
4

Resonance

4.1 The Method of Delaunay’s Lunar Theory

Delaunay was the first astronomer to use the mechanics of Hamilton and
Jacobi to obtain the approximated solution of the equations of motion of
a celestial body. His lunar theory [22] is a pioneer work in many respects.
We credit Delaunay with the introduction of the set of angle–action variables
�, g, h, L,G,H in which the Lagrange equations for the variation of the orbital
elements under a perturbation are canonical. His theory of the motion of the
Moon is not a collection of clever tricks, as other theories in the old Celestial
Mechanics. Having obtained the variation equations in canonical form, his
problem was to find the solutions of the differential equations defined by the
Hamiltonian

H = H0(J) + ε
∑
h∈D

Ah(J) cos (h|θ), (4.1)

where the canonical variables are J ≡ (J1, . . . , JN ) and θ ≡ (θ1, . . . , θN ),
ε is a small parameter and D ⊂ ZN . The technique adopted by Delaunay
is methodologically very clear. He defined an operation and performed it,
successively, almost 500 times. This operation starts with the choice of one
argument (h1|θ) in (4.1) and the consideration of the dynamical system defined
by the abridged Hamiltonian

F1 = H0(J) + εAh1(J) cos (h1|θ). (4.2)

This system is integrable, since the angles θi are present only through the
linear combination (h1|θ). The main step of one Delaunay operation is to
obtain a particular solution of this selected system and to use this solution
to derive a canonical transformation leading to the elimination of the term
Ah1(J) cos (h1|θ) from the given Hamiltonian. (In fact, it is a transformation
leading to the substitution of this term by others with much smaller coef-
ficients.) To obtain the solution of the dynamical system defined by F , we
introduce the Jacobian generating function
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100 4 Resonance

S(θ, J∗) def= (θ|J∗) +Σ(θ, J∗), (4.3)

where Σ is a function of order O(ε), and consider the Hamilton–Jacobi equa-
tion

E1 = H0

(
∂S

∂θ

)
+ εAh1

(
∂S

∂θ

)
cos (h1|θ). (4.4)

The functions of ∂S/∂θi, on the right-hand side of this equation, may be
expanded about ∂S/∂θi = J∗

i and (4.4) becomes

E1 = H0(J∗) +
N∑

i=1

∂H0(J∗)
∂J∗

i

∂Σ

∂θi
+ εAh1(J

∗) cos (h1|θ) + O(ε2). (4.5)

At variance with the standard Hamilton–Jacobi theory, we do not look
for a complete solution of the equation. We assume E1 = H0(J∗), and seek a
suitable particular solution of the partial differential equation for Σ:

0 =
N∑

i=1

∂H0(J∗)
∂J∗

i

∂Σ

∂θi
+ εAh1(J

∗) cos (h1|θ) + O(ε2). (4.6)

If the higher-order terms are neglected, we have the immediate particular
solution

Σ = −εAh1(J∗) sin (h1|θ)
(h1|ν∗) , (4.7)

where ν∗ ≡ (ν∗1 , ν
∗
2 , · · · , ν∗N ) and

ν∗i =
∂H0(J∗)
∂J∗

i

. (4.8)

Once we have obtained a first-order solution of the dynamical system
spanned by F1, we go back to the given Hamiltonian H and perform the
transformation of the variables generated by the function S:

θ∗i =
∂S

∂J∗
i

= θi +
∂Σ

∂J∗
i

, Ji =
∂S

∂θi
= J∗

i +
∂Σ

∂θi
. (4.9)

To complete the exposition of a Delaunay operation, we write the full
Hamiltonian as

H = F1 + ∆F . (4.10)

Hence, according to (4.5)–(4.7), when the above variable change is done, F1

becomes
F∗

1 (θ∗, J∗) = H0(J∗) + O(ε2), (4.11)

that is, E1 plus the higher-order terms of (4.6), which were neglected when
(4.7) was obtained. With the same change, the additional part ∆F(θ, J) is
transformed into ∆F(θ∗, J∗)+O(ε2). (The function ∆F is the same as before.)
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4.2 Introduction of the Square Root of the Small Parameter 101

The result of the Delaunay operation is, then, a new Hamiltonian

H∗ = H0(J∗) + ∆F(θ∗, J∗) + O(ε2) (4.12)

differing formally from the given one, in only two respects:

(a.) the term εAh1 cos (h1|θ) has disappeared;
(b.) new terms of order O(ε2) were added.

In this way, performing as many operations as necessary, we may expect
to eliminate from H all periodic terms of order O(ε). Indeed, as shown in
the previous chapter, all these operations can be performed at one stroke, by
finding the function S generating a transformation that eliminates all periodic
terms of order O(ε).

We may also expect to eliminate, with a second sequence of operations,
those terms of order O(ε2), after that, the terms of order O(ε3), and so on.
In reality, as discussed in Sect. 3.12, this is not so. The combination of the
arguments (h|θ) in the transformation of H tends to enlarge the set of values
of h (the maximum of |h| increases). Thus, values of h for which (h|ν∗) is too
small can be reached (Poincaré Theorem) and the Delaunay theory, as well
as the theories of the previous chapter (with the exception of Kolmogorov’s)
cannot be extended indefinitely. Only a finite number of operations can be
done and the non-resonance condition (h|ν∗) �= 0 must be verified for all
h ∈ D, and for all h generated in the calculations. Otherwise, the theory
needs to be modified as discussed thereafter.

We may also consider the case where one or more values h ∈ D are already
such that (h|ν∗) ≡ 0. This case happens when H0(J) is degenerate, that is,
when H0 does not depend on all components of J . One essential degeneracy
of this kind appears in Celestial Mechanics where H0 depends only on the
Delaunay variable L and on the variable Λ, the canonical conjugate to the
time t:

H0 = − µ2

2L2
+ Λ. (4.13)

In this case, the Delaunay theory does not allow one to get rid of the terms
independent of both the time t and the mean anomaly � (conjugate to L). In
the particular problem of the motion of the Moon, periodic terms of this kind
do not exist in the given perturbation (see the discussion in Sect. 3.9) and the
theory developed by Delaunay allowed all periodic terms of order O(ε) to be
eliminated.

4.2 Introduction of the Square Root of the Small
Parameter

Let us consider, in this section, the equations of the Delaunay theory in the
case where one resonance exists. Let us assume that
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102 4 Resonance

(h1|ν∗) = 0 (4.14)

for some h1 ∈ D and some point J∗ ∈ O (O is the open set of RN under
study). We may continue as in the previous section up to equation (4.7).
However, in this case, the resonance (h1|ν∗) = 0 happens at one point of
O. At such a point, the first term in the right-hand side of (4.6) vanishes
and the equation becomes singular. If we do not get rid of this singularity
and continue calculating as before, the divisor appearing in the result will
become null when the exact resonance is reached. To study this problem, we
will perform the same sequence of calculations as in the previous section, but
keeping in explicit form some second-order terms.

For the sake of simplicity, we will only consider, here, the simplest case of
only one degree of freedom, in which case the resonance assumption given by
(4.14) becomes, simply,

ν∗1 = 0. (4.15)

Let us introduce again the generating function as

S(θ1, J∗
1 ) = θ1J

∗
1 +Σ(θ1, J∗

1 )

and let us expand the function

H0(J1) = H0

(
∂S

∂θ1

)
= H0

(
J∗

1 +
∂Σ

∂θ1

)
.

Then

H0(J1) = H0(J∗
1 ) + ν∗1

∂Σ

∂θ1
+

1
2
ν∗11

(
∂Σ

∂θ1

)2

+ · · · ,

where we have introduced

ν∗1 =
dH0(J∗

1 )
dJ∗

1

, ν∗11 =
d2H0(J∗

1 )
dJ∗2

1

. (4.16)

In the same way, we expand

R1(θ1, J1)
def= Ah1(J1) cos θ1

to obtain

R1(θ1, J1) = R1(θ1, J∗
1 ) +

∂R1(θ1, J∗
1 )

∂J∗
1

∂Σ

∂θ1
+ · · · .

When these expansions are substituted into the Hamilton–Jacobi equation
(4.4), we obtain

E1 = H0(J∗
1 ) + ν∗1

∂Σ

∂θ1
+

1
2
ν∗11

(
∂Σ

∂θ1

)2

+ · · · + εR1(θ1, J∗
1 ) + ε

∂R1

∂J∗
1

∂Σ

∂θ1
+ · · ·
(4.17)

and (4.6), correspondingly, becomes
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4.3 Delaunay Theory According to Poincaré 103

ν∗1
∂Σ

∂θ1
+

1
2
ν∗11

(
∂Σ

∂θ1

)2

+ · · · + εR1(J∗
1 , θ1) + ε

∂R1

∂J∗
1

∂Σ

∂θ1
+ · · · = 0. (4.18)

Let us, now, investigate the algebraic inversion of this equation. This is
done with the help of some classical results of Weierstrass’ implicit functions
theory. However, instead of making an application of the theory itself, we
prefer, here, to adapt it to the present problem.

Equation (4.18) may be written in a more compact form as

F(σ, ε) = a01ε+ a10σ + a20σ
2 +

∑
i

∑
j

aijσ
iεj = 0, (4.19)

where

σ =
∂Σ

∂θ1
(4.20)

and the aij have obvious meanings. When the resonance condition

a10 = ν∗1 = 0

holds, the leading terms in the expansion of F(σ, ε) are a01ε and a20σ
2. There-

fore, the only possibility of having F(σ, ε) = 0, identically, with a01 �= 0 and
a20 �= 0, is that the solution σ(ε) has, at the origin, an algebraic critical point
of order 2. Then, we may write

σ = b1
√
ε + b2ε + b3ε

√
ε + · · · . (4.21)

Since
√
ε has two branches, we have two solutions forming a system of two al-

gebraic functions, each corresponding to one branch of
√
ε. It is worth empha-

sizing that, when the series written in (4.19) is convergent in a neighborhood
of the origin, the fundamental theorem on algebraic functions can be used to
prove the convergence of the solutions given by (4.21).

4.2.1 Garfinkel’s Abnormal Resonance

One hypothesis implicitly considered above and in this whole chapter is ν∗11 �=
0. The case ν∗11 = 0 was called, by Garfinkel, abnormal. In such a case, a10 =
a20 = 0 and the leading terms of the expansion of F(σ, ε) are a01ε and a30σ

3.
Therefore, the origin is an algebraic critical point of order 3 and we have to
use the cube root of ε instead of the square root in the series expansion of
σ(ε).

4.3 Delaunay Theory According to Poincaré

Poincaré considered Delaunay theory in the first part of his chapter on Bohlin’s
theory ( [80], Chap. XIX). He considered the one-degree-of-freedom problem
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104 4 Resonance

with a disturbing potential formed by the term εR1 = εA1 cos θ1 only. In this
section, we present the complete Delaunay theory for the canonical equations
defined by the Hamiltonian

H = H0(J1) +
∞∑

k=1

εkH2k(θ1, J1). (4.22)

One may note that the subscripts were modified to indicate the order of the
terms in

√
ε.

The initial calculations are the same as in the previous section. Since we
know that, in the neighborhood of the resonance, Σ may be expanded in a
power series in

√
ε, we consider the canonical transformation

(θ1, J1) ⇒ (α,E)

defined by the Jacobian generating function

S = θ1J
∗
1 +

n∑
k=1

εk/2Sk(θ1, E), (4.23)

where J∗
1 is the solution of the equation giving the exact resonance:

ν1(J∗
1 ) =

(
dH0

dJ1

)
J1=J∗

1

= 0. (4.24)

Poincaré considered, separately, the case ν∗1 = 0 and the general case ν∗1 �= 0
(but close to zero). The consideration of the case ν∗1 �= 0 is, however, not
necessary and is not done here.

The equations of the canonical transformation are

α =
∂S

∂E
, J1 =

∂S

∂θ1
(4.25)

and the transformed Hamiltonian is assumed to have a main part

εE +H∗(E)

independent of α, and a remainder Rn+1 divisible by ε(n+1)/2.
The solution is given by the integral

E = const (4.26)

and the quadrature

α =
∫

∂

∂E
(H∗ + εE) dt. (4.27)

Since the transformation is conservative, we have

H(θ1, J1) = εE +H∗(E) + Rn+1(α,E). (4.28)
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4.3 Delaunay Theory According to Poincaré 105

Taking into account the canonical transformation generated by S, this equa-
tion becomes

H

(
θ1,

∂S

∂θ1

)
= εE +H∗(E) + Rn+1. (4.29)

To identify both sides of (4.29) according to the powers of
√
ε, we need

the power-series expansions of Hk and H∗. These expansions are identical to
those performed in Poincaré theory (see Sects. 3.2.1 and 3.2.2). We have

H0 = G0,0 + εG0,2 + ε3/2G0,3 + · · · + εn/2G0,n + · · · (4.30)

Hk = Gk,k + ε1/2Gk,k+1 + εGk,k+2 + · · · + εn/2Gk,n + · · · (4.31)

and

H∗(E) =
n∑

k=0

εk/2H∗
k (E). (4.32)

All remaining terms are at least of order ε(n+1)/2. Since ν∗1 = 0, then G0,1 =
0 and G0,k = Ek (see 3.15). The functions Gk,j are defined by (3.22). In
particular, Gk,k = Hk(θ1, J∗

1 ).
The identification in the powers of the small parameter is made simple by

the fact that ε is always explicit in the formulas and that all other quantities
are finite. Thus, we have

H0(J∗
1 ) = H∗

0 ,

0 = H∗
1 ,

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(θ1, J∗
1 ) = H∗

2 + E,

ν∗11
∂S1

∂θ1

∂S2

∂θ1
+G2,3 + E ′

3 = H∗
3 , (4.33)

· · · · · ·

ν∗11
∂S1

∂θ1

∂Sk

∂θ1
+G2,k+1 +G4,k+1 + · · · + E ′

k+1 = H∗
k+1,

· · · · · ·

ν∗11
∂S1

∂θ1

∂Sn−1

∂θ1
+G2,n +G4,n + · · · + E ′

n = H∗
n.

(The functions E ′
k are those defined implicitly by (3.20).) All remaining terms

have at least ε(n+1)/2 as a factor and are supposed to be grouped with the
remainder Rn+1.

As in the theories of the previous chapter, the first equation gives H∗
0 and

says that it is the value of the function H0 at J1 = J∗
1 . Thus H∗

0 is, now,
just a number (it does not depend on the new variables α,E). The second
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106 4 Resonance

equation says that H∗
1 = 0. The third equation is the fundamental equation

of Delaunay theory (the Delaunay or Delaunay–Poincaré equation):

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(θ1, J∗
1 ) −H∗

2 = E. (4.34)

This equation is indeterminate while H∗
2 is not fixed. This indetermination is

overcome by introducing the averaging rule

H∗
2 = < H2(θ1, J∗

1 ) >, (4.35)

where < · · · > stands for the average over the angle θ1. Therefore, we have

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(K) = E, (4.36)

where
H2(K)(J∗

1 ) = H2(θ1, J∗
1 )− < H2(θ1, J∗

1 ) > . (4.37)

Taking into account that the functions G2,k+1, G4,k+1, · · · and E ′
k+1 are

completely known when the functions S1, S2, · · · , Sk−1 are known, the generic
or homological form of (4.33) (for k ≥ 2) is

ν∗11
∂S1

∂θ1

∂Sk

∂θ1
+ Ψ∗

k+1(θ1, E) = H∗
k+1(E), (4.38)

where Ψk+1 represents known functions. At variance with the fundamental
Delaunay–Poincaré equation, the homological equation is linear and it is suf-
ficient to obtain particular solutions of it.

4.3.1 First-Approximation Solution

When a complete integral of the fundamental equation is known, the gener-
ating function

S(1) = θ1J
∗
1 +

√
ε S1(θ1, E)

defines a canonical transformation leading to a transformed Hamiltonian in-
dependent of α, except for terms factored by, at least, ε3/2.

From the equations of the canonical transformation we have

J1 = J∗
1 +

√
ε
∂S1

∂θ1
+ O(ε) = J∗

1 ±
√

2ε
ν∗11

(E −H2(K)) + O(ε), (4.39)

α =
√
ε
∂S1

∂E
+ O(ε) = ± ∂

∂E

∫ √
2ε
ν11

(E −H2(K)) dθ1 + O(ε). (4.40)

The last equation, combined with (4.27) (which is reduced, at this order,
to α =

∫
ε dt), gives

Page: 106 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



4.4 Garfinkel’s Ideal Resonance Problem 107

t− t0 =
∫ ±dθ1√

2εν11(E −H2(K))
+ O(ε) (4.41)

showing that the time scale of resonant phenomena is inversely proportional
to

√
ε, that is, the frequencies associated with the resonance are proportional

to
√
ε.

Equations (4.39) and (4.41) are the formal solutions of order O(
√
ε) of

the problem of Delaunay, in the presence of one resonance, in one degree of
freedom.

4.4 Garfinkel’s Ideal Resonance Problem

Let us use the Delaunay theory to obtain a complete solution of the Ideal
Resonance Problem. This problem, thoroughly studied by Garfinkel [37], is
defined as the problem of obtaining a formal solution of order εn/2 of the
canonical equations defined by the Hamiltonian

H = H0(J1) − εA(J1) cos θ1 (4.42)

in the neighborhood of the value J∗
1 for which ν1 = dH0/dJ1 = 0. The dis-

turbing term has not, here, the same form 2εA(J1) sin2(θ1/2) considered in
Garfinkel’s work, but the two forms are equivalent.

This Hamiltonian system has two equilibrium solutions, viz. θ1 = 0 and
θ1 = π whose stability depends on the sign of A∗ν∗11 (A∗ = A(J∗

1 )). Without
loss of generality, we assume that A∗ν∗11 > 0 and the stable equilibrium is at
θ1 = 0; otherwise, it is enough to change θ1 into θ′1 + π so that the system
satisfies this assumption.

The fundamental equation corresponding to the Hamiltonian of (4.42) is

1
2
ν∗11

(
∂S1

∂θ1

)2

−A∗ cos θ1 = E (4.43)

or
∂S1

∂θ1
= ±

√
2
ν∗11

(E +A∗ cos θ1), (4.44)

where we take into account that H∗
2 =< −A∗ cos θ1 >= 0.

We may note that this fundamental equation is nothing but the Hamilton–
Jacobi equation of the simple pendulum. However, at variance with the con-
ventional simple pendulum, the “inverse mass” ν∗11 may be either positive or
negative. The solutions of the simple pendulum given in Sect. B.1 apply with-
out modification. We just have to take care of the sign differences between
the cases ν∗11 < 0 and ν∗11 > 0.

The homological equation is (see 4.38)

∂Sk

∂θ1
=

1
ν∗11

(
∂S1

∂θ1

)−1

(H∗
k+1 − Ψ∗

k+1) (k = 2, · · · , n), (4.45)
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108 4 Resonance

where Ψ∗
k+1 is a polynomial in the derivatives of S1, S2, · · · , Sk−1 whose coef-

ficients are constants or derivatives of H2. For instance

Ψ∗
3 =

∂S1

∂θ1

[
1
6
ν∗111

(
∂S1

∂θ1

)2

+
∂H2

∂J∗
1

]
(4.46)

and

Ψ∗
4 =

1
2
ν∗11

(
∂S2

∂θ1

)2

+
1
2
ν∗111

(
∂S1

∂θ1

)2
∂S2

∂θ1
+

1
24

ν∗1111

(
∂S1

∂θ1

)4

+
∂H2

∂J∗
1

∂S2

∂θ1
+

1
2
∂2H2

∂J∗2
1

(
∂S1

∂θ1

)2

.

From the previous equations, we may write

H2(θ1, J∗
1 ) = −A∗ cos θ1 = E − 1

2
ν∗11

(
∂S1

∂θ1

)2

(4.47)

and

∂kH2

∂J∗k
1

= −dkA∗

dJ∗k
1

cos θ1 =
1
A∗

dkA∗

dJ∗k
1

[
E − 1

2
ν∗11

(
∂S1

∂θ1

)2
]
, (4.48)

that is, H2 and its derivatives may be written as polynomials in the first
derivative of S1. Therefore, Ψ∗

3 , Ψ
∗
4 , · · · , Ψ∗

n−1 may be, successively, written as
polynomials in the first derivative of S1:

Ψ∗
k+1 =

k+1∑
k′=0

Ck,k′

(
∂S1

∂θ1

)k′

, (4.49)

where Ck,k′ = 0 when k and k′ have the same parity; then, (4.45) may be
written as

∂Sk

∂θ1
=

1
ν∗11

(
∂S1

∂θ1

)−1
[
H∗

k+1 −
k+1∑
k′=0

Ck,k′

(
∂S1

∂θ1

)k′
]
. (4.50)

To avoid the singularity at the libration boundaries, where ∂S1/∂θ1 = 0,
H∗

k+1 may be chosen to be such that the coefficient of (∂S1/∂θ1)−1 in (4.50)
vanishes:

H∗
k+1 = Ck,0.

(One may note that H∗
k = 0 for all k odd because of the parity rule of the

coefficients Ck,k′ .) The homological equation then becomes

∂Sk

∂θ1
= − 1

ν∗11

k+1∑
k′=1

Ck,k′

(
∂S1

∂θ1

)k′−1

. (4.51)
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4.4 Garfinkel’s Ideal Resonance Problem 109

In particular, for k = 2, we have

∂S2

∂θ1
= − E

A∗ν∗11

dA∗

dJ∗
1

−
(
ν∗111
6ν∗11

− 1
2A∗

dA∗

dJ∗
1

)(
∂S1

∂θ1

)2

. (4.52)

Once S is known, we may construct the formal solutions of the Ideal Res-
onance Problem. To order O(ε), they are:

J1 = J∗
1 +

√
ε
∂S1

∂θ1
+ ε

∂S2

∂θ1

α = ε(t− t0) =
√
ε
∂S1

∂E
+ ε

∂S2

∂E
.

(4.53)

4.4.1 Garfinkel–Jupp–Williams Integrals

The integration of (4.51), for all k, involves the integrals

Ik =
∫ (

∂S1

∂θ1

)k

dθ1 =
∫ (

2
ν∗11

(E +A∗ cos θ1)
)k/2

dθ1,

which can be calculated by means of recurrence formulas [36]. Differentiating
(4.43) with respect to θ1, we obtain

∂S1

∂θ1

∂

∂θ1

(
∂S1

∂θ1

)
= −A∗

ν∗11
sin θ1. (4.54)

Hence,
∂

∂θ1

(
∂S1

∂θ1

)k

= − k

(
∂S1

∂θ1

)k−2
A∗

ν∗11
sin θ1, (4.55)

∂2

∂θ2
1

(
∂S1

∂θ1

)k

= k(k−2)
(
∂S1

∂θ1

)k−4 (
A∗

ν∗11

)2

sin2 θ1− k

(
∂S1

∂θ1

)k−2
A∗

ν∗11
cos θ1.

The trigonometric functions may be eliminated with the help of (4.43) giving

∂2

∂θ2
1

(
∂S1

∂θ1

)k

= − k2

4

(
∂S1

∂θ1

)k

+ k(k − 1)
E

ν∗11

(
∂S1

∂θ1

)k−2

+ k(k − 2)
A∗2 − E2

ν∗211

(
∂S1

∂θ1

)k−4

whose integration, with respect to θ1, followed by the use of (4.55) and the
definition of Ik, yields

k

4
Ik =

(
∂S1

∂θ1

)k−2
A∗

ν∗11
sin θ1+(k−1)

E

ν∗11
Ik−2+(k−2)

A∗2 − E2

ν∗211

Ik−4. (4.56)

(The integration constant is chosen to be such that Ik = 0 at θ1 = 0.) Thus,
all integrals are known when we know a sequence of four of them.
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110 4 Resonance

For even k, the integrals are elementary and are the same no matter
whether the motion is a libration or a circulation:

I0 =
∫

dθ1 = θ1,

I2 =
∫ (

∂S1

∂θ1

)2

dθ1 =
2E
ν∗11

θ1 +
2A∗

ν∗11
sin θ1. (4.57)

For odd k, the integrals are elliptic and we have to consider separately the
cases where Eν∗11 > A∗ν∗11 (circulation), | E |<| A∗ | (libration) and E = A∗

(asymptotic motion). This will be done in the forthcoming sections.

4.4.2 Circulation (Eν∗

11
> A∗ν∗

11
> 0)

Let us calculate the solutions of the Ideal Resonance Problem in the case
of circulations. The first step is to calculate the Garfinkel–Jupp–Williams
integrals necessary to generate the solutions at all orders. To complete the set
of four integrals necessary to span the whole set, we need two of them with
odd values of k. They are

I−1 = ±
√

2ν∗11
E +A∗ F

(
θ1
2
, κ

)
,

and

I1 = ±
√

8
ν∗11

(E +A∗) E
(
θ1
2
, κ

)
,

where F( θ1

2 , κ) and E( θ1

2 , κ) are incomplete elliptic integrals1 of the first and
second kind, respectively, of modulus

κ =

√
2A∗

E +A∗ (0 < κ < 1).

Double signs were used in front of the square roots to stress that these func-
tions have two branches each corresponding to a distinct family of circulations.

The solutions of the equations for Sk (k = 1 and k = 2) are

S1 = I1 = ± 4
κ

√
A∗

ν∗11
E
(
θ1
2
, κ

)
(4.58)

and
S2 = − E

A∗ν∗11

dA∗

dJ∗
1

I0 − ν∗111
6ν∗11

I2 +
1

2A∗
dA∗

dJ∗
1

I2,

1 The slight change in the usual notation for the elliptic integrals made here (F
and E instead of F and E) is necessary to avoid confusion with other functions
in the book. IK and IE are the corresponding complete elliptic integrals.
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4.4 Garfinkel’s Ideal Resonance Problem 111

or

S2 = −Eν∗111
3ν∗211

θ1 +
(

dA∗

dJ∗
1

− A∗ν∗111
3ν∗11

)
sin θ1
ν∗11

. (4.59)

From (4.58) and (4.59) we have, respectively,

∂S1

∂E
= ± κ√

A∗ν∗11
F
(
θ1
2
, κ

)
,

∂S2

∂E
= −ν∗111θ1

3ν∗211

.

Therefore,

t = t0 ± κ√
εA∗ν∗11

F
(
θ1
2
, κ

)
− ν∗111

3ν∗211

θ1 + O(
√
ε), (4.60)

where the upper sign corresponds to prograde circulations and the lower one
to retrograde circulations. θ1 = 0 when t = t0.

The period of the circulations is given, to this order, by

T =
2κ√
εA∗ν∗11

IK(κ) ∓ 2πν∗111
3ν∗211

+ O(
√
ε), (4.61)

where IK(κ) is the complete elliptic integral of the first kind of modulus κ.
The use of Jacobian functions is necessary to write the complete solution,

as well as, for instance, to give the explicit form of the time law θ = θ(t).
Inverting the elliptic integral in (4.60) we obtain

θ1 = ±2 am

(
τ +

√
εA∗ν∗11
κ

ν∗111
3ν∗211

θ1

)
+ O(ε),

where am is the Jacobian amplitude, and

τ =

√
εA∗ν∗11
κ

(t− t0). (4.62)

To the given order of approximation, we may still write

θ1 = ± 2 am τ + 4

√
εA∗ν∗11
κ

ν∗111
3ν∗211

am τ dn τ + O(ε), (4.63)

where dn is the Jacobian delta amplitude elliptic function.
The variation of the action J1, to the same order of approximation, is

J1 = J∗
1 ± 2

κ

√
εA∗

ν∗11

√
1 − κ2 sin2 θ1

2
− εEν∗111

3ν∗211

+ ε

(
dA∗

dJ∗
1

− A∗ν∗111
3ν∗11

)
cos θ1
ν∗11

+ O(ε
√
ε), (4.64)

Page: 111 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



112 4 Resonance

where the upper sign corresponds to motions above the libration zone (J1 >
J∗

1 ) and the lower sign to motions below the libration zone (J1 < J∗
1 ). One

should be aware that the relationship between the double signs in (4.63) and
(4.64) is not always the same. When ν∗11 > 0, the upper (resp. lower) sign
in one of them corresponds to the upper (resp. lower) sign in the other (the
circulations above the libration zone are prograde and the circulations be-
low the libration zone are retrograde). When ν∗11 < 0, we have to consider
that the second of them carries the sign of ∂S1/∂θ1 (which is proportional
to

√
A∗/ν∗11), while the first of them carries the sign of ∂S1/∂E (which is

proportional to ν∗11
√
A∗/ν∗11; written as

√
A∗ν∗11). Then, when ν∗11 < 0, these

two partial derivatives have opposite signs and, to the upper sign in one of
the equations, corresponds the lower sign in the other (the circulations above
the libration zone are retrograde and the circulations below the libration zone
are prograde).

In the inner limit κ → 1, we have IK → ∞ and, thus, T → ∞. The outer
limit κ → 0 corresponds to E → ∞. From (4.56) and (4.57), it is evident
that, for k even, Ik has a leading term in Ek/2; thus, for κ → 0, the series
giving the function S is divergent, meaning that this theory does not allow us
to study the motion far of the resonance; it is only valid in the region of deep
resonance where κ > O(

√
ε) and where the general theories of the previous

chapter would fail because of the small divisor ν∗1 .

4.4.3 Libration ( |E| < |A∗| )

The basic equations for librations and circulations are the same. However,
elliptic integrals must be treated in a different way since, now, κ > 1. We
need to use the reciprocal modulus transformation

sin ζ = κ sin
θ1
2

(4.65)

(see Sect. B.1.2) and the solutions describing the librations are obtained from
those describing the circulations by means of the well-known relations

κF
(
θ1
2
, κ

)
= F

(
ζ,

1
κ

)
(4.66)

and

κ E
(
θ1
2
, κ

)
= κ2 E

(
ζ,

1
κ

)
− (κ2 − 1) F

(
ζ,

1
κ

)
. (4.67)

We thus have

I−1 =

√
ν∗11
A∗ F

(
ζ,

1
κ

)
and

I1 = 4

√
A∗

ν∗11

[
E
(
ζ,

1
κ

)
+ βF

(
ζ,

1
κ

)]
,
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4.4 Garfinkel’s Ideal Resonance Problem 113

where

β =
1 − κ2

κ2
(4.68)

and

ζ = arcsin
(
κ sin

θ1
2

)
= arcsin

√
A∗(1 − cos θ1)

E +A∗ . (4.69)

The integrals I0 and I2 are the same as before.
The solution of the equation for k = 1 is again

S1 = I1,

(with the new value of I1); for k = 2, the solution is the same as for circula-
tions. We also have

∂S1

∂E
=

1√
A∗ν∗11

F
(
ζ,

1
κ

)
.

Substitution of these results into (4.53) gives, now, the time law

t = t0 +
1√

εA∗ν∗11
F
(
ζ,

1
κ

)
− ν∗111

3ν∗211

θ1 + O(
√
ε), (4.70)

where we assume θ1 = 0 and θ̇1 > 0 (or ζ = 0 and ζ̇ > 0) at t = t0.
The period of the librations is the time for θ1 to perform a complete

oscillation between the boundaries of the libration. We may first note that the
term proportional to θ1 does not contribute to the period since the angle θ1 will
be brought back to the initial value without completing one revolution; this
term only says that θ1 is faster in one direction than in another (if ν∗111 > 0,
it is faster when θ1 grows). We have to consider, then, only the contribution
of the term involving the elliptic integral, whose calculation is the same as for
the simple pendulum:

T =
4√

εA∗ν∗11
IK

(
1
κ

)
+ O(

√
ε). (4.71)

The inversion of the elliptic integral in (4.70) gives, now,

κ sin
θ1
2

= sin ζ = sn
{√

εA∗ν∗11

[
(t− t0) +

(
ν∗111
3ν∗211

)
θ1

]}
+ O(ε), (4.72)

where sn is the Jacobian sine amplitude elliptic function with modulus 1/κ.
An iteration over θ1 is necessary to complete the inversion of (4.70).

The analog of (4.64), in this case, is

J1 = J∗
1 ± 2

κ

√
εA∗

ν∗11
cos ζ − εEν∗111

3ν∗211

+ ε

(
dA∗

dJ∗
1

− A∗ν∗111
3ν∗11

)
cos θ1
ν∗11

+ O(ε
√
ε).

(4.73)
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114 4 Resonance

In all equations before the last one, we have not used double signs since the
two branches of the square roots meet at the boundary of the libration and
are parts of the same solution. However, as in the case of circulations, when
ν∗11 < 0,

√
A∗/ν∗11 and

√
A∗ν∗11 must be considered with different signs. Hence,

a double sign was included in the last equation, the positive sign holding when
ν∗11 > 0 and the negative one when ν∗11 < 0.

The inner limit κ → ∞ ( 1
κ → 0) corresponds to E → −A∗, that is, to the

stable equilibrium point. The outer limit κ → 1 corresponds to the separatrix
(see below).

4.4.4 Asymptotic Motions (E = A∗)

When κ = 1 (E = A∗), (4.44) becomes, simply,

∂S1

∂θ1
= ±

√
2A∗

ν∗11
(1 + cos θ1) = ±

√
4A∗

ν∗11
cos

θ1
2

;

the corresponding integral is only pseudo-elliptic and gives

S1 = ±
√

8A∗

ν∗11
(1 − cos θ1) = ±

√
16A∗

ν∗11
sin

θ1
2
.

The derivative ∂S1/∂E needs some special consideration since, now, E is a
constant. This derivative may be obtained by calculating ∂2S1/∂θ1∂E from
(4.44), then making E = A∗, and integrating with respect to θ1. Then

∂S1

∂E
= ±

∫ √
1

4A∗ν∗11
sec

θ1
2

dθ1 = ±
√

1
A∗ν∗11

ln tan
(
π

4
+
θ1
4

)
(−π < θ1 < π). The formal solution of order O(ε), for this particular choice
of the integration constant, is

J1 = J∗
1 ±

√
4A∗ε
ν∗11

cos
θ1
2

− A∗εν∗111
3ν∗211

(1 + cos θ1) +
ε

ν∗11

dA∗

dJ∗
1

cos θ1 + O(ε
√
ε),

(4.74)

t = t0 ±
√

1
εA∗ν∗11

ln tan
(
π

4
+
θ1
4

)
− ν∗111

3ν∗211

θ1 + O(
√
ε). (4.75)

In these two equations, each choice in the double signs corresponds to one
of the separatrices. They are to be chosen in accordance with the same rules
used for circulations: upper or lower separatrix in the double sign of (4.74)
and prograde or retrograde motion in the double sign of (4.75). The terms
coming from the derivatives of S2 introduce an asymmetric correction to the
height of the pendulum separatrices and on the asymptotic motions on them.
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U S UU S U

Fig. 4.1. Solutions of the Ideal Resonance Problem for diverse sign choices. Left:
ν∗

11 > 0. Right: ν∗

11 < 0

4.5 Angle–Action Variables of the Ideal Resonance
Problem

The angle–action variables of the Ideal Resonance Problem may be easily
calculated using the one-degree-of freedom formulas of Sect. 2.1.1. We just
have to pay attention to the need of some notation changes, since J1 was
already used to denote the actions in the undisturbed (ε = 0) problem. We
will calculate the new angle w1 and the new action

Λ1 = ± 1
2π

∮
(J1 − J∗

1 )dθ1, (4.76)

in the two regimes of periodic motion: circulation and libration. The intro-
duction of J∗

1 in the function under the integral sign has the effect of adding
a constant to the definition given by (2.6); this can always be done, since
actions are defined except for an arbitrary additive constant.

4.5.1 Circulation

From (4.76) and (4.64), we have

Λ1 = ± 4
κπ

√
εA∗

ν∗11
IE(κ) ∓ εEν∗111

3ν∗211

+ O(ε
√
ε), (4.77)

where the sign in front of the integral is to be fixed in accordance with the
rules stated in Sect. 2.1.2. It is positive when θ̇1 > 0 and negative when θ̇1 < 0.
Combining this rule with the double sign of S1, there are four possible sign
combinations: As a rule of thumb, the first of the double signs is + when
ν∗11 > 0 and − when ν∗11 < 0 and the second one is + for retrograde motions
and − for prograde motions. (See Fig. 4.1.)

The calculation of w1 gives

w1 = ±πF(θ1/2, κ)
IK(κ)

−
√
εA∗ν∗11ν

∗
111π

3κν∗211 IK(κ)

(
θ1 − πF(θ1/2, κ)

IK(κ)

)
+ O(ε). (4.78)
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or w1 = ẇ1(t− t0), where

ẇ1 =
2π
T

=
π
√
εA∗ν∗11

κIK(κ)

(
1 ± πν∗111

√
εA∗ν∗11

3ν∗211κIK(κ)

)
+ O(ε

√
ε), (4.79)

the double signs corresponding to prograde or retrograde circulations as in
(4.60).

4.5.2 Libration

We continue as before, just taking into account that, in the libration regime,
I1 is not the same as for a circulation. In this case, the contribution of some
terms of J1 − J∗

1 vanishes, since θ1 oscillates in a bounded interval returning
to the initial value after one libration period, without performing a complete
rotation. The first approximation of the angle–action variables of the libration
is, thus, the same as in the simple pendulum (with just a different constant
factor and a double sign in Λ1):

Λ1 = ± 8
π

√
εA∗

ν∗11

[
IE
(

1
κ

)
+ βIK

(
1
κ

)]
+ O(ε3/2)

= ± 2
κ2

√
εA∗

ν∗11

(
1 +

1
8κ2

+ · · ·
)

+ O(ε3/2) (4.80)

and

w1 =
πF(ζ, κ−1)
2IK(κ−1)

− πν∗111
√
εA∗ν∗11

6ν∗211 IK(κ−1)
θ1 + O(ε) (4.81)

or, w1 = ẇ1(t− t0), where

ẇ1 =
2π
T

=
π
√
εA∗ν∗11

2IK(κ−1)
+ O(ε

√
ε). (4.82)

The inversion of (4.81) gives

sin ζ = sn
(

2IK
π

w1 +
√
εA∗ν∗11

ν∗111θ1
3ν∗211

+ O(ε)
)

(4.83)

or

sin ζ = sn
(

2IK
π
w1

)
+

π

2IK
d

dw1
sn

(
2IK
π
w1

)√
εA∗ν∗11

ν∗111θ1
3ν∗211

+O(ε). (4.84)

All elliptic functions and integrals have modulus κ−1. The elliptic function
may be replaced by its Fourier expansion2

2 See [17], Sect. 908.
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sn
(

2IK
π
w1

)
=

πκ

IK

∞∑
j=0

csch
[(

j +
1
2

)
χ(κ−1)

]
sin (2j + 1)w1,

where χ(κ−1) =
πIK(

√
1 − κ−2)

IK(κ−1)
(see B.31). We also know that

θ1 = 2 arcsin
(

1
κ

sin ζ
)

and some iterations are needed to obtain the expansion of θ1 at a given order.
Here, it is useful to recall that

csch
[(

j +
1
2

)
χ

]
= 2(e−χ)j+ 1

2

{
1 − (e−χ)2j+1

}−1

and that limκ−1→0 χ(κ−1) = ∞.
In an analogous way, we may use (4.84) to obtain similar expansions for

cos ζ:

cos ζ = cn
(

2IK
π
w1

)
+

π

2IK
d

dw1
cn

(
2IK
π
w1

)√
εA∗ν∗11

ν∗111θ1
3ν∗211

+O(ε) (4.85)

and

cn
(

2IK
π
w1

)
=

πκ

IK

∞∑
j=0

sech
[(

j +
1
2

)
χ(κ−1)

]
cos (2j + 1)w1

where cn is the Jacobian cosine amplitude elliptic function with modulus 1/κ.
We also recall that

sech
[(

j +
1
2

)
χ

]
= 2

(
e−χ

)j+ 1
2
{
1 + (e−χ)2j+1

}−1
.

This series may be substituted into (4.73) to obtain J1.

4.5.3 Small-Amplitude Librations

When the amplitude of the librations is small, that is, when κ−1 ∼ 0, we
may consider only the leading terms of the Taylor expansions of the elliptic
integrals in powers of κ−1 and, thus, obtain

θ1 =
2
κ

sinw1 + O(κ−3),

J1 = J∗
1 ± 2

κ

√
εA∗

ν∗11
cosw1 + O(

√
εκ−3).
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To obtain θ1 and J1 as functions of the action Λ1, we need to invert (4.80)
with respect to κ−1:

1
κ

=

√
|Λ1|
2

(
ν∗11
εA∗

) 1
4

(
1 − |Λ1|

16

√
ν∗11
8A∗ + · · ·

)
+ O(ε∼1). (4.86)

It is also useful to introduce the libration frequency

ẇ1 =
2π
T

=
√
εA∗ν∗11

(
1 − 1

4κ2
+ · · ·

)
=

√
εA∗ν∗11 −

1
8
ν∗11Λ1 + · · · . (4.87)

An easy calculation allows us to obtain

θ1 =
√

2Λ1ν∗11
ẇ1

sinw1 + O (
κ−3

)
; (4.88)

J1 = J∗
1 ±

√
2Λ1ẇ1

ν∗11
cosw1 + O (√

εκ−3
)
. (4.89)

These equations give, at the lower order of approximation, θ1, J1 as func-
tions of the angle–action variables of Garfinkel’s Ideal Resonance Problem.
We recall that Λ1 and ν∗11 can be either positive or negative, but their prod-
uct or quotient is always positive. ẇ1 is always positive. The sign in front of
the square root of (4.89) is positive or negative according to the sign of ν∗11.
The calculation of terms of higher orders requires more work, but it does not
present any difficulty. (See Sect. 8.8.1.)

4.6 Morbidelli’s Successive Elimination of Harmonics

The central idea of Delaunay’s lunar theory has been explored by Morbidelli
[76] and used to study the overlap of resonances in the phase space of the
dynamical system defined by the Hamiltonian

H = H0(J) + ε
∑
h∈D

Ah(J) cos (h|θ). (4.90)

Morbidelli’s successive elimination of harmonics starts with the choice of an
argument (h1|θ) of H and the consideration of the system defined by the
abridged Hamiltonian

F1 = H0(J) + εAh1(J) cos (h1|θ), (4.91)

where h1 ≡ (h1(1), h1(2), · · · , h1(N)) ∈ Z
N This system is integrable. However,

at variance with Delaunay theory, the non-resonance condition (h1|ν) �= 0
is not assumed; on the contrary, the term to start the procedure is selected
from among the most important resonant terms in the domain of the phase
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4.6 Morbidelli’s Successive Elimination of Harmonics 119

space under study. It is chosen in the set of resonant terms, by its topological
consequences. For instance, we may define the resonance strength of a term
by its width – defined as the maximum separation between the two branches
of the separatrices. From the equations of Sect. 4.4.4, we have

∆Jsep = 4

√∣∣∣∣εAh1

ν̃11

∣∣∣∣, (4.92)

where ν̃11 is the second derivative of H0(J) with respect to the action J ′
1

conjugate to (h1|θ). It is easy to see3 that ν̃11 ∼ O(|h2
1|). Therefore, the most

important resonances are those with higher Ah1 and lower |h1|.
Once the term h1 is selected, we change variables through a Lagrangian

extended point transformation where we impose θ′1 = (h1|θ). Let it be, for
example,

θ′1 = (h1|θ) J ′
1 = J1/h1(1)

θ′� = θ� J ′
� = J� − (h1(�)/h1(1))J1

(4.93)

(� = 2, · · · , N). Then, F1 becomes

F1 = H0(J(J ′)) + εAh1(J(J ′)) cos θ′1. (4.94)

This is the Hamiltonian of the Ideal Resonance Problem and we may construct
its angle–action variables w1, Λ1 (see Sect. 4.5). Hence,

θ′1 = θ′1(w1, Λ1; J ′
�) J ′

1 = J ′
1(w1, Λ1; J ′

�). (4.95)

Since the given system has N degrees of freedom, we have to extend this
transformation of one pair of variables to the whole set, which is done by
imposing J ′

� = Λ� and by using one of the algorithms of Sect. 2.4.4:

w� = θ′� + Ξ�(w1, Λ), (4.96)

where, for instance,

Ξ� =
∫ w1

0

(
∂θ′1
∂w1

∂J ′
1

∂Λ�
− ∂J ′

1

∂w1

∂θ′1
∂Λ�

)
dw1 (4.97)

(Henrard-Lemaitre transformation).
Once we have completed the transformation, we go back to the given

Hamiltonian H and perform the canonical transformation (θ′, J ′) ⇒ (w,Λ).
F1 will become a function of Λ only, and the remaining terms of (4.90), not
included in F1, will be periodic functions of the angles w. They may be ex-
panded in Fourier series so that, instead of H , we have a new Hamiltonian

H∗ = H∗
0 (Λ) + ε

∑
h∈D∗

A∗
h(Λ) cos (h|w). (4.98)

3 From (4.93), we obtain ν̃11 =
∑N

j=1

∑N

k=1
νjkh1(j)h1(k).
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This completes one Delaunay–Morbidelli operation. We may, then, restart the
procedure by choosing a new term in H∗:

F2 = H∗
0 (Λ) + εA∗

h2
(Λ) cos (h2|w). (4.99)

We then introduce w′
1 = (h2|w) and new angles w′

� and momenta Λ′ through
a Lagrange point transformation; we construct new angle–action variables
ψ1,K1 and complete the transformation to include the other degrees of free-
dom. We thus get a new H∗∗ and continue as before.

We have, purposely, presented the Delaunay–Morbidelli operation with-
out stressing that the angle–action variables are not globally valid and are
not computed in the same way in circulations and librations. In fact, Mor-
bidelli’s successive elimination of harmonics is not meant to construct formal
solutions (the chains of elliptic functions and integrals would make it impos-
sible), but to map the geometry of the resonances in a given domain of the
phase space. One important point is that, in H∗, the angles are w. The w�

differ from the given θ� by the quantity Ξ�, which is small: the corresponding
frequencies in H0(J) and H∗

0 (Λ) are of the same order. w1 is the uniform
angle associated with the libration (or circulation), and has the frequency
of this motion. Thus, new resonances may appear in H∗, involving w1 and
some of the w� not appearing in the given H . The best known examples are
the so-called secondary resonances in the Kirkwood gaps of the asteroid belt
(see [77]). These gaps appear near initial conditions corresponding to aster-
oids with an orbital period commensurable with Jupiter’s period. The motion
of an asteroid inside the gap is a libration about a periodic orbit; the libra-
tion frequency may be approximately known by selecting the main term with
the critical combination of the two longitudes, and using the Ideal Resonance
Problem. The Hamiltonian H∗ shows new critical terms in which the libration
frequency is a multiple of the frequency of motion of the perihelion (one of
the θ�). The overlap of these secondary resonances may be studied taking, in
turn, each of these terms in H∗ to compose the abridged Hamiltonian F2.

To circumvent the difficulties due to elliptic functions and integrals, it is
possible to construct numerically all transformations mentioned in this sec-
tion. We may use the direct techniques described in Sect. 2.2 to construct the
angle–action variables. In such case, the result will not be written as formal
functions, but as functions defined by a table or computer code allowing them
to be known.

4.6.1 An Example

Let us consider an application of Morbidelli’s elimination algorithm to the
Hamiltonian function obtained at the end of Sect. 3.8. We discard terms of
the order O(ε2) and adopt the notation θ, J (without stars) for angles and
actions. Also, for practical reasons, we interchange the subscripts 2 and 3
in the variables and adopt the particular value A0 = αJ2 for the secular
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4.6 Morbidelli’s Successive Elimination of Harmonics 121

term of the perturbation. We also assume that α,B1, L0 and M1 are positive
constants. Hence,

H(θ, J) = H0 + εH2

where

H0 = − 1
2J2

1

+ ν3(J3 − 2J1) (4.100)

and

H2 = αJ2 + L0

√
−J2 cos θ2 +B1 cos θ1 +M1

√
−J2 cos (θ1 + θ2). (4.101)

The action J3 is a constant (since the angle θ3 is absent from the Hamiltonian)
and the exact resonance value of J1 is defined by

ν∗1 = ν1(J∗
1 ) =

∂H0

∂J1

∣∣∣∣
J1=J∗

1

def= 0; (4.102)

that is
J∗

1 =
1

3
√

2ν3
. (4.103)

We also have
ν∗11 = −6ν3

3
√

2ν3 = −3(2ν3)4/3. (4.104)

We recall that the example of Sect. 3.8 is founded on the asteroidal three-body
problem and B1 is, there, a quantity of the order of the orbital eccentricity of
the disturbing planet.

In the neighborhood of J1 = J∗
1 , the Hamiltonian given by (4.101) has two

resonant terms: εB1 cos θ1 and εM1

√−J2 cos (θ1 + θ2). Let us consider the
Ideal Resonance Problems (IRPs) which they, separately, define:

F1(a)= H0(J)+εB1 cos θ1
F1(b)= H0(J)+εM1

√−J2 cos (θ1 + θ2).
(4.105)

�

��

������������������

1(a)

1(b)

1
1

J
J

Fig. 4.2. Separatrices of the two IRPs of (4.105)
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122 4 Resonance

The widths (maximum libration amplitudes) of these resonances are, re-
spectively,

∆Jsep(a) = 4

√
−εB1

ν∗11

∆Jsep(b) = 4

√
−εM1

ν∗11
4
√
−J2.

Figure 4.2 shows the locus of the separatrices of the two considered IRPs, in
the plane J1, |J2|. If |B1| � |M1|, the strip corresponding to the resonance of
F1(a) is narrow (as shown in the figure) and the hierarchy of the two considered
harmonics is well established. It is then possible to start the elimination of
harmonics with the largest one, F1(b).

Following the recipe given above, we perform, initially, the point transfor-
mation

θ′2= θ1 J ′
2=J1 − J2 − J∗

1

θ′1= θ1 + θ2 J ′
1=J2;

(4.106)

F1 becomes
F1 = F1(b) = H0(J(J ′)) + εM1

√
−J ′

1 cos θ′1. (4.107)

Let us consider the small-amplitude librations of this one-degree-of-freedom
system about the libration center J ′∗

1 = −J ′
2. They are given by (see 4.88 and

4.89):

θ′1 =
√

2Λ1ν∗11
ẇ1

sinw1 (4.108)

J ′
1 = −J ′

2 −
√

2Λ1ẇ1

ν∗11
cosw1, (4.109)

where w1, Λ1 are the angle–action variables of the IRP defined by F1, ν∗11 is
a known number and

ẇ1 =
√
−εν∗11M1

4
√
J ′

2 −
1
8
ν∗11Λ1. (4.110)

In order to have θ′1 = 0 at the libration center, we assumed M1 > 0 (we
recall that ν∗11 < 0 and Λ1 < 0). The next step in Morbidelli’s algorithm
is to complete the canonical transformation (θ′1, θ

′
2, J

′
1, J

′
2) ⇒ (w1, w2, Λ1, Λ2)

through
θ′2=w2 − Ξ2(w1, Λ1, Λ2)
J ′

2=Λ2,

where

Ξ2 =
∫ w1

0

(
∂θ′1
∂w1

∂J ′
1

∂Λ2
− ∂J ′

1

∂w1

∂θ′1
∂Λ2

)
dw1.

We note that θ′1, J ′
1 depend on J ′

2, that is, on Λ2, also through ẇ1. The deriv-
atives are
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∂θ′1
∂w1

=
√

2Λ1ν∗11
ẇ1

cosw1,

∂J ′
1

∂w1
=

√
2Λ1ẇ1

ν∗11
sinw1,

∂θ′1
∂Λ2

=
ν∗11

8Λ3/4
2

√
−2εM1Λ1

ẇ3
1

sinw1,

∂J ′
1

∂Λ2
= −1 − 1

8Λ3/4
2

√−2εM1Λ1

ẇ1
cosw1.

Hence,

Ξ2 = −
∫ w1

0

(
∂θ′1
∂w1

+
|Λ1|

√−εM1ν∗11
4Λ3/4

2 ẇ1

)
dw1,

or

Ξ2 = −θ′1 −
Λ1

8Λ2
, (4.111)

where, for the sake of simplicity, we kept ẇ1 restricted to its first approxima-
tion. The transformation is, now, complete and may be used to transform the
given Hamiltonian.

With the new variables, F1 may depend only on the actions. The substitu-
tion of variables in F1 is cumbersome and the cancellation of periodic terms,
in higher orders, is only partially achieved because of the many simplifica-
tions introduced. However, a shortcut exists. We know that, if we denote by
F̂1(Λ1, Λ2) the result of the transformation, by definition,

ẇ1 =
∂F̂1

∂Λ1

or

F̂1 =
∫

ẇ1 dΛ1.

The problem with this shortcut is that the integration introduces an arbi-
trary additive function of Λ2, for whose derivation, the direct transformation
is necessary. Since this additive function cannot depend on Λ1 and all involved
functions are polynomials in

√−Λ1, we need just transform the parts of F̂1

independent of Λ1 to obtain it. Hence

F̂1(Λ1, Λ2) =
√
−εν∗11M1

4
√
Λ2Λ1 − 1

16
ν∗11Λ

2
1 + εM1

√
Λ2, (4.112)

where the two first terms resulted from the integration of ẇ1 and the last
one from a direct calculation. The constant terms (depending on J3 and J∗

1 )
do not need to be taken into account since they do not contribute to the
equations. The terms of H not considered in F1(b) need to be written with
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�
1(b)

1
1

J
J

ν �
1(b)

1
1

J
J

ν
2

Fig. 4.3. Secular (ν) and secondary (k = 1, 2, 3) resonances

the new variables. The results are Fourier expansions in the angle w2 + kw1.
The new Ĥ0 is

Ĥ0 = F̂1 − εαΛ2. (4.113)

To do a new Delaunay–Morbidelli operation, we have to select a new resonant
periodic term to add to Ĥ0. Let us, first, search the resonance locus of the
main terms. To do this, we need the expressions for ẇ1 and ẇ2:

ẇ1 =
√
−εν∗11M1

4
√
Λ2 − 1

8
ν∗11Λ1 (4.114)

ẇ2 =
∂Ĥ0

∂Λ2
=

√
−εν∗11M1

Λ1

4Λ3/4
2

+
1
2
εM1√
Λ2

− εα. (4.115)

When numerical values are given to ε, ν∗11, M1 and α, the locus of the
curves ẇ2±kẇ1 = 0 is easily found. It is convenient to show these curves in the
plane J1, |J2| instead of the plane Λ1, Λ2. The transformation Λ1, Λ2 ⇒ J1, J2,
however, depends on w1. It is, then, necessary to fix the value of w1. We
follow the same practice usual in resonant asteroid dynamics, and fix it at the
boundaries of the librations of the action J ′

1 conjugate to the critical angle
θ′1. Thus, we assume | cosw1| = 1. As a consequence, to each point in the
plane (Λ1, Λ2) we obtain two points in the plane (J1, J2), one on each side of
the vertical line J1 = J∗

1 . Figure 4.3 (left) shows the lines falling inside the
boundary of the libration domain. They are: the secular resonance ẇ2 = 0
(indicated by ν following astronomers’ classical notation); and the secondary
resonances ẇ2 + kẇ1 = 0 with k > 0 (the lines k = 1, 2, 3 are shown)4.

To each of the resonances in Fig. 4.3 (left) there corresponds one libration
zone defined by the separatrices of the Ideal Resonance Problem obtained
when the corresponding perturbative term is selected and added to Ĥ0. Let
us introduce the new set of canonical variables

4 For a Lie series study of secular and secondary resonances, see Sects. 9.4.5 and
9.4.6.
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ϕ1=w2 + kw1 K1=Λ2

ϕ2=w1 K2=Λ1 − kΛ2
(4.116)

and study the Ideal Resonance Problems

F2(k) = Ĥ0(K(Λ)) + Ak(K) cosϕ1 (k = 0, 1, 2, 3), (4.117)

where the coefficients Ak(K) come from the expansion of those terms of
H(θ, J) whose coefficients are B1 and L0.

Figure 4.3 (right) shows the separatrices of the IRPs corresponding to k =
0, 1, 2. The secular resonance k = 0 (ν) and the secondary resonance k = 1 are
isolated in this figure, while the secondary resonances k = 2 and k = 3 (shown
only in Fig. 4.3 left) are very close and overlap each other. (The secondary
resonance k = 3 is inside the resonance zone of the secondary resonance
k = 2.) If Fig. 4.3 (right) were the result of an exact numerical calculation,
F2(0) and F2(1) could be considered as good candidates for elimination of
further harmonics. On the contrary, because of the overlap of their libration
domains, the isolated consideration of F2(2) or F2(3) would be unrealistic.
However, Fig. 4.3 (right) is the result of analytical approximations valid only
in a small neighborhood of J1 = J∗

1 , and we have to restrict our analysis to
it. The motions in this neighborhood are far from the resonance lines of Fig.
4.3 (left) and we may use the original Delaunay operation of Sect. 4.1 to get
rid of the harmonic remaining in the Hamiltonian. Maybe, in the case of the
harmonic k = 2, given the broadness of its resonant zone, we should consider
the expression of the circulations given by the Ideal Resonance Problem, since
that given by the classical Delaunay operation assumes that the resonance is
very far and do not influence the solution.

One important remark yet to be made concerns the numerical choice of
the coefficients appearing in the Hamiltonian. To obtain Fig. 4.3 (right), we
had to consider L0 � M1 and neglect the term εB2 cos θ1. Otherwise, the
libration zones of the F2(k) would be so broad that they would overlap over
almost the whole region shown in the figures. In that case, it would no longer
be possible to select one domain in the plane for further studies with the
technique discussed here. These limitations may not, however, be considered
as a weak point. On the contrary, allowing us to map the overlap of resonances,
Morbidelli’s successive elimination of harmonics clearly shows the extreme
limits where approximate regular solutions can exist.

The given example used the heavy analytical machinery of Garfinkel’s
Ideal Resonance Problem with the aim of allowing the reader to have a step-
by-step view of the technique. But one should take advantage of the possibility
of direct numerical construction of the transformations leading to particular
angle–action variables, as discussed in Sect. 2.2, to have exact calculations
and, as a consequence, an exact chart of resonances and libration domains, at
every step.
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