
2

Angle–Action Variables. Separable Systems

2.1 Periodic Motions

The trajectories of systems with one degree of freedom are the curves
H(q1, p1) = E. As shown in Sect. 1.8, the equations of the motion are given
by

t+ α1 = q∗1 =
∂S

∂E

def= F11(q1), (2.1)

where α1 is a constant and S = S(q1, E) is the solution of the Hamilton–Jacobi
equation.

In the particular examples given in Sect. 1.9, we have found two kinds of
periodic solutions:

• Circulatory Motions. Motions occurring when the variable q1 is defined on
a circle (for instance, q1 is an angle defined from 0 to 2π) and is always
increasing or decreasing (see Fig. 2.1a). The periodicity of the motion is
due to the angular nature of q1. The phase space of this system is a cylinder
and the circulations are solutions closing on themselves after a complete
tour encircling the cylinder.

• Oscillatory Motions or Librations. Motions occurring when the variable q1
oscillates periodically between two boundaries a and b (see Fig. 2.1b). The
variable q1 may be either an angle (as in the pendulum) or a length (as in
the harmonic oscillator). Accordingly, the phase space is either a cylinder
(if q1 ∈ S) or a plane (if q1 ∈ R). Librations are closed curves with the
particular property, in the case q1 ∈ S, that they close on themselves
without encircling the cylinder.

It is not difficult to see that all bounded solutions of a Hamiltonian system
with one degree of freedom are either periodic or asymptotic to an unstable
equilibrium point. It is enough to remember that, since the phase flow pre-
serves volumes in phase space (see [5], Chap. 1, Sect. 3.6), the only ordinary
singular points allowed in the two-dimensional phase space of a Hamiltonian
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Fig. 2.1. Functions q1(t): (a) circulation; (b) libration

system are centers and saddle points. All bounded curves in this space that
do not start or end in a saddle point correspond to a periodic motion.

2.1.1 Angle–Action Variables1

The equations resulting from the transformation (q1, p1) ⇒ (q∗1 , p
∗
1) are

q∗1 = t + α1

p∗1 = β1 = E,
(2.2)

where α1 and β1 are constants. The phase space (q∗1 , p
∗
1) is either a plane or a

cylinder as discussed above. The phase trajectories are the lines p∗1 = β1 and
the phase velocity is q̇∗1 = 1 on all trajectories. There are no explicit constraints
imposed on α1, β1, which, however, exist and may be found by the analysis of
S(q1, E). For instance, in the harmonic oscillator (Sect. 1.9.2), the solutions
exist only in the domain formed by the upper half-plane E/m ≥ 0. Another
property not appearing in the functional expression of the Hamiltonian H∗ =
p∗1 is the possible periodicity of the solutions (or of one set of solutions). For
instance, in the harmonic oscillator, all solutions for E/m > 0 are periodic
with period T = 2π/

√
k, that is, q∗1 ∈ R/TZ.

1 Throughout this book, the order coordinate–momentum is adopted. Thus, we
shall refer to these variables as “angle–action” variables, instead of “action–angle”
as usually done everywhere.
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2.1 Periodic Motions 31

To correct this lack of topological information on the motion in the phase
space q∗1 , p

∗
1, we introduce, in the case of periodic motions, a new angular

variable w1 ∈ S1. By definition, it increases 2π when q1 performs a complete
circulation or libration. From (2.1) we have

q∗1 = t+ α1 = F11(q1)
q∗1 + T = t+ α1 + T = F11(q1 +

∮
dq1),

(2.3)

where
∮

dq1 means a complete circulation or libration of q1. Then, in order to
have, instead of q∗1 , a uniformized variable, it is enough to define2

w1 = 2π
t+ α1

T
= 2π

q∗1
T
. (2.4)

Obviously, the period T is the same for all initial conditions on a periodic
orbit, but it is worth keeping in mind that it is not the same for all periodic
solutions of a given system.

The momentum conjugate to w1 may be easily obtained in terms of q1, p1.
Let S̃(q1, J1) be the Jacobian generating function of the canonical transfor-
mation φ̃ : (q1, p1) ⇒ (w1, J1). Hence,

w1 =
∂S̃

∂J1
p1 =

∂S̃

∂q1
. (2.5)

The following chain of calculations is simple and just uses elementary calculus:

dw1

dt
=

d
dt

(
∂S̃

∂J1

)
=

∂

∂q1

(
∂S̃

∂J1

)
q̇1 =

∂2S̃

∂J1∂q1
q̇1

and

2π =
∫ t+T

t

dw1

dt
dt =

∮
∂2S̃

∂J1∂q1
dq1 =

∂

∂J1

∮
∂S̃

∂q1
dq1 =

∂

∂J1

∮
p1 dq1.

Hence

J1 =
1
2π

∮
p1 dq1, (2.6)

except for an arbitrary integration constant (of the integration in J1). The
quantity J1 has the dimension of angular momentum or action and is an
invariant of the motion (see Sect. 1.2.2). It is equal to the variation of the
action when the solution performs a complete circulation or libration. Because
of this property, it was called modulus of periodicity of the action [93] or
modulus of variation of the action [11]. Since it gives the area delimited by the
trajectory in the phase plane, it was also called phase integral. The adoption of
these variables in the old Quantum Theory was first proposed by Sommerfeld.

2 We adopted
∮

dw1 = 2π. In many classical texts,
∮

dw1 = 1.
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32 2 Angle–Action Variables. Separable Systems

The conjugate variables w1, J1 were called angle and action variables,
a denomination that became standard after its adoption in Born’s Atom-
mechanik [12]. This denomination is the one currently used. The correspond-
ing canonical equations are

ẇ1 =
∂E

∂J1
=

2π
T
, J̇1 = − ∂E

∂w1
= 0. (2.7)

Finally, let us note that, when the periodic motion is a libration, the
quantity defined by (2.6) is singular when J1 = 0. Indeed, the integral gives the
area enclosed by the libration orbit and the singularity J1 = 0 is a consequence
of the fact that the direction of the motion in the phase space (q1, p1) cannot be
reversed. Examples and consequences of this singularity in Celestial Mechanics
will be extensively considered in Chap. 7

2.1.2 The Sign of the Action

We shall emphasize that the result of the operation defining the actions may
be either positive or negative. To avoid any ambiguity, it is enough to write
the definition of the action as

J1 =
1
2π

∫ t+T

t

p1q̇1 dt. (2.8)

For instance, in the simple pendulum solutions, J1 is positive if m > 0 or
negative if m < 0 (see Fig. B.1). We recall that w1 is, by definition, always
such that ẇ1 > 0.

Exercise 2.1.1 (Angle–Action Variables of the Harmonic Oscillator).

1. Show that the angle–action variables of the harmonic oscillator defined by
U = k

2q
2
1 (k > 0) are

w1 = arcsin

√
mk

2E
q1 =

√
k(t + α1), (2.9)

J1 =
E√
k
. (2.10)

α1 is a constant. Hint: H =
p2
1

2m
+
km

2
q2
1 .

2. Show that
p1 =

√
2mE cosw1. (2.11)
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2.2 Direct Construction of Angle–Action Variables

It is possible to rearrange the theory to directly obtain the angle–action vari-
ables. We may start from

J1 =
1
2π

∮
p1(q1, E) dq1, (2.12)

where p1(q1, E) is obtained from the inversion of the energy integral E =
E(q1, p1). If the given Hamiltonian is quadratic in p1, like in Sect. 1.9, this is
an Abelian integral whose solution may benefit from some usual transforma-
tions and, when necessary, the use of the theory of residues3. The other basic
equations are

S̃ =
∫

p1(q1, E) dq1 (2.13)

and

w1 =
∂S̃

∂J1
=
∫

∂

∂J1
p1(q1, E) dq1. (2.14)

This step depends on the algebraic inversion of the solution of (2.12) to obtain
E = E(J1). Another possibility is to take, instead of (2.14),

w1 =
∂S̃

∂E

(
dJ1

dE

)−1

=
(

dJ1

dE

)−1 ∫
∂

∂E
p1(q1, E) dq1. (2.15)

The replacement of dE/dJ1 by (dJ1/dE)−1, which may be directly obtained
from (2.12) without the need of any algebraic inversion, is always possible as
long as E(J1) is a monotonic function.

However, these tasks are often made very difficult or even impossible to
accomplish analytically because of the reasonably complex forms of p1(E, q1).

There are ways of overcoming this situation. One of them, used in this book
to obtain angle–action variables for the small oscillations of the pendulum
(Sect. B.4) and of the Andoyer Hamiltonian (Sect. C.9), is founded on the fact
that we are dealing with periodic solutions of the given Hamiltonian system,
which may be represented by Fourier series. There are many different ways of
calculating these series. In this book, we limit ourselves to the neighborhood
of the equilibrium solutions. The solutions of the given system are represented
by the series

q1 = a0 +
n∑

i=1

aiγ
i,

where ai are undetermined periodic functions of the angle w1 and γ is a free
parameter of the order of the amplitude of the oscillations. (γ = 0 corresponds
to the stable equilibrium solution q1 = a0.) It is important to keep in mind
that we need to construct the whole family of periodic solutions and that ẇ1

3 For some specific examples, see [93], Note 6.
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34 2 Angle–Action Variables. Separable Systems

is not the same for all solutions but is itself also a function of the parameter
γ. It is assumed to be a power series in γ with undetermined coefficients:

ẇ1 = ω0 +
n∑

i=1

oiγ
i.

p1(w1) is constructed using the equations of the motion or the energy integral.
The angle–action variables are w1 and

J1
def=

1
2π

∫ 2π

0

p1
dq1
dw1

dw1.

The order n of the solution may be chosen according to the practical needs
of the problem being solved and the means available for the calculation. Exist-
ing algebraic manipulators allow high orders to be considered. The practical
steps of this construction may be seen in the cases presented in Sects. B.4 and
C.9.

A different method is the numerical construction of the angle–action vari-
ables [50]. Let H(q1, p1) be the Hamiltonian of an autonomous system and

q1 = q1(q0, p0, t)
p1 = p1(q0, p0, t)

(2.16)

its solution for a given initial condition (q0, p0) and let T (q0, p0) be the period
of this solution.

The corresponding angle–action variables are

w1
def=

2π
T

t (2.17)

J1
def=

1
2π

∫ T

0

p1
dq1
dt

dt = − 1
2π

∫ T

0

q1
dp1

dt
dt

and the inverses of these definitions are

γ

Fig. 2.2. Orbits transverse to a curve γ
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2.3 Actions in Multiperiodic Systems. Einstein’s Theory 35

q0 = q0(w1, J1)
p0 = p0(w1, J1).

(2.18)

In this technique, all functions are constructed numerically. It is noteworthy
that the last inversion may be more economically done when, beforehand, one
has constructed the derivatives ∂J1/∂q0 and ∂J1/∂p0.

A last practical point to be noted is that we need just to numerically
integrate from initial conditions lying on a given curve (γ) transverse to the
orbits (and passing through the center of the orbits if we intend to include in
the study also its immediate neighborhood) (Fig. 2.2). The extension of the
solutions of (2.17) to the other points on each orbit is immediate.

The algorithms provided by Mayer’s lemma (Sect. 1.10) allow the above
construction to be extended to obtain a canonical transformation including
other degrees of freedom. (see Sect. 2.4.4)

2.3 Actions in Multiperiodic Systems. Einstein’s Theory

Let us consider a conservative Hamiltonian system with N degrees of freedom.
It was shown in Sect. 1.2.2 that the action

J =
∮ N∑

i=1

pi dqi (2.19)

is an invariant of the motion (Helmholtz invariant).
If S(q, β) is a solution of the Hamilton–Jacobi equation, then pi = ∂S/∂qi,

N∑
i=1

pi dqi = dS(q, β)

is an exact differential and the integral (2.19) has the same value for all closed
curves that may be continuously deformed into one another. In particular,
for all curves that may be reduced to one point by means of a continuous
deformation, we have J = 0. When the solutions lie on a multiply connected
manifold, there are closed curves that cannot be reduced to one point by
continuous deformation (see [42]). This property was used by Einstein [26] to
prove that, when the Hamiltonian is integrable, it is possible to construct N
independent actions.

The multiperiodic solutions of a conservative integrable Hamiltonian cor-
responding to N constants βi form a surface homeomorphic to TN . An N -
dimensional torus is an N times connected surface and then we can find N
different closed curves Γk that cannot be pairwise deformed into one another
or reduced to one point and that may serve to uniquely define N independent
actions

Jk =
∮

Γk

N∑
i=1

pi dqi. (2.20)
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Γ                                       Γ1                                    2

Fig. 2.3. Curves on tori T2 (the tori are obtained by joining the opposite sides of
each square)

Γ                                       Γ

Γ                                      Γ'                                 '

Fig. 2.4. Left: Integration paths Γ and Γ ′. Right: Integration path obtained by
introducing a cut between them and inverting the direction of Γ ′

Let us consider the particular case N = 2. In T2, there are two types of
closed curves that cannot be reduced to one point or transformed into one an-
other by continuous deformation. They are shown in Fig. 2.3. All other closed
curves on the surface of the torus can, by means of continuous deformations,
be reduced to one point or transformed into one or more loops of the curves
Γ1 and Γ2. To the closed curves Γ1 and Γ2, there correspond two independent
actions J1 and J2.

In order that the definitions of Jk (k = 1, 2) have a meaning, the values of
J obtained from all closed curves that can be continuously transformed into
one another may be the same. Let Γ and Γ ′ be two oriented closed curves
that may be transformed into one another (Fig. 2.4, left). We may prove that
the resulting actions J and J ′ are such that J = J ′. To show this, we calculate
J − J ′. First, a cut joining Γ and Γ ′ is introduced. (The cut is shown in Fig.
2.4, right, as a pair of infinitesimally separated segments.) The resulting path
is a curve drawn on the torus without encircling it and which may be reduced
to one point; the integral over this path is then equal to zero. If we note that
the integrals over the cut are opposite and cancel each other and that the
integral over Γ ′ is done in a direction contrary to that used to define J ′, it
follows that J − J ′ = 0. ��

The actions constructed with Einstein’s theory may be completed by an-
gles defined by wk = ∂S̃/∂Jk where S̃(q, J) = S(q, β(J)) 4.

4 For a modern and rigorous definition of the angle–action variables of an integrable
system, see [4], Sect. 50.
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2.4 Separable Multiperiodic Systems 37

2.4 Separable Multiperiodic Systems

There are no general methods for the solution of the Hamilton–Jacobi equation
in the case of more than one degree of freedom. The use of general theories,
such as Cauchy characteristics, just recovers the given Hamiltonian system.
However, under certain special conditions, for some important problems such
as Keplerian motion (or the Rutherford–Bohr atom), a complete solution of
the Hamilton–Jacobi equation may be obtained. In these very particular cases,
one partial differential equation in N variables can be replaced by N sepa-
rate ordinary differential equations, one for each variable, and the complete
integration of the equation is achieved.

Generally speaking, a problem is said to be separable when the correspond-
ing Hamilton–Jacobi equation has a complete integral S(q, β) which may be
separated as

S(q, β) = S1(q1, β) + S2(q2, β) + · · · + SN (qN , β), (2.21)

where each term Sk = Sk(qk, β) is independent of the qj (j �= k).
In this case, the equations of the motion are given by

t+ α1 = q∗1 =
∂S

∂β1
=

N∑
k=1

∂Sk(qk, β)
∂β1

=
N∑

k=1

F1k(qk)

α� = q∗� =
∂S

∂β�
=

N∑
k=1

∂Sk(qk, β)
∂β�

=
N∑

k=1

F�k(qk),

(2.22)

(� = 2, 3, · · · , N), where we have introduced the functions

Fjk(qk) def=
∂Sk(qk, β)

∂βj
. (2.23)

The other equations, completing the transformation, are

pk =
∂S

∂qk
=

∂Sk(qk, β)
∂qk

(k = 1, · · · , N). (2.24)

Equations (2.24) show that the trajectories projected in the phase sub-
spaces qk, pk are mutually independent. The law of motion along the projected
trajectories may be obtained by solving the equations of the motion, (2.22),
with respect to the qk. As in Sect. 2.1, these projected periodic motions may
be either circulations or librations.

2.4.1 Uniformized Angles. Charlier’s Theory

The generalization of the angle variables of Sect. 2.1.1 to N degrees of freedom
may be done following the same principle as there. We define a partial cyclic
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38 2 Angle–Action Variables. Separable Systems

variation in which the corresponding variable qi performs a complete circu-
lation or libration while the other variables qk(k �= i) are kept unaltered. We
then define a set of N angle variables wi ∈ S such that in a partial cyclic vari-
ation of qi, the corresponding wi increases 2π while the other angles wk(k �= i)
are not affected. Such angle variables are said to be uniformized.

In a partial cyclic variation of qi, the functions Fji change while all func-
tions Fjk(k �= i) remain unchanged. Let γji be the increment of the functions
Fji(qi, β) in a partial cyclic variation of qi:

γji = Fji(qi +
∮

dqi) − Fji(qi), (2.25)

where
∮

dqi denotes the partial cyclic variation of qi. It is important to keep
in mind that the resulting repetition numbers γji are not independent of the
initial values of the qi (as T is not independent of the initial q1 in the case of
one degree of freedom).

Proposition 2.4.1 (Charlier [20]). If det(γji) �= 0, the variables wi defined
by the equations

q∗j =
1
2π

N∑
�=1

γj�w� (2.26)

are uniformized angle variables.

Proof. Let us introduce the inverse matrix of (γji) and denote its elements by
γ−1

ji . If det(γji) �= 0, (2.26) may be inverted, giving

wk = 2π
N∑

j=1

γ−1
kj q

∗
j . (2.27)

In a partial cyclic variation of qi, the variation of wk is

δiwk = 2π
N∑

j=1

γ−1
kj δiq

∗
j = 2πδki (2.28)

(by construction, δiq
∗
j = γji). Therefore, in a partial cyclic variation of qi, wi

increases of 2π while the others wk (k �= i) remain unchanged. ��

2.4.2 The Actions

The next step is to find the action variables Jk canonically conjugate to the
angle variables wk. To do this, we introduce the Jacobian generating function
of the canonical transformation φ̃ : (q, p) ⇒ (w, J), namely S̃(q, J). We then
have

wk =
∂S̃

∂Jk
(2.29)
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2.4 Separable Multiperiodic Systems 39

and

dwk =
N∑

j=1

∂2S̃

∂qj∂Jk
dqj +

N∑
j=1

∂2S̃

∂Jj∂Jk
dJj . (2.30)

In a partial cyclic variation of qk, wk increases 2π. Besides, along the given
path, dqj = 0 for j �= k and dJi = 0. The above equation then reduces to

2π =
∮

∂2S̃

∂qk∂Jk
dqk.

A trivial calculation, similar to that of Sect. 2.1.1, gives

Jk =
1
2π

∮
pk dqk (2.31)

for every k ∈ {1, · · · , N}.

2.4.3 Algorithms for Construction of the Angles

In practice, we use some straightforward approaches to obtain the angles. The
separation of the Hamilton–Jacobi equation leads us to obtain pj = pj(qj , β)
and the solution

S(q, β) =
N∑

j=1

Sj(qj , β) =
N∑

j=1

∫
pj(qj , β) dqj . (2.32)

We may also solve (2.31) with pk = pk(qk, β) to obtain the actions Jk as
functions of the constants βi.

The Jacobian generating function S̃(q, J) may be obtained, now, from
S̃(q, J) = S(q, β(J)) and (2.29) gives the angles:

wk =
∂S̃

∂Jk
=

N∑
i=1

∂S

∂βi

∂βi

∂Jk
=

N∑
i=1

∂βi

∂Jk

N∑
j=1

∫
∂pj

∂βi
dqj . (2.33)

These equations are akin to the equations

wk =
∂

∂Jk

∫ N∑
j=1

p̂j(q, J) dqj , (2.34)

which would result if the canonical transformation of Mayer’s lemma (Sect.
1.10) were used in this case. The conditions under which that transformation
was established (involution of the functions Ji(q, p) and possibility of inversion
to obtain the functions p̂i(q, J)) are satisfied and it can be used. Equation
(2.34) transforms itself into (2.33) in the separable case in which every term
pj depends only on the corresponding qj .
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2.4.4 Angle–Action Variables of H(q1, p1, p2, · · · , pN)

Let us consider the case of a Hamiltonian having the formH(q1, p1, p2, · · · , pN),
where the coordinates q2, · · · , qN are ignorable and the momenta p2, · · · , pN

are constants. Because of frequent applications, it is worth having the algo-
rithm of the previous section explicitly given in this case.

The Hamiltonian H is reducible to one degree of freedom and the angle–
action variables of the reduced Hamiltonian may be obtained with one of the
algorithms discussed in Sect. 2.2. The results of the previous section allow the
one-degree-of-freedom transformation (q1, p1) → (w1, J1), thus obtained, to be
embedded into a more general transformation (q, p) → (w, J) that considers
also the remaining degrees of freedom of the given Hamiltonian. To do this,
we consider as given the N functions

J1 = f1(q1, p) (2.35)
J� = p� ≡ f�(q, p) (� = 2, · · · , N).

These functions are pairwise in involution and may be solved for the momenta.
Because of the particular form of the functions f�, the inversion is trivial,
giving p = p̂(q1, J). The resulting generating function of the transformation
(2.35) is simply

N∑
j=1

∫
p̂j(q1, J) dqj =

∫
p̂1(q1, J) dq1 +

N∑
�=2

J�q�. (2.36)

We then have

w1 = Ξ1

w� = q� + Ξρ (� ≥ 2), (2.37)

where

Ξk =
∂

∂Jk

∫
p̂1(q1, J) dq1 (k ≥ 1). (2.38)

We note that (2.36) comes from the integration of an exact differential form
in dqj and that we may add to the generating function any arbitrary function
of J .

The one-degree-of-freedom canonical transformation (q1, p1) → (w1, J1) is
often given in the inverted form

q1 = Q1(w1, J)
p1 = P1(w1, J). (2.39)

In this case, (2.38) may be written

Ξk =
∫ [

∂p̂1(q1, J)
∂Jk

]
q1=Q1

∂Q1

∂w1
dw1. (2.40)
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It is worth emphasizing that the substitution q1 = Q1(w1, J) may be done
after the differentiation and that it is no longer possible to permute the dif-
ferentiation with respect to Jk and the integration.

If the differentials of p̂1(q1, J) and P1(w1, J) are compared, we obtain

∂P1

∂Jk
=

∂p̂1

∂Jk
+
∂p̂1

∂q1

∂Q1

∂Jk

∂P1

∂w1
=

∂p̂1

∂q1

∂Q1

∂w1
,

which, substituted in (2.40), give the equivalent result

Ξ� =
∫ w1

0

(
∂Q1

∂w1

∂P1

∂J�
− ∂Q1

∂J�

∂P1

∂w1

)
dw1, (2.41)

obtained by Henrard and Lemaitre [50]. We also have the trivial relation
Ξ1 = w1, since the integrand in this case is the one-dimensional Lagrange
bracket [w1, J1] which is equal to 1 because the given transformation (q1, p1) →
(w1, J1) is canonical.

In this section, we have considered a Hamiltonian independent of the co-
ordinates q� (ρ = 2, · · · , N). The algorithms derived from Mayer’s lemma are
valid in more general circumstances, but the results are not angle–action vari-
ables of the given Hamiltonian when H depends on the q�. If, for instance, a
general H may be decomposed into two parts: H = Ha(q1, p1) + Hb(q�, p�),
and the formula is used to extend the angle–action variables of Ha, the re-
sulting variables w, J are not angle–action variables of H . It is easy to see
that the calculations to obtain the w�, J� are the same for any Hb and, thus,
we cannot expect that it eliminates the angles from Hb. This comment is
somewhat obvious, but is useful to avoid pitfalls.

Exercise 2.4.1. By construction, the functions q1(w1, J) and p1(w1, J) are
2π-periodic in the angle variable w1. Under which conditions may we guaran-
tee that the functions Ξ� are also 2π-periodic in w1?

Exercise 2.4.2. Find the angle variable conjugate to J1 = 1
2 (q2

1 + p2
1). Check

the result with {w1, J1} = 1.

Exercise 2.4.3. Find a set of angle–action variables for the Hamiltonian

H =
1
2
(p2

1 + p2
2) +

1
2
λ2q2

1 ,

where λ = λ(p2). Check the results with {w1, Jj} = δ1j . Hint: See Exercise
2.1.1.
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42 2 Angle–Action Variables. Separable Systems

2.4.5 Historical Postscript

The given definitions of angle–action variables follow those found in several
classical texts on Celestial Mechanics and on the old Quantum Theory5. An-
gles and actions appeared separately. The angles were first introduced by
Charlier [20] as a complement to what was then called Staude–Stäckel theory.
They came as a result of an application of Weierstrass’ theory of multiperi-
odic functions to the solutions of the Hamilton–Jacobi equation of a separable
system. The actions evolved from the quantity defined in Malpertuis’ least ac-
tion principle (see Sect. 1.2.1), quantized in the theories of Planck and Bohr,
to their definition for separable multiperiodic Hamiltonians given by Som-
merfeld [92] and Epstein [28]. The introduction of the angles as variables
canonically conjugate to the actions through a Jacobian generating function
S̃(q, J) is due to Kramers (cf. [10], Note 24). The definition of the actions
of an integrable Hamiltonian system without recourse to the separability hy-
pothesis is due to Einstein [26]. (An alternative construction was presented,
at the same time, by Burgers; cf. [12].) The introduction of invariant tori in
modern theory is due to Arnold [3]. It is worth mentioning that Einstein’s
construction of invariant tori is very different from that adopted in the mod-
ern theory of Hamiltonian systems. Einstein considered one example (central
motions in a plane) and used the fact that, for given βi, the phase space may
be seen as a vector field on a Riemann surface formed by two annular sheets
joined by their edges (which is homeomorphic to T2).

The angle–action variables �, g, h, L,G,H obtained in Sect. 2.7.2 as an
application of the Schwarzschild transformation to the angle–action variables
of Keplerian motion, were actually discovered by Delaunay a long time before
and fully employed in his (canonical) Théorie de la Lune [22].

It is worth emphasizing that the introduction of angle–action variables in
Delaunay’s work, as well as in the work of Sommerfeld and his contemporaries,
resulted from specific needs for the actual solution of problems in Astronomy
and Physics. The hiatus between the results of old Quantum Theory (before
1920) and modern theories (ca. 1960) has an explanation. The construction
of action variables was the central point of the Bohr–Sommerfeld quantum
condition. With the foundation of Quantum Mechanics, in the early 1920s,
the actions lost their position in center stage. KAM theory has again made
angle and action variables central concepts in Physics and Dynamics.

2.5 Simple Separable Systems

We only know some sets of sufficient conditions for separability. Some simple
cases are the dynamical systems whose Hamiltonians have special structures,
such as
5 Specifically, we mention (in chronological order) Charlier [20], Schwarzschild [84],

Einstein [26], Sommerfeld [93], Born [12], and Boll and Salomon [11].
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2.5 Simple Separable Systems 43

H = G[f1(q1, p1), · · · , fN (qN , pN )] (2.42)

and
H = f1 {q1, p1, f2 [q2, p2, f3 (· · · , fN (qN , pN ))]} . (2.43)

In the first case, the variables in the expression for the function H are sepa-
rated, i.e., only one pair of conjugate variables qi, pi enters into each function
fi. The Hamilton–Jacobi equation corresponding to this case is

G

[
f1

(
q1,

∂S

∂q1

)
, · · · , fN

(
qN ,

∂S

∂qN

)]
= E. (2.44)

After the introduction of S =
∑N

i=1 Si(qi), this equation is separated into N
equations

fi

(
qi,

dSi

dqi

)
= βi, (2.45)

the integration constants βi being such that

E = G(β1, · · · , βN ). (2.46)

In the second case, the variables appear in a hierarchical disposition and
the corresponding Hamilton–Jacobi equation,

f1

{
q1,

∂S

∂q1
, f2

[
q2,

∂S

∂q2
, f3

(
· · · , fN

(
qN ,

∂S

∂qN

))]}
= E, (2.47)

after the introduction of S =
∑N

i=1 Si(qi), is separated into N equations

fN

(
qN ,

dSN

d qN

)
= βN

fi

(
qi,

dSi

d qi
, βi+1

)
= βi (i = 1, · · · , N − 1),

(2.48)

with β1 = E. If we assume that ∂fi/∂pi �= 0 for all i = 1, · · · , N , these
equations can be solved to give

dSi

d qi
= Gi(qi, βi+1, βi) (i = 1, · · · , N − 1)

dSN

d qN
= GN (qN , βN ). (2.49)

2.5.1 Example: Central Motions

The classical example of a separable system of this kind is the motion of a
particle in a central force field. In spherical coordinates, the total energy of
the particle is
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44 2 Angle–Action Variables. Separable Systems

H = T +mU(r) =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2) +mU(r) (2.50)

or, introducing the generalized momenta

pr =
∂T

∂ṙ
= mṙ

pθ =
∂T

∂θ̇
= mr2θ̇ (2.51)

pφ =
∂T

∂φ̇
= mr2 sin2 θ φ̇,

we obtain

H =
1

2m

[
p2

r +
1
r2

(
p2

θ +
p2

φ

sin2 θ

)]
+mU(r). (2.52)

The above Hamiltonian has the special structure of (2.43) with

f1 =
1

2m

(
p2

r +
f2

r2

)
+mU(r) = E

f2 = p2
θ +

f3

sin2 θ
= β2 (2.53)

f3 = p2
φ = β3,

and an application of (2.49) gives

pr =
dS1

dr
=

√
2mE − β2

r2
− 2m2U(r)

pθ =
dS2

dθ
=

√
β2 − β3

sin2 θ
(2.54)

pφ =
dS3

dφ
=

√
β3.

2.5.2 Angle–Action Variables of Central Motions

Let us calculate the angle–action variables of the central motions, starting
with Jφ. A short chain of elementary calculations gives

Jφ =
1
2π

∮ √
β3 dφ =

1
2π

∫ 2π

0

√
β3 dφ =

√
β3 = pφ. (2.55)

The integration of the next one is also elementary, but not as immediate:

Jθ =
1
2π

∮
pθ dθ =

1
2π

∮ √
β2 − β3

sin2 θ
dθ.
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2.5 Simple Separable Systems 45

It may, however, be avoided by noting that when the plane of the motion
is chosen as the fundamental reference plane, we have, in analogy with the
previous result,

Jψ = pψ = mr2ψ̇, (2.56)

where ψ denotes the longitude reckoned on the plane of motion. Taking into
account (2.53) and ψ̇2 = θ̇2 + sin2 θ φ̇2, we obtain

Jψ =
√
β2. (2.57)

Comparing, now, the kinetic energies in the two reference systems:

pr ṙ + pθθ̇ + pφφ̇ = prṙ + pψψ̇, (2.58)

it follows that

Jθ =
1
2π

∮
pθ dθ =

1
2π

∮
(pψ dψ − pφ dφ) = Jψ − Jφ (2.59)

and then6

Jθ =
√
β2 −

√
β3. (2.60)

The radial action

Jr =
1
2π

∮ √
2mE − 2m2U(r) − β2

r2
dr (2.61)

cannot be calculated now since the potential U(r) has not yet been given (see
next section).

To obtain the angle variables wk, we follow the procedure given in Sect.
2.4.1. We first write

S(q, β) =
∫
pr dr +

∫
pθ dθ +

∫
pφ dφ (2.62)

and then introduce

β1 = E = E(Jr, Jθ, Jφ)
β2 = (Jθ + Jφ)2 (2.63)
β3 = J2

φ,

where we have to keep in mind that the function E = E(Jr, Jθ, Jφ) may be
known only when the potential U(r), of the central force, is given. We then
have

6 Jψ ≥ Jφ > 0, β2 ≥ β3 > 0 and Jθ ≥ 0.

Page: 45 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



46 2 Angle–Action Variables. Separable Systems

wr =
∂S̃

∂Jr
=

∂S

∂E

∂E

∂Jr

wθ =
∂S̃

∂Jθ
=

∂S

∂E

∂E

∂Jθ
+

∂S

∂β2
2(Jθ + Jφ) (2.64)

wφ =
∂S̃

∂Jφ
=

∂S

∂E

∂E

∂Jφ
+

∂S

∂β2
2(Jθ + Jφ) +

∂S

∂β3
2Jφ,

where

∂S

∂E
=

∫
∂pr

∂E
dr

∂S

∂β2
=

∫
∂pr

∂β2
dr +

∫
∂pθ

∂β2
dθ (2.65)

∂S

∂β3
=

∫
∂pθ

∂β3
dθ +

∫
∂pφ

∂β3
dφ.

As for the actions, some of these integral cannot be calculated, because U(r)
has not yet been given. Those that may be calculated are∫

∂pθ

∂β2
dθ =

∫
dθ
2pθ∫

∂pθ

∂β3
dθ = −

∫
dθ

2pθ sin2 θ
(2.66)

>>

   i

θ

     π/2−θO

N
ω     Π

ψ−ϖ

ψ        φ

Ω
φ−Ω)i

Pr
p       p

Fig. 2.5. Geometry of central motions (� = Ω + ω)
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2.6 Kepler Motion 47∫
∂pφ

∂β3
dφ =

∫
dφ
2pφ

.

The third of these integrals is trivial since pφ = Jφ = const. Omitting the
integration constant, ∫

∂pφ

∂β3
dφ =

φ

2Jφ
.

The two other integrals are also easy to calculate using an immediate relation
between the angles and momenta (θ̇/pθ = ψ̇/pψ = φ̇ sin2 θ/pφ) and recalling
that pφ = Jφ and pψ = Jψ = Jφ + Jθ are constants. We thus obtain∫

∂pθ

∂β2
dθ =

∫
dθ
2pθ

=
∫

dψ
2pψ

=
ψ

2(Jφ + Jθ)

and ∫
∂pθ

∂β3
dθ = −

∫
dθ

2pθ sin2 θ
= −

∫
dφ
2pφ

= −φ−Ω

2Jφ
.

In general, we have omitted integration constants, since this arbitrariness is
intrinsic to the definition of the angles wi. However, in the last equation, to
shift the x-axis to the ascending node (N) of the orbit (see Fig. 2.5), we have
introduced the integration constant Ω/2Jφ.

We may summarize the results by writing

wr =
∂E

∂Jr

∫
∂pr

∂E
dr (2.67)

wθ =
∂E

∂Jθ

∫
∂pr

∂E
dr + 2(Jθ + Jφ)

∫
∂pr

∂β2
dr + ψ

wφ =
∂E

∂Jφ

∫
∂pr

∂E
dr + 2(Jθ + Jφ)

∫
∂pr

∂β2
dr + ψ +Ω.

2.6 Kepler Motion

In the case of the heliocentric motion of a planet, we have

U(r) = −µ

r
,

where µ = G(M + m); G is the universal gravitation constant and M is the
mass of the Sun. Now, we can consider the several integrals left uncalculated
in the last section. The first one is the radial action Jr (see 2.61). We have

Jr =
1
2π

∮
1
r

√
2mEr2 + 2µm2r − β2 dr. (2.68)

The radicand has the real roots

Page: 47 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



48 2 Angle–Action Variables. Separable Systems

r1,2 =
−µm
2E

(
1 ±

√
1 +

2Eβ2

µ2m3

)
. (2.69)

One may note that, if E > 0, the two roots are real, but one is negative. In
this case, the motion is only possible for r larger than the positive root and
has no upper bound. For −µ2m3/2β2 < E < 0, the two roots are real and
positive, say r1 < r2; the motion is periodic and is a libration between the
two roots. In this case, we may calculate the action Jr. The integral of (2.68)
may be done along a path in a two-sheet Riemann surface enclosing the two
branch points r1, r2. It has been thoroughly studied by Sommerfeld (see [93],
Note 6). The sophisticated procedure idealized by Sommerfeld has, since then,
been reproduced in many treatises on Mechanics. However, there is a simpler
way of doing it. We introduce the mean distance to the force center

a
def=

r1 + r2
2

= −µm

2E
, (2.70)

the eccentricity

e
def=

r2 − r1
2a

=

√
1 +

2Eβ2

µ2m3
(2.71)

and the angle u (eccentric anomaly) defined through

r = a(1 − e cosu). (2.72)

A lengthy but elementary calculation gives

pr =
√
−2mE

e sinu
1 − e cosu

and the given integral becomes

Jr =
1
2π

ae2
√
−2mE

∫ 2π

0

sin2 u du
1 − e cosu

. (2.73)

The integral to be solved is trivial. We may just introduce z = eiu and perform
the integration along the circle |z| = 1 in the complex plane, with recourse to
the theory of residues. We obtain7∫ 2π

0

sin2 u du
1 − e cosu

=
2π
e2

(
1 −

√
1 − e2

)
. (2.74)

After some elementary calculations, we obtain

Jr =
√
−2mE a

(
1 −

√
1 − e2

)
= µm

√
m

−2E
−
√
β2 (2.75)

7 This integral is also found in tables, e.g. [25], [41].
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2.6 Kepler Motion 49

and the inversion of this equation gives

E = − µ2m3

2(Jr + Jθ + Jφ)2
(2.76)

(since
√
β2 = Jψ = Jθ + Jφ).

We may now proceed with the remaining integrals. They are∫
∂pr

∂E
dr =

∫
m dr
pr

,∫
∂pr

∂β2
dr = −

∫
dr

2prr2
.

Introducing the eccentric anomaly u, these integrals are changed into elemen-
tary ones. The first one is∫

m dr
pr

=
a3/2

√
µ

∫
(1 − e cosu) du =

a3/2

√
µ

(u− e sinu) (2.77)

which introduces the mean anomaly

�
def= u− e sinu.

The second one is

−
∫

dr
2prr2

= − 1
2m

√
µa

∫
du

1 − e cosu
(2.78)

= − 1
m
√
µa(1 − e2)

arctan

√
1 + e

1 − e
tan

u

2

which introduces the true anomaly

v
def= 2 arctan

√
1 + e

1 − e
tan

u

2
. (2.79)

The two remaining integrals are, then,∫
∂pr

∂E
dr =

a3/2�√
µ∫

∂pr

∂β2
dr = − v

2m
√
µa(1 − e2)

.

Substituting these integrals into (2.67), and noting that

∂E

∂Jr
=

∂E

∂Jθ
=

∂E

∂Jφ
=

µ2m3

(Jr + Jθ + Jφ)3
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50 2 Angle–Action Variables. Separable Systems

Jr + Jθ + Jφ = m
√
µa (2.80)

and
Jθ + Jφ =

√
β2 = m

√
µa(1 − e2)

it follows that
wr = �

wθ = �− v + ψ = �+ ω

wφ = �− v + ψ +Ω = �+ ω +Ω,

(2.81)

where we have introduced the so-called argument of pericenter ω = ψ − v,
giving the distance of the pericenter (Π) to the ascending node (N) (see Fig.
2.5).

To complete the definition of the angle–action variables of the Kepler mo-
tion, we write8

Jφ = m
√
µa(1 − e2) cos i. (2.82)

2.7 Degeneracy

In the example studied in the previous section, the three frequencies

νk =
∂E

∂Jk
(2.83)

of the system are equal. We follow Schwarzschild and call this case degenerate.
In general, degeneracy is said to occur when there exists a commensurability
relation

(h | ν) =
N∑

k=1

hkνk = 0 h ∈ ZN (2.84)

amongst the frequencies of the system. Degeneracy may be essential or acci-
dental. A degeneracy is said to be essential when it does not depend on the
initial conditions. We shall stress that this does not mean that the frequencies
themselves are independent of the initial conditions. The Keplerian motion
is a good example: the frequencies νr, νθ, νφ (defined by the derivatives of E
with respect to Jr, Jθ, Jφ) depend on the initial conditions but they are always
equal, regardless of the initial conditions.

Otherwise, a degeneracy is called accidental when it only occurs for some
particular values of the initial conditions. One example is the motion of an as-
teroid in an orbit whose period is commensurable with Jupiter’s. In this case,
the commensurability relation ceases to exist if the asteroid orbit is moved
inward (or outward). The main consequence of an accidental degeneracy is

8 The inclination is introduced by the fact that pψ is the angular momentum of the
motion and pφ is the angular momentum of the motion projected on the reference
plane: pφ = pψ cos i.
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2.7 Degeneracy 51

the appearance of small divisors, which impair the performance of pertur-
bation theories. Motions affected by accidental commensurabilities are called
resonant and are the subject of several of the next chapters.

A separable multiperiodic system may be such that multiple commensura-
bility relations exist. Degeneracy affects the degree of periodicity of the solu-
tions: the solutions of a degenerate separable multiperiodic system with N de-
grees of freedom and D independent commensurability relations are (N −D)-
periodic. When D = N − 1, the system is said to be completely degenerate.
For instance, the degeneracy of the Keplerian motion is complete, since we
may write two independent commensurability relations, viz. νθ − νr = 0 and
νφ − νθ = 0. As a consequence, the Keplerian motion is periodic. The cen-
tral motions of Sect. 2.5 are always degenerate, since νφ − νθ = 0. However,
they are not completely degenerate, except in some particular cases such as
Keplerian motion and the harmonic oscillator (Bertrand’s theorem). In these
cases, besides νφ − νθ = 0, we also have νθ − νr = 0. For other laws of force, a
second commensurability relation may only occur for given initial conditions
(accidental degeneracy or resonance).

In Kolmogorv’s theorem, the non-degeneracy of an integrable Hamiltonian
H(J) is defined as

det
(

∂2H

∂Ji∂Jj

)
�= 0, (2.85)

which guarantees the reversibility of the transformation from actions to fre-
quencies. This definition is more restrictive than Schwarzschild’s. Indeed, all
Hamiltonians linear in one of the actions are degenerate in Kolmogorov’s
sense9. For these Hamiltonians, one whole row of the Hessian determinant
consists of zeros. It happens that a common operation in the applications
of Hamiltonian Mechanics to Astronomy is the extension of the phase space,
because of time-dependent applied forces. In such an extension, a new general-
ized momentum (or action) is added to the given Hamiltonian. The extended
Hamiltonian will always be such that the Hessian determinant is zero. If the
condition given by (2.85) were a universal restriction, almost all dynamical
systems of Astronomy would be excluded from the possibility of application
of the theories discussed in this book. However, when frequency relocation is
not done, the most general non-degeneracy condition is Schwarzschild’s, that
is, (h | ν) �= 0 for all h ∈ Dk ⊂ ZN\0.

2.7.1 Schwarzschild Transformation

In the study of degenerate systems, it is often convenient to redefine angles
and actions to introduce angles whose frequencies are equal to zero. Let a
separable multiperiodic system of N degrees of freedom have L essential com-
mensurability relations

9 For a more accurate discussion, see Sect. 3.11.4.
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52 2 Angle–Action Variables. Separable Systems

N∑
k=1

h
(�)
k νk = 0 � = N − L+ 1, · · · , N (2.86)

and let us introduce the point transformation of the angles,

w1 = �1
w2 = �2
· · ·
wM = �M∑

k h
(M+1)
k wk = �M+1

· · ·∑
k h

(N)
k wk = �N ,

(2.87)

where, for simplicity, we have introduced M = N − L. Extending this trans-
formation to the momenta, we obtain

J1 = x1 +
∑

� h
(�)
1 x�

J2 = x2 +
∑

� h
(�)
2 x�

· · ·
JM = xM +

∑
� h

(�)
M x�

JM+1 =
∑

� h
(�)
M+1x�

· · ·
JN =

∑
� h

(�)
N x�,

(2.88)

where the xk are the momenta conjugate to the new angles �k.
The angles �µ (µ = 1, · · · ,M) are called non-degenerate10 while the re-

maining ones, �� (� = M + 1, · · · , N), are called degenerate.
With the new variables, the Hamiltonian depends only on the actions

conjugate to non-degenerate angles. Thus, the frequencies of the degenerate
angles are

ν̃� =
d��
dt

=
∂H̃(x)
∂x�

= 0 (� = M + 1, · · · , N). (2.89)

The equations ν̃� = 0 are the new commensurability relations.

2.7.2 Delaunay Variables

The usual angle–action variables of the Keplerian motion, the Delaunay vari-
ables, are the result of the application of the Schwarzschild transformation
10 The actions conjugate to non-degenerate angles are sometimes called proper. How-

ever, the word proper is used, in this book, to indicate the almost constant actions
resulting from an averaging process. Thus, to avoid ambiguities, the word proper
will not be used to mean non-degenerate.
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to the angle–action variables obtained in Sect. 2.6. Indeed, in this case, the
commensurabilities are

νθ − νr = 0
νφ − νθ = 0.

(2.90)

Then
�1 = wr = �

�2 = wθ − wr = ω

�3 = wφ − wθ = Ω

(2.91)

and
Jr = x1 − x2

Jθ = x2 − x3

Jφ = x3

(2.92)

or
x1 = Jr + Jθ + Jφ = m

√
µa

x2 = Jθ + Jφ = m
√
µa(1 − e2)

x3 = Jφ = m
√
µa(1 − e2) cos i.

(2.93)

For m = 1, these variables are exactly the variables �, g, h, L,G,H of
Delaunay. Indeed, point dynamics problems often are such that the mass of
the moving particle cancels in the equations and does not affect the results.
In this case, energies, momenta and actions are considered per unit mass and
we write

x1 =
√
µa

x2 = x1

√
1 − e2

x3 = x2 cos i
(2.94)

and

E = − µ2

2x2
1

. (2.95)

2.8 The Separable Cases of Liouville and Stäckel

Autonomous systems whose energy consists of a kinetic energy quadratic in
the velocities and a potential energy independent of the velocities have been
thoroughly studied in the past. Sufficient conditions for their separability were
established by Liouville and Stäckel. These cases are generally presented as
sets of conditions for the potential and kinetic energies, separately. In what
follows, kinetic and potential energies are considered together to give a set of
conditions for the Hamiltonian; this choice is more appropriate for the scope
of this book.
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54 2 Angle–Action Variables. Separable Systems

Theorem 2.8.1 (Liouville). The dynamical systems whose Hamiltonian
may be written as

H =
f1(q1, p1) + · · · + fN (qN , pN )
g1(q1, p1) + · · · + gN (qN , pN )

(2.96)

are separable.

The Hamilton–Jacobi equation in this case is

N∑
i=1

fi

(
qi,

∂S

∂qi

)
= E

N∑
i=1

gi

(
qi,

∂S

∂qi

)
(2.97)

which, after the introduction of S =
∑

i Si(qi), may be separated into N
equations

fi

(
qi,

dSi

dqi

)
− Egi

(
qi,

dSi

dqi

)
= βi, (2.98)

the integration constants βi being such that
∑

i βi = 0. These equations may
be solved with respect to dSi/dqi when(

∂fi

∂pi

)
− E

(
∂gi

∂pi

)
�= 0 for all i.

��
Theorem 2.8.2 (Stäckel). The dynamical systems whose Hamiltonian may
be written as

H =
1
∆

N∑
i=1

Aifi(qi, pi), (2.99)

where ∆ is the determinant of a square matrix of rank N in which each column
depends only on the coordinate of the same subscript as the column:

∆ = det (aji(qi)) , (2.100)

and the Ai are the cofactors of the elements of any of the rows of the matrix,
are separable.

The Hamilton–Jacobi equation in this case is

N∑
i=1

Aifi

(
qi,

∂S

∂q1

)
= E∆. (2.101)

This partial differential equation has a complete integral of the form S =∑
i Si(qi). If we assume, for instance, that the Ai are the cofactors of the

elements of the first row, the theorems of Laplace allow us to write
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N∑
i=1

a1iAi = ∆ (2.102)

N∑
i=1

a�iAi = 0 (� = 2, · · · , N).

Because of these relations, the Hamilton–Jacobi equation is not affected
when we introduce the sum

−
N∑

i=1

Ai

N∑
�=2

β�a�i(qi),

where the β� areN−1 arbitrary constants. Using also the Laplacian expression
for ∆, the Hamilton–Jacobi equation becomes

N∑
i=1

Ai

(
fi

(
qi,

∂S

∂qi

)
−

N∑
�=2

β�a�i(qi)

)
= E

N∑
i=1

a1i(qi)Ai, (2.103)

which may be separated into N equations

fi

(
qi,

dSi

dqi

)
=

N∑
�=2

β�a�i(qi) +Ea1i(qi). (2.104)

These equations may be solved with respect to dSi/dqi if

∂fi

∂pi
�= 0 for all i.

��

2.8.1 Example: Liouville Systems

The original form of Liouville’s separability conditions says that the kinetic
and potential energies may be written, respectively, as

T =
1
2
(A1 +A2 + · · · +AN )(B1q̇

2
1 +B2q̇

2
2 + · · · +BN q̇

2
N ) (2.105)

and
V =

V1 + V2 + · · · + VN

A1 +A2 + · · · +AN
, (2.106)

where Ai = Ai(qi), Bi = Bi(qi) and Vi = Vi(qi). (The function with subscript
i depends only on the generalized coordinate qi.) A simple calculation shows
that the energy H = T +V has the form given in the above theorem and that
the Hamilton–Jacobi equation is separated into the N equations:

1
2Bk

(
dSk

dqk

)2

= EAk + βk − Vk. (2.107)
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2.8.2 Example: Stäckel Systems

The original form of Stäckel’s separability conditions says that the kinetic and
potential energies must be, respectively,

T =
1
2
∆

(
q̇2
1

A1
+

q̇2
2

A2
+ · · · + q̇2

N

AN

)
(2.108)

and

V =
1
∆

N∑
i=i

gi(qi)Ai, (2.109)

where ∆ and Ai are the same as in the given theorem. The resulting energy
H = T + V has the form as given in the theorem and the Hamilton–Jacobi
equation is separated into the N equations:

1
2

(
dSi

dqi

)2

=
N∑

�=2

β�a�i(qi) +Ea1i(qi) − gi(qi). (2.110)

2.8.3 Example: Central Motions

The example of the motion of a particle in a central force field, considered in
the previous section, is also an example of a separable Stäckel system. The
Hamiltonian of this system is (see 2.52):

H =
1

2m

[
p2

r +
1
r2

(
p2

θ +
p2

φ

sin2 θ

)]
+ V (r). (2.111)

In order to see that this system satisfies the conditions of the Stäckel
theorem, we introduce the matrix

(aij) =

⎛⎝−r−2 1 0
0 − sin−2 θ 1
1 0 0

⎞⎠ (2.112)

whose determinant is ∆ = 1 and the cofactors of the elements of the third
row are:

A1 = 1
A2 = r−2 (2.113)
A3 = (r sin θ)−2.

Comparison to (2.97) shows that the functions fi are
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f1 =
1

2m
p2

r + V (r)

f2 =
1

2m
p2

θ (2.114)

f3 =
1

2m
p2

φ

and the proof is completed.

2.9 Angle–Action Variables of a Quadratic Hamiltonian

Let us consider the case of a Hamiltonian given by a quadratic form in q, p,
with purely imaginary eigenvalues. Let it be

H2(z) =
2N∑

i,j=1

1
2
aijzizj , (2.115)

where z ≡ (q, p) ∈ R2N . In this case, the techniques discussed in the previous
sections to obtain angle–action variables cannot be used because the Hamil-
tonian does not have the form of the considered separable systems. However,
the resulting differential equations are homogeneous and linear with constant
coefficients and a few steps are enough to solve them. These equations are

dz
dt

= −J
∂H2

∂z
= −JSz, (2.116)

where J is the symplectic unit matrix of order 2N and S =
(
∂2H2

∂zi∂zj

)
= (aij)

is the Hessian matrix of H2. Let λi and Ãi be, respectively, the eigenvalues
and eigenvectors of −JS. If we assume that all eigenvalues are distinct, the
general solution of (2.116) is

z =
2N∑
i=1

ciÃi expλit, (2.117)

where ci are arbitrary constants. The characteristic polynomial P (λ) =
det(−JS − λI) is even and, if λ is an eigenvalue of −JS, then so is −λ. The
eigenvalues of −JS, which were assumed to be imaginary, may thus be written
as

λk = −iωk, λN+k = iωk (k = 1, 2, · · · , N). (2.118)

Let us now consider the matrix formed by the 2N eigenvectors, A ≡ (Ãi),
its transpose A′ and let us form the matrix R = A′JA. A simple calculation
shows that the elements of R are

�ij
def= Ã′

iJÃj .

We have to prove the following lemma (see [71] Sect. II.C):
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Lemma 2.9.1. If Ãi and Ãj are eigenvectors of −JS corresponding to two

eigenvalues λi, λj such that λi + λj �= 0, then Ã′
iJÃj = 0.

The proof of this statement is very simple. We just have to recall that
the eigenvalue λi and the eigenvector Ãi corresponding to it are related by
JSÃi = −λiÃi. It then follows that:

λiÃ
′
iJÃj = −Ã′

iSÃj and

λjÃ
′
iJÃj = Ã′

iSÃj ;

and so, (λi + λj)Ã′
iJÃj = 0, that is, Ã′

iJÃj = 0.

Corollary 2.9.1. Ã′
iJÃi = 0 for all i = 1, 2, · · · , 2N .

The following lemma is trivial.

Lemma 2.9.2. For all i, j = 1, 2, · · · , 2N , we have Ã′
iJÃj = −Ã′

jJÃi.

A consequence of these lemmas is that the only terms of R that may be
different from zero are those arising from eigenvectors corresponding to pairs
of eigenvalues ±iωk. We assume �ij �= 0 for the pairs i, j such that |j−i| = N .
Otherwise, �ij = 0:

R =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 · · · −�

N+1,1
0 · · ·

0 0 · · · 0 −�N+2,2 · · ·
· · · · · · · · · · · · · · · · · ·

�
N+1,1

0 · · · 0 0 · · ·
0 �N+2,2 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.119)

Therefore, it is enough to rescale the eigenvectors (dividing the Ãk and ÃN+k

by √
�

N+k,k
for all k) to obtain J instead of R. If D is the diagonal matrix

D
def= diag

(
1√

�N+1,1

, · · · , 1√
�2N,N

,
1√

�N+1,1

, · · · , 1√
�2N,N

)
,

the matrix M = AD is such that M′JM = J and therefore, the linear transfor-
mation ζ → z = ADζ is canonical (see 1.36).

If we compare the equation of this transformation to (2.117), we obtain
for the new canonical variables,

ζk = ck
√
�

N+k,k
eλkt ζN+k = cN+k

√
�

N+k,k
eλN+kt

(k = 1, 2, · · · , N). To complete the construction of the angle–action variables
(w, J) of H2, it is enough to introduce them through the Poincaré-like complex
canonical variables

√
iJk e−iwk and

√
iJk eiwk and compare them to ζ. We get
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wk = ωkt− αk (2.120)
Jk = −i|ck|2�N+k,k

(k = 1, 2, · · · , N),

where αk is the argument of ck. Because of the rules of conjugation, it is
enough to work with the equations giving the first N variables ζk. The other
N equations repeat the same results. It is worth stressing some points: (i) the
Jk are real since the �

N+k,k
are imaginary; (ii) the Jk may be either positive

or negative, according to the sign of −i�
N+k,k

; (iii) the N complex integration
constants ck are changed into αk, Jk; (iv) ck and cN+k are complex conjugates.

The direct comparison of equations (2.117) and (2.120) gives

z =
N∑

k=1

√
iJk

�
N+k,k

(Ãk e−iwk + ÃN+k eiwk). (2.121)

This equation is consistent with the fact that z is a real vector.
In terms of the angle–action variables, the new Hamiltonian follows

straightforwardly from the equations ∂H/∂Jk = ẇk = ωk, whose integra-
tion gives H =

∑
k ωkJk, or, as a function of ζ, H = −∑

k iωkζkζN+k. If we
compare this result to

H =
1
2
z′Sz =

1
2
ζ′DA′SADζ,

we see that

DA′SAD =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 · · · −iω1 0 · · ·
0 0 · · · 0 −iω2 · · ·
· · · · · · · · · · · · · · · · · ·
−iω1 0 · · · 0 0 · · ·

0 −iω2 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ .

This matrix is the Hessian of H calculated with respect to the new canonical
variables ζ. It could be easily obtained from the properties of the matrices D,
A and S, using the lemma given in Exercise 2.9.6, below.

Exercise 2.9.1. Show that the characteristic polynomial P (λ) = det(−JS −
λI) is even.

Exercise 2.9.2. Show that the eigenvectors Ãk and ÃN+k of −JS correspond-
ing to two complex conjugate eigenvalues are complex conjugate themselves.

Exercise 2.9.3. Show that, for |i− j| = N , the �ij are imaginary.

Exercise 2.9.4. Show that the transformation (w, J) → (
√

iJ e−iw,
√

iJ eiw)
is canonical.

Exercise 2.9.5. Show that ζk and ζN+k are not complex conjugates.

Exercise 2.9.6 (Lemma). Prove that for all i, j = 1, 2, · · · , 2N , we have

Ã′
iSÃj = −λj�ji.

Hint: Use the characteristic equation JSÃj = −λjÃj .
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2.9.1 Gyroscopic Systems

Let us consider the important particular case of the two-degrees-of-freedom
gyroscopic system whose Hamiltonian is

H =
p2

2
− [k, r,p] +W (r), (2.122)

where r ≡ (x, y),p ≡ (px, py), k is a unit vector perpendicular to the plane
of motion and the potential energy is W = 1

2 (ax2 + by2) + dxy (a, b, d are
constants). (See Sect. 1.7; for the sake of simplicity, we have chosen units such
that m = 1 and |Ω| = 1.) The Hessian matrix is

S =

⎛⎜⎜⎝
a d 0 −1
d b 1 0
0 1 1 0

−1 0 0 1

⎞⎟⎟⎠ . (2.123)

Then,

−JS =

⎛⎜⎜⎝
0 1 1 0

−1 0 0 1
−a −d 0 1
−d −b −1 0

⎞⎟⎟⎠ (2.124)

and the eigenvalues of −JS are

λj = ±1
2

√
−2(a+ b+ 2) ± 2

√
(a− b)2 + 8(a+ b) + 4d2. (2.125)

We assume that these eigenvalues are imaginary and write them as ±iω1 and
±iω2. This means that the parameters a, b, d of the given function W are such

that φ def= (a− b)2 + 8(a+ b) + 4d2 ≥ 0 and −(a+ b+ 2) +
√
φ < 0.

The eigenvectors of −JS are

Ãj =

⎛⎜⎜⎜⎝
−λ3

j − (b+ 1)λj + d

λ2
j + dλj − a+ 1

aλ2
j − b+ ab− d2

d(λ2
j + 1) − (a+ b)λj

⎞⎟⎟⎟⎠ . (2.126)

The quantities �k+2,k are immediate. We just point out the fact that, of
the five parameters a, b, d, ω1, ω2, only three are independent. We use (2.125)
to eliminate b, d and obtain

�31 =2iω1(ω2
1 − ω2

2)(1 − a+ aω2
1 − ω2

1ω
2
2)

�42 =2iω2(ω2
2 − ω2

1)(1 − a+ aω2
2 − ω2

1ω
2
2).

(2.127)

The new angle–action variables are

wk = ωkt− αk

Jk = −i|ck|2�N+k,k
(k = 1, 2, · · · , N),

(2.128)

where ck = |ck|eiαk are the integration constants.
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