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Conclusions

Overview. In addition to summarizing the key points of the book,
this chapter attempts to establish a generic procedure (or “data flow”)
for the analysis of high-dimensional data. All methods used in the
previous chapters are also classified from several points of view. Next,
some guidelines are given for using the various methods. The chapter
ends by presenting some perspectives for future developments in the
field of nonlinear dimensionality reduction.

7.1 Summary of the book

The main motivations of this book are the analysis and comparison of various
DR methods, with particular attention paid to nonlinear ones. Dimensionality
reduction often plays an important role in the analysis, interpretation, and un-
derstanding of numerical data. In practice, dimensionality reduction can help
one to extract some information from arrays of numbers that would otherwise
remain useless because of their large size. To some extent, the goal consists of
enhancing the readability of data. This can be achieved by visualizing data in
charts, diagrams, plots, and other graphical representations.

7.1.1 The problem

As illustrated in Chapter [Il visualization becomes problematic once the di-
mensionality — the number of coordinates or simultaneous observations —
goes beyond three or four. Usual projections and perspective techniques al-
ready reach their limits for only three dimensions ! This suggests using other
methods to build low-dimensional representations of data. Beyond visualiza-
tion, dimensionality reduction is also justified from a theoretical point of
view by unexpected properties of high-dimensional spaces. In high dimen-
sions, usual mathematical objects like spheres and cubes behave strangely
and do not share the same nice properties as in the two- or three-dimensional
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cases. Other examples are the Euclidean norm, which is nearly useless in high-
dimensional spaces, and the intrinsic sparsity of high-dimensional spaces (the
“empty space phenomenon”). All those issues are usually called the “curse
of dimensionality” and must be taken into account when processing high-
dimensional data.

7.1.2 A basic solution

Historically, one of the first methods intended for the analysis of high-
dimensional data was principal component analysis (PCA), introduced in
Chapter 21 Starting from a data set in matrix form, and under some con-
ditions, this method is able to perform three essential tasks:

e Intrinsic dimensionality estimation. This consists in estimating the
(small) number of hidden parameters, called latent variables, that gener-
ated data.

e Dimensionality reduction. This consists in building a low-dimensional
representation of data (a projection), according to the estimated dimen-
sionality.

e Latent variable separation. This consists of a further transformation of
the low-dimensional representation, such that the latent variables appear
as mutually “independent” as possible.

Obviously, these are very desirable functionalities. Unfortunately, PCA re-
mains a rather basic method and suffers from many shortcomings. For ex-
ample, PCA assumes that observed variables are linear combinations of the
latent ones. According to this data model, PCA just yields a linear projec-
tion of the observed variables. Additionally, the latent variable separation is
achieved by simple decorrelation, explaining the quotes around the adjective
“independent” in the above list.

For more than seven decades, the limitations of PCA have motivated the
development of more powerful methods. Mainly two directions have been ex-
plored: namely, dimensionality reduction and latent variable separation.

7.1.3 Dimensionality reduction

Much work has been devoted to designing methods that are able to reduce the
data dimensionality in a nonlinear way, instead of merely projecting data with
a linear transformation. The first step in that direction was made by refor-
mulating the PCA as a distance-preserving method. This yielded the classical
metric multidimensional scaling (MDS) in the late 1930s (see Table [T1]). Al-
though this method remains linear, like PCA, it is the basis of numerous
nonlinear variants described in Chapter @ The most widely known ones are
undoubtedly nonmetric MDS and Sammon’s nonlinear mapping (published in
the late 1960s). Further optimizations are possible, by using stochastic tech-
niques, for example, as in curvilinear component analysis (CCA), published



7.1 Summary of the book 227

in the early 1990s. Besides this evolution toward more and more complex
algorithms, recent progress has been accomplished in the family of distance-
preserving methods by replacing the usual Euclidean distance with another
metric: the geodesic distance, introduced in the late 1990s. This particular
distance measure is especially well suited for dimensionality reduction. The
unfolding of nonlinear manifolds is made much easier with geodesic distances
than with Euclidean ones.

Geodesic distances, however, cannot be used as such, because they hide a
complex mathematical machinery that would create a heavy computational
burden in practical cases. Fortunately, geodesic distances may be approxi-
mated in a very elegant way by graph distances. To this end, it suffices to
connect neighboring points in the data set, in order to obtain a graph, and
then to compute the graph distances with Dijkstra’s algorithm [53], for in-
stance.

A simple change allows us to use graph distances instead of Euclidean ones
in classical distance-preserving methods. Doing so transforms metric MDS,
Sammon’s NLM and CCA in Isomap (1998), geodesic NLM (2002), and curvi-
linear distance analysis (2000), respectively. Comparisons on various examples
in Chapter [6] clearly show that the graph distance outperforms the traditional
Euclidean metric. Yet, in many cases and in spite of all its advantages, the
graph distance is not the panacea: it broadens the set of manifolds that can
easily be projected by distance preservation, but it does not help in all cases.
For that reason, the algorithm that manages the preservation of distances fully
keeps its importance in the dimensionality reduction process. This explains
why the flexibility of GNLM and CDA is welcome in difficult cases where
Isomap can fail.

Distance preservation is not the sole paradigm used for dimensionality
reduction. Topology preservation, introduced in Chapter [, is certainly more
powerful and appealing but also more difficult to implement. Actually, in order
to be usable, the concept of “topology” must be clearly defined; its translation
from theory to practice does not prove as straightforward as measuring a dis-
tance. Because of that difficulty, topology-preserving methods like Kohonen’s
self-organizing maps appeared later (in the early 1980s) than distance-based
methods. Other methods, like the generative topographic mapping (1995),
may be viewed as principled reformulations of the SOM, within a probabilis-
tic framework. More recent methods, like locally linear embedding (2000) and
Isotop (2002), attempt to overcome some limitations of the SOM.

In Chapter 5] methods are classified according to the way they model the
topology of the data set. Typically, this topology is encoded as neighborhood
relations between points, using a graph that connects the points, for instance.
The simplest solution consists of predefining those relations, without regards
to the available data, as it is done in an SOM and GTM. If data are taken
into account, the topology is said to be data-driven, like with LLE and Isotop.
While data-driven methods generally outperform SOMs for dimensionality
reduction purposes, the latter remains a reference tool for 2D visualization.
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ANN DR Method Author(s) & reference(s)
1901 PCA Pearson
1933 PCA Hotelling [92]
1938 classical metric MDS Young & Householder [208]
1943 formal neuron McCulloch & Pitts [137]
1946 PCA Karhunen [L07]
1948 PCA Lodve [I28]
1952 MDS Torgerson [I83]
1958 Perceptron Rosenblatt [I57]
1959 Shortest paths in a graph Dijkstra [53]
1962 nonmetric MDS Shepard [171]
1964 nonmetric MDS Kruskal [108]
1965 K-means (VQ) Forgy [61]
1967 K-means (VQ) MacQueen [61]
ISODATA (VQ) Ball & Hall [8]
1969 PP Kruskal
NLM (nonlinear MDS) Sammon
1969 Perceptron Minsky & Papert’s paper [I38]
1972 PP Kruskal [T10]
1973 SOM von der Malsburg [191]
1974 PP Friedman & Tukey [67]
1974 Back-propagation Werbos [201]
1980 LBG (VQ) Linde, Buzo & Gray [124]
1982 SOM (VQ & NLDR) Kohonen
1982 Hopfield network Hopfield
LLoyd (VQ) Lloyd [127)]
1984 Principal curves Hastie & Stuetzle [79] [80]
1085 Competitive learning (VQ) Rumelhart & Zipser [162] [163]
1986 Back-propagation & MLP Rumelhart, Hinton & Williams [I61]
BSS/ICA Jutten [99] [98], [T00]
1991 Autoassociative MLP Kramer [107] [T44) [183]
1992 “Neural” PCA Oja [145]
1993 VQP (NLM) Demartines & Hérault [46]
Autoassociative ANN DeMers & Cottrell [49]
1994 Local PCA Kambhatla & Leen [101]
1995 CCA (VQP) Demartines & Hérault [47] [48]
NLM with ANN Mao & Jain [134]
1996 KPCA Schélkopf, Smola & Miiller
GTM Bishop, Svensén & Williams [22] [23] [24]
1997 Normalized cut (spectral clustering) Shi & Malik [172] [199]
1998 Isomap Tenenbaum [179] [180]
2000 CDA (CCA) Lee & Verleysen [116l [120]
LLE Roweis & Saul [158]
2002 Isotop (MDS) Lee
LE Belkin & Niyogi [12] [13]
Spectral clustering Ng, Jordan & Weiss [L43)
Coordination of local linear models Roweis, Saul & Hinton
2003 HLLE Donoho & Grimes
2004 LPP He & Niyogi [B1]
SDE (MDS) Weinberger & Saul
2005 LMDS (CCA) Venna & Kaski
2006 Autoassociative ANN Hinton & Salakhutdinov

Table 7.1. Timeline of DR methods. Major steps in ANN history are given as
milestones. Spectral clustering has been added because of its tight relationship with
spectral DR methods.

7.1.4 Latent variable separation

Starting from PCA, the other direction that can be explored is latent variable
separation. The first step in that direction was made with projection pursuit
(PP; see Table [[1]) [109, 110} [67]. This technique, which is widely used in
exploratory data analysis, aims at finding “interesting” (linear) one- or two-
dimensional projections of a data set. Axes of these projections can then be
interpreted as latent variables. A more recent approach, initiated in the late
1980s by Jutten and Hérault [99, [98] [100], led to the flourishing development
of blind source separation (BSS) and independent component analysis (ICA).
These fields propose more recent but also more principled ways to tackle the
problem of latent variable separation. In contrast with PCA, BSS and ICA can
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go beyond variable decorrelation: most methods involve an objective function
that can be related to statistical independence.

In spite of its appealing elegance, latent variable separation does not fit
in the scope of this book. The reason is that most methods remain limited to
linear data models. Only GTM can be cast within that framework: it is one
of the rare NLDR methods that propose a latent variable model, i.e. one that
considers the observed variables to be functions of the latent ones. Most other
methods follow a more pragmatic strategy and work in the opposite direction,
by finding any set of variables that give a suitable low-dimensional represen-
tation of the observed variables, regardless of the true latent variables. It is
noteworthy, however, that GTM involves a nonlinear mapping and therefore
offers no guarantee of recovering the true latent variables either, despite its
more complex data model.

More information on projection pursuit can be found in [94 [66] [O7]. For
BSS and ICA, many details and references can be found in the excellent book
by Hyvérinen, Karhunen, and Oja [95].

7.1.5 Intrinsic dimensionality estimation

Finally, an important key to the success of both dimensionality reduction and
latent variable separation resides in the right estimation of the intrinsic di-
mensionality of data. This dimensionality indicates the minimal number of
variables or free parameters that are needed to describe the data set with-
out losing the information it conveys. The word “information” can be un-
derstood in many ways: it can be the variance in the context of PCA, for
instance. Within the framework of manifold learning, it can also be the mani-
fold “structure” or topology; finding the intrinsic dimensionality then amounts
to determining the underlying manifold dimensionality. Chapter [ reviews a
couple of classical methods that can estimate the intrinsic dimensionality of a
data set. A widely used approach consists of measuring the fractal dimension
of the data set. Several fractal dimensions exist: the most-known ones are
the correlation dimension and the box-counting dimension. These measures
come from subdomains of physics, where they are used to study dynamical
systems. Although they are often criticized in the physics literature, their
claimed shortcomings do not really matter within the framework of dimen-
sionality reduction. It is just useful to know that fractal dimensions tend to
underestimate the true dimensionality [174] and that noise may pollute the
estimation. But if the measure of the fractal dimension fails, then it is very
likely that the data set is insufficient or too noisy and that any attempt to
reduce the dimensionality will fail, too.

Other methods to estimate the intrinsic dimensionality are also reviewed
in Chapter Bl For example, some DR methods can also be used to estimate
the intrinsic dimensionality: they are run iteratively, with a decreasing target
dimension, until they fail. The intrinsic dimensionality may then be assumed
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to be equal to the smallest target dimension before failure. This is a “trial-
and-error” approach. Obviously, this way of estimating the dimensionality
largely depends on the method used to reduce the dimensionality. The result
may vary significantly just by changing the type of dimensionality reducer
(distance- or topology-preserving method, Euclidean or graph distance, etc.).
Moreover, the computational cost of repeating the dimensionality reduction
to obtain merely the dimensionality may rapidly become prohibitive. From
this point of view, methods that can build projections in an incremental way
(see Subsection 2X5T), such as PCA, Local PCA, Isomap, or SDE, appear as
the best compromise because a single run suffices to determine the projections
of all possible dimensionalities at once. In contrast with fractal dimensions,
the trial-and-error technique tends to overestimate the true intrinsic dimen-
sionality.

Section [34] compares various methods for the estimation of the intrinsic
dimensionality. The correlation dimension (or another fractal dimension) and
local PCA give the best results on the proposed data sets. Indeed, these meth-
ods are able to estimate the dimensionality on different scales (or resolutions)
and thus yield more informative results.

7.2 Data flow

This section proposes a generic data flow for the analysis of high-dimensional
data. Of course, the accent is put on the word “generic”: the proposed pattern
must obviously be particularized to each application. However, it provides a
basis that has been proven effective in many cases.

As a starting point, it is assumed that data consist of an unordered set of
vectors. All vector entries are real numbers; there are no missing data.

7.2.1 Variable Selection

The aim of this first step is to make sure that all variables or signals in the
data set convey useful information about the phenomenon of interest. Hence,
if some variables or signals are zero or are related to another phenomenon, a
variable selection must be achieved beforehand, in order to discard them. To
some extent, this selection is a “binary” dimensionality reduction: each ob-
served variable is kept or thrown away. Variable selection methods are beyond
the scope of this book; this topic is covered in, e.g., [2], [96] [139].

7.2.2 Calibration

This second step aims at “standardizing” the variables. When this is required,
the average of each variable is subtracted. Variables can also be scaled if
needed. The division by the standard deviation is useful when the variables
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come from various origins. For example, meters do not compare with kilo-
grams, and kilometers do not with grams. Scaling the variables helps to make
them more comparable.

Sometimes, however, the standardization can make things worse. For ex-
ample, an almost-silent signal becomes pure noise after standardization. Obvi-
ously, the knowledge that it was silent is important and should not be lost. In
the ideal case, silent signals and other useless variables are eliminated by the
above-mentioned variable selection. Otherwise, if no standardization has been
performed, further processing methods can still remove almost-zero variables.
(See Subsection 224.T] for a more thorough discussion.)

7.2.3 Linear dimensionality reduction

When data dimensionality is very high, linear dimensionality reduction by
PCA may be very usesul to suppress a large number of useless dimensions.
Indeed, PCA clearly remains one of the best techniques for “hard” dimension-
ality reduction. For this step, the strategy consists in elimating the largest
number of variables while maintaining the reconstruction error very close to
zero. This is achieved in order to make the operation as “transparent” as
possible, i.e., nearly reversible. This also eases the work to be achieved by
subsequent nonlinear methods (e.g., for a further dimensionality reduction).
If the dimensionality is not too high, or if linear dimensionality causes a large
reconstruction error, then PCA may be skipped.

In some cases, whitening can also be used [95]. Whitening, also known as
sphering, is closely related to PCA. In the latter, the data space is merely
rotated, using an orthogonal matrix, and the decorrelated variables having
a variance close to zero are discarded. In whitening an additional step is
used for scaling the decorrelated variables, in order to end up with unit-
variance variables. This amounts to performing a standardization, just as
described above, after PCA instead of before. Whereas the rotation involved
in PCA does not change pairwise distances in the data set, the additional
transformation achieved by whitening does, like the standardization. For zero-
mean variables, Euclidean distances measured after whitening are equivalent
to Mahalanobis distances measured in the raw data set (with the Mahalanobis
matrix being the inverse of the data set covariance matrix).

7.2.4 Nonlinear dimensionality reduction

Nonlinear methods of dimensionality reduction may take over from PCA once
the dimensionality is no longer too high, between a few tens and a few hun-
dreds, depending on the chosen method. The use of PCA as preprocessing is
justified by the fact that most nonlinear methods remain more sensitive to the
curse of dimensionality than PCA due to their more complex model, which
involves many parameters to identify.
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Typically, nonlinear dimensionality reduction is the last step in the data
flow. Indeed, the use of nonlinear methods transforms the data set in such a
way that latent variable separation becomes difficult or impossible.

7.2.5 Latent variable separation

In the current state of the art, most methods for latent variable separation are
incompatible with nonlinear dimensionality reduction. Hence, latent variable
separation appears more as an alternative step to nonlinear dimensionality
reduction than a subsequent one. The explanation is that most methods for
latent variable separation like ICA assume in fact that the observed variables
are linear combinations of the latent ones [95]. Without that assumption, these
methods may not use statistical independence as a criterion to separate the
variables. Only a few methods can cope with restricted forms of nonlinear
mixtures like, such as, for example, postnonlinear mixtures [205] [177].

7.2.6 Further processing

Once dimensionality reduction or latent variable separation is achieved, the
transformed data may be further processed, depending on the targeted appli-
cation. This can range from simple visualization to automated classification
or function approximation. In the two last cases, unsupervised learning is
followed by supervised learning.

In summary, the proposed generic data flow for the analysis of high-
dimensional data goes through the following steps:

1. (Variable selection.) This step allows the suppression of useless vari-
ables.

2. Calibration. This step gathers all preprocessings that must or may be
applied to data (mean subtraction, scaling, or standardization, etc.).

3. Linear dimensionality reduction. This step usually consists of per-
forming PCA (data may be whitened at the same time, if necessary).

4. Nonlinear dimensionality reduction and/or latent variable sep-
aration. These (often incompatible) steps are the main ones; they allow
us to find “interesting” representations of data, by optimizing either the
number of required variables (nonlinear dimensionality reduction) or their
independence (latent variable separation).

5. (Further processing.) Visualization, classification, function approxima-
tion, etc.

Steps between paratheses are topics that are not covered in this book.

7.3 Model complexity

It is noteworthy that in the above-mentioned data flow, the model complexity
grows at each step. For example, if N observations of D variables or signals are
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available, the calibration determines D means and D standard deviations; the
time complexity to compute them is then O(DN). Next, for PCA, the covari-
ance matrix contains D(D —1)/2 independent entries and the time complexity
to compute them is O(D?N). Obtaining a P-dimensional projection requires
O(PDN) additional operations.

Things become worse for nonlinear dimensionality reduction. For example,
a typical distance-preserving method requires N (N — 1)/2 memory entries to
store all pairwise distances. The time complexity to compute them is O(DN?),
at least for Euclidean distances. For graph distances indeed, the time com-
plexity grows further to O(PN?log N). In order to obtain a P-dimensional
embedding, an NLDR method relying on a gradient descent such as— Sam-
mon’s NLM —requires O(PN?) operations for a single iteration. On the other
hand, a spectral method requires the same amount of operations per iteration,
but the eigensolver has the advantage of converging much faster.

To some extent, progress of NLDR models and methods seems to be related
not only to science breakthroughs but also to the continually increasing power
of computers, which allows us to investigate directions that were previously
out of reach from a practical point of view.

7.4 Taxonomy

Figure [Tl presents a nonexhaustive hierarchy tree of some unsupervised data
analysis methods, according to their purpose (latent variable separation or
dimensionality reduction). This figure also gives an overview of all methods
described in this book, which focuses on nonlinear dimensionality reduction
based mainly on “geometrical” concepts (distances, topology, neighborhoods,
manifolds, etc.).

Two classes of NLDR methods are distinguished in this book: those trying
to preserve pairwise distances measured in the data set and those attempting
to reproduce the data set topology. This distinction may seem quite arbi-
trary, and other ways to classify the methods exist. For instance, methods
can be distinguished according to their algorithmic structure. In the latter
case, spectral methods can be separated from those relying on iterative opti-
mization schemes like (stochastic) gradient ascent/descent. Nevertheless, this
last distinction seems to be less fundamental.

Actually, it can be observed that all distance-preserving methods involve
pairwise distances either directly (metric MDS, Isomap) or with some kind of
weighting (NLM, GNLM, CCA, CDA, SDE). In (G)NLM, this weighting is
proportional to the inverse of the Euclidean (or geodesic) distances measured
in the data space, whereas a decreasing function of the Euclidean distances
in the embedding space is used in CCA and CDA. For SDE, only Euclidean
distances to the K nearest neighbors are taken into account, while others are
simply forgotten and replaced by those determined during the semidefinite
programming step.
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Fig. 7.1. Methods for latent variable separation and dimensionality reduction: a
nonexhaustive hierarchy tree. Acronyms: PCA, principal component analysis; BSS,
blind source separation; PP, projection pursuit; NLDR, nonlinear dimensionality
reduction; ICA, independent component analysis; AA NN, auto-associative neural
network; PDL, predefined lattice; DDL, data-driven lattice. Methods are shown as
tree leaves.

On the other hand, in topology-preserving methods pairwise distances are
never used directly. Instead they are replaced with some kind of similarity
measure, which most of the time is a decreasing function of the pairwise
distances. For instance, in LE only distances to the K nearest neighbors are
involved; next the heat kernel is applied to them (possibly with an infinite
temperature) and the Laplacian matrix is computed. This matrix is such that
off-diagonal entries in a row or column are always lower than the corresponding
entry on the diagonal. A similar reasoning leads to the same conclusion for
LLE. In an SOM or Isotop, either grid distances (in the embedding space) or
graph distances (in the data space) are used as the argument of a Gaussian
kernel.

In the case of spectral methods, this distinction between distance and
topology preservation has practical consequences. In all distance-preserving
methods, the eigensolver is applied to a dense matrix, whose entries are either
Euclidean distances (metric MDS), graph distances (Isomap), or distances
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optimized by means of semidefinite programming (SDE). In all these methods,
the top eigenvectors are sought (those associated with the largest eigenvalues).
To some extent, these eigenvectors form the solution of a maximization prob-
lem; in the considered case, the problem primarily consists of maximizing the
variance in the embedding space, which is directly related to the associated
eigenvalues

The situation gets reversed for topology-preserving methods. Most of the
time, in this case, the eigensolver is applied to a sparse matrix and the bot-
tom eigenvectors are sought, those associated with the eigenvalues of lowest
(but nonzero) magnitude. These eigenvectors identify the solution of a min-
imization problem. The objective function generally corresponds to a local
reconstruction error or distortion measure (see Subsections E.3.1] and
about LLE and LE, respectively).

A duality relationship can be established between those maximizations
and minimizations involving, respectively, dense and sparse Gram-like ma-
trices, as sketched in [I64] and more clearly stated in [204]. Hence to some
extent distance and topology preservation are different aspects or ways to
formulate the same problem. Obviously, it should be erroneous to conclude
from the unifying theoretical framework described in [204] that all spectral
methods are equivalent in practice ! This is not the case; experimental results
in Chapter [l show the large variety that can be observed among their results.
For instance, following the reasoning in [164] [78], it can easily be demon-
strated that under some conditions, the bottom eigenvectors of a Laplacian
matrix (except the last one associated with a null eigenvalue) correspond to
the leading eigenvectors obtained from a double-centered matrix of pairwise
commute-time distances (CTDs). It can be shown quite easily that CTDs
respect all axioms of a distance measure (Subsection EL2T]). But unlike Eu-
clidean distances, CTDs cannot be computed simply by knowing coordinates
of two points. Instead, CTD distances are more closely related to graph dis-
tances, in the sense that other known points are involved the computation.
Actually, it can be shown that the easiest way to obtain the matrix of pair-
wise CTDs consists of computing the pseudo-inverse of a Laplacian matrix.
As a direct consequence, the leading eigenvectors of the CTD matrix precisely
correspond to the bottom eigenvectors of the Laplacian matrix, just as stated
above. Similarly, eigenvalues of the CTD matrix are inversely proportional
to those of the Laplacian matrix. Therefore, even if distance- and topology-
preserving spectral methods are equivalent from a theoretical viewpoint, it
remains useful to keep both frameworks in practice, as the formulation of a
particular method can be made easier or more natural in the one or the other.

L Of course, this maximization of the variance can easily be reformulated into a
minimization of the reconstruction error, as observed in Subsection 2.4.2
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7.4.1 Distance preservation

Distance-preserving methods can be classified according to the distance and
the algorithm they use. Several kinds of distances and kernels can be used.
Similarly, the embedding can be obtained by three different types of algo-
rithms. The first one is the spectral decomposition found in metric MDS. The
second one is the quasi-Newton optimization procedure implemented in Sam-
mon’s NLM. The third one is the stochastic optimization procedure proposed
in curvilinear component analysis. Table shows the different combinations
that have been described in the literature. The table also proposes an alterna-

Table 7.2. Classification of distance-preserving NLDR methods, according to the
distance/kernel function and the algorithm. A unifying naming convention is pro-
posed (the real name of each method is given between parentheses).

MDS algorithm NLM algorithm CCA algorithm

Fuclidean EMDS ENLM ECCA
(metric MDS) (NLM) (CCA)
Geodesic GMDS GNLM GCCA
(Dijkstra) (Isomap) (CDA)
Commute time CMDS
(LE)
Fixed kernel KMDS
(KPCA)
Optimized kernel OMDS
(SDP) (SDE/MVU)

tive naming convention. The first letter indicates the distance or kernel type
(E for Euclidean, G for geodesic/graph, C for commute-time distance, K for
fixed kernel, and O for optimized kernel), whereas the three next letters refer
to the algorithm (MDS for spectral decomposition, NLM for quasi-Newton
optimization, and CCA for CCA-like stochastic gradient descent).

It is noteworthy that most methods have an intricate name that often
gives few or no clues about their principle. For instance, KPCA is by far
closer to metric MDS than to PCA. While SDE stands for semidefinite em-
bedding, it should be remarked that all spectral methods compute an em-
bedding from a positive semidefinite Gram-like matrix. The author of SDE
renamed his method MVU, standing for maximum variance unfolding [197];
this new name does not shed any new light on the method: all MDS-based
methods (like Isomap and KPCA, for instance) yield an embedding having
maximal variance. The series can be continued, for instance, with PCA (pric-
ipal component analysis), CCA (curvilinear component analysis), and CDA
(curvilinear distances analysis), whose names seem to be designed to ensure
a kind of filiation while remaining rather unclear about their principle. The



7.4 Taxonomy 237

name Isomap, which stands for Isometric feature mapping [179], is quite un-
clear too, since all distance-preserving NLDR methods attempt to yield an
isometric embedding. Unfortunately, in most practical cases, perfect isometry
is not reached.

Looking back at Table[7.2] the third and fourth rows contain methods that
were initially not designed as distance-preserving methods. Regarding KPCA,
the kernels listed in [167] are given for their theoretical properties, without any
geometrical justification. However, the application of the kernel is equivalent
to mapping data to a feature space in which a distance-preserving embedding
is found by metric MDS. In the case of LE, the duality described in [204] and
the connection with commute-time distances detailed in [164] [78] allow it to
occupy a table entry.

Finally, it should be remarked that the bottom right corner of Table
contains many empty cells that could give rise to new methods with potentially
good performances.

7.4.2 Topology preservation

As proposed in Chapter Bl topology-preserving methods fall into two classes.
On one hand, methods like Kohonen’s self-organizing maps and Svensén’s
GTM map data to a discrete lattice that is predefined by the user. On the
other hand, more recent techniques like LLE and Isotop automatically build
a data-driven lattice, meaning that the shape of the lattice depends on the
data and is entirely determined by them. In most cases this lattice is a graph
induced by k-ary or e-ball neighborhoods, which provides a good discrete
approximation of the underlying manifold topology. From that point of view,
the corresponding methods can be qualified to be graph- or manifold-driven.

Table is an attempt to classify topology-preserving methods as it was
done in Table for distance-preserving methods. If PCA is interpreted as

Table 7.3. Classification of topology-preserving NLDR methods, according to the
kind of lattice and algorithm. The acronyms ANN, MLE and EM in the first row
stand for artificial neural network, maximum likelihood estimation and expectation-
maximization respectively.

ANN-like MLE by EM Spectral

Predefined lattice SOM GTM

Data-driven lattice Isotop LLE, LE

a method that fits a plane in the data space in order to capture as much
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variance as possible after projection on this plane, then to some extent running
an SOM can then be seen as a way to fit a nonrigid (or articulated) piece of
plane within the data cloud. Isotop, on the contrary, follows a similar strategy
in the opposite direction: an SOM-like update rule is used for embedding a
graph deduced from the data set in a low-dimensional space.

By essence, GTM solves the problem in a similar way as an SOM would.
The approach is more principled, however, and the resulting algorithm works
in a totally different way. A generative model is used, in which the latent space
is fixed a priori and whose mapping parameters are identified by statistical
inference.

Finally, topology-preserving spectral methods, like LLE and LE, develop
a third approach to the problem. They build what can be called an “affinity”
matrix [31], which is generally sparse; after double-centering or application of
the Laplacian operator, some of its bottom eigenvectors form the embedding.
A relationship between LLE and LE is established in [I3], while the duality
described in [204] allows us to relate both methods to distance-preserving
spectral methods.

7.5 Spectral methods

Since 2000 most recent NLDR methods have been spectral, whereas methods
based on sophisticated (stochastic) gradient ascent/descent were very popular
during the previous decades. Most of these older methods were designed and
developed in the community of artificial neural networks (ANNs). Methods
like Kohonen’s SOM and Demartines’ VQP [46] (the precursor of CCA) share
the same distributed structure and algorithmic scheme as other well-known
ANNSs like the multilayer perceptron.

Since the late 1990s, the ANN community has evolved and split into two
groups. The first one has joined the fast-growing and descriptive field of neu-
rosciences, whereas the second has been included in the wide field of machine
learning, which can be seen as a fundamental and theory-oriented emana-
tion of data mining. The way to tackle problems is indeed more formal in
machine learning than it was in the ANN community and often resorts to
concepts coming from statistics, optimization and graph theory, for example.
The growing interest in spectral methods stems at least partly from this differ-
ent perspective. Spectral algebra provides an appealing and elegant framework
where NLDR but also clustering or other optimization problems encountered
in data analysis can be cast within. From the theoretical viewpoint, the cen-
tral problem of spectral algebra, i.e., finding eigenvalues and eigenvectors of
a given matrix, can be translated into a convex objective function to be op-
timized. This guarantees the existence of a unique and global maximum; in
addition, the solutions to the problem are also “orthogonal” in many cases,
giving the opportunity to divide the problem into subproblems that can be
solved successively, yielding the eigenvectors one by one. Another advantage
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of spectral algebra is to associate practice with theory: rather robust and
efficient eigensolvers, with well-studied properties, are widely available.

This pretty picture hides some drawback however. The first to be men-
tioned is the “rigidity” of the framework provided by spectral algebra. In
the case of NLDR, all spectral methods can be interpreted as performing
metric MDS on a double-centered kernel matrix instead of a Gram ma-

trix [31) 167, [203] [78] 15l 98] 7). This kernel matrix is generally built in

one of the following two ways:

e Apply a kernel function to the matrix of squared Euclidean pairwise dis-
tances or directly to the Gram matrix of dot products.

e Replace the Euclidean distance with some other distance function in the
matrix of squared pairwise distances.

The first approach is followed in KPCA and SDE, and the second one in
Isomap, for which graph distances are used instead of Euclidean ones. Even-
tually, the above-mentioned duality (Section [[4]) allows us to relate methods
working with bottom eigenvectors of sparse matrices, like LLE, LE, and their
variants, to the same scheme. Knowing also that metric MDS applied to a
matrix of pairwise Euclidean distances yields a linear projection of the data
set, it appears that the ability of all recent spectral methods to provide a
nonlinear embedding actually relies merely on the chosen distance or kernel
function. In other words, the first step of a spectral NLDR method consists of
building a kernel matrix (under some conditions) or a distance matrix (with
a non-Euclidean distance), which amounts to implicitly mapping data to a
feature space in a nonlinear way. In the second step, metric MDS enables us
to compute a linear projection from the feature space to an embedding space
having the desired dimensionality. Hence, although the second step is purely
linear, the succession of the two steps yields a nonlinear embedding.

A consequence of this two-step data processing is that for most methods
the optimization (performed by the eigensolver) occurs in the second step
only. This means that the nonlinear mapping involved in the first step (or
equivalently the corresponding kernel) results from a more or less “arbitrary”
user’s choice. This can explain the large variety of spectral methods described
in the literature: each of them describes a particular way to build a Gram-like
matrix before computing its eigenvectors. A gradation of the “arbitrariness”
of the data transformation can be established as follows.

The most arbitrary transformation is undoubtedly the one involved in
KPCA. Based on kernel theory, KPCA requires the data transformation to
be induced by a kernel function. Several kernel functions in agreement with
the theory are proposed in [167], but there is no indication about which one to
choose. Moreover, most of these kernels involve one or several metaparameters;
again, no way to determine their optimal value is given.

In LLE, LE, Isomap, and their variants, the data transformation is based
on geometric information extracted from data. In all cases, K-ary neighbor-
hoods or e-balls are used to induce a graph whose edges connect the data
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points. This graph, in turn, brings a discrete approximation of the underlying
manifold topology /structure. In that perspective, it can be said that LLE, LE
and Isomap are graph- or manifold-driven. They induce a “data-dependent”
kernel function [I5]. In practice, this means that the kernel value stored at
row ¢ and column j in the Gram-like matrix does not depend only on the ith
and jth data points, but also on other points in the data set [78]. Since the
Gram-like matrix built by those methods is an attempt to take into account
the underlying manifold topology, it can be said the induced data mapping
is less “arbitrary” than in the case of KPCA. Nevertheless, the Gram-like
matrix still depends on K or ¢€; changing the value of these parameters mod-
ifies the induced data mapping, which may can lead to a completely different
embedding. LLE seems to be particularly sensitive to these parameters, as
witnessed in the literature [166] [90]. In this respect, the numerical stability of
the eigenvectors computed by LLE can also be questioned [30] (the tail of the
eigenspectrum is flat, i.e., the ratio of successive lowest-amplitude eigenvalues
is close to one).

The highest level in the proposed gradation is eventually reached by SDE.
In contrast with all other spectral methods, SDE is (currently) the only one
that optimizes the Gram-like matrix before the metric MDS step. In Isomap,
Euclidean distances within the K-ary neighborhoods are kept (by construc-
tion, graph distances in that case reduce to Euclidean distances), whereas
distances between non-neighbors are replaced with graph distances, assum-
ing that these distances subsequently lead to a better embedding. In SDE,
distances between nonneighbors can be seen as parameters whose value is op-
timized by semidefinite programming. This optimization scheme is specifically
designed to work in matrix spaces, accepts equality or inequality constraints
on the matrix entries, and ensures that their properties are maintained (e.g.,
positive or negative semidefiniteness). An additional advantage of semidefinite
programming is that the objective function is convex, ensuring the existence
of a unique global maximum. In the case of a convex developable manifold, if
the embedding provided by SDE is qualified to be optimal, then Isomap yields
a good approximation of it although it is generally suboptimal [204] (see an
example in Fig. [6.6]). In the case of a nonconvex or nondevelopable manifold,
the two methods behave very differently.

In summary, the advantages of spectral NLDR methods are as follows: they
benefit from a strong and sound theoretical framework; eigensolvers are also
efficient, leading to methods that are generally fast. Once the NLDR, prob-
lem is cast within the framework, a global optimum of the objective function
can be reached without implementing any “exotic” optimization procedure: it
suffices to call an eigensolver, which can be found in many software toolboxes
or libraries. However, it has been reported that Gram-like matrices built from
sparse graphs (e.g., K-ary neighborhoods) can lead to ill-conditioned and/or
ill-posed eigenproblems [30]. Moreover, the claim that spectral methods pro-
vide a global optimum is true but hides the fact that the actual nonlinear
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transformation of data is not optimized, except in SDE. In the last case, the
kernel optimization unfortunately induces a heavy computational burden.

7.6 Nonspectral methods

Experimentally, nonspectral methods reach a better tradeoff between flexibil-
ity and computation time than spectral methods. The construction of meth-
ods like NLM or CCA/CDA counsists of defining an objective function and
then choosing an adequate optimization technique. This goes in the opposite
direction of the thought process behind spectral methods, for which the ob-
jective function is chosen with the a priori idea to translate it easily into an
eigenproblem.

Hence, more freedom is left in the design of nonspectral methods than
in that of spectral ones. The price to pay is that although they are efficient
in practice, they often give few theoretical guarantees. For instance, meth-
ods relying on a (stochastic) gradient ascent/decent can fall in local optima,
unlike spectral methods. The optimization techniques can also involve meta-
parameters like step sizes, learning rates, stopping criteria, tolerances, and
numbers of iterations. Although most of these parameters can be left to their
default values, some of them can have a nonnegligible influence on the final
embedding.

This is the case of the so-called neighborhood width involved in CCA/CDA,
SOMs and Isotop. Coming from the field of artificial neural networks, these
methods all rely on stochastic gradient ascent/descent or resort to update
rules that are applied in the same way. As usual in stochastic update rules,
the step size or learning rate is scheduled to slowly decrease from one iter-
ation to the other, in order to reach convergence. In the above-mentioned
algorithms, the neighborhood width is not kept constant and follows a similar
schedule. This makes their dynamic behavior quite difficult to analyze, since
the optimization process is applied to a varying objective function that de-
pends on the current value of the neighborhood width. Things are even worse
in the cases of SOMs and Isotop, since the update rules are empirically built:
there exists no objective function from which the update rules can be derived.
Since the objective function, when it exists, is nonconstant and depends on
the neighborhood width, it can be expected that embeddings obtained with
these methods will depend on the same parameter, independently from the
fact that the method can get stuck in local optima.

The presence of metaparameters like the neighborhood width can also be
considered an advantage, to some extent. It does provide additional flexibility
to nonspectral methods in the sense that for a given method, the experienced
user can obtain different behaviors just by changing the values of the meta-
parameters.

Finally, it is noteworthy that the respective strategies of spectral and non-
spectral NLDR methods completely differ. Most spectral methods usually
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transform data (nonlinearly when building the Gram-like matrix, and then
linearly when solving the eigenproblem) before pruning the unnecessary di-
mensions (eigenvectors are discarded). In contrast, most nonspectral methods
start by initializing mapped data vectors in a low-dimensional space and then
rearrange them to optimize some objective function.

7.7 Tentative methodology

Throughout this book, some examples and applications have demonstrated
that the proposed analysis methods efficiently tackle the problems raised by
high-dimensional data. This section is an attempt to guide the user through
the large variety of NLDR methods described in the literature, according to
characteristics of the available data.

A first list of guidelines can be given according to the shape, nature, or
properties of the manifold to embed. In the case of ...

e slightly curved manifolds. Use a linear method like PCA or metric
MDS; alternatively, NLM offers a good tradeoff between robustness and
reproducibility and gives the ability to provide a nonlinear embedding.

e convex developable manifolds. Use methods relying on geodesic/graph
distances (Isomap, GNLM, CDA) or SDE. Conditions to observe convex
and developable manifolds in computer vision are discussed in [54].

e nonconvex developable manifolds. Do not use Isomap; use GNLM or
CDA instead; SDE works well, too.

e nearly developable manifolds. Do not use Isomap or SDE; it is better
use GNLM or CDA instead.

e other manifolds. Use GNLM or preferably CDA. Topology-preserving
methods can be used too (LLE, LE, Isotop).

e manifolds with essential loops. Use CCA or CDA; these methods are
able to tear the manifold, i.e., break the loop. The tearing procedure pro-
posed in [T21] can also break essential loops and make data easier to embed
with graph-based methods (Isomap, SDE, GNLM, CDA, LLE, LE, Isotop).

e manifolds with essential spheres. Use CCA or CDA. The abovemen-
tioned tearing procedure is not able to “open” essential spheres.

e disconnected manifolds. This remains an open question. Most meth-
ods do not explicitly handle this case. The easiest solution is to build an
adjacency graph, detect the disconnected components, and embed them
separately. Of course, “neighborhood relationships” between the compo-
nents are lost in the process.

e clustered data. In this case the existence of one or several underlying
manifolds must be questioned. If the clusters do not have a low intrin-
sic dimension, the manifold assumption is probably wrong (or useless).
Then use clustering algorithms, like spectral clustering or preferably other
techniques like hierarchical clustering.
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Guidelines can also be given according to the data set’s size. In the case

of ...

Large data set. If several thousands of data points are available (N >
2000), most NLDR methods will generate a heavy computational burden
because of their time and space complexities, which are generally propor-
tional to N2 (or even higher for the computation time). It is then useful
to reduce the data set’s size, at least to perform some preliminary steps.
The easiest way to obtain a smaller data set consists of resampling the
available one, i.e., drawing a subset of points at random. Obviously, this
is not an optimal way, since it is possible, as ill luck would have it, for
the drawn subsample not to be representative of the whole data set. Some
examples throughout this book have shown that a representative subset
can be determined using vector quantization techniques, like K-means and
similar methods.

Medium-sized set. If several hundreds of data points are available (200 <
N < 2000), most NLDR methods can be applied directly to the data set,
without any size reduction.

Small data set. When fewer than 200 data points are available, the use of
most NLDR methods becomes questionable, as the limited amount of data
could be insufficient to identify the large number of parameters involved in
many of these methods. Using PCA or classical metric MDS often proves
to be a better option.

The dimensionality of data, along with the target dimension, can also be

taken into account. In case of a ...

very high data dimensionality. For more than 50 dimensions (D > 50),
NLDR methods can suffer from the curse of dimensionality, get confused,
and provide meaningless results. It can then be wise first to apply PCA or
metric MDS in order to perform a hard dimensionality reduction. These
two methods can considerably decrease the data dimensionality without
losing much information (in terms of measured variance, for instance). De-
pending on the data set’s characteristics, PCA or metric MDS can also help
attenuate statistical noise in data. After PCA/MDS, a nonlinear method
can be used with more confidence (see the two next cases) in order to
further reduce the dimensionality.

high data dimensionality. For a few tens of dimensions (5 < D < 50),
NLDR methods should be used with care. The curse of dimensionality is
already no longer negligible.

low data dimensionality. For up to five dimensions, any NLDR method
can be applied with full confidence.

Obviously, the choice of the target dimensionality should take into account
the intrinsic dimensionality of data if it is known or can be estimated.

If the target dimensionality is (much) higher than the intrinsic one, PCA or
MDS performs very well. These two methods have numerous advantages:
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they are simple, fast, do not fall in local optima, and involve no parameters.
In this case, even the fact that they transform data in a linear way can be
considered an advantage in many respects.

If the target dimensionality is equal to or hardly higher than the intrinsic
one, NLDR methods can yield very good results. Most spectral or non-
spectral methods work quite well in this case. For highly curved manifolds,
one or two supernumerary dimensions can improve the embedding quality.
Most NLDR methods (and especially those based on distance preservation)
have limited abilities to deform/distort manifolds. Some extra dimensions
can then compensate for this lack of “flexibility.” The same strategy can
be followed to embed manifolds with essential loops or spheres.

If the target dimensionality is lower than the intrinsic one, such as for vi-
sualization purposes, use NLDR methods at your own risk. It is likely that
results will be meaningless since the embedding dimensionality is “forced.”
In this case, most nonspectral NLDR methods should be avoided. They
simply fail to converge in an embedding space of insufficient dimensional-
ity. On the other hand, spectral methods do not share this drawback since
they solve an eigenproblem independently from the target dimensionality.
This last parameter is involved only in the final selection of eigenvectors.
Obviously, although an embedding dimensionality that is deliberately too
low does not jeopardize the method convergence, this option does not guar-
antee that the obtained embedding is meaningful either. Its interpretation
and/or subsequent use must be questioned.

Here is a list of additional advices related to the application’s purpose and

other considerations.

Collect information about your data set prior to NLDR: estimate the in-
trinsic dimensionality and compute an adjacency graph in order to deduce
the manifold connectivity.

Never use any NLDR method without knowing the role and influence of
all its parameters (true for any method, with a special emphasis on non-
spectral methods).

For 2D visualization and exploratory data analysis, Kohonen’s SOM re-
mains a reference tool.

Never use KPCA for embedding purposes. The theoretical framework hid-
den behind KPCA is elegant and appealing; it paved the way toward a
unified view of all spectral methods. However, in practice, the method
lacks a geometrical interpretation that could help the user choose use-
ful kernel functions. Use SDE instead; this method resembles KPCA in
many respects, and the SDP step implicitly determines the optimal kernel
function for distance preservation.

Never use SDE with large data sets; this method generates a heavy com-
putational burden and needs to run on much more powerful computers
than alternative methods do.
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e Avoid using GTM as much as possible; the method involves too many
parameters and is restricted to 1D or 2D rectangular latent spaces; the
mapping model proves to be not flexible enough to deal with highly curved
manifolds.

e LLE is very sensitive to its parameter values (K or €, and the regularization
parameter A). Use it carefully, and do not hesitate to try different values,
as is done in the literature [166].

e Most nonspectral methods can get stuck in local optima: depending on the
initialization, different embeddings can be obtained.

e Finally, do not forget to assess the embedding quality using appropriate

criteria [186} [185] @1 [74] [10, 190} [103] (see an example in Subsection [6.3.1]).

The above recommendations leave the following question unanswered:
given a data set, does one choose between distance and topology preserva-
tion? If the data set is small, the methods with the simplest models often suit
the best (e.g., PCA, MDS, or NLM). With mid-sized data sets, more complex
distance-preserving methods like Isomap or CCA/CDA often provide more
meaningful results. Topology-preserving methods like LLE, LE, and Isotop
should be applied to large data sets only. Actually, the final decision between
distance and topology preservation should then be guided by the shape of the
underlying manifold. Heavily crumpled manifolds are more easily embedded
using topology preservation rather than distance preservation. The key point
to know is that both strategies extract neither the same kind nor the same
amount of information from data. Topology-preserving methods focus on local
information (neighborhood relationships), whereas distance-preserving ones
exploit both the local and global manifold structure.

7.8 Perspectives

During the 1900s, dimensionality reduction went through several eras. The
first era mainly relied on spectral methods like PCA and then classical metric
MDS. Next, the second era consisted of the generalization of MDS into non-
linear variants, many of them being based on distance or rank preservation
and among which Sammon’s NLM is probably the most emblematic represen-
tative. At the end of the century, the field of NLDR was deeply influenced by
“neural” approaches; the autoassociative MLP and Kohonen’s SOM are the
most prominent examples of this stream. The beginning of the new century
witnessed the rebirth of spectral approaches, starting with the discovery of
KPCA.

So in which directions will the researchers orient their investigations in
the coming years ? The paradigm of distance preservation can be counted
among the classical NLDR tools, whereas no real breakthrough has happened
in topology preservation since the SOM invention. It seems that the vein of
spectral methods has now been largely exploited. Many recent papers deal-
ing with that topic do not present new methods but are instead surveys that
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summarize the domain and explore fundamental aspects of the methods, like
their connections or duality within a unifying frameworks. A recent publica-
tion in Science [89] describing a new training technique for auto-associative
MLP could reorient the NLDR research toward artificial neural networks once
again, in the same way as the publication of Isomap and LLE in the same jour-
nal in 2000 lead to the rapid development of many spectral methods. This
renewed interest in ANNs could focus on issues that were barely addressed
by spectral methods and distance preservation: large-scale NLDR problems
(training samples with several thousands of items), “out-of-sample” general-
ization, bidirectional mapping, etc.

A last open question regards the curse of dimensionality. An important
motivation behind (NL)DR aims at avoiding its harmful effects. Paradoxi-
cally, however, many NLDR methods do not bring a complete solution to the
problem, but only dodge it. Many NLDR methods give poor results when
the intrinsic dimensionality of the underlying manifold exceeds four or five.
In such cases, the dimension of the embedding space becomes high enough to
observe undesired effects related to the curse of dimensionality, such as the
empty space phenomenon. The future will tell whether new techniques will
be able to take up this ultimate challenge.
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