodic Task

Arrival; (iv) Deadline Checking; (v) Non-preemptive Task Structure; (vi) Pre­
emptive Task Structure; (vii) Resources; and (viii) Inter-Processor Communi­
cation. The blocks are summarized as follows: a) Fork Block. Let us suppose
that the system has n tasks. The fork block is responsible for starting all tasks
in the system. This block models the creation of n concurrent tasks, b) Join
Block. Usually, concurrent activities need to synchronize with each other. The
join block execution states that all tasks in the system have concluded their
execution in the schedule period, c) Periodic Task Arrival Block. This block
models the periodic invocation for all task instances in the schedule period
(Ps)' d) Deadline Checking Block. The proposed modeling method uses
elementary net structures to capture deadline missing. The scheduling algo­
rithm (Figure 5) must eliminate states that represent undesirable situations like
this one. e) Task Structure Block. The task structure may implement ei­
ther preemptive or non-preemptive scheduling methods. Considering a non-
preemptive method, the processor is just released after the entire computation
to be finished. The preemptive method implies that a task are implicitly split
into all possible subtasks, where the computation time of each subtask is ex­
actly equal to one task time unit (TTU). g) Resource Block. The resources
modelled are processors (pproci) and buses (pbusj' An individual resource is

From Model-Driven Design to Resource Management for Distributed Embedded Systems 259

represented by a single place. The presence of a token in a resource place
indicates the availability of this resource.

Figure 1 depicts a Petri net model considering a specification composed of
two non-preemptive tasks: TQ = (0,0,2,7,8, PI) and n = (0,2,2,6,6, PI) .

V t ' O O VJo{7 7 tpcr(CO]

Arr -vc t i D«acil„n« rh»=k3.r<j

Figure 1. An example considering two tasks.

h) Inter-processor Communication Block. In this work, all inter-processor
communications are treated as communication tasks, and message-passing
paradigm is adopted. Additionally, the proposed approach for inter-processor
communication considers that: (a) after the execution of the sending task, the
message transmission is performed; (b) the receiving task can only execute
after receiving the complete message; (c) both the sending and receiving pro­
cessors are ready in the beginning of the communication. In other words, when
the sender is transmitting the data, the receiver is prepared at the same moment
for getting such data. This mechanism may be interpreted as a synchronous
communication. Since interrupts may affect the system predictability, the pro­
posed approach considers polling rather than interrupt handling to implement
the receive operation; (d) point-to-point communication (or unicasting); (f)
buses are reliable; (g) before communication takes place, the bus and, both
sending and receiving processors have to be granted; and (h) communication
time is annotated in the respective communication transition.

Figure 2 depicts the inter-processor communication building block, tg})..
represents the granting of the sending processor, the receiving processor and
the bus. tsendij represents both the message sending and receiving. It is anno­
tated with timing constraint specification, in this case, ctm (worst-case com­
munication time) of the respective communication task fim ^ M. After the
communication, both processors and the bus are released (tcommij)- Pwgbij
represents the waiting for bus and processors granting, p^sij indicates that the
processors are ready to communicate. Pcomaj indicates that the communica­
tion was concluded. Lastly, Prbufij represents the receiving buffer.

260 From Model-Driven Design to Resource Management for Distributed Embedded Systems

|tgb^{0.0] tsend^fcm,, cm^

i 'PbuSk^

6>{H5)-[>eHhe^$>H3
Figure 2. Building block. Figure 3. Modeling example.

Figure 3 applies the building block inter-processor communication for mod­
eling the sending and receiving tasks r̂ and TJ, respectively. It is worth observ­
ing that task TJ has a refined place in order to consume the buffered message.
More specifically, the place p^^g. is substituted for the sequence {jprecij» Ueaj ̂
Pwgj)'

5.2 DISPATCHER OVERHEAD MODELING
The dispatcher overhead is captured in the grant-processor transition. When

the task is non-preemptive, the timing interval of the grant-processor transition
corresponds to the worst case execution time of the dispatcher. Since this is
a simple solution, in the following presentation, the dispatcher overhead only
considers preemptive tasks. When the task is preemptive, the model is slightly
more complex. In this case, the proposed modeling adopts the TPN with pri­
orities.

The proposed model considers two grant-processor transitions: grant-
processor-with-overhead (tguj.) and grant-processor-without-overhead {tgwoi)^
As it can be seen in Figure 4, the timing interval ([a, ô]) for transition tgyj.
models such timing overhead. Place PprockTi states that task r̂ was the last
executed task by the processor prock. The dispatcher overhead is considered
in two situations: (1) when the next task to use the processor is different from
the task that used the processor before; or (2) when a task instance ends its
execution. The first situation is represented by the place PprockTi^ where if
such place is marked, it implies that the processor was lastly allocated to task
Ti. However, the second situation needs an explanation. Supposing that a task
instance i of task TJ ends its execution, and the following task to be executed

From Model-Driven Design to Resource Management for Distributed Embedded Systems 261

is the task instance z + 1 of the same task TJ. In this case, although the two
instances are from the same task, the dispatcher caUing is mandatory. As pre­
sented below, for solving this problem the model consider two final transitions,
one that removes the marking in place PprockTi and the other that does not.

In spite of this block may seem complicated, it is worth noting that this
modeling is performed automatically by a tool. For more details, the interested
reader is referred to [3].

PprocicJni, PprtJCKTi

Pwti Vj Pwgj

Figure 4- Building block dispatcher overhead.

6. ENERGY CONSUMPTION
Considering the Petri net task model, system energy consumption is associ­

ated with transitions representing dispatcher overhead (tgw), task computation
(tc), and message transmission {tsend)- Taking into account preemptive tasks,
the energy consumption value of each computation time unit is equal to Ei/ci,
where Q is the worst-case computation time (WCET) and Ei is the worst-case
energy consumption of a task r .̂ Additionally, it is worth stating that the en­
ergy consumption value associated with tsend represents the sum of energy
consumption values for sending and receiving the respective message.

The energy consumption for the dispatcher, the execution of tasks, and each
message exchange must be known beforehand. In this work, the values were
measured through a real prototype. The sum of energy dissipated in dispatcher,
fired computation, and message transmission transitions results the total energy
consumed during an execution of a schedule period.

The usage of the pre-runtime scheduler improves the accuracy of timing and
energy consumption estimation. On the other hand, runtime approach cannot
assure such an accuracy, since unpredictability of tasks arrival leads to more
context-switching, increasing the energy consumption substantially.

262 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The proposed method does not substitute other Lower-Power and Power-
Aware techniques (e.g. dynamic voltage-scaling). Instead, the proposed method
is a complement to such techniques, since the scheduling synthesis algorithm
avoids unnecessary context-switching between tasks. Therefore, the generated
schedule contains optimizations in terms of energy consumption,

7. P R E - R U N T I M E SCHEDULING
SYNTHESIS

This section shows a description of how to minimize the state space size,
and the algorithm that implements the proposed method.

Minimizing State Space Size. The analysis based on the interleaving
of actions is the fundamental point to be considered when analyzing state space
explosion problem. Thus, the analysis of n concurrent actions has to verify
all n\ interleaving possibilities, unless there are dependencies between these
actions. This work proposes three ways for minimizing the state space size:

Modeling. The proposed method models dependencies between actions ex­
plicitly. Partial-Order. If actions can be executed in any order, such that the
system always reaches the same state, these actions are independent. In other
words, it does not matter in which order these are executed [4]. Independent
actions are those that do not disable any other action, such as: arrival, release,
precedence, processor releasing, and so on. This reduction method proposes
to give a different choice-priority level for each class of independent activities.
The dependent activities, \\kQ processor granting, have lowest choice-priority.
Therefore, when changing from one state to another state, it is sufficient to
analyze the class with highest choice-priority and pruning the other ones. Re­
moving Undesirable States. Section 5.1 presents how to model undesirable
error states, for instance, states that represent missed deadlines. The method
proposed is of interest for schedules that do not reach any of these undesirable
states. When generating the TLTS, transitions leading to undesirable error
states have to be discarded.

Pre-Runtime Scheduling Algorithm. The algorithm adopted in
this work is a depth-first search method on a TLTS. So, the TLTS is partially
generated, according to the need. The stop criterion is obtained whenever
the desirable final marking M^ is reached. For more information about this
algorithm the interested reader is referred to [3].

8. CASE STUDY
In order to show the practical usability of the proposed approach in more de­

tails, a pulse-oximeter [5] is used as a case study. This equipment is responsible

From Model-Driven Design to Resource Management for Distributed Embedded Systems 263

1 s c h e d u l i n g - s y n t h e s i s (S,M^,TPN, emax)
2 {
3 i f (S.M = M^) r e t u r n TRUE;
4 t a g { S) ;
5 PT = pruning(firable{5,emax));
6 if {|PT| = 0) return FALSE;
7 for each {{t^O) £ PT) {
8 S'= fire{S, t, 6) ;
9 if (untagged(S') A
10 scheduling-synthesis iS' ,M^ ,'J:FN,emax)) {
11 add-in-trans-system {S,S',t,^);
12 return TRUE;
13 }
14 }
15 r e t u r n FALSE;
16 }

Figure 5. Scheduling synthesis algorithm.

for measuring the oxygen saturation in the blood system using a non-invasive
method. A pulse-oximeter may be used in many circumstances, like checking
whether the oxygen saturation is lower or not than the acceptable, when a pa­
tient is sedated with anesthetics for a surgical procedure. This equipment is
widely used in center care units (CCU).

For the sake of this paper, Table 1 shows the pulse oximeter task specifi­
cation. In addition, the intertask relations are TEI PRECEDES TE2, TE2 PRECEDES

TE3, TE3 PRECEDES TE4, TAl PRECEDES TA2, TA2 PRECEDES TA3, TAB PRECEDES TA4, TA4

PRECEDES TA5, TA5 PRECEDES TA6, TA6 PRECEDES TA7, TA7 PRECEDES TA8. All tasks

are preemptive. The dispatcher overhead is 200 microseconds and its respec­
tive worst-case energy consumption is 3958166,22 nJ. For this case study,
the task time unit (TTU) adopted is 100 microseconds and the schedule energy
constraint is 2 J .

Using the proposed approach, a feasible schedule was found in 45.9980
seconds, after visiting 42135 states. Due to lack of space, neither the Petri net
model nor the found schedule is shown. The energy used by the found schedule
totalizes 1,794,314,752.32 nJ {= 1.795 J). For this example, the scheduling
algorithm found a schedule without any context-switching. To conclude, the
scheduling synthesis algorithm was executed on a AMD Duron 1200 Mhz, 256
MB RAM, OS Linux, and compiler GCC 3.3.2.

9. CONCLUSIONS
This paper proposed a pre-runtime scheduling approach considering energy

and timing constraints for embedded hard real-time systems with multiple pro­
cessors. Predictability is an important concern when considering time-critical
systems. The scheduling approach presented guarantees that all critical tasks
meet their deadlines and the schedule satisfies the energy constraint. In spite
of the analysis technique (i.e. state space exploration) is not new, to the best
of our present knowledge, there is no similar work reported that uses formal

264 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Table 1. Task specification for the pulse Oximeter

TasklD r c
TEl ••
TE2
TE3
TE4
TE5
TAl
TA2
TA3
TA4
TA5
TA6
TA7
TA8
rci TC2
TC3
TC4
TC5
TC6
TC7
Ml

— 0 41
37141
576 41
947 41

0 45
0 41

14150
19141
323 50
382 41
523 50
573 41
714 50
764 60

— a "
1000
1000
1000
1000
2000
5000
5000
5000
5000
5000
5000
5000
5000
5000

. 0 50 10000
0 50 10000

764 45 10000
0 90 10000

p proc/bus from to Energy |
••"2500 PI

2500 PI
2500 PI
2500 PI
2500 PI

16000 Fl
16000 PI
16000 PI
16000 PI
16000 PI
16000 PI
16000 PI
16000 PI
16000 P2
16000 P2
16000 P2
16000 P2
16000 P2

0 90 10000 160000 P2
0 90 10000
- 7 -

80000 P2
- busl

- - 8576,79 nJj
- 52,48 n J
- 8576.79 nj\

52,48 n J
- 222,30 n J 1

55j6nJ
222,50 n J
55,76 n J
122,50 n J

- 55,16 nJ
222,50 nJ
55,16 n J

- 222,50 nJ
- 430,2 nJ
_ 444,00 nJ

n\l,5nJ
935,1 nJ
935,1 nJ
7089,3 nJ
935,1 nJ

TAB TCI 879^2 nJ

methods for modeling time-critical systems with energy constraints, considers
arbitrary precedence/exclusion relations, and finds pre-runtime schedules. As
future work, it is proposed to generate automatically the system source code
from a feasible schedule, meeting not only timing constraints but also energy
constraints.

REFERENCES
[1] T. Abdelzaher and K. Shin. Combined task and message scheduling in distributed real-time

systems. IEEE Trans. Parallel Distributed Systems, 10(11):1179-1191, Nov 1999.
[2] T. A. AlEnawy and H. Aydin. On energy-constrained real-time scheduling. Proceedings

of the 16th EuroMicro Conference on Real-Time Systems (ECRTS 04), June 2004.
[3] R. Barreto. A Time Petri Net-Based Methodology for Embedded Hard Real-Time Software

Synthesis. PhD Thesis, Centro de Informatica - UFPE, April 2005.
[4] P. Godefi"oid. Partial Order Methods for the Verification of Concurrent Systems. PhD

Thesis, University of Liege, Nov. 1994.
[5] M. Nogueira Oliveira Junior. Desenvolvimento de Um Prototipo para a Medida Nao Inva-

siva da Saturagao Arterial de Oxigenio em Humanos - Oximetro de Pulso (inPortuguese).
MSc Thesis, Departamento de Biofisica e Radiobiologia, Universidade Federal de Pemam-
buco, August 1998.

[6] P. Merlin and D. J. Faber. Recoverability of communication protocols. IEEE Trans. Comm.,
24(9):1036-1043, Sep. 1976.

[7] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time
Environment. PhD Thesis, MIT, May 1983.

[8] V. Swaminathan and K. Chakrabarty. Pruning-based, energy-optimal, deterministic i/o
device scheduling for hard real-time systems. ACM Trans. Embedded Comput. Syst. 4(1),
pages 141-167, 2005.

[9] J. Xu and D. Pamas. Scheduling processes with release times, deadlines, precedence, and
exclusion relations. IEEE Trans. Soft. Engineering, 16(3):360-369, March 1990.

A HIERARCHICAL APPROACH FOR POWER
MANAGEMENT ON MOBILE EMBEDDED
SYSTEMS*

Arliones Stevert Hoeller Junior, Lucas Francisco Wanner
and Antonio Augusto Frohlich
Laboratory for Software and Hardware Integration
Federal University of Santa Catarina
PO Box 476 - 88049-900 - Florianopolis, SC, Brazil
{arliones.lucas.guto } @lisha.ufsc.br

Abstract Mobile Embedded Systems usually are simple, battery-powered systems with
resource limitations. In some situations, their batteries lifetime becomes a pri­
mordial factor for reliability. Because of this, it is very important to handle
power consumption of such devices in a non-restrictive and low-overhead way.
This power management cannot restrict the wide variety of different low-power
modes such devices often feature, thus allowing a wider system configurabili­
ty. However, once in such devices processing and memory are often scarce, the
power management strategy cannot compromise large amounts of system re­
sources. In this paper we propose a simplified interface for power management
of software and hardware components. The approach is based on the hierar­
chical organization of such components in a component-based operating system
and allows power management of system components without the need for costly
techniques or strategies. A case study including real implementations of system
and application is presented to evaluate the technique and shows energy saves of
almost 40% by just allowing applications to express when certain components
are not being used.

Keywords: Power management, energy consumption management, embedded systems, mo­
bile computing, low-power computing, embedded operating systems.

!• INTRODUCTION
In a mobile, battery-powered embedded system, battery lifetime is a pri­

mordial factor for reliability, thus making power management a very important

*This work was partially supported by FINEP (Financiadora de Estudos e Projetos) grant no. 01.04.0903.00.

Please use the following format when citing this chapter:

Hoeller, A.S., Jr., Wanner, L.F., Frohlich, A.A., 2006, in IFIP International Federation for Information Processing, Volume

225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm,

Kleinjoharm L., Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 265-274.

266 From Model-Driven Design to Resource Management for Distributed Embedded Systems

issue for those systems. Embedded systems hardware usually provides some
level of support for low-power operating modes. However, current software
methodologies, techniques and standards for power management often focus
on general purpose systems, where processing and memory overheads are
mostly insignificant. Although these techniques have shown good results [1]
[2] [3], they impose extra processing costs or require advanced hardware re­
sources, thus making them unusable in restricted embedded systems where
processing and memory are very scarce.

Power management standards such as APM and ACPI were created focusing
personal computers. These standards require either BIOS support or enough
memory and processing capabilities for running a power management virtual
machine. These requirements restrict their use to powerful embedded sys­
tems, which usually feature fast processors and large amounts of memory and
make use of interactive operating systems such as LiNUX and WINDOWS. The
Advanced Power Management (APM) design assumed that the BIOS might
make decisions regarding power consumption solely on monitoring the hard­
ware. The lack of control of the operating system over the power management
features of the BIOS, e. g., when the system will change power states, and
the missing information on the BIOS level about the characteristics and re­
quirements of the applications have been identified as the main drawbacks of
APM [4].

The most important and established power management interface for gen­
eral purpose computing systems is Advanced Configuration and Power Inter­
face (ACPl), released in 1996 as a replacement of the previous industry stan­
dard for power management. Advanced Power Management (APM). ACPI

identifies the operating system as the entity which has comprehensive knowl­
edge about the hardware components and their usage and about the characteris­
tics and behavior of the applications which access these hardware components.
In contrast to APM, the operating system has full control over the operating
modes and power management features of the hardware. ACPI is designed to
not rely on the firmware and the exact implementation of the routines to ac­
cess the hardware. The key to achieve this goal is the use of the ACPI source
language (ASL), which is compiled to the machine language AML, similar to
JAVA bytecode. Execution of the AML code is done by an interpreter in the op­
erating system, inside a sandbox. This approach has several advantages: The
interpretation of AML code prevents erroneous or malicious code to harm the
system. AML code abstracts from the operating system as well as the platform
or architecture it is executed on, so the burden of supporting drivers for sev­
eral different operating systems or architectures is released from the hardware
manufacturers [5]. However, ACPI abstracts the operating modes of the hard­
ware in a way which may be too restrictive for embedded systems. The four
device power modes defined by ACPI (DO - D3) may be too coarse grained for

From Model-Driven Design to Resource Management for Distributed Embedded Systems 267

embedded applications, once most components used in such systems usually
feature several low-power operating modes. Furthermore, the use of an in­
terpreted language to access hardware components, though having substantial
advantages, poses requirements on the system which by far exceed the limited
resources of most embedded devices.

In addition to these standards, several techniques were developed to allow
an accurate control of power consumption for individual subsystems such as
CPU, memory and I/O devices. These techniques use several strategies to de­
fine the best trade-off between performance and power consumption in each
situation. For example, Dynamic Voltage and Frequency Scaling (DVFS) [6]
is a strategy to slow down the CPU frequency or reduce its voltage supply and,
consequently, save energy. Other strategies use event counter registers avali-
able in some architectures to identify which parts of the hardware are in use
and how these parts must behave to satisfy the system needs in terms of power
consumption [1]. Although good results have been achieved, heuristics used to
dynamicly guide the application of such techniques also impose extra process­
ing costs or require extra hardware resources, thus becoming mostly unusable
in deeply embedded systems.

In order to enable power management in embedded systems without incur­
ring excessive overhead, we propose a simple and uniform interface for power
management of software and hardware components. The mechanism behind
this interface is based on the hierarchical organization of software and hard­
ware components, and allows consistent power state migration of individual
components, subsystems or the whole system. A case study is presented to
demonstrate the use of the technique on a real implementation of this strategy
in our component-based embedded operating system, EPOS.

This paper is organized as follows. Section 2 introduces the system power
management interface for software and hardware components. Section 3 pre­
sents an application to exemplify the use of the power management interface.
Section 4 gives an overview of related work. Section 5 finalizes.

2. POWER MANAGEMENT INTERFACE FOR
SOFTWARE AND HARDWARE COMPONENTS

Power management policies in operating systems such as LINUX and WIN­

DOWS dynamically analyze the behavior of applications and the system in
order to determine when a hardware component should change its operating
mode through an ACPl-compliant interface. However, most embedded sys­
tems cannot afford the overhead of such dynamic power management strate­
gies. Furthermore, considering that a deeply embedded system is usually com­
prised by a single application, the best place to determine a power management
strategy is in the application itself

268 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Embedded Parallel Operating System (E P O S) is a component-based, appli­
cation-oriented operating system. In EPOS, high-level system abstractions,
such as F i l e , T h r e a d , S c h e d u l e r and Communica tor , are exported to
applications through a component interface, and interact with the underlying
hardware through hardware mediators. Through the system component hier­
archy, each system abstraction and hardware mediator knows the state of its
resources.

Through the definition of an uniform power management interface for sys­
tem components, we allow the application programmer to change the power
consumption status of each component individually. The interface is com­
prised by two methods: one to verify the component power state (power ())
and other to change it (power (u s e r _ d e s i r e d _ s t a t u s)) . The mecha­
nism behind this interface makes use of the hierarchical organization of soft­
ware and hardware components in EPOS to allow consistent state migration
among system operating modes.

Low-power hardware typically used in embedded systems often present a
large set of operating modes. Enabling the use of all available operating modes
is likely to enhance the system configurability, but might also increase the ap­
plication complexity when managing the system power consumption. In order
to solve this issue, we established a set of high-level definitions for the power
consumption states, which will ease the application programmer from having
to understand every hardware component in the system. As in ACPI [5], four
universal modes were defined: FULL, LIGHT, STANDBY and OFF. These may
be extended by system components whenever needed. When the device is fiilly
operational, it is in the FULL state. The LIGHT state will consume less energy,
but will grant the proper behavior of the device, it will probably incur in per­
formance loss. In STANDBY, the device will have its behavior changed. This
state will probably be a sleep mode. When OFF the device is switched off or
switched to its smallest energy consumption state.

As embedded applications grow in complexity they make use of a large
number of individual system components. As such, it may be impracticable
for application programmers to take care of the power consumption of each
component individually. To solve this problem we allow applications to man­
age individual subsystems or the system as a whole.

In order to exemplify how an entire subsystem may change its operating
mode, we present a brief description of the EPOS communication subsystem.
This subsystem is shown in Figure 1 and is basically comprised by four fam­
ilies of components: Communica tor , C h a n n e l , Ne twork and NIC. NIC
is a family of hardware mediators, which abstracts the hardware device to the
Ne twork family. Ne twork is responsible for abstracting the network (e. g.,
Ethernet, CAN, ATM, etc). C h a n n e l is responsible for inter-process commu­
nication and uses Ne twork to build a logical communication channel through

From Model-Driven Design to Resource Management for Distributed Embedded Systems 269

which messages are exchanged. Finally, a Communica to r is an end-point
for communications.

1
Commu­
nicator

power(..)

' power(..)

Application

1
Channel

power(..)
->

1
Network

1 power(

NIC

Figure 1. EPOS communication subsystem.

To grant portability of application code, the application programmer is sug­
gested to use higher level abstractions, such as members of the Communica­
t o r family in the communication subsystem. In this context, our power man­
agement strategy must provide ways for the application programmer to change
the power state of a communicator and this component must consistently prop­
agate power state migrations to all software and hardware components in its
hierarchy. For example, an implementation of a Communica to r will use
a C h a n n e l and probably an A la rm component to handle time-outs in the
communication protocol. When the application executes a command asking
the Communica to r component to switch the operating mode to OFF, the
Communica to r will finish all started communications by flushing its buffers
and waiting for all acknowledgment signals before shutting down other com­
ponents in its hierarchy.

System-wide power management actions are handled by the S y s t e m com­
ponent in EPOS. The S y s t e m component contains references to all subsys­
tems used by the application. Thus, if an application wants to switch the whole
system to a different operating mode, it may use the interface on the S y s t e m
component, which will propagate this request to all subsystems.

Figure 2 illustrates the system-wide power management interface may be
accessed. It shows the components instantiated for a hypothetical sensing sys­
tem. In this instance, the system is comprised by four components: the CPU, a
Communica tor , a S e n s o r and the S y s t e m component. Each component
has its own interface, which may be called by the application at anytime, and a
set of power consumption levels. If the application wants to switch a specific
subsystem to another power consumption level, it can access its components
directly. If it wants to modify the whole system power consumption level, it
may access the S y s t e m component, which will propagate the modification
through the system.

The main challenge identified on the development of power-aware compo­
nents was the need for consistent operating mode propagation. This propa-

270 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Application

1 CC1000 RF Status
i powef():Status 0 = FULL
1 power(Status) 1

1 3 = LIGHT

i ^
i 5
i 6
i 7 = STANDBY
i 8 = OfF

AVR CPU
poweft);Status
powertStatus)

Status
0 = FULL

3 = LIGHT

5 = STANDBY
6 = OFF

ERT-J1VR103J
power():SUtus
power(Status)

Status 1
0 = FULL 1
1 = OFF 1

Operating System
Abstractions

Intermediate Components
(Other abstractions or
hardware mediators)

> Some hardware mediators

Figure 2. Accessing the power management interface.

gation must guarantee that no data will be lost and no unfinished actions will
be interrupted. By letting each component handle its responsibilities (e. g., a
Communicator flushing all its buffers and waiting for all acknowledgment
signals) before propagating the power state propagation (e. g. shutting down
Alarm and Channel), it is possible to guarantee consistent operating mode
propagation of an entire subsystem.

In this strategy, the application programmer is expected to specify in the
application when certain components aren't being used. It is done by issuing
"power" commands to individual components, subsystems or the system. In
order to free the application programmer from having to wake-up these com­
ponents, such components are implemented to automatically switch on when
a call is done to any of their methods. When this happens, components are
switched to the their previous states or to the less energy spendable power state
in which is possible to perform the required actions.

3. CASE STUDY: THERMOMETER
In order to demonstrate the usability of the defined interface, a thermometer

was implemented using a simple prototype with a 10 kilo ohm thermistor con­
nected to an analog-to-digital converter channel of an Atmel ATMegal6 [7]
microcontroller. The embedded application is presented in Figure 3. This ap­
plication uses four system components: System, Alarm, Thermometer
(member of the S e n t i e n t family [8]) and UART. The EPOS hierarchical or-

From Model-Driven Design to Resource Management for Distributed Embedded Systems 271

ganization binds, for example, the Thermometer abstraction with the micro­
controller's analog-to-digital converter hardware mediator.

System sys;
Thermometer therm;
UART uar t ;

void alarm_handler 0 {
uar t . put (therm . get ()) ;

}

int main() {
Hand I er_Fu notion handler(&alarm_handler);
Alarm alarm(1000000, &handler) ;

whlle(1) {
sys . power (STANDBY);

}
}

Figure 3. The Thermometer application.

When the application starts, all used components are initialized by their
constructors and a periodical event is registered with the Alarm component.
The power state of the whole system is then switched to STANDBY through a
power command issued to System. When this happens, the System com­
ponent switches all system components, except for the Alarm, to sleeping
modes. The Alarm component uses a timer to generate interrupts at a given
frequency. Each time an interrupt occurs, the CPU wakes-up and the Alarm
component handles all registered events currently due for execution. In this
example, every two seconds the Thermometer and UART components are
automatically switched on when accessed and a temperature reading is for­
warded through the serial port. When all registered events are handled, the ap­
plication continues normal execution on a loop which puts the System back
in the STANDBY mode.

The graphics presented in Figure 4 show energy measurements for this
application with and without system power management capabilities. Both
graphics show the results of a mean between ten measurements. Each mea­
surement was ten seconds long. In graphic (a) is noticed that system power
consumption oscillates between 2.5 and 4 Watts. In graphic (b), the oscillation
stays between 2 and 2.7 Watts. By calculating the integral of these graphics
is possible to obtain energy consumption for these system instances during the
time it was running. The results were 3.96 Joules for (a) and 2.45 Joules for (b),
i.e., the system saved 38.1% of energy without compromising its functionality.

272 From Model-Driven Design to Resource Management for Distributed Embedded Systems

I

0 2 4 r> 8 JO

Figure 4. Power consumption for the Thermometer application without (a) with (b) power
management.

4. RELATED WORK
TINYOS and MANTIS are embedded operating systems focused on wire­

less sensor networks. In these systems energy-awareness is mostly based on
low-power MACs [9, 10] and multi-hop routing power scheduling [11, 12].
This makes sense in the context of wireless sensor networks, for a significant
amount of energy is spent on the communication mechanism. Although this
approach shows expressive results, it often focuses on the development of low-
power components instead of power-aware ones. Another drawback in these
systems is the lack of configurability and standardization of a configuration
interface.

SPEU (System Properties Estimation with UML) [13] is an optimization tool
which takes into account performance, system footprint and energy constraints
to generate either a performance-efficient, size-efficient or energy-efficient sys­
tem. These informations are extracted from an UML model of the embedded
application. This model must include class and sequence diagrams, so the tool
can estimate performance, code-size and energy consumption of each appli­
cation. The generated system is a Java software and is intended to run over
the FEMTOJAVA [14] soft-core processor. Once SPEU only takes into account
the UML diagrams, its estimations show errors as big as 85%, making it only
useful to compare different design decisions. It also lacks configurability, once
the optimization process is only guided by one variable, i. e., if the applica­
tion programmer's design choice is performance, the system will never enter
power-aware states, even if it is not using certain devices. This certainly limits
its use in real-world applications.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 273

IMPACCT (which stands for Integrated Management of Power-Aware Com­
puting and Communication Technologies) [15] is a system-level tool for ex­
ploring power/performance tradeoffs by means of power-aware scheduling and
architectural configuration. The idea behind the IMPACCT system is the em­
bedded application analysis through a timing simulation to define the widest
possible dynamic range of power/performance tradeoffs and the power mode
in which each component should operate over time. This tool chain also in­
cludes a power-aware scheduler implementation for hard real-time systems.
IMPACCT tools deliver a very interesting way to configure the power-aware
scheduler and the power-modes of an embedded system, but is far from deliv­
ering a fast prototyping environment.

5. CONCLUSION
In this paper we presented an strategy to enable application-driven power

management in deeply embedded systems. In order to achieve this goal we
allowed application programmers to express when certain components are not
being used. This is expressed through a simple power management interface
which allows power mode switching of system components, subsystems or the
system as a whole, making all combinations of components operating modes
feasible. By using the hierarchical architecture by which system components
are organized in our system, effective power management was achieved for
deeply embedded systems without the need for costly techniques or strategies,
thus incurring in no unnecessary processing or memory overheads.

A case study using a 8-bit microcontroller to monitor temperature in an
indoor ambient showed that almost 40% of energy could be saved when using
this strategy.

ACKNOWLEDGMENTS
Authors would like to thank Augusto Bom de Oliveira, Hugo Marcondes

and Rafael Cancian from LISHA for very helpful discussion. We also would
like to thank the Department of Computer Sciences 4 at Friedrich-Alexander
Universitat (Germany), its head Prof Schroder-Preikschat and Andreas Weis-
sel for providing equipment and some advise for this work.

REFERENCES

[1] Bellosa, Frank, Weissel, Andreas, Waitz, Martin, and Kellner, Simon (2003). Event-driven
energy accounting for dynamic thermal management. In Proceedings of the Workshop
on Compilers and Operating Systems for Low Power, pages 04-1 - 04-10, New Orleans,
USA.

[2] Sorber, Jacob, Banerjee, Nilanjan, Comer, Mark D., and Rollins, Sami (2005). Turducken:
hierarchical power management for mobile devices. In MobiSys '05: Proceedings of the

274 From Model-Driven Design to Resource Management for Distributed Embedded Systems

3rd international conference on Mobile systems, applications, and services, pages 2 6 1 -
274, New York, NY, USA. ACM Press.

[3] Pering, T. and Broderson, R. (1998). Dynamic voltage scaling and the design of a low-
power microprocessor system. In Proceedings of the International Symposium on Com­
puter Architecture ISC A '98.

[4] Intel Corp. and Microsoft Corp. (1996). Advanced Power Management (APM) BIOS In­
terface Specification, 1.2 edition.

[5] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd., and
Toshiba Corp. (2004). Advanced Configuration and Power Interface Specification, 3.0
edition.

[6] Benini, Luca, Bogliolo, Alessandro, and Micheli, Giovanni De (1998). Dynamic power
management of electronic systems. In ICC AD '98: Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, pages 696-702, New York, NY, USA.
ACM Press.

[7] Atmel Corp. (2004). ATMegal6L Datasheet. San Jose, CA, 2466j edition.

[8] Wanner, Lucas Francisco, Junior, Arliones Stevert Hoeller, Polpeta, Fauze Valerio, and
Frohlich, Antonio Augusto (2005). Operating system support for handling heterogeneity
in wireless sensor networks. In Proceedings of the 10th IEEE International Conference on
Emerging Technologies and Factory Automation, Catania, Italy. IEEE.

[9] Polastre, Joseph, Szewczyk, Robert, Sharp, Cory, and Culler, David (2004). The mote
revolution: Low power wireless sensor network devices. In Proceedings of Hot Chips 16:
A Symposium on High Performance Chips.

[10] Sheth, Anmol and Han, Richard (2004). Shush: A mac protocol for transmit power con­
trolled wireless networks. Technical Report CU-CS-986-04, Department of Computer Sci­
ence, University of Colorado, Boulder.

[11] Hohlt, Barbara, Doherty, Lance, and Brewer, Eric (2004). Flexible power scheduling for
sensor networks. In Proceedings of The Third International Symposium on Information
Processing in Sensor Networks, pages 205-214, Berkley, USA. IEEE.

[12] Sheth, Anmol and Han, Richard (2003). Adaptive power control and selective radio ac­
tivation for low-power infrastructure-mode 802.11 lans. In Proceedings of the 23rd In­
ternational Conference on Distributed Computing Systems Workshops, pages 797-802,
Providence, USA. IEEE.

[13] da S. Oliveira, Marcion F., de Brisolara, Lisiane B., Carro, Luigi, and Wagner, Flavio R.
(2005). An embedded sw design exploration approach based on xml estimation tools. In
Rettberg, Achim, mauro C. Zanella, and Rammig, Franz J., editors, From Specification to
Embedded Systems Application, pages 45-54, Manaus, Brazil. IFIP, Springer.

[14] Ito, S.A., Carro, L., and Jacobi, R.P. (2001). Making Java work for microcontroller appli­
cations. IEEE Design and Test of Computers, 18(5): 100-110.

[15] Chou, Pai H., Liu, Jinfeng, Li, Dexin, and Bagherzadeh, Nader (2002). Impacct: Method­
ology and tools for power-aware embedded systems. DESIGN AUTOMATION FOR EM­
BEDDED SYSTEMS, Special Issue on Design Methodologies and Tools for Real-Time
Embedded Systems, 7(3):205-232.

