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Preface

A única maneira de cumprir o trabalho era tê-lo
como coisa lerda e cont́ınua, mansa, sem começo
nem fim, as mãos sempre sujas da massa.

João Guimarães Rosa, Buriti

The story of this book began in the late 1960s, when Prof. Buarque Borges
invited me to give a graduate course at the Aeronautics Institute of Technol-
ogy. The course was to deal with the perturbation theories used in Celestial
Mechanics, but they should be presented in a universal way, so as to be un-
derstandable by investigators and students from related fields of science. This
hint marked the rest of the story. The course evolved and for the past 30 years
was taught almost yearly at the University of São Paulo and, occasionally, in
visited institutions abroad. A long visit of Prof. Gen-Ichiro Hori to the Uni-
versity of São Paulo was the occasion for many illuminating discussions on
the subject.

Soon, in this story, came the project of a book. But two major obstacles
did not allow it to progress at that time. One of them was the concurrence
of many other time-consuming duties. The drafts of many chapters could
only be written during visits abroad: to Austin, Grasse, La Plata, Oporto,
Nice, Paris, Vienna, and the book could only be completed now, after my
formal retirement. The other obstacle, more determinant, was the fact that
theories able to treat Bohlin’s problem, a resonant Hamiltonian system with
two degrees of freedom, where the second degree of freedom is degenerate,
were not available. So, the book project had to wait for new investigations!

In accordance with the initial proposal, the aim of the book is to present
the main canonical perturbation theories used in Celestial Mechanics with-
out any involvement with the particularities of the astronomical problems to
which they are applied; one does not need to know Astronomy to read it. The
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VI Preface

other objective is to provide, in one book, all the information necessary for
the application of the theories. For instance, not only is it told how to actually
obtain action–angle variables, but they are explicitly given for important dy-
namical systems such as the simple pendulum, the Ideal Resonance Problem
and the first Andoyer Hamiltonian. In addition, every theory presented in the
book is followed by case studies and examples able to illustrate the directions
for their use in applications. For the sake of making the book useful as a hand-
book in investigations using perturbation theories, special care was taken to
avoid errors in the given equations. All my students have, in the past, com-
municated to me the errors found in the drafts. I have myself checked every
equation, but I am not foolish to say that no flaws remain. Transcriptions,
transpositions, and the work on LATEX source files are non-robust operations
that may have added new errors. A Web page will be created to inform readers
of any flaws finally remaining in the text.

The book is composed of 10 chapters and four appendices. The two first
chapters are devoted to some results of Hamilton–Jacobi theory. This short
presentation, where only points of practical interest are given a longer de-
velopment, is not a substitute for a full text on Analytical Dynamics. Many
sections were directly inspired by the seminal classes of the late Prof. Abrahão
de Moraes, which I had the privilege of attending in my undergraduate years
and by books with which I became acquainted in frequent visits to his per-
sonal library. One of them was Charlier’s Die Mechanik des Himmels, the
book referenced in many papers on fundamental Physics in the first decades
of past century.

Chapters 3 and 4 are devoted to perturbation theories where canonical
transformations are obtained by means of Jacobi’s generating function. These
chapters include the Poincaré theory for perturbed non-degenerate Hamiltoni-
ans, the von Zeipel–Brouwer theory for perturbed degenerate Hamiltonians,
the procedures of frequency relocation and quadratic convergence used by
Kolmogorov in the proof of his theorem, the theory used in Delaunay’s lunar
theory and the solution of Garfinkel’s Ideal Resonance Problem. It is worth
emphasizing that the definition of degeneracy used throughout this book, due
to Schwarzschild, is less strict than the definition of degeneracy used in Kol-
mogorov’s theorem.

Chapter 5 introduces Lie mappings and Chap. 6 reconsiders the study of
perturbed non-degenerate Hamiltonian systems with canonical transforma-
tions written as Lie series. Lie series theories in action–angle variables are
completely equivalent to those founded on Jacobian transformations and the
choice of one or another is a matter of work economy only. Their comparison
is done in two typical examples.

Chapter 6 introduces Hori’s theory with unspecified canonical variables
and this is the point where the equivalence to the old theories disappears.
Hori’s theory shows that every perturbation theory has a dynamical kernel,
the Hori kernel. From the algorithmic point of view, the Hori kernel is a
Hamiltonian system that repeats itself at every order of approximation, and
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VIIPreface

whose Hamilton–Jacobi equation needs to be completely solved. From the
dynamical point of view, it forces the solutions given by perturbation theories
to have the same topology as the Hori kernel. However, generally, the Hori
kernel and the given Hamiltonian have different topologies and this difference
gives rise to the well-known small divisors.

In Chap. 7, it is shown how Hori’s theory with unspecified canonical vari-
ables allows the construction of formal solutions using non-singular Poincaré
variables, thus allowing the study of perturbed systems near the singulari-
ties of the actions. In Chaps. 8 and 9, the understanding of the role played
by the Hori kernel is the key to dealing with resonant systems with two or
more degrees of freedom presenting simultaneously resonant and degenerate
angles. The Hori kernels in these chapters are systems whose restrictions to
one degree of freedom are the simple pendulum and the first Andoyer Hamil-
tonian, respectively. The techniques discussed in Chap. 2 are used to extend
the action–angle of these models to the two-degrees-of-freedom Hori kernel.
Finally, in Chap. 10, the theories presented in the previous chapters are ap-
plied to some quasiharmonic Hamiltonian systems.

Appendix A is devoted to presenting Bohlin’s theory and an extension of
Delaunay’s theory and to discuss the difficulties presented by these theories
when applied to systems with more than one degree of freedom involving
simultaneously resonant and degenerate arguments.

Appendices B and C present the complete solutions of two integrable
Hamiltonians fundamental in resonance studies: the simple pendulum and the
first Andoyer Hamiltonian. The action–angle variables of these two Hamilto-
nians are constructed with the help of elliptic functions. Expansions in terms
of trigonometric functions valid in a neighborhood of the libration center are
also given. Appendix C also includes the construction of solutions in the neigh-
borhood of the pendulum separatrix and the associated whisker and standard
mappings. Appendix D presents the main features of some higher-order An-
doyer Hamiltonians.

One last comment on the contents of this book is that it is not aimed at
being an encyclopedia on the subject and does not cover every approach of the
problem. On the contrary, several sections and even one chapter not belonging
to the backbone of the subject were dropped during the revision. Canonical
perturbation theories are an old subject, and many approaches exist that were
not even mentioned in the book.

The list of references, at the end of the book, also deserves some comments.
One characteristic feature of this list concerns the old references where im-
portant concepts in present-day theories were introduced. It is human nature
to highlight the more recent contributions showing the importance of some
old concepts and to forget the founding fathers that introduced them much
earlier. Special attention was paid to give to them the acknowledgement that
they deserve and to inform new generations of their achievements. In what
concerns the recent references, we included only some items that have a very
direct relationship to what is written in this book. We considered it important
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VIII Preface

not to let these few items disappear amid an exhaustive bibliography. This
choice was made having in mind that search engines on the internet may give,
nowadays, more and better bibliographical information than a long list at the
end of a book.

Acknowledgements. I thank my family for continuous support. Many friends
and colleagues have given me suggestions that helped to improve the book.
I thank all of them and, particularly, Prof. Jean Kovalevsky, who, long ago,
introduced me to canonical perturbation theories and Profs. André Brahic,
Rudolf Dvorak, Claude Froeschlé, Juan Carlos Muzzio and Bruno Sicardy,
who have often invited me to their institutions, allowing me to have time
to write. I thank all my students. They have read almost all the drafts of
this book and collaborated with valuable comments that resulted in many
improvements in the written text. I thank the copy editor Mike Nugent for
his invaluable contribution for the editorial quality of this book. During the
work on this project, I had the support of USP – University of São Paulo,
Observatório Nacional, Bureau des Longitudes (now IMCCE), Observatoire
de Paris–Meudon, Wien Universität, FAPESP – Research Foundation of the
State of São Paulo and CNPq – National Council for Scientific and Techno-
logical Development.

São Paulo, June 2006

Sylvio Ferraz-Mello
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10.6 The Hénon–Heiles Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.6.1 The Toda Lattice Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 252

10.7 Systems with Multiple Commensurabilities . . . . . . . . . . . . . . . . . 253
10.7.1 The Ford–Lunsford Hamiltonian. 1:2:3 Resonance . . . . . 255

10.8 Parametrically Excited Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.8.1 A Nonlinear Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

A Bohlin Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
A.1 Bohlin’s Resonance Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
A.2 Bohlin’s Perturbation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 265
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1

The Hamilton–Jacobi Theory

1.1 Canonical Pertubation Equations

Astronomers in the nineteenth century found that the form of the Lagrange–
Laplace equations for the perturbed Keplerian motion becomes very simple
when the set of variables known as Delaunay variables,

� = mean anomaly, L =
√
µa,

g = argument of the periapsis, G = L
√

1 − e2,
h = longitude of the node, H = G cos i,

(1.1)

is used (see [15]). Here, µ is the product of the gravitational constant and the
mass of the central body, a the semi-major axis, e the orbital eccentricity and
i the inclination of the orbit over the reference plane.

With these variables, the equations of variation of the orbital elements are
the Delaunay equations

d�
dt

=
∂F
∂L

dL
dt

= −∂F
∂�

dg
dt

=
∂F
∂G

dG
dt

= −∂F
∂g

(1.2)

dh
dt

=
∂F
∂H

dH
dt

= −∂F
∂h

,

where

F = − µ2

2L2
+R(L,G,H, �, g, h). (1.3)

In (1.3),R is the potential of the disturbing forces expressed with the Delaunay
variables. The variational equations are in canonical form1.

1 In accordance with the conventions adopted in this book, the minus sign always
appears in the differential equations for the second set of variables (momenta).
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2 1 The Hamilton–Jacobi Theory

Delaunay soon discovered that the canonical form of the perturbation
equations make easier the research of their solution. He also introduced im-
portant new ideas in his lunar theories [22], which became the first instance
in which a canonical perturbation theory was used to obtain the “averaged”
solution of a cumbersome dynamical system. Later, many other problems
in Physics were brought to this form and the whole discipline of Analytical
Dynamics was established. A detailed account of this is not included here2.
However, some basic results and some details important in perturbation and
averaging theories are gathered in this chapter and in the next one. It is
worth emphasizing that this short introduction, say, for pedestrians, where
only points of practical interest are given longer development, may not re-
place a full text on Analytical Dynamics. In addition, many results are deeply
rooted in the theory of first-order partial differential equations. The learn-
ing of a few rules may not replace a correct understanding of the theories of
Lagrange, Hamilton, Jacobi, Lie and others.

It must be emphasized that the signs in (1.2) and (1.3) are not the same as
often seen in Celestial Mechanics books and papers. In fact, it is traditional in
Celestial Mechanics, as well as in Mathematics, to use, instead of the energy
of the system, its opposite. Also, instead of the potential, usually the so-called
force function, which is its opposite, is used. In the study of actual problems,
this ambiguity in convention is a frequent source of errors. Formally, both
practices are equivalent; however, energy and potential are not just two arbi-
trary functions but quantities with well-established physical meanings. Since
we have to make one choice, we choose that which is correct for everybody.
Thus, the signs in this book are those adopted in Physics and in Mechanics.

1.2 Hamilton’s Principle

Let us first introduce the usual concepts. We consider only unconstrained
dynamical systems whose configuration is completely defined by N generalized
coordinates qi (i = 1, 2, · · · , N). This system is said to have N degrees of
freedom. The state of motion of the system is given by the generalized velocities
q̇i (i = 1, 2, · · · , N).

Let T be the kinetic energy defined by a function of the generalized ve-
locities q̇i (i = 1, 2, · · · , N) whose actual expression depends on the par-
ticular geometry of the configuration space. For example, if qi are Carte-
sian coordinates, then the kinetic energy is given by the quadratic form
T = 1

2

∑N
i=1 miq̇i

2, where mi are the masses of the particles (which, of course,
must be the same for groups of subscripts indicating coordinates of the same
particle).

Let V (qi, t) be the potential energy of the system. We assume that the
acting forces derive from a velocity-independent potential and this function

2 For an outstanding conceptual presentation of Dynamics, see [59].
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1.2 Hamilton’s Principle 3

is defined in such a way that the generalized forces are obtained by means of
f = −grad V . We introduce also the generalized momenta,

pi =
∂T

∂q̇i
, (1.4)

and the Hamiltonian function

H =
N∑

i=1

piq̇i − T (qi, q̇i) + V (qi, t). (1.5)

Principle (Hamilton). The action of the system between t1 and t2, defined
by the definite integral

A =
∫ t2

t1

[
N∑

i=1

piq̇i −H(qi, pi, t)

]
dt, (1.6)

is stationary for arbitrary variations of the solutions between the initial and
final states.

��
In the usual notation, we may write

δA = δ
∫ t2

t1

L dt = 0, (1.7)

where

L = T (qi, q̇i) − V (qi, t) =
N∑

i=1

piq̇i −H(qi, pi, t) (1.8)

is the Lagrangian function associated to H .
This is a simple variational problem in 2N -dimensional phase space3. Using

classical Euler–Lagrange equations for the solution of a variational problem,
we obtain a system of 2N differential equations:⎧⎪⎪⎨⎪⎪⎩

d
dt

∂L

∂q̇i
− ∂L

∂qi
=

dpi

dt
+
∂H

∂qi
= 0

d
dt

∂L

∂ṗi
− ∂L

∂pi
= 0 − q̇i +

∂H

∂pi
= 0,

(1.9)

that is,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1.10)

3 We are considering Hamilton’s principle in 2N dimensions instead of the more
usual formulation in N dimensions with L(q, q̇, t) as integrand. Both formulations
are equivalent (see [59], Chap. 6).
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4 1 The Hamilton–Jacobi Theory

These equations are the Hamilton equations of the given dynamical system.
This system of equations has the same simple formulation as (1.2) and its

main formal property is the complete definition of the right-hand sides of the
equations by the function H alone

However, notwithstanding this simple structure, there is no general tech-
nique for the integration of these equations. As for Lagrangian equations,
an important role is played by the operation known as Routhian reduction
(see [97]). In the case of Hamiltonian equations, the Routhian reduction is
immediate. Indeed, if the coordinate q� is cyclic (also called ignorable), that
is, if the Hamiltonian does not depend on q�, then ∂H/∂q� = 0 and ṗ� = 0,
that is, the momentum p� is constant. Since p� = c, it may be replaced by c in
the Hamiltonian function and the reduced Hamiltonian function is a function
only of the qi, pi (i �= �). Thus, the given dynamical system is reduced to
N − 1 degrees of freedom. When this reduced system is solved, the complete
integration is achieved afterwards by means of the integral

q� =
∫

∂H

∂c
dt. (1.11)

This procedure is easily extended to other cyclic or ignorable variables.

Exercise 1.2.1. Show that, if T is a purely quadratic kinetic energy (that is,
a homogeneous function of degree 2 in the q̇i), then the Hamiltonian is the
total mechanical energy H = T + V. Hint. Use the definition of generalized
momenta and Euler’s homogeneous functions theorem.

Exercise 1.2.2 (Conservative systems). Show that H = E (constant)
when H is time-independent.

Exercise 1.2.3. Show that one rigid system formed by M particles (M ≥ 3)
has six degrees of freedom. Hint: Each particle has three coordinates but,
since the system is rigid, they are not independent. The distances between
the particles are constants unaltered by the motion of the system.

1.2.1 Maupertuis’ Least Action Principle

Principle (Maupertuis). The action

S =
∫ t2

t1

N∑
i=1

piq̇i dt (1.12)

of a conservative dynamical system is stationary for arbitrary variations of
the solutions between the initial and final states.

��
Indeed, if the system is conservative, δ

∫ t2
t1
H dt = 0 because H is constant

and, then, δ
∫ t2

t1
L dt = δ

∫ t2
t1

∑N
i=1 piq̇i dt.
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1.2 Hamilton’s Principle 5

This principle, stated one century before Hamilton’s principle, is usually
written, in the case of one particle, as

δ
∫ t2

t1

2T dt = 0

which is equivalent to δS = 0 when T is assumed to be a quadratic function
of the velocity.

1.2.2 Helmholtz Invariant

Lemma 1.2.1. If we consider two isochronous solutions of a conservative
Hamiltonian system whose initial states are infinitesimally close, the differ-
ence in the actions A of the system between initial and final instants t = 0
and t = τ , along the two solutions, is

δA =

[
N∑

i=1

pi dqi

]τ

0

. (1.13)

A   B

Γ

Γ '
A'  B'

Fig. 1.1. Isochronous solutions starting at two neighboring points of Γ

The proof of this lemma is trivial. From Hamilton’s principle, we know that
the action of the system between 0 and τ is stationary for arbitrary variations
of one solution between the initial and final states, say, between A and A′ (see
Fig. 1.1). Therefore, if we change the integration path from AA′ to ABB′A′,
the result of the integral is the same. The decomposition of the integral along
the path ABB′A′ in its three parts and the substitution of the integrals over

the arcs AB and A′B′, respectively, by
[∑N

i=1 pi dqi

]
t=0

and
[∑N

i=1 pi dqi

]
t=τ

gives ∫
AA′

N∑
i=1

pi dqi −
∫

BB′

N∑
i=1

pi dqi =

[
N∑

i=1

pi dqi

]τ

0

as stated. ��
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6 1 The Hamilton–Jacobi Theory

Theorem 1.2.1 (Helmholtz). If Γ is an arbitrary closed curve in phase
space, the quantity

J =
∮

Γ

N∑
i=1

pi dqi, (1.14)

is an invariant of the motion.

Proof. [59] In order to prove this theorem, let us consider a curve Γ and all
solutions whose initial state lies on Γ . Let us consider two solutions whose
initial state lies on neighboring points of Γ , say A and B (see Fig. 1.1). The
difference of the actions on isochronous motions starting from the end points
of the element is given by (1.13). If we divide Γ into a succesion of infinitesimal
arcs and add the contribution coming from each arc, the net result is null,
that is,

0 =
∮ [

N∑
i=1

pi dqi

]τ

0

. (1.15)

Therefore, the integral of the function enclosed with brackets is the same at
t = 0 and at t = τ , that is,∮

Γ

N∑
i=1

pi dqi =
∮

Γ ′

N∑
i=1

pi dqi,

where Γ ′ is the closed curve into which Γ is transported by the solutions in
the time τ . ��

1.3 Canonical Transformations

The Routhian reduction is one of the basic steps in the Hamilton–Jacobi the-
ory and in the perturbation theories discussed in this book: It is the search
for one transformation leading to a new set of variables such that the canon-
ical form of the equations is preserved, but some of the coordinates become
ignorable. Transformations preserving the canonical form of the equations are
called canonical transformations.

If we consider a change of the given variables qi, pi into a new set q∗i , p
∗
i

defined by a system of 2N equations:

q∗j = q∗j (qi, pi, t), p∗j = p∗j (qi, pi, t), (1.16)

this transformation is said to be canonical if it preserves the canonical form
of any given canonical system, that is, if, under the transformation, (1.10)
becomes

q̇∗i =
∂H∗

∂p∗i
, ṗ∗i = −∂H∗

∂q∗i
, (1.17)
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1.3 Canonical Transformations 7

where H∗ is a new function of q∗i , p
∗
i . An equivalent definition is obtained by

saying that canonical transformations preserve Hamilton’s principle (see 1.7).
Thus, in the new variables,

δ
∫ t2

t1

[
N∑

i=1

p∗i q̇
∗
i −H∗(q∗i , p

∗
i , t)

]
dt = 0. (1.18)

Comparing to (1.7), we obtain

δ
∫ t2

t1

[
N∑

i=1

piq̇i −
N∑

i=1

p∗i q̇
∗
i − (H −H∗)

]
dt = 0. (1.19)

One solution of the given problem is obtained by making the function under
the integral sign equal to zero. Moreover, the introduction under the integral
sign of an arbitrary exact differential does not alter the result, because

δ
∫ t2

t1

Ṡ dt = 0 (1.20)

for any function S of the considered variables. As the 4N variables qi, pi, q
∗
i , p

∗
i

are not independent, we select 2N of them, for instance, qi, q
∗
i and write the

solution of (1.19) as

N∑
i=1

pidqi −
N∑

i=1

p∗i dq
∗
i = dS(qi, q

∗
i , t) + (H −H∗) dt. (1.21)

It is worth recalling that our dynamical system is, by assumption, uncon-
strained; otherwise, we should take into account the non-independence of the
variables qi, pi. We recall that energies in this book are defined as in Physics.
When H is the opposite of the energy, the sign in front of the last parenthesis
in the above equation should be changed.

The function S is known as the generating function of the canonical trans-
formation. Later on, in this book, we will refer to it as the Jacobian generating
function, to distinguish it from the generating function due to Sophus Lie. It
completely characterizes the transformation. From (1.21), we obtain the equa-
tions of the canonical transformation of variables:

pi =
∂S

∂qi
, p∗i = − ∂S

∂q∗i
. (1.22)

The relation between the Hamiltonian functions before and after the trans-
formation is

H∗ = H +
∂S

∂t
. (1.23)

When S is time-independent, it follows that H∗ = H and the transformation
is said to be conservative.
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8 1 The Hamilton–Jacobi Theory

Equations (1.22) are not unique in many respects. For example, if we
introduce the exact differential

d
N∑

i=1

q∗i p
∗
i =

N∑
i=1

p∗i dq
∗
i +

N∑
i=1

q∗i dp∗i (1.24)

into (1.21), it becomes

N∑
i=1

pidqi +
N∑

i=1

q∗i dp∗i = dS′ + (H −H∗) dt, (1.25)

where the new generating function, S′ = S +
∑N

i=1 q
∗
i p

∗
i , may be considered

as a function of the variables (qi, p
∗
i ) and, instead of (1.22), we obtain

pi =
∂S′

∂qi
, q∗i =

∂S′

∂p∗i
. (1.26)

The relation between the Hamiltonians H and H ′ is the same as before (with
S′ instead of S).

Many different combinations are possible. However, we cannot escape the
fate of always having half of the equations defining the transformation solved
with respect to the old variables and half of them solved with respect to the
new ones. An algebraic inversion is always needed to obtain the transformation
in explicit form.

In (1.21) and (1.25), the time variation is important as it shows how the
Hamiltonian will be changed in a time-dependent transformation. However,
in what concerns the canonical condition itself, instead of the actual displace-
ments of the system, only the virtual displacements, or variations δqi and δq∗i
at a fixed instant are considered. The only requirement is that these displace-
ments are possible; for instance, if the dynamical system were assumed to
be constrained, the virtual displacements should obey the system constraints.
Using variations instead of differentials, (1.21) becomes

N∑
i=1

piδqi −
N∑

i=1

p∗i δq∗i = δS(qi, q
∗
i , t). (1.27)

The relationship between variations and differentials is obvious. For instance,

dS = δS +
∂S

∂t
dt.

Exercise 1.3.1. Show that the composition of two canonical transformations
is canonical.

Exercise 1.3.2. We could have introduced a valence (or multiplier) λ and
written
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1.4 Lagrange Brackets 9

δ
∫ t2

t1

[
N∑

i=1

piq̇i − λ

N∑
i=1

p∗i q̇
∗
i − (H − λH∗)

]
dt = 0 (1.28)

instead of (1.19) (since that equation results from the comparison of (1.7)
and (1.18), both equal to zero). Construct the equations giving the canonical
transformation and the new conservation equation

H(q, p) = λH∗(q∗, p∗). (1.29)

1.4 Lagrange Brackets

When, in (1.21), S is forced to be a function of qi, pi, the calculations are less
immediate. Let us consider the transformation in its explicit form

qk = qk(q∗i , p
∗
i , t), pk = pk(q∗i , p

∗
i , t) (1.30)

and let us calculate the variation δqk corresponding to an arbitrary change
δq∗i , δp∗i . δqk is a linear differential form in δq∗i , δp∗i , and the time-independent
part of (1.21) becomes

N∑
k=1

pk

N∑
i=1

(
∂qk

∂q∗i
δq∗i +

∂qk

∂p∗i
δp∗i

)
−

N∑
i=1

p∗i δq∗i = δS. (1.31)

If the transformation is canonical, (1.31) must be an exact form. Thus, it may
satisfy the conditions for exact differential forms, which, after some calcula-
tions, give

N∑
k=1

(
∂qk

∂q∗i

∂pk

∂p∗j
− ∂qk

∂p∗j

∂pk

∂q∗i

)
= δij

N∑
k=1

(
∂qk

∂q∗i

∂pk

∂q∗j
− ∂qk

∂q∗j

∂pk

∂q∗i

)
= 0 (1.32)

N∑
k=1

(
∂qk

∂p∗i

∂pk

∂p∗j
− ∂qk

∂p∗j

∂pk

∂p∗i

)
= 0,

where δij is the Kronecker symbol: δij = 0 for i �= j and δij = 1 for i = j
(i, j = 1, · · · , N). Using the Lagrange brackets

[f, g] def=
N∑

k=1

(
∂qk

∂f

∂pk

∂g
− ∂qk

∂g

∂pk

∂f

)
, (1.33)

equations (1.32) are written

[q∗i , p
∗
j ] = δij , [q∗i , q

∗
j ] = 0, [p∗i , p

∗
j ] = 0. (1.34)
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10 1 The Hamilton–Jacobi Theory

Since

N∑
k=1

δqk ∧ δpk =
∑
i<j

[q∗i , q
∗
j ]δq∗i ∧ δq∗j +

∑
i<j

[p∗i , p
∗
j ]δp∗i ∧ δp∗j

+
N∑

i=1

N∑
j=1

[q∗i , p
∗
j ]δq

∗
i ∧ δp∗j

=
N∑

i=1

δq∗i ∧ δp∗i ,

the form of the canonical condition given by (1.34) is often expressed by saying
that the differential form

∑N
i=1 δqi∧δpi is invariant under the transformation.

Equations (1.32) are relations among the elements of the Jacobian matrix
of the transformation (q∗, p∗) ⇒ (q, p):

M =

⎛⎜⎜⎜⎜⎝
(
∂qi

∂q∗j

) (
∂qi

∂p∗j

)
(
∂pi

∂q∗j

) (
∂pi

∂p∗j

)
⎞⎟⎟⎟⎟⎠ (1.35)

and are equivalent to the matrix equation

M′JM = J, (1.36)

where M′ is the transpose of M. J is the symplectic unit matrix4 of rank 2N

J =
(

0 −E

E 0

)
, (1.37)

where E is the unit matrix of rank N . Since the determinant of a product of
matrices is equal to the product of the determinants of the matrices being
multiplied and det J = 1, we find from (1.36) that (detM)2 = 1. The proof
that detM = +1 requires further considerations (see [99]). One must first
show that canonical transformations must be decomposed into a canonical
transformation whose Jacobian matrix is positive definite and one orthogonal
canonical transformation (that is, one canonical transformation whose Jaco-
bian matrix O is such that O′ = O−1). In the case of the orthogonal canonical
4 With the above definition of J, the energy sign and the q − p order adopted in

this book, the Hamilton equations are:

ż = −J
∂H

∂z
z ≡ (q, p).

In some other books, other conventions are adopted, changing the minus sign in
the above equation into plus.
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1.5 Poisson Brackets 11

transformation, the canonical condition may be written as JO = OJ, and this
implies that O is of the form (

A B

−B A

)
.

Then, one introduces the unitary complex matrix

F =
1

2N

(
iE E

E iE

)
and shows that det(FOF−1) is the product of the two complex numbers
det(A ± iB) and so cannot be negative. Since det(FOF−1) = detO, the proof
is complete.

1.5 Poisson Brackets

The Poisson bracket of two differentiable functions of the canonical variables:

f = f(q, p)
g = g(q, p)

is the bilinear operation

{f, g} def=
N∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
. (1.38)

The usefulness of these brackets comes from the fact that the canonical
equations (1.10) are simply the Poisson brackets of the Hamiltonian function
H(q, p) and the variables:

q̇i = {qi, H}
ṗi = {pi, H}. (1.39)

It is worth mentioning that Poisson brackets may be written as

{f, g} = gradf · (J · grad g);

that is, the scalar product of the gradient of f and the symplectic rotation of
the gradient of g.

Exercise 1.5.1 (Invariance to Canonical Transformations). Consider
two differentiable functions fk = fk(qi, pi) (k = 1, 2; i = 1, 2, · · · , N) and the
canonical transformation

qi = qi(q∗j , p
∗
j )

pi = pi(q∗j , p
∗
j ) (i, j = 1, 2, · · · , N).
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12 1 The Hamilton–Jacobi Theory

Show that the Poisson bracket of the functions f1 and f2 is the same, no
matter whether it is calculated with the variables qi, pi or the variables q∗i , p

∗
i ;

that is

{f1(qi(q∗j , p
∗
j ), pi(q∗j , p

∗
j)), f2(qi(q∗j , p

∗
j ), pi(q∗j , p

∗
j ))} = {f1(qi, pi), f2(qi, pi)}.

Exercise 1.5.2. Consider 2N differentiable functions fi = fi(qj , pj) (i, j =
1, 2, · · · , 2N). Show that

2N∑
k=1

[fk, fi]{fk, f�} = δi�. (1.40)

Although cumbersome, the proof of this result is straightforward.

Exercise 1.5.3 (Canonical condition). Consider the canonical transfor-
mation

q∗i = q∗i (qj , pj)
p∗i = p∗i (qj , pj) (i, j = 1, 2, · · · , N) (1.41)

and show that, in this case,

{q∗i , p∗j} = δij , {q∗i , q∗j } = 0, {p∗i , p∗j} = 0. (1.42)

This new form of the canonical condition is an immediate consequence of
(1.40) and (1.34).

1.5.1 Reciprocity Relations

In the case of the above canonical transformation, in addition to (1.40), we
may establish some useful one-to-one relations between the mutual derivatives
of the two sets of canonical variables.

Proposition 1.5.1. Given a conservative canonical transformation

q∗i = q∗i (qj , pj)
p∗i = p∗i (qj , pj) (i, j = 1, 2, · · · , N)

(1.43)

and its inverse

qj = qj(q∗i , p
∗
i )

pj = pj(q∗i , p
∗
i ) (i, j = 1, 2, · · · , N)

(1.44)

then, for any i, j:

∂qi

∂q∗j
=

∂p∗j
∂pi

∂pi

∂q∗j
= −∂p∗j

∂qi

∂qi

∂p∗j
= −∂q∗j

∂pi

∂pi

∂p∗j
=

∂q∗j
∂qi

.

(1.45)
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1.6 The Extended Phase Space 13

The proof of this statement is very simple. Let us first consider the canon-
ical transformation given by (1.22), derived from the Jacobian generating
function S(q, q∗). From (1.22) we have

∂pi

∂q∗j
=

∂2S

∂qi∂q∗j
= −∂p∗j

∂qi

and the second of equations (1.45) is proved. We may, then, repeat the same
calculations with the canonical transformation given by (1.26), derived from
S′(q, p∗) and prove the fourth of equations (1.45) (as well as the first one
in which just the direction of the transformation is changed). The third of
equations (1.45) is similarly proved using transformations derived from the
generating functions S′′(p, p∗).

Exercise 1.5.4. Show that M−1 = −(JMJ)′ and that the reciprocity relations
may be obtained by comparing the elements of both sides of this equation.

1.6 The Extended Phase Space

Time-dependent Hamiltonians and time-dependent canonical transformations
are not separately considered in this book. Time-dependent Hamiltonian dy-
namics is a particular case of time-independent Hamiltonian dynamics. To see
this, let the canonical equations of a time-dependent system be formulated in
parametric form. Let us introduce a parameter τ and let us consider the time
t not as the independent variable, but as one of the N + 1 generalized coordi-
nates q1, q2, · · · , qN , t given as functions of the parameter τ . The system now
has N + 1 degrees of freedom and the 2N former equations become

dqi

dτ
= t′

∂H

∂pi

dpi

dτ
= −t′ ∂H

∂qi
(i = 1, 2, · · · , N), (1.46)

where t′ denotes the derivative of t with respect to τ , which is considered as a
known function of τ . As t′ is independent of the variables qi, pi, we may write

dqi

dτ
=

∂(Ht′)
∂pi

,
dpi

dτ
= −∂(Ht′)

∂qi
. (1.47)

If pt is the momentum conjugate to t, we may introduce one complemen-
tary differential equation:

t′ def=
dt
dτ

=
∂(t′pt)
∂pt

. (1.48)

These equations may be written in the unified form
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14 1 The Hamilton–Jacobi Theory

dqi

dτ
=

∂K

∂pi

dpi

dτ
= −∂K

∂qi

dt
dτ

=
∂K

∂pt

dpt

dτ
= −∂K

∂t
,

(1.49)

where
K(qi, t, pi, pt) = t′H + t′pt (1.50)

is the Hamiltonian of the given system in the extended phase space. The
system was completed by the addition of one equation for the momentum pt.

Generally, knowledge of the meaning of pt is not needed. It may be kept in
the equations as an extra unknown function that, automatically, disappears
when we go back to the 2N -dimensional phase space.

To understand the meaning of the momentum pt we have to construct the
Lagrangian function associated with K and to calculate its derivative with
respect to t′. This Lagrangian function is obtained from the Hamiltonian by
means of Legendre’s dual transformation:

L =
N∑

i=1

piq
′
i + ptt

′ −K, (1.51)

where primes denote derivatives with respect to τ . If we introduce in this
definition the above expression for K and note that t′ appears in L only as a
factor of some terms (two of which are opposite), we obtain

pt =
∂L
∂t′

= −H, (1.52)

that is, the momentum conjugate to time is the opposite of the energy.
An immediate consequence is that the numerical value of K is zero. Since

K is independent of τ , the extended system is conservative and has the in-
tegral K = const. Thus, the condition K = 0 is permanently satisfied. The
introduction of t as an (N + 1)th generalized coordinate leads to a new me-
chanical system with N +1 degrees of freedom, always conservative. The only
difference from the usual conservative systems lies on the fact that the ex-
tended energy K cannot take arbitrary values. It is necessarily equal to zero
(or to another fixed constant, since the addition of a constant to K does not
alter the equations).

In practical applications, the relationship between the time t and the para-
meter τ is a mere identity. So, usually t′ = 1, and t is written as an independent
variable, instead of τ , in the equations. In this case, the extended Hamiltonian
is, simply,

K(qi, t, pi, pt) = H(qi, pi, t) + pt. (1.53)

Another frequent choice is to introduce as a new generalized coordinate a
linear function of the time (a mean longitude) λ = νt + const, instead of the
time itself. The transformation from the above case to this one is trivial and
the extended energy, now, is:
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1.7 Gyroscopic Systems 15

K(qi, λ, pi, pλ) = H(qi, pi, λ) + νpλ. (1.54)

We still have K = 0 and the new generalized momentum pλ is related to the
energy through pλ = −E/ν.

1.7 Gyroscopic Systems

The word gyroscopic is often used to designate terms in the kinetic energy
that are linear in the velocity components. In this book, we use it to designate
systems whose Lagrangian has linear terms in the velocity, of the form r ×
v. These terms may be introduced through a velocity-dependent potential
energy, as in the case of charged particles under the action of magnetic forces,
or through the kinetic energy, as in the case of a motion relative to a rotating
frame.

1.7.1 Gyroscopic Forces

In the topics studied in previous sections, the potential energy was velocity-
independent. Let us consider, now, a system of N points Pi ∈ R3 with masses
mi, let ri and vi be the position vector and the velocity of Pi with respect to an
inertial frame and let us assume that the system is submitted to gyroscopic
forces arising from a generalized potential energy W (ri,vi). How does the
generalized potential energy relate to the forces applied on the particles? The
corresponding Lagrangian equations may be written as

d
dt

(
∂T

∂vi

)
− ∂T

∂ri
=

d
dt

(
∂W

∂vi

)
− ∂W

∂ri
. (1.55)

Since T = 1
2

∑
miv

2
i , the above equations are equivalent to

miv̇i =
d
dt

(
∂W

∂vi

)
− ∂W

∂ri

def= F i, (1.56)

showing that the right-hand side of (1.55) expresses the forces applied on
the particles. One may note that this equation generalizes the usual F i =
−∂V /∂r = −gradPi

V of the velocity-independent case. The momenta of Pi

are, now, given by

pi =
∂(T −W )

∂vi
= mivi − ∂W

∂vi
. (1.57)

and the corresponding Hamiltonian is given by

H =
N∑

i=1

pi · vi − T +W, (1.58)
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16 1 The Hamilton–Jacobi Theory

that is,

H =
N∑

i=1

p2
i

2mi
+ Y (ri,pi), (1.59)

where

Y (ri,pi) = W −
N∑

i=1

1
2mi

(
∂W

∂vi

)2

. (1.60)

It is easy to see, by using the Hamiltonian equations instead of the La-
grangian ones, that the expression of the force applied on the particles in
terms of Y (ri,pi) is

F i = mi
d
dt

(
∂H

∂pi

)
= mi

d
dt

(
∂Y

∂pi

)
− ∂Y

∂ri
. (1.61)

1.7.2 Example

Let us consider the simple generalized potential energy5

W =
N∑

i=1

mi[A, ri,vi].

To get the right physical dimension of W , A needs to have the dimension
of an angular velocity. W is a scalar quantity; it is equal to |A| times the
projection of the angular momentum of the system on the direction of the
vector A. From (1.56) and (1.60), we obtain

F i = 2miA × vi

and

Y = W −
N∑

i=1

A2

2
mi[r2i − (ri · u)2],

where u is the unit vector in the direction of A. It is worth noting that
[r2i − (ri · u)2] is the square of the distance of the particle Pi to the axis
defined by u. Therefore, we may also write Y = W − A2I/2, where I is the
moment of inertia of the system with respect to the axis defined by u.

An example of a force of this kind, in nature, is the force acting on an elec-
tric charge moving in a magnetic field: F = − e

cB×v. (e is the electric charge,
c the velocity of light and B is the magnetic induction.) The corresponding
generalized potential energy is W = − e

2c [B, r,v].

5 [a,b, c] denotes the triple scalar product a · (b×c). Two elementary rules used in
this section are the invariance of the triple scalar product to a circular permutation
of the operands and Lagrange’s identity for the triple vector product: a×(b×c) =
(a · c)b − (a · b)c. These two rules combine to give (a × b)2 = a2b2 − (a · b)2.
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1.7 Gyroscopic Systems 17

1.7.3 Rotating Frames

Let us consider a system under the action of applied forces depending on a
velocity-independent potential U(mi, ri), but in a frame rotating with angular
velocity Ω around an axis directed along a given unit vector u. Let ri and vi

be the coordinates and velocity components of Pi with respect to the rotating
frame. With respect to an inertial (non-rotating) frame, the velocity is given
by vi + Ω × ri (where Ω = Ωu) and the kinetic energy of the system is

T =
1
2

N∑
i=1

mi(vi + Ω × ri)2 (1.62)

or

T =
1
2

N∑
i=1

mi

[
v2

i + 2[vi,Ω, ri] +Ω2r2i − (Ω · ri)2
]
. (1.63)

The momenta conjugated to the relative vector radii ri are

pi =
∂T

∂vi
= mivi +miΩ × ri (1.64)

and the Hamiltonian function is given by

H =
N∑

i=1

pi · vi − T +mU, (1.65)

that is, in terms of the canonical variables ri,pi,

H =
N∑

i=1

(
p2

i

2mi
− [Ω, ri,pi]

)
+mU(r). (1.66)

1.7.4 Apparent Forces

An observer fixed in the rotating frame will perceive modifications in the
motion of a point or system of points as if the system were under the action
of apparent forces corresponding to the “potential energy” −∑

[Ω, ri,pi]
(in addition to mU(r)). To determine which forces these are, we substitute
Y = −∑

[Ω, ri,pi] +mU(r) into (1.61) and obtain

F i = 2mivi × Ω +miΩ
2 [ri − (ri.u)u] −migradPi

U.

The term miΩ
2 [ri − (ri.u)u] is the centrifugal force. Note that ri −

(ri.u)u = ρi is a vector perpendicular to the rotation axis going from the
axis to the point Pi.

The term 2mivi×Ω is the so-called Coriolis force. The Coriolis force tends
to make the free motion of one particle on a rotating frame deviate from a
straight line. On the surface of the Earth, the deviation of the moving particle
due to the Coriolis force is to the right in the Northern hemisphere and to the
left in the Southern hemisphere (see [94]).
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18 1 The Hamilton–Jacobi Theory

1.8 The Partial Differential Equation of Hamilton and
Jacobi

The Hamilton–Jacobi theory is the cornerstone of Analytical Mechanics. The
entirely new understanding of the problems of mechanics that it allowed was
impressive. In the last quarter of the nineteenth century, it experienced an
enormous development in close relationship with the theory of first-order par-
tial differential equations and the introduction, by Sophus Lie, of contact
transformations. In modern Physics, it was introduced around 1916 through
the work of Schwarzschild, Epstein and Sommerfeld into the mechanics of the
atom and provided the basis of the old Quantum Theory and, a few years
later, of the new Quantum Mechanics of Schrödinger, Heisenberg and Born.
Much of that work was directly inspired from Celestial Mechanics and a key
reference in all papers of this period is Charlier’s Die Mechanik des Himmels.
Charlier’s book [20] included one chapter on the Staude–Stäckel theory of
conditionally periodic systems and the construction of the uniformized an-
gle variables, which would be later called, with their conjugates, angle–action
variables (see Chap. 2). More or less at the same time, Hamilton–Jacobi theory
played an essential role in the geometrization of dynamics and its variational
principles are the basis of Einstein’s theory of general relativity.

The equation nowadays named after Hamilton and Jacobi is due to Jacobi
and is a modification of the equation published by Hamilton in 1834. It
was an extension to dynamics of the partial differential equation discovered
by Hamilton 10 years before, in optics. Using canonical transformations, this
equation is easily obtained.

Let us consider a conservative mechanical system with N degrees of free-
dom, a time-independent Hamiltonian function H(q, p), (q ≡ q1, q2, · · · , qN ;
p ≡ p1, p2, · · · , pN ) and one canonical transformation φ : (q, p) ⇒ (q∗, p∗).

The main idea of Hamiltonian theories is, in general, to seek a canonical
transformation such that the Hamiltonian of the resulting system is as simple
as possible. In the earlier Hamilton’s theory, the sought canonical transfor-
mation was expected to lead to a Hamiltonian independent of all variables.
In the current Hamilton–Jacobi theory, it is required that the Hamiltonian
obtained by applying this transformation to H(q, p) shall be equal to one of
the new variables, say:

H∗(q∗, p∗) = p∗1. (1.67)

This new Hamiltonian system is trivial. The energy integral is E = p∗1 and
the system has the general solution

q∗1 = t + α1 p∗1 = β1 = E

q∗� = α� p∗� = β� (� = 2, · · · , N),
(1.68)

where αi, βi (i = 1, 2, · · · , N) are integration constants.
The equation found by Jacobi is the partial differential equation giving the

function that generates the canonical transformation. To obtain it, we use the
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1.8 The Partial Differential Equation of Hamilton and Jacobi 19

fact that the canonical transformation φ is conservative. As a consequence,
the Hamiltonians, before and after the transformation, must be equal, that is,

H(q, p) = H∗(q∗, p∗). (1.69)

Let S(q, p∗) be the generating function of the canonical transformation φ.
Introducing the transformation equations

q∗i =
∂S

∂p∗i
, pi =

∂S

∂qi
, (i = 1, 2, · · · , N) (1.70)

into the conservation equation, we obtain the Hamilton–Jacobi equation

H

(
qi,

∂S

∂qi

)
= p∗1 = E. (1.71)

This equation is a first-order partial differential equation for the function
S(q1, q2, · · · , qN ). E is just a parameter. To use the solution of the Hamilton–
Jacobi equation as a generating function of a canonical transformation, it may
be a function of 2N variables, S = S(q, p∗). The role of p∗i may be played by
N integration constants βi.

Any solution of a first-order partial differential equation, containing as
many integration constants as there are variables, is called a complete solution.
The complete solution of the Hamilton–Jacobi equation generates a canonical
transformation flattening out the surfaces H(q, p) = E(constant) of the given
phase space into the parallel planes p∗1 = E (Fig. 1.2).

When a complete solution S(q, β) is known, the solution of the dynamical
system is given by

t+ α1 = q∗1 =
∂S(q, β)
∂β1

α� = q∗� =
∂S(q, β)
∂β�

(� = 2, · · · , N).
(1.72)

Φ

Fig. 1.2. A simple Hamilton–Jacobi mapping
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20 1 The Hamilton–Jacobi Theory

Hamilton–Jacobi mappings, when they exist, are finite transformations
generally including singularities due to the topological differences between
the surfaces H(q, p) = E and the planes p∗1 = E. As a consequence, they are
more general than the Lie mappings that will be introduced in Chap. 5. All
Lie mappings may be written as Hamilton–Jacobi mappings, but the converse
is not true. Lie mappings are infinitesimal (near-identity) homeomorphisms
of the phase space into itself.

1.9 One-Dimensional Motion with a Generic Potential

Let us consider the problem of the motion of one particle of mass m on
a straight line under the action of a generic velocity-independent potential
U(q1). Newton’s equations of motion are

q̈1 = − grad U(q1) = − dU
dq1

(1.73)

and the corresponding Hamiltonian is

H =
p2
1

2m
+mU(q1), (1.74)

where p1 = mq̇1 is the momentum of the particle. The Hamilton–Jacobi equa-
tion is

1
2m

(
∂S

∂q1

)2

+mU(q1) = E. (1.75)

The (complete) solution of (1.75) is

S(q1, E) =
√

2m
∫ √

E

m
− U(q1) dq1 (1.76)

and the equations of the motion are given by

t + α1 = q∗1 =
∂S

∂E
=

√
1
2

∫
dq1√

E
m − U(q1)

. (1.77)

Because of the square root in (1.77), real solutions may exist only for the
values of q1 such that E

m − U(q1) > 0. Moreover, for each such value, we
have two solutions: one, prograde, corresponding to the choice of the positive
branch of the square root, and the other, retrograde, corresponding to the
choice of the negative branch. When E

m −U(q1) > 0 for all q1 (Fig. 1.3a), the
resulting function q1(t) is monotonic. The variable q1 is continuously increas-
ing or decreasing. The motion is unbounded. In the case of q1 defined on a
circle (for instance, from 0 to 2π), the solution q1(t) is a periodic function of
t whose period is given by
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1.9 One-Dimensional Motion with a Generic Potential 21

q q

q q

1 1

1 1

(a ) (c)

(b ) (d )

a b

a b a

Fig. 1.3. Examples of functions E
m

− U(q1)

T =

√
1
2

∫ 2π

0

dq1√
E
m − U(q1)

. (1.78)

In this case, the periodicity of the motion is only due to the angular nature of
the variable q1 and the motion is called a circulation. One simple example is
the motion of a pendulum whose energy is large enough to allow the weight
to reach the highest point of its trajectory with a non-zero velocity.

When the constant E is such that the function E
m − U(q1) is positive for

some values of q1 and negative for others, the motion is possible only for those
q1 for which E

m −U(q1) ≥ 0. The boundaries of the regions of possible motion
are the roots of the equation E −mU(q1) = 0. To understand this motion,
let us start with a simple case. Let a and b (a < b) be two simple roots of
E −mU(q1) = 0 and let E

m −U(q1) be positive in the whole interval between
these roots (Fig. 1.3b). It is easy to prove that, in this case, the motion is
a periodic oscillation between the boundaries a and b. In what follows, we
assume that the motion starts at the time t = t0 at a point q10 between a and
b with a positive speed and, then, we choose the positive branch of the square
root in (1.77). Then, q1 will increase continuously (q̇1 > 0) to reach b.

Proposition 1.9.1. b is reached in a finite time.

The time in which b is reached is given by

tb = t0 +

√
1
2

∫ b

q10

dq1√
E
m − U(q1)

. (1.79)
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22 1 The Hamilton–Jacobi Theory

This integral is improper, since the function under the integral sign goes to
infinity when q1 → b. To circumvent this difficulty, we may separately consider
a small neighborhood of the root b; then, we replace the function E

m − U(q1)
by its linear approximation −U ′(b)(q1 − b). The improper integral, in this
neighborhood, will be approximated by

1√
U ′(b)

∫ b dq1√
b− q1

, (1.80)

which is a classical example of a convergent integral. Thus, the result of (1.79)
is finite and the point b is reached in a finite time, as proposed.

Proposition 1.9.2. The motion is symmetrically reflected in b.

Indeed, in b we have q̇1 = 0 and q̈1 �= 0. Then q̇1 changes sign at t = tb and
we have to change the branch of the square root (for t > tb), that is, to put a
minus sign in (1.77). As the only difference in the equations before and after
the instant tb is the sign of the square root, the motion after tb is an exact
reflection of the motion before tb and the function q1(t) is even with respect
to t = tb.

Proposition 1.9.3. The motion is periodic with period

T =
√

2
∫ b

a

dq1√
E
m − U(q1)

. (1.81)

The proof of this proposition is immediate from the two preceding ones
and their extension to the reflection of the motion at the point q1 = a. This
motion is, therefore, an oscillation between a and b and is usually called a
libration. The motion of a pendulum, when the energy is not sufficient to
allow the weight to reach the highest point of the circle, is an example of an
oscillation of this kind.

To complete this analysis, we may consider the limiting case in which one
of the roots of E −mU(q1) = 0 is double (Fig. 1.3c). Let us assume that the
function E

m −U(q1) has a minimum equal to zero in b. That is, E
m −U(b) = 0

and −U ′(b) = 0.
The analysis follows the same steps in proposition 1.9.1 up to (1.79). As

before, we separate a small neighborhood at the left of the root b and, in this
neighborhood, replace the function E

m −U(q1) by an approximation. However,
the approximation used before does not work since, now, U ′(b) = 0. We then
use the second-order Taylor approximation− 1

2U
′′(b)(q1−b)2 and the improper

integral, in this neighborhood, becomes√
2

−U ′′(b)

∫ b dq1
b − q1

, (1.82)
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1.9 One-Dimensional Motion with a Generic Potential 23

which is divergent. Thus, the result of (1.79), in this case, is infinite and the
point b is never reached. The motion tends asymptotically to b but never
reaches it. If the motion were retrograde at the initial instant, b would be its
limit for t → −∞. The point b is, itself, an unstable equilibrium point since a
small displacement from this position will make the point drift away from it.

The particular case where the function E
m − U(q1) has a maximum equal

to zero at a point is trivial. The solution may only exist at this point and this
point is a stable equilibrium point (Fig. 1.3d).

1.9.1 The Case m < 0

The equations of this section were written in such a way that they still remain
valid when m < 0. This was done because, in perturbation theories, we often
have approximations corresponding to dynamical systems like that given by
(1.74) whose parameters, including m, may be either positive or negative. The
change of sign of m does not affect the dynamics and is equivalent to a time
reversal. The trajectory in the phase space is not changed when m changes
sign, but the direction of the motion is reversed.

It is worth recalling that we are not just changing the mass sign in an
equation like Newton’s f = ma, which would change an attractive action
into a repulsive one, or vice versa. In our case, f = −m gradU and, thus,
the actual equation is ma = −m gradU , which does not depend on m. The
only real change will be in the sign of the momentum since p1 = mq̇1, which
(because of the symmetric reflection) is equivalent to the above mentioned
reversal in the direction of the motion.

1.9.2 The Harmonic Oscillator

Let us consider the simple dynamical system defined by the potential U = k
2q

2
1

(k > 0). The Hamiltonian is

H =
p2
1

2m
+
mk

2
q2
1 (m ∈ R)

and the trajectories, in the phase plane, are the ellipses H = const. We note
that the assumption m > 0 is not done.

The new Hamiltonian is H∗(q∗1 , p
∗
1) = p∗1 whose trajectories are straight

lines. The Hamilton–Jacobi mapping of one domain of the plane (q1, p1), not
containing the origin, into the plane (q∗1 , p

∗
1) is a homeomorphism (as in the

case shown in Fig. 1.2). However, they are no longer homeomorphic when
the origin is included in the domain. Indeed, the function S, solution of the
Hamilton–Jacobi equation, is singular at this point.

Equation (1.77), giving the solution of the system now becomes

q∗1 = t + α1 =

√
1
2

∫
dq1√

E
m − k

2 q
2
1

. (1.83)
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24 1 The Hamilton–Jacobi Theory

For E/m < 0, there is no real solution; for E = 0, there is just a stable
equilibrium point at q1 = 0, and, for E/m > 0, the solutions are oscillations
in the interval [−

√
2E/mk,

√
2E/mk]. In the later case, the integral is easily

solved giving

t+ α1 =

√
1
k

arcsin

√
mk

2E
q1 (1.84)

or

q1 =

√
2E
mk

sin
√
k(t+ α1). (1.85)

Hence,

p1 = m

√
2E
m

cos
√
k(t+ α1). (1.86)

The coefficient in the last equation was not simplified because the simplifica-
tion depends on the sign of m. In fact, this is the only point where a change
is verified when the sign of m changes.

The motion is an oscillation with period 2π/
√
k. It is worth emphasizing

that the frequency (period) of the oscillation does not depend on the amplitude
of the oscillations, a situation physically acceptable only for small-amplitude
oscillations.

Exercise 1.9.1. Consider the harmonic oscillator with an additional repulsive
cubic force, whose potential is U = k

2 q
2
1 − k′q4

1 (k, k′ > 0), and study all
possible solutions, periodic and non-periodic.

1.10 Involution. Mayer’s Lemma. Liouville’s Theorem

Definition 1.10.1 (Involution). Let f1, f2, · · · , fM (M ≤ N) denote M
functions of the 2N variables qi, pi; if the Poisson brackets {fi, fj} are all
zero, the functions fi, i = 1, · · · ,M are said to be pairwise in involution.

Lemma 1.10.1 (Mayer). Given N functions

p∗i = fi(q, p) (i = 1, · · · , N) (1.87)

that are pairwise in involution and such that the functional determinant
det(∂fi/∂pj) is not zero, there exist N functions q∗i (q, p) (i = 1, · · · , N) such
that the transformation (q, p) → (q∗, p∗) is canonical.

Proof. [18] From (1.87), we obtain

pi = φi(q, p∗). (1.88)

When (q, p∗) are considered as independent variables and (1.87) is differenti-
ated with respect to qk, we obtain6

6 All sums are taken over subscripts from 1 to N .
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1.10 Involution. Mayer’s Lemma. Liouville’s Theorem 25

∂fi

∂qk
+
∑

j

∂fi

∂pj

∂φj

∂qk
= 0

By convolution of this equation with ∂fm/∂pk, we obtain∑
k

∂fm

∂pk

∂fi

∂qk
= −

∑
j

∑
k

∂fm

∂pk

∂fi

∂pj

∂φj

∂qk
.

In an analogous way,∑
k

∂fi

∂pk

∂fm

∂qk
= −

∑
j

∑
k

∂fi

∂pj

∂fm

∂pk

∂φk

∂qj
,

where the role of the subscripts i and m was interchanged, as well as, in the
last summations, the repeated subscripts k and j. Introducing these equations
in the definition of the Poisson bracket {fi, fm}, we obtain

{fi, fm} =
∑

j

∑
k

∂fi

∂pj

∂fm

∂pk

(
∂φk

∂qj
− ∂φj

∂qk

)
= 0

which is equal to zero because, by hypothesis, the functions fi are pairwise in
involution. Introducing the auxiliary functions∑

k

∂fm

∂pk

(
∂φk

∂qj
− ∂φj

∂qk

)
= ψmj

the previous equation becomes∑
j

∂fi

∂pj
ψmj = 0.

This is a system of linear equations in the unknowns ψmj (j = 1, · · · , N).
Since det(∂fi/∂pj) is the non-zero Jacobian of the functions fi with respect
to the pj , it follows that ψmj = 0, that is∑

k

∂fm

∂pk

(
∂φk

∂qj
− ∂φj

∂qk

)
= 0.

This is again a system of linear equations and as det(∂fm/∂pk) is a non-zero
Jacobian, the solution is (

∂φk

∂qj
− ∂φj

∂qk

)
= 0. (1.89)

This result means that the differential form∑
i

φi(q, f) dqi
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26 1 The Hamilton–Jacobi Theory

is exact and one function S(q, f) exists such that

pi = φi(q, f) =
∂S

∂qi
. (1.90)

If we introduce N new variables

q∗i = +
∂S

∂fi
, (1.91)

(1.90) and (1.91) define a canonical transformation (q, p) → (q∗, p∗). ��
The lemma is also valid in the case where the given functions are M

coordinates and N − M momenta provided that the involution property is
preserved (i.e. that there are no conjugate pairs among the given coordinates
and momenta).

The difference in this case is that when the given function fi is a coordi-
nate, the + sign in (1.91) may be changed into − for the subscripts i ≤ M .

Theorem 1.10.1 (Liouville). If a canonical system of N degrees of freedom
admits N integrals

fi(q, p) = ci = const (i = 1, · · · , N) (1.92)

which are independent, pairwise in involution and can be solved for the mo-
menta pi, then the system is completely integrable and the general solution
can be constructed by means of quadratures.

Proof. [51]7 Since the conditions of Mayer’s lemma are satisfied, there exist
N functions q∗i (i = 1, · · · , N) such that the transformation (q, p) → (q∗, f) is
canonical.

With the variables (q∗, f), the equations of motion are

dfi

dt
= 0

dq∗i
dt

=
∂H∗

∂fi
, (1.93)

where H∗ is the Hamiltonian as a function of (q∗, f). The quadratures

q∗i =
∫

∂H∗

∂fi
dt (1.94)

complete the integration of the system
��

If one of the integrals, say, f1, is the energy integral, then H∗ = f1 and
the derivatives ∂H∗/∂fi are zero for all i ≥ 2. The solution of the system is
then reduced just to the trivial quadrature:

q∗1 =
∫

dt = t+ const. (1.95)

7 For the classical proof using Jacobi’s lemma, see [45].
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1.10 Involution. Mayer’s Lemma. Liouville’s Theorem 27

The variables (q∗, f) are akin to the variables (α, β) introduced in the solution
of the Hamilton–Jacobi equation.

When the number of known integrals in involution is not enough to guar-
antee the complete integrability of the system, they may be used to reduce
the number of degrees of freedom according to the following similar theorem.

Theorem 1.10.2 (Lie). If a canonical system of N degrees of freedom ad-
mits M (M < N) integrals fj(q, p) = const that are independent, in involution
and can be solved for M momenta, then we can reduce the number of degrees
of freedom of the system to N −M .

To prove this theorem we need to complete the involution system with
N−M functions f̂j and proceed as before. The analysis of the resulting Hamil-
tonian is trivial, the main difference being that, now, the aditional functions
f̂j (j = M + 1, · · · , N) are not integrals of the motion and will not allow the
corresponding N −M degrees of freedom to be trivially solved.
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2

Angle–Action Variables. Separable Systems

2.1 Periodic Motions

The trajectories of systems with one degree of freedom are the curves
H(q1, p1) = E. As shown in Sect. 1.8, the equations of the motion are given
by

t+ α1 = q∗1 =
∂S

∂E

def= F11(q1), (2.1)

where α1 is a constant and S = S(q1, E) is the solution of the Hamilton–Jacobi
equation.

In the particular examples given in Sect. 1.9, we have found two kinds of
periodic solutions:

• Circulatory Motions. Motions occurring when the variable q1 is defined on
a circle (for instance, q1 is an angle defined from 0 to 2π) and is always
increasing or decreasing (see Fig. 2.1a). The periodicity of the motion is
due to the angular nature of q1. The phase space of this system is a cylinder
and the circulations are solutions closing on themselves after a complete
tour encircling the cylinder.

• Oscillatory Motions or Librations. Motions occurring when the variable q1
oscillates periodically between two boundaries a and b (see Fig. 2.1b). The
variable q1 may be either an angle (as in the pendulum) or a length (as in
the harmonic oscillator). Accordingly, the phase space is either a cylinder
(if q1 ∈ S) or a plane (if q1 ∈ R). Librations are closed curves with the
particular property, in the case q1 ∈ S, that they close on themselves
without encircling the cylinder.

It is not difficult to see that all bounded solutions of a Hamiltonian system
with one degree of freedom are either periodic or asymptotic to an unstable
equilibrium point. It is enough to remember that, since the phase flow pre-
serves volumes in phase space (see [5], Chap. 1, Sect. 3.6), the only ordinary
singular points allowed in the two-dimensional phase space of a Hamiltonian
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                                                                  t

2π

 0

                                                                  t

b

a

(a)

(b)

Fig. 2.1. Functions q1(t): (a) circulation; (b) libration

system are centers and saddle points. All bounded curves in this space that
do not start or end in a saddle point correspond to a periodic motion.

2.1.1 Angle–Action Variables1

The equations resulting from the transformation (q1, p1) ⇒ (q∗1 , p
∗
1) are

q∗1 = t + α1

p∗1 = β1 = E,
(2.2)

where α1 and β1 are constants. The phase space (q∗1 , p
∗
1) is either a plane or a

cylinder as discussed above. The phase trajectories are the lines p∗1 = β1 and
the phase velocity is q̇∗1 = 1 on all trajectories. There are no explicit constraints
imposed on α1, β1, which, however, exist and may be found by the analysis of
S(q1, E). For instance, in the harmonic oscillator (Sect. 1.9.2), the solutions
exist only in the domain formed by the upper half-plane E/m ≥ 0. Another
property not appearing in the functional expression of the Hamiltonian H∗ =
p∗1 is the possible periodicity of the solutions (or of one set of solutions). For
instance, in the harmonic oscillator, all solutions for E/m > 0 are periodic
with period T = 2π/

√
k, that is, q∗1 ∈ R/TZ.

1 Throughout this book, the order coordinate–momentum is adopted. Thus, we
shall refer to these variables as “angle–action” variables, instead of “action–angle”
as usually done everywhere.
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2.1 Periodic Motions 31

To correct this lack of topological information on the motion in the phase
space q∗1 , p

∗
1, we introduce, in the case of periodic motions, a new angular

variable w1 ∈ S1. By definition, it increases 2π when q1 performs a complete
circulation or libration. From (2.1) we have

q∗1 = t+ α1 = F11(q1)
q∗1 + T = t+ α1 + T = F11(q1 +

∮
dq1),

(2.3)

where
∮

dq1 means a complete circulation or libration of q1. Then, in order to
have, instead of q∗1 , a uniformized variable, it is enough to define2

w1 = 2π
t+ α1

T
= 2π

q∗1
T
. (2.4)

Obviously, the period T is the same for all initial conditions on a periodic
orbit, but it is worth keeping in mind that it is not the same for all periodic
solutions of a given system.

The momentum conjugate to w1 may be easily obtained in terms of q1, p1.
Let S̃(q1, J1) be the Jacobian generating function of the canonical transfor-
mation φ̃ : (q1, p1) ⇒ (w1, J1). Hence,

w1 =
∂S̃

∂J1
p1 =

∂S̃

∂q1
. (2.5)

The following chain of calculations is simple and just uses elementary calculus:

dw1

dt
=

d
dt

(
∂S̃

∂J1

)
=

∂

∂q1

(
∂S̃

∂J1

)
q̇1 =

∂2S̃

∂J1∂q1
q̇1

and

2π =
∫ t+T

t

dw1

dt
dt =

∮
∂2S̃

∂J1∂q1
dq1 =

∂

∂J1

∮
∂S̃

∂q1
dq1 =

∂

∂J1

∮
p1 dq1.

Hence

J1 =
1
2π

∮
p1 dq1, (2.6)

except for an arbitrary integration constant (of the integration in J1). The
quantity J1 has the dimension of angular momentum or action and is an
invariant of the motion (see Sect. 1.2.2). It is equal to the variation of the
action when the solution performs a complete circulation or libration. Because
of this property, it was called modulus of periodicity of the action [93] or
modulus of variation of the action [11]. Since it gives the area delimited by the
trajectory in the phase plane, it was also called phase integral. The adoption of
these variables in the old Quantum Theory was first proposed by Sommerfeld.

2 We adopted
∮

dw1 = 2π. In many classical texts,
∮

dw1 = 1.
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32 2 Angle–Action Variables. Separable Systems

The conjugate variables w1, J1 were called angle and action variables,
a denomination that became standard after its adoption in Born’s Atom-
mechanik [12]. This denomination is the one currently used. The correspond-
ing canonical equations are

ẇ1 =
∂E

∂J1
=

2π
T
, J̇1 = − ∂E

∂w1
= 0. (2.7)

Finally, let us note that, when the periodic motion is a libration, the
quantity defined by (2.6) is singular when J1 = 0. Indeed, the integral gives the
area enclosed by the libration orbit and the singularity J1 = 0 is a consequence
of the fact that the direction of the motion in the phase space (q1, p1) cannot be
reversed. Examples and consequences of this singularity in Celestial Mechanics
will be extensively considered in Chap. 7

2.1.2 The Sign of the Action

We shall emphasize that the result of the operation defining the actions may
be either positive or negative. To avoid any ambiguity, it is enough to write
the definition of the action as

J1 =
1
2π

∫ t+T

t

p1q̇1 dt. (2.8)

For instance, in the simple pendulum solutions, J1 is positive if m > 0 or
negative if m < 0 (see Fig. B.1). We recall that w1 is, by definition, always
such that ẇ1 > 0.

Exercise 2.1.1 (Angle–Action Variables of the Harmonic Oscillator).

1. Show that the angle–action variables of the harmonic oscillator defined by
U = k

2q
2
1 (k > 0) are

w1 = arcsin

√
mk

2E
q1 =

√
k(t + α1), (2.9)

J1 =
E√
k
. (2.10)

α1 is a constant. Hint: H =
p2
1

2m
+
km

2
q2
1 .

2. Show that
p1 =

√
2mE cosw1. (2.11)

Page: 32 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



2.2 Direct Construction of Angle–Action Variables 33

2.2 Direct Construction of Angle–Action Variables

It is possible to rearrange the theory to directly obtain the angle–action vari-
ables. We may start from

J1 =
1
2π

∮
p1(q1, E) dq1, (2.12)

where p1(q1, E) is obtained from the inversion of the energy integral E =
E(q1, p1). If the given Hamiltonian is quadratic in p1, like in Sect. 1.9, this is
an Abelian integral whose solution may benefit from some usual transforma-
tions and, when necessary, the use of the theory of residues3. The other basic
equations are

S̃ =
∫

p1(q1, E) dq1 (2.13)

and

w1 =
∂S̃

∂J1
=
∫

∂

∂J1
p1(q1, E) dq1. (2.14)

This step depends on the algebraic inversion of the solution of (2.12) to obtain
E = E(J1). Another possibility is to take, instead of (2.14),

w1 =
∂S̃

∂E

(
dJ1

dE

)−1

=
(

dJ1

dE

)−1 ∫
∂

∂E
p1(q1, E) dq1. (2.15)

The replacement of dE/dJ1 by (dJ1/dE)−1, which may be directly obtained
from (2.12) without the need of any algebraic inversion, is always possible as
long as E(J1) is a monotonic function.

However, these tasks are often made very difficult or even impossible to
accomplish analytically because of the reasonably complex forms of p1(E, q1).

There are ways of overcoming this situation. One of them, used in this book
to obtain angle–action variables for the small oscillations of the pendulum
(Sect. B.4) and of the Andoyer Hamiltonian (Sect. C.9), is founded on the fact
that we are dealing with periodic solutions of the given Hamiltonian system,
which may be represented by Fourier series. There are many different ways of
calculating these series. In this book, we limit ourselves to the neighborhood
of the equilibrium solutions. The solutions of the given system are represented
by the series

q1 = a0 +
n∑

i=1

aiγ
i,

where ai are undetermined periodic functions of the angle w1 and γ is a free
parameter of the order of the amplitude of the oscillations. (γ = 0 corresponds
to the stable equilibrium solution q1 = a0.) It is important to keep in mind
that we need to construct the whole family of periodic solutions and that ẇ1

3 For some specific examples, see [93], Note 6.
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34 2 Angle–Action Variables. Separable Systems

is not the same for all solutions but is itself also a function of the parameter
γ. It is assumed to be a power series in γ with undetermined coefficients:

ẇ1 = ω0 +
n∑

i=1

oiγ
i.

p1(w1) is constructed using the equations of the motion or the energy integral.
The angle–action variables are w1 and

J1
def=

1
2π

∫ 2π

0

p1
dq1
dw1

dw1.

The order n of the solution may be chosen according to the practical needs
of the problem being solved and the means available for the calculation. Exist-
ing algebraic manipulators allow high orders to be considered. The practical
steps of this construction may be seen in the cases presented in Sects. B.4 and
C.9.

A different method is the numerical construction of the angle–action vari-
ables [50]. Let H(q1, p1) be the Hamiltonian of an autonomous system and

q1 = q1(q0, p0, t)
p1 = p1(q0, p0, t)

(2.16)

its solution for a given initial condition (q0, p0) and let T (q0, p0) be the period
of this solution.

The corresponding angle–action variables are

w1
def=

2π
T

t (2.17)

J1
def=

1
2π

∫ T

0

p1
dq1
dt

dt = − 1
2π

∫ T

0

q1
dp1

dt
dt

and the inverses of these definitions are

γ

Fig. 2.2. Orbits transverse to a curve γ
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q0 = q0(w1, J1)
p0 = p0(w1, J1).

(2.18)

In this technique, all functions are constructed numerically. It is noteworthy
that the last inversion may be more economically done when, beforehand, one
has constructed the derivatives ∂J1/∂q0 and ∂J1/∂p0.

A last practical point to be noted is that we need just to numerically
integrate from initial conditions lying on a given curve (γ) transverse to the
orbits (and passing through the center of the orbits if we intend to include in
the study also its immediate neighborhood) (Fig. 2.2). The extension of the
solutions of (2.17) to the other points on each orbit is immediate.

The algorithms provided by Mayer’s lemma (Sect. 1.10) allow the above
construction to be extended to obtain a canonical transformation including
other degrees of freedom. (see Sect. 2.4.4)

2.3 Actions in Multiperiodic Systems. Einstein’s Theory

Let us consider a conservative Hamiltonian system with N degrees of freedom.
It was shown in Sect. 1.2.2 that the action

J =
∮ N∑

i=1

pi dqi (2.19)

is an invariant of the motion (Helmholtz invariant).
If S(q, β) is a solution of the Hamilton–Jacobi equation, then pi = ∂S/∂qi,

N∑
i=1

pi dqi = dS(q, β)

is an exact differential and the integral (2.19) has the same value for all closed
curves that may be continuously deformed into one another. In particular,
for all curves that may be reduced to one point by means of a continuous
deformation, we have J = 0. When the solutions lie on a multiply connected
manifold, there are closed curves that cannot be reduced to one point by
continuous deformation (see [42]). This property was used by Einstein [26] to
prove that, when the Hamiltonian is integrable, it is possible to construct N
independent actions.

The multiperiodic solutions of a conservative integrable Hamiltonian cor-
responding to N constants βi form a surface homeomorphic to TN . An N -
dimensional torus is an N times connected surface and then we can find N
different closed curves Γk that cannot be pairwise deformed into one another
or reduced to one point and that may serve to uniquely define N independent
actions

Jk =
∮

Γk

N∑
i=1

pi dqi. (2.20)
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Γ                                       Γ1                                    2

Fig. 2.3. Curves on tori T2 (the tori are obtained by joining the opposite sides of
each square)

Γ                                       Γ

Γ                                      Γ'                                 '

Fig. 2.4. Left: Integration paths Γ and Γ ′. Right: Integration path obtained by
introducing a cut between them and inverting the direction of Γ ′

Let us consider the particular case N = 2. In T2, there are two types of
closed curves that cannot be reduced to one point or transformed into one an-
other by continuous deformation. They are shown in Fig. 2.3. All other closed
curves on the surface of the torus can, by means of continuous deformations,
be reduced to one point or transformed into one or more loops of the curves
Γ1 and Γ2. To the closed curves Γ1 and Γ2, there correspond two independent
actions J1 and J2.

In order that the definitions of Jk (k = 1, 2) have a meaning, the values of
J obtained from all closed curves that can be continuously transformed into
one another may be the same. Let Γ and Γ ′ be two oriented closed curves
that may be transformed into one another (Fig. 2.4, left). We may prove that
the resulting actions J and J ′ are such that J = J ′. To show this, we calculate
J − J ′. First, a cut joining Γ and Γ ′ is introduced. (The cut is shown in Fig.
2.4, right, as a pair of infinitesimally separated segments.) The resulting path
is a curve drawn on the torus without encircling it and which may be reduced
to one point; the integral over this path is then equal to zero. If we note that
the integrals over the cut are opposite and cancel each other and that the
integral over Γ ′ is done in a direction contrary to that used to define J ′, it
follows that J − J ′ = 0. ��

The actions constructed with Einstein’s theory may be completed by an-
gles defined by wk = ∂S̃/∂Jk where S̃(q, J) = S(q, β(J)) 4.

4 For a modern and rigorous definition of the angle–action variables of an integrable
system, see [4], Sect. 50.
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2.4 Separable Multiperiodic Systems

There are no general methods for the solution of the Hamilton–Jacobi equation
in the case of more than one degree of freedom. The use of general theories,
such as Cauchy characteristics, just recovers the given Hamiltonian system.
However, under certain special conditions, for some important problems such
as Keplerian motion (or the Rutherford–Bohr atom), a complete solution of
the Hamilton–Jacobi equation may be obtained. In these very particular cases,
one partial differential equation in N variables can be replaced by N sepa-
rate ordinary differential equations, one for each variable, and the complete
integration of the equation is achieved.

Generally speaking, a problem is said to be separable when the correspond-
ing Hamilton–Jacobi equation has a complete integral S(q, β) which may be
separated as

S(q, β) = S1(q1, β) + S2(q2, β) + · · · + SN (qN , β), (2.21)

where each term Sk = Sk(qk, β) is independent of the qj (j �= k).
In this case, the equations of the motion are given by

t+ α1 = q∗1 =
∂S

∂β1
=

N∑
k=1

∂Sk(qk, β)
∂β1

=
N∑

k=1

F1k(qk)

α� = q∗� =
∂S

∂β�
=

N∑
k=1

∂Sk(qk, β)
∂β�

=
N∑

k=1

F�k(qk),

(2.22)

(� = 2, 3, · · · , N), where we have introduced the functions

Fjk(qk) def=
∂Sk(qk, β)

∂βj
. (2.23)

The other equations, completing the transformation, are

pk =
∂S

∂qk
=

∂Sk(qk, β)
∂qk

(k = 1, · · · , N). (2.24)

Equations (2.24) show that the trajectories projected in the phase sub-
spaces qk, pk are mutually independent. The law of motion along the projected
trajectories may be obtained by solving the equations of the motion, (2.22),
with respect to the qk. As in Sect. 2.1, these projected periodic motions may
be either circulations or librations.

2.4.1 Uniformized Angles. Charlier’s Theory

The generalization of the angle variables of Sect. 2.1.1 to N degrees of freedom
may be done following the same principle as there. We define a partial cyclic

Page: 37 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



38 2 Angle–Action Variables. Separable Systems

variation in which the corresponding variable qi performs a complete circu-
lation or libration while the other variables qk(k �= i) are kept unaltered. We
then define a set of N angle variables wi ∈ S such that in a partial cyclic vari-
ation of qi, the corresponding wi increases 2π while the other angles wk(k �= i)
are not affected. Such angle variables are said to be uniformized.

In a partial cyclic variation of qi, the functions Fji change while all func-
tions Fjk(k �= i) remain unchanged. Let γji be the increment of the functions
Fji(qi, β) in a partial cyclic variation of qi:

γji = Fji(qi +
∮

dqi) − Fji(qi), (2.25)

where
∮

dqi denotes the partial cyclic variation of qi. It is important to keep
in mind that the resulting repetition numbers γji are not independent of the
initial values of the qi (as T is not independent of the initial q1 in the case of
one degree of freedom).

Proposition 2.4.1 (Charlier [20]). If det(γji) �= 0, the variables wi defined
by the equations

q∗j =
1
2π

N∑
�=1

γj�w� (2.26)

are uniformized angle variables.

Proof. Let us introduce the inverse matrix of (γji) and denote its elements by
γ−1

ji . If det(γji) �= 0, (2.26) may be inverted, giving

wk = 2π
N∑

j=1

γ−1
kj q

∗
j . (2.27)

In a partial cyclic variation of qi, the variation of wk is

δiwk = 2π
N∑

j=1

γ−1
kj δiq

∗
j = 2πδki (2.28)

(by construction, δiq
∗
j = γji). Therefore, in a partial cyclic variation of qi, wi

increases of 2π while the others wk (k �= i) remain unchanged. ��

2.4.2 The Actions

The next step is to find the action variables Jk canonically conjugate to the
angle variables wk. To do this, we introduce the Jacobian generating function
of the canonical transformation φ̃ : (q, p) ⇒ (w, J), namely S̃(q, J). We then
have

wk =
∂S̃

∂Jk
(2.29)
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and

dwk =
N∑

j=1

∂2S̃

∂qj∂Jk
dqj +

N∑
j=1

∂2S̃

∂Jj∂Jk
dJj . (2.30)

In a partial cyclic variation of qk, wk increases 2π. Besides, along the given
path, dqj = 0 for j �= k and dJi = 0. The above equation then reduces to

2π =
∮

∂2S̃

∂qk∂Jk
dqk.

A trivial calculation, similar to that of Sect. 2.1.1, gives

Jk =
1
2π

∮
pk dqk (2.31)

for every k ∈ {1, · · · , N}.

2.4.3 Algorithms for Construction of the Angles

In practice, we use some straightforward approaches to obtain the angles. The
separation of the Hamilton–Jacobi equation leads us to obtain pj = pj(qj , β)
and the solution

S(q, β) =
N∑

j=1

Sj(qj , β) =
N∑

j=1

∫
pj(qj , β) dqj . (2.32)

We may also solve (2.31) with pk = pk(qk, β) to obtain the actions Jk as
functions of the constants βi.

The Jacobian generating function S̃(q, J) may be obtained, now, from
S̃(q, J) = S(q, β(J)) and (2.29) gives the angles:

wk =
∂S̃

∂Jk
=

N∑
i=1

∂S

∂βi

∂βi

∂Jk
=

N∑
i=1

∂βi

∂Jk

N∑
j=1

∫
∂pj

∂βi
dqj . (2.33)

These equations are akin to the equations

wk =
∂

∂Jk

∫ N∑
j=1

p̂j(q, J) dqj , (2.34)

which would result if the canonical transformation of Mayer’s lemma (Sect.
1.10) were used in this case. The conditions under which that transformation
was established (involution of the functions Ji(q, p) and possibility of inversion
to obtain the functions p̂i(q, J)) are satisfied and it can be used. Equation
(2.34) transforms itself into (2.33) in the separable case in which every term
pj depends only on the corresponding qj .
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40 2 Angle–Action Variables. Separable Systems

2.4.4 Angle–Action Variables of H(q1, p1, p2, · · · , pN)

Let us consider the case of a Hamiltonian having the formH(q1, p1, p2, · · · , pN),
where the coordinates q2, · · · , qN are ignorable and the momenta p2, · · · , pN

are constants. Because of frequent applications, it is worth having the algo-
rithm of the previous section explicitly given in this case.

The Hamiltonian H is reducible to one degree of freedom and the angle–
action variables of the reduced Hamiltonian may be obtained with one of the
algorithms discussed in Sect. 2.2. The results of the previous section allow the
one-degree-of-freedom transformation (q1, p1) → (w1, J1), thus obtained, to be
embedded into a more general transformation (q, p) → (w, J) that considers
also the remaining degrees of freedom of the given Hamiltonian. To do this,
we consider as given the N functions

J1 = f1(q1, p) (2.35)
J� = p� ≡ f�(q, p) (� = 2, · · · , N).

These functions are pairwise in involution and may be solved for the momenta.
Because of the particular form of the functions f�, the inversion is trivial,
giving p = p̂(q1, J). The resulting generating function of the transformation
(2.35) is simply

N∑
j=1

∫
p̂j(q1, J) dqj =

∫
p̂1(q1, J) dq1 +

N∑
�=2

J�q�. (2.36)

We then have

w1 = Ξ1

w� = q� + Ξρ (� ≥ 2), (2.37)

where

Ξk =
∂

∂Jk

∫
p̂1(q1, J) dq1 (k ≥ 1). (2.38)

We note that (2.36) comes from the integration of an exact differential form
in dqj and that we may add to the generating function any arbitrary function
of J .

The one-degree-of-freedom canonical transformation (q1, p1) → (w1, J1) is
often given in the inverted form

q1 = Q1(w1, J)
p1 = P1(w1, J). (2.39)

In this case, (2.38) may be written

Ξk =
∫ [

∂p̂1(q1, J)
∂Jk

]
q1=Q1

∂Q1

∂w1
dw1. (2.40)
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It is worth emphasizing that the substitution q1 = Q1(w1, J) may be done
after the differentiation and that it is no longer possible to permute the dif-
ferentiation with respect to Jk and the integration.

If the differentials of p̂1(q1, J) and P1(w1, J) are compared, we obtain

∂P1

∂Jk
=

∂p̂1

∂Jk
+
∂p̂1

∂q1

∂Q1

∂Jk

∂P1

∂w1
=

∂p̂1

∂q1

∂Q1

∂w1
,

which, substituted in (2.40), give the equivalent result

Ξ� =
∫ w1

0

(
∂Q1

∂w1

∂P1

∂J�
− ∂Q1

∂J�

∂P1

∂w1

)
dw1, (2.41)

obtained by Henrard and Lemaitre [50]. We also have the trivial relation
Ξ1 = w1, since the integrand in this case is the one-dimensional Lagrange
bracket [w1, J1] which is equal to 1 because the given transformation (q1, p1) →
(w1, J1) is canonical.

In this section, we have considered a Hamiltonian independent of the co-
ordinates q� (ρ = 2, · · · , N). The algorithms derived from Mayer’s lemma are
valid in more general circumstances, but the results are not angle–action vari-
ables of the given Hamiltonian when H depends on the q�. If, for instance, a
general H may be decomposed into two parts: H = Ha(q1, p1) + Hb(q�, p�),
and the formula is used to extend the angle–action variables of Ha, the re-
sulting variables w, J are not angle–action variables of H . It is easy to see
that the calculations to obtain the w�, J� are the same for any Hb and, thus,
we cannot expect that it eliminates the angles from Hb. This comment is
somewhat obvious, but is useful to avoid pitfalls.

Exercise 2.4.1. By construction, the functions q1(w1, J) and p1(w1, J) are
2π-periodic in the angle variable w1. Under which conditions may we guaran-
tee that the functions Ξ� are also 2π-periodic in w1?

Exercise 2.4.2. Find the angle variable conjugate to J1 = 1
2 (q2

1 + p2
1). Check

the result with {w1, J1} = 1.

Exercise 2.4.3. Find a set of angle–action variables for the Hamiltonian

H =
1
2
(p2

1 + p2
2) +

1
2
λ2q2

1 ,

where λ = λ(p2). Check the results with {w1, Jj} = δ1j . Hint: See Exercise
2.1.1.
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2.4.5 Historical Postscript

The given definitions of angle–action variables follow those found in several
classical texts on Celestial Mechanics and on the old Quantum Theory5. An-
gles and actions appeared separately. The angles were first introduced by
Charlier [20] as a complement to what was then called Staude–Stäckel theory.
They came as a result of an application of Weierstrass’ theory of multiperi-
odic functions to the solutions of the Hamilton–Jacobi equation of a separable
system. The actions evolved from the quantity defined in Malpertuis’ least ac-
tion principle (see Sect. 1.2.1), quantized in the theories of Planck and Bohr,
to their definition for separable multiperiodic Hamiltonians given by Som-
merfeld [92] and Epstein [28]. The introduction of the angles as variables
canonically conjugate to the actions through a Jacobian generating function
S̃(q, J) is due to Kramers (cf. [10], Note 24). The definition of the actions
of an integrable Hamiltonian system without recourse to the separability hy-
pothesis is due to Einstein [26]. (An alternative construction was presented,
at the same time, by Burgers; cf. [12].) The introduction of invariant tori in
modern theory is due to Arnold [3]. It is worth mentioning that Einstein’s
construction of invariant tori is very different from that adopted in the mod-
ern theory of Hamiltonian systems. Einstein considered one example (central
motions in a plane) and used the fact that, for given βi, the phase space may
be seen as a vector field on a Riemann surface formed by two annular sheets
joined by their edges (which is homeomorphic to T2).

The angle–action variables �, g, h, L,G,H obtained in Sect. 2.7.2 as an
application of the Schwarzschild transformation to the angle–action variables
of Keplerian motion, were actually discovered by Delaunay a long time before
and fully employed in his (canonical) Théorie de la Lune [22].

It is worth emphasizing that the introduction of angle–action variables in
Delaunay’s work, as well as in the work of Sommerfeld and his contemporaries,
resulted from specific needs for the actual solution of problems in Astronomy
and Physics. The hiatus between the results of old Quantum Theory (before
1920) and modern theories (ca. 1960) has an explanation. The construction
of action variables was the central point of the Bohr–Sommerfeld quantum
condition. With the foundation of Quantum Mechanics, in the early 1920s,
the actions lost their position in center stage. KAM theory has again made
angle and action variables central concepts in Physics and Dynamics.

2.5 Simple Separable Systems

We only know some sets of sufficient conditions for separability. Some simple
cases are the dynamical systems whose Hamiltonians have special structures,
such as
5 Specifically, we mention (in chronological order) Charlier [20], Schwarzschild [84],

Einstein [26], Sommerfeld [93], Born [12], and Boll and Salomon [11].
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H = G[f1(q1, p1), · · · , fN (qN , pN )] (2.42)

and
H = f1 {q1, p1, f2 [q2, p2, f3 (· · · , fN (qN , pN ))]} . (2.43)

In the first case, the variables in the expression for the function H are sepa-
rated, i.e., only one pair of conjugate variables qi, pi enters into each function
fi. The Hamilton–Jacobi equation corresponding to this case is

G

[
f1

(
q1,

∂S

∂q1

)
, · · · , fN

(
qN ,

∂S

∂qN

)]
= E. (2.44)

After the introduction of S =
∑N

i=1 Si(qi), this equation is separated into N
equations

fi

(
qi,

dSi

dqi

)
= βi, (2.45)

the integration constants βi being such that

E = G(β1, · · · , βN ). (2.46)

In the second case, the variables appear in a hierarchical disposition and
the corresponding Hamilton–Jacobi equation,

f1

{
q1,

∂S

∂q1
, f2

[
q2,

∂S

∂q2
, f3

(
· · · , fN

(
qN ,

∂S

∂qN

))]}
= E, (2.47)

after the introduction of S =
∑N

i=1 Si(qi), is separated into N equations

fN

(
qN ,

dSN

d qN

)
= βN

fi

(
qi,

dSi

d qi
, βi+1

)
= βi (i = 1, · · · , N − 1),

(2.48)

with β1 = E. If we assume that ∂fi/∂pi �= 0 for all i = 1, · · · , N , these
equations can be solved to give

dSi

d qi
= Gi(qi, βi+1, βi) (i = 1, · · · , N − 1)

dSN

d qN
= GN (qN , βN ). (2.49)

2.5.1 Example: Central Motions

The classical example of a separable system of this kind is the motion of a
particle in a central force field. In spherical coordinates, the total energy of
the particle is
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H = T +mU(r) =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2) +mU(r) (2.50)

or, introducing the generalized momenta

pr =
∂T

∂ṙ
= mṙ

pθ =
∂T

∂θ̇
= mr2θ̇ (2.51)

pφ =
∂T

∂φ̇
= mr2 sin2 θ φ̇,

we obtain

H =
1

2m

[
p2

r +
1
r2

(
p2

θ +
p2

φ

sin2 θ

)]
+mU(r). (2.52)

The above Hamiltonian has the special structure of (2.43) with

f1 =
1

2m

(
p2

r +
f2

r2

)
+mU(r) = E

f2 = p2
θ +

f3

sin2 θ
= β2 (2.53)

f3 = p2
φ = β3,

and an application of (2.49) gives

pr =
dS1

dr
=

√
2mE − β2

r2
− 2m2U(r)

pθ =
dS2

dθ
=

√
β2 − β3

sin2 θ
(2.54)

pφ =
dS3

dφ
=

√
β3.

2.5.2 Angle–Action Variables of Central Motions

Let us calculate the angle–action variables of the central motions, starting
with Jφ. A short chain of elementary calculations gives

Jφ =
1
2π

∮ √
β3 dφ =

1
2π

∫ 2π

0

√
β3 dφ =

√
β3 = pφ. (2.55)

The integration of the next one is also elementary, but not as immediate:

Jθ =
1
2π

∮
pθ dθ =

1
2π

∮ √
β2 − β3

sin2 θ
dθ.
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2.5 Simple Separable Systems 45

It may, however, be avoided by noting that when the plane of the motion
is chosen as the fundamental reference plane, we have, in analogy with the
previous result,

Jψ = pψ = mr2ψ̇, (2.56)

where ψ denotes the longitude reckoned on the plane of motion. Taking into
account (2.53) and ψ̇2 = θ̇2 + sin2 θ φ̇2, we obtain

Jψ =
√
β2. (2.57)

Comparing, now, the kinetic energies in the two reference systems:

pr ṙ + pθθ̇ + pφφ̇ = prṙ + pψψ̇, (2.58)

it follows that

Jθ =
1
2π

∮
pθ dθ =

1
2π

∮
(pψ dψ − pφ dφ) = Jψ − Jφ (2.59)

and then6

Jθ =
√
β2 −

√
β3. (2.60)

The radial action

Jr =
1
2π

∮ √
2mE − 2m2U(r) − β2

r2
dr (2.61)

cannot be calculated now since the potential U(r) has not yet been given (see
next section).

To obtain the angle variables wk, we follow the procedure given in Sect.
2.4.1. We first write

S(q, β) =
∫
pr dr +

∫
pθ dθ +

∫
pφ dφ (2.62)

and then introduce

β1 = E = E(Jr, Jθ, Jφ)
β2 = (Jθ + Jφ)2 (2.63)
β3 = J2

φ,

where we have to keep in mind that the function E = E(Jr, Jθ, Jφ) may be
known only when the potential U(r), of the central force, is given. We then
have

6 Jψ ≥ Jφ > 0, β2 ≥ β3 > 0 and Jθ ≥ 0.
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46 2 Angle–Action Variables. Separable Systems

wr =
∂S̃

∂Jr
=

∂S

∂E

∂E

∂Jr

wθ =
∂S̃

∂Jθ
=

∂S

∂E

∂E

∂Jθ
+

∂S

∂β2
2(Jθ + Jφ) (2.64)

wφ =
∂S̃

∂Jφ
=

∂S

∂E

∂E

∂Jφ
+

∂S

∂β2
2(Jθ + Jφ) +

∂S

∂β3
2Jφ,

where

∂S

∂E
=

∫
∂pr

∂E
dr

∂S

∂β2
=

∫
∂pr

∂β2
dr +

∫
∂pθ

∂β2
dθ (2.65)

∂S

∂β3
=

∫
∂pθ

∂β3
dθ +

∫
∂pφ

∂β3
dφ.

As for the actions, some of these integral cannot be calculated, because U(r)
has not yet been given. Those that may be calculated are∫

∂pθ

∂β2
dθ =

∫
dθ
2pθ∫

∂pθ

∂β3
dθ = −

∫
dθ

2pθ sin2 θ
(2.66)

>>

   i

θ

     π/2−θO

N
ω     Π

ψ−ϖ

ψ        φ

Ω
φ−Ω)i

Pr
p       p

Fig. 2.5. Geometry of central motions (� = Ω + ω)
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2.6 Kepler Motion 47∫
∂pφ

∂β3
dφ =

∫
dφ
2pφ

.

The third of these integrals is trivial since pφ = Jφ = const. Omitting the
integration constant, ∫

∂pφ

∂β3
dφ =

φ

2Jφ
.

The two other integrals are also easy to calculate using an immediate relation
between the angles and momenta (θ̇/pθ = ψ̇/pψ = φ̇ sin2 θ/pφ) and recalling
that pφ = Jφ and pψ = Jψ = Jφ + Jθ are constants. We thus obtain∫

∂pθ

∂β2
dθ =

∫
dθ
2pθ

=
∫

dψ
2pψ

=
ψ

2(Jφ + Jθ)

and ∫
∂pθ

∂β3
dθ = −

∫
dθ

2pθ sin2 θ
= −

∫
dφ
2pφ

= −φ−Ω

2Jφ
.

In general, we have omitted integration constants, since this arbitrariness is
intrinsic to the definition of the angles wi. However, in the last equation, to
shift the x-axis to the ascending node (N) of the orbit (see Fig. 2.5), we have
introduced the integration constant Ω/2Jφ.

We may summarize the results by writing

wr =
∂E

∂Jr

∫
∂pr

∂E
dr (2.67)

wθ =
∂E

∂Jθ

∫
∂pr

∂E
dr + 2(Jθ + Jφ)

∫
∂pr

∂β2
dr + ψ

wφ =
∂E

∂Jφ

∫
∂pr

∂E
dr + 2(Jθ + Jφ)

∫
∂pr

∂β2
dr + ψ +Ω.

2.6 Kepler Motion

In the case of the heliocentric motion of a planet, we have

U(r) = −µ

r
,

where µ = G(M + m); G is the universal gravitation constant and M is the
mass of the Sun. Now, we can consider the several integrals left uncalculated
in the last section. The first one is the radial action Jr (see 2.61). We have

Jr =
1
2π

∮
1
r

√
2mEr2 + 2µm2r − β2 dr. (2.68)

The radicand has the real roots
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48 2 Angle–Action Variables. Separable Systems

r1,2 =
−µm
2E

(
1 ±

√
1 +

2Eβ2

µ2m3

)
. (2.69)

One may note that, if E > 0, the two roots are real, but one is negative. In
this case, the motion is only possible for r larger than the positive root and
has no upper bound. For −µ2m3/2β2 < E < 0, the two roots are real and
positive, say r1 < r2; the motion is periodic and is a libration between the
two roots. In this case, we may calculate the action Jr. The integral of (2.68)
may be done along a path in a two-sheet Riemann surface enclosing the two
branch points r1, r2. It has been thoroughly studied by Sommerfeld (see [93],
Note 6). The sophisticated procedure idealized by Sommerfeld has, since then,
been reproduced in many treatises on Mechanics. However, there is a simpler
way of doing it. We introduce the mean distance to the force center

a
def=

r1 + r2
2

= −µm

2E
, (2.70)

the eccentricity

e
def=

r2 − r1
2a

=

√
1 +

2Eβ2

µ2m3
(2.71)

and the angle u (eccentric anomaly) defined through

r = a(1 − e cosu). (2.72)

A lengthy but elementary calculation gives

pr =
√
−2mE

e sinu
1 − e cosu

and the given integral becomes

Jr =
1
2π

ae2
√
−2mE

∫ 2π

0

sin2 u du
1 − e cosu

. (2.73)

The integral to be solved is trivial. We may just introduce z = eiu and perform
the integration along the circle |z| = 1 in the complex plane, with recourse to
the theory of residues. We obtain7∫ 2π

0

sin2 u du
1 − e cosu

=
2π
e2

(
1 −

√
1 − e2

)
. (2.74)

After some elementary calculations, we obtain

Jr =
√
−2mE a

(
1 −

√
1 − e2

)
= µm

√
m

−2E
−
√
β2 (2.75)

7 This integral is also found in tables, e.g. [25], [41].
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2.6 Kepler Motion 49

and the inversion of this equation gives

E = − µ2m3

2(Jr + Jθ + Jφ)2
(2.76)

(since
√
β2 = Jψ = Jθ + Jφ).

We may now proceed with the remaining integrals. They are∫
∂pr

∂E
dr =

∫
m dr
pr

,∫
∂pr

∂β2
dr = −

∫
dr

2prr2
.

Introducing the eccentric anomaly u, these integrals are changed into elemen-
tary ones. The first one is∫

m dr
pr

=
a3/2

√
µ

∫
(1 − e cosu) du =

a3/2

√
µ

(u− e sinu) (2.77)

which introduces the mean anomaly

�
def= u− e sinu.

The second one is

−
∫

dr
2prr2

= − 1
2m

√
µa

∫
du

1 − e cosu
(2.78)

= − 1
m
√
µa(1 − e2)

arctan

√
1 + e

1 − e
tan

u

2

which introduces the true anomaly

v
def= 2 arctan

√
1 + e

1 − e
tan

u

2
. (2.79)

The two remaining integrals are, then,∫
∂pr

∂E
dr =

a3/2�√
µ∫

∂pr

∂β2
dr = − v

2m
√
µa(1 − e2)

.

Substituting these integrals into (2.67), and noting that

∂E

∂Jr
=

∂E

∂Jθ
=

∂E

∂Jφ
=

µ2m3

(Jr + Jθ + Jφ)3
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50 2 Angle–Action Variables. Separable Systems

Jr + Jθ + Jφ = m
√
µa (2.80)

and
Jθ + Jφ =

√
β2 = m

√
µa(1 − e2)

it follows that
wr = �

wθ = �− v + ψ = �+ ω

wφ = �− v + ψ +Ω = �+ ω +Ω,

(2.81)

where we have introduced the so-called argument of pericenter ω = ψ − v,
giving the distance of the pericenter (Π) to the ascending node (N) (see Fig.
2.5).

To complete the definition of the angle–action variables of the Kepler mo-
tion, we write8

Jφ = m
√
µa(1 − e2) cos i. (2.82)

2.7 Degeneracy

In the example studied in the previous section, the three frequencies

νk =
∂E

∂Jk
(2.83)

of the system are equal. We follow Schwarzschild and call this case degenerate.
In general, degeneracy is said to occur when there exists a commensurability
relation

(h | ν) =
N∑

k=1

hkνk = 0 h ∈ ZN (2.84)

amongst the frequencies of the system. Degeneracy may be essential or acci-
dental. A degeneracy is said to be essential when it does not depend on the
initial conditions. We shall stress that this does not mean that the frequencies
themselves are independent of the initial conditions. The Keplerian motion
is a good example: the frequencies νr, νθ, νφ (defined by the derivatives of E
with respect to Jr, Jθ, Jφ) depend on the initial conditions but they are always
equal, regardless of the initial conditions.

Otherwise, a degeneracy is called accidental when it only occurs for some
particular values of the initial conditions. One example is the motion of an as-
teroid in an orbit whose period is commensurable with Jupiter’s. In this case,
the commensurability relation ceases to exist if the asteroid orbit is moved
inward (or outward). The main consequence of an accidental degeneracy is

8 The inclination is introduced by the fact that pψ is the angular momentum of the
motion and pφ is the angular momentum of the motion projected on the reference
plane: pφ = pψ cos i.

Page: 50 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



2.7 Degeneracy 51

the appearance of small divisors, which impair the performance of pertur-
bation theories. Motions affected by accidental commensurabilities are called
resonant and are the subject of several of the next chapters.

A separable multiperiodic system may be such that multiple commensura-
bility relations exist. Degeneracy affects the degree of periodicity of the solu-
tions: the solutions of a degenerate separable multiperiodic system with N de-
grees of freedom and D independent commensurability relations are (N −D)-
periodic. When D = N − 1, the system is said to be completely degenerate.
For instance, the degeneracy of the Keplerian motion is complete, since we
may write two independent commensurability relations, viz. νθ − νr = 0 and
νφ − νθ = 0. As a consequence, the Keplerian motion is periodic. The cen-
tral motions of Sect. 2.5 are always degenerate, since νφ − νθ = 0. However,
they are not completely degenerate, except in some particular cases such as
Keplerian motion and the harmonic oscillator (Bertrand’s theorem). In these
cases, besides νφ − νθ = 0, we also have νθ − νr = 0. For other laws of force, a
second commensurability relation may only occur for given initial conditions
(accidental degeneracy or resonance).

In Kolmogorv’s theorem, the non-degeneracy of an integrable Hamiltonian
H(J) is defined as

det
(

∂2H

∂Ji∂Jj

)
�= 0, (2.85)

which guarantees the reversibility of the transformation from actions to fre-
quencies. This definition is more restrictive than Schwarzschild’s. Indeed, all
Hamiltonians linear in one of the actions are degenerate in Kolmogorov’s
sense9. For these Hamiltonians, one whole row of the Hessian determinant
consists of zeros. It happens that a common operation in the applications
of Hamiltonian Mechanics to Astronomy is the extension of the phase space,
because of time-dependent applied forces. In such an extension, a new general-
ized momentum (or action) is added to the given Hamiltonian. The extended
Hamiltonian will always be such that the Hessian determinant is zero. If the
condition given by (2.85) were a universal restriction, almost all dynamical
systems of Astronomy would be excluded from the possibility of application
of the theories discussed in this book. However, when frequency relocation is
not done, the most general non-degeneracy condition is Schwarzschild’s, that
is, (h | ν) �= 0 for all h ∈ Dk ⊂ ZN\0.

2.7.1 Schwarzschild Transformation

In the study of degenerate systems, it is often convenient to redefine angles
and actions to introduce angles whose frequencies are equal to zero. Let a
separable multiperiodic system of N degrees of freedom have L essential com-
mensurability relations

9 For a more accurate discussion, see Sect. 3.11.4.
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52 2 Angle–Action Variables. Separable Systems

N∑
k=1

h
(�)
k νk = 0 � = N − L+ 1, · · · , N (2.86)

and let us introduce the point transformation of the angles,

w1 = �1
w2 = �2
· · ·
wM = �M∑

k h
(M+1)
k wk = �M+1

· · ·∑
k h

(N)
k wk = �N ,

(2.87)

where, for simplicity, we have introduced M = N − L. Extending this trans-
formation to the momenta, we obtain

J1 = x1 +
∑

� h
(�)
1 x�

J2 = x2 +
∑

� h
(�)
2 x�

· · ·
JM = xM +

∑
� h

(�)
M x�

JM+1 =
∑

� h
(�)
M+1x�

· · ·
JN =

∑
� h

(�)
N x�,

(2.88)

where the xk are the momenta conjugate to the new angles �k.
The angles �µ (µ = 1, · · · ,M) are called non-degenerate10 while the re-

maining ones, �� (� = M + 1, · · · , N), are called degenerate.
With the new variables, the Hamiltonian depends only on the actions

conjugate to non-degenerate angles. Thus, the frequencies of the degenerate
angles are

ν̃� =
d��
dt

=
∂H̃(x)
∂x�

= 0 (� = M + 1, · · · , N). (2.89)

The equations ν̃� = 0 are the new commensurability relations.

2.7.2 Delaunay Variables

The usual angle–action variables of the Keplerian motion, the Delaunay vari-
ables, are the result of the application of the Schwarzschild transformation
10 The actions conjugate to non-degenerate angles are sometimes called proper. How-

ever, the word proper is used, in this book, to indicate the almost constant actions
resulting from an averaging process. Thus, to avoid ambiguities, the word proper
will not be used to mean non-degenerate.
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2.8 The Separable Cases of Liouville and Stäckel 53

to the angle–action variables obtained in Sect. 2.6. Indeed, in this case, the
commensurabilities are

νθ − νr = 0
νφ − νθ = 0.

(2.90)

Then
�1 = wr = �

�2 = wθ − wr = ω

�3 = wφ − wθ = Ω

(2.91)

and
Jr = x1 − x2

Jθ = x2 − x3

Jφ = x3

(2.92)

or
x1 = Jr + Jθ + Jφ = m

√
µa

x2 = Jθ + Jφ = m
√
µa(1 − e2)

x3 = Jφ = m
√
µa(1 − e2) cos i.

(2.93)

For m = 1, these variables are exactly the variables �, g, h, L,G,H of
Delaunay. Indeed, point dynamics problems often are such that the mass of
the moving particle cancels in the equations and does not affect the results.
In this case, energies, momenta and actions are considered per unit mass and
we write

x1 =
√
µa

x2 = x1

√
1 − e2

x3 = x2 cos i
(2.94)

and

E = − µ2

2x2
1

. (2.95)

2.8 The Separable Cases of Liouville and Stäckel

Autonomous systems whose energy consists of a kinetic energy quadratic in
the velocities and a potential energy independent of the velocities have been
thoroughly studied in the past. Sufficient conditions for their separability were
established by Liouville and Stäckel. These cases are generally presented as
sets of conditions for the potential and kinetic energies, separately. In what
follows, kinetic and potential energies are considered together to give a set of
conditions for the Hamiltonian; this choice is more appropriate for the scope
of this book.
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54 2 Angle–Action Variables. Separable Systems

Theorem 2.8.1 (Liouville). The dynamical systems whose Hamiltonian
may be written as

H =
f1(q1, p1) + · · · + fN (qN , pN )
g1(q1, p1) + · · · + gN (qN , pN )

(2.96)

are separable.

The Hamilton–Jacobi equation in this case is

N∑
i=1

fi

(
qi,

∂S

∂qi

)
= E

N∑
i=1

gi

(
qi,

∂S

∂qi

)
(2.97)

which, after the introduction of S =
∑

i Si(qi), may be separated into N
equations

fi

(
qi,

dSi

dqi

)
− Egi

(
qi,

dSi

dqi

)
= βi, (2.98)

the integration constants βi being such that
∑

i βi = 0. These equations may
be solved with respect to dSi/dqi when(

∂fi

∂pi

)
− E

(
∂gi

∂pi

)
�= 0 for all i.

��
Theorem 2.8.2 (Stäckel). The dynamical systems whose Hamiltonian may
be written as

H =
1
∆

N∑
i=1

Aifi(qi, pi), (2.99)

where ∆ is the determinant of a square matrix of rank N in which each column
depends only on the coordinate of the same subscript as the column:

∆ = det (aji(qi)) , (2.100)

and the Ai are the cofactors of the elements of any of the rows of the matrix,
are separable.

The Hamilton–Jacobi equation in this case is

N∑
i=1

Aifi

(
qi,

∂S

∂q1

)
= E∆. (2.101)

This partial differential equation has a complete integral of the form S =∑
i Si(qi). If we assume, for instance, that the Ai are the cofactors of the

elements of the first row, the theorems of Laplace allow us to write
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2.8 The Separable Cases of Liouville and Stäckel 55

N∑
i=1

a1iAi = ∆ (2.102)

N∑
i=1

a�iAi = 0 (� = 2, · · · , N).

Because of these relations, the Hamilton–Jacobi equation is not affected
when we introduce the sum

−
N∑

i=1

Ai

N∑
�=2

β�a�i(qi),

where the β� areN−1 arbitrary constants. Using also the Laplacian expression
for ∆, the Hamilton–Jacobi equation becomes

N∑
i=1

Ai

(
fi

(
qi,

∂S

∂qi

)
−

N∑
�=2

β�a�i(qi)

)
= E

N∑
i=1

a1i(qi)Ai, (2.103)

which may be separated into N equations

fi

(
qi,

dSi

dqi

)
=

N∑
�=2

β�a�i(qi) +Ea1i(qi). (2.104)

These equations may be solved with respect to dSi/dqi if

∂fi

∂pi
�= 0 for all i.

��

2.8.1 Example: Liouville Systems

The original form of Liouville’s separability conditions says that the kinetic
and potential energies may be written, respectively, as

T =
1
2
(A1 +A2 + · · · +AN )(B1q̇

2
1 +B2q̇

2
2 + · · · +BN q̇

2
N ) (2.105)

and
V =

V1 + V2 + · · · + VN

A1 +A2 + · · · +AN
, (2.106)

where Ai = Ai(qi), Bi = Bi(qi) and Vi = Vi(qi). (The function with subscript
i depends only on the generalized coordinate qi.) A simple calculation shows
that the energy H = T +V has the form given in the above theorem and that
the Hamilton–Jacobi equation is separated into the N equations:

1
2Bk

(
dSk

dqk

)2

= EAk + βk − Vk. (2.107)
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56 2 Angle–Action Variables. Separable Systems

2.8.2 Example: Stäckel Systems

The original form of Stäckel’s separability conditions says that the kinetic and
potential energies must be, respectively,

T =
1
2
∆

(
q̇2
1

A1
+

q̇2
2

A2
+ · · · + q̇2

N

AN

)
(2.108)

and

V =
1
∆

N∑
i=i

gi(qi)Ai, (2.109)

where ∆ and Ai are the same as in the given theorem. The resulting energy
H = T + V has the form as given in the theorem and the Hamilton–Jacobi
equation is separated into the N equations:

1
2

(
dSi

dqi

)2

=
N∑

�=2

β�a�i(qi) +Ea1i(qi) − gi(qi). (2.110)

2.8.3 Example: Central Motions

The example of the motion of a particle in a central force field, considered in
the previous section, is also an example of a separable Stäckel system. The
Hamiltonian of this system is (see 2.52):

H =
1

2m

[
p2

r +
1
r2

(
p2

θ +
p2

φ

sin2 θ

)]
+ V (r). (2.111)

In order to see that this system satisfies the conditions of the Stäckel
theorem, we introduce the matrix

(aij) =

⎛⎝−r−2 1 0
0 − sin−2 θ 1
1 0 0

⎞⎠ (2.112)

whose determinant is ∆ = 1 and the cofactors of the elements of the third
row are:

A1 = 1
A2 = r−2 (2.113)
A3 = (r sin θ)−2.

Comparison to (2.97) shows that the functions fi are
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f1 =
1

2m
p2

r + V (r)

f2 =
1

2m
p2

θ (2.114)

f3 =
1

2m
p2

φ

and the proof is completed.

2.9 Angle–Action Variables of a Quadratic Hamiltonian

Let us consider the case of a Hamiltonian given by a quadratic form in q, p,
with purely imaginary eigenvalues. Let it be

H2(z) =
2N∑

i,j=1

1
2
aijzizj , (2.115)

where z ≡ (q, p) ∈ R2N . In this case, the techniques discussed in the previous
sections to obtain angle–action variables cannot be used because the Hamil-
tonian does not have the form of the considered separable systems. However,
the resulting differential equations are homogeneous and linear with constant
coefficients and a few steps are enough to solve them. These equations are

dz
dt

= −J
∂H2

∂z
= −JSz, (2.116)

where J is the symplectic unit matrix of order 2N and S =
(
∂2H2

∂zi∂zj

)
= (aij)

is the Hessian matrix of H2. Let λi and Ãi be, respectively, the eigenvalues
and eigenvectors of −JS. If we assume that all eigenvalues are distinct, the
general solution of (2.116) is

z =
2N∑
i=1

ciÃi expλit, (2.117)

where ci are arbitrary constants. The characteristic polynomial P (λ) =
det(−JS − λI) is even and, if λ is an eigenvalue of −JS, then so is −λ. The
eigenvalues of −JS, which were assumed to be imaginary, may thus be written
as

λk = −iωk, λN+k = iωk (k = 1, 2, · · · , N). (2.118)

Let us now consider the matrix formed by the 2N eigenvectors, A ≡ (Ãi),
its transpose A′ and let us form the matrix R = A′JA. A simple calculation
shows that the elements of R are

�ij
def= Ã′

iJÃj .

We have to prove the following lemma (see [71] Sect. II.C):
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Lemma 2.9.1. If Ãi and Ãj are eigenvectors of −JS corresponding to two

eigenvalues λi, λj such that λi + λj �= 0, then Ã′
iJÃj = 0.

The proof of this statement is very simple. We just have to recall that
the eigenvalue λi and the eigenvector Ãi corresponding to it are related by
JSÃi = −λiÃi. It then follows that:

λiÃ
′
iJÃj = −Ã′

iSÃj and

λjÃ
′
iJÃj = Ã′

iSÃj ;

and so, (λi + λj)Ã′
iJÃj = 0, that is, Ã′

iJÃj = 0.

Corollary 2.9.1. Ã′
iJÃi = 0 for all i = 1, 2, · · · , 2N .

The following lemma is trivial.

Lemma 2.9.2. For all i, j = 1, 2, · · · , 2N , we have Ã′
iJÃj = −Ã′

jJÃi.

A consequence of these lemmas is that the only terms of R that may be
different from zero are those arising from eigenvectors corresponding to pairs
of eigenvalues ±iωk. We assume �ij �= 0 for the pairs i, j such that |j−i| = N .
Otherwise, �ij = 0:

R =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 · · · −�

N+1,1
0 · · ·

0 0 · · · 0 −�N+2,2 · · ·
· · · · · · · · · · · · · · · · · ·

�
N+1,1

0 · · · 0 0 · · ·
0 �N+2,2 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.119)

Therefore, it is enough to rescale the eigenvectors (dividing the Ãk and ÃN+k

by √
�

N+k,k
for all k) to obtain J instead of R. If D is the diagonal matrix

D
def= diag

(
1√

�N+1,1

, · · · , 1√
�2N,N

,
1√

�N+1,1

, · · · , 1√
�2N,N

)
,

the matrix M = AD is such that M′JM = J and therefore, the linear transfor-
mation ζ → z = ADζ is canonical (see 1.36).

If we compare the equation of this transformation to (2.117), we obtain
for the new canonical variables,

ζk = ck
√
�

N+k,k
eλkt ζN+k = cN+k

√
�

N+k,k
eλN+kt

(k = 1, 2, · · · , N). To complete the construction of the angle–action variables
(w, J) of H2, it is enough to introduce them through the Poincaré-like complex
canonical variables

√
iJk e−iwk and

√
iJk eiwk and compare them to ζ. We get
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wk = ωkt− αk (2.120)
Jk = −i|ck|2�N+k,k

(k = 1, 2, · · · , N),

where αk is the argument of ck. Because of the rules of conjugation, it is
enough to work with the equations giving the first N variables ζk. The other
N equations repeat the same results. It is worth stressing some points: (i) the
Jk are real since the �

N+k,k
are imaginary; (ii) the Jk may be either positive

or negative, according to the sign of −i�
N+k,k

; (iii) the N complex integration
constants ck are changed into αk, Jk; (iv) ck and cN+k are complex conjugates.

The direct comparison of equations (2.117) and (2.120) gives

z =
N∑

k=1

√
iJk

�
N+k,k

(Ãk e−iwk + ÃN+k eiwk). (2.121)

This equation is consistent with the fact that z is a real vector.
In terms of the angle–action variables, the new Hamiltonian follows

straightforwardly from the equations ∂H/∂Jk = ẇk = ωk, whose integra-
tion gives H =

∑
k ωkJk, or, as a function of ζ, H = −∑

k iωkζkζN+k. If we
compare this result to

H =
1
2
z′Sz =

1
2
ζ′DA′SADζ,

we see that

DA′SAD =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 · · · −iω1 0 · · ·
0 0 · · · 0 −iω2 · · ·
· · · · · · · · · · · · · · · · · ·
−iω1 0 · · · 0 0 · · ·

0 −iω2 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ .

This matrix is the Hessian of H calculated with respect to the new canonical
variables ζ. It could be easily obtained from the properties of the matrices D,
A and S, using the lemma given in Exercise 2.9.6, below.

Exercise 2.9.1. Show that the characteristic polynomial P (λ) = det(−JS −
λI) is even.

Exercise 2.9.2. Show that the eigenvectors Ãk and ÃN+k of −JS correspond-
ing to two complex conjugate eigenvalues are complex conjugate themselves.

Exercise 2.9.3. Show that, for |i− j| = N , the �ij are imaginary.

Exercise 2.9.4. Show that the transformation (w, J) → (
√

iJ e−iw,
√

iJ eiw)
is canonical.

Exercise 2.9.5. Show that ζk and ζN+k are not complex conjugates.

Exercise 2.9.6 (Lemma). Prove that for all i, j = 1, 2, · · · , 2N , we have

Ã′
iSÃj = −λj�ji.

Hint: Use the characteristic equation JSÃj = −λjÃj .

Page: 59 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



60 2 Angle–Action Variables. Separable Systems

2.9.1 Gyroscopic Systems

Let us consider the important particular case of the two-degrees-of-freedom
gyroscopic system whose Hamiltonian is

H =
p2

2
− [k, r,p] +W (r), (2.122)

where r ≡ (x, y),p ≡ (px, py), k is a unit vector perpendicular to the plane
of motion and the potential energy is W = 1

2 (ax2 + by2) + dxy (a, b, d are
constants). (See Sect. 1.7; for the sake of simplicity, we have chosen units such
that m = 1 and |Ω| = 1.) The Hessian matrix is

S =

⎛⎜⎜⎝
a d 0 −1
d b 1 0
0 1 1 0

−1 0 0 1

⎞⎟⎟⎠ . (2.123)

Then,

−JS =

⎛⎜⎜⎝
0 1 1 0

−1 0 0 1
−a −d 0 1
−d −b −1 0

⎞⎟⎟⎠ (2.124)

and the eigenvalues of −JS are

λj = ±1
2

√
−2(a+ b+ 2) ± 2

√
(a− b)2 + 8(a+ b) + 4d2. (2.125)

We assume that these eigenvalues are imaginary and write them as ±iω1 and
±iω2. This means that the parameters a, b, d of the given function W are such

that φ def= (a− b)2 + 8(a+ b) + 4d2 ≥ 0 and −(a+ b+ 2) +
√
φ < 0.

The eigenvectors of −JS are

Ãj =

⎛⎜⎜⎜⎝
−λ3

j − (b+ 1)λj + d

λ2
j + dλj − a+ 1

aλ2
j − b+ ab− d2

d(λ2
j + 1) − (a+ b)λj

⎞⎟⎟⎟⎠ . (2.126)

The quantities �k+2,k are immediate. We just point out the fact that, of
the five parameters a, b, d, ω1, ω2, only three are independent. We use (2.125)
to eliminate b, d and obtain

�31 =2iω1(ω2
1 − ω2

2)(1 − a+ aω2
1 − ω2

1ω
2
2)

�42 =2iω2(ω2
2 − ω2

1)(1 − a+ aω2
2 − ω2

1ω
2
2).

(2.127)

The new angle–action variables are

wk = ωkt− αk

Jk = −i|ck|2�N+k,k
(k = 1, 2, · · · , N),

(2.128)

where ck = |ck|eiαk are the integration constants.
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3

Classical Perturbation Theories

3.1 The Problem of Delaunay

Many general perturbation theories devised since the nineteenth century were
founded on the powerful tools of Hamiltonian mechanics. They aimed at solv-
ing the specific problem of finding the solutions of the canonical system of 2N
differential equations

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, (3.1)

(i = 1, 2, · · · , N), where the Hamiltonian H is the energy of the system and
may be written as

H = H0(q, p) + R(q, p, ε) (3.2)

with q ≡ (q1, · · · , qN ), p ≡ (p1, · · · , pN ). H0 is the Hamiltonian of a separable
system and R is a disturbing potential, analytical in some small parameter ε,
and vanishing for ε = 0.

Since H0 is the Hamiltonian of a separable system, we may choose, as new
variables, the angle–action variables (θi, Ji) associated with it1. The Hamil-
tonian system thus becomes

dθi

dt
=

∂H

∂Ji
,

dJi

dt
= −∂H

∂θi
, (3.3)

where, now,
H = H0(J) +R(θ, J, ε) (3.4)

is a smooth function in TN ×O × I (O is an open set of RN and I ⊂ R).

1 Generally, we use θi to denote the given angle variables (instead of wi) to preserve
the usual notations of perturbation theories. Also, to be consistent with the usual
coordinate–momentum order, we adopt an angle–action order in all functions of
these variables and in the equations of motion.
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The characteristic properties of the new system are:

(a.) H0 does not depend on the angle variables θi;
(b.) R is a 2π-periodic function of the angle variables;
(c.) H0 depends only on actions. When H0 has essential degeneracies,

we may suppose that the corresponding actions were eliminated
by means of a Schwarzschild transformation and that H0 depends
only on the non-degenerate actions Jµ (µ = 1, 2, · · · ,M) (M ≤
N).

Since introduced by Delaunay in his celebrated Théorie de la Lune [22], canon-
ical perturbation theories have been constructed in agreement with the fol-
lowing scheme:

φ

H(θ, J) −→ H∗(J∗)

⇓ ↓
⇓ ↓

θ = θ(t)
J = J(t)

φ−1

←−
θ∗ = ν∗t + const
J∗ = const

One seeks a canonical transformation φ : TN × RN ⇒ TN × RN such that
the transformed Hamiltonian does not depend on the new angle variables θ∗

and, thus, the canonical system that it defines may be trivially solved. After
integration of the resulting equations, the inverse transformation allows us to
change the solution thus obtained into the solution of the given problem.

In reality, the ideal scheme of Delaunay is extremely ambitious and
Poincaré pointed out difficulties that makes its application generally impos-
sible. We refer to his theorem on the non-convergence of the infinite series
defining the transformation φ and the non-existence, in general, of analytic
integrals of the equations of the motion, besides the energy integral. Poincaré’s
proof of this theorem is very illustrative in understanding how the set formed
by the initial conditions leading to divergence becomes more densely filled at
every step of the construction of H∗ (see Sect. 3.10).

The general behavior of the dynamical systems defined by (3.1) is still
largely unknown. The theorem of Kolmogorov guarantees the persistence, un-
der small perturbations, of many of the invariant surfaces of the undisturbed
integrable system, albeit in distorted form. However, many of them are de-
stroyed, forming sets whose measure increases with the magnitude of the per-
turbations. Theories founded on this theorem have progressed enormously in
the last half-century [19], but the behavior of systems with three or more
degrees of freedom is yet, largely, a research subject. Notwithstanding their
importance, the theories of Kolmogorov, Arnold and Moser (KAM) will not
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3.2 The Poincaré Theory 63

be treated in this book, except for some generalities concerning Kolmogorov’s
theorem. A full study of their consequences is beyond the scope of this book
and the reader should look for them in the existing literature on Hamiltonian
systems.

In spite of the difficulties pointed out by Poincaré and Kolmogorov, the
schemes devised by Delaunay and Bohlin are of great practical utility to study
the Hamiltonian systems resulting from the perturbation of an integrable sys-
tem. The approximate solutions that they allow us to construct are valid, for
limited time intervals, for initial conditions in relatively large sets. To avoid
the above-mentioned convergence problems, perturbation theories are con-
sidered, in this book, under a finite formal point of view; the previous ideal
scheme must be replaced by

φn

H(θ, J) −→ H∗(J∗) + Rn+1(θ∗, J∗, ε)

⇓ ↓
⇓ ↓

θ = θ(t) + O(εn+1)
J = J(t) + O(εn+1)

φ−1
n

←−
θ∗(n) = ν∗t+ const
J∗

(n) = const

Now, the sought canonical transformation φn is such that the transformed
Hamiltonian has a main part H∗(J∗) independent of angle variables, and a
remainder, Rn+1, divisible by εn+1. The main part of the Hamiltonian defines
an easily integrable dynamical system and the inverse transformation φ−1

n

transforms its solution into a formal solution of order n of the given problem.
It must, however, be emphasized that almost every theory presented in

this book may be used to construct convergent solutions if accompanied by
the frequency relocation algorithm presented in Sect. 3.11.1, provided that the
conditions of Kolmogorov’s theorem are satisfied. Frequency relocation is a
powerful theoretical tool to avoid the uprise of small divisors, but is not used
in the construction of formal low-order theories, because it is work-expensive
and does not make low-order solutions significantly more accurate.

3.2 The Poincaré Theory

Under this title, we consider the construction of formal solutions of the canon-
ical equations defined by the Hamiltonian

H = H0(J) +
∞∑

k=1

εkHk(θ, J), (3.5)

Page: 63 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



64 3 Classical Perturbation Theories

where we assume that H0 is non-degenerate (see Sect. 2.7). Then, H0 depends
on all actions Ji. This case will often be referred to just as the case M = N (see
assumption (c.) in the previous section). In previous drafts of this book, it was
called Lindstedt–Poincaré theory, since Poincaré, himself, called it Lindstedt
theory ([80], Chap. IX). However, Lindstedt’s name is being increasingly used
to designate the direct calculation of the series (as done by Lindstedt [64]).
The name now adopted avoids confusion with Lindstedt’s direct method, and
is justified by the fact that the use of Bohlin’s ideas [8] to treat the general
Delaunay problem is due to Poincaré.

Let us consider the canonical transformation φn : (θ, J) ⇒ (θ∗, J∗) defined
by the equations

θ∗i =
∂S

∂J∗
i

Ji =
∂S

∂θi
, (3.6)

where the generating function S = S(θ, J∗, ε) is assumed to be a polynomial
of degree n in ε and such that the transformation defined by (3.6) reduces to
the identical transformation when ε = 0. Hence

S
def=

N∑
i=1

θiJ
∗
i +

n∑
k=1

εkSk(θ, J∗) (3.7)

and

θ∗i = θi +
n∑

k=1

εk ∂Sk

∂J∗
i

, Ji = J∗
i +

n∑
k=1

εk ∂Sk

∂θi
. (3.8)

Since the time-dependent cases may be properly considered in the ex-
tended phase space, we may assume that Sk(θ, J∗), as well as Hk(θ, J) and
the transformed Hamiltonian H∗(J∗), does not depend on the independent
variable t; the transformation defined by (3.6) is therefore conservative and
we may write the conservation equation

H(θ, J) = H∗(J∗) + Rn+1(θ∗, J∗, ε), (3.9)

or, taking the transformation into consideration,

H

(
θ,
∂S

∂θ

)
= H∗(J∗) + Rn+1

(
∂S

∂J∗ , J
∗, ε

)
. (3.10)

The equations of Poincaré theory are obtained by substituting into (3.10)
limited expansions of the functions H , H∗ and S:

H∗ def= H∗
0 + εH∗

1 + ε2H∗
2 + · · · + εnH∗

n

S = S0 + εS1 + ε2S2 + · · · + εnSn;
(3.11)

the expansion of the given Hamiltonian H is more complicated because every
Hk(θ, ∂S/∂θ) includes terms of several orders arising from S. The introduction
of these terms is necessary since the identification in ε must be done using the
variables θ, J∗. Those functions must be expanded beforehand, as described
below.
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3.2.1 Expansion of H0

Following Taylor’s theorem, we have

H0 = H0

(
∂S

∂θ

)
ε=0

+
∞∑

k=1

εk

k!

[
dk

dεk
H0

(
∂S

∂θ

)]
ε=0

, (3.12)

which may be written as

H0 = G0,0 + εG0,1 + ε2G0,2 + · · · . (3.13)

The components G0,k are given by

G0,0 = H0(J∗) (3.14)

and

G0,k =
N∑

i=1

ν∗i
∂Sk

∂θi
+ Ek, (3.15)

where

ν∗i
def=

∂H0(J∗)
∂J∗

i

. (3.16)

The quantity J∗ is introduced in these equations through

Φ(Ji)ε=0 = Φ

(
J∗

i +
n∑

k=1

εk ∂Sk

∂θi

)
ε=0

= Φ(J∗
i )

for all considered functions Φ(Ji). The Ek are known functions of S1, S2, · · · , Sk−1.
In particular, we have

E1 = 0,

E2 =
1
2

N∑
i=1

N∑
j=1

ν∗ij
∂S1

∂θi

∂S1

∂θj
, (3.17)

E3 =
N∑

i=1

N∑
j=1

ν∗ij
∂S1

∂θi

∂S2

∂θj
+

1
6

N∑
i=1

N∑
j=1

N∑
�=1

ν∗ij�

∂S1

∂θi

∂S1

∂θj

∂S1

∂θ�
, (3.18)

E4 =
N∑

i=1

N∑
j=1

ν∗ij
∂S1

∂θi

∂S3

∂θj
+

1
2

N∑
i=1

N∑
j=1

ν∗ij
∂S2

∂θi

∂S2

∂θj

+
1
2

N∑
i=1

N∑
j=1

N∑
�=1

ν∗ij�

∂S1

∂θi

∂S1

∂θj

∂S2

∂θ�

+
1
24

N∑
i=1

N∑
j=1

N∑
�=1

N∑
m=1

ν∗ij�m

∂S1

∂θi

∂S1

∂θj

∂S1

∂θ�

∂S1

∂θm
, (3.19)
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where we have introduced

ν∗ij
def=

∂2H0(J∗)
∂J∗

i ∂J
∗
j

,

ν∗ij�
def=

∂3H0(J∗)
∂J∗

i ∂J
∗
j ∂J

∗
�

,

ν∗ij�m
def=

∂4H0(J∗)
∂J∗

i ∂J
∗
j ∂J

∗
� ∂J

∗
m

.

For the sake of future utilization of the above expansions, it is worth noting
that, for k ≥ 3, they may be written as

Ek =
N∑

i=1

N∑
j=1

ν∗ij
∂S1

∂θi

∂Sk−1

∂θj
+ E ′

k, (3.20)

where E ′
k represents a function of the derivatives of S1, S2, · · · , Sk−2 (indepen-

dent of Sk−1 and Sk).

3.2.2 Expansion of Hk

In the same way as before, we write

Hk(θi,
∂S

∂θi
) = Gk,k + εGk,k+1 + ε2Gk,k+2 + · · · , (3.21)

where the components Gk,k+k′ are to be calculated by means of Taylor ex-
pansions. Following the same steps as for H0, we obtain

Gk,k = Hk(θ, J∗),

Gk,k+1 =
N∑

i=1

∂Hk(θ, J∗)
∂J∗

i

∂S1

∂θi
, (3.22)

Gk,k+2 =
N∑

i=1

∂Hk(θ, J∗)
∂J∗

i

∂S2

∂θi
+

1
2

N∑
i=1

N∑
j=1

∂2Hk(θ, J∗)
∂J∗

i ∂J
∗
j

∂S1

∂θi

∂S1

∂θj
,

Gk,k+3 =
N∑

i=1

∂Hk(θ, J∗)
∂J∗

i

∂S3

∂θi
+

N∑
i=1

N∑
j=1

∂2Hk(θ, J∗)
∂J∗

i ∂J
∗
j

∂S1

∂θi

∂S2

∂θj

+
1
6

N∑
i=1

N∑
j=1

N∑
�=1

∂2Hk(θ, J∗)
∂J∗

i ∂J
∗
j ∂J

∗
�

∂S1

∂θi

∂S1

∂θj

∂S1

∂θ�
.
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3.2.3 Perturbation Equations

The next step is to introduce the above expansions in (3.10) and to identify
all terms multiplying the same power of ε. For this task, we are helped by the
following notation: the subscripts in Sk, Ek, Hk, H

∗
k and the second subscript

in the Gk′,k indicate the power of ε multiplying it in the complete equation,
Thus, it follows that

H0 = H∗
0 ,

N∑
i=1

ν∗i
∂S1

∂θi
+H1 = H∗

1 ,

N∑
i=1

ν∗i
∂S2

∂θi
+G1,2 +H2 + E2 = H∗

2 , (3.23)

· · · · · ·
N∑

i=1

ν∗i
∂Sk

∂θi
+G1,k + · · · +Gk−1,k +Hk + Ek = H∗

k ,

· · · · · ·
N∑

i=1

ν∗i
∂Sn

∂θi
+G1,n + · · · +Gn−1,n +Hn + En = H∗

n;

the remaining terms have at least εn+1 as a factor and are supposed to be
grouped in the remainder Rn+1. In these equations, all functions are calculated
at the point (θ, J∗) 2.

The first of equations (3.23) gives H∗
0 and means that H∗

0 is the same
function as H0.

The other equations are first-order linear partial differential equations in
the unknown functions Sk(θ). The generic or homological equation is

N∑
i=1

ν∗i
∂Sk

∂θi
= H∗

k(J∗) − Ψk(θ, J∗), (3.24)

2 There is one question about notation that, although trivial, must be recalled to
avoid possible misinterpretations. It is usual, in many chapters of Physics and
Astronomy texts, to represent a given magnitude by the same notation no matter
which independent variables are used in its definition. For instance, the energy
of a perfect gas in a vessel is U no matter whether it is given as a function of the
temperature or of the pressure. This was also done in previous chapters of this
book. In the formulation of canonical perturbation theories, however, we must
adopt strict rules: Every function symbol φ represents only one function: φ(x)
and φ(y) indicate the same function φ calculated at the points x and y of its
domain of definition.
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68 3 Classical Perturbation Theories

where
Ψk = G1,k + · · · +Gk−1,k +Hk + Ek.

We have to note that the functions Gk′,k are defined in such a way that
they become known when the functions S1, · · · , Sk−k′ are known. The func-
tions Hk are given functions (see 3.5) and the functions Ek are also known
when S1, · · · , Sk−1 are known. Thus, the function Ψk is a completely known
function provided that the equations corresponding to S1, · · · , Sk−1 were al-
ready solved; thus, the whole set of equations may be sequentially solved.

The homological equation is indeterminate since H∗
k is also unknown. The

adopted choices for its solution are discussed in the next section. When it is
solved for all k ≤ n, we obtain the functions Sk(θ, J∗) and H∗

k (J∗) and may
perform the elementary operations leading to

θ∗(n) = ν∗(n)t+ const
J∗

(n) = const, (3.25)

which, through the inverse transformation φ−1
n , lead to the formal solution of

order n of the given Hamiltonian system.

3.3 Averaging Rule

To overcome the indetermination of the homological equation (3.24), we have
to fix one of the two unknown functions. The main idea of canonical pertur-
bation theories is that the canonical transformation performs an averaging
and the resulting Hamiltonian has no periodic components. We thus adopt
the following rule:

H∗
k (J∗) = < Ψk(θ, J∗) > =

(
1
2π

)N ∫ 2π

0

· · ·
∫ 2π

0

Ψkdθ1 · · · dθN . (3.26)

Therefore, the homological partial differential equation becomes

N∑
i=1

ν∗i
∂Sk

∂θi
= < Ψk(θ, J∗) > − Ψk(θ, J∗) (3.27)

in which all terms on the right-hand side are periodic.
The averaging operation defined by (3.26) is such that all terms inde-

pendent of θi (i = 1, 2, · · · , N) are included in H∗
k and are absent from the

right-hand side of (3.27). It is worth noting that, if non-periodic terms of this
kind were allowed to remain in the right-hand side of the partial differential
equation, they would appear in the solution Sk multiplied by a linear combi-
nation of the θi. As a consequence, the transformation φn would also include
such linear combination as a factor and new and old variables would depart
of each other with the speed of this combination.
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3.3 Averaging Rule 69

It is of the utmost importance to emphasize that this averaging operation
is not just the scissors averaging found in some applications, which consists
of imposing

H∗
k =

(
1
2π

)N ∫ 2π

0

· · ·
∫ 2π

0

Hkdθ1 · · · dθN . (3.28)

Scissors averaging and the one defined by (3.26) coincide only for k = 1. The
so-called averaging principle defined by (3.28) has been critically considered
by Arnold ( [4], Chap. 10, Sect. 52B). I quote his comments: “this principle is
neither a theorem, an axiom, nor a definition; it is [· · ·] a vaguely formulated
and, rigorously speaking, wrong proposition”.

At variance with incomplete scissors techniques, the averaging defined by
(3.26) is not based on any principle and aims only at giving a rule for the choice
of the undetermined functions H∗

k . Such freedom of choice is allowed by the
fact that the given recurrent partial differential equations are indeterminate
and that it is necessary to fix one of the two unknown functions Sk and H∗

k

to proceed.

3.3.1 Small Divisors. Non-Resonance Condition

The above functions Ψk generally have the form of truncated Fourier series:

Ψk =
∑

h∈Dk⊂Z
N

Akh(J∗) exp (ih | θ). (3.29)

The averaging operation leads to

H∗
k = Ak0(J∗)

and
N∑

i=1

ν∗i
∂Sk

∂θi
= −

∑
h∈Dk\{0}

Akh exp (ih | θ). (3.30)

The last equation admits the particular solution

Sk(θ, J∗) =
∑

h∈Dk\{0}

iAkh exp (ih | θ)
h | ν∗ , (3.31)

which introduces the divisors (h | ν∗). This is a common feature in perturba-
tion theory and is the way in which small divisors may appear. Therefore, it
is only valid if the following non-resonance condition is assumed.

Non-Resonance Condition. The condition for the non-existence of small
divisors is

(h | ν∗) �= 0

for all vectors h ∈ Dk (k ≤ n).
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3.4 Degenerate Systems. The von Zeipel–Brouwer
Theory

Poincaré theory cannot be used when, for ε = 0, the Hamiltonian is degenerate
(in Schwarzschild’s sense), that is, when H0 does not depend on all actions Ji.
Poincaré tried to overcome the difficulty represented, in this case, by the many
identically null divisors of (3.31) through the sum of some arbitrary functions
of θ to the solutions Sk. These arbitrary functions were later determined
in such a way that the difficulties were transferred to higher orders and, in
some cases, eventually eliminated. An improved theory, due to von Zeipel [96],
was successfully used by Dirk Brouwer [14] to construct his solution of the
equations of motion of an artificial Earth satellite.

Let us consider a Hamiltonian system with M non-degenerate and N −M
degenerate degrees of freedom. A Schwarzschild transformation allows it to
be written as H0 = H0(Jµ), where Jµ (µ = 1, · · · ,M < N) are the actions
corresponding to the non-degenerate degrees of freedom. The actions J� (� =
M + 1, · · · , N) corresponding to degenerate degrees of freedom are absent
from H0; as a consequence, the undisturbed frequencies ν� = ∂H0/∂J� are
identically equal to zero. The algorithm proposed by von Zeipel to deal with
this case introduces an essential modification in the scheme of the Delaunay
problem of Sect. 3.1. Now, a canonical transformation is sought such that
the transformed Hamiltonian has a main part H∗(θ∗�, J∗) independent of the
non-degenerate angles θ∗1 , · · · , θ∗M , but depending on the degenerate angles
θ∗M+1, · · · , θ∗N . That is,

φn

H(θ, J) −→ H∗(θ∗�, J
∗) + Rn+1(θ∗, J∗, ε).

The main part of the new Hamiltonian defines a canonical system that may be
reduced to M integrals, M quadratures, and a reduced Hamiltonian system
with N−M degrees of freedom. Indeed, the system defined by H∗ is separated
into two parts corresponding to the subscripts µ = 1, · · · ,M and � = M +
1, · · · , N , respectively:

θ̇∗µ =
∂H∗

∂J∗
µ

J̇∗
µ = 0

θ̇∗� =
∂H∗

∂J∗
�

J̇∗
� = − ∂H∗

∂θ∗�
. (3.32)

The corresponding results are the M integrals

J∗
µ = const,

the canonical system of N−M degrees of freedom given by (3.32), and M sep-
arated equations for θ̇∗µ that may be solved by quadrature after the integration
of the reduced canonical system.
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3.4 Degenerate Systems. The von Zeipel–Brouwer Theory 71

Thus, the von Zeipel–Brouwer theory is not a theory seeking the formal
solution of the given problem; it only leads to a reduction of the number of its
degrees of freedom. In some favorable cases, the successive application of the
theory may reduce the number of degrees of freedom to zero or to one, and thus
the problem is solved (see Sect. 3.9). As an example, we mention Brouwer’s
original application of the theory [14]. There, a first operation reduced the
number of degrees of freedom by only one unit, but a second one led to the
complete solution of the problem.

The reduction of the number of degrees of freedom and the simplification of
the equations due to the averaging often allows an easier analysis of problems
for which a complete solution is not possible.

To obtain the implicit equations of the von Zeipel–Brouwer theory, we
consider the canonical transformation φn : (θ, J) ⇒ (θ∗, J∗) defined by the
equations

Ji =
∂S

∂θi
θ∗i =

∂S

∂J∗
i

(3.33)

with the generating function

S =
N∑

i=1

θiJ
∗
i +

n∑
k=1

εkSk(θ, J∗). (3.34)

Since the transformation is conservative, we have

H(θ, J) = H∗(θ∗�, J
∗) + Rn+1(θ∗, J∗, ε), (3.35)

or, taking (3.33) into account,

H

(
θ,
∂S

∂θ

)
= H∗

(
∂S

∂J∗
�

, J∗
)

+ Rn+1

(
∂S

∂J∗ , J
∗, ε

)
. (3.36)

To identify both sides of (3.36), we use the same expansions of H and
S already used in the Poincaré theory. However, we have to consider that
H∗ now depends also on some angles and, thus, assumptions similar to those
made to obtain (3.23) are not sufficient. Indeed, when we assume

H∗(θ∗�, J
∗) =

n∑
k=0

εkH∗
k (θ∗�, J

∗) (3.37)

we must take into account that every H∗
k (k �= 0) depends also on ε through

θ∗� = ∂S/∂J∗
� and, thus, we also need to consider the Taylor expansion of

these terms.
It is worthwhile mentioning that the first accounts of this theory, following

its successful application by Brouwer, missed the fact that, in more general
situations, the functions H∗

k depend also on θ� and thus contribute to the
formation of the terms in the von Zeipel–Brouwer perturbation equations of
orders higher than k.

Page: 71 job: b macro:svmono.cls date/time:20-Oct-2006/9:21
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3.4.1 Expansion of H∗

Let us write

H∗
(
∂S

∂J∗
�

, J∗
)

def= H∗
0 (J∗) +

n∑
k=1

εk[H∗
k (θ�, J

∗) +G′∗
k (θ�, J

∗)], (3.38)

where the functions G′∗
k are easily obtained by writing down the Taylor ex-

pansion explicitly:
G′∗

1 = 0,

G′∗
2 =

N∑
�=M+1

∂H∗
1

∂θ�

∂S1

∂J∗
�

, (3.39)

G′∗
3 =

N∑
�=M+1

⎛⎝∂H∗
1

∂θ�

∂S2

∂J∗
�

+
1
2

N∑
�′=M+1

∂2H∗
1

∂θ�∂θ�′

∂S1

∂J∗
�

∂S1

∂J∗
�′

+
∂H∗

2

∂θ�

∂S1

∂J∗
�

⎞⎠ .

3.4.2 von Zeipel–Brouwer Perturbation Equations

When the functions in (3.36) are replaced by their expansions, and all terms
that multiply the same power of ε are identified, we obtain

H0 = H∗
0 ,

M∑
µ=1

ν∗µ
∂S1

∂θµ
+H1 = H∗

1 ,

M∑
µ=1

ν∗µ
∂S2

∂θµ
+G1,2 +H2 + E2 = H∗

2 +G′∗
2 , (3.40)

M∑
µ=1

ν∗µ
∂S3

∂θµ
+G1,3 +G2,3 +H3 + E3 = H∗

3 +G′∗
3 ,

· · · · · ·
M∑

µ=1

ν∗µ
∂Sk

∂θµ
+G1,k + · · · +Gk−1,k +Hk + Ek = H∗

k +G′∗
k .

· · · · · ·
M∑

µ=1

ν∗µ
∂Sn

∂θµ
+G1,n + · · · +Gn−1,n +Hn + En = H∗

n +G′∗
n .

The remaining terms have at least εn+1 as a factor and are supposed to be
grouped in the remainder Rn+1.
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The functions Ek and Gk,k′ are the same as those defined in Sect. 3.2.
However, since H0 now depends only on J1, J2, · · · , JM , the summations in
(3.17)–(3.22) are restricted to the subscripts 1, 2, · · · ,M . In particular, (3.20)
becomes

Ek =
M∑

µ=1

M∑
µ′=1

ν∗µµ′

∂S1

∂θµ

∂Sk−1

∂θµ′

+ E ′
k (k ≥ 3), (3.41)

where E ′
k is a function of the derivatives of the functions S1, · · · , Sk−2 with

respect to θ1, · · · , θM (note that E ′
2 = 0).

As before, the first von Zeipel–Brouwer perturbation equation gives H∗
0

and means that H∗
0 is the same function as H0, where we have just replaced

the Jµ by J∗
µ. The other equations are the homological first-order linear partial

differential equations giving Sk(θ):

M∑
µ=1

ν∗µ
∂Sk

∂θµ
= −Ψk(θ, J∗) +H∗

k (θ�, J
∗), (3.42)

where the functions Ψk are, now,

Ψk = G1,k + · · · +Gk−1,k +Hk + Ek −G′∗
k , (3.43)

and are completely known if the functions S1, · · · , Sk−1 and H∗
1 , · · · , H∗

k−1 are
known.

3.4.3 The von Zeipel Averaging Rule

To overcome the indetermination of (3.40), we have to fix H∗
k . The averaging

rule used in Poincaré theory needs a modification to be applied in this case.
Indeed, if we intend to avoid identically null divisors in (3.31), we need to
exclude from the summation all degenerate terms, that is, terms for which
the first M components of h ∈ ZN are zero. In such terms, (h | ν∗) ≡ 0
because ν∗� ≡ 0 for � = M + 1, · · · , N . The von Zeipel averaging rule is, then,

H∗
k (θ�, J

∗) = < Ψk(θ, J∗) >, (3.44)

where < · · · > stands, now, for the average over the angles θµ (µ = 1, · · · ,M)
only, on [0, 2π]. The angles θ� (� = M + 1, · · · , N) are not included in the
averaging. Therefore, we have

H∗
k (θ�, J

∗) = Ψk(S)(J∗) + Ψk(LP )(θ�, J
∗) (3.45)

and
M∑

µ=1

ν∗µ
∂Sk

∂θµ
= −Ψk(SP )(θ, J∗), (3.46)

where the subscripts S, LP, SP stand for different parts in the Fourier expan-
sion of Ψk, as follows:
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74 3 Classical Perturbation Theories

• Ψk(S)(J∗) – Secular part of Ψk. This is the average of Ψk over all angles.
• Ψk(LP )(θ�, J

∗) – Long-period part of Ψk. This is the collection of all periodic
terms of Ψk independent of the fast angles θµ (µ = 1, · · · ,M).

• Ψk(SP )(θ, J∗) – Short-period part of Ψk. This is the collection of all periodic
terms of Ψk dependent on at least one of the fast angles θµ (µ = 1, · · · ,M).

The solution of the equations follows closely the same steps as the solution
of the equations of the Poincaré theory.

3.5 Small Divisors and Resonance

When Ψk(SP ) is replaced by its Fourier expansion, (3.46) becomes

M∑
µ=1

ν∗µ
∂Sk

∂θµ
= −

∑
h∈Dk(SP)

Akh(J∗) cos (h | θ), (3.47)

where Dk(SP ) ⊂ ZN is a set of vectors of N integer components with at least
one of the M first components different from zero. Equation (3.47) has the
particular solution

Sk(θ, J∗) = −
∑

h∈Dk(SP)

Akh(J∗) sin(h | θ)
(h | ν∗) . (3.48)

This solution introduces the divisors (h | ν∗). This is a common feature in
perturbation theory and is the way in which small divisors, which impair the
convergence of the solution, appear in the process of its construction. When
some of the (h | ν∗) become nearly zero, the von Zeipel–Brouwer theory fails
and, in such cases, different procedures must be adopted. (See Chap. 4.)

The non-resonance condition in this case is:

Non-Resonance Condition. The condition for the non-existence of small
divisors is

(h | ν∗) �= 0

for all vectors h ∈ Dk(SP ) (k ≤ n).

3.5.1 Elimination of the Non-Critical Short-Period Angles

When the non-resonance condition is not satisfied, the terms with angle com-
binations leading to small divisors (critical terms) can no longer be eliminated
using the theories of the previous sections. To study these cases, let us assume
that there are L (L ≤ M) independent commensurability relations

(h� | ν∗) = 0 (3.49)
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nearly satisfied, simultaneously, by the frequencies ν∗µ.
The von Zeipel–Brouwer theory may still be used to eliminate the non-

critical periodic terms, but the scheme and the averaging operation need to
be modified. Instead of those previously adopted, we adopt, in this case, the
scheme

φn

H(θ, J) −→ H∗(h�|θ∗, θ∗�, J∗) + Rn+1(θ∗, J∗, ε)

and the averaging rule

H∗
k (h�|θ, θ�, J

∗) = < Ψk(θ, J∗) >, (3.50)

where < · · · > stands for the average over the angles θµ (µ = 1, · · · ,M) on
[0, 2π] but, now, only when they are not in a critical combination. In this case,
the canonical transformation is sought in such a way that the transformed
Hamiltonian has a main part H∗(h�|θ∗, θ∗�, J∗), independent only of the angles
conjugate to the actions J∗

1 , · · · , J∗
M which do not reduce themselves to one of

the critical combinations (h� | θ∗).
This problem may be treated in a simple way if we perform, beforehand,

a Lagrange point transformation. We introduce a set of N new angles defined
by:

φ� = (h� | θ) � = 1, · · · , L
φ�′ = (h�′ | θ) �′ = L+ 1, · · · ,M
φ� = θ� � = M + 1, · · · , N,

(3.51)

where (h� | θ) are the given L critical angles and (h�′ | θ) are M −L arbitrary
linear combinations of the θµ independent of the critical angles (h�, h�′ ∈ Z

M).
The change in the actions may be easily obtained by means of the Jacobian
canonical condition in the particular form:

N∑
i=1

Ji δθi =
N∑

i=1

Ii δφi

or

N∑
i=1

Ji δθi =
L∑

�=1

I�(h� | δθ∗) +
M∑

�′=L+1

I�′(h�′ | δθ∗) +
N∑

�=M+1

I� δθ∗�.

The identification of both sides of this equation leads to the linear relations
defining the actions Ji as functions of the Ii:

Jµ =
M∑

λ=1

Iλhλ,µ µ = 1, · · · ,M (3.52)

J� = I�,
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where hλ,µ are the M integer components of hλ (for an example, see [48]).
There are N −M + L degenerate degrees of freedom. L of them are ac-

cidentally degenerate and N −M are essentially degenerate (see Sect. 2.7).
The von Zeipel–Brouwer theory is applied in exactly the same way as before
except that, now, the degenerate angles are both the φ� (resonant) and the
φ�. Now, the canonical transformation (φ, I) → (φ∗, I∗) eliminates the non-
critical short-period angles φ�′ , but the critical and degenerate angles remain
in the transformed Hamiltonian H∗. Every function Ψk(φ, I∗) appearing in
the homological equations is now decomposed as

Ψ∗
k (φ, I∗) = Ψk(S)(I∗) + Ψk(LP )(φ�, I

∗) + Ψk(K)(φ�, φ�, I
∗) + Ψk(SP )(φ, I∗),

where the subscripts S, LP, K, SP stand for different parts in the Fourier
expansion of Ψk, as follows:

• Ψk(S)(I∗) – Secular part. This is the average of Ψk over all angles.
• Ψk(LP )(φ�, I

∗) – Long-period part of Ψk. This is the collection of all periodic
terms of Ψk independent of the angles φµ (µ = 1, · · · ,M).

• Ψk(K)(φ�, φ�, I
∗) – Critical part. This is the collection of all periodic terms

of Ψk independent of the fast angles φ�′ (�′ = L+1, · · · ,M), but depending
on at least one of the critical angles φ� (� = 1, · · · , L).

• Ψk(SP )(φ, I∗) – Short-period part of Ψk. This is the collection of all terms of
Ψk dependent on at least one of the fast angles φ�′ (�′ = L+ 1, · · · ,M).

With the new averaging rule and the above decomposition of the functions,
the homological equation of von Zeipel–Brouwer theory gives

H∗
k(φ�, φ�, I

∗) = Ψk(S)(I∗) + Ψk(LP )(φ�, I
∗) + Ψk(K)(φ�, φ�, I

∗) (3.53)

and
M∑

µ=1

ν∗µ
∂Sk

∂φµ
= −Ψk(SP )(φ, I∗). (3.54)

The transformed Hamiltonian is

H∗ = H∗
0(I

∗
µ) +

n∑
k=1

εkH∗
k(φ∗

� , φ
∗
�, I

∗),

independent of the angles φ∗
�′ . Therefore, the I∗�′ are constants and H∗ is the

Hamiltonian of a canonical system with N −M + L degrees of freedom. In
the new variables, the commensurability relations given by (3.49) are simply
written

ν∗� = 0 (� = 1, 2, · · · , L),

where, now,

ν∗� =
∂H∗

0

∂I∗�
.

This reduced form will be adopted in the study of resonant problems in
the forthcoming chapters.
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3.6 An Example – Part I

The application of the von Zeipel–Brouwer theory follows straightforwardly
from the principles and formulas stated in the preceding sections. An example
will serve to summarize the ideas and to make clear the directions for other
applications.

We consider the Hamiltonian

H = − 1
2J2

1

+ ν2J2 + εR(θ, J) (3.55)

with

R(θ, J) =
+∞∑

s=−∞

(
As cos s(θ1 − θ2) +Bs cos [sθ1 − (s + 1)θ2]

)
+

+∞∑
s=−∞

Ms

√
−J3 cos [sθ1 − (s + 1)θ2 + θ3]

+
+∞∑

s=−∞
Ls

√
−J3 cos [s(θ1 − θ2) + θ3],

where A0 = a(J1) + b(J1)J3, and As(s �= 0), Bs,Ms, Ls are known functions
of J1 with As = A−s. ε is a small parameter.

This example is suggested by a classical problem of the Mechanics of the
Solar System. H is the Hamiltonian of the elliptic restricted problem of three
bodies and governs the motion of an asteroid under the joint action of the Sun
and Jupiter, when Jupiter is assumed to move on a fixed Keplerian ellipse
around the Sun. θ1 is the mean longitude of the asteroid, θ2 is the mean
longitude of Jupiter, ν2 = θ̇2, and θ3 is the longitude of the asteroid perihelion.
In terms of the Keplerian elements of the asteroid, the actions are

J1 = L =
√
a,

J3 = G− L = J1(
√

1 − e2 − 1)
(3.56)

(see Sect. 1.1; note that J3 < 0). J2 is the momentum conjugate to the mean
longitude of Jupiter. The main axis of the reference system was taken directed
to Jupiter’s perihelion.

In the function R, we have kept the main parts and some less important
ones necessary to make this example more illustrative. The units are the
length of the Sun–Jupiter distance, the universal gravitational constant, and
the solar mass. ε is the mass of Jupiter3.

3 Some authors use signs opposite to those in (3.55). However, in this book, H is
the energy itself and not its opposite. In the same way, R is not the so-called
disturbing function, but the potential of the disturbing force.
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To apply the results of the preceding sections, let us first note that, in this
example, we have

H0 = − 1
2J2

1

+ ν2J2 (3.57)

N = 3
M = 2
H1 = R(θ, J)
Hk = 0 (k ≥ 2);

(3.58)

also
ν∗1 =

∂H0(J∗)
∂J∗

1

=
1
J∗3

1

, ν∗2 =
∂H0(J∗)
∂J∗

2

= ν2

and
ν∗11 =

−3
J∗4

1

, ν∗12 = ν∗22 = 0.

(because of the adopted units, ν2 ≈ 1).
We then obtain the two first von Zeipel–Brouwer perturbation equations,

which are

H∗
0 = H0(J∗) = − 1

2J∗2
1

+ ν2J
∗
2

and
2∑

µ=1

ν∗µ
∂S1

∂θµ
= H∗

1 −R(θ, J∗).

(It is not superfluous to emphasize again that all functions in the Poincaré and
in the von Zeipel–Brouwer perturbation equations have θ, J∗ as independent
variables.) The function R(θ, J∗) may be decomposed into its secular, long-
period and short-period parts:

R(S)(J∗) = A∗
0 = a(J∗

1 ) + b(J∗
1 )J∗

3 (3.59)

R(LP )(θ�, J
∗) = L∗

0

√
−J∗

3 cos θ3 (3.60)

and

R(SP )(θ, J∗) =
∑

s∈Z\{0}

(
A∗

s cos s(θ1 − θ2) + L∗
s

√
−J∗

3 cos [s(θ1 − θ2) + θ3]
)

+
∑
s∈Z

B∗
s cos [sθ1 − (s + 1)θ2] (3.61)

+
∑
s∈Z

M∗
s

√
−J∗

3 cos [sθ1 − (s + 1)θ2 + θ3],

where A∗
s(s�=0) = As(J∗

1 ), B∗
s = Bs(J∗

1 ),M∗
s = Ms(J∗

1 ) and L∗
s = Ls(J∗

1 ). The

application of the averaging operation defined by (3.44) gives

H∗
1 (θ3, J∗) = R(S)(J∗) +R(LP )(θ3, J∗) (3.62)
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and
2∑

µ=1

ν∗µ
∂S1

∂θµ
= −R(SP )(θ, J∗) (3.63)

or, after integration,

S1(θ, J∗) = −
∑

s∈Z\{0}

(
A∗

s sin s(θ1 − θ2)
s(ν∗1 − ν∗2 )

+
L∗

s

√−J∗
3 sin [s(θ1 − θ2) + θ3]
s(ν∗1 − ν∗2 )

)

−
∑
s∈Z

B∗
s sin [sθ1 − (s+ 1)θ2]
sν∗1 − (s + 1)ν∗2

(3.64)

−
∑
s∈Z

M∗
s

√−J∗
3 sin [sθ1 − (s + 1)θ2 + θ3]
sν∗1 − (s + 1)ν∗2

when we assume that ν∗1 − ν∗2 �= 0 and sν∗1 − (s + 1)ν∗2 �= 0 for all s ∈ Z.
The next von Zeipel–Brouwer perturbation equation is

2∑
µ=1

ν∗µ
∂S2

∂θµ
= −Ψ2(θ, J∗) +H∗

2 (θ3, J∗), (3.65)

where

Ψ2 =
3∑

i=1

∂R

∂J∗
i

∂S1

∂θi
+

1
2
ν∗11

(
∂S1

∂θi

)2

− ∂H∗
1

∂θ3

∂S1

∂J∗
3

. (3.66)

See (3.43), (3.17), (3.22) and (3.39).
Ψ2 may be decomposed into its secular, long-period and short-period parts.

The first summation in (3.66) gives

3∑
i=1

(
∂R(S)

∂J∗
i

∂S1

∂θi
+
∂R(LP )

∂J∗
i

∂S1

∂θi
+
∂R(SP )

∂J∗
i

∂S1

∂θi

)
.

Because of the elementary properties of the product of trigonometric func-
tions, the terms

3∑
i=1

(
∂R(S)

∂J∗
i

∂S1

∂θi
+
∂R(LP )

∂J∗
i

∂S1

∂θi

)
are short-periodic, while the summation

3∑
i=1

∂R(SP )

∂J∗
i

∂S1

∂θi

will contribute secular, long-period and short-period terms. The secular terms
arise from the terms of the same (or opposite) arguments in the derivatives
of R(SP ) and S1:
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80 3 Classical Perturbation Theories[
3∑

i=1

∂R(SP )

∂J∗
i

∂S1

∂θi

]
(S)

= −1
2

∑
s∈Z\{0}

1
ν∗1 − ν∗2

(
2
∂A∗

s

∂J∗
1

A∗
s − ∂L∗

s

∂J∗
1

L∗
sJ

∗
3 − L∗2

s

2s

)

−1
2

∑
s∈Z

(
∂B∗

s

∂J∗
1

sB∗
s − ∂M∗

s

∂J∗
1

sM∗
s J

∗
3 − M∗2

s

2

)
sν∗1 − (s + 1)ν∗2

; (3.67)

in the same way, the long-period terms arise from the products of terms whose
arguments differ by a multiple of θ3:[

3∑
i=1

∂R(SP )

∂J∗
i

∂S1

∂θi

]
(LP )

= −1
2

∑
s∈Z\{0}

2
√−J∗

3

ν∗1 − ν∗2

∂(A∗
sL

∗
s)

∂J∗
1

cos θ3

−1
2

∑
s∈Z\{0}

s
√−J∗

3

sν∗1 − (s + 1)ν∗2

∂(B∗
sM

∗
s )

∂J∗
1

cos θ3

+
1
2

∑
s∈Z\{0}

∂L∗
s

∂J∗
1

L∗
−sJ

∗
3

(ν1 − ν2)
cos 2θ3 (3.68)

We may calculate, in a similar way, the secular and long-period parts of
the second term of (3.66) obtaining[

1
2
ν∗11

(
∂S1

∂θi

)2
]

(S)

= − 3
4J∗4

1

∑
s∈Z\{0}

(
2A∗2

s − L∗2
s J∗

3

(ν∗1 − ν∗2 )2
+
s2(B∗2

s −M∗2
s J∗

3 )
[sν∗1 − (s + 1)ν∗2 ]2

)
(3.69)

and[
1
2
ν∗11

(
∂S1

∂θi

)2
]

(LP )

= − 3
4J∗4

1

∑
s∈Z\{0}

(
2A∗

sL
∗
s

√−J∗
3

(ν∗1 − ν∗2 )2
cos θ3 (3.70)

+
s2B∗

sM
∗
s

√−J∗
3

[sν∗1 − (s+ 1)ν∗2 ]2
cos θ3 −

L∗
sL

∗
−sJ

∗
3

(ν∗1 − ν∗2 )2
cos 2θ3

)
.

Finally, we would have to consider the contributions from
∂H∗

1

∂θ3

∂S1

∂J∗
3

, but

all terms arising from this part of Ψ2 are short-periodic. The short-period
contributions of this term and of the other two considered before will not be
written. They are of no importance in the context of a low-order example. In
practical problems, they need to be calculated and the use of one algebraic
manipulator is appropriate.

The application of the von Zeipel averaging rule to (3.65) gives the second-
order term of the averaged (or secular) Hamiltonian:

H∗
2 (θ∗3 , J

∗) = Ψ2(S)(J∗) + Ψ2(LP )(θ∗3 , J
∗) (3.71)
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and the equation
2∑

µ=1

ν∗µ
∂S2

∂θµ
= −Ψ2(SP )(θ, J∗), (3.72)

the integration of which gives the second-order term of the generating function
that formally reduces the Hamiltonian given by (3.55) to one degree of freedom
with a remainder of order O(ε3).

3.7 Linear Secular Theory

By secular theory, we mean the study of the solutions of the system defined
by the Hamiltonian obtained after the elimination of all fast angles.

Let us consider the averaged Hamiltonian resulting from the previous ex-
ample

H∗ =
1

2J∗2
1

+ ν2J
∗
2 + ε

(
R(S)(J∗) +R(LP )(θ∗3 , J

∗)
)

+ ε2
(
Ψ2(S)(J∗) + Ψ2(LP )(θ∗3 , J

∗)
)
.

By construction, it is independent of θ∗1 and θ∗2 . The corresponding system of
equations is

dθ∗1
dt

=
∂H∗

∂J∗
1

dJ∗
1

dt
= − ∂H∗

∂θ∗1
= 0

dθ∗2
dt

=
∂H∗

∂J∗
2

= ν2
dJ∗

2

dt
= − ∂H∗

∂θ∗2
= 0

dθ∗3
dt

=
∂H∗

∂J∗
3

dJ∗
3

dt
= − ∂H∗

∂θ∗3
.

(3.73)

From these equations, it follows that J∗
1 and J∗

2 are constants. In the original
asteroidal problem, J∗

1 constant means a∗ constant, or, in a first approxi-
mation, that the “average” semi-major axis of the asteroid’s orbit, < a >,
is constant. This fact is sometimes mentioned by saying that there are no
long-period terms in the asteroid’s semi-major axis. However, this is true only
in this approximation. Indeed, instantaneous and proper values are related
through (3.33)–(3.34), that is,

θi = θ∗i + εφ
(a)
i (θ, J∗, ε)

Ji = J∗
i + εφ

(b)
i (θ, J∗, ε) (i = 1, 2).

(3.74)

The iterations to solve this system introduce, at second and higher orders,
products of terms whose arguments are different but have equal short-period
parts. The results are long-period terms (that is, terms whose argument is a
multiple of θ3).
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The third pair of equations is independent of the other two and may be sep-
arated from the system. It is more easily studied if we introduce the Poincaré
variables

x =
√−2J∗

3 cos θ∗3 y =
√−2J∗

3 sin θ∗3 . (3.75)

If we discard the terms independent of J∗
3 and θ∗3 , H

∗ becomes

Ĥ∗(θ∗3 , J
∗) = C0J

∗
3 + C1

√
−J∗

3 cos θ∗3 + C2J
∗
3 cos 2θ∗3 (3.76)

=
−C0

2
(x2 + y2) +

C1√
2
x− C2

2
(x2 − y2),

where

C0 = εb +
ε2

2

∑
s∈Z\{0}

(
L∗

s

ν∗1 − ν∗2

∂L∗
s

∂J∗
1

+
sM∗

s

sν∗1 − (s + 1)ν∗2

∂M∗
s

∂J∗
1

)

+
3ε2

4J∗4
1

∑
s∈Z\{0}

(
L∗2

s

(ν∗1 − ν∗2 )2
+

s2M∗2
s

[sν∗1 − (s + 1)ν∗2 ]2

)
, (3.77)

C1 = εL∗
0 −ε2

2

∑
s∈Z\{0}

(
2

ν∗1 − ν∗2

∂(A∗
sL

∗
s)

∂J∗
1

+
s

sν∗1 − (s+ 1)ν∗2

∂(B∗
sM

∗
s )

∂J∗
1

)

− 3ε2

4J∗4
1

∑
s∈Z\{0}

(
2A∗

sL
∗
s

(ν∗1 − ν∗2 )2
+

s2B∗
sM

∗
s

[sν∗1 − (s + 1)ν∗2 ]2

)
, (3.78)

C2 =
ε2

2

∑
s∈Z\{0}

(
∂L∗

s

∂J∗
1

L∗
−s

(ν∗1 − ν∗2 )
+

3
2J∗4

1

L∗
sL

∗
−s

(ν∗1 − ν∗2 )2

)
. (3.79)

When high-order terms are neglected, the corresponding differential equa-
tions are linear. Secular theories of this kind are called linear secular theories.
Actually, linear equations arise generally, at this order, when all functions
in the given problem are assumed to be analytical in x, y, and J3 is a small
quantity. This is the case in many Celestial Mechanics problems when θ3, J3

have the definitions given by (3.56) (note that, in the asteroidal problem, J3

is of the order of the square of the orbital eccentricity).
The resulting linear system of differential equations is

dx
dt

=
∂H∗

∂y
= −(C0 − C2)y (3.80)

dy
dt

= −∂H∗

∂x
= (C0 + C2)x − C1√

2
(3.81)

(to fix the signs in these equations, one may note that the Poisson bracket of
the new variables defined by (3.75) is {x, y} = {θ∗3 , J∗

3 } = 1). These equations
have the general solution
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  Π

E

E
0

Fig. 3.1. Secular motion in the (x, y) plane

x = E

√
1 − C2

C0
cos (ωt+ Π0) +E0

y = E

√
1 +

C2

C0
sin(ωt +Π0),

(3.82)

where

ω =
√
C2

0 − C2
2 E0 =

C1√
2(C0 + C2)

and E,Π0 are integration constants. This solution is shown in Fig. 3.1. It has
two components:

• One free component with amplitudes E
√

1 − C2

C0
in x and E

√
1 + C2

C0
in

y, and polar angle Π = ωt + Π0; in terms of the given example, E is the
so-called proper eccentricity and Π the longitude of the proper perihelion.
Note that, since C2/C0 = O(ε), the proper frequency is ω � |C0|.

• One forced component of amplitude E0 (the forced eccentricity) directed
along the x-axis. Since C0 and C1 are both of order O(ε), this quantity is
not controlled by the size of ε. (E0 � L∗

0/
√

2b.)

If the integration constant E is smaller than E0 and if the quantity C2/C0

can be neglected, the trajectory in the (x, y) plane does not include the origin
and the angle θ∗3 oscillates about 0. (The asteroid perihelion oscillates about
the direction of Jupiter’s perihelion.) In the other case, when E > E0, the
angle θ3 circulates with period 2π/ω.

3.8 An Example – Part II

In the example of the application of the von Zeipel–Brouwer theory considered
in Sect. 3.6, the divisors ν∗1−ν∗2 and sν∗1−(s+1)ν∗2 appeared. Let us reconsider
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84 3 Classical Perturbation Theories

that example, but assuming, now, that the values of the actions J1 and J2 are
such that

ν1 − 2ν2 � 0. (3.83)

In this case, the non-resonance condition is no longer satisfied by the previous
solution and the von Zeipel–Brouwer theory may not be used to eliminate the
short-period terms dependent on the critical combination θ1−2θ2. Therefore,
instead of the decomposition of R(θ, J∗), given by (3.62), we must consider in
R(SP ) only the non-critical terms. That is:

R(SP )(θ, J∗) =
∑

s∈Z\{0}

(
A∗

s cos s(θ1 − θ2) + L∗
s

√
−J∗

3 cos [s(θ1 − θ2) + θ3]
)

+
∑

s∈Z\{1}
B∗

s cos [sθ1 − (s + 1)θ2] (3.84)

+
∑

s∈Z\{1}
M∗

s

√
−J∗

3 cos [sθ1 − (s+ 1)θ2 + θ3]

and the critical terms are included separately in

R(K)(θ, J∗) = B∗
1 cos (θ1 − 2θ2) +M∗

1

√
−J∗

3 cos (θ1 − 2θ2 + θ3). (3.85)

The averaging rule fixed by (3.50) leads to

H∗
1 (θ1−2θ2, θ3, J∗) = R(S)(J∗)+R(LP )(θ3, J∗)+R(K)(θ1−2θ2, θ3, J∗) (3.86)

and
2∑

µ=1

ν∗µ
∂S1

∂θµ
= −R(SP )(θ, J∗) (3.87)

or, after integration,

S1(θ, J∗) = −
∑

s∈Z\{0}

(
A∗

s sin s(θ1 − θ2)
s(ν∗1 − ν∗2 )

+
L∗

s

√−J∗
3 sin [s(θ1 − θ2) + θ3]
s(ν∗1 − ν∗2 )

)

−
∑

s∈Z\{1}

B∗
s sin [sθ1 − (s+ 1)θ2]
sν∗1 − (s + 1)ν∗2

−
∑

s∈Z\{1}

M∗
s

√−J∗
3 sin [sθ1 − (s + 1)θ2 + θ3]
sν∗1 − (s + 1)ν∗2

.

We still assume that ν∗1 − ν∗2 �= 0 and sν∗1 − (s + 1)ν∗2 �= 0 for all s �= 1. It is
worth noting that we have not yet done the Lagrangian point transformation
indicated in Sect. 3.5.1 because, in this case, we have only one resonance and
it is easy to trace the critical terms and to separate them from the others.

The next von Zeipel–Brouwer perturbation equation is
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2∑
µ=1

ν∗µ
∂S2

∂θµ
= −Ψ2(θ, J∗) +H∗

2 (θ1 − 2θ2, θ2, J∗), (3.88)

where Ψ2 is similar to the one found in Sect. 3.5.1 and must be decomposed
following the rules given there. The secular and long-period parts of Ψ2 are
the same as given in (3.67)–(3.70), except for those terms having (ν∗1 − 2ν∗2 )
as divisor, which will no longer appear because the corresponding argument
was excluded from R(SP ) and S1. The critical terms in Ψ2 arise from two
combinations of short-period angles:

(a.) s′(θ1 − θ2) and sθ1 − (s + 1)θ2 when s′ = 1 − s;
(b.) s′(θ1 − θ2) and sθ1 − (s+ 1)θ2 when s′ = s− 1.

They have arguments θ1−2θ2−θ3, θ1−2θ2, θ1−2θ2 +θ3, and θ1−2θ2 +2θ3.
Thus, we have

Ψ2(K) = (K∗
1 +K∗

2J
∗
3 ) cos (θ1 − 2θ2) +K∗

3

√
−J∗

3 cos (θ1 − 2θ2 − θ3)

+K∗
4

√
−J∗

3 cos (θ1 − 2θ2 + θ3) +K∗
5J

∗
3 cos (θ1 − 2θ2 + 2θ3),

where the coefficientsK∗
i are functions of J∗

1 . The calculation of the coefficients
is elementary, but cumbersome. The short periodic part is, also, lengthy. They
will not be given here.

The application of the von Zeipel averaging rule now gives

H∗
2 = Ψ2(S)(J∗) + Ψ2(LP )(θ3, J∗) + Ψ2(K)(θ1 − 2θ2, θ3, J∗) (3.89)

and
2∑

µ=1

ν∗µ
∂S2

∂θµ
= −Ψ2(SP )(θ, J∗). (3.90)

When the calculations are done, we obtain a new canonical system whose
Hamiltonian is

H∗(θ∗, J∗) = − 1
2J∗2

1

+ ν2J
∗
2 + ε

(
A∗

0 + L∗
0

√
−J∗

3 cos θ∗3 +B∗
1 cos (θ∗1 − 2θ∗2)

+ M∗
1

√
−J∗

3 cos (θ∗1 − 2θ∗2 + θ∗3)
)

(3.91)

+ ε2
(
Ψ2(S)(J∗) + Ψ2(LP )(θ∗3 , J

∗)

+ (K∗
1 +K∗

2J
∗
3 ) cos (θ∗1 − 2θ∗2) +K∗

3

√
−J∗

3 cos (θ∗1 − 2θ∗2 − θ∗3)

+K∗
4

√
−J∗

3 cos (θ∗1 − 2θ∗2 + θ∗3) + K∗
5J

∗
3 cos (θ∗1 − 2θ∗2 + 2θ∗3)

)
.

It differs from the given Hamiltonian H by a remainder R3 divisible by ε3.
The variables θ∗, J∗ are related to the original variables θ, J by means of the
transformation

Ji =
∂S

∂θi
, θ∗i =

∂S

∂J∗
i

, (3.92)
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where
S = (θ | J∗) + εS1(θ, J∗) + ε2S2(θ, J∗). (3.93)

The Lagrange point transformation defined by

φ1 = θ∗1 − 2θ∗2 I1 = J∗
1

φ2 = θ∗2 I2 = J∗
2 + 2J∗

1

φ3 = θ∗3 I3 = J∗
3

(3.94)

leads to a Hamiltonian where the angle φ2 is absent. Thus, I2 = J∗
2 + 2J∗

1 is
a constant and the averaged Hamiltonian may be written

Ĥ∗(φ, I) = − 1
2I2

1

+ ν2(I2 − 2I1) + ε
(
A∗

0 + L∗
0

√
−I3 cosφ3 +B∗

1 cosφ1

+M∗
1

√
−I3 cos (φ1 + φ3)

)
+ ε2

(
Ψ̂2(S)(I) + Ψ̂2(LP )(φ3, I)

+ (K∗
1 +K∗

2I3) cosφ1 +K∗
3

√
−I3 cos (φ1 − φ3)

+K∗
4

√
−I3 cos (φ1 + φ3) +K∗

5I3 cos (φ1 + 2φ3)
)
, (3.95)

where, for simplicity, we have kept the same symbol for the functions appear-
ing in the coefficients notwithstanding the fact that they are, now, expressed
with the new variables.

The transformed system has, now, two degrees of freedom (one degree of
freedom more than in the non-resonant case). The theories allowing for the
formal elimination of the critical angles from the Hamiltonian are the subject
of Chaps. 4 and 8.

3.9 Iterative Use of von Zeipel–Brouwer Operations

After one application of the basic operation of the von Zeipel–Brouwer theory,
the given system is split into two parts. One of them is a N −M degrees-of-
freedom canonical system whose Hamiltonian is

H∗(θ∗�, J
∗
µ, J

∗
� , ε) =

n∑
k=1

εkH∗
k (θ∗�, J

∗
µ, J

∗
� ) (3.96)

(we have dropped the term H∗
0 (J∗

µ) that gives no contribution to the new
differential equations). The actions were separated into J∗

µ and J∗
� . J∗

µ are
constants and enter in the canonical equations as mere parameters.

In the favorable case where H∗
1 does not depend on the θ∗�, a new appli-

cation of the von Zeipel–Brouwer theory may, again, reduce the number of
degrees of freedom. Eventually, successive applications of the operation may
provide the solution of the Delaunay problem.

The best-known example of a problem solved by two successive operations
is the main problem of the theory of the Earth’s artificial satellites [14]. In that
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problem, the undisturbed motion is a Kepler motion, that is, H0 = − 1
2J

−2
1 ,

where J1 is the only action appearing in H0. The perturbation is

H1 = − C

r3
(3 sin2 ϕ− 1), (3.97)

where C is a constant factor determined by the physical parameters of the
Earth, and r and ϕ are the satellite radius vector and latitude over the Earth’s
equator. After substitution of the Delaunay angle–action variables, this be-
comes

H1 =
∑

h∈D1⊂Z
3

Ah(J) cos (h|θ), (3.98)

where the elements of the set D1 have the following properties:

• h3 = 0 (that is, H1 does not depend on the third Delaunay angle, the
longitude of the ascending node);

• h2 = 0 when h1 = 0 (that is, the second Delaunay angle, the argument of
the perigee, never appears alone in the cosine arguments of H1).

We then have the decomposition

H1(S) = A0(J),

H1(SP ) =
∑

h∈D1\{0}
Ah(J) cos(h|θ), (3.99)

H1(LP ) = 0.

Then, H∗
1 = < H1 > = H1(S) + H1(LP ) is a function of the actions only.

H∗
1 = A0(J∗) may play the role of the “undisturbed” Hamiltonian in a new

application of the von Zeipel–Brouwer theory, which allows us to eliminate
the angle θ∗2 present in the higher-order terms H∗

k (k ≥ 2).
Theories in Celestial Mechanics are often classified as lunar or planetary

according to H1(LP ) = 0 or H1(LP ) �= 0, respectively. The different behavior
arises from the fact that the adopted small parameter is not the same in these
theories. In lunar theories, the small parameter is the inverse distance to
the disturbing body (the Sun). In planetary theories, it is the mass of the
disturbing body (another planet) in units of the solar mass. The different
hierarchy of the terms in the expansion of the disturbing potential in lunar
theories is such that H1(LP ) = 0. Then, the new “undisturbed” Hamiltonian
H∗

1 (J∗
� ) is not degenerate (in Schwarzschild’s sense), and the system defined

by H∗ may be formally solved through an application of the Poincaré theory.
If H∗

1 (J∗
� ) is degenerate, the von Zeipel–Brouwer theory can be used again to

eliminate the non-degenerate degrees of freedom. The possibility of a further
reduction will now depend on whether or not the resulting H∗∗ depend on
the remaining angles θ∗∗�′ .

In the case of planetary theories H∗
1 depend on the longitudes of the per-

ihelion and ascending node (see [58], Sect. 83). Thus, a second application of
the von Zeipel–Brouwer theory to obtain a formal solution in terms of pure
trigonometric series is not possible in this case.
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3.10 Divergence of the Series. Poincaré’s Theorem

The Poincaré theory leads to the solution of a given Hamiltonian system by
means of a Jacobian canonical transformation whose generating function is
(see 3.31):

Sk(θ, J∗) =
∑

h∈Dk\{0}

iAkh exp (ih | θ)
h | ν∗ , (3.100)

for whose existence it is necessary to assume that (h | ν∗) �= 0 for all
h ∈ Dk\{0} (non-resonance condition). Poincaré noted that, since the prod-
uct of two Fourier polynomials introduces new combinations of the angles and
increases the number of terms in the resulting polynomial, the products ap-
pearing in the construction of Ψk make any non-trivial Dk grow with k and,
as k grows, values of (h | ν∗) smaller than any arbitrarily small given limit
may be formed. The series are then divergent in any open set of the phase
space.

For this reason the canonical perturbation theories discussed in this book
are always considered as finite processes. However, infinite processes may be
considered if some more stringent conditions are adopted. This is the case in
Kolmogorov’s theorem.

3.11 Kolmogorov’s Theorem

Let us consider the same Hamiltonian system of Sect. 3.2:

H = H0(J) +
∞∑

k=1

εkHk(θ, J), (3.101)

where H0 is the Hamiltonian of an integrable system satisfying a non-
degeneracy condition more restrictive than Schwarzschild’s non-degeneracy
condition assumed in the previous sections. Kolmogorov’s non-degeneracy con-
dition is

det
(

∂2H0

∂Ji∂Jj

)
�= 0. (3.102)

The unperturbed system defined by H0 admits non-degenerate quasiperiodic
solutions

θi = νit + const
Ji = const (i = 1, 2, · · · ,N), (3.103)

where θ ∈ TN are angles conjugate to the actions J and

νi
def=

∂H0(J)
∂Ji

. (3.104)

Let us consider one of the above solutions, say
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3.11 Kolmogorov’s Theorem 89

θi = θo
i = νo

i t+ const
Ji = Jo

i = const (i = 1, 2, · · · ,N) (3.105)

and let us assume that the frequencies νo
i satisfy the Diophantine condition

|(h|νo)| ≥ K||h||−(N+1) (3.106)

for all h ∈ ZN\{0} and a certain K(νo) > 0.
The theorem of Kolmogorov [57] states that this solution persists when

the system is perturbed, provided only that the perturbation is sufficiently
small4.

To understand the nature of such preserved solutions, that is, of the so-
called Kolmogorov or KAM tori, one may recall that in any neighborhood
V(Jo), there are infinitely many points J∗ for which (h | ν∗) = 0 for some
h ∈ ZN\{0} and the series are divergent.

3.11.1 Frequency Relocation

To explain the procedure followed by Kolmogorov to obtain quasiperiodic
solutions, let us present the construction of the canonical transformation as
an extension of the Poincaré theory.

In Poincaré’s theory, for given initial conditions, we look for a quasiperiodic
solution starting at them. The frequencies of the solution of order n are given
by the derivatives ofH∗

(n). To each order n of approximation, there corresponds
a different set of proper frequencies ν∗. Even if the solution were to converge
to an actual quasiperiodic solution of the given Hamiltonian, the frequencies
of that solution would not be precisely known, being improved as the order
of the approximation grows.

To guarantee that, at J∗ = Jo, the frequencies of the disturbed and undis-
turbed systems are the same, we have to introduce a slight modification in
Poincaré theory, relocating the frequencies in such a way that we have the
same proper frequencies at every order of approximation. To do this, we split
the Jacobian generating function into two parts:

Sk = S′
k + S′′

k (k ∈ Z). (3.107)

S′
k is determined using the averaging rule of Poincaré theory:

N∑
i=1

ν∗i
∂S′

k

∂θi
= < Ψk > −Ψk(θ, J∗). (3.108)

The remaining part of the homological equation is

4 For simplicity, all functions in this section are considered to be analytical in the
angle–action variables and in the small parameter ε.
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90 3 Classical Perturbation Theories

N∑
i=1

ν∗i
∂S′′

k

∂θi
= H∗

k (J∗)− < Ψk > . (3.109)

Let us now determine S′′
k in such a way that

∂H∗
k (J∗)
∂J∗

∣∣∣∣
J∗=Jo

= 0. (3.110)

This definition allows us to eliminate from H∗
k the linear terms in (J∗ − Jo).

To achieve this elimination, we expand < Ψk > and ν∗i in powers of (J∗−Jo).
Let

∑
j Bkj(J∗

j − Jo
j ) be the linear term of the expansion of < Ψk >. The

linear term of ν∗i is
N∑

j=1

∂ν∗i
∂J∗

j

∣∣∣∣∣
J∗=Jo

(J∗
j − Jo

j )

or
N∑

j=1

∂2H0(Jo)
∂Jo

i ∂J
o
j

(J∗
j − Jo

j ).

Equating the linear terms of both sides of (3.109), it follows that

N∑
i=1

∂2H0(Jo)
∂Jo

i ∂J
o
j

∂S′′
k

∂θi
= −Bkj (3.111)

(H∗
k has no linear term, by construction). The solution of this trivial equation

is

S′′
k = ξk | θ, (3.112)

where ξk ∈ RN is a constant vector given by the solutions of the linear
equations

N∑
i=1

∂2H0(Jo)
∂Jo

i ∂J
o
j

ξki = −Bkj . (3.113)

We recall that, by hypothesis,

det

(
∂2H0(Jo)
∂Jo

i ∂J
o
j

)
�= 0.

The kth component of the transformed Hamiltonian then becomes

H∗
k (J∗) = < Ψk > +

N∑
i=1

ν∗i ξki,

which, because of the definition of the ξki, has no linear term in J∗ − Jo and,
thus, satisfies the given hypothesis.
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3.11 Kolmogorov’s Theorem 91

The function S′′
k does not obey the conditions fixed in Sect. 3.3. It is

proportional to an angle and goes to infinity as t increases. However, it will
not generate terms of this kind in the explicit equations of the transformation,
because S only appears in the Poincaré algorithm through derivatives with
respect to angles.

When J∗ = Jo, the solutions of the dynamical system whose Hamiltonian
is H∗ are

θ∗i = νo
i t+ const

J∗
i = Jo

i = const, (3.114)

that is, the quasiperiodic solution of the undisturbed Hamiltonian is trans-
formed into a quasiperiodic solution of the disturbed system, with the same
frequencies νo

i . The equal frequencies of the undisturbed and disturbed solu-
tions is achieved because of the adequate choice of the functions S′′

k .
The procedure described above is very similar to that of Poincaré’s theory,

differing from it only in the averaging rule adopted to solve the problem of
the indetermination of the homological equation.

3.11.2 Convergence

The crucial part of Kolmogorov’s theorem is the proof of the convergence of
the infinite series

S =
N∑

i=1

θiJ
∗
i +

∞∑
k=1

εkSk(θ, J∗)

and

H∗ = H∗
0 +

∞∑
k=1

εkH∗
k

at the point J∗ = Jo. At this point we have ν∗ = νo, and the proof follows
from the Diophantine condition and the rules of decrease of the coefficients of
a Fourier series. These two properties enable the determination of a limiting
ε∗ such that, for ε < ε∗, the given series converge (see [3], [40]).

In order to have easier control of the small divisors and simplify the proof,
Kolmogorov adopted an approach different from that described above. Instead
of just looking for one canonical transformation (generated by S), Kolmogorov
sought a succession of canonical transformations, each generated by a first-
order Poincaré algorithm.

The first canonical transformation, φ : (θ, J) ⇒ (θ∗, J∗), is defined by the
generating function

S =
N∑

i=1

θiJ
∗
i + εS1(θ, J∗),

where S1 is determined by

N∑
i=1

ν∗i
∂S1

∂θi
= H∗

1 −H1, (3.115)
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92 3 Classical Perturbation Theories

with the additional split of S1 into S′
1+S′′

1 as discussed in the previous section
to eliminate the linear terms in J∗ − Jo from H∗

1 . If the same hypotheses of
the previous section are adopted, the Fourier series giving S1 is convergent.

Since this algorithm is limited to first order, there is a remainder R2

divisible by ε2, and the Hamiltonian of the resulting system is

H∗ = H∗
0 (J∗) + εH∗

1 (J∗) + R2(θ∗, J∗, ε).

So, we have a new perturbed system whose integrable “undisturbed” part is
Ĥ∗

0 = H∗
0 + εH∗

1 , and the perturbation R2(θ∗, J∗, ε) is of the order of ε2.
The second canonical transformation φ∗ : (θ∗, J∗) ⇒ (θ∗∗, J∗∗) is defined

by the generating function

S∗ =
N∑

i=1

θ∗i J
∗∗
i + ε2S∗

2 (θ∗, J∗∗),

with S∗
2 determined by

N∑
i=1

ν∗∗i

∂S∗
2

∂θ∗i
= Ĥ∗∗

1 − Ĥ∗
1 , (3.116)

where we include in Ĥ∗
1 all terms of R2 of orders O(ε2) and O(ε3). As before,

the Fourier series giving S∗
2 is convergent.

Again, since the algorithm is limited to first order, there is a remainder
R4. Since the small parameter is ε2, the remainder is divisible by ε4, and the
Hamiltonian of the resulting system is

H∗∗ = Ĥ∗∗
0 (J∗∗) + ε2Ĥ∗∗

1 (J∗∗) + R4(θ∗∗, J∗∗, ε).

So, we have a new perturbed system whose integrable “undisturbed” part iŝ̂
H

∗∗
0 = Ĥ∗∗

0 (J∗∗) + ε2Ĥ∗∗
1 (J∗∗), and the perturbation R4 (θ∗∗, J∗∗, ε) is of

order ε4.
The next step is again the canonical transformation defined by a first-order

algorithm with ε4 as small parameter and considering the perturbation ε4
̂̂
H

∗∗
1

which includes all terms of orders O(ε4) to O(ε7) of R4. And so on.
This algorithm is sometimes called super-convergent because it resem-

bles the super-convergent Newton’s method for finding the root of an equa-
tion following an approximation scheme in which the order of the “error” is
squared at each step. That is, we have the sequence ε, ε2, ε4, ε8, · · · instead of
ε, ε2, ε3, ε4, · · ·.

The simplicity of the super-convergent approach is striking and, certainly,
a key point in the proof of the theorem. However, this approach and that of
Sect. 3.11.1 should lead to the same solution.
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3.11.3 Degenerate Systems

Kolmogorov’s theorem has been extended by Arnold [3], [5] to the case where
H0 depends only on M (M < N) actions and

det
(

∂2H0

∂Jµ∂Jµ′

)
µ,µ′=1,···,M

�= 0 (3.117)

(proper degeneracy). The proof is a combination of the proof of Kolmogorov’s
theorem and the rules for iterative use of von Zeipel–Brouwer theory. The
procedure followed in Kolmogorv’s theorem is initially used to construct a
canonical transformation that reduces the given Hamiltonian to N −M de-
grees of freedom. If the frequencies νo

µ (µ = 1, · · · ,M) satisfy the Diophantine
condition, the series giving the transformation is convergent and the reduction
is not merely formal as in the cases studied in this book. The resulting system
is written

H∗ = H∗
0 (J∗

µ) +
∞∑

k=1

εkH∗
k (θ∗�, J

∗),

(� = M + 1, · · · , N). The angles θ∗µ (µ = 1, · · · ,M) are ignorable and the
actions J∗

µ are constants. The system is then reduced to N − M degrees
of freedom. We may rescale the independent variable to εt and delete the
constant term H∗

0 (J∗
µ). The Hamiltonian of the reduced system is

H = H∗
1 (θ∗�, J

∗) +
∞∑

k=1

εkH∗
k+1(θ

∗
�, J

∗),

where, by construction,

H∗
1 (θ∗�, J

∗) = H1(S)(J∗) +H1(LP )(θ∗�, J
∗).

In the particular case where H∗
1(LP )(θ

∗
�, J

∗) = 0, the reduced Hamiltonian
becomes

H = H1(S)(J∗) +
∞∑

k=1

εkH∗
k+1(θ

∗
�, J

∗),

to which Kolmogorov’s theorem may be applied once more provided that

det
(
∂2H1(S)(J)
∂J�∂J�′

)
�,�′=M+1,···,N

�= 0. (3.118)

The combination of the two operations leads to convergent series describ-
ing quasiperiodic motions with the given frequencies νo

j . The additional con-
ditions concern the first-order perturbation H1: they are the absence there of
long-period terms, i.e., H1(LP )(θ�, J) = 0, and the non-degeneracy (in Kol-
mogorov’s sense) of the secular perturbation H1(S)(J�).
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3.11.4 Degeneracy in the Extended Phase Space

A particular kind of degeneracy occurs when the given system results from an
extension of the phase space. In that case, one linear term in the additional
momentum is added to the Hamiltonian (see Sect. 1.6) so that the resulting
Hessian has a row of zeros and is identically equal to zero. Let us assume, for
the sake of simplicity, that the system is non-degenerate in Schwarzschild’s
sense, that the action JN is the only one for which we have

∂νN

∂Ji
≡ 0 (i = 1, · · · , N) (3.119)

and that the Hessian matrix of H0 has rank N − 1 and is such that

det
(

∂2H0

∂Jµ∂Jµ′

)
µ,µ′=1,···,N−1

�= 0. (3.120)

The construction of S′
k is not affected by the degeneracy in Kolmogorov’s

sense as long as the system is non-degenerate in Schwarzschild’s sense. The
condition of non-degeneracy in Kolmogorov’s sense is however necessary in the
construction of S

′′

k to establish the one-to-one correspondence between actions
and frequencies. However if the degeneracy in Kolmogorov’s sense results from
an extension of the phase space, the given Hamiltonian is such that

∂H0

∂JN
= νN

∂Hk

∂JN
= 0 (k ≥ 1);

as a consequence, the functions Ψk are independent of JN (the functions E ′ and
Gk′,k of Sects. 3.2.1 and 3.2.2 are independent of JN ). Therefore, we have to
eliminate from Ψk only the linear terms in (J∗

µ−Jo
µ) (µ = 1, · · · , N−1) and the

subscript in (3.113) may be restricted to 1, · · · , N−1. The other operations are
not affected by this particular kind of degeneracy and a quasiperiodic solution
exist in this case for frequency sets satisfying the Diophantine condition (see
[5], Chapt. 5, Sect. 3).

In this case,H0 is said to be isoenergetically non-degenerate. The condition
for isoenergetic non-degeneracy has the general form

det

⎛⎜⎜⎜⎝
(

∂2H0

∂Ji∂Jj

) (
∂H0

∂Ji

)
(
∂H0

∂Jj

)′
0

⎞⎟⎟⎟⎠
i,j=1,···,N

�= 0. (3.121)

3.12 Inversion of a Jacobian Transformation

One successful application of the theories discussed in this chapter results in
a new Hamiltonian H∗(J∗) (or H∗(θ∗�, J

∗)), and a canonical transformation
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3.12 Inversion of a Jacobian Transformation 95

defined by a Jacobian generating function S(θ, J∗). From the definitions (Sect.
3.2), we have

θi = θ∗i −
n∑

k=1

εk ∂Sk(θ, J∗)
∂J∗

i

= θ∗i + εφ
(a)
i (θ, J∗; ε) (3.122)

Ji = J∗
i +

n∑
k=1

εk ∂Sk(θ, J∗)
∂θ∗i

= J∗
i + εφ

(b)
i (θ, J∗; ε). (3.123)

The transformation is not explicitly given because θ is still present in the
right-hand sides. Thus, an inversion is necessary to reach the solution of the
given problem. In low-order theories, the inversion can be achieved through
a straightforward iterative procedure. In more general cases, we may use an
extension of the well-known Lagrange formula (see Sect. 3.12.1).

Only the N equations (3.122) are implicit. Once they are solved, a mere
substitution of the results into (3.123) is enough to complete the inversion.
However, we will prefer to combine both into only one equation:

z = z∗ + εφ(z; J∗, ε), (3.124)

where z, z∗ ∈ TN × O, and φ : TN × O → TN × O is analytical. (O is an
open set of RN .) J∗ appears in the function φ as an external parameter and
is ignored during the inversion.

According to Lagrange’s theorem, the solution of (3.124) is

z = z∗ + εφ(z∗; J∗, ε) +
∑
k∈N

εk+1

k!
Gk(z∗), (3.125)

where the functions Gk(z) are given by

G0(z) = φ(z; J∗, ε),

Gk(z) =
k−1∑
�=0

(
k − 1
�

)(
∂Gk−�−1(z)

∂z

)
G�(z), (k ≥ 1).

(3.126)

One may note that we have, on the right-hand side of the last equation, the
product of a matrix by a vector. Because of the mixed form of the Jacobian
transformation, φ(z; J∗, ε) does not depend on J , but only on θ. As a conse-
quence, all Gk(z) (k ≥ 0) depend only on θ and the right-hand half of the
matrix (∂Gk−�−1/∂z) is formed by zeros. Hence, the above equation may be
written

Gk(z) =
k−1∑
�=0

(
k − 1
�

)(
∂Gk−�−1(z)

∂θ

)
Ĝ�(z), (3.127)

where Ĝ� is the restriction of G� to its first N components.
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3.12.1 Lagrange Implicit Function Theorem

The one-dimensional Lagrange implicit function theorem is expressed by a
well-known formula allowing the root of an implicit equation involving an
analytic function to be obtained. It was extended to N dimensions by several
authors. We reproduce here the extension due to Feagin and Gottlieb [29].

Theorem 3.12.1. Consider the equation

z = z∗ + εφ(z),

where z ∈ CN , φ : CN → CN is analytic in a neighborhood of z = z∗ and ε
is a (small) real parameter. Let f : CN → CN be a given analytical function
in the neighborhood of z = z∗. Then

f(z) = f(z∗) +
∞∑

k=1

εk

k!
Fk(z∗),

where the functions Fk are given by

F0(z∗) = f(z∗),

Fk(z∗) =
k−1∑
�=0

(
k − 1
�

)(
∂Fk−�−1(z∗)

∂z∗

)
G�(z∗) (k ≥ 1),

G0(z∗) = φ(z∗),

G�(z∗) =
�−1∑
m=0

(
�− 1
m

)(
∂G�−m−1(z∗)

∂z∗

)
Gm(z∗) (k ≥ 1).

Exercise 3.12.1. Show that, in the particular case f(z) = z, Fk = kGk−1.

3.12.2 Practical Considerations

The inversion given in this chapter is not often used. In many applications,
only H∗(θ∗, J∗) matters. For instance, in many applications in Mathematics,
it is enough to know that H∗(θ∗, J∗) andH(θ, J) are related through a smooth
transformation. In Astronomy, we may devise several kinds of applications,
ranging from the qualitative study of the evolution of given systems of bod-
ies, to the construction of ephemerides. In qualitative studies, generally, only
H∗(θ∗, J∗) matters. We know that the solutions of the given Hamiltonian
H(θ, J) are in the neighborhood of the solutions of H∗(θ∗, J∗), and this is
often enough for our purposes. In the construction of ephemerides, on the
contrary, the purpose is to predict the actual position of one body at a given
time, and we have to obtain θ = θ(t); J = J(t). Thus, the transformation has
to be done. In fact, precise ephemerides are nowadays constructed mainly with
numerical integrations. However, in the case of fast-moving objects, like close
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3.13 Lindstedt’s Direct Calculation of the Series 97

planetary satellites, the propagation of numerical errors limits the validity of
numerical integrations to spans of time that are not enough large. In this case,
long-term ephemerides are obtained by means of formal solutions.

Another example where formal solutions are often used is the computa-
tion of proper elements. Proper elements may be defined in several different
ways, but the classical and more rigorous definition is to define them as the J∗

(see [61]). Indeed, if the corresponding Delaunay problem has been solved (to
a given order), and led to a Hamiltonian H(J∗), these quantities are constant
(in fact, only almost constant because the remainder Rn+1 still depends on
θ∗). To know the proper elements of a given body, it is necessary to know how
to relate J∗ to the actually observed quantities θ, J . Thus, knowledge of the
function J∗ = J∗(θ, J) is necessary. Again, the whole determination can be
done by means of numerical integrations, and is often done. However, numer-
ical procedures may present drawbacks. Consider the case of the asteroids.
There are more than 100 000 of them. They are affected by very-long-period
perturbations, and precise numerical integrations over some millions of years
are necessary to derive good proper elements. This must be done for every as-
teroid, and repeated each time our knowledge of the actual orbit is improved,
making the numerical approach inefficient.

Finally, we should note that even when the construction of a formal so-
lution is more convenient than numerical integrations, the cumbersome step
represented by the inversion of the Jacobian transformation can be done nu-
merically. The solution of a system of a few algebraic equations close to an
identity is a very inexpensive one-time numerical operation, which is not im-
paired by error’s propagation like numerical integrations.

3.13 Lindstedt’s Direct Calculation of the Series

By the end of the ninetenth century, the methods of Celestial Mechanics
were translated into the language of Hamiltonian mechanics, using Jacobian
generating functions to span the canonical transformations. Those methods
aimed, generally, at dealing with perturbed oscillators given by equations of
the form

d2x

dt2
+ ω2x = εf(x, t). (3.128)

The essential feature, kept unaltered since then, is the search for solutions in
which the angles and the momenta (or actions) are given by

θ = νt+
∑

h∈Z
N

Ah exp (ih|νt) (3.129)

and
J =

∑
h∈Z

N

Bh exp (ih|νt), (3.130)
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respectively.
Solutions of this kind are often called Lindstedt series [64]. Excepted for

the linear terms νt, they are in “pure trigonometric form” (cf. Charlier [20]),
that is, quasiperiodic functions with N fundamental frequencies.

In Poincaré theory, we seek an integrable Hamiltonian H∗(J∗), whose so-
lutions are

θ∗i = ν∗i t+ const
J∗

i = const (3.131)

and then we transform these solutions by means of the inverse of the canon-
ical transformation defined by S(θ, J∗), to obtain the solutions of the given
system. The averaging operation defined in Sect. 3.3 guarantees that all Sk

are Lindstedt series. Therefore, the final solution has the required form.
It is worth recalling that most of the earlier planetary theories, founded

on Lagrange’s variation of the elements, included terms in powers of t and the
so-called “Poisson terms”, ta exp (ih|νt), mixing powers of t and trigonometric
functions. These terms, describing the solution with high precision during a
short interval of time, generally deteriorate rapidly as t increases. As the mo-
tion of the planets is slow, approximations of this kind are generally good for
predicting purposes and remain valid for decades or even centuries. Neverthe-
less, it is not possible to use them in the study of fast motions. It is noteworthy
that the revival of von Zeipel’s theory, in modern Celestial Mechanics, hap-
pened when a good theory became necessary to describe the motion of Earth’s
artificial satellites [14].

If we know that a quasiperiodic solution (formal or exact) exists, we can
construct it directly without the need for any of the previous methods. It is,
in principle, possible to substitute the solutions given by (3.129) and (3.130)
directly into the equations and to solve the resulting infinite set of equations
resulting from the identification of both sides to obtain the unknown ν,Ah, Bh.
The solutions are constructed order by order, in ε.

The direct calculation of the series has some drawbacks. One, obvious, is
the extra amount of work resulting from the separate consideration of each
of the 2N equations. It can be done only when the given equations are very
simple. The second drawback has been pointed out by Giorgilli [39]: the direct
calculation of the series leads to an increase in the number of terms with
small divisors. However, the solutions with both techniques cannot be different
and cancellations occur (many huge contributions that compensate among
themselves).

Page: 98 job: b macro:svmono.cls date/time:20-Oct-2006/9:21



4

Resonance

4.1 The Method of Delaunay’s Lunar Theory

Delaunay was the first astronomer to use the mechanics of Hamilton and
Jacobi to obtain the approximated solution of the equations of motion of
a celestial body. His lunar theory [22] is a pioneer work in many respects.
We credit Delaunay with the introduction of the set of angle–action variables
�, g, h, L,G,H in which the Lagrange equations for the variation of the orbital
elements under a perturbation are canonical. His theory of the motion of the
Moon is not a collection of clever tricks, as other theories in the old Celestial
Mechanics. Having obtained the variation equations in canonical form, his
problem was to find the solutions of the differential equations defined by the
Hamiltonian

H = H0(J) + ε
∑
h∈D

Ah(J) cos (h|θ), (4.1)

where the canonical variables are J ≡ (J1, . . . , JN ) and θ ≡ (θ1, . . . , θN ),
ε is a small parameter and D ⊂ ZN . The technique adopted by Delaunay
is methodologically very clear. He defined an operation and performed it,
successively, almost 500 times. This operation starts with the choice of one
argument (h1|θ) in (4.1) and the consideration of the dynamical system defined
by the abridged Hamiltonian

F1 = H0(J) + εAh1(J) cos (h1|θ). (4.2)

This system is integrable, since the angles θi are present only through the
linear combination (h1|θ). The main step of one Delaunay operation is to
obtain a particular solution of this selected system and to use this solution
to derive a canonical transformation leading to the elimination of the term
Ah1(J) cos (h1|θ) from the given Hamiltonian. (In fact, it is a transformation
leading to the substitution of this term by others with much smaller coef-
ficients.) To obtain the solution of the dynamical system defined by F , we
introduce the Jacobian generating function
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100 4 Resonance

S(θ, J∗) def= (θ|J∗) +Σ(θ, J∗), (4.3)

where Σ is a function of order O(ε), and consider the Hamilton–Jacobi equa-
tion

E1 = H0

(
∂S

∂θ

)
+ εAh1

(
∂S

∂θ

)
cos (h1|θ). (4.4)

The functions of ∂S/∂θi, on the right-hand side of this equation, may be
expanded about ∂S/∂θi = J∗

i and (4.4) becomes

E1 = H0(J∗) +
N∑

i=1

∂H0(J∗)
∂J∗

i

∂Σ

∂θi
+ εAh1(J

∗) cos (h1|θ) + O(ε2). (4.5)

At variance with the standard Hamilton–Jacobi theory, we do not look
for a complete solution of the equation. We assume E1 = H0(J∗), and seek a
suitable particular solution of the partial differential equation for Σ:

0 =
N∑

i=1

∂H0(J∗)
∂J∗

i

∂Σ

∂θi
+ εAh1(J

∗) cos (h1|θ) + O(ε2). (4.6)

If the higher-order terms are neglected, we have the immediate particular
solution

Σ = −εAh1(J∗) sin (h1|θ)
(h1|ν∗) , (4.7)

where ν∗ ≡ (ν∗1 , ν
∗
2 , · · · , ν∗N ) and

ν∗i =
∂H0(J∗)
∂J∗

i

. (4.8)

Once we have obtained a first-order solution of the dynamical system
spanned by F1, we go back to the given Hamiltonian H and perform the
transformation of the variables generated by the function S:

θ∗i =
∂S

∂J∗
i

= θi +
∂Σ

∂J∗
i

, Ji =
∂S

∂θi
= J∗

i +
∂Σ

∂θi
. (4.9)

To complete the exposition of a Delaunay operation, we write the full
Hamiltonian as

H = F1 + ∆F . (4.10)

Hence, according to (4.5)–(4.7), when the above variable change is done, F1

becomes
F∗

1 (θ∗, J∗) = H0(J∗) + O(ε2), (4.11)

that is, E1 plus the higher-order terms of (4.6), which were neglected when
(4.7) was obtained. With the same change, the additional part ∆F(θ, J) is
transformed into ∆F(θ∗, J∗)+O(ε2). (The function ∆F is the same as before.)
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4.2 Introduction of the Square Root of the Small Parameter 101

The result of the Delaunay operation is, then, a new Hamiltonian

H∗ = H0(J∗) + ∆F(θ∗, J∗) + O(ε2) (4.12)

differing formally from the given one, in only two respects:

(a.) the term εAh1 cos (h1|θ) has disappeared;
(b.) new terms of order O(ε2) were added.

In this way, performing as many operations as necessary, we may expect
to eliminate from H all periodic terms of order O(ε). Indeed, as shown in
the previous chapter, all these operations can be performed at one stroke, by
finding the function S generating a transformation that eliminates all periodic
terms of order O(ε).

We may also expect to eliminate, with a second sequence of operations,
those terms of order O(ε2), after that, the terms of order O(ε3), and so on.
In reality, as discussed in Sect. 3.12, this is not so. The combination of the
arguments (h|θ) in the transformation of H tends to enlarge the set of values
of h (the maximum of |h| increases). Thus, values of h for which (h|ν∗) is too
small can be reached (Poincaré Theorem) and the Delaunay theory, as well
as the theories of the previous chapter (with the exception of Kolmogorov’s)
cannot be extended indefinitely. Only a finite number of operations can be
done and the non-resonance condition (h|ν∗) �= 0 must be verified for all
h ∈ D, and for all h generated in the calculations. Otherwise, the theory
needs to be modified as discussed thereafter.

We may also consider the case where one or more values h ∈ D are already
such that (h|ν∗) ≡ 0. This case happens when H0(J) is degenerate, that is,
when H0 does not depend on all components of J . One essential degeneracy
of this kind appears in Celestial Mechanics where H0 depends only on the
Delaunay variable L and on the variable Λ, the canonical conjugate to the
time t:

H0 = − µ2

2L2
+ Λ. (4.13)

In this case, the Delaunay theory does not allow one to get rid of the terms
independent of both the time t and the mean anomaly � (conjugate to L). In
the particular problem of the motion of the Moon, periodic terms of this kind
do not exist in the given perturbation (see the discussion in Sect. 3.9) and the
theory developed by Delaunay allowed all periodic terms of order O(ε) to be
eliminated.

4.2 Introduction of the Square Root of the Small
Parameter

Let us consider, in this section, the equations of the Delaunay theory in the
case where one resonance exists. Let us assume that
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102 4 Resonance

(h1|ν∗) = 0 (4.14)

for some h1 ∈ D and some point J∗ ∈ O (O is the open set of RN under
study). We may continue as in the previous section up to equation (4.7).
However, in this case, the resonance (h1|ν∗) = 0 happens at one point of
O. At such a point, the first term in the right-hand side of (4.6) vanishes
and the equation becomes singular. If we do not get rid of this singularity
and continue calculating as before, the divisor appearing in the result will
become null when the exact resonance is reached. To study this problem, we
will perform the same sequence of calculations as in the previous section, but
keeping in explicit form some second-order terms.

For the sake of simplicity, we will only consider, here, the simplest case of
only one degree of freedom, in which case the resonance assumption given by
(4.14) becomes, simply,

ν∗1 = 0. (4.15)

Let us introduce again the generating function as

S(θ1, J∗
1 ) = θ1J

∗
1 +Σ(θ1, J∗

1 )

and let us expand the function

H0(J1) = H0

(
∂S

∂θ1

)
= H0

(
J∗

1 +
∂Σ

∂θ1

)
.

Then

H0(J1) = H0(J∗
1 ) + ν∗1

∂Σ

∂θ1
+

1
2
ν∗11

(
∂Σ

∂θ1

)2

+ · · · ,

where we have introduced

ν∗1 =
dH0(J∗

1 )
dJ∗

1

, ν∗11 =
d2H0(J∗

1 )
dJ∗2

1

. (4.16)

In the same way, we expand

R1(θ1, J1)
def= Ah1(J1) cos θ1

to obtain

R1(θ1, J1) = R1(θ1, J∗
1 ) +

∂R1(θ1, J∗
1 )

∂J∗
1

∂Σ

∂θ1
+ · · · .

When these expansions are substituted into the Hamilton–Jacobi equation
(4.4), we obtain

E1 = H0(J∗
1 ) + ν∗1

∂Σ

∂θ1
+

1
2
ν∗11

(
∂Σ

∂θ1

)2

+ · · · + εR1(θ1, J∗
1 ) + ε

∂R1

∂J∗
1

∂Σ

∂θ1
+ · · ·
(4.17)

and (4.6), correspondingly, becomes
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4.3 Delaunay Theory According to Poincaré 103

ν∗1
∂Σ

∂θ1
+

1
2
ν∗11

(
∂Σ

∂θ1

)2

+ · · · + εR1(J∗
1 , θ1) + ε

∂R1

∂J∗
1

∂Σ

∂θ1
+ · · · = 0. (4.18)

Let us, now, investigate the algebraic inversion of this equation. This is
done with the help of some classical results of Weierstrass’ implicit functions
theory. However, instead of making an application of the theory itself, we
prefer, here, to adapt it to the present problem.

Equation (4.18) may be written in a more compact form as

F(σ, ε) = a01ε+ a10σ + a20σ
2 +

∑
i

∑
j

aijσ
iεj = 0, (4.19)

where

σ =
∂Σ

∂θ1
(4.20)

and the aij have obvious meanings. When the resonance condition

a10 = ν∗1 = 0

holds, the leading terms in the expansion of F(σ, ε) are a01ε and a20σ
2. There-

fore, the only possibility of having F(σ, ε) = 0, identically, with a01 �= 0 and
a20 �= 0, is that the solution σ(ε) has, at the origin, an algebraic critical point
of order 2. Then, we may write

σ = b1
√
ε + b2ε + b3ε

√
ε + · · · . (4.21)

Since
√
ε has two branches, we have two solutions forming a system of two al-

gebraic functions, each corresponding to one branch of
√
ε. It is worth empha-

sizing that, when the series written in (4.19) is convergent in a neighborhood
of the origin, the fundamental theorem on algebraic functions can be used to
prove the convergence of the solutions given by (4.21).

4.2.1 Garfinkel’s Abnormal Resonance

One hypothesis implicitly considered above and in this whole chapter is ν∗11 �=
0. The case ν∗11 = 0 was called, by Garfinkel, abnormal. In such a case, a10 =
a20 = 0 and the leading terms of the expansion of F(σ, ε) are a01ε and a30σ

3.
Therefore, the origin is an algebraic critical point of order 3 and we have to
use the cube root of ε instead of the square root in the series expansion of
σ(ε).

4.3 Delaunay Theory According to Poincaré

Poincaré considered Delaunay theory in the first part of his chapter on Bohlin’s
theory ( [80], Chap. XIX). He considered the one-degree-of-freedom problem
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104 4 Resonance

with a disturbing potential formed by the term εR1 = εA1 cos θ1 only. In this
section, we present the complete Delaunay theory for the canonical equations
defined by the Hamiltonian

H = H0(J1) +
∞∑

k=1

εkH2k(θ1, J1). (4.22)

One may note that the subscripts were modified to indicate the order of the
terms in

√
ε.

The initial calculations are the same as in the previous section. Since we
know that, in the neighborhood of the resonance, Σ may be expanded in a
power series in

√
ε, we consider the canonical transformation

(θ1, J1) ⇒ (α,E)

defined by the Jacobian generating function

S = θ1J
∗
1 +

n∑
k=1

εk/2Sk(θ1, E), (4.23)

where J∗
1 is the solution of the equation giving the exact resonance:

ν1(J∗
1 ) =

(
dH0

dJ1

)
J1=J∗

1

= 0. (4.24)

Poincaré considered, separately, the case ν∗1 = 0 and the general case ν∗1 �= 0
(but close to zero). The consideration of the case ν∗1 �= 0 is, however, not
necessary and is not done here.

The equations of the canonical transformation are

α =
∂S

∂E
, J1 =

∂S

∂θ1
(4.25)

and the transformed Hamiltonian is assumed to have a main part

εE +H∗(E)

independent of α, and a remainder Rn+1 divisible by ε(n+1)/2.
The solution is given by the integral

E = const (4.26)

and the quadrature

α =
∫

∂

∂E
(H∗ + εE) dt. (4.27)

Since the transformation is conservative, we have

H(θ1, J1) = εE +H∗(E) + Rn+1(α,E). (4.28)
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4.3 Delaunay Theory According to Poincaré 105

Taking into account the canonical transformation generated by S, this equa-
tion becomes

H

(
θ1,

∂S

∂θ1

)
= εE +H∗(E) + Rn+1. (4.29)

To identify both sides of (4.29) according to the powers of
√
ε, we need

the power-series expansions of Hk and H∗. These expansions are identical to
those performed in Poincaré theory (see Sects. 3.2.1 and 3.2.2). We have

H0 = G0,0 + εG0,2 + ε3/2G0,3 + · · · + εn/2G0,n + · · · (4.30)

Hk = Gk,k + ε1/2Gk,k+1 + εGk,k+2 + · · · + εn/2Gk,n + · · · (4.31)

and

H∗(E) =
n∑

k=0

εk/2H∗
k (E). (4.32)

All remaining terms are at least of order ε(n+1)/2. Since ν∗1 = 0, then G0,1 =
0 and G0,k = Ek (see 3.15). The functions Gk,j are defined by (3.22). In
particular, Gk,k = Hk(θ1, J∗

1 ).
The identification in the powers of the small parameter is made simple by

the fact that ε is always explicit in the formulas and that all other quantities
are finite. Thus, we have

H0(J∗
1 ) = H∗

0 ,

0 = H∗
1 ,

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(θ1, J∗
1 ) = H∗

2 + E,

ν∗11
∂S1

∂θ1

∂S2

∂θ1
+G2,3 + E ′

3 = H∗
3 , (4.33)

· · · · · ·

ν∗11
∂S1

∂θ1

∂Sk

∂θ1
+G2,k+1 +G4,k+1 + · · · + E ′

k+1 = H∗
k+1,

· · · · · ·

ν∗11
∂S1

∂θ1

∂Sn−1

∂θ1
+G2,n +G4,n + · · · + E ′

n = H∗
n.

(The functions E ′
k are those defined implicitly by (3.20).) All remaining terms

have at least ε(n+1)/2 as a factor and are supposed to be grouped with the
remainder Rn+1.

As in the theories of the previous chapter, the first equation gives H∗
0 and

says that it is the value of the function H0 at J1 = J∗
1 . Thus H∗

0 is, now,
just a number (it does not depend on the new variables α,E). The second
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equation says that H∗
1 = 0. The third equation is the fundamental equation

of Delaunay theory (the Delaunay or Delaunay–Poincaré equation):

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(θ1, J∗
1 ) −H∗

2 = E. (4.34)

This equation is indeterminate while H∗
2 is not fixed. This indetermination is

overcome by introducing the averaging rule

H∗
2 = < H2(θ1, J∗

1 ) >, (4.35)

where < · · · > stands for the average over the angle θ1. Therefore, we have

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(K) = E, (4.36)

where
H2(K)(J∗

1 ) = H2(θ1, J∗
1 )− < H2(θ1, J∗

1 ) > . (4.37)

Taking into account that the functions G2,k+1, G4,k+1, · · · and E ′
k+1 are

completely known when the functions S1, S2, · · · , Sk−1 are known, the generic
or homological form of (4.33) (for k ≥ 2) is

ν∗11
∂S1

∂θ1

∂Sk

∂θ1
+ Ψ∗

k+1(θ1, E) = H∗
k+1(E), (4.38)

where Ψk+1 represents known functions. At variance with the fundamental
Delaunay–Poincaré equation, the homological equation is linear and it is suf-
ficient to obtain particular solutions of it.

4.3.1 First-Approximation Solution

When a complete integral of the fundamental equation is known, the gener-
ating function

S(1) = θ1J
∗
1 +

√
ε S1(θ1, E)

defines a canonical transformation leading to a transformed Hamiltonian in-
dependent of α, except for terms factored by, at least, ε3/2.

From the equations of the canonical transformation we have

J1 = J∗
1 +

√
ε
∂S1

∂θ1
+ O(ε) = J∗

1 ±
√

2ε
ν∗11

(E −H2(K)) + O(ε), (4.39)

α =
√
ε
∂S1

∂E
+ O(ε) = ± ∂

∂E

∫ √
2ε
ν11

(E −H2(K)) dθ1 + O(ε). (4.40)

The last equation, combined with (4.27) (which is reduced, at this order,
to α =

∫
ε dt), gives
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t− t0 =
∫ ±dθ1√

2εν11(E −H2(K))
+ O(ε) (4.41)

showing that the time scale of resonant phenomena is inversely proportional
to

√
ε, that is, the frequencies associated with the resonance are proportional

to
√
ε.

Equations (4.39) and (4.41) are the formal solutions of order O(
√
ε) of

the problem of Delaunay, in the presence of one resonance, in one degree of
freedom.

4.4 Garfinkel’s Ideal Resonance Problem

Let us use the Delaunay theory to obtain a complete solution of the Ideal
Resonance Problem. This problem, thoroughly studied by Garfinkel [37], is
defined as the problem of obtaining a formal solution of order εn/2 of the
canonical equations defined by the Hamiltonian

H = H0(J1) − εA(J1) cos θ1 (4.42)

in the neighborhood of the value J∗
1 for which ν1 = dH0/dJ1 = 0. The dis-

turbing term has not, here, the same form 2εA(J1) sin2(θ1/2) considered in
Garfinkel’s work, but the two forms are equivalent.

This Hamiltonian system has two equilibrium solutions, viz. θ1 = 0 and
θ1 = π whose stability depends on the sign of A∗ν∗11 (A∗ = A(J∗

1 )). Without
loss of generality, we assume that A∗ν∗11 > 0 and the stable equilibrium is at
θ1 = 0; otherwise, it is enough to change θ1 into θ′1 + π so that the system
satisfies this assumption.

The fundamental equation corresponding to the Hamiltonian of (4.42) is

1
2
ν∗11

(
∂S1

∂θ1

)2

−A∗ cos θ1 = E (4.43)

or
∂S1

∂θ1
= ±

√
2
ν∗11

(E +A∗ cos θ1), (4.44)

where we take into account that H∗
2 =< −A∗ cos θ1 >= 0.

We may note that this fundamental equation is nothing but the Hamilton–
Jacobi equation of the simple pendulum. However, at variance with the con-
ventional simple pendulum, the “inverse mass” ν∗11 may be either positive or
negative. The solutions of the simple pendulum given in Sect. B.1 apply with-
out modification. We just have to take care of the sign differences between
the cases ν∗11 < 0 and ν∗11 > 0.

The homological equation is (see 4.38)

∂Sk

∂θ1
=

1
ν∗11

(
∂S1

∂θ1

)−1

(H∗
k+1 − Ψ∗

k+1) (k = 2, · · · , n), (4.45)
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where Ψ∗
k+1 is a polynomial in the derivatives of S1, S2, · · · , Sk−1 whose coef-

ficients are constants or derivatives of H2. For instance

Ψ∗
3 =

∂S1

∂θ1

[
1
6
ν∗111

(
∂S1

∂θ1

)2

+
∂H2

∂J∗
1

]
(4.46)

and

Ψ∗
4 =

1
2
ν∗11

(
∂S2

∂θ1

)2

+
1
2
ν∗111

(
∂S1

∂θ1

)2
∂S2

∂θ1
+

1
24

ν∗1111

(
∂S1

∂θ1

)4

+
∂H2

∂J∗
1

∂S2

∂θ1
+

1
2
∂2H2

∂J∗2
1

(
∂S1

∂θ1

)2

.

From the previous equations, we may write

H2(θ1, J∗
1 ) = −A∗ cos θ1 = E − 1

2
ν∗11

(
∂S1

∂θ1

)2

(4.47)

and

∂kH2

∂J∗k
1

= −dkA∗

dJ∗k
1

cos θ1 =
1
A∗

dkA∗

dJ∗k
1

[
E − 1

2
ν∗11

(
∂S1

∂θ1

)2
]
, (4.48)

that is, H2 and its derivatives may be written as polynomials in the first
derivative of S1. Therefore, Ψ∗

3 , Ψ
∗
4 , · · · , Ψ∗

n−1 may be, successively, written as
polynomials in the first derivative of S1:

Ψ∗
k+1 =

k+1∑
k′=0

Ck,k′

(
∂S1

∂θ1

)k′

, (4.49)

where Ck,k′ = 0 when k and k′ have the same parity; then, (4.45) may be
written as

∂Sk

∂θ1
=

1
ν∗11

(
∂S1

∂θ1

)−1
[
H∗

k+1 −
k+1∑
k′=0

Ck,k′

(
∂S1

∂θ1

)k′
]
. (4.50)

To avoid the singularity at the libration boundaries, where ∂S1/∂θ1 = 0,
H∗

k+1 may be chosen to be such that the coefficient of (∂S1/∂θ1)−1 in (4.50)
vanishes:

H∗
k+1 = Ck,0.

(One may note that H∗
k = 0 for all k odd because of the parity rule of the

coefficients Ck,k′ .) The homological equation then becomes

∂Sk

∂θ1
= − 1

ν∗11

k+1∑
k′=1

Ck,k′

(
∂S1

∂θ1

)k′−1

. (4.51)
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In particular, for k = 2, we have

∂S2

∂θ1
= − E

A∗ν∗11

dA∗

dJ∗
1

−
(
ν∗111
6ν∗11

− 1
2A∗

dA∗

dJ∗
1

)(
∂S1

∂θ1

)2

. (4.52)

Once S is known, we may construct the formal solutions of the Ideal Res-
onance Problem. To order O(ε), they are:

J1 = J∗
1 +

√
ε
∂S1

∂θ1
+ ε

∂S2

∂θ1

α = ε(t− t0) =
√
ε
∂S1

∂E
+ ε

∂S2

∂E
.

(4.53)

4.4.1 Garfinkel–Jupp–Williams Integrals

The integration of (4.51), for all k, involves the integrals

Ik =
∫ (

∂S1

∂θ1

)k

dθ1 =
∫ (

2
ν∗11

(E +A∗ cos θ1)
)k/2

dθ1,

which can be calculated by means of recurrence formulas [36]. Differentiating
(4.43) with respect to θ1, we obtain

∂S1

∂θ1

∂

∂θ1

(
∂S1

∂θ1

)
= −A∗

ν∗11
sin θ1. (4.54)

Hence,
∂

∂θ1

(
∂S1

∂θ1

)k

= − k

(
∂S1

∂θ1

)k−2
A∗

ν∗11
sin θ1, (4.55)

∂2

∂θ2
1

(
∂S1

∂θ1

)k

= k(k−2)
(
∂S1

∂θ1

)k−4 (
A∗

ν∗11

)2

sin2 θ1− k

(
∂S1

∂θ1

)k−2
A∗

ν∗11
cos θ1.

The trigonometric functions may be eliminated with the help of (4.43) giving

∂2

∂θ2
1

(
∂S1

∂θ1

)k

= − k2

4

(
∂S1

∂θ1

)k

+ k(k − 1)
E

ν∗11

(
∂S1

∂θ1

)k−2

+ k(k − 2)
A∗2 − E2

ν∗211

(
∂S1

∂θ1

)k−4

whose integration, with respect to θ1, followed by the use of (4.55) and the
definition of Ik, yields

k

4
Ik =

(
∂S1

∂θ1

)k−2
A∗

ν∗11
sin θ1+(k−1)

E

ν∗11
Ik−2+(k−2)

A∗2 − E2

ν∗211

Ik−4. (4.56)

(The integration constant is chosen to be such that Ik = 0 at θ1 = 0.) Thus,
all integrals are known when we know a sequence of four of them.

Page: 109 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



110 4 Resonance

For even k, the integrals are elementary and are the same no matter
whether the motion is a libration or a circulation:

I0 =
∫

dθ1 = θ1,

I2 =
∫ (

∂S1

∂θ1

)2

dθ1 =
2E
ν∗11

θ1 +
2A∗

ν∗11
sin θ1. (4.57)

For odd k, the integrals are elliptic and we have to consider separately the
cases where Eν∗11 > A∗ν∗11 (circulation), | E |<| A∗ | (libration) and E = A∗

(asymptotic motion). This will be done in the forthcoming sections.

4.4.2 Circulation (Eν∗

11
> A∗ν∗

11
> 0)

Let us calculate the solutions of the Ideal Resonance Problem in the case
of circulations. The first step is to calculate the Garfinkel–Jupp–Williams
integrals necessary to generate the solutions at all orders. To complete the set
of four integrals necessary to span the whole set, we need two of them with
odd values of k. They are

I−1 = ±
√

2ν∗11
E +A∗ F

(
θ1
2
, κ

)
,

and

I1 = ±
√

8
ν∗11

(E +A∗) E
(
θ1
2
, κ

)
,

where F( θ1

2 , κ) and E( θ1

2 , κ) are incomplete elliptic integrals1 of the first and
second kind, respectively, of modulus

κ =

√
2A∗

E +A∗ (0 < κ < 1).

Double signs were used in front of the square roots to stress that these func-
tions have two branches each corresponding to a distinct family of circulations.

The solutions of the equations for Sk (k = 1 and k = 2) are

S1 = I1 = ± 4
κ

√
A∗

ν∗11
E
(
θ1
2
, κ

)
(4.58)

and
S2 = − E

A∗ν∗11

dA∗

dJ∗
1

I0 − ν∗111
6ν∗11

I2 +
1

2A∗
dA∗

dJ∗
1

I2,

1 The slight change in the usual notation for the elliptic integrals made here (F
and E instead of F and E) is necessary to avoid confusion with other functions
in the book. IK and IE are the corresponding complete elliptic integrals.
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4.4 Garfinkel’s Ideal Resonance Problem 111

or

S2 = −Eν∗111
3ν∗211

θ1 +
(

dA∗

dJ∗
1

− A∗ν∗111
3ν∗11

)
sin θ1
ν∗11

. (4.59)

From (4.58) and (4.59) we have, respectively,

∂S1

∂E
= ± κ√

A∗ν∗11
F
(
θ1
2
, κ

)
,

∂S2

∂E
= −ν∗111θ1

3ν∗211

.

Therefore,

t = t0 ± κ√
εA∗ν∗11

F
(
θ1
2
, κ

)
− ν∗111

3ν∗211

θ1 + O(
√
ε), (4.60)

where the upper sign corresponds to prograde circulations and the lower one
to retrograde circulations. θ1 = 0 when t = t0.

The period of the circulations is given, to this order, by

T =
2κ√
εA∗ν∗11

IK(κ) ∓ 2πν∗111
3ν∗211

+ O(
√
ε), (4.61)

where IK(κ) is the complete elliptic integral of the first kind of modulus κ.
The use of Jacobian functions is necessary to write the complete solution,

as well as, for instance, to give the explicit form of the time law θ = θ(t).
Inverting the elliptic integral in (4.60) we obtain

θ1 = ±2 am

(
τ +

√
εA∗ν∗11
κ

ν∗111
3ν∗211

θ1

)
+ O(ε),

where am is the Jacobian amplitude, and

τ =

√
εA∗ν∗11
κ

(t− t0). (4.62)

To the given order of approximation, we may still write

θ1 = ± 2 am τ + 4

√
εA∗ν∗11
κ

ν∗111
3ν∗211

am τ dn τ + O(ε), (4.63)

where dn is the Jacobian delta amplitude elliptic function.
The variation of the action J1, to the same order of approximation, is

J1 = J∗
1 ± 2

κ

√
εA∗

ν∗11

√
1 − κ2 sin2 θ1

2
− εEν∗111

3ν∗211

+ ε

(
dA∗

dJ∗
1

− A∗ν∗111
3ν∗11

)
cos θ1
ν∗11

+ O(ε
√
ε), (4.64)
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112 4 Resonance

where the upper sign corresponds to motions above the libration zone (J1 >
J∗

1 ) and the lower sign to motions below the libration zone (J1 < J∗
1 ). One

should be aware that the relationship between the double signs in (4.63) and
(4.64) is not always the same. When ν∗11 > 0, the upper (resp. lower) sign
in one of them corresponds to the upper (resp. lower) sign in the other (the
circulations above the libration zone are prograde and the circulations be-
low the libration zone are retrograde). When ν∗11 < 0, we have to consider
that the second of them carries the sign of ∂S1/∂θ1 (which is proportional
to

√
A∗/ν∗11), while the first of them carries the sign of ∂S1/∂E (which is

proportional to ν∗11
√
A∗/ν∗11; written as

√
A∗ν∗11). Then, when ν∗11 < 0, these

two partial derivatives have opposite signs and, to the upper sign in one of
the equations, corresponds the lower sign in the other (the circulations above
the libration zone are retrograde and the circulations below the libration zone
are prograde).

In the inner limit κ → 1, we have IK → ∞ and, thus, T → ∞. The outer
limit κ → 0 corresponds to E → ∞. From (4.56) and (4.57), it is evident
that, for k even, Ik has a leading term in Ek/2; thus, for κ → 0, the series
giving the function S is divergent, meaning that this theory does not allow us
to study the motion far of the resonance; it is only valid in the region of deep
resonance where κ > O(

√
ε) and where the general theories of the previous

chapter would fail because of the small divisor ν∗1 .

4.4.3 Libration ( |E| < |A∗| )

The basic equations for librations and circulations are the same. However,
elliptic integrals must be treated in a different way since, now, κ > 1. We
need to use the reciprocal modulus transformation

sin ζ = κ sin
θ1
2

(4.65)

(see Sect. B.1.2) and the solutions describing the librations are obtained from
those describing the circulations by means of the well-known relations

κF
(
θ1
2
, κ

)
= F

(
ζ,

1
κ

)
(4.66)

and

κ E
(
θ1
2
, κ

)
= κ2 E

(
ζ,

1
κ

)
− (κ2 − 1) F

(
ζ,

1
κ

)
. (4.67)

We thus have

I−1 =

√
ν∗11
A∗ F

(
ζ,

1
κ

)
and

I1 = 4

√
A∗

ν∗11

[
E
(
ζ,

1
κ

)
+ βF

(
ζ,

1
κ

)]
,
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4.4 Garfinkel’s Ideal Resonance Problem 113

where

β =
1 − κ2

κ2
(4.68)

and

ζ = arcsin
(
κ sin

θ1
2

)
= arcsin

√
A∗(1 − cos θ1)

E +A∗ . (4.69)

The integrals I0 and I2 are the same as before.
The solution of the equation for k = 1 is again

S1 = I1,

(with the new value of I1); for k = 2, the solution is the same as for circula-
tions. We also have

∂S1

∂E
=

1√
A∗ν∗11

F
(
ζ,

1
κ

)
.

Substitution of these results into (4.53) gives, now, the time law

t = t0 +
1√

εA∗ν∗11
F
(
ζ,

1
κ

)
− ν∗111

3ν∗211

θ1 + O(
√
ε), (4.70)

where we assume θ1 = 0 and θ̇1 > 0 (or ζ = 0 and ζ̇ > 0) at t = t0.
The period of the librations is the time for θ1 to perform a complete

oscillation between the boundaries of the libration. We may first note that the
term proportional to θ1 does not contribute to the period since the angle θ1 will
be brought back to the initial value without completing one revolution; this
term only says that θ1 is faster in one direction than in another (if ν∗111 > 0,
it is faster when θ1 grows). We have to consider, then, only the contribution
of the term involving the elliptic integral, whose calculation is the same as for
the simple pendulum:

T =
4√

εA∗ν∗11
IK

(
1
κ

)
+ O(

√
ε). (4.71)

The inversion of the elliptic integral in (4.70) gives, now,

κ sin
θ1
2

= sin ζ = sn
{√

εA∗ν∗11

[
(t− t0) +

(
ν∗111
3ν∗211

)
θ1

]}
+ O(ε), (4.72)

where sn is the Jacobian sine amplitude elliptic function with modulus 1/κ.
An iteration over θ1 is necessary to complete the inversion of (4.70).

The analog of (4.64), in this case, is

J1 = J∗
1 ± 2

κ

√
εA∗

ν∗11
cos ζ − εEν∗111

3ν∗211

+ ε

(
dA∗

dJ∗
1

− A∗ν∗111
3ν∗11

)
cos θ1
ν∗11

+ O(ε
√
ε).

(4.73)
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114 4 Resonance

In all equations before the last one, we have not used double signs since the
two branches of the square roots meet at the boundary of the libration and
are parts of the same solution. However, as in the case of circulations, when
ν∗11 < 0,

√
A∗/ν∗11 and

√
A∗ν∗11 must be considered with different signs. Hence,

a double sign was included in the last equation, the positive sign holding when
ν∗11 > 0 and the negative one when ν∗11 < 0.

The inner limit κ → ∞ ( 1
κ → 0) corresponds to E → −A∗, that is, to the

stable equilibrium point. The outer limit κ → 1 corresponds to the separatrix
(see below).

4.4.4 Asymptotic Motions (E = A∗)

When κ = 1 (E = A∗), (4.44) becomes, simply,

∂S1

∂θ1
= ±

√
2A∗

ν∗11
(1 + cos θ1) = ±

√
4A∗

ν∗11
cos

θ1
2

;

the corresponding integral is only pseudo-elliptic and gives

S1 = ±
√

8A∗

ν∗11
(1 − cos θ1) = ±

√
16A∗

ν∗11
sin

θ1
2
.

The derivative ∂S1/∂E needs some special consideration since, now, E is a
constant. This derivative may be obtained by calculating ∂2S1/∂θ1∂E from
(4.44), then making E = A∗, and integrating with respect to θ1. Then

∂S1

∂E
= ±

∫ √
1

4A∗ν∗11
sec

θ1
2

dθ1 = ±
√

1
A∗ν∗11

ln tan
(
π

4
+
θ1
4

)
(−π < θ1 < π). The formal solution of order O(ε), for this particular choice
of the integration constant, is

J1 = J∗
1 ±

√
4A∗ε
ν∗11

cos
θ1
2

− A∗εν∗111
3ν∗211

(1 + cos θ1) +
ε

ν∗11

dA∗

dJ∗
1

cos θ1 + O(ε
√
ε),

(4.74)

t = t0 ±
√

1
εA∗ν∗11

ln tan
(
π

4
+
θ1
4

)
− ν∗111

3ν∗211

θ1 + O(
√
ε). (4.75)

In these two equations, each choice in the double signs corresponds to one
of the separatrices. They are to be chosen in accordance with the same rules
used for circulations: upper or lower separatrix in the double sign of (4.74)
and prograde or retrograde motion in the double sign of (4.75). The terms
coming from the derivatives of S2 introduce an asymmetric correction to the
height of the pendulum separatrices and on the asymptotic motions on them.
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U S UU S U

Fig. 4.1. Solutions of the Ideal Resonance Problem for diverse sign choices. Left:
ν∗

11 > 0. Right: ν∗

11 < 0

4.5 Angle–Action Variables of the Ideal Resonance
Problem

The angle–action variables of the Ideal Resonance Problem may be easily
calculated using the one-degree-of freedom formulas of Sect. 2.1.1. We just
have to pay attention to the need of some notation changes, since J1 was
already used to denote the actions in the undisturbed (ε = 0) problem. We
will calculate the new angle w1 and the new action

Λ1 = ± 1
2π

∮
(J1 − J∗

1 )dθ1, (4.76)

in the two regimes of periodic motion: circulation and libration. The intro-
duction of J∗

1 in the function under the integral sign has the effect of adding
a constant to the definition given by (2.6); this can always be done, since
actions are defined except for an arbitrary additive constant.

4.5.1 Circulation

From (4.76) and (4.64), we have

Λ1 = ± 4
κπ

√
εA∗

ν∗11
IE(κ) ∓ εEν∗111

3ν∗211

+ O(ε
√
ε), (4.77)

where the sign in front of the integral is to be fixed in accordance with the
rules stated in Sect. 2.1.2. It is positive when θ̇1 > 0 and negative when θ̇1 < 0.
Combining this rule with the double sign of S1, there are four possible sign
combinations: As a rule of thumb, the first of the double signs is + when
ν∗11 > 0 and − when ν∗11 < 0 and the second one is + for retrograde motions
and − for prograde motions. (See Fig. 4.1.)

The calculation of w1 gives

w1 = ±πF(θ1/2, κ)
IK(κ)

−
√
εA∗ν∗11ν

∗
111π

3κν∗211 IK(κ)

(
θ1 − πF(θ1/2, κ)

IK(κ)

)
+ O(ε). (4.78)
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or w1 = ẇ1(t− t0), where

ẇ1 =
2π
T

=
π
√
εA∗ν∗11

κIK(κ)

(
1 ± πν∗111

√
εA∗ν∗11

3ν∗211κIK(κ)

)
+ O(ε

√
ε), (4.79)

the double signs corresponding to prograde or retrograde circulations as in
(4.60).

4.5.2 Libration

We continue as before, just taking into account that, in the libration regime,
I1 is not the same as for a circulation. In this case, the contribution of some
terms of J1 − J∗

1 vanishes, since θ1 oscillates in a bounded interval returning
to the initial value after one libration period, without performing a complete
rotation. The first approximation of the angle–action variables of the libration
is, thus, the same as in the simple pendulum (with just a different constant
factor and a double sign in Λ1):

Λ1 = ± 8
π

√
εA∗

ν∗11

[
IE
(

1
κ

)
+ βIK

(
1
κ

)]
+ O(ε3/2)

= ± 2
κ2

√
εA∗

ν∗11

(
1 +

1
8κ2

+ · · ·
)

+ O(ε3/2) (4.80)

and

w1 =
πF(ζ, κ−1)
2IK(κ−1)

− πν∗111
√
εA∗ν∗11

6ν∗211 IK(κ−1)
θ1 + O(ε) (4.81)

or, w1 = ẇ1(t− t0), where

ẇ1 =
2π
T

=
π
√
εA∗ν∗11

2IK(κ−1)
+ O(ε

√
ε). (4.82)

The inversion of (4.81) gives

sin ζ = sn
(

2IK
π

w1 +
√
εA∗ν∗11

ν∗111θ1
3ν∗211

+ O(ε)
)

(4.83)

or

sin ζ = sn
(

2IK
π
w1

)
+

π

2IK
d

dw1
sn

(
2IK
π
w1

)√
εA∗ν∗11

ν∗111θ1
3ν∗211

+O(ε). (4.84)

All elliptic functions and integrals have modulus κ−1. The elliptic function
may be replaced by its Fourier expansion2

2 See [17], Sect. 908.
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sn
(

2IK
π
w1

)
=

πκ

IK

∞∑
j=0

csch
[(

j +
1
2

)
χ(κ−1)

]
sin (2j + 1)w1,

where χ(κ−1) =
πIK(

√
1 − κ−2)

IK(κ−1)
(see B.31). We also know that

θ1 = 2 arcsin
(

1
κ

sin ζ
)

and some iterations are needed to obtain the expansion of θ1 at a given order.
Here, it is useful to recall that

csch
[(

j +
1
2

)
χ

]
= 2(e−χ)j+ 1

2

{
1 − (e−χ)2j+1

}−1

and that limκ−1→0 χ(κ−1) = ∞.
In an analogous way, we may use (4.84) to obtain similar expansions for

cos ζ:

cos ζ = cn
(

2IK
π
w1

)
+

π

2IK
d

dw1
cn

(
2IK
π
w1

)√
εA∗ν∗11

ν∗111θ1
3ν∗211

+O(ε) (4.85)

and

cn
(

2IK
π
w1

)
=

πκ

IK

∞∑
j=0

sech
[(

j +
1
2

)
χ(κ−1)

]
cos (2j + 1)w1

where cn is the Jacobian cosine amplitude elliptic function with modulus 1/κ.
We also recall that

sech
[(

j +
1
2

)
χ

]
= 2

(
e−χ

)j+ 1
2
{
1 + (e−χ)2j+1

}−1
.

This series may be substituted into (4.73) to obtain J1.

4.5.3 Small-Amplitude Librations

When the amplitude of the librations is small, that is, when κ−1 ∼ 0, we
may consider only the leading terms of the Taylor expansions of the elliptic
integrals in powers of κ−1 and, thus, obtain

θ1 =
2
κ

sinw1 + O(κ−3),

J1 = J∗
1 ± 2

κ

√
εA∗

ν∗11
cosw1 + O(

√
εκ−3).
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To obtain θ1 and J1 as functions of the action Λ1, we need to invert (4.80)
with respect to κ−1:

1
κ

=

√
|Λ1|
2

(
ν∗11
εA∗

) 1
4

(
1 − |Λ1|

16

√
ν∗11
8A∗ + · · ·

)
+ O(ε∼1). (4.86)

It is also useful to introduce the libration frequency

ẇ1 =
2π
T

=
√
εA∗ν∗11

(
1 − 1

4κ2
+ · · ·

)
=

√
εA∗ν∗11 −

1
8
ν∗11Λ1 + · · · . (4.87)

An easy calculation allows us to obtain

θ1 =
√

2Λ1ν∗11
ẇ1

sinw1 + O (
κ−3

)
; (4.88)

J1 = J∗
1 ±

√
2Λ1ẇ1

ν∗11
cosw1 + O (√

εκ−3
)
. (4.89)

These equations give, at the lower order of approximation, θ1, J1 as func-
tions of the angle–action variables of Garfinkel’s Ideal Resonance Problem.
We recall that Λ1 and ν∗11 can be either positive or negative, but their prod-
uct or quotient is always positive. ẇ1 is always positive. The sign in front of
the square root of (4.89) is positive or negative according to the sign of ν∗11.
The calculation of terms of higher orders requires more work, but it does not
present any difficulty. (See Sect. 8.8.1.)

4.6 Morbidelli’s Successive Elimination of Harmonics

The central idea of Delaunay’s lunar theory has been explored by Morbidelli
[76] and used to study the overlap of resonances in the phase space of the
dynamical system defined by the Hamiltonian

H = H0(J) + ε
∑
h∈D

Ah(J) cos (h|θ). (4.90)

Morbidelli’s successive elimination of harmonics starts with the choice of an
argument (h1|θ) of H and the consideration of the system defined by the
abridged Hamiltonian

F1 = H0(J) + εAh1(J) cos (h1|θ), (4.91)

where h1 ≡ (h1(1), h1(2), · · · , h1(N)) ∈ Z
N This system is integrable. However,

at variance with Delaunay theory, the non-resonance condition (h1|ν) �= 0
is not assumed; on the contrary, the term to start the procedure is selected
from among the most important resonant terms in the domain of the phase
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4.6 Morbidelli’s Successive Elimination of Harmonics 119

space under study. It is chosen in the set of resonant terms, by its topological
consequences. For instance, we may define the resonance strength of a term
by its width – defined as the maximum separation between the two branches
of the separatrices. From the equations of Sect. 4.4.4, we have

∆Jsep = 4

√∣∣∣∣εAh1

ν̃11

∣∣∣∣, (4.92)

where ν̃11 is the second derivative of H0(J) with respect to the action J ′
1

conjugate to (h1|θ). It is easy to see3 that ν̃11 ∼ O(|h2
1|). Therefore, the most

important resonances are those with higher Ah1 and lower |h1|.
Once the term h1 is selected, we change variables through a Lagrangian

extended point transformation where we impose θ′1 = (h1|θ). Let it be, for
example,

θ′1 = (h1|θ) J ′
1 = J1/h1(1)

θ′� = θ� J ′
� = J� − (h1(�)/h1(1))J1

(4.93)

(� = 2, · · · , N). Then, F1 becomes

F1 = H0(J(J ′)) + εAh1(J(J ′)) cos θ′1. (4.94)

This is the Hamiltonian of the Ideal Resonance Problem and we may construct
its angle–action variables w1, Λ1 (see Sect. 4.5). Hence,

θ′1 = θ′1(w1, Λ1; J ′
�) J ′

1 = J ′
1(w1, Λ1; J ′

�). (4.95)

Since the given system has N degrees of freedom, we have to extend this
transformation of one pair of variables to the whole set, which is done by
imposing J ′

� = Λ� and by using one of the algorithms of Sect. 2.4.4:

w� = θ′� + Ξ�(w1, Λ), (4.96)

where, for instance,

Ξ� =
∫ w1

0

(
∂θ′1
∂w1

∂J ′
1

∂Λ�
− ∂J ′

1

∂w1

∂θ′1
∂Λ�

)
dw1 (4.97)

(Henrard-Lemaitre transformation).
Once we have completed the transformation, we go back to the given

Hamiltonian H and perform the canonical transformation (θ′, J ′) ⇒ (w,Λ).
F1 will become a function of Λ only, and the remaining terms of (4.90), not
included in F1, will be periodic functions of the angles w. They may be ex-
panded in Fourier series so that, instead of H , we have a new Hamiltonian

H∗ = H∗
0 (Λ) + ε

∑
h∈D∗

A∗
h(Λ) cos (h|w). (4.98)

3 From (4.93), we obtain ν̃11 =
∑N

j=1

∑N

k=1
νjkh1(j)h1(k).
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120 4 Resonance

This completes one Delaunay–Morbidelli operation. We may, then, restart the
procedure by choosing a new term in H∗:

F2 = H∗
0 (Λ) + εA∗

h2
(Λ) cos (h2|w). (4.99)

We then introduce w′
1 = (h2|w) and new angles w′

� and momenta Λ′ through
a Lagrange point transformation; we construct new angle–action variables
ψ1,K1 and complete the transformation to include the other degrees of free-
dom. We thus get a new H∗∗ and continue as before.

We have, purposely, presented the Delaunay–Morbidelli operation with-
out stressing that the angle–action variables are not globally valid and are
not computed in the same way in circulations and librations. In fact, Mor-
bidelli’s successive elimination of harmonics is not meant to construct formal
solutions (the chains of elliptic functions and integrals would make it impos-
sible), but to map the geometry of the resonances in a given domain of the
phase space. One important point is that, in H∗, the angles are w. The w�

differ from the given θ� by the quantity Ξ�, which is small: the corresponding
frequencies in H0(J) and H∗

0 (Λ) are of the same order. w1 is the uniform
angle associated with the libration (or circulation), and has the frequency
of this motion. Thus, new resonances may appear in H∗, involving w1 and
some of the w� not appearing in the given H . The best known examples are
the so-called secondary resonances in the Kirkwood gaps of the asteroid belt
(see [77]). These gaps appear near initial conditions corresponding to aster-
oids with an orbital period commensurable with Jupiter’s period. The motion
of an asteroid inside the gap is a libration about a periodic orbit; the libra-
tion frequency may be approximately known by selecting the main term with
the critical combination of the two longitudes, and using the Ideal Resonance
Problem. The Hamiltonian H∗ shows new critical terms in which the libration
frequency is a multiple of the frequency of motion of the perihelion (one of
the θ�). The overlap of these secondary resonances may be studied taking, in
turn, each of these terms in H∗ to compose the abridged Hamiltonian F2.

To circumvent the difficulties due to elliptic functions and integrals, it is
possible to construct numerically all transformations mentioned in this sec-
tion. We may use the direct techniques described in Sect. 2.2 to construct the
angle–action variables. In such case, the result will not be written as formal
functions, but as functions defined by a table or computer code allowing them
to be known.

4.6.1 An Example

Let us consider an application of Morbidelli’s elimination algorithm to the
Hamiltonian function obtained at the end of Sect. 3.8. We discard terms of
the order O(ε2) and adopt the notation θ, J (without stars) for angles and
actions. Also, for practical reasons, we interchange the subscripts 2 and 3
in the variables and adopt the particular value A0 = αJ2 for the secular
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4.6 Morbidelli’s Successive Elimination of Harmonics 121

term of the perturbation. We also assume that α,B1, L0 and M1 are positive
constants. Hence,

H(θ, J) = H0 + εH2

where

H0 = − 1
2J2

1

+ ν3(J3 − 2J1) (4.100)

and

H2 = αJ2 + L0

√
−J2 cos θ2 +B1 cos θ1 +M1

√
−J2 cos (θ1 + θ2). (4.101)

The action J3 is a constant (since the angle θ3 is absent from the Hamiltonian)
and the exact resonance value of J1 is defined by

ν∗1 = ν1(J∗
1 ) =

∂H0

∂J1

∣∣∣∣
J1=J∗

1

def= 0; (4.102)

that is
J∗

1 =
1

3
√

2ν3
. (4.103)

We also have
ν∗11 = −6ν3

3
√

2ν3 = −3(2ν3)4/3. (4.104)

We recall that the example of Sect. 3.8 is founded on the asteroidal three-body
problem and B1 is, there, a quantity of the order of the orbital eccentricity of
the disturbing planet.

In the neighborhood of J1 = J∗
1 , the Hamiltonian given by (4.101) has two

resonant terms: εB1 cos θ1 and εM1

√−J2 cos (θ1 + θ2). Let us consider the
Ideal Resonance Problems (IRPs) which they, separately, define:

F1(a)= H0(J)+εB1 cos θ1
F1(b)= H0(J)+εM1

√−J2 cos (θ1 + θ2).
(4.105)

�

��

������������������

1(a)

1(b)

1
1

J
J

Fig. 4.2. Separatrices of the two IRPs of (4.105)
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122 4 Resonance

The widths (maximum libration amplitudes) of these resonances are, re-
spectively,

∆Jsep(a) = 4

√
−εB1

ν∗11

∆Jsep(b) = 4

√
−εM1

ν∗11
4
√
−J2.

Figure 4.2 shows the locus of the separatrices of the two considered IRPs, in
the plane J1, |J2|. If |B1| � |M1|, the strip corresponding to the resonance of
F1(a) is narrow (as shown in the figure) and the hierarchy of the two considered
harmonics is well established. It is then possible to start the elimination of
harmonics with the largest one, F1(b).

Following the recipe given above, we perform, initially, the point transfor-
mation

θ′2= θ1 J ′
2=J1 − J2 − J∗

1

θ′1= θ1 + θ2 J ′
1=J2;

(4.106)

F1 becomes
F1 = F1(b) = H0(J(J ′)) + εM1

√
−J ′

1 cos θ′1. (4.107)

Let us consider the small-amplitude librations of this one-degree-of-freedom
system about the libration center J ′∗

1 = −J ′
2. They are given by (see 4.88 and

4.89):

θ′1 =
√

2Λ1ν∗11
ẇ1

sinw1 (4.108)

J ′
1 = −J ′

2 −
√

2Λ1ẇ1

ν∗11
cosw1, (4.109)

where w1, Λ1 are the angle–action variables of the IRP defined by F1, ν∗11 is
a known number and

ẇ1 =
√
−εν∗11M1

4
√
J ′

2 −
1
8
ν∗11Λ1. (4.110)

In order to have θ′1 = 0 at the libration center, we assumed M1 > 0 (we
recall that ν∗11 < 0 and Λ1 < 0). The next step in Morbidelli’s algorithm
is to complete the canonical transformation (θ′1, θ

′
2, J

′
1, J

′
2) ⇒ (w1, w2, Λ1, Λ2)

through
θ′2=w2 − Ξ2(w1, Λ1, Λ2)
J ′

2=Λ2,

where

Ξ2 =
∫ w1

0

(
∂θ′1
∂w1

∂J ′
1

∂Λ2
− ∂J ′

1

∂w1

∂θ′1
∂Λ2

)
dw1.

We note that θ′1, J ′
1 depend on J ′

2, that is, on Λ2, also through ẇ1. The deriv-
atives are
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4.6 Morbidelli’s Successive Elimination of Harmonics 123

∂θ′1
∂w1

=
√

2Λ1ν∗11
ẇ1

cosw1,

∂J ′
1

∂w1
=

√
2Λ1ẇ1

ν∗11
sinw1,

∂θ′1
∂Λ2

=
ν∗11

8Λ3/4
2

√
−2εM1Λ1

ẇ3
1

sinw1,

∂J ′
1

∂Λ2
= −1 − 1

8Λ3/4
2

√−2εM1Λ1

ẇ1
cosw1.

Hence,

Ξ2 = −
∫ w1

0

(
∂θ′1
∂w1

+
|Λ1|

√−εM1ν∗11
4Λ3/4

2 ẇ1

)
dw1,

or

Ξ2 = −θ′1 −
Λ1

8Λ2
, (4.111)

where, for the sake of simplicity, we kept ẇ1 restricted to its first approxima-
tion. The transformation is, now, complete and may be used to transform the
given Hamiltonian.

With the new variables, F1 may depend only on the actions. The substitu-
tion of variables in F1 is cumbersome and the cancellation of periodic terms,
in higher orders, is only partially achieved because of the many simplifica-
tions introduced. However, a shortcut exists. We know that, if we denote by
F̂1(Λ1, Λ2) the result of the transformation, by definition,

ẇ1 =
∂F̂1

∂Λ1

or

F̂1 =
∫

ẇ1 dΛ1.

The problem with this shortcut is that the integration introduces an arbi-
trary additive function of Λ2, for whose derivation, the direct transformation
is necessary. Since this additive function cannot depend on Λ1 and all involved
functions are polynomials in

√−Λ1, we need just transform the parts of F̂1

independent of Λ1 to obtain it. Hence

F̂1(Λ1, Λ2) =
√
−εν∗11M1

4
√
Λ2Λ1 − 1

16
ν∗11Λ

2
1 + εM1

√
Λ2, (4.112)

where the two first terms resulted from the integration of ẇ1 and the last
one from a direct calculation. The constant terms (depending on J3 and J∗

1 )
do not need to be taken into account since they do not contribute to the
equations. The terms of H not considered in F1(b) need to be written with
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�
1(b)

1
1

J
J

ν �
1(b)

1
1

J
J

ν
2

Fig. 4.3. Secular (ν) and secondary (k = 1, 2, 3) resonances

the new variables. The results are Fourier expansions in the angle w2 + kw1.
The new Ĥ0 is

Ĥ0 = F̂1 − εαΛ2. (4.113)

To do a new Delaunay–Morbidelli operation, we have to select a new resonant
periodic term to add to Ĥ0. Let us, first, search the resonance locus of the
main terms. To do this, we need the expressions for ẇ1 and ẇ2:

ẇ1 =
√
−εν∗11M1

4
√
Λ2 − 1

8
ν∗11Λ1 (4.114)

ẇ2 =
∂Ĥ0

∂Λ2
=

√
−εν∗11M1

Λ1

4Λ3/4
2

+
1
2
εM1√
Λ2

− εα. (4.115)

When numerical values are given to ε, ν∗11, M1 and α, the locus of the
curves ẇ2±kẇ1 = 0 is easily found. It is convenient to show these curves in the
plane J1, |J2| instead of the plane Λ1, Λ2. The transformation Λ1, Λ2 ⇒ J1, J2,
however, depends on w1. It is, then, necessary to fix the value of w1. We
follow the same practice usual in resonant asteroid dynamics, and fix it at the
boundaries of the librations of the action J ′

1 conjugate to the critical angle
θ′1. Thus, we assume | cosw1| = 1. As a consequence, to each point in the
plane (Λ1, Λ2) we obtain two points in the plane (J1, J2), one on each side of
the vertical line J1 = J∗

1 . Figure 4.3 (left) shows the lines falling inside the
boundary of the libration domain. They are: the secular resonance ẇ2 = 0
(indicated by ν following astronomers’ classical notation); and the secondary
resonances ẇ2 + kẇ1 = 0 with k > 0 (the lines k = 1, 2, 3 are shown)4.

To each of the resonances in Fig. 4.3 (left) there corresponds one libration
zone defined by the separatrices of the Ideal Resonance Problem obtained
when the corresponding perturbative term is selected and added to Ĥ0. Let
us introduce the new set of canonical variables

4 For a Lie series study of secular and secondary resonances, see Sects. 9.4.5 and
9.4.6.
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4.6 Morbidelli’s Successive Elimination of Harmonics 125

ϕ1=w2 + kw1 K1=Λ2

ϕ2=w1 K2=Λ1 − kΛ2
(4.116)

and study the Ideal Resonance Problems

F2(k) = Ĥ0(K(Λ)) + Ak(K) cosϕ1 (k = 0, 1, 2, 3), (4.117)

where the coefficients Ak(K) come from the expansion of those terms of
H(θ, J) whose coefficients are B1 and L0.

Figure 4.3 (right) shows the separatrices of the IRPs corresponding to k =
0, 1, 2. The secular resonance k = 0 (ν) and the secondary resonance k = 1 are
isolated in this figure, while the secondary resonances k = 2 and k = 3 (shown
only in Fig. 4.3 left) are very close and overlap each other. (The secondary
resonance k = 3 is inside the resonance zone of the secondary resonance
k = 2.) If Fig. 4.3 (right) were the result of an exact numerical calculation,
F2(0) and F2(1) could be considered as good candidates for elimination of
further harmonics. On the contrary, because of the overlap of their libration
domains, the isolated consideration of F2(2) or F2(3) would be unrealistic.
However, Fig. 4.3 (right) is the result of analytical approximations valid only
in a small neighborhood of J1 = J∗

1 , and we have to restrict our analysis to
it. The motions in this neighborhood are far from the resonance lines of Fig.
4.3 (left) and we may use the original Delaunay operation of Sect. 4.1 to get
rid of the harmonic remaining in the Hamiltonian. Maybe, in the case of the
harmonic k = 2, given the broadness of its resonant zone, we should consider
the expression of the circulations given by the Ideal Resonance Problem, since
that given by the classical Delaunay operation assumes that the resonance is
very far and do not influence the solution.

One important remark yet to be made concerns the numerical choice of
the coefficients appearing in the Hamiltonian. To obtain Fig. 4.3 (right), we
had to consider L0 � M1 and neglect the term εB2 cos θ1. Otherwise, the
libration zones of the F2(k) would be so broad that they would overlap over
almost the whole region shown in the figures. In that case, it would no longer
be possible to select one domain in the plane for further studies with the
technique discussed here. These limitations may not, however, be considered
as a weak point. On the contrary, allowing us to map the overlap of resonances,
Morbidelli’s successive elimination of harmonics clearly shows the extreme
limits where approximate regular solutions can exist.

The given example used the heavy analytical machinery of Garfinkel’s
Ideal Resonance Problem with the aim of allowing the reader to have a step-
by-step view of the technique. But one should take advantage of the possibility
of direct numerical construction of the transformations leading to particular
angle–action variables, as discussed in Sect. 2.2, to have exact calculations
and, as a consequence, an exact chart of resonances and libration domains, at
every step.
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Lie Mappings

5.1 Lie Transformations

There is a straightforward way of introducing Lie series mappings into the
study of Hamiltonian systems. Proposition 5.3.1 shows that the mapping de-
fined by the series (5.25)–(5.26) is canonical and may be used in the construc-
tion of canonical perturbation theories. Thus, the reader interested only in
such applications can go straight to those equations and skip the first two
sections whose aim is to introduce Lie derivatives, Lie mappings and the re-
lationship between Lie mappings and Jacobian canonical transformations.

5.1.1 Infinitesimal Canonical Transformations

Let us consider a Jacobian generating function S, continuous and with con-
tinuous derivatives with respect to a parameter λ:

S = S(Q, q ;λ) λ ∈ (a, b) ⊂ R (5.1)

Q ≡ (Q1, Q2, · · · , QN ), q ≡ (q1, q2, · · · , qN ). It spans a one-parameter family
of canonical transformations:

pi =
∂S(Q, q ;λ)

∂qi
Pi = −∂S(Q, q ;λ)

∂Qi
(5.2)

fixed by the parameter λ. The transformation generated by S(Q, q ;λ) maps
one point (Q,P ) of the given phase space into one point (q, p) of the trans-
formed phase space. In the same way, the transformation generated by
S(Q, q∗ ;λ∗) maps the same point (Q,P ) into some other point (q∗, p∗). Since
S(Q, q ;λ) is a continuous function of λ, to neighboring values of λ ∈ (a, b)
there correspond neighboring points in the phase space. Thus, the transfor-
mation determines, in the new phase space, an ordered set Γ which is the
locus of the points into which (Q,P ) is mapped when λ varies in (a, b) (Fig.
5.1).
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(Q ,P )

(q ,p )

(q ,p)

                                          Γ
                   λ

λ

*

* *

>

>

Fig. 5.1. The transformations generated by S(Q, q ; λ)

Because of the group property of the canonical transformations, the trans-
formation from (q∗, p∗) to (q, p) is itself canonical. When λ−λ∗ is an infinitesi-
mal quantity, the transformation (q∗, p∗) ⇒ (q, p) is a special type of canonical
transformation in which each point of the phase space is transformed into a
neighboring point. These transformations are called infinitesimal canonical
transformations [97].

We use the Jacobian canonical condition of Sect. 1.3 to write

(p | δq) − (P | δQ) = δS(Q, q ;λ)
(p∗ | δq∗) − (P | δQ) = δS(Q, q∗ ;λ∗), (5.3)

where the variations δ refer only to arbitrary changes in the canonical vari-
ables; the parameter is kept fixed during this operation. Forming the difference
of the two equations above, we obtain the relation

(p∗ | δq∗) − (p | δq) = δ [S(Q, q∗ ;λ∗) − S(Q, q ;λ)] . (5.4)

We may then write the first-order Taylor expansion of S :

S(Q, q∗ ;λ∗) = S(Q, q ;λ) +
(
∂S(Q, q ;λ)

∂q

∣∣∣∣ q∗ − q

)
+
∂S(Q, q ;λ)

∂λ
(λ∗ − λ).

Substituting this expansion into (5.4) and taking (5.2) into account, we obtain,
to first order,

(p∗ | δq∗) − (p | δq) = δ(p | q∗ − q) + (λ∗ − λ) δ
[
∂S(Q, q ;λ)

∂λ

]
.

A straightforward calculation leads to the remarkable equation

(p− p∗ | δq) − (q − q∗ | δp) = (λ− λ∗) δ
[
∂S(Q, q ;λ)

∂λ

]
, (5.5)

where, in the first term, we have neglected the higher-order infinitesimal dif-
ference (p− p∗ | δq∗ − δq). What makes this equation remarkable is that the
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5.1 Lie Transformations 129

differential form in the left-hand side of (5.5) involves the variations of the
two old variables q, p, instead of mixing variations of new and old variables as
with the differential forms of Sect. 1.3. The price to be paid for having this
uniformity is that the transformation (q, p) ⇒ (q∗, p∗) is only infinitesimally
different from the identity. Thus, it is not so general as the Jacobian canon-
ical transformations. In order to draw further conclusions, we introduce the
function

S′
λ(Q, q ;λ) =

∂S(Q, q ;λ)
∂λ

. (5.6)

The system (5.2) may be solved with respect to Q giving Q = Q(q, p, λ). Thus,
we may substitute it for Q in S′

λ and call −W the resulting function:

W (q, p ;λ) def= −S′
λ(Q(q, p ;λ), q ;λ).

With the help of the function W , (5.5) is written in a simpler way,

(q − q∗ | δp) − (p− p∗ | δq) = (λ− λ∗) δW (q, p ;λ), (5.7)

and comparison of the two sides of this equation yields the transformation
equations

qi − q∗i = (λ− λ∗)
∂W

∂pi
, pi − p∗i = −(λ− λ∗)

∂W

∂qi
. (5.8)

These equations show that infinitesimal canonical transformations can be
represented in explicit form. The relative variables p − p∗ and q − q∗ are
explicitly expressed in terms of a single function W (q, p ;λ) characterizing the
transformation.

Dividing both sides of (5.8) by λ − λ∗ and letting λ − λ∗ tend towards
zero, gives

dqi

dλ
=

∂W

∂pi

dpi

dλ
= −∂W

∂qi
. (5.9)

The general solution of these differential equations is a one-parameter
group of canonical transformations. The function W determines this group
uniquely. We shall call W the Lie generating function or Lie generator of the
group.

Definition 5.1.1 (Lie mapping). Lie mappings are all canonical transfor-
mations defined by solutions of the canonical equations (5.9).

It is worthwhile mentioning that the reasoning with first-order infinitesimal
quantities is necessary only to establish the equations. Once the limit oper-
ation is accomplished, the result is an exact equation whose solutions allow
us to extend the domain of these transformations to finite intervals. They
are usually presented in power series, as in Sect. 5.3, but the definition given
above is more general.
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Equation (5.9) serves also to show the duality existing between canonical
equations and canonical transformations. Every property of one of them may
be extended to the other. The exploration of this duality is beyond the scope of
this work. However, the transposition of the results from canonical equations
to canonical transformations and vice versa is easy.

5.2 Lie Derivatives

Definition 5.2.1 (Lie derivative [65]). Let O be an open subset of the phase
space and let F be the ring of all functions f : O → R of class C∞. The Lie
derivative generated by W is the application

f → DW f = {f,W}, (5.10)

where {f,W} is the Poisson bracket of the functions f and W ∈ F :

{f,W} =
N∑

i=1

(
∂f

∂qi

∂W

∂pi
− ∂W

∂qi

∂f

∂pi

)
. (5.11)

The application (5.10) has the following characteristic properties:

DW (f + g) = DW f + DW g
DW (fg) = fDW g + gDW f
DW c = 0

(5.12)

for all f ∈ F , g ∈ F and all constants c. These properties allow us to say that
DW defines a derivation of the ring F .

The well-known Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

leads to another important property of the Lie derivatives:

DW {f, g} = {DW f, g} + {f,DW g}. (5.13)

This property of the Lie derivatives allows us to say that they form a Lie
algebra.

The Jacobi identity also implies the existence of a property concerning the
composition of the Lie derivatives generated by two functions W1 and W2:

D{W1,W2} = DW2DW1 − DW1DW2

Repeated application of the operator DW gives

Dn
W f = DW (Dn−1

W f).
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By recurrence over n, the properties given by (5.12) and (5.13) can be
extended to become

Dn
W (f + g) = Dn

W f + Dn
W g (5.14)

Dn
W (fg) =

n∑
k=0

(
n
k

)
Dk

W f.Dn−k
W g (5.15)

Dn
W {f, g} =

n∑
k=0

(
n
k

)
{Dk

W f,Dn−k
W g}. (5.16)

Lie derivatives have an important interpretation:

Proposition 5.2.1. The Lie derivative of f generated by W is the derivative,
with respect to λ, of the restriction of f to an integral curve of the canonical
equations spanned by W .

Proof. Let f̃ : Γ → R be a restriction of the function f defined by

f̃ = f(q(λ), p(λ)), (5.17)

where q(λ), p(λ) is a solution of the differential equations (5.9) for a given set
of initial conditions. We then have

df̃
dλ

=
N∑

i=1

(
∂f̃

∂qi

dqi

dλ
+

∂f̃

∂pi

dpi

dλ

)

or, taking into account (5.9) and the definition of the Lie derivatives,

df̃
dλ

= {f,W} = DW f. (5.18)

��
Exercise 5.2.1 (Homogeneity). Show that the Lie derivative Dn

W is ho-
mogeneous of degree n in W , that is, if k ∈ R is a constant,

Dn
kW f = knDW f. (5.19)

5.3 Lie Series

We have defined the Lie mapping as a solution of the canonical system of
differential equations (5.9). It follows, therefore, that the construction of a Lie
mapping is the construction of solutions of (5.9). The usual integration by
series involves the Cauchy existence theorem:
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Theorem 5.3.1 (Cauchy1 ). Given a system of ordinary differential equa-
tions in Weierstrass normal form:

dy
dx

= Y (y, x), (5.20)

where Y : Rn+1 → Rn is analytical in some domain D ⊂ Rn+1, this system
has a solution y(x) analytical in a non-infinitesimal domain D1 ⊂ D that
contains the given initial conditions x0, y0.

Cauchy’s existence theorem means that the solutions of (5.20) may be
written as a convergent Taylor series:

y = y0 +
∞∑

k=1

1
k!

(
dky

dxk

)
x=x0

(x− x0)k, (5.21)

where the values of the derivatives dky/dxk can be formally deduced from the
given equations by repeated differentiation of (5.20). Hence,

y = y0 + Y (y0, x0)(x− x0) +
∞∑

k=2

1
k!

(
dk−1Y (y(x), x)

dxk−1

)
x=x0

(x− x0)k. (5.22)

Now, let O be an open subset of the phase space and let the right-hand
sides of (5.9) be analytic for (q, p) ∈ O and λ in a neighborhood V (0) of the
origin. The series

qi = q∗i +
∞∑

k=1

λk

k!

[
dk−1

dλk−1
(
∂W

∂pi
)
]

λ=0

(5.23)

pi = p∗i −
∞∑

k=1

λk

k!

[
dk−1

dλk−1
(
∂W

∂qi
)
]

λ=0

(5.24)

converge in some O1 ⊂ O and V1(0) ⊂ V (0) and represent the solution of
(5.9) that assumes the values q∗, p∗ when λ = 0.

The derivatives d
dλ are just the Lie derivatives generated by the function

W (see 5.18) and the above equations may be written as

qi =
∞∑

k=0

λk

k!
[
Dk

W qi

]
λ=0

(5.25)

pi =
∞∑

k=0

λk

k!
[
Dk

W pi

]
λ=0

. (5.26)

These relations define the Lie series.

1 For a proof of Cauchy’s theorem, see [91].
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5.3 Lie Series 133

Definition 5.3.1 (Lie series). For each function f ∈ F , each point (q, p) ∈
O and a given Lie generator W of class C∞ in O, the application

f → EW f =
∞∑

k=0

λk

k!
Dk

W f (5.27)

is the Lie series of the function f , generated by W .

The following properties are immediate consequences of (5.14), (5.15) and
(5.16):

EW (f + g) = EW f + EW g
EW (fg) = EW f.EW g
EW c = c.

(5.28)

In addition, we have

Proposition 5.3.1 (Canonical condition).

EW {f, g} = {EW f,EW g}. (5.29)

Proof.

{EW f,EW g} =

{ ∞∑
k=0

λk

k!
Dk

W f,
∞∑

k′=0

λk′

k′!
Dk′

W g

}
=

∞∑
k=0

∞∑
k′=0

λk+k′

k!k′!
{Dk

W f,Dk′

W g}

or, changing to n = k + k′ in the summations:

{EW f,EW g} =
∞∑

n=0

n∑
k=0

λn

k!(n− k)!
{Dk

W f,Dn−k
W g}

=
∞∑

n=0

λn

n!

n∑
k=0

(
n
k

)
{Dk

W f,Dn−k
W g}.

Hence, because of (5.16),

{EW f,EW g} =
∞∑

n=0

λn

n!
Dn

W {f, g} = EW {f, g}.

��
Proposition 5.3.1 states that Poisson brackets of two canonical variables

are invariant to the transformation (q, p) ⇒ (EW q, EW p) and therefore, this
transformation is canonical Thus, the canonical nature of Lie mappings is a
consequence of (5.29). When a direct introduction of Lie series is desirable,
we may start the subject at this very point, just defining the Lie series and
stating Proposition 5.3.1.

We may extend to the Lie series, the interpretation given to the Lie deriv-
atives:
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134 5 Lie Mappings

Proposition 5.3.2. The Lie series of f , generated by W (q, p), is the Taylor
series expansion, around λ = 0, of the restriction of f to an integral curve of
the canonical equations spanned by W .

Proof. Let us consider, again, the restriction f̃ : Γ → R of the function f (see
(5.17)). Then, (5.27) may be written

EW f =
∞∑

k=0

λk

k!

(
dkf̃

dλk

)
λ=0

��
The series representation of the Lie mapping generated by the function

W (q, p), given by (5.25)–(5.26), may be written in a very compact form as

z = EW∗z∗, (5.30)

where z ≡ (q, p), z∗ ≡ (q∗, p∗) and W ∗ = W (z∗). Equation (5.30) gives the
Taylor series expansion around λ = 0 of the restriction of the variables z to
an integral curve of the canonical equations spanned by W . Proposition 5.3.2
shows that this result is not restricted to the variables and the transformation
defined here is such that for any f ∈ F we have2

f(z) = EW∗f(z∗). (5.31)

Canonical transformations given by Lie series have the practical advantage
of avoiding cumbersome operations such as inversions and substitutions, which
are always necessary when Jacobian transformations are used (as discussed in
Sect. 3.12).

However, one must keep in mind that Lie series mappings are not universal
in the sense that not every canonical mapping can be represented as a Lie series
mapping. This representation is restricted to mappings in the neighborhood
of the identity. This makes them very useful in perturbation theories. We
recall that the classical theories discussed in Chap. 3 are always such that
the canonical transformation is reduced to the identical transformation, when
ε = 0 (the generating function is reduced to (q | p∗)).

5.4 Inversion of a Lie Mapping

Proposition 5.4.1. EWE−W is the identity operator.

2 This result is known as the commutation theorem [43]. Indeed, from (5.30) and
(5.31), it follows that f(EW∗z∗) = EW∗f(z∗).
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Proof. Using the definition of Lie series, we obtain

EWE−W f(z) =
∞∑

k′=0

∞∑
k=0

λk′+k

k′!k!
Dk′

W Dk
−W f(z)

or, changing to � = k + k′,

EWE−W f(z) =
∞∑

�=0

�∑
k=0

λ�

�!
(−1)k

(
�
k

)
D�

W f(z).

The proof follows from the fact that
�∑

k=0

(−1)k

(
�
k

)
= 0 for all � �= 0, and

then EWE−W f(z) = f(z). ��
Proposition 5.3.2 and Fig. 5.1 allow us to get a trivial insight into the above

proposition. f(z) = EW∗f(z∗) (where W ∗ = W (z∗)) is the Taylor series of
the restriction of f to the integral curve Γ about λ = 0 (that is, about
z∗ ≡ (q∗, p∗)) and gives the value of f at a generic λ (that is, at a generic
z ≡ (q, p)). To get the inversion of the Lie series, we have just to invert the role
played by z and z∗ and the direction of motion along Γ (that is, the sign of the
generating function). Then f(z∗) = E−W f(z) (where W = W (z)). It is worth
recalling that, by construction, W (z) = W (z∗) (W is the “Hamiltonian” of
the equations (5.9) defining the Lie mapping.

5.5 Lie Series Expansions

In the applications to canonical perturbation theory, some authors (e.g. Deprit
[23]) used, instead of the external parameter λ, the same parameter ε used
to characterize the strength of the perturbation. This choice is not possible
here because the Lie derivative may operate on functions depending on ε and
several of the previous results, e.g. (5.18), no longer holds if f depends on
the parameter. If it is desired to write Lie series expansions as power series in
ε, it is enough to replace the Lie generator by εW and use the homogeneity
property Dn

εW = εnDn
W to obtain such a series (but keeping λ as the formal

parameter of the transformation). Besides, since W is always introduced in
perturbation theory as an arbitrary function to be determined so as to satisfy
some given property, we may arbitrarily take whichever Lie generator suits us
best. For instance, as Mersman [69], we adopt

λ = 1. (5.32)

It is worth noting that the canonical condition given by (5.29) holds for all λ. It
is not necessary to assume that λ is small. The decrease of the terms necessary
to guarantee the convergence of the series may be obtained otherwise, for
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instance by choosing ||W || small. (Remember again that the operator Dn
W is

homogeneous of degree n with respect to W .)
Let us, now, assume that f and W are the series

f =
∞∑

k=0

fk and W =
∞∑

k=1

Wk. (5.33)

We write these series in a more general form than just power series in some
small parameter. The subscript k in fk and Wk indicates that these terms are
homogeneous functions of degree k in a given set of parameters, or, for short,
of kth order. In the case where this set of parameters has just one element,
say ε, we have the usual power series. But this is not the only possible case in
Lie series perturbation theories and less restrictive possibilities will be widely
explored in forthcoming chapters.

In what follows, the only restrictive assumption made is that the order of
the terms (in the chosen set of parameters) is not affected by differentiation
with respect to the variables. We also assume W0 = 0 (or any constant); this
is equivalent to saying that the Lie mapping reduces itself to the identity at
order 0.

5.5.1 Lie Series Expansion of f

With the above assumptions, the Lie series expansion of f is

EW f = f0

+ f1 + DW1f0

+ f2 + DW1f1 + DW2f0 + 1
2 DW1DW1f0

+ f3 + DW1f2 + DW2f1 + DW3f0 + 1
2 DW1DW1f1

+ 1
2 DW1DW2f0 + 1

2 DW2DW1f0 + 1
6 DW1DW1DW1f0

+ · · · ,

(5.34)

where the terms were grouped in accordance with their orders (which increase
by one unit from one row to the next).

When Poisson brackets are used instead of the DW notation, we have

EW f = f0

+ f1 + {f0,W1}
+ f2 + {f1,W1} + {f0,W2} + 1

2 {{f0,W1},W1}
+ f3 + {f2,W1} + {f1,W2} + {f0,W3}

+ 1
2 {{f1,W1},W1} + 1

2 {{f0,W2},W1} + 1
2 {{f0,W1},W2}

+ 1
6 {{{f0,W1},W1},W1}

+ · · · .
(5.35)

In the Lie series perturbation theories of the forthcoming chapters, this
expansion with explicit Poisson brackets will be preferred.
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5.5.2 Deprit’s Recursion Formula

The calculation of high-order Lie derivatives is a painstaking task. An im-
portant result, allowing extended calculations to be kept under control, is
Deprit’s recursion formula [23]. In order to derive it, we first consider the Lie
derivative of f generated by W (as given by 5.33):

DW f =
∞∑

k=1

∞∑
k′=0

DWk
fk′ ,

or, changing to � = k + k′:

DW f =
∞∑

�=1

�∑
k=1

DWk
f�−k.

Let us, now, introduce the functions:

Φ1
� =

�∑
k=1

DWk
f�−k (� ≥ 1). (5.36)

Hence,

DW f =
∞∑

�=1

Φ1
� .

We proceed similarly to obtain the second Lie derivative:

D2
W f = DW

∞∑
k′=1

Φ1
k′ =

∞∑
k=1

∞∑
k′=1

DWk
Φ1

k′ ,

or, changing again to � = k + k′:

D2
W f =

∞∑
�=2

�−1∑
k=1

DWk
Φ1

�−k.

We then introduce the functions:

Φ2
� =

�−1∑
k=1

DWk
Φ1

�−k (� ≥ 2) (5.37)

and obtain

D2
W f =

∞∑
�=2

Φ2
� .

Continuing with the iterations, we obtain Deprit’s recursion formula:
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Dn
W f =

∞∑
�=n

Φn
� (n ≥ 1), (5.38)

where

Φn
� =

�−n+1∑
k=1

DWk
Φn−1

�−k (� ≥ n)

and
Φ0

� = f� (� ≥ 0).

From the above equations, we obtain:

Φ1
1 = DW1f0

Φ1
2 = DW1f1 + DW2f0

Φ1
3 = DW1f2 + DW2f1 + DW3f0

Φ1
4 = DW1f3 + DW2f2 + DW3f1 + DW4f0

Φ2
2 = DW1Φ

1
1

Φ2
3 = DW1Φ

1
2 + DW2Φ

1
1

Φ2
4 = DW1Φ

1
3 + DW2Φ

1
2 + DW3Φ

1
1

Φ3
3 = DW1Φ

2
2

Φ3
4 = DW1Φ

2
3 + DW2Φ

2
2

Φ4
4 = DW1Φ

3
3

· · · · · ·

and the Lie series expansion of f becomes

EW f = f0

+ f1 + Φ1
1

+ f2 + Φ1
2 + 1

2 Φ2
2

+ f3 + Φ1
3 + 1

2 Φ2
3 + 1

6 Φ3
3

+ f4 + Φ1
4 + 1

2 Φ2
4 + 1

6 Φ3
4 + 1

24 Φ4
4

+ · · · .

(5.39)
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6

Lie Series Perturbation Theory

6.1 Introduction

In 1966, the Poincaré and von Zeipel–Brouwer theories were rejuvenated by
Hori [53] through the introduction of canonical transformations expressed by
Lie series mappings instead of the classical Jacobian transformations. The use
of mathematical operations in perturbation theories with the same properties
as Lie derivatives and Lie series was already current among physicists [13]
and, around 1960, in at least one instance (Sérsic [85]), it was suggested that
Lie series could be used to represent the canonical transformations of Celestial
Mechanics.

Hori theory takes full advantage of the invariance of Lie derivatives (i.e.
Poisson brackets) to canonical changes of variables. The invariance of Lie
derivatives allowed him to use unspecified canonical variables instead of angle–
action variables and, as a consequence, to formulate a general perturbation
theory. His theory is free of particularities associated with specific sets of
canonical variables. Hori’s general theory disclosed, in a natural way, the ex-
istence of a privileged dynamical system – the auxiliary system – hereafter
called the Hori kernel. This system, defined from the homological partial dif-
ferential equation, exists in every perturbation theory. Its topology, in some
sense, freezes the phase space and constrains the solutions of the transformed
system. It is the key to understanding the dynamics behind perturbation the-
ories, and a necessary tool to solve more complex perturbation problems such
as Bohlin’s problem (see Chaps. 8 and 9).

In practical applications, we prefer to use, where possible, angle–action
variables, in which case the theory follows closely what was done in the theories
using Jacobian canonical transformations. The task of solving the homological
partial differential equation becomes trivial and the development of the theory
is much simpler (but hides the existence of a privileged dynamical system
behind the perturbation equations). It is presented below and, then, compared
to Poincaré theory by means of some examples.
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140 6 Lie Series Perturbation Theory

6.2 Lie Series Theory with Angle–Action Variables

Let us start with the canonical system of equations:

dθi

dt
=

∂H

∂Ji

dJi

dt
= −∂H

∂θi
, (6.1)

where H = H0(J) + εR(θ, J) is a smooth time-independent Hamiltonian and
θ ≡ (θ1, θ2, · · · , θN ), J ≡ (J1, J2, · · · , JN ) are angle–action variables. Let us,
then, consider the transformation (θ, J) ⇒ (θ∗, J∗) defined by the generic
equation

φ(θ, J) = EW∗φ(θ∗, J∗) =
∞∑

k=0

1
k!

Dk
W∗φ(θ∗, J∗), (6.2)

where W ∗ = W (θ∗, J∗)1. For the reasons explained in Sect. 5.5, the parameter
of the Lie mappings is fixed at λ = 1. Some authors prefer to adopt, here,
the same parameter ε used to characterize the strength of the perturbation,
and let it be free. However, such a choice leads to unnecessary discussions
about transformations that depend explicitly on the parameter. These com-
plications are avoided when we fix λ = 1 and no generality is lost because of
the homogeneity properties of Lie derivatives.

The assumption that the Hamiltonian is time-independent is also made
without loss of generality. We recall that, in the case of a time-dependent
Hamiltonian, it is enough to extend the phase space and to introduce a new
degree of freedom. The Hamiltonian of the resulting parametric equations
does not depend on the new independent variable (see Sect. 1.6).

We follow, now, the same steps as in Chap. 3, but considering the canonical
transformation defined by (6.2). The given Hamiltonian is transformed in the
same way:

H(θ, J) = EW∗H(θ∗, J∗) =
∞∑

k=0

1
k!

Dk
W∗H(θ∗, J∗), (6.3)

which will be written hereafter with the explicit Poisson brackets, instead of
the DW notation (see 5.35).

The conservation of the Hamiltonian in time-independent canonical trans-
formations allows us to write

H∗(θ∗, J∗) = H(θ, J), (6.4)

where H∗ is the Hamiltonian of the transformed system. The combination of
(6.4) and (6.3) gives

1 We have written (θ, J) ⇒ (θ∗, J∗) to retain the classical way of presenting the
transformation, but, in fact, (6.2) gives the transformation (θ∗, J∗) ⇒ (θ, J),
which is the transformation that indeed matters in actual theories (see [73]).
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6.2 Lie Series Theory with Angle–Action Variables 141

H∗(θ∗, J∗) = EW∗H(θ∗, J∗). (6.5)

Hori’s perturbation equations are obtained by substituting into (6.5) the
expansions

H = H0 + εH1+ ε2H2+ · · ·+ εnHn+ · · ·
H∗ = H∗

0 + εH∗
1+ ε2H∗

2+ · · ·+ εnH∗
n+ · · ·

W ∗ = εW ∗
1 + ε2W ∗

2 + · · ·+ εnW ∗
n+ · · ·.

(6.6)

The simplicity of these expansions is remarkable Now, there are no expansions
due to the internal substitution of variables by the series defining the trans-
formation as in classical theories and we just need the power series expansions
of H and H∗ in ε, in their explicit form.

We may compare the Lie series expansion of H(θ, J) with the expansion of
H∗(θ∗, J∗), according to (6.6) and (5.35), and identify the terms in the same
powers of ε. We obtain the perturbation equations

H∗
0 = H0

H∗
1 = H1 + {H0,W

∗
1 }

H∗
2 = H2 + {H1,W

∗
1 } + 1

2{{H0,W
∗
1 },W ∗

1 } + {H0,W
∗
2 }

H∗
3 = H3 + {H2,W

∗
1 } + {H1,W

∗
2 } + 1

2{{H1,W
∗
1 },W ∗

1 }
+ 1

2{{H0,W
∗
1 },W ∗

2 } + 1
2{{H0,W

∗
2 },W ∗

1 }
+ 1

6{{{H0,W
∗
1 },W ∗

1 },W ∗
1 } + {H0,W

∗
3 }

· · · · · ·
H∗

n = Hn + {Hn−1,W
∗
1 } + 1

2{{Hn−2,W
∗
1 },W ∗

1 } + · · · + {H0,W
∗
n}.

(6.7)

In these equations, the functions Hk are to be read as Hk(θ∗, J∗), that is,
functions depending on (θ∗, J∗) in the same way as Hk(θ, J) depend on (θ, J).
We note that, in the kth equation, W ∗

k only appears through the additive term
{H0,W

∗
k } and H∗

k only appears in the left-hand side; all other W ∗
j and H∗

j , in
that equation, have subscripts smaller than k. The generic equation for k ≥ 1
is the homological equation:

H∗
k = Ψk + {H0,W

∗
k }, (6.8)

where Ψk(θ∗, J∗) is a known function when the previous k equations have
already been solved2.

2 Some simplified expressions with fewer brackets to calculate are

Ψ2 = H2 + 1
2
{H∗

1 + H1, W
∗

1 },
Ψ3 = H3 + 1

2
{H∗

2 + H2, W
∗

1 } + 1
2
{H∗

1 + H1, W
∗

2 } − 1
12
{{H∗

1 − H1, W
∗

1 }, W ∗

1 },
Ψ4 = H4 + 1

2
{H∗

3 + H3, W
∗

1 } + 1
2
{H∗

2 + H2, W
∗

2 } + 1
2
{H∗

1 + H1, W
∗

3 }
− 1

12
{{H∗

2 − H2, W
∗

1 }, W ∗

1 } − 1
12
{{H∗

1 − H1, W
∗

2 }, W ∗

1 }
− 1

12
{{H∗

1 − H1, W
∗

1 }, W ∗

2 }.
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Equation (6.8) is a partial differential equation in the unknown function
W ∗

k :

H∗
k = Ψk + {H0,W

∗
k } = Ψk +

N∑
i=1

(
∂H0

∂θ∗i

∂W ∗
k

∂J∗
i

− ∂W ∗
k

∂θ∗i

∂H0

∂J∗
i

)
. (6.9)

We have not yet made a definite assumption about the given Hamiltonian.
If, as in von Zeipel–Brouwer theory, we assume that H0 = H0(Jµ) (µ =
1, · · · ,M ≤ N), the homological equation becomes

M∑
µ=1

ν∗µ
∂W ∗

k

∂θ∗µ
= Ψk −H∗

k , (6.10)

where

ν∗µ =
∂H0

∂J∗
µ

. (6.11)

6.2.1 Averaging

Equation (6.8) is the same homological equation of von Zeipel–Brouwer theory
(see Sect. 3.4) and its solution may be obtained in exactly the same way. To
solve the indetermination of (6.10), we adopt the averaging rule

H∗
k = < Ψk > =

(
1
2π

)M ∫ 2π

0

· · ·
∫ 2π

0

Ψkdθ∗1 · · ·dθ∗M . (6.12)

The averaging involves only those angle variables whose associated frequency
ν∗µ is different from zero.

The multiperiodic functions Ψk are split into secular, long-period and
short-period parts. These parts are indicated by the subscripts S,LP and
SP , respectively, and are defined as in Sect. 3.4. Using this separation, (6.12)
and (6.10) may be written

H∗
k = Ψk(S) + Ψk(LP )

and
M∑
i=1

ν∗i
∂W ∗

k

∂θ∗i
= Ψk(SP ). (6.13)

The solution of (6.13) introduces the divisors
∑M

µ=1 hµν
∗
µ. When one of them

becomes close to zero, the theory fails. We assume, then, that a relation∑M
µ=1 hµν

∗
µ ≈ 0 does not hold for any of the h values present in the Ψk(SP )

3.

3 The terms with h1 = · · · = hM = 0 were excluded from Ψk(SP ) and included in
Ψk(S) and Ψk(LP ).
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The new Hamiltonian H∗ does not depend on the short-period angles
θ∗µ(µ = 1, · · · ,M). The system is thus reduced to N −M degrees of freedom
and the transformed Hamiltonian may be written

H∗ = H∗
0 (J∗) +

∑
k≥1

H∗
k (J∗, θ∗) (6.14)

with θ∗ ∈ TN−M , J∗ ∈ RN .
The results thus obtained are formally identical to those obtained with

von Zeipel–Brouwer theory (Sect. 3.4). The only important difference is that
Lie series theories are algebraically more straightforward than classical von
Zeipel–Brouwer theory. Much of this simplification comes from the fact that
Lie mappings are resolved with respect to the new (or the old) variables while
Jacobian mappings have a mixed structure, with half of the equations resolved
with respect to the new variables and half of them with respect to the old
ones. The structure of Lie series theories is particularly suited to the use of
algebraic manipulators, allowing programmable iteration schemes to be set.

6.2.2 High-Order Theories

In the case of high-order calculations, it is convenient to use Deprit’s recursion
formula and to substitute, in the comparison of both sides of (6.5), the Lie
series expansion of H given by (5.39), instead of the one with explicit Poisson
brackets. Hence, the perturbation equations become

H∗
0 = H0

H∗
1 = H1 + Φ1

1

H∗
2 = H2 + Φ1

2 + 1
2Φ

2
2

H∗
3 = H3 + Φ1

3 + 1
2Φ

2
3 + 1

6Φ
3
3

· · · · · ·
H∗

n = Hn +
n∑

k=1

1
k!
Φk

n

(6.15)

and the functions Ψk, in the homological equation H∗
k = Ψk + {H0,W

∗
k }, are

Ψ1 = H1

Ψ2 = H2 + Υ 1
2 + 1

2Φ
2
2

Ψ3 = H3 + Υ 1
3 + 1

2Φ
2
3 + 1

6Φ
3
3

Ψ4 = H4 + Υ 1
4 + 1

2Φ
2
4 + 1

6Φ
3
4 + 1

24Φ
4
4

· · · · · ·
Ψn = Hn + Υ 1

n +
n∑

k=2

1
k!
Φk

n,

(6.16)

where we have introduced
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Υ 1
k =

k−1∑
�=1

DW∗

�
Hk−l = Φ1

k − DW∗

k
H0. (6.17)

The calculations up to an order n may be easily organized into cycles. Each
cycle starts with the value of a generic W ∗

k and ends when W ∗
k+1 is obtained

and may be schematized as follows:

W ∗
k −→

{
Υ 1

k+1

Φ1
k, Φ

2
k+1, Φ

3
k+2, · · ·

}
−→ Ψk+1 −→ H∗

k+1,W
∗
k+1.

Each calculation only depends on functions already calculated in previous
cycles or in previous steps of the same cycle. This scheme is easily program-
mable and may be used up to very high orders of approximation.

Exercise 6.2.1. Use the above routines to calculate H∗
k and W ∗

k (up to k = 4)
in the case of the one-degree-of-freedom Hamiltonian

H = J1 − 1
2
J2

1 + ε
√

2J1 cos θ1.

(For the results up to k = 3 see Sect. 6.6.1.)

6.3 Comparison to Poincaré Theory. Example I

The equivalence of Hori’s Lie series perturbation theory to Poincaré and von
Zeipel–Brouwer theories is a direct consequence of the fact that Lie mappings
and Jacobian canonical transformations in the neighborhood of the identity
(that is, infinitesimal) are equivalent, as shown in Sect. 5.1.1 (cf. [59], Chap. 7).
As a consequence, the series solutions obtained in angle–action variables with
theories using either one or another transformation are the same [54], [90].
However the paths to the solution are different in both cases and, depending
on the problem being considered, may represent very different amounts of
work.

Let us consider an example and solve it using both Hori’s Lie series theory
in angle–action variables and the Poincaré theory. Let us consider the system
given by the Hamiltonian

H = H0 + εR(θ, J) = − 1
2J2

1

+ J2 + ε(J1J2 + J1 cos 2θ1 + J1J2 cos 2θ2) (6.18)

This is a non-degenerate (in Schwarzchild’s sense) system with frequencies
(for ε = 0)

ν1 =
∂H0

∂J1
=

1
J3

1

, ν2 =
∂H0

∂J2
= 1;

and, also,

ν11 =
∂2H0

∂J2
1

= − 3
J4

1

, ν22 = ν12 = 0.
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The homological equations are

Lie series Theory Poincaré Theory

∑
ν∗i

∂W∗

k

∂θ∗

i
= Ψk(θ∗, J∗) −H∗

k

∑
ν∗i

∂Sk

∂θi
= H∗

k − Ψk(θ, J∗),

where ν∗1 = ν1(J∗) = J∗−3
1 . We recall that W ∗

k = Wk(θ∗, J∗) and Sk =
Sk(θ, J∗). The functions Ψk are

Ψ1 = H1 = R(θ∗, J∗)
Ψ2 = H2 + 1

2{{H0,W
∗
1 },W ∗

1 }
+{H1,W

∗
1 }

= H2 + 1
2{H1 +H∗

1 ,W
∗
1 },

Ψ1 = H1 = R(θ, J∗)
Ψ2 = H2 + 1

2

∑
i

∑
j ν

∗
ij

∂S1

∂θi

∂S1

∂θj

+
∑

i
∂H1

∂J∗

i

∂S1

∂θi
,

where R(θ, J) = J1J2 + J1 cos 2θ1 + J1J2 cos 2θ2. Then, in both cases, we
obtain the same H∗

1 :
H∗

1 = < Ψ1 > = J∗
1J

∗
2

and the integration of the homological equation for k = 1 gives

W ∗
1 = 1

2J
∗4
1 sin 2θ∗1 + 1

2J
∗
1J

∗
2 sin 2θ∗2 ; S1 = − 1

2J
∗4
1 sin 2θ1 − 1

2J
∗
1J

∗
2 sin 2θ2.

The following derivatives are necessary in the next step (an open box
means that the corresponding derivative is not used and, then, not calculated):

∂W∗

1

∂θ∗

1
= J∗4

1 cos 2θ∗1
∂W∗

1

∂θ∗

2
= J∗

1J
∗
2 cos 2θ∗2

∂S1

∂θ1
= −J∗4

1 cos 2θ1
∂S1

∂θ2
= −J∗

1J
∗
2 cos 2θ2

∂W∗

1

∂J∗

1
= 2J∗3

1 sin 2θ∗1 + 1
2J

∗
2 sin 2θ∗2

∂W∗

1

∂J∗

2
= 1

2J
∗
1 sin 2θ∗2

∂(H1+H∗

1 )
∂θ∗

1
= −2J∗

1 sin 2θ∗1
∂(H1+H∗

1 )
∂θ∗

2
= −2J∗

1J
∗
2 sin 2θ∗2

∂(H1+H∗

1 )
∂J∗

1
= 2J∗

2 + cos 2θ∗1 + J∗
2 cos 2θ∗2

∂(H1+H∗

1 )
∂J∗

2
= 2J∗

1 + J∗
1 cos 2θ∗2 ;

∂H1

∂J∗

1
= J∗

2 + cos 2θ1 + J∗
2 cos 2θ2

∂H1

∂J∗

2
= J∗

1 + J∗
1 cos 2θ2.

In the next set of calculations, we just show the left-hand sides of the
equations. The non-written right-hand sides result from products of the above
given trigonometric polynomials. We do not show them, but we indicate all
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146 6 Lie Series Perturbation Theory

of them; they are the lengthier parts in the calculations and determine the
amount of work involved in the application of each of the theories.

∂(H1+H∗

1 )
∂θ∗

1

∂W∗

1

∂J∗

1
= ◦ ◦ ◦

∂(H1+H∗

1 )
∂θ∗

2

∂W∗

1

∂J∗

2
= ◦ ◦ ◦

−∂(H1+H∗

1 )
∂J∗

1

∂W∗

1

∂θ∗

1
= ◦ ◦ ◦

−∂(H1+H∗

1 )
∂J∗

2

∂W∗

1

∂θ∗

2
= ◦ ◦ ◦

∂H1

∂J∗

1

∂S1

∂θ1
= ◦ ◦ ◦

∂H1

∂J∗

2

∂S1

∂θ2
= ◦ ◦ ◦

1
2ν

∗
11

(
∂S1

∂θ1

)2

= ◦ ◦ ◦.
Once these products are calculated, we may add them together to obtain Ψ2.
We obtain, in both cases, the same H∗

2 :

H∗
2 = < Ψ2 > = −5

4
J∗4

1 − 1
2
J∗2

1 J∗
2

and the integration of the homological equation for k = 2 yields

W ∗
2 = − 1

2J
∗7
1 J∗

2 sin 2θ∗1
− 1

2J
∗2
1 J∗

2 sin 2θ∗2
+ 3

16J
∗7
1 sin 4θ∗1

+
+ 1

8J
∗4
1 J∗

2
1−J∗3

1

1+J∗3
1

sin(2θ∗1 + 2θ∗2)

− 1
8J

∗4
1 J∗

2
1+J∗3

1

1−J∗3
1

sin(2θ∗1 − 2θ∗2);

S2 = 1
2J

∗7
1 J∗

2 sin 2θ1
+ 1

2J
∗2
1 J∗

2 sin 2θ2
+ 5

16J
∗7
1 sin 4θ1

+ 1
8J

∗2
1 J∗

2 sin 4θ2
+ 1

4
J∗7
1 J∗

2

1+J∗3
1

sin(2θ1 + 2θ2)

+ 1
4

J∗7
1 J∗

2

1−J∗3
1

sin(2θ1 − 2θ2).

We have, thus, completed the transformation of the given Hamiltonian
system up to O(ε2). The amount of calculation is slightly larger with Hori’s Lie
series theory than with Poincaré theory. We may compute, now, the explicit
values of the variables. We present here the calculation of J1. The equations
necessary to get J1 up to the second-order are:

J1 = EW∗J∗
1

= J∗
1 + ε{J∗

1 ,W
∗
1 } + ε2{J∗

1 ,W
∗
2 }

+ ε2

2 {{J∗
1 ,W

∗
1 },W ∗

1 },

J1 = J∗
1 + ε∂S1

∂θ1
+ ε2 ∂S2

∂θ1

θ∗1 = θ1 + ε ∂S1

∂J∗

1
+ ε2 ∂S2

∂J∗

1
;

or

J1 = J∗
1 − ε

∂W∗

1

∂θ∗

1
− ε2

∂W∗

2

∂θ∗

1

− ε2

2

∑
j

∂2W∗

1

∂θ∗

1∂θ∗

j

∂W∗

1

∂J∗

j

+ ε2

2

∑
j

∂2W∗

1

∂θ∗

1∂J∗

j

∂W∗

1

∂θ∗

j

J1 = J∗
1 + ε∂T1

∂θ∗

1
+ ε2 ∂T2

∂θ∗

1

− ε2
∑

j
∂2T1

∂θ∗

1∂θ∗

j

∂T1

∂J∗

j
,

(6.19)
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6.4 Comparison to Poincaré Theory. Example II 147

where (in 6.19)

Tk
def= Sk(θ∗, J∗).

The more visible practical advantage of Lie’s over Jacobian mappings lies
on the fact that Lie mappings do not mix old and new variables as Jacobian
mappings do. Thus, the iteration leading to (6.19), which becomes extremely
cumbersome in high-order theories, is not necessary to obtain the solutions in
a Lie series theory. However, this advantage is reduced by the fact that the
explicit calculation of the Lie series giving θ1, J1 involves the calculation of
many brackets.

The not yet calculated derivatives necessary to obtain J1(θ∗, J∗) are

∂2W∗

1

∂θ∗2
1

= −2J∗4
1 sin 2θ∗1

∂2W∗

1

∂θ∗

1∂J∗

1
= 4J∗3

1 cos 2θ∗1
∂W∗

2

∂θ∗

1
= ◦ ◦ ◦

∂2T1

∂θ∗2
1

= 2J∗4
1 sin 2θ∗1

∂T1

∂J∗

1
= −2J∗3

1 sin 2θ∗1 − 1
2J

∗
2 sin 2θ∗2

∂T2

∂θ∗

1
= ◦ ◦ ◦

(some null derivatives and the terms multiplying them are not written). The
non-zero contributions come from the terms:

∂W∗

1

∂θ∗

1
= ◦ ◦ ◦

−∂2W∗

1

∂θ∗2
1

∂W∗

1

∂J∗

1
= ◦ ◦ ◦

− ∂2W∗

1

∂θ∗

1∂J∗

1

∂W∗

1

∂θ∗

1
= ◦ ◦ ◦

∂W∗

2

∂θ∗

1
= ◦ ◦ ◦,

∂T1

∂θ∗

1
= ◦ ◦ ◦

∂2T1

∂θ2
1

∂T1

∂J∗

1
= ◦ ◦ ◦

∂T2

∂θ∗

1
= ◦ ◦ ◦,

where, as before, the right-hand sides were omitted.
In both cases, the result is

J1 = J∗
1 + 2ε2J∗7

1 − εJ∗4
1 cos 2θ∗1 + ε2J∗7

1 J∗
2 cos 2θ∗1 − 3

4
ε2J∗7

1 cos 4θ∗1

−1
2
ε2

J∗4
1 J∗

2

1 + J∗3
1

cos(2θ∗1 + 2θ∗2) +
1
2
ε2

J∗4
1 J∗

2

1 − J∗3
1

cos(2θ∗1 − 2θ∗2). (6.20)

In these equations, J∗
j are constants and θ∗j are linear functions of t with time

derivatives equal to ∂H∗/∂J∗
1 .

This example shows that the proper variable J∗
1 is not the average of J1.

This noteworthy point will be discussed in Sect. 6.8.

6.4 Comparison to Poincaré Theory. Example II

Let us consider a second example, suggested to us by J. Henrard, and let
us solve it using both theories. It is the case of the one-degree-of-freedom
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148 6 Lie Series Perturbation Theory

Hamiltonian
H = H0 + εR(θ1, J1) = J1 + ε

√
2J1 cos θ1 (6.21)

with the constant undisturbed frequency ν1 = 1, and ν11 = 0.
The homological equations are

Lie series Theory Poincaré Theory

ν∗1
∂W∗

k

∂θ∗

1
= Ψk(θ∗1 , J

∗
1 ) −H∗

k (J∗
1 ) ν∗1

∂Sk

∂θ1
= H∗

k (J∗
1 ) − Ψk(θ1, J∗

1 ).

We recall that W ∗
k = Wk(θ∗, J∗) and Sk = Sk(θ, J∗). The functions Ψi are

Ψ1 = H1(θ∗1 , J∗
1 ) =

√
2J∗

1 cos θ∗1
Ψ2 = 1

2{H∗
1 +H1,W

∗
1 }

Ψ3 = 1
2{H∗

1 +H1,W
∗
2 }

+ 1
2{H∗

2 ,W
∗
1 }

− 1
12{{H∗

1 −H1,W
∗
1 },W ∗

1 }

Ψ1 = H1(θ1, J∗
1 ) =

√
2J∗

1 cos θ1
Ψ2 = ∂H1

∂J∗

1

∂S1

∂θ1

Ψ3 = ∂H1

∂J∗

1

∂S2

∂θ1
+ 1

2
∂2H1

∂J∗2
1

(∂S1

∂θ1
)2,

where we have already take into account that H2 = H3 = 0 and ν∗11 = 0. In
both cases we obtain

H∗
1 = < Ψ1 > = 0

and the integration of the homological equation for k = 1 gives

W ∗
1 =

√
2J∗

1 sin θ∗1 ; S1 = −√2J∗
1 sin θ1.

The derivatives necessary in the next step are

∂W∗

1

∂θ∗

1
=

√
2J∗

1 cos θ∗1
∂W∗

1

∂J∗

1
= 1√

2J∗

1

sin θ∗1

∂S1

∂θ1
= −√2J∗

1 cos θ1

∂H1

∂θ∗

1
= −√2J∗

1 sin θ∗1
∂H1

∂J∗

1
= 1√

2J∗

1

cos θ∗1
∂H1

∂J∗

1
= 1√

2J∗

1

cos θ1

and their products are

∂H1

∂θ∗

1

∂W∗

1

∂J∗

1
= − sin2 θ∗1

∂H1

∂J∗

1

∂W∗

1

∂θ∗

1
= cos2 θ∗1

∂H1

∂J∗

1

∂S1

∂θ1
= − cos2 θ1.
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Hence

Ψ2 = − 1
2 Ψ2 = − 1

2 − 1
2 cos 2θ1

and we obtain, in both cases, the same H∗
2 :

H∗
2 = < Ψ2 > = −1

2
.

The integration of the homological equation, for k = 2, yields

W ∗
2 = 0 S2 = 1

4 sin 2θ1.

Let us continue and similarly calculate the next order terms. Now, the
calculations in the two theories are very different and the parallel presentation
of them no longer makes sense. Taking into account that H∗

1 = 0, H2 = 0 and
W ∗

2 = 0, the expression of Ψ3 in Lie series theory becomes

Ψ3 =
1
2
{H∗

2 ,W
∗
1 } +

1
6
{{H1,W

∗
1 },W ∗

1 }.

The first bracket is equal to zero because H∗
2 is a constant; the second term

is also equal to zero because the bracket {H1,W
∗
1 } is also a constant. Then,

Ψ3 = 0. Similarly, we have Ψk = 0 and H∗
k = 0 for all k ≥ 3, and the

transformed Hamiltonian obtained by means of Lie series theory is exact.
In the application of the Poincaré theory, we obtain

Ψ3 =
∂H1

∂J∗
1

∂S2

∂θ1
+

1
2
∂2H1

∂J∗2
1

(
∂S1

∂θ1

)2

or

Ψ3 = − 1
8
√

2J∗
1

(cos θ1 − cos 3θ1)

and, as in the Lie series theory, we obtain H∗
3 = < Ψ3 > = 0. The integration

of the homological equation gives

S3 =
1

8
√

2J∗
1

(
sin θ1 − 1

3
sin 3θ1

)
.

The transformation is completed at the given order of approximation, and we
do not have any hint of the next approximations. The only way to obtain Sk

and H∗
k for higher values of k is through the actual calculations.

Let us compute, now, with both theories, the explicit value of J1. The
equations to third order are:
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Lie series Theory Poincaré Theory

J1 = EW∗J∗
1

= J∗
1 + ε{J∗

1 ,W
∗
1 } + ε2{J∗

1 ,W
∗
2 }

+ ε2

2 {{J∗
1 ,W

∗
1 },W ∗

1 }
+ε3{J∗

1 ,W
∗
3 }

+ ε3

2 {{J∗
1 ,W

∗
2 },W ∗

1 }
+ ε3

2 {{J∗
1 ,W

∗
1 },W ∗

2 }
+ ε3

6 {{{J∗
1 ,W

∗
1 },W ∗

1 },W ∗
1 }

J1 = J∗
1 + ε∂S1

∂θ1
+ ε2 ∂S2

∂θ1
+ ε3 ∂S3

∂θ1

θ∗1 = θ1 + ε ∂S1

∂J∗

1
+ ε2 ∂S2

∂J∗

1
+ ε3 ∂S3

∂J∗

1
.

Once more, in this example, the calculations in the two theories are very
different and a parallel presentation makes no sense. In the Lie series theory,
since W ∗

k = 0 for all k ≥ 2, the Lie series reduces to

J1 = J∗
1 + ε{J∗

1 ,W
∗
1 }+

ε2

2
{{J∗

1 ,W
∗
1 },W ∗

1 }+
ε3

6
{{{J∗

1 ,W
∗
1 },W ∗

1 },W ∗
1 }+ · · · ;

the first Lie derivative in this series is

{J∗
1 ,W

∗
1 } = −∂W ∗

1

∂θ∗1
= −

√
2J∗

1 cos θ∗1

and the second one is

{{J∗
1 ,W

∗
1 },W ∗

1 } = − ∂

∂θ∗1

(
∂W ∗

1

∂θ∗1

)
∂W ∗

1

∂J∗
1

+
∂

∂J∗
1

(
∂W ∗

1

∂θ∗1

)
∂W ∗

1

∂θ∗1
= 1.

Since the second Lie derivative is equal to a constant, all the following ones
will be equal to zero, and the calculation is completed. Hence, exactly,

J1 = J∗
1 − ε

√
2J∗

1 cos θ∗1 +
1
2
ε2. (6.22)

In the case of Poincaré theory, the first step is to solve the implicit equa-
tions to obtain J1 as a function of θ∗1 , J

∗
1 . This is a cumbersome task. The

extended Lagrange formulas of Sect. 3.12 may be used to obtain

J1 = J∗
1 + ε

∂T1

∂θ∗1
+ ε2

(
∂T2

∂θ∗1
− ∂2T1

∂θ∗21

∂T1

∂J∗
1

)
+

1
2
ε3
∂3T1

∂θ∗31

(
∂T1

∂J∗
1

)2

+ε3
(
∂2T1

∂θ∗21

∂2T1

∂θ∗1∂J
∗
1

∂T1

∂J∗
1

− ∂2T1

∂θ∗21

∂T2

∂J∗
1

− ∂2T2

∂θ∗21

∂T1

∂J∗
1

+
∂T3

∂θ∗1

)
,

where Tk
def= Sk(θ∗, J∗). To order O(ε2) the above equation gives the same

result as (6.22). All monomials yield terms
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coeff
1√
2J∗

1

(cos θ∗1 − cos 3θ∗1)

with coefficients 1
8 ,

1
4 , 0,− 1

2 ,
1
8 , respectively. As expected, the sum is zero; but,

it can only be known after the actual calculations are done. The calculations
at higher orders are more cumbersome, but (6.22) allows us to anticipate that
they also will have a null contribution to the expression of J1 as a function of
θ∗1 , J

∗
1 .

Therefore, in the case of this example, the advantage of Lie series theory
over Poincaré theory is enormous. Several reasons work together for this result,
namely: (a) the given system may be easily integrated with elementary func-
tions; (b) H0 is trivial and leads to a constant ν1; (c) the given Hamiltonian
is a polynomial in the variables

√
2J1 cos θ1,

√
2J1 sin θ1. The last property,

known as the d’Alembert property, is conserved by Lie derivatives, since the
Poisson brackets of two such polynomials is also a polynomial in these vari-
ables (see Sect. 7.3). However, the d’Alembert property alone is far from being
a guarantee for what has been shown. For instance, the Hamiltonian consid-
ered in Exercise 6.2.1, H = J1 − 1

2J
2
1 + ε

√
2J1 cos θ1, satisfies the d’Alembert

property and is integrable. However, the series cannot be so easily obtained as
in the given example. The main advantage of Lie series theory, in that case, is
limited to the recursion formulas allowing high-order solutions to be obtained.

The example considered in this section showed how a bad choice may in-
troduce unnecessarily cumbersome calculations. Even the Lie series approach
used here with angle–action variables is not a good choice in this case. Non-
singular variables allow this problem to be trivially solved (see Exercise 7.6.1).
In fact, the transformation of this Hamiltonian becomes obvious when the
right variables are used.

6.5 Hori’s General Theory. Hori Kernel and Averaging

Let us consider, now, the canonical system of equations

dqi

dt
=

∂H

∂pi

dpi

dt
= −∂H

∂qi
, (6.23)

where H(q, p) is a time-independent Hamiltonian, q ≡ (q1, q2, · · · , qN ), p ≡
(p1, p2, · · · , pN) are unspecified canonical variables and let us consider the
transformation (q, p) ⇒ (q∗, p∗) defined by a Lie series:

φ(q, p) = EW∗φ(q∗, p∗) =
∞∑

k=0

1
k!

Dk
W∗φ(q∗, p∗), (6.24)

where W ∗ = W (q∗, p∗). As in Sect. 6.2, the conservation of the Hamiltonian
leads to

H∗(q∗, p∗) = EW∗H(q∗, p∗), (6.25)
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where H∗ is the Hamiltonian of the transformed system and the perturbation
equations are obtained by substituting the expansions (6.6) into (6.25). The
perturbation equations are the same as (6.7), but, now, the functions depend
on (q∗, p∗) instead of (θ∗, J∗). The homological equation is

H∗
k = Ψk +

N∑
i=1

(
∂H0

∂q∗i

∂W ∗
k

∂p∗i
− ∂W ∗

k

∂q∗i

∂H0

∂p∗i

)
, (6.26)

where Ψk(q∗, p∗) is a known function if the previous k equations were already
solved.

This homological equation can no longer be trivially solved as in Sect.
6.2.1. To solve this linear partial differential equation in the unknown function
W ∗

k , we use the Cauchy–Darboux theory of characteristics. We may apply
the results of Theorem 6.5.1 below and go on straight to (6.30) and (6.31).
However, since the homological equation is linear in the derivatives of W ∗

k

and includes W ∗
k only through its derivatives, we may easily construct those

equations. To do this, let us introduce a generic 2N -dimensional variable z∗ ≡
(q∗, p∗). With it, the homological equation becomes

(−JH ′
0z∗ | W ∗′

kz∗) = Ψk −H∗
k , (6.27)

where H ′
0z∗ = ∂H0/∂z

∗ and W ∗′
kz∗ = ∂W ∗

k /∂z
∗ are the gradients of H0(z∗) and

W ∗
k (z∗) in the 2N -dimensional phase space, respectively, J is the symplectic

matrix of rank 2N :

J =
(

0 −E

E 0

)
(6.28)

and E is the unit matrix of rank N . H ′
0z∗ and H∗

k −Ψk are assumed to be con-
tinuous in the domain under consideration and do not vanish simultaneously.

Let W ∗
k (z∗) be a solution of (6.27) and let us consider the integral manifold

M defined by W ∗
k (z∗) −W ∗

k = 0 in the (2N + 1)-dimensional space of the
variables (z∗,W ∗

k ) (Fig. 6.1). We introduce a family of curves on M through
the parametric equations

z∗ = z∗(u) W ∗
k = W ∗

k (u).

These curves, called characteristics by Monge, define a vector field T tangent
to the manifold. At every point P of M, the vector T is proportional to
(dz∗/du, dW ∗

k /du). We may also construct a vector N , normal to M at P,
by means of the gradient of the function (W ∗

k (z∗) − W ∗
k ). The gradient of

this function in the (2N + 1)-dimensional space of the variables (z∗,W ∗
k ) is

(W ∗′
kz∗ ,−1). Since the vectors T and N are orthogonal, T .N = 0 and, then,(

dz∗

du

∣∣∣ W ∗′
kz∗

)
− dW ∗

k

du
= 0. (6.29)

Comparison of this equation, issued from a simple geometric construction, to
(6.27) gives
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N
   T

M

W

z

Fig. 6.1. The manifold M and a set of characteristic curves.

dW ∗
k

du
= Ψk −H∗

k (6.30)

and
dz∗

du
= −JH ′

0z∗ (6.31)

or, in the variables q∗, p∗,

dq∗i
du

=
∂H0

∂p∗i

dp∗i
du

= −∂H0

∂q∗i
. (6.32)

Equations (6.30) and (6.31) (or 6.30 and 6.32) are the system of differential
equations of the characteristic curves of the given partial differential equation.

Equations (6.31) (or 6.32) are the same for all values of k. They were called
auxiliary equations by Hori and the system whose Hamiltonian is H0 is often
referred to as the Hori kernel of the perturbatrion theory thus constructed.

To solve the homological equation, for all k, (6.32) must be completely
integrable, and we need to obtain the general solution:

q∗i = q∗i (u+ γ1, γ�, Cj)
p∗i = p∗i (u+ γ1, γ�, Cj)

(6.33)

(j = 1, · · · , N ; � = 2, · · · , N); Cj and γj are arbitrary constants of integration.
The solution of the homological equation is completed by the integration

of (6.30). Its left-hand side contains the unknown function Wk(q∗, p∗) and the
right-hand side contains the undetermined H∗

k . This last function is chosen to
be such that
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H∗
k = < Ψk > (6.34)

and, thus, < dW ∗
k /du > = 0. We note that, when the solutions given by

(6.33) are bounded, Ψk[q∗(u), p∗(u)] is an almost periodic function. Bohr’s
mean-value theorem for almost periodic functions [9] may then be used to
average Ψk:

< Ψk > = lim
T→∞

1
T

∫ T

0

Ψkdu. (6.35)

W ∗
k (u) is, then, immediately determined from (6.30) through

W ∗
k (u) =

∫
(Ψk −H∗

k )du. (6.36)

In these operations, we use the solutions (6.33) to write Ψk as a function
of u and then we perform the integration; the arbitrary constant is set to be
such that < W ∗

k (u) > = 0. Finally, to know H∗
k and W ∗

k as functions of
q∗, p∗, we replace u + γ1 and the integration constants γ�,Cj by the inverses
of (6.33):

u+ γ1 = g1(q∗, p∗)
γ� = g�(q∗, p∗)
Cj = gN+j(q∗, p∗) (j = 1, · · · , N ; � = 2, · · · , N).

(6.37)

Because of this inversion, the actual application of Hori’s theory with unspec-
ified canonical variables to general problems is, generally, cumbersome. When
possible, it is always convenient to use angle–action variables or variables close
to them.

It is worth noting that the resulting transformed Hamiltonian H∗ =
∑

H∗
k

is a function of the variables q∗, p∗. Eventually, when the angle–action vari-
ables of the Hori kernel are introduced, at least one of the angles becomes
ignorable and the reduction of the system becomes evident. However, while
the variables q∗, p∗ are used, the reduction of the system comes from the ex-
istence of a new formal first integral as shown in Sect. 6.7. One example with
variables that are not angle–action variables is presented in Sect. 7.8.

6.5.1 Cauchy–Darboux Theory of Characteristics

Definition 6.5.1 (Characteristic curves). Consider the partial differential
equation

F (z,Wz,W ) = 0, (6.38)

where z ≡ (z1, z2, · · · , zn), Wz ≡ (Wz1 ,Wz2 , · · · ,Wzn), W : Rn → R ∈ C2 and

F : R2n+1 → R ∈ C2 in the neighborhood of one point where

n∑
1

(
∂F

∂Wzi

)2

�=
0.
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The characteristics of the given partial differential equations are the solu-
tions z(u) , π(u) ,W (u) of the system of 2n+1 ordinary differential equations:

dzi

du
=

∂F (z, π,W )
∂πi

dπi

du
= −∂F (z, π,W )

∂zi
− πi

∂F (z, π,W )
∂W

dW
du

=
n∑

i=1

πi
∂F (z, π,W )

∂πi
,

(6.39)

where π ≡ (π1, π2, · · · , πn).

Theorem 6.5.1. All solutions W (z) : Rn → R ∈ C2 of the partial differen-
tial equation F (z,Wz ,W ) = 0 can be obtained from the characteristic curves.
These functions are, in general, uniquely determined by prescribing their val-
ues at the points of an (n− 1)-dimensional manifold.

For simplicity we have adopted notations similar to those used in Hori’s
general theory. The construction of the function W (z), in the general case,
follows the same steps as in the previous section: elimination of integration
constants between the solutions of (6.39). The proof of the theorem is classical
in the theory of first-order partial differential equations (see [18], Chap. 3).

Hori used the notation t∗ for the parameter u of the equations. The in-
terpretation of the Cauchy–Darboux parameter as a pseudo time [53] hid its
actual meaning and, worst, allowed some noxious misunderstandings to be-
come widespread.

6.6 Topology and Small Divisors

Hori’s general theory is conceptually important because it allows us to un-
derstand a basic operation involved in perturbation theories, which usually
remains hidden by the very particular form of the equations in angle–action
variables. It shows the existence of a privileged dynamical system – the Hori
kernel. The Hori kernel is the projection on the phase space (q∗, p∗) of the
characteristic curves of the homological equation. It is the same for all k. For

different values of k, the characteristic curves differ only in the (2N + 1)th

coordinate W ∗
k .

To understand the role played by the Hori kernel, let us consider a Hamil-
tonian system with a non-degenerate H0. In angle–action variables, the cor-
responding Hori kernel equations are:

dθ∗i
du

=
∂H0

∂J∗
i

= ν∗i �= 0
dJ∗

i

du
= −∂H0

∂θ∗i
= 0 (6.40)

(i = 1, 2, · · · , N). The solutions of this system lie over N -tori defined by
the equations J∗

i (q∗, p∗) = const. The transformed Hamiltonian H∗ is also a
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function of J∗
i (and only of them) and, thus, their solutions lie over the same

N -tori, only with different frequencies.
A consequence of this fact is that a perturbation theory is not suitable to

disclose the actual topology of the given perturbed Hamiltonian system. It is
only good for the calculation of solutions with the same topology as its Hori
kernel.

6.6.1 Topological Constraint. The Rise of Small Divisors

The overall geometry of the transformed system is the same as that of the Hori
kernel and it is so, regardless of the perturbation represented by the given Hk

and of the bifurcations that they may have introduced in the flow of the given
Hamiltonian [30]. Moreover, the Lie series mapping is a diffeomorphism and
cannot introduce any topological change. In general, the bifurcations of the
given perturbed Hamiltonian lead to small divisors whose unbound increase
in number, from one order to the next, is responsible by the non-convergence
of the results in an open set when n → ∞.

Let us illustrate the rise of a small divisor at the place where a bifurcation
should occur with a simple example. Let us consider the Hamiltonian

H = J1 − 1
2
J2

1 + ε
√

2J1 cos θ1. (6.41)

This Hamiltonian is one well-known particular case of the Ideal Resonance
Problem thoroughly studied by Andoyer (see Appendix C). Its portrait in the
(θ1, J1) plane is shown in the left side of Fig. 6.2. The application of Lie series
theory to this Hamiltonian gives:

W ∗ =
ε

ν∗1

√
2J∗

1 sin θ∗1 +
ε2J∗

1

4ν∗31

sin 2θ∗1

+
ε3

48

√
2J∗

1

(
22
ν∗41

sin θ∗1 +
3J∗

1

ν∗51

(5 sin θ∗1 + sin 3θ∗1)
)

+ O(ε4),

where
ν∗1 = 1 − J∗

1 , (6.42)

and

H∗ = J∗
1 − 1

2
J∗2

1 − ε2

2ν∗21

+ O(ε4) (6.43)

with the proper frequency

g1 =
∂H∗

∂J∗
1

= ν∗1 − ε2

ν∗31

+ O(ε4).

The portrait of H∗ in the (θ∗1 , J
∗
1 ) plane is shown in the right side of Fig.

6.2. It mimics the phase portrait of H0(J). At the place where a bifurcation
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Fig. 6.2. Phase portraits of H (left) and H∗ (right)

occurs in the complete Hamiltonian (J1 � 1), the transformed Hamiltonian
H∗ undergoes a complex change of sign of its proper frequency g1 (g1 = 0
on both bold dashed lines). This change cannot be correctly studied with the
given equations, since the series giving W ∗ and H∗ have the divisor ν∗1 and
become singular at J∗

1 = 1.
The above discussion shows that when the quantitative study of a feature

is aimed at, it is necessary to engineer the Hori kernel and introduce that
feature in its topology.

Exercise 6.6.1. Consider a one-degree-of-freedom system and introduce the
canonical variables φ1, E1, where φ1 is a uniform angle with unit frequency
and E1 is the Hori kernel energy. Show that H = H(E1) and that the set
of curves H = const and E1 = const coincide. Extend the reasoning to
two degrees of freedom. Hint: Introduce the canonical variables φ1, φ2, E1, J2

and consider the set of curves H = const and E1 = const in the manifold
J2 = const.

6.7 Hori’s Formal First Integral

Theorem 6.7.1 (Hori [53]). The function F (q, p) = H0(q∗(q, p), p∗(q, p)) is,
at the order of approximation of the canonical transformation, a first integral
of the given perturbed system.

The proof of this theorem is very simple and just a simple chain of calcu-
lations. We have to show that the time derivative of F is equal to zero at the
order of approximation of the canonical transformation. Indeed,

dF
dt

=
N∑

i=1

(
∂H0

∂q∗i

dq∗i
dt

+
∂H0

∂p∗i

dp∗i
dt

)
.
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158 6 Lie Series Perturbation Theory

We may then use: (1) the equations of the transformed dynamical system to
replace the time derivatives of q∗i , p

∗
i by partial derivatives of H∗; (2) the equa-

tions of the Hori kernel to replace the partial derivatives of H0 by derivatives
of q∗i , p

∗
i with respect to u. Hence,

dF
dt

=
N∑

i=1

(
−dp∗i

du
∂H∗

∂p∗i
− dq∗i

du
∂H∗

∂q∗i

)
or

dF
dt

= −dH∗

du
,

which is equal to zero since H∗ is defined by definite integrations over u.
��

This integral is only formal, not a true one, since the remainder Rn(q∗, p∗, ε)
of the calculation of H∗ was not considered in the above demonstration, and it
is not independent of u. The order of approximation of the formal first-integral
F is εn.

6.8 “Average” Hamiltonians

The word “average” and its variations became popular in the past century,
implicitly carrying the idea that methods founded on “averaging” operations
lead to “average” Hamiltonians governing the secular variation of the given
system. However, in more than one instance, second-order solutions such as
that given by (6.20) (at the end of Sect. 6.3), were found showing that their
average is not equal to the solution of the “averaged” equations – in (6.20),
we have < J1 > �= J∗

1 . The non-periodic terms appearing in the solution were
often a source of disappointment.

In Lie series perturbation theory, the solutions have the general form

φ = EWφ∗ = φ∗ + DWφ∗ +
1
2!

D2
Wφ∗ +

1
3!

D3
Wφ∗ + · · · , (6.44)

where φ denotes a generic variable and W (θ∗, J∗) the Lie generating func-
tion resulting from the theory. By construction, the generating function is a
zero-average periodic function of the angles θ1, θ2, · · · , θN . A glance at the
above equation is enough to see that, notwithstanding the zero average of W ,
the terms of order 2, and higher, involve products of derivatives of W be-
tween themselves, and, in these operations, non-periodic terms are eventually
generated.

A consequence of these non-periodic terms is that H∗ is not an average.
The actual solutions of the given Hamiltonian system oscillate about the solu-
tions of the Hamiltonian system defined by H∗, but with a non-zero average.

For k = 1, (6.44) is reduced to φ = φ∗ + {φ∗,W} including only one
bracket: {φ∗,W}, which is equal to a derivative of W and, therefore, a zero-
average function. This means that, to first-order, the transformed H∗ behaves
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6.8 “Average” Hamiltonians 159

as an average. This fact certainly played a role in the introduction of the word
“average” and its variations to designate perturbation theories of this kind.

In the above discussed case, we may suspect that the non-periodic terms
come from the definition of the canonical transformations through a Lie gen-
erating function, but it is possible to see that for any canonical transformation
(θ, J) ⇒ (θ∗, J∗) defined explicitly by

θi = θ∗i +Qi
1(θ

∗, J∗) +Qi
2(θ

∗, J∗) + · · ·
Ji = J∗

i + P i
1(θ

∗, J∗) + P i
2(θ

∗, J∗) + · · · , (6.45)

it is not possible to have simultaneously H∗
k independent of θ∗ and < P i

k > =
< Qi

k > = 0 (for all i and k > 1) [34].

6.8.1 On Secular Theories and Proper Elements

Given the large number of degrees of freedom of the equations of planetary
motion, it is usual, since the work of Laplace and Lagrange, to reduce the
equations of motion to first-order averaged ones. The classical “secular theory”
of Laplace and Lagrange is the analysis of the solutions of the Hamiltonian
resulting from the elimination of short-period terms by means of first-order
perturbations theory (see Sect. 3.7). In the case of asteroids, canonical per-
turbation theories may be used to define “proper actions”, which are choice
parameters for the identification of asteroid families. For practical reasons,
they are often replaced by average values of elements calculated numerically.
Even if, strictly speaking, averages differ for proper actions, it is evident that
in non-degenerate systems, averages are functions of the proper actions and
may show the same time invariance as the proper actions themselves.
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7

Non-Singular Canonical Variables

7.1 Singularities of the Actions

The actions Ji defined by the phase integrals Ji = 1
2π

∮
pidqi may become

singular. The simplest example is given by the actions of a Hamiltonian de-
pending on the squares of the momenta. In this case, pi is proportional to q̇i

and, as a consequence, the integral
∫
pidqi is proportional to

∫
q̇2
i dt and, thus,

sign definite. In other words, the integration path is always circulated in the
same direction and the sign of Ji may not be reversed (Fig. 7.1). Consequently,
the equations of motion in this variable are singular at Ji = 0.

p                                      p                                      p
i                                         i                                         i

q                                        q                                       q
i                                         i                                         i

Fig. 7.1. Integration paths

Examples are abundant in Celestial Mechanics. The Delaunay actions

L =
√
µa

G = L
√

1 − e2

H = G cos i
(7.1)

are singular for a = 0, e = 0 (or e = 1), and sin i = 0.
The singularities at a = 0 and e = 1 correspond to critical physical sit-

uations. At a = 0, the orbit degenerates into one point. We recall that the
attracting force becomes infinite for r = 0 and specific regularizing techniques
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162 7 Non-Singular Canonical Variables

are needed to deal with motions in which r becomes close to zero (see [6], [95]).
For e = 1, non-rectilinear motions cease being bounded. The other two singu-
larities (e = 0, and i = 0), often found in practical applications, are, however,
just geometric and do not correspond to singular physical situations. They
can be overcome with the pure geometrical tools described in this chapter.

7.2 Poincaré Non-Singular Variables

When the actions Ji are small, the corresponding angle–action variables may
lead to algebraic difficulties as, for instance, division by zero. (The equations
of motion, generally, include these actions as denominators.) If the singular-
ity is just the geometrical singularity of the angle–action variables, we know,
since Lagrange, that a transformation of variables from the polar-like angle–
action variables θi, Ji to the associated non-singular rectangular-like coor-
dinates Ji cos θi, Ji sin θi is enough to avoid numerical difficulties. However,
for the needs of the Hamiltonian theories discussed in this book, this is not
sufficient, since Lagrange’s variables are not canonical. Nevertheless, similar
canonical variables were proposed by Poincaré by taking

√
2|Ji| instead of Ji.

When Ji < 0, the Poincaré non-singular canonical variables associated
with θi, Ji are

xi =
√−2Ji cos θi

yi =
√−2Ji sin θi.

(7.2)

In this case, the inverse transformation is given by

Ji = −1
2
(x2

i + y2
i ) (7.3)

θi = arctan
yi

xi
. (7.4)

The Poisson bracket of the new variables with respect to the old ones is

{xi, yi} = {θi, Ji} = +1

and, therefore, the pair of canonical equations

θ̇i =
∂H

∂Ji
J̇i = −∂H

∂θi
(7.5)

becomes

ẋi =
∂Ĥ

∂yi
ẏi = −∂Ĥ

∂xi
, (7.6)

where Ĥ = H(θi(xi, yi), Ji(xi, yi)).
We started with the case Ji < 0 for two important reasons. The first

one is that, in this case, we have {xi, yi} = +1. The second reason is that
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this is often the case in Celestial Mechanics. Indeed, near the singularities
e = 0, i = 0, the origin of the angles � and ω, canonically conjugate to L
and G, becomes indeterminate (see Sect. 2.5.2). It is them common usage to
replace the ordinary Delaunay elements by the set

λ = �+ ω +Ω L

! = ω +Ω G− L = L(
√

1 − e2 − 1)
Ω H −G = G(cos i− 1).

(7.7)

The new angles are longitudes and take their origin at the same point, e.g.
the point O of Fig. 2.5, or, in Astronomy, the equinox1. The actions now
associated with ! and Ω are both negative (G− L < 0, H −G < 0).

When Ji > 0, instead of (7.2), we have

xi=
√

2Ji cos θi

yi=
√

2Ji sin θi
(7.8)

and the inverse transformation is

Ji =
1
2
(x2

i + y2
i ) (7.9)

θi = arctan
yi

xi
. (7.10)

In this case, {xi, yi} = −1 and, thus, to keep equations written in the same
order as through this whole book, we have to change to {yi, xi} = +1. The
corresponding canonical equations are, now,

ẏi =
∂Ĥ

∂xi
ẋi = −∂Ĥ

∂yi
. (7.11)

(Compare the signs of (7.6) and (7.11).)
It is easy to see how to modify the given definitions to deal with cases

where the singularity of the actions occurs for non-zero values.

Exercise 7.2.1. Show that, in Poincaré variables, the action variables are

Λ =
−s
2π

∮
ydx =

+s
2π

∮
xdy, (7.12)

where s = ±1 is the sign of J (s does not change over the path). Hint: Using
the given definitions show that Jdw = 1

2 s(xdy − ydx).

1 These variables are sometimes called equinoctial.
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7.3 The d’Alembert Property

When a function regular in a domain about the origin is written with polar co-
ordinates, pure geometrical singularities may appear at r = 0 because of these
coordinates. This singularity disappears when rectangular coordinates x, y are
used instead of the polar ones. This situation is current in Celestial Mechanics
and occurs with the pairs of polar-like variables e,! (eccentricity, longitude
of the periapsis) and i, Ω (inclination, longitude of the ascending node). The
non-singular variables used instead of them, since Lagrange, are the associated
rectangular pairs e cos!, e sin! and i cosΩ, i sinΩ. (More usual definitions
have sin i, sin(i/2) or tan i instead of i.)

Let g(x, y) : R2 → R be a regular function in a domain O about the origin
and let f(α, r) be the expression of this function in polar coordinates:

f(α, r) = g(x, y).

As the function g(x, y) is regular in O, it may be expanded in a power series
in x, y,

g(x, y) =
∑
i,j≥0

aijx
iyj ,

convergent in O. Hence

f(α, r) =
∑
n≥0

[n/2]∑
j=0

rn {Cjn cos[(n− 2j)α] + Sjn sin[(n− 2j)α]} , (7.13)

where [n/2] means the integer part of n/2 and Cjn, Sjn are numerical coeffi-
cients.

The features shown by this expression of f(α, r) are part of a set of rules
found in the expansion of the disturbing potential in planetary theory known
as d’Alembert properties (or d’Alembert characteristics). In the case of the
above expansion, they may be expressed as follows: for each n, the coefficients
of the multiples of α in the trigonometric part have the same parity as n and
are at most equal to n.

However, the simple polar-to-rectangular transformation is not canonical
and we have rather to consider the transformation defined by (7.2) (or 7.8).
The d’Alembert property appears, then, in a slightly modified form: If we
have

f(θ, J) = g(x, y),

where, now, x, y are Poincaré non-singular variables and θ, J the correspond-
ing angle–action variables, the power series in x, y becomes

f(θ, J) =
∑
n≥0

[n/2]∑
j=0

|J |n
2 {C̃jn cos[(n− 2j)θ] + S̃jn sin[(n− 2j)θ]}. (7.14)
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The d’Alembert property still holds and the only difference with respect to
(7.13) is the n/2 exponent of |J |.

The situation described above is trivial; but it may become more complex
when other variable transformations are added. In order to avoid the acciden-
tal transformation of a geometrical singularity into a singularity whose origin
is not easily recognized, one transformation must comply with some simple
rules:

Theorem 7.3.1 (Henrard [47]). A transformation from an angle–action pair
of variables to another preserves the d’Alembert property of a function if it is
a Lie series mapping whose generating function has the d’Alembert property.

Indeed, Lie series mappings are defined by the equation

f(θ, J) = EW∗f(θ∗, J∗),

where W ∗ = W (θ∗, J∗). They involve only the computation of Poisson brack-
ets, which are invariant to canonical transformations. Since the necessary and
sufficient condition for a Poisson bracket of two functions to be regular is that
these functions are regular, if f and W ∗ have the d’Alembert property then
DW∗f and EW∗f also have the d’Alembert property.

7.4 Regular Integrable Hamiltonians

The perturbation techniques of Celestial Mechanics always consider that the
undisturbed Hamiltonian is completely integrable. (See the statement of De-
launay’s problem in Sect. 3.1.) The series expansion of a non-singular inte-
grable Hamiltonian, about the origin, in terms of its angle–action variables
(θi, Ji) is

H0 =
N∑

i=1

ν◦i Ji +
1
2

N∑
i=1

N∑
j=1

ν◦ijJiJj + · · · , (7.15)

where

ν◦i = νi(0) =
(
∂H0

∂Ji

)
J=0

(7.16)

and

ν◦ij = νij(0) =
(

∂2H0

∂Ji∂Jj

)
J=0

. (7.17)

The angles θi may not appear in the Hamiltonian by the very definition of the
angle–action variables. On the other hand, half-integer powers of Ji cannot
appear because of the regularity hypothesis. Indeed, non-singular functions
must satisfy the d’Alembert property, which means that any half-integer power
of Ji should necessarily appear multiplied by a trigonometric function of θi,
at variance with the previous statement.
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>
<

>

>

(a) (b)

Fig. 7.2. Regular integrable Hamiltonians near the origin

In non-singular variables, H0 is

H0 =
1
2

N∑
i=1

ν◦i (x2
i + y2

i ) +
1
8

N∑
i=1

N∑
j=1

ν◦ij(x
2
i + y2

i )(x2
j + y2

j ) + · · · (7.18)

(where, for the sake of simplicity, we assumed Ji > 0).
Let us consider, for a moment, the case N = 1. In this case, H0 is the

Hamiltonian of a differential rotator:

H0 =
1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 + · · · (7.19)

Figure 7.2 shows the function H0 in the neighborhood of the origin in the two
possible cases:

(a.) ν◦1 and ν◦11 have the same sign (ν◦1 > 0, ν◦11 > 0);
(b.) ν◦1 and ν◦11 have opposite signs (ν◦1 < 0, ν◦11 > 0).

(If ν◦11 < 0, the figures would be equal, but turned upside down.) When ν◦1 = 0,
the figure is similar to Fig. 7.2(a), but the curvature at the vertex is equal to
zero since, in this case, the origin is a zero of fourth order.

The motions on these surfaces are circular and have constant velocities.
Their frequencies are

ν1 =
∂H0

∂J1
= ν◦1 + ν◦11J1 + · · · . (7.20)

Thus, in the neighborhood of the origin of the (x1, y1) plane, in (a) the motions
are direct (ν◦1 > 0 and ν◦11 > 0). In (b), the motions near the origin are
retrograde up to the distance where the minimum of H0 is reached, and direct
beyond this minimum (up to the distance where another extremum of the
function H0, if it exists, is reached)2.

In the most frequent case, J1 < 0, we have

2 In the case J1 > 0, the motion in the (x1, y1) plane is retrograde (resp. direct)
when the motion of θ1 is direct (resp. retrograde). See Fig. 7.3.
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H0 = −1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 + · · · (7.21)

and the situations invert with respect to the previous case. Now we have

(a′.) ν◦1 and ν◦11 have opposite signs (ν◦1 < 0, ν◦11 > 0);
(b′.) ν◦1 and ν◦11 have the same sign (ν◦1 > 0, ν◦11 > 0).

(again, we assumed ν◦11 > 0). The directions of the motions are reversed with
respect to those of the case J1 > 0. The motions in (a′) are always retrograde
(on the (x1, y1) plane) while, in (b′), they are direct near the origin and
retrograde outside the minimum of H0.

ν                                                         νJ  < 0                                              J  > 0
1  1                                                                   1  1 

Fig. 7.3. Directions of motion in the (x1, y1) plane

At this point, let it be pointed out that the transformation to Poincaré
non-singular variables defined by (7.2) (or 7.8) has regularizing properties
that are more powerful than those of the simple geometric transformation
x1 = |J1| cos θ1, y1 = |J1| sin θ1 (which is sufficient only to eliminate the geo-
metrical singularity). Indeed, in the general case, we have ν◦1 �= 0 and this
means that the first derivative of the function H0 has a finite limit at the ori-
gin. If the ordinary polar-to-rectangular geometric transformation were used
instead of the Poincaré transformation, the first derivative of H0 would have
no limit at the origin; Figs. 7.2(a) and (b) would have a cone-like structure
near the vertex (except for ν◦1 = 0). This additional regularizing property of
the transformations defined in Sect. 7.2 arises from the fact that they involve√
|J1| instead of J1.

7.5 Lie Series Expansions About the Origin

Following the definitions given in Sect. 5.3, for each f ∈ F , each point x, y in
O and a given Lie generator W of class C∞ in O, the application

f → EW f =
∞∑

k=0

λk

k!
Dk

W f (7.22)
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is the Lie series expansion of the function f , generated by W . The Lie deriv-
atives Dk

W f are defined recursively from

f → DW f = {f,W}. (7.23)

In the theories of Poincaré, von Zeipel–Brouwer and Hori, all expansions
were done in series of powers of ε (or

√
ε in Delaunay theory). In the neigh-

borhood of the origin, we assume that the variables x, y are small quantities
of order O(εd) (generally d ≤ 1) and we have to adopt new rules for the
comparison of terms. We will no longer use the powers of ε (or

√
ε), but the

degree of homogeneity of the function with respect to the elements of the set
S ≡ (x, y, εd).

To write the Lie series expansion of the function f in the neighborhood of
the origin, let it be assumed that f is a homogeneous function of the elements
of S and also that

W =
∑
k≥1

Wk(x, y, ε), (7.24)

where the Wk(x, y, ε) have degree k in the elements of S. Then

EW f = f + {f,W1} + {f,W2} + {f,W3} + · · ·
+ 1

2{{f,W1},W1} + 1
2{{f,W1},W2} + 1

2{{f,W2},W1} + · · ·
+ 1

6{{{f,W1},W1},W1} + · · · ,
(7.25)

where, as in previous theories, we assumed λ = 1. The law of formation of the
terms for the kth row is very simple:

Dk
W f =

∑
{{. . . {{f,W�1},W�2}, . . .},W�k

},

where the sum extends over all combinations (�1, �2, . . . , �k) ∈ Zk.
We have to take into account, now, that the Lie derivative DW modifies

the order of the terms by subtracting two units, because of the differentiations
with respect to x and y in each term of the Poisson bracket defining the Lie
derivative. Therefore, if L is the degree of f , the degree of each term in Dk

W f
is

L+
k∑

i=1

�i − 2k.

This means that there are, in the derivatives, terms with degree less than L
(and even negative). To avoid this inconvenience, we assume W1 = 0. Another
difficulty resulting from the order losses in the derivatives is that the collection
of the terms of the same degree of homogeneity as f ,

f + {f,W ∗
2 } +

1
2
{{f,W ∗

2 },W ∗
2 } +

1
6
{{{f,W ∗

2 },W ∗
2 },W ∗

2 } + · · · ,

has an unlimited number of terms. One practical requirement in the construc-
tion of the perturbation equations of a Lie series theory is that the number of
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terms in the Lie series EW∗f , of a given order (or degree of homogeneity), is
finite. We then assume W ∗

2 = 0 and the Lie series expansion of f becomes

EW f = f + {f,W3}
+ {f,W4} + 1

2{{f,W3},W3}
+ {f,W5} + 1

2{{f,W3},W4} + 1
2{{f,W4},W3}

+ 1
6{{{f,W3},W3},W3}

+ · · · ,

(7.26)

where, now, the terms have been ordered following their degree of homogene-
ity: L and L+ 1 in the first row, L+ 2 in the second row, L+ 3 in the third
row, etc.

This series is very similar to those given in previous chapters; the only
difference lies in the subscripts of W , which, in the expansion about the origin,
are two units larger than in ordinary expansions.

7.6 Lie Series Perturbation Theory in Non-Singular
Variables

Let us use Hori theory to study the solutions of a perturbed regular Hamil-
tonian, in the neighborhood of the origin. This can be done because Hori
theory is valid for any set of canonical variables and thus may be used with
non-singular canonical variables. We recall that the classical theories of Chap.
3 apply only to problems stated in angle–action variables and may not be
straightforwardly used here.

Let us consider the Hamiltonian system given by

H = H0(J) +
∑
k≥1

εkHk(θ, J). (7.27)

We assume that the undisturbed Hamiltonian H0(J) is regular in a domain
around the origin and that νi �= 0, for all i, in this domain (there is no
resonance at the origin). Hence

H0 =
∑
k≥1

X2k(J) =
N∑

i=1

ν◦i Ji +
1
2

N∑
i=1

N∑
j=1

ν◦ijJiJj + · · · (7.28)

(see Sect. 7.4), or, with non-singular variables (assuming by default the case
Ji < 0),

H0 = −1
2

N∑
i=1

ν◦i (x2
i + y2

i ) +
1
8

N∑
i=1

N∑
j=1

ν◦ij(x
2
i + y2

i )(x2
j + y2

j ) + · · · . (7.29)

The disturbing terms will be written
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Hk =
∑
k′≥1

Vk′

k (x, y) (7.30)

with Vk′

k denoting the part of Hk of degree k′ with respect to x, y. As already
stated, the orders of magnitude will no longer be the powers of ε (or

√
ε), but

the degrees of homogeneity in the elements of a given set S. In this theory,
we assume

xi = O(ε) yi = O(ε)

and
S ≡ (x, y, ε).

The functions expand as indicated in the previous section with d = 1.
Let us introduce, now, the canonical transformation φn : (x, y) ⇒ (x∗, y∗)

defined by
f(x, y) = EW∗f(x∗, y∗), (7.31)

where EW∗f is the Lie series expansion of f(x, y) about the origin. Following
the same development as in Chap. 6, we introduce

W ∗ =
n∑

k=3

W ∗
k (x∗, y∗, ε), (7.32)

where the quantities W ∗
k are homogeneous functions of degree k in the ele-

ments of S. Since the given canonical transformation is conservative, we have

H(x, y) = H∗(x∗, y∗) + Rn(x∗, y∗),

that is,
H∗(x∗, y∗) + Rn(x∗, y∗) = EW∗H(x∗, y∗). (7.33)

We then introduce, in these equations, the expansions already given for W ∗

and H as well as
H∗ =

∑
k≥2

H∗
k (x∗, y∗, ε), (7.34)

where the quantities H∗
k are homogeneous functions of degree k in the elements

of S.
Comparing the parts of the same degree in both sides of (7.33), we obtain

the equations of the Hori perturbation theory in the case under consideration:

H∗
2 = X2+ εV1

1

H∗
3 = εV2

1 + ε2V1
2 + {X2 + εV1

1 ,W
∗
3 }

H∗
4 = X4+ εV3

1 + ε2V2
2 + ε3V1

3 + {X2 + εV1
1 ,W

∗
4 }

+{εV2
1 + ε2V1

2 ,W
∗
3 } + 1

2{{X2 + εV1
1 ,W

∗
3 },W ∗

3 }
· · ·

H∗
n = Vn

0 +
n−1∑
k=1

εkVn−k
k +

n−2∑
k=0

εk{Vn−k−1
k ,W ∗

3 } + · · · + {X2 + εV1
1 ,W

∗
n}.

(7.35)
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In the last equation of this system, we introduced Vn
0 with the definition

Vn
0 = Xn for n even and Vn

0 = 0 for n odd. The rules of construction of the
right-hand sides are very simple. It is enough to replace the generic function f
of (7.26) by the expansions of H and its parts and take into account the degree
of homogeneity of every part. These rules are simple and, when computer
algebraic manipulators are used, they allow simple iterative schemes to be
introduced.

If the equations are used in turn to simplify those of higher orders, we
have

H∗
2 = X2 + εV1

1

H∗
3 = εV2

1 + ε2V1
2 + {H∗

2 ,W
∗
3 }

H∗
4 =

3∑
k=0

εkV4−k
k +

1
2
{H∗

3 + εV2
1 + ε2V1

2 ,W
∗
3 } + {H∗

2 ,W
∗
4 }

· · ·

H∗
n =

n−1∑
k=0

εkVn−k
k +

1
2
{H∗

n−1 +
n−2∑
k=0

εkVn−k−1
k ,W ∗

3 } + · · ·

+
1
2
{H∗

3 + εV2
1 + ε2V1

2 ,W
∗
n−1} + {H∗

2 ,W
∗
n}.

(7.36)

Let it be recalled that all functions Xk and Vk′

k in the preceding systems
are understood as Xk(x∗, y∗) and Vk′

k (x∗, y∗), that is, Xk(x, y) |x=x∗,y=y∗ and
Vk′

k (x, y) |x=x∗,y=y∗ .
Equation (7.36) may be synthesized in the homological partial differential

equation
{H∗

2 ,W
∗
k } = H∗

k − Ψk (7.37)

and the Hori kernel associated to it is

dx∗i
du

=
∂H∗

2

∂y∗i

dy∗i
du

= −∂H∗
2

∂x∗i
, (7.38)

where the signs in the equations were chosen in accordance with the assump-
tion Ji < 0 (that is, {xi, yi} = +1). The first feature to be considered in (7.38)
is that these equations are separable into N second-order systems, since H∗

2

is composed of N parts, each depending on only one pair of variables x∗i , y
∗
i .

In addition, each separated system is easily integrated. Indeed, we have

dx∗i
du

= −ν◦i y∗i + εb′i
dy∗i
du

= ν◦i x
∗
i − εbi, (7.39)

where we have assumed

V1
1 (x∗i , y

∗
i ) =

N∑
i=1

(bix∗i + b′iy
∗
i ). (7.40)
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The general solutions of (7.39) are

x∗i = Ci cos (ν◦i u+ γi) +
εbi
ν◦i

y∗i = Ci sin(ν◦i u+ γi) +
εb′i
ν◦i

, (7.41)

where the integration constants γi are chosen such that Ci > 0. The function
Ψk(x∗, y∗) is then a quasiperiodic function of u and one of the averaging
operations of Chap. 6 may be used to obtain the corresponding H∗

k .

7.6.1 Solutions Close to the Origin (Case J1 < 0)

The study of the solutions close to the origin may be simplified if, beforehand,
we perform the canonical transformation

x̂i = xi − εbi
ν◦i

ŷi = yi − εb′i
ν◦i

. (7.42)

With these variables, the given problem is transformed into a modified one
where

X̂2 = −1
2

N∑
i=0

ν◦i (x̂2
i + ŷ2

i ); V̂1
1 = 0.

(The hat is used to indicate the functions transformed by means of (7.42)).
The first of the perturbation equations is, now, simply

Ĥ∗
2 = X̂2

and the solutions of the modified Hori kernel are

x̂ ∗
i = Ci cos (ν◦i u+ γi)
ŷ ∗

i = Ci sin(ν◦i u+ γi). (7.43)

When there is no commensurability among the frequencies ν◦i , we may use
the mean-value theorem of quasiperiodic functions to obtain the averages:

Ĥ∗
k = < Ψ̂(x̂ ∗, ŷ ∗) >, (7.44)

where < · · · > stands for the average over all angles ν◦i u + γi from 0 to 2π.
For all k ≥ 3 , Ĥ∗

k will be a function of

x̂ ∗2
i + ŷ ∗2

i = C2
i (7.45)

only. The transformed Hamiltonian system is easily integrated. The new equa-
tions are
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dx̂ ∗
i

dt
=

∂Ĥ∗

∂ŷ ∗
i

dŷ ∗
i

dt
= −∂Ĥ∗

∂x̂ ∗
i

. (7.46)

Equation (7.45) shows that the solutions are circles and a simple calculation
shows that the motions on these circles are uniform with frequencies

ν∗i = − 1
Ci

∂Ĥ∗

∂Ci
. (7.47)

Exercise 7.6.1. Consider the Hamiltonian that served as an example for a
practical comparison of Poincaré and Lie series theories in Sect. 6.4. Show that
the study of that Hamiltonian with non-singular variables is trivial (H∗ = H
and W ∗ = 0).

7.6.2 Angle–Action Variables of H∗

2
(Case J1 < 0)

Notwithstanding the simplicity of the above calculations, one may easily ver-
ify that the integration constants (γi, Ci) are not canonical. This means that,
in the calculation of the Poisson brackets of the next-order perturbation equa-
tion, these constants may not be used and one has to use the inverse of the
general solutions to write all concerned functions again as functions of (x∗i , y

∗
i ).

This task can be avoided by using canonical integration constants (as given
by the solution of the corresponding Hamilton–Jacobi equation), or, simply,
by introducing the angle–action variables of H∗

2 . In the case under study, they
are trivially obtained:

wi = |ν◦i u+ γi|

Λi = ±1
2
C2

i ,

where the sign of Λi is equal to the sign of ν◦i . We recall that s = −1 (J1 < 0)
and that (7.12) gives, in this case, Λ = 1

2π

∮
ydx, whose sign is opposite to

the sign of J1ν
◦
1 (see Fig. 7.3). Hence

x∗i =
√

2|Λi| coswi + ε
bi
ν◦i

y∗i = ±
√

2|Λi| sinwi + ε
b′i
ν◦i
,

(7.48)

where the sign in the last equation is opposite to the sign of ν◦i .

7.7 The Non-Resonance Condition

The condition for the use of the averaging rule fixed by (7.44) is a non-
resonance condition analogous to that of Sect. 3.5: (h | ν◦) �= 0 for all integer
vectors h ∈ Z

N
appearing in the arguments of the given Hamiltonian or formed
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through the successive multiplication of trigonometric polynomials during the
calculation of the Ψk (k ≤ n). When a resonance is approached, we have to
proceed as in von Zeipel–Brouwer theory: The von Zeipel averaging rule is
written in the same way as before, but < · · · > stands for the average over
the non-resonant short-period angles only.

To explain the procedures to follow in this case, we introduce the angle–
action variables (θ̂∗i , Ĵ

∗
i ) associated with (x̂ ∗

i , ŷ
∗
i ) by means of the Poincaré

relations
x̂ ∗

i =
√

2|Ĵ∗
i | cos θ̂∗i

ŷ ∗
i =

√
2|Ĵ∗

i | sin θ̂∗i .
(7.49)

The average of a function Ψ̂∗
k is now given by

< Ψ̂∗
k (θ̂∗, Ĵ∗) > = Ψ̂∗

k(S)(Ĵ
∗) + Ψ̂∗

k(K)(h | θ̂∗, Ĵ∗),

where the subscripts S, K mean secular and critical, respectively. The critical
terms are those depending on the angles (h̄ | θ̂∗) , h̄ ∈ Z

N , such that (h̄ |
ν◦) = 0.

If we assume that there are L = N −M commensurability relations

(h� | ν◦) = 0 (� = M + 1, · · · , N), (7.50)

and construct the Lagrange point transformation

φ̂�=(h� | θ̂∗) (� = M + 1, · · · , N)
φ̂µ=(hµ | θ̂∗) (µ = 1, · · · ,M = N − L),

(7.51)

the canonical transformation is completed through the introduction of new
actions Îi such that

N∑
i=1

Ĵ∗
i δθ̂∗i =

N∑
i=1

Îi δφ̂i.

The transformed Hamiltonian is now

Ĥ∗ = Ĥ∗
2 (Î) +

n∑
k=3

Ĥ∗
k (φ̂�, Î , ε)

and it is independent of the angles φ̂µ. Therefore, the Îµ are constants and

H(φ̂�, Î�, ε) = Ĥ∗(φ̂�, Î , ε)

is the Hamiltonian of a canonical system with L = N−M degrees of freedom;
the commensurability relations given by (7.50) are, in this new system, simply

ν̂ ◦
� = 0, (7.52)

exactly as was assumed in the presentation of the von Zeipel–Brouwer theory.
Thus, at variance with what was seen in Sect. 7.6, in the non-resonant case,
the averaging does not reduce the system to a completely integrable one, but
only to a reduced system with L = N −M degrees of freedom.
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7.8 Example

A complete non-singular Hamiltonian, as used in the theory of Sect. 7.6, is
not often found in Celestial Mechanics because the main Keplerian term of
the Hamiltonian depends only on the semi-major axis and is not affected by
pure geometrical singularities. Non-singular Hamiltonians generally do appear
after the averaging over the mean longitudes, as in the linear secular theory
considered in Sect. 3.7. Some other important examples are studied in Chap.
10. The most common problems in Celestial Mechanics mix angle–action and
non-singular Poincaré variables. Thus, the example given below is not a mere
application of the previous theory, but rather an application of the principles
used to construct it together with those of the previous chapter. It is the
continuation of the example treated in Sect. 3.8.

The Hamiltonian given by (3.95), up to order O(ε), may be written as

H = − 1
2I2

1

− 2I1 +ε
(
a+ bI3 + L

√
−2I3 cosφ3 +B cosφ1

+M
√
−2I3 cos (φ1 + φ3)

) (7.53)

with several modifications: (a) the stars and coefficient subscripts were dropped;
(b) the constant term ν2I2 was dropped (it does not contribute to the differ-
ential equations, since φ2 is ignorable); (c) some factors

√
2 were introduced

to get simpler coefficients in the forthcoming calculations; (d) the value ν2 = 1
was adopted; and (e) A∗

0 was assumed to be linear in I3: A∗
0(I1, I3) = a+ bI3.

First, we expand H0 = H |ε=0 about a reference value I◦1 :

H0 = const + ν◦1Ξ +
1
2
ν◦11Ξ

2 +
1
6
ν◦111Ξ

3 + · · · , (7.54)

where
Ξ = I1 − I◦1 (7.55)

and
ν◦1 =

1
I◦31

− 2, ν◦11 =
−3
I◦41

, ν◦111 =
12
I◦51

, · · · . (7.56)

The coefficients a(I1), b(I1), B(I1), L(I1) and M(I1) are expanded in the same
way. Then,

H = H0 +ε
(
b0I3 + L0

√
−2I3 cosφ3 +B0 cosφ1 +M0

√
−2I3 cos (φ1 + φ3)

)
+εΞ

(
a1 + b1I3 + L1

√
−2I3 cosφ3 +B1 cosφ1

+ M1

√
−2I3 cos (φ1 + φ3)

)
+ · · · , (7.57)

where, now, all coefficients are calculated at the point I1 = I◦1 and, therefore,
are constants. The subscript 1 in the coefficients denotes that they are first
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derivatives with respect to I1. (The term εa0 was dropped; it is constant and
does not contribute to the equations.)

The next step is to assess the order of magnitude of the results. This
assessment is critical because it determines the Hori kernel of the perturba-
tion theory and, thus, constrains the solution. This is done by comparing the
leading terms of H0 with those of the perturbation. To see this, it is worth
recalling that this example is suggested by the planar motion of an asteroid
disturbed by Jupiter, L,B are proportional to Jupiter’s eccentricity and I3
is proportional to the squared asteroid eccentricity (see Sect. 3.6). Thus, if
the eccentricities of Jupiter and the asteroid are assumed to be comparable,
the leading terms of the perturbation have coefficients εB0 and εM0 (M0 is a
finite quantity)3. Then, we assume Ξ = O(ε

√−I3) and B0 = O(
√−I3). We

have, also, to assume a relationship between the orders of ε and
√−I3 and we

assume
√−I3 = O(ε). This choice is not the only one possible and, depending

on the problem under study, may not even be a good one. However, it is the
simplest when the actual calculations are concerned.

The given Hamiltonian may be expanded in a series ordered according to
the degree of homogeneity of the elements of the set

S ≡ (
√

Ξ,
√
−I3, ε).

With the notation of Sect. 7.6, we have

H0 = X2(Ξ) +X4(Ξ) + · · · , (7.58)

where

X2 = ν◦1Ξ, X4 =
1
2
ν◦11Ξ

2, . . . , (7.59)

and
H1 =

∑
k≥1

Vk
1 (φ1, φ3,Ξ, I3), (7.60)

where
V1

1 = B0 cosφ1 +M0

√
−2I3 cos (φ1 + φ3)

V2
1 = b0I3 + L0

√
−2I3 cosφ3 + a1Ξ

V3
1 = B1Ξ cosφ1 +M1Ξ

√
−2I3 cos (φ1 + φ3)

V4
1 = b1ΞI3 + L1Ξ

√
−2I3 cosφ3 +

1
2
a2Ξ2

· · · .

(7.61)

The perturbation equations are (7.36). It is worth noting that those equa-
tions were obtained under the hypothesis that every Poisson bracket loses two
units in its degree of homogeneity because of the differentiations. This is the

3 It is useful to have in mind the orders of the various quantities present in this
equation: a, b, M and their derivatives are finite quantities; B, L and their deriv-
atives are of order O(ε); Ξ, I3 are of order O(ε2).
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case also in this example for both pairs of variables (φ1,Ξ) and (φ3, I3), re-
gardless of the fact that we have not yet introduced the non-singular variables.

The homological equation is

{H∗
2 ,W

∗
k } = H∗

k − Ψk(φ∗
1, φ

∗
3,Ξ

∗, I∗3 ), (7.62)

where

H∗
2 = X2(Ξ∗

1) + εV1
1 (φ∗

1, φ
∗
3,Ξ

∗, I∗3 )

= ν◦1Ξ∗ + ε
(
B0 cosφ∗

1 +M0

√
−2I∗3 cos (φ∗

1 + φ∗
3)
)
. (7.63)

The two terms of H∗
2 have arguments including the angle φ∗

1. When Jupiter
is on a circular orbit, only M

√−2I∗3 cos (φ∗
1 +φ∗

3) remains. It is, then, chosen
as the main one and we define a new set of canonical variables (θ∗, J∗) through

θ∗1=φ∗
1 + φ∗

3 J∗
1 =I∗3

θ∗2=φ
∗
1 J∗

2 =Ξ∗ − I3.
(7.64)

We are interested in solutions with |I3| small. We then replace θ∗1 , J
∗
1 by the

non-singular variables
x∗1=

√−2J∗
1 cos θ∗1

y∗1=
√−2J∗

1 sin θ∗1 .
(7.65)

With the new variables, H∗
2 becomes

H∗
2 = ν◦1Ξ∗ + ε (B0 cos θ∗2 +M0x

∗
1) , (7.66)

where

Ξ∗ = J∗
2 − 1

2
(x∗21 + y∗21 ). (7.67)

The Hori kernel is

dx∗1
du

=
∂H∗

2

∂y∗1
= −ν◦1y∗1

dy∗1
du

= −∂H∗
2

∂x∗1
= ν◦1x

∗
1 − εM0

dθ∗2
du

=
∂H∗

2

∂J∗
2

= ν◦1
dJ∗

2

du
= −∂H∗

2

∂θ∗2
= εB0 sin θ∗2

(7.68)

whose general solutions are

x∗1 = C cos γ +
εM0

ν◦1
y∗1 = C sin γ

θ∗2 = ν◦1u+ θ◦2 J∗
2 = −εB0

ν◦1
cos θ∗2 + J◦

2 ,
(7.69)

where
γ = ν◦1u+ θ◦1 .

(θ◦1 and θ◦2 are two independent integration constants.) Before continuing, it is
worthwhile noting that the integration constants C and J◦

2 are, respectively,
of orders O(ε) and O(ε2), so that Ξ∗ = O(ε2) as assumed.
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First Perturbation Equation

The first perturbation equation is

{H∗
2 ,W

∗
3 } = H∗

3 − Ψ3, (7.70)

where (with the new variables)

Ψ3 = εV2
1 = ε [b0J∗

1 + L0(x∗1 cos θ2 + y∗1 sin θ2) + a1Ξ∗] (7.71)

(since V1
2 = 0). Once the solution of the Hori kernel is substituted into Ψ3, we

get

H∗
3 = < Ψ3 > (7.72)

= −1
2
ε(b0 + a1)C2 − 1

2
ε3(b0 + a1)

M2
0

ν◦21

+ εa1J
◦
2 + εL0C cos (θ◦1 − θ◦2)

and

W ∗
3 =

∫
(Ψ3 −H∗

3 ) du (7.73)

=
ε2

ν◦21

(M0L0 − a1B0) sin (ν◦1u+ θ◦2) −
ε2

ν◦21

(b0 + a1)CM0 sin (ν◦1u+ θ◦1).

The only necessary condition is that ν◦1 is not a small quantity (non-resonance
condition).

The integration constants θ◦1 , θ
◦
2 , C, J

◦
2 are not canonical and the above

functions may be transformed into H∗
3 (x∗1, y∗1 , θ∗2 , J∗

2 ) and W ∗
3 (x∗1, y∗1 , θ∗2 , J∗

2 )
before the next step, since Ψ4 includes the calculation of {H∗

3 ,W
∗
3 }. In this ex-

ample, this task may be accomplished trivially, but in more complex examples,
this may not be the case.

Angle–Action Variables of H∗

2

The frequent use of the inverse of the general solutions of the Hori kernel may
be avoided if those solutions are written in terms of the parameters (α, β) of
the corresponding Hamilton–Jacobi equation or, equivalently, the angle–action
variables of H∗

2 . Poisson brackets are invariant to canonical transformations
and we may calculate them using the parameters (α, β) or the angle–action
variables of H∗

2 . In the given example, H∗
2 is separated into

H∗
2 = K1(x∗1, y

∗
1) +K2(θ∗2 , J

∗
2 ), (7.74)

where

K1 = −1
2
ν◦1 (x∗21 + y∗21 ) + εM0x

∗
1

K2 = ν◦1J
∗
2 + εB0 cos θ∗2 (7.75)

and both sets of canonical parameters may be easily constructed. We will use,
in this example, the angle–action variables:
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• Angle–action variables of K1: K1 is a harmonic oscillator with frequency
ν◦1 . Then, keeping the same constants as before,

w1 = |ν◦1 |u+ θ◦1 (7.76)

and

Λ1 =
1
2π

∮
y∗1dx

∗
1 = ∓C2

2
= ∓1

2

[
y∗21 +

(
x∗1 −

εM0

ν◦1

)2
]
. (7.77)

The sign of Λ1 may be chosen as opposite to the sign of ν◦1 .

• Angle–action variables of K2: All solutions of K2 are isochronous circula-
tions with frequency ν◦1 . Then

w2 = |ν◦1 |u+ θ◦2 (7.78)

and

Λ2 =
1
2π

∮
J∗

2 dθ∗2 = ±J◦
2 = ±

(
J∗

2 +
εB0

ν◦1
cos θ∗2

)
. (7.79)

The sign in front of J◦
2 may be chosen as equal to the sign of ν◦1 .

With the angle–action variables thus introduced, the energy is

E2 = |ν◦1 |(Λ1 + Λ2). (7.80)

This system is degenerate and one more change of variables, in the direction
contrary to that given by (7.64), is useful:

w̃1 = w2 Λ̃1 = Λ1 + Λ2

w̃3 = w1 − w2 Λ̃3 = Λ1
(7.81)

(see Sect. 2.7.1), where we restored the subscript 3 to make evident the cor-
respondence with the variables of the given problem. The energy becomes

Ẽ2 = |ν◦1 |Λ̃1. (7.82)

If, to avoid unnecessary complicated notation with double signs, we assume
ν◦1 > 0, we may write the general solution of (7.68) as

x∗1 =
√−2Λ1 cosw1 +

εM0

ν◦1
y∗1 =

√−2Λ1 sinw1

θ∗2 = w2 J∗
2 = Λ2 − εB0

ν◦1
cosw2,

(7.83)

instead of (7.69). Once these solutions are substituted into Ψ3, instead of (7.72)
and (7.73), we get
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H∗
3 = < Ψ3 > (7.84)

= ε(b0 + a1)Λ̃3 − 1
2
ε3(b0 + a1)

M2
0

ν◦21

+ εa1(Λ̃1 − Λ̃3) + εL0

√
−2Λ̃3 cos w̃3

and

W ∗
3 =

∫
(Ψ3 −H∗

3 ) du (7.85)

=
ε2

ν◦21

(M0L0 − a1B0) sin w̃1 − ε2

ν◦21

(b0 + a1)M0

√
−2Λ̃3 sin (w̃1 + w̃3).

��
We will not continue the calculations, since they are, now, simple appli-

cations of the given routines. We just recall that the Poisson brackets in Ψk

(k ≥ 4) are more easily computed through

{f, g} =
2∑

i=1

(
∂f

∂w̃i

∂g

∂Λ̃i

− ∂g

∂w̃i

∂f

∂Λ̃i

)
. (7.86)
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8

Lie Series Theory for Resonant Systems

8.1 Bohlin’s Problem (The Single-Resonance Problem)

The integration of the homological equation of the general perturbation the-
ories of Chaps. 3 and 6 is only possible when the short-period frequencies ν∗µ
(µ = 1, · · · ,M) obey the non-resonance condition

(h|ν∗) =
M∑

µ=1

hµν
∗
µ �= 0 (8.1)

for all h ≡ (h1, · · · , hM ) ∈ Z
M

appearing in the right-hand-side trigonometric
polynomials. The strong restriction introduced by this condition is the very
reason for which, in general, those theories cannot be extended to an arbi-
trarily high order. As discussed in Sect. 3.3.1, the set Dk ⊂ Z

M of values of h
grows with the order of approximation k and values of (h|ν∗) smaller than any
given limit may be formed as the set Dk grows. However, in the applications,
we are often interested in a phase space domain where (h|ν∗) = 0 for some h
present in the given perturbation εR(θ, J ; ε). We have, then, to extend canon-
ical perturbation theories to such cases and learn how to construct formal
solutions valid in the neighborhood of resonances.

The general Hamiltonian in perturbation theory is

H = H0(Jµ) + εR(θ, J ; ε) (8.2)

with θ ≡ (θ1, · · · , θN ), J ≡ (J1, · · · , JN ) and µ = 1, · · · ,M ≤ N . R is a smooth
function in TN ×O × I (O ⊂ RN is an open set and I ⊂ R) represented by
a trigonometric polynomial in θ. We, generally, write,

R = R(S) +R(LP ) +R(SP ),

where the subscripts (S), (LP), (SP) mean secular, long period and short
period, following the definitions given at the end of Sect. 3.4. At variance
with the assumed non-resonance condition of general theories, we assume,
now, that, for some h̄ ∈ ZM and some J∗ ∈ O, we have, simultaneously
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(a.)
M∑

µ=1

h̄µν
∗
µ = 0;

(b.) either the trigonometric polynomialR(SP ) includes one termAh̄ cos (λh̄|θ)
(λ ∈ N) or one such term will be formed in the calculation of some Ψk

(k ≤ n).

This means that one resonance has to be considered in the solution of the
given problem.

For simplicity, we assume that all non-critical short-period angles were
eliminated beforehand from H with the help of one of the previously discussed
general theories using von Zeipel’s averaging rule. We also assume that a
Lagrangian point transformation such as (3.51) transformed the Hamiltonian
of the resulting system into

H = H0(J1) + εR(θ, J ; ε). (8.3)

Our problem is then stated as the search for formal solutions of the Hamil-
tonian (8.3) in a neighborhood of the value J1 = J∗

1 , where

ν∗1 =
dH0

dJ1

∣∣∣∣
J1=J∗

1

= 0. (8.4)

The problem of finding a formal canonical transformation able to elim-
inate the angle corresponding to the critical frequency (h̄ | ν∗), from the
Hamiltonian, was first proposed by Bohlin (see Appendix A) and is referred
hereafter as Bohlin’s problem. As discussed in Appendix A, it is shown that
all attempts at solving Bohlin’s problem in the presence of the degenerate
actions J� (� = 2, · · · , N), with classical theories, lead to an unsolved singu-
larity (Poincaré singularity). The solution of Bohlin’s problem in the presence
of degenerate actions using Lie series theory is the subject of this chapter and
the next.

8.2 Outline of the Solution

There is no general recipe to solve the single-resonance problem. We know
that Hori theory, as given in Chap. 6, cannot be used to construct a for-
mal solution of the stated single-resonance problem because H0(J1) is not a
topologically adequate Hori kernel in the neighborhood of a resonance. In the
simple one-degree-of-freedom case, the Poincaré–Birkhoff theorem states that
the perturbation R may change the topology of the phase plane by introduc-
ing a finite set of new equilibrium points. The new stable equilibrium points
are centers of libration lobes separated from the general flow by asymptotic
motions emanating from unstable equilibrium points. A simple example of
such a flow bifurcation is shown in Fig. 6.2 (left). General theories fail in the
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neighborhood of a resonance because they consider the undisturbed Hamil-
tonian as the Hori kernel, regardless of the topological differences between
the flows of disturbed and undisturbed Hamiltonians. This diagnosis of the
origin of the small divisors appearing in general theories, at resonances, is the
only clue that we have to attempt a solution of Bohlin’s problem: The only
way to study resonant problems is to get rid of H0(J1) as the Hori kernel and
to choose a new one whose flow reproduces the main topological features of
the given flow in the neighborhood of the resonance. At this point, it is not
superfluous to emphasize that this is not enough to get rid of all problems.
It is only good to get formal solutions with the assigned topological features.
The real nature of perturbed Hamiltonian flows is much more complex. For
instance, when the order of the solutions inside a libration zone is pushed
too far, small divisors due to other resonances are unavoidable. In practice,
these other resonances generally appear as commensurabilities amongst the
low-frequency terms of R(LP ) (secular resonances) or among the low frequen-
cies and the proper frequency of libration around one stable equilibrium point
(secondary resonances) (see Fig. 4.3). These resonances are, generally, the
only ones taken into account; but one may be aware that the process of elim-
ination of “non-critical” short-period angles considered as previously done is
valid in a domain O whose measure decreases as the formal accuracy of the
theory increases. These terms, considered a priori as non-critical, are very
dangerous, as they do not appear in the reduced Hamiltonian (8.3) and may
remain unnoticed.

The general principles to be followed when dealing with the single-
resonance problem are simple:

1. to select from the given Hamiltonian the terms that determine the main
integrable topological features of the flow in the considered domain;

2. to solve the Hamilton–Jacobi equation of the integrable Hamiltonian Hlead

formed with the selected terms or, equivalently, to construct its angle–
action variables;

3. to introduce the canonical variables thus obtained in the given Hamiltonian
and to construct a Lie series theory whose Hori kernel is Hlead.

Great difficulties are involved in steps 1 and 2. Hlead must not only be inte-
grable, but we must be able to write its solutions as well as to construct its
angle–action variables (or to completely solve its Hamilton–Jacobi equation).
These requirements limit our choice to separable Hamiltonians whose reduc-
tion to the phase plane of the critical variables is a well-known one-degree-
of-freedom Hamiltonian (such as the simple pendulum, the Ideal Resonance
Problem, the Andoyer Hamiltonians, and a few others). In the study of spin-
orbit resonance, a quadratic Hamiltonian as studied in Sect. 2.9, with three
degrees of freedom, has been shown to be a suitable Hori kernel [62].

This procedure involves the two canonical transformations represented by
single-line arrows in the scheme below (using the angle–action variables w,Λ
of Hlead as new variables):
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(θ, J) −→ −→ (w,Λ)-. ↘
⏐0-. ↘
⏐0

(θ∗, J∗) =⇒ =⇒ (w∗, Λ∗)

Resonant problems are almost always very peculiar and it is difficult to
conceive of a very general Hlead for which a complete theory can be written.
The actual Lie series theory for a resonant problem closely depends on the
selected Hlead and, in fact, we have to tailor a theory for each problem. In
accordance with the general principle stated in step 1, Hlead may be the term
determining the main integrable features of the flow. To do this, orders of
magnitude have to be assigned to variables and parameters so that the main
terms are all present in Hlead on the same footing, while the remaining non-
trivial terms of H are of higher orders. For this reason, we have to adopt new
rules for the comparison of terms in the series expansions. In classical theories
(Poincaré, von Zeipel–Brouwer, Bohlin, Delaunay) the perturbation equations
are obtained through the identification of both sides of the energy conservation
equation according to the powers of the small parameter (ε or

√
ε). The same

construction was adopted in the general Lie series perturbation theory of
Chap. 6. But for the Lie series expansions about the origin (Sect. 7.5), the
structure of the Poisson brackets used in Lie series allowed us a different
choice, which is very useful to avoid the mixing of orders that impaired the
application of the classical theories to resonant systems (see Sect. A.2). We
use, now, the fact that the excursions of the variable J1 (action conjugate to
the critical angle θ1) in the neighborhood of the resonant value J∗

1 are small,
replace J1 by the new variable

ξ = J1 − J∗
1 (8.5)

and assume that ξ = O(εd), d ≤ 1. (For instance, in Delaunay theory, d = 1
2 .)

In the following, the orders of magnitude are no longer taken as the powers
of ε (or

√
ε), but as the degree of homogeneity of the functions with respect

to the elements of the set S ≡ (ξ, εd).
One last word concerning step 2 is necessary. The aim of canonical per-

turbation theories is, always, to get rid of degrees of freedom associated with
fast angles. This is obtained, generally, by systematically averaging (over the
fast angles) the right-hand side terms of the homological equation. However,
the term Hlead remains itself unaltered in this process and, thus, it may have,
ab initio, the reduced form sought for the new Hamiltonian. In the general
case, the two sets of variables mentioned in step 2 satisfy this condition, but,
given the practical difficulties to get them, it is useful to have in mind that,
for a given problem, other possibilities may exist. For instance, when Hlead

appears separated into two terms:
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Hlead = Hlead(1)(θ1, J1) +Hlead(�)(θ2, θ3, · · · , θN , J2, J3, · · · , JN ). (8.6)

we do not need to deal with Hlead(�); the fast variable is included only in
the one-degree-of-freedom Hlead(1), making it easier to perform the operation
indicated in step 2. It may appear, at a first sight, that the above splitting
is very restrictive. However, the problem that arises after the introduction of
the angle–action variables of Hlead(1), is more general than the problem stated
in the introduction of von Zeipel–Brouwer theory (see Sect. 3.4). There, the
Hamiltonian H0 depends only on the variables Jµ while, here, the zero-order
Hamiltonian appears split into two separate parts: one like H0 and another
one depending, in an arbitrary way, of the remaining variables θ�, J�.

At this point, it is worth warning against the apparent possibility of a
more general separated case:

Hlead(1)(θ1, J1, J2, · · · , JN ) +Hlead(�)(θ2, θ3, · · · , θN , J2, J3, · · · , JN )

together with the set of angle–action variables of Hlead(1)(θ1, J) given by the
algorithms of Sect. 2.4.4. The variables obtained with those algorithm are the
angle–action variables of Hlead(1)(θ1, J), but not of Hlead. The transforma-
tion functions Ξ(w1, Λ) introduce the angle w1 into Hlead(�) and the sought
elimination of the fast angle (w1) may be frustrated.

8.3 Functions Expansions

The Lie series of a function is a Taylor series and, therefore, unique. However,
if we intend to group the terms according to the degrees of homogeneity in
the elements of S, we have to take into account that the Lie derivative of
a function yields terms with different degrees of homogeneity. Indeed, given
two functions ψ1(θ, ξ, J�) and ψ2(θ, ξ, J�) (� = 2, . . . , N), homogeneous in the
elements of S ≡ (ξ, εd), their Poisson bracket is

{ψ1, ψ2} =
(
∂ψ1

∂θ1

∂ψ2

∂ξ
− ∂ψ2

∂θ1

∂ψ1

∂ξ

)
+

N∑
�=2

(
∂ψ1

∂θ�

∂ψ2

∂J�
− ∂ψ2

∂θ�

∂ψ1

∂J�

)
. (8.7)

The second part of this Poisson bracket is an ordinary operation and the degree
of homogeneity of the result is equal to the sum of the degrees of homogeneity
of ψ1 and ψ2. However, in the first part of the right-hand side, the operation
∂
∂ξ subtracts one unit from the degree of homogeneity; as a result, the degree

of homogeneity of the first parenthesis, in the elements of S ≡ (ξ, εd), is one
unit less than in the rest of the terms.

For the sake of the forthcoming developments, we introduce the notation

{ψ1, ψ2}1 =
∂ψ1

∂θ1

∂ψ2

∂ξ
− ∂ψ2

∂θ1

∂ψ1

∂ξ
, (8.8)
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{ψ1, ψ2}� =
N∑

�=2

(
∂ψ1

∂θ�

∂ψ2

∂J�
− ∂ψ2

∂θ�

∂ψ1

∂J�

)
, (8.9)

and write the Poisson bracket as

{ψ1, ψ2} = {ψ1, ψ2}1 + {ψ1, ψ2}�. (8.10)

From (8.10), in the case of two embedded Poisson brackets involving three
functions, we obtain

{{ψ1, ψ2}, ψ3} = {{ψ1, ψ2}1, ψ3}1 + {{ψ1, ψ2}1, ψ3}�

+{{ψ1, ψ2}�, ψ3}1 + {{ψ1, ψ2}�, ψ3}�, (8.11)

where the last term has the full degree of homogeneity (the sum of the degrees
of homogeneity of the three functions). The degree of homogeneity of the two
brackets showing both subscripts 1 and � and the degree of homogeneity of
the bracket showing the subscript 1 twice are, respectively, 1 and 2 units less
than that of the last term.

Now, let f(θ, ξ, J�) be a homogeneous function of degree L in the elements
of S ≡ (ξ, εd) and let us consider the canonical transformation

φn : (θ, ξ, J�) ⇒ (w∗, Λ∗).

This transformation does not lie in the neighborhood of the identity, and it
cannot be written as a Lie series. Let us, then, introduce an auxiliary set of
variables (θ∗, ξ∗, J∗

� ) related to (w∗, Λ∗) through the same equations linking
(θ, ξ, J�) to (w,Λ). The transformation

φaux : (θ, ξ, J�) ⇒ (θ∗, ξ∗, J∗
� )

is nearly identical and may be given by a Lie series. Let φaux be determined
by the Lie generator

W ∗ =
n∑

k=1

W ∗
k (θ∗, ξ∗, J∗

� ), (8.12)

where the functions W ∗
k (θ∗, ξ∗, J∗

� ) are homogeneous with degree k in the
elements of S. In accordance with the expansion given in Sect. 5.5.1, we have

f(θ, ξ, J�) = EW∗f(θ∗, ξ∗, J∗
� )

= f(θ∗, ξ∗, J∗
� ) + {f,W ∗

1 } + {f,W ∗
2 } + {f,W ∗

3 } + · · ·
+

1
2
{{f,W ∗

1 },W ∗
1 } +

1
2
{{f,W ∗

2 },W ∗
1 } +

1
2
{{f,W ∗

1 },W ∗
2 }

+ · · ·+ 1
6
{{{f,W ∗

1 },W ∗
1 },W ∗

1 } + · · · . (8.13)

We may use the invariance of Poisson brackets to calculate them in terms of
the averaged angle–action variables w∗, Λ∗. Because of such invariance, only
f(θ∗, ξ∗, J∗

� ) needs to be explicitly changed. Hence
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f(θ, ξ, J�) = f(θ∗(w∗, Λ∗), ξ∗(w∗, Λ∗), J∗
� (w∗, Λ∗)) + &c,

where &c. indicates the same brackets as in the previous equation with the
only difference that, now, we consider all functions in the brackets as func-
tions of the variables (w∗, Λ∗). It is worth noting that the practical procedure
adopted in the construction of the canonical transformation φn does not fol-
low the single-line arrows of the scheme given in Sect. 8.2, but rather the
alternative path shown by double-line arrows.

Before grouping the terms of this modified Lie series according to their
degrees of homogeneity with respect to the elements of S, we note that, be-
cause of the assumptions made on the order of ξ, at the end of Sect. 8.2,
the brackets {f,W ∗

k } yield terms with different degrees of homogeneity. The
decomposition given by (8.10) may be used here. One difficulty resulting from
the fact that the brackets with subscript 1 have a degree one unit less than
the sum of the degrees of the two functions involved in the bracket is that the
collection of terms of the same degree as f :

f + {f,W ∗
1 }1 +

1
2
{{f,W ∗

1 }1,W
∗
1 }1 +

1
6
{{{f,W ∗

1 }1,W
∗
1 }1,W

∗
1 }1 + · · · .

has an unlimited number of terms. (It is easy to see that if W ∗
1 �= 0, there are

infinite terms in each homogeneous subseries of EW∗f .) We then assume

W ∗
1 = 0

and the Lie series expansion of f becomes

EW∗f = f(θ∗(w∗, Λ∗), ξ∗(w∗, Λ∗), J∗
� (w∗, Λ∗))

+{f,W ∗
2 }1

+{f,W ∗
3 }1 + {f,W ∗

2 }� +
1
2
{{f,W ∗

2 }1,W
∗
2 }1

+{f,W ∗
4 }1 + {f,W ∗

3 }� +
1
2
{{f,W ∗

2 }1,W
∗
3 }1 +

1
2
{{f,W ∗

3 }1,W
∗
2 }1

+
1
2
{{f,W ∗

2 }�,W
∗
2 }1 +

1
2
{{f,W ∗

2 }1,W
∗
2 }�

+
1
6
{{{f,W ∗

2 }1,W
∗
2 }1,W

∗
2 }1

+{f,W ∗
5 }1 + {f,W ∗

4 }� + · · · , (8.14)

where we have put terms of degree L in the first row, terms of degree L + 1
in the second row, and so on.

In the above expansion, the partial brackets in the Lie series have to be
calculated, necessarily, with the variables (θ∗, ξ∗, J∗

� ) (the partial brackets are
not invariant to canonical transformations). However, in the case of a Hamil-
tionian split as (8.6), the canonical transformation (θ∗, ξ∗, J∗

� ) ⇒ (w∗, Λ∗) can
be separated into two parts: (θ∗1 , ξ∗) ⇒ (w∗

1 , Λ
∗
1) and (θ∗�, J∗

� ) ⇒ (w∗
� , Λ

∗
�). In
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this case, the partial brackets {f,W ∗
k }1 and {f,W ∗

k }� are true Poisson brack-
ets and, thus, invariant to the above partial canonical transformations and
the brackets {f,W ∗

k } may be decomposed as indicated in (8.10) for every set
of variables.

Exercise 8.3.1. The assumption W ∗
1 = 0, in the previous section, is stronger

than necessary to kill the brackets {·,W ∗
1 }1. It would be enough to assume

that W ∗
1 is independent of θ∗1 , ξ

∗. How should (8.14) be written if this weaker
assumption were adopted?

8.4 Perturbation Equations

To construct the perturbation equations of resonant systems, all functions
will be expanded in power series with terms grouped following their degree of
homogeneity in the elements of S ≡ (ξ, εd). The expansions of the functions
H0 and R are

H0 = H0(J∗
1 ) +X2(ξ) +X3(ξ) + · · · (8.15)

and

R(θ, J ; ε) = R(0)(θ, J∗
1 , J�) +R(1)(θ, ξ, J�) +R(2)(θ, ξ, J�) + · · · , (8.16)

where Xk′ and R(k′) are homogeneous functions of degree k′ in the elements
of S ≡ (ξ, εd). The term X1(ξ) is absent from the series for H0, since, by
Taylor’s theorem,

X1(ξ) =
dH0(J∗

1 )
dJ∗

1

ξ = ν1(J∗
1 )ξ

and, by hypothesis, ν1(J∗
1 ) = ν∗1 = 0.

These expansions may be introduced into (8.3), giving

H = H0(J∗
1 ) +

∑
k≥2

Fk(θ, ξ, J�; ε), (8.17)

where we have grouped in Fk all homogeneous terms of degree k in the ele-
ments of S ≡ (ξ, εd). In particular, the leading non-trivial term of the given
Hamiltonian is

F2 = X2(ξ) + εR(0)(θ, J∗
1 , J�)

and the application of the theory depends on the possibility of obtaining its
angle–action variables or, alternatively, the splitting of F2 into F2(1)(θ1, ξ) +
F2(�)(θ�, J�).

The canonical transformation φn is, now, given by (8.14) with the Lie
generator

W ∗ =
n∑

k=2

W ∗
k (θ∗, ξ∗, J∗

� ) (8.18)
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and the transformed Hamiltonian H∗ is assumed to be expanded in the form

H∗ =
n∑

k=1

H∗
k , (8.19)

where, again, the subscripts indicate the degree of homogeneity in the elements
of S.

The substitution of these expansions into the conservation equation (6.5)
and comparison of the terms of the same degree of homogeneity in the elements
of S yield the perturbation equations. These equations are similar to their
analogs in the general Hori theory (6.7). Some differences are:

(a.) F0
def= H0(J∗) is a constant and, thus, all Poisson brackets including F0

vanish;
(b.) F1 = X1(ξ) ≡ 0 and, thus, all Poisson brackets including F1 vanish;
(c.) W ∗

1 = 0;
(d.) Poisson brackets are split into two parts, one of which, with subscript 1,

has a degree of homogeneity in ξ one unit less than the other.

The perturbation equations for the resonant systems are [33]

H∗
0 = H0(J∗

1 )
H∗

1 = 0
H∗

2 = F2

H∗
3 = F3 + {F2,W

∗
2 }1

H∗
4 = F4 + {F3,W

∗
2 }1 + {F2,W

∗
2 }� +

1
2
{{F2,W

∗
2 }1,W

∗
2 }1 + {F2,W

∗
3 }1

· · · · · ·
H∗

k = Fk + {Fk−1,W
∗
2 }1 + {Fk−2,W

∗
2 }� +

1
2
{{Fk−2,W

∗
2 }1,W

∗
2 }1

+
1
2
{{Fk−3,W

∗
2 }1,W

∗
2 }� +

1
2
{{Fk−3,W

∗
2 }�,W

∗
2 }1

+
1
2
{{Fk−4,W

∗
2 }�,W

∗
2 }� + · · · + {F2,W

∗
k−1}1, (8.20)

where, in all functions, the variables are (θ∗, ξ∗, J∗
� ). When the transforma-

tion (θ∗, ξ∗, J∗
� ) ⇒ (w∗, Λ∗) may be separated into two parts as discussed at

the end of Sect. 8.3, the variables may be (w∗, Λ∗) (or even the mixed set
w1, θ

∗
�, Λ1, J

∗
� ).

These equations are synthesized in the homological partial differential
equation

{H∗
2 ,W

∗
k−1}1 = H∗

k − Ψk (k ≥ 3) (8.21)

or, in explicit form,

∂H∗
2

∂θ∗1

∂W ∗
k−1

∂ξ∗
− ∂W ∗

k−1

∂θ∗1

∂H∗
2

∂ξ∗
= H∗

k − Ψk. (8.22)
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When the variables w∗
1 , Λ

∗
1 are used instead of θ∗1 , ξ

∗, we have a homological
equation like that of von Zeipel–Brouwer theory:

∂H∗
2

∂Λ∗
1

∂W ∗
k−1

∂w∗
1

= Ψk −H∗
k . (8.23)

One remarkable consequence of the homological equation thus obtained is
that we have to consider up to the order k in the perturbation (Ψk includes
Fk) to obtain the (k − 1)th component (W ∗

k−1) of the Lie generator of the
canonical transformation.

8.5 Averaging

The averaging is to be done exactly as in the von Zeipel–Brouwer theory. We
include in H∗

k and then exclude, from the homological equation, all terms of
Ψk that may give rise to small divisors. We separate Ψk into two parts: Ψk(1)

and Ψk(�), where

• Ψk(1) is the sum of all periodic terms of Ψk dependent on the fast angle
w∗

1 ,
• Ψk(�) is the sum of the remaining terms, secular or dependent only on the

slow angles θ∗� (or w∗
�),

and use the averaging rule
H∗

k = Ψk(�). (8.24)

This is equivalent to H∗
k = < Ψk >, where < · · · > means average over w∗

1 . At
least in theory, we may do the averaging and proceed with the construction
of formal solutions to higher orders. Actually, the integration of Hlead is very
difficult and, when achieved, involves elliptic integrals. Because of these in-
tegrals, calculations beyond the equation for W ∗

2 are almost impossible. It is
then necessary to use alternative ways to construct the angle–action variables,
as discussed in Sect. 2.2.

8.6 An Example

Let us reconsider the example studied in Sect. 7.8. Some of calculations are
long, but, given its realistic formulation gathering terms of different kinds,
they serve to prove the feasibility of the procedure outlined in Sect. 8.2

The Hamiltonian is
H(φ, I) = H0 + εR, (8.25)

where

H0 = − 1
2I2

1

− 2I1 (8.26)
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and

R = a(I1) + b(I1) I3 +B(I1) cosφ1 + L(I1)
√
−2I3 cosφ3

+M(I1)
√
−2I3 cos (φ1 + φ3). (8.27)

In the example of Sect. 7.8, the reference value I◦1 was just a value such that
ξ = I1 − I◦1 could be considered as a small quantity. In addition, ν◦1 = ν1(I◦1 )
was assumed to be finite (non-resonance condition). In this example, on the
contrary, we assume that the sought solution lies in the neighborhood of the
exact resonance, the case in which the integration done in Sect. 7.8 is no longer
valid. The exact resonance is defined by

ν∗1 =
(

dH0

dI1

)
I1=I∗

1

=
(

1
I∗1

)3

− 2 = 0, (8.28)

that is,

I∗1 =
1
3
√

2
. (8.29)

The function H0 may be expanded as a Taylor series in powers of ξ =
I1 − I∗1 . Hence,

H0 = H0(I∗) +X2 +X3 +X4 + · · · , (8.30)

where

X2 = 1
2ν

∗
11ξ

2 = −3 3
√

2ξ2

X3 = 1
6ν

∗
111ξ

3 = +4 3
√

4ξ3

X4 = 1
24ν

∗
1111ξ

4 = −10ξ4. (8.31)

In the same way, we may expand the disturbing potential εR into

εR = ε
(
R(0) +R(1) +R(2) + · · ·

)
, (8.32)

where

R(0) = Y0 R(1) = Y1ξ R(2) =
1
2
Y2ξ

2, (8.33)

etc., where, for simplicity, we wrote

Yk = ak + bk I3 +Bk cosφ1 + Lk

√
−2I3 cosφ3 +Mk

√
−2I3 cos (φ1 + φ3).

The subscripts 1 and 2 in the coefficients denote that they are, respectively,
first and second derivatives with respect to I1. All coefficients are calculated
at the exact resonance value I∗1 and are, thus, constants.

The leading terms of H are the first non-constant term of H0, that is, X2,
and the leading terms of εR. As pointed out in Sect. 7.8, the given Hamiltonian
is suggested by the planar motion of an asteroid disturbed by Jupiter. The
coefficients L,B are proportional to Jupiter’s eccentricity and are small. I3 is
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192 8 Lie Series Theory for Resonant Systems

proportional to the squared asteroid eccentricity. We do not put any restriction
on the value of I3, which is considered, in this example, as a finite quantity.
We assume that the coefficients a, b,M are finite. Then

Hlead =
1
2
ν∗11ξ

2 + ε
(
a0 + b0I3 +M0

√
−2I3 cos (φ1 + φ3)

)
. (8.34)

In order to have all terms of Hlead on the same footing, we assume ξ =
O(

√
ε), that is, d = 1

2 or S ≡ (ξ,
√
ε). We also assume B,L = O(

√
ε). The

remaining functions Fk (k > 2) are

F3 = X3 +ε
(
B0 cosφ1 + L0

√−2I3 cosφ3

)
+εξ

(
a1 + b1I3 +M1

√−2I3 cos (φ1 + φ3)
)

F4 = X4 +εξ
(
B1 cosφ1 + L1

√−2I3 cosφ3

)
+ 1

2εξ
2
(
a2 + b2I3 +M2

√−2I3 cos (φ1 + φ3)
) (8.35)

etc. The Hamiltonian Hlead is completely integrable and step 2 of the solution
outlined in Sect. 8.2 may be accomplished.

Let us introduce, now, the canonical transformation

θ1 = φ1 + φ3 J1 = I3

θ2 = φ1 J2 = ξ − I3 (ξ = J1 + J2).
(8.36)

Then,

Hlead =
1
2
ν∗11(J1 + J2)2 + ε

(
b0J1 +M0

√
−2J1 cos θ1

)
, (8.37)

where we have discarded the constant term εa0 since it does not contribute
to the canonical equations. In this Hamiltonian, the angle θ2 is ignorable
and, thus, J2 = const. The resulting one-degree-of-freedom Hamiltonian is an
Andoyer Hamiltonian whose integration is presented in Sect. C.5. However,
since J1 is a finite quantity and J1 + J2 = ξ is of order O(

√
ε), it may be

approximated by a simple pendulum. We change Hlead into

Hlead =
1
2
ν∗11(J1 + J2)2 + ε

(
−b0J2 +M0

√
2J2 cos θ1

)
(8.38)

and add to Fk the differences

δF3 = εξ
(
b0 − M0√

2J2
cos θ1

)
,

δF4 = − 1
2εξ

2M0(2J2)−3/2 cos θ1.
(8.39)

Figure 8.1 shows the libration domains corresponding to the simple pen-
dulum (solid line) and to the Andoyer Hamiltonian (dashed line) given, re-
spectively, by (8.38) and (8.37), in the case b0 = 0. The axes were chosen to
reproduce closely what is seen in the (semi-major axis, eccentricity) plane,
in the resonant asteroid problem. In both axes, the unit is 4(εM0/ν

∗
11)

2/3.
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- 1 0 1

2

4

J + J1 2

- J 1

b b'J = cons t
2

rr

pendulum
Andoyer

Fig. 8.1. Libration domains of two possible Hori kernels and one typical libration
path. r is the locus of a secular resonance

One may note that the limits of the libration domain of the two Hamiltonians
are very different for |J1| small (showing, even, a violation of the restric-
tion J1 = I3 < 0 by the pendulum approximation); but, as |J1| grows, this
difference almost reduces itself to a small shift to the right of the limits (b
and b′) of the pendulum libration zone with respect to those of the Andoyer
Hamiltonian. It is worth emphasizing that the x-axis in Fig. 8.1 represents
the action ξ = J1 + J2. The librations occur over the lines J2 = const and are
segments with length proportional to the libration amplitude and center at
ξ = 0. At the point where this segment crosses the ξ = 0 axis, the velocity of
the pendulum is equal to zero: it corresponds to the borders of the libration
of θ1. In the same way, the extremities of the segment are points where ξ̇ = 0,
that is, the points of maximum speed: they correspond to the transit through
the origin θ1 = 0. The limiting curves b and b′ are defined by the points of
maximum speed of the motion over the pendulum separatrices.

In this case, not only is Hlead integrable, but its angle–action variables can
be easily obtained. We limit ourselves to the case of small oscillations about the
stable equilibrium and introduce the pendulum angle–action variables w1, Λ1.
We assume M0 > 0 (if M0 < 0, since ν∗11 < 0, the center of libration would
be at θ1 = π and we should add a phase π to θ1). At the first approximation
(see Sect. B.3.1):

θ1 =
√

2ν∗11Λ1

ω1
sinw1

J1 = −J2 −
√

2ω1Λ1

ν∗11
cosw1,

(8.40)
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where
ω1 =

√
−εν∗11M0

4
√

2J2 (8.41)

(Λ1 < 0). In the construction of the above solutions, J2 is kept constant.
At the end of Sect. 8.2, we have excluded the possibility of using the

algorithms of Sect. 2.4.4 in the case of some non-separable Hori kernels. This
case is, however, not included in that warning, since the whole Hlead does not
depend on θ2. Therefore, we may write

θ2 = w2 − Ξ2(w1, Λ)
J2 = Λ2, (8.42)

where

Ξ2(w1, Λ) =
∂S(θ1, J)

∂Λ2

and

S = Λ2(θ2 − θ1) +
ω1

ν11

∫ θ1

0

√
2ν11Λ1

ω1
− θ 2

1 dθ1

or

S = Λ2(θ2 − θ1) +
ω1θ1
2ν11

√
2ν11Λ1

ω1
− θ 2

1 − Λ1 arcsin
(√

ω1

2ν11Λ1
θ1

)
.

After differentiation with respect to Λ2 and substitution of (8.40) to get rid
of θ1, we obtain

θ2 = w2 +
√

2ν∗11Λ1

ω1
sinw1 − Λ1

8Λ2
sin 2w1. (8.43)

The next step is the introduction of the angle–action variables in the given
Hamiltonian. The transformation of Hlead is easy, giving,

Hlead = ω1Λ1 − εb0Λ2 + εM0

√
2Λ2. (8.44)

(It is important to stress the fact that (8.44) is not exact, since terms of order
O(θ4

1), and higher, were not considered in the calculation; we are just using
an approximate solution.)

In the sequence, we introduce the quantity

Q =
√−Λ1

ω1
,

proportional to the libration amplitude of the angle θ1. It is worth emphasizing
that both Λ1 and ω1 are of order O(

√
ε), but Q is limited, since the libration

amplitude was assumed small. (For the sake of comparison with the solution
near the singularity

√−J1 = 0, in Sect. 9.4, we note that γ =
√−2ν∗11 Q.)

The transformation of the next-order terms gives
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F3 + δF3 = − 3
√

4
(

2Λ1ω1

ν∗

11

)3/2

(3 cosw1 + cos 3w1)

−ε
(
b0 + a1 − b1Λ2 − M0√

2Λ2
+M1

√
2Λ2

)√
2Λ1ω1

ν∗

11
cosw1

+ 1
2ε(M1Λ2 − M0

2 )Q2
√

Λ1ω1ν∗

11

Λ2
(cosw1 − cos 3w1)

+ 1
2εB0Q

√−2ν∗11 [cos (w1 + w2) − cos (w1 − w2)]
− 1

4εB0Q2ν∗11 [cos (2w1 − w2) + cos (2w1 + w2)]
+ε

(
B0 + L0

√
2Λ2 + 1

2B0Q2ν∗11
)
cosw2.

This expression was computed up to O(ε3/2Q2). Terms in εB0Λ1, εL0Λ1,
of order O(ε2), were not written and should be included in the next order
equations. The terms coming from the quantity Λ1/8Λ2 of (8.43) also do not
give a contribution at this order.

First Perturbation Equation

We shall take into account that Λ1 is of order O(
√
ε) and, thus, the partial

bracket { , }1 of two functions loses one unit of homogeneity in the elements
of S; the order of the remaining partial brackets is not affected. Therefore,
the perturbation equations are those given by (8.20). The first perturbation
equation is

{F2,W
∗
2 }1 = H∗

3 − [F3(w∗, Λ∗) + δF3(w∗, Λ∗)] (8.45)

with the Hori kernel

F2(w∗, Λ∗) = ω∗
1Λ

∗
1 − εb0Λ

∗
2 + εM0

√
2Λ∗

2, (8.46)

where
ω∗

1 =
√
−εν∗11M0

4
√

2Λ∗
2. (8.47)

The averaging is done over the fast angle w∗
1 :

H∗
3 =

1
2π

∫ 2π

0

(F3 + δF3) dw∗
1 ,

or

H∗
3 = ε

(
B0 + L0

√
2Λ∗

2 +
1
2
B0Q∗2ν∗11

)
cosw∗

2 , (8.48)

where

Q∗ =

√
−Λ∗

1

ω∗
1

. (8.49)

The perturbation equation may be written as

−ω∗
1

∂W ∗
2

∂w∗
1

= H∗
3 − [F3(w∗, Λ∗) + δF3(w∗, Λ∗)] (8.50)

whose integration gives:
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W ∗
2 = − 3

√
4
(

2Λ∗

1

ν∗

11

)3/2 √
ω∗

1 (3 sinw∗
1 + 1

3 sin 3w∗
1)

−ε
(
b0 + a1 − b1Λ

∗
2 − M0√

2Λ∗

2

+M1

√
2Λ∗

2

)√
−2
ν∗

11
Q∗ sinw∗

1

+εB0Q∗
√−ν∗

11

2ω∗

1
[sin (w∗

1 + w∗
2) − sin (w∗

1 − w∗
2)]

− 1
8εB0Q∗2 ν∗

11

ω∗

1
[sin (2w∗

1 − w∗
2) + sin (2w∗

1 + w∗
2)] + O(εQ∗3).

The perturbation equations of higher orders may be treated in exactly the
same way.

The Transformed Hamiltonian. A Second Averaging

Once the transformation generated byW ∗ is applied to the given Hamiltonian,
it becomes

H∗ = ω∗
1Λ

∗
1 − εb0Λ

∗
2 + εM0

√
2Λ∗

2 + ε

(
B0 + L0

√
2Λ∗

2 +
1
2
B0Q∗2ν∗11

)
cosw∗

2

+O(ε3/2Q∗3) + O(ε2). (8.51)

Because of the averaging done, the angle w∗
1 is absent from H∗ and, thus, Λ∗

1

is a constant.
We will introduce some trivial transformations in H∗

5 to put into evidence
the order of magnitude of the terms. We first introduce three finite constants
C0, C1, C2 such that Λ∗

1 = C0
√
ε, B0 = C1

√
ε and L0 = C2

√
ε. We also

introduce a time transformation t → τ = εt and divide the Hamiltonian by ε.
With this time scale, at the given order, the Hamiltonian becomes

K∗ = K∗
0 +K∗

1 , (8.52)

where

K∗
0 (Λ∗

2) =
√
−ν∗11M0C0

4
√

2Λ∗
2 − b0Λ

∗
2 +M0

√
2Λ∗

2

K∗
1 (w∗

2 , Λ
∗
2) =

√
ε

(
C1 + C2

√
2Λ∗

2 +
1
2
C1Q∗2ν∗11

)
cosw∗

2 .

K∗ is the Hamiltonian of a one-degree-of-freedom Hamiltonian system, which
must be solved to complete the solution of the given system. An approximate
solution may be obtained by means of an additional averaging. This second
transformation is an ordinary one (non-resonant). The Hori kernel is K∗

0 (Λ∗∗
2 )

and the first perturbation equation is

{K∗
0 ,W

∗∗
1 }2 = K∗∗

1 −K∗
1 (w∗∗

2 , Λ∗∗
2 ).

The double asterisk indicates the functions resulting from the second trans-
formation and the subscript 2 in the Poisson bracket is there just to stress
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that we are working with the former second subscript (corresponding to the
only remaining degree of freedom). The averaging is done over w∗∗

2 :

K∗∗
1 =

1
2π

∫ 2π

0

K∗
1dw∗∗

2

or
K∗∗

1 = 0. (8.53)

The perturbation equation may be written as

−ω∗∗
2

∂W ∗∗
1

∂w∗∗
2

= −K∗
1 , (8.54)

where

ω∗∗
2 =

√−ν∗11M0C0

2(2Λ∗∗
2 )3/4

− b0 +
M0√
2Λ∗∗

2

. (8.55)

The solution of the perturbation equation is

W ∗∗
1 =

√
ε

ω∗∗
2

(
C1 + C2

√
2Λ∗∗

2 +
1
2
C1Q∗2ν∗11

)
sinw∗∗

2 . (8.56)

The only condition is the non-resonance condition ω∗∗
2 �= 0. It is easy to plot

the locus of ω2 = 0 (for b0 = 0) in the frame of Fig. 8.1. The result is the dotted
line r shown there. That line is very close to the curves corresponding to the
pendulum separatrices showing that, in this example, this secular resonance
may only occur for large-amplitude librations.

The Post-Pendulum Approximation

To complete this example, it is necessary to consider the actual construction
of the solutions. We may, first, extend the latest canonical transformation to
include the two degrees of freedom. This is easily done by just introducing
Λ∗∗

1 = Λ∗
1 and considering W ∗∗(w∗∗

2 , Λ∗∗
1 , Λ∗∗

2 ) as the Lie generator of a com-
plete transformation. The fact that it was determined from considerations on
only one degree of freedom is irrelevant.

The Hamiltonian resulting from this transformation is (with the actual
time scale t):

H∗∗ = ω∗∗
1 Λ∗∗

1 − εb0Λ
∗∗
2 + εM0

√
2Λ∗∗

2 , (8.57)

where
ω∗∗

1 =
√
−εν∗11M0

4
√

2Λ∗∗
2 , (8.58)

whose solutions are

w∗∗
1 = ω∗∗

1 (t− t0) Λ∗∗
1 = Λ∗

1 = const
w∗∗

2 = ω∗∗
2 ε(t− t0) Λ∗∗

2 = const.
(8.59)

Page: 197 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



198 8 Lie Series Theory for Resonant Systems

The transformation of w∗∗, Λ∗∗ ⇒ w∗, Λ∗, at the order of approximation of
this solution, is

w∗
i = EW∗∗w∗∗

i = w∗∗
i + {w∗∗

i ,W ∗∗
1 },

Λ∗
i = EW∗∗Λ∗∗

i = Λ∗∗
i + {Λ∗∗

i ,W ∗∗
1 }

(i = 1, 2). For instance,

w∗
1 = w∗∗

1 +
∂W ∗∗

1

∂Λ∗∗
1

,

or

w∗
1 = w∗∗

1 −
√
εC1ν

∗
11

2ω∗∗
2 ω∗∗

1

sinw∗∗
2

+

√−ν∗11M0

2ω∗∗2
2 (2Λ∗∗

2 )3/4

(
C1 + C2

√
2Λ∗∗

2 +
1
2
C1Q∗2ν∗11

)
sinw∗∗

2 .

It is worth noting that no singularity appears in the transformation of the
first angle.

At the same order of approximation, the transformation w∗, Λ∗ ⇒ w,Λ is

wi = EW∗w∗
i � w∗

i + {w∗
i ,W

∗
2 },

Λi = EW∗Λ∗
i � Λ∗

i + {Λ∗
i ,W

∗
2 }.

(i = 1, 2). The sequence is a mere calculation of some partial derivatives and
their products.

To obtain the post–pendulum solutions of the given Hamiltonian system,
it is, now, enough to substitute the time-functions wi(t), Λi(t), thus obtained,
into (8.40) and (8.42). Once more, this is only a trivial calculation that can
be omitted. (In practical applications the last steps may be performed numer-
ically.)

8.7 Example with a Separated Hori Kernel

Let us reconsider the previous example with some essential modifications.
First, we discard the term M

√−2I∗3 cos (φ1 + φ3) to get a separated Hori
kernel, as discussed in Sect. 8.2. We recall that this term is the main one in
the astronomical problem from which this Hamiltonian was taken. In that
frame, to discard this term would be a wrong decision, but here we are only
interested in having one suitable example. Second, differently of the previous
example, we assume that the coefficients a, b, B, L and their derivatives are
finite quantities. This assumption puts critical and long-period perturbations
on an equal footing, which is essential in order to have an example significant
for the given theory.

We proceed as before and expand H0 in a Taylor series in powers of ξ =
I1 − I∗1 . Hence
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H0 = H0(I∗1 ) +X2 +X3 +X4 + · · · , (8.60)

where the Xk are the same as the previous example. In the same way, the
disturbing potential εR is also expanded in powers of ξ:

εR = ε
[
R(0) +R(1) +R(2) + · · ·

]
, (8.61)

where

R(0) =
(
a0 + b0I3 +B0 cosφ1 + L0

√−2I3 cosφ3

)
R(1) =

(
a1 + b1I3 +B1 cosφ1 + L1

√−2I3 cosφ3

)
ξ

R(2) = 1
2

(
a2 + b2I3 +B2 cosφ1 + L2

√−2I3 cosφ3

)
ξ2;

(8.62)

the subscripts 1 and 2 in the coefficients denote that they are, respectively,
first and second derivatives with respect to I1. All coefficients are calculated at
the exact resonance value I∗1 and are, thus, constants. We also assume B0 > 0
and b0 > 0.

Let us select the leading terms of H . They are the first non-constant term
of H0, that is, X2, and the leading terms of R. Then

Hlead = X2(ξ) + εR(0) (8.63)

=
1
2
ν∗11ξ

2 + ε
(
a0 + b0I3 +B0 cosφ1 + L0

√
−2I3 cosφ3

)
.

To have all terms of Hlead on the same footing, we assume ξ = O(
√
ε) and

S ≡ (ξ,
√
ε). The functions Fk (k > 2) are

F3 = X3 + εR(1),

F4 = X4 + εR(2), etc. (8.64)

The Hori kernel H∗
2 = Hlead(φ∗, ξ∗, I∗3 ) may be separated into H∗

2(1)(φ
∗
1, ξ

∗)
and H∗

2(2)(φ
∗
3, I

∗
3 ).

1. H∗
2(1) = 1

2ν
∗
11ξ

∗2+εB0 cosφ∗
1 is the Hamiltonian of a simple pendulum with

negative mass (since ν∗11 = −6 3
√

2 < 0). The corresponding differential
equations are

dφ∗
1

du
=

∂H∗
2

∂ξ∗
= ν∗11ξ

∗ dξ∗

du
= −∂H∗

2

∂φ∗
1

= εB0 sinφ∗
1. (8.65)

Limiting ourselves to the case of small oscillations about the stable equi-
librium and using the pendulum angle–action variables w∗

1 , Λ
∗
1 (see Sect.

B.3.1), we have, at the first approximation,

φ∗
1 =

√
2ν∗11Λ

∗
1

ω1
sinw∗

1
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ξ∗ = −
√

2ω1Λ∗
1

ν∗11
cosw∗

1 , (8.66)

where

ω1 =
dw∗

1

du
=

√
−εν∗11B0.

(Λ∗
1 < 0 and −εν∗11B0 > 0. By assumption, B0 > 0.)

-I −Λ

3                          2
wd+

3                           2

Fig. 8.2. The transformation I∗

3 → Λ∗

2. (d = L0/b0)

2. H∗
2(2) = ε(b0I∗3 +L0

√−2I∗3 cosφ∗
3) is the Hamiltonian of a planar harmonic

oscillator with center away from the origin. It is enough to shift the origin
to d = L0/b0 to write the oscillator in its own angle–action variables:
H∗

2(2) = εb0Λ
∗
2 + const. The comparison of the two expressions of H∗

2(2)

gives (see Fig. 8.2)

Λ∗
2 = I∗3 − 1

2

(
L0

b0

)2

+
(
L0

b0

)√
−2I∗3 cosφ3.

The angle variable is, now, w∗
2 = εb0u+ const.

First Perturbation Equation. The Post-Pendulum Approximation

The first perturbation equation is

{F2,W
∗
2 }1 = H∗

3 − F3. (8.67)

To have an explicit expression of the involved functions, we need to write F3

with the variables (w∗
1 , Λ

∗
1). From (8.31) and (8.62) we have

F3 = 4 3
√

4ξ∗3 + ε
[
a1 + b1I

∗
3 +B1 cosφ∗

1 + L1

√
−2I∗3 cosφ∗

3

]
ξ∗ (8.68)

or, taking into account the approximate solution of the pendulum,
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F3 = C0(−ω1Λ1)3/2(3 cosw∗
1 + cos 3w∗

1) + ε(C1 + C2I
∗
3 + C3)

√
−ω1Λ∗

1 cosw∗
1

+
εC3ν11

4
√
ω1

(−Λ∗
1)

3/2(cosw∗
1 − cos 3w∗

1) + εC4

√
2ω1Λ∗

1I
∗
3 cosφ∗

3 cosw∗
1 ,

where, for simplicity, we have introduced

C0 = − 3
√

4(
2

−ν∗11
)

3
2 , C1 =

−a1

√
2√−ν∗11
, C2 =

−b1
√

2√−ν∗11
,

C3 =
−B1

√
2√−ν∗11
, C4 =

−L1

√
2√−ν∗11
, (8.69)

and discarded terms of order higher than O(ε3/2Q3) (Q is proportional to the
libration amplitude of φ∗

1). It then follows that H∗
3 = < F3 > = 0, and the

integration of the first perturbation equation is elementary giving

W ∗
2 = C0(−Λ∗

1)
3/2√ω1(3 sinw∗

1 +
1
3

sin 3w∗
1) + ε(C1 + C2I

∗
3 + C3)Q∗ sinw∗

1

+
εC3ν11

4
Q∗3(sinw∗

1 − 1
3

sin 3w∗
1) + εC4

√
−2I∗3Q∗ cosφ∗

3 sinw∗
1

up to order O(εQ3). See (8.49).

Second Perturbation Equation. The Post-Post-Pendulum
Approximation

The second perturbation equation is

{F2,W
∗
3 }1 = H∗

4 − Ψ4, (8.70)

where

Ψ4 = −10ξ∗4 +
1
2
ε
(
a2 + b2I

∗
3 +B2 cosφ∗

1 + L2

√
−2I∗3 cosφ∗

3

)
ξ∗2

+{F3,W
∗
2 }1 + {F2,W

∗
2 }� +

1
2
{{F2,W

∗
2 }1,W

∗
2 }1. (8.71)

The calculations become cumbersome and some computational help is, now,
essential. We will just write down the results, as the details of the calculations
are not of interest per se. The average of Ψ4 is

H∗
4 =

(
15C2

0

2 − 15
ν∗2
11

)
ω2

1Λ
∗2
1 + ε

2ν∗

11
(b2I∗3 +B2 + a2)ω1Λ

∗
1 − ε

8B2Λ
∗2
1

−3εC0(C1 + C2I3 + C3)ω1Λ
∗
1 − 3ε

(
C0C4 − L2

6ν∗

11

)
ω1Λ

∗
1

√−2I∗3 cosφ∗
3

+ 3ε
4 C0C3ν

∗
11Λ

∗2
1 + ε2

4 (C1 + C3)2 − ε2

4ω1
(C1 + C2I

∗
3 + C3)C3ν

∗
11Λ

∗
1

+ ε2

4 (2C1 + C2I
∗
3 + 2C3)C2I

∗
3 + 3ε2C2

3ν∗2
11

32ω2
1

Λ∗2
1

+ ε2

2

(
C1 + C2I

∗
3 + C3 − C3ν∗

11

2ω1
Λ∗

1

)
C4

√−2I∗3 cosφ∗
3 − ε2

2 C
2
4I

∗
3 cos2 φ∗

3

(8.72)
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and the integration of the homological equation gives

W ∗
3 =

(
3C2

0 − 10
ν∗2
11

)
ω1Λ

∗2
1 sin 2w∗

1 −
(

3C2
0

8 + 5
4ν∗2

11

)
ω1Λ

∗2
1 sin 4w∗

1

+
(

a2+B2+b2I∗

3

4ν∗

11
− C0(C1+C2I∗

3 +C3)
2

)
εΛ∗

1 sin 2w∗
1 − C0C3ν∗

11

2ω1
εΛ∗2

1 sin 2w∗
1

+B2+2C0C3ν∗

11

32ω1
εΛ∗2

1 sin 4w∗
1 +

(
L2

4ν∗

11
− C0C4

2

)
εΛ∗

1

√−2I∗3 cosφ∗
3 sin 2w∗

1

+ (C1+C2I∗

3 +C3)C3ν∗

11

8ω2
1

ε2Λ∗
1 sin 2w∗

1 − C2
3ν∗2

11

128ω3
1
ε2Λ∗2

1 (8 sin 2w∗
1 − sin 4w∗

1)
+L0C2−C4b0

ω
3/2
1

ε2
√

2Λ∗
1I

∗
3 sinφ∗

3 cosw∗
1

+C3C4ν∗

11

8ω2
1

ε2Λ∗
1

√−2I∗3 cosφ∗
3 sin 2w∗

1

(8.73)
where terms including the effects of higher libration harmonics were dis-
carded1.

We note that all functions involved in Ψ4 have the d’Alembert property in
(w∗

1 ,
√
Λ∗

1), that is, they have the form√
Λ
∗(q+2q′)
1

sin
cos qw

∗
1 (q, q′ ∈ Z+

o ).

From (8.66), we see that one function that has the d’Alembert property in
(w∗

1 ,
√
Λ∗

1) is equivalent to a polynomial in φ∗
1, ξ

∗. Since the bracket of any two
polynomials in these variables is a polynomial of the same kind, all functions
obtained with the procedures described in this example have the d’Alembert
property in (w∗

1 ,
√
Λ∗

1). This fact guarantees that the kind of results obtained
so far will reproduce itself without formal modifications in higher orders.

Construction of the Solutions

To complete this example, it is necessary to consider the actual construction
of the solutions. For the first subscript, the post-pendulum solutions are

φ1 = EW∗φ∗
1 � φ∗

1 + {φ∗
1,W

∗
2 }1

ξ = EW∗ξ∗ � ξ∗ + {ξ∗,W ∗
2 }1.

Since the one-degree-of-freedom transformation (φ∗
1, ξ

∗) ⇒ (w∗
1 , Λ

∗
1) is canon-

ical, we may use, in the brackets { , }1, derivatives with respect to w∗
1 , Λ

∗
1.

Hence,
φ1 = φ∗

1 + 2
√
−2ν∗11 C0Λ

∗
1 sin 2w∗

1 (8.74)

1 One should be warned against the fact that algebraic manipulators may do
different branch choices according to whether the square root of a product of two
negative quantities is written as

√−a
√−b or

√
ab.
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ξ = ξ∗ +
2ω1√−2ν∗11

C0Λ
∗
1(3 − cos 2w∗

1) −
ε√−2ν∗11

(C1 + C2I
∗
3 + C3)

−ε
√−2ν∗11

4ω1
C3Λ

∗
1(1 − cos 2w∗

1) −
ε√−2ν∗11

C4

√
−2I∗3 cosφ

∗
3. (8.75)

One may note that (8.75), giving ξ, is a half-order more precise than (8.74).
This difference happens because ξ is itself a quantity of order O(

√
ε). To

have φ1 given at the same order, it would be necessary to consider also
W ∗

3 and to add, to the transformation equation, the terms {φ∗
1,W

∗
3 }1 and

1
2{{φ∗

1,W
∗
2 }1,W

∗
2 }1.

For the higher subscript, at order O(
√
ε), we have φ3 = φ∗

3, I3 = I∗3 . The
next-order results are easily obtained:

φ3 = EW∗φ∗
3 � φ∗

3 + {φ∗
3,W

∗
2 }�

I3 = EW∗I∗3 � I∗3 + {I∗3 ,W ∗
2 }�. (8.76)

(The partial brackets with subscript 1 are, now, equal to zero because canon-
ical variables in a set are independent and, thus, the derivatives of φ∗

3 and I∗3
with respect to φ∗

1 and ξ∗ are zero.) Then

φ3 = φ∗
3 + ε

√−Λ∗
1

ω1
C2 sinw∗

1 − ε

2

√
2Λ∗

1

ω1I∗3
C4 cosφ∗

3 sinw∗
1

I3 = I∗3 + ε

√
2Λ∗

1I
∗
3

ω1
C4 sinφ∗

3 sinw1. (8.77)

In order to know φ1(t), φ3(t), ξ(t), I3(t), it is still necessary to know φ∗
1(t), φ

∗
3(t),

ξ∗(t), I∗3 (t). Since H∗
2 = Hlead(φ∗

1, φ
∗
3, ξ

∗, I∗3 ), the reduced system, at this order
of approximation, is

dφ∗
1

dt
=

∂H∗
2

∂ξ∗
= ν∗11ξ

∗,

dξ∗

dt
= −∂H∗

2

∂φ∗
1

= εB0 sinφ∗
1,

dφ∗
3

dt
=

∂H∗
2

∂I∗3
= εb0 − εL0√−2I∗3

cosφ∗
3,

dI∗3
dt

= −∂H∗
2

∂φ∗
3

= εL0

√
−2I∗3 sinφ∗

3.

The first two equations are the same as (8.65) and their solution, up to terms
in Q2, are those given by (8.66), where, now,

w∗
1 = ω1(t− t0) (8.78)

and Λ∗
1 is an integration constant. The two other equations are elementary

and their results are easily expressed with non-singular variables:
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x∗ =
√
−2I∗3 cosφ∗

3 =
L0

√
2

b0
+
√
−2Λ∗

2 cosw∗
2

y∗ =
√
−2I∗3 sinφ∗

3 =
√
−2Λ∗

2 sinw∗
2 ,

where Λ∗
2 is an integration constant (action) and w∗

2 = εb0t + const. Finally,
the solution of the problem is obtained by substituting the solution of the
transformed system into (8.74)–(8.77).

8.8 One Degree of Freedom

Let us consider the case of just one degree of freedom:

F2 = Hlead =
1
2
ν∗11ξ

2 + εH2(θ1, J∗
1 ) (8.79)

(J∗
1 = const). The Hori kernel, in this case, is

dθ∗1
du

=
∂F2(θ∗1 , ξ

∗)
∂ξ∗

= ν∗11ξ
∗, (8.80)

dξ∗

du
= −∂F2(θ∗1 , ξ

∗)
∂θ∗1

= −εdH2(θ∗1 , J
∗
1 )

dθ∗1
(8.81)

or
d2θ∗1
du2

= −εν∗11
dH2(θ∗1 , J

∗
1 )

dθ∗1
. (8.82)

In these problems, to have all terms of Hlead on the same footing, we must
assume ξ = O(

√
ε), that is, d = 1

2 or S ≡ (ξ,
√
ε).

8.8.1 Garfinkel’s Ideal Resonance Problem

As an example of a one-degree-of-freedom system, we may consider Garfinkel’s
Ideal Resonance Problem (see Sect. 4.4). In this example, the Hamiltonian is

H(θ1, J1) = H0(J1) − εA(J1) cos θ1 (8.83)

and the exact resonance J∗
1 is defined by ν∗1 = 0. H0 is assumed to be such

that A∗ν∗11 > 0, where A∗ = A(J∗
1 ). H is expanded as in the previous example,

that is,

F2(θ1, ξ) =
1
2
ν∗11ξ

2 − εA∗ cos θ1. (8.84)

(As before, the derivatives of A∗ with respect to J∗
1 will be written A1, A2,

etc.) The Hori kernel equations are

dθ∗1
du

= ν∗11ξ
∗, (8.85)

dξ∗

du
= −εA∗ sin θ∗1 . (8.86)
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Taking the energy integral F2 = const into account, it follows that

1
2ν∗11

(
dθ∗1
du

)2 = F2 + εA∗ cos θ∗1 . (8.87)

This is the simple pendulum equation, which can be solved as in Sect. B.2
leading to the two classical motion regimes: libration and circulation. In this
section, we consider only the case of very small oscillations about the stable
equilibrium and write the solutions as in the previous examples. The equations
are almost the same. However, as the Ideal Resonance Problem is the paradigm
of a large number of problems in Celestial Mechanics, we shall use a more
accurate solution of the Hori kernel, namely2,

sin θ∗1 = 8
√
Υ

[(
1 − 6Υ − 25

2
Υ 2 − 84Υ 3

)
sinw1

+ 3Υ
(

1 + Υ +
11
2
Υ 2

)
sin 3w1 + 5Υ 2(1 + 7Υ ) sin 5w1

+ 7Υ 3 sin 7w1

]
+ O(Υ 9/2), (8.88)

ξ∗1 = 8A∗
√

εΥ

ν∗11A∗

[(
1 − 2Υ − 17

2
Υ 2 − 62Υ 3

)
cosw1

+ Υ

(
1 + 5Υ +

75
2
Υ 2

)
cos 3w1 + Υ 2(1 + 11Υ ) cos 5w1

+ Υ 3 cos 7w1

]
+ O(

√
εΥ 9/2), (8.89)

where

Υ
def=

ν∗11Λ1

32
√
εν∗11A∗ . (8.90)

√
Υ is a quantity of the order of the libration amplitudes in θ∗1 . We also have

ω1
def=

dw1

du
=
√
εν∗11A∗(1 − 4Υ − 12Υ 2 − 80Υ 3) + O(

√
εΥ 4) (8.91)

and

H∗
2 =

∫
ω1dΛ1 = −εA∗ + 32εA∗Υ (1 − 2Υ − 4Υ 2 − 20Υ 3) + O(εΥ 5). (8.92)

We note that the operations A∗/
√
A∗ν∗11 and ν∗11/

√
A∗ν∗11, appearing in the

above equations, can only be completed when the signs of A∗ and ν∗11 are
known. We recall that A∗ν∗11 > 0 and Λ1ν

∗
11 > 0.

The calculation scheme is almost the same as that of the previous example
and it is not repeated here. It is worth emphasizing, however, that in the

2 Cf. (B.63)–(B.67), putting mk = εA∗ and m−1 = ν∗

11.
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approximations we assumed Υ = O(
√
ε), thus allowing the results to be valid

for libration amplitudes (in θ1) of order O( 4
√
ε).

In the post-pendulum approximation we have

F3 =
1
6
ν∗111ξ

∗3 − εA1ξ
∗ cos θ∗1 (8.93)

or, using the approximate solution of the pendulum up to O(Υ 7/2):

F3 =
8ε3/2

√
ν∗11A∗

ν∗11

√
Υ

[
−A1 cosw1 +A1Υ (10 cosw1 − 9 cos 3w1)

+ C1Υ

(
cosw1 +

1
3

cos 3w1

)
+A1Υ

2

(
1
2

cosw1 + 27 cos 3w1

− 25 cos 5w1

)
− C1Υ

2(5 cosw1 − cos 5w1)
]
, (8.94)

where we have introduced
C1 =

8ν∗111A
∗

ν∗11

and discarded terms of orders higher than O(ε3/2Υ 7/2). Hence H∗
3 = < F3 >

= 0, and

W ∗
2 =

8ε
ν∗11

√
Υ

[
−A1 sinw1 + 3A1Υ (2 sinw1 − sin 3w1)

+ C1Υ

(
sinw1 +

1
9

sin 3w1

)
+A1Υ

2

(
25
2

sinw1 − 3 sin 3w1

− 5 sin 5w1

)
− C1Υ

2

(
sinw1 − 4

9
sin 3w1 − 1

5
sin 5w1

)]
(8.95)

up to order O(εΥ 5/2).
In the post-post-pendulum approximation, we have to introduce

Ψ4 =
1
24
ν∗1111ξ

∗4 − 1
2
εξ∗2A2 cos θ∗1 +

1
2
{F3,W

∗
2 }. (8.96)

Hence

H∗
4 =

ε2

ν∗11

[
−1

2
A2

1 + 16(A2
1 +

1
8
C1A1 −A∗A2)Υ

−4
(

48A2
1 + 6C1A1 − 48A∗A2 +

5
12
C2

1 − C2

)
Υ 2

]
and
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8.8 One Degree of Freedom 207

W ∗
3 =

ε3/2Υ

ν∗11
√
ν∗11A∗

[(
−8A2

1 +
1
3
C1A1 − 8A∗A2

)
sin 2w1

+ 8A2
1Υ (14 sin 2w1 − 3 sin 4w1) +

1
9
C1A1Υ (118 sin 2w1 − 11 sin 4w1)

− 8A∗A2Υ (2 sin 2w1 + 5 sin 4w1) − 1
3
C2

1Υ

(
2 sin 2w1 − 1

4
sin 4w1

)
+

1
3
C2Υ (8 sin 2w1 + sin 4w1)

]
,

where

C2 =
16ν∗1111A

∗2

ν∗11
.

The solutions, in the post-post-pendulum approximation, are

sin θ1 = sin θ∗1 + {sin θ∗1 ,W ∗
2 } + {sin θ∗1 ,W ∗

3 } +
1
2
{{sin θ∗1 ,W ∗

2 },W ∗
2 },

ξ = ξ∗ + {ξ∗,W ∗
2 } + {ξ∗,W ∗

3 } +
1
2
{{ξ∗,W ∗

2 },W ∗
2 },

or,

sin θ1 = sin θ∗1 +
8
3

√
ε

ν∗11A∗

[
1
2
C1Υ sin 2w1 − 1

3
C1Υ

2(25 sin2w1 − 14 sin 4w1)
]

− ε
√
Υ

ν∗11A∗

(
2A2

1 + 2A∗A2 − 1
4
C1A1

)
sinw1 (8.97)

and

ξ = ξ∗ +
ε

ν∗11

[
A1(1 − 16Υ ) − 2C1Υ (1 − 4Υ ) + 16A1Υ cos 2w1 +

2
3
C1Υ cos 2w1

−32A1Υ
2(cos 2w1 − cos 4w1) − 4

9
C1Υ

2(19 cos 2w1 − 7 cos 4w1)
]

+
ε3/2

√
Υ

ν∗11
√
ν∗11A∗

(
2A2

1 + 2A∗A2 − 1
4
C1A1

)
cosw1 (8.98)

up to terms O(ε
√
Υ ,

√
εΥ 2, Υ 7/2) in θ1 and O(ε3/2

√
Υ , εΥ 2,

√
εΥ 7/2) in ξ.

The solution of the Hori kernel introduces variables akin to the angle–
action variables of the simple pendulum. It is noteworthy that even a first-
order approximation of these variables, followed by a Lie series perturbation
procedure, allows the solutions to be constructed to any order (see [55], [56]).
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9

Single Resonance near a Singularity

9.1 Resonances Near the Origin: Real and Virtual

The perturbation of a regular integrable Hamiltonian may lead to bifurcations
in the phase portrait. Let us consider the case of only one resonance and
the simple case of one degree of freedom. Let H0 be the Hamiltonian of a
differential rotator:

H0 =
1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 (9.1)

and let us assume that ν◦1 and ν◦11 have opposite signs, e.g. ν◦1 < 0 and ν◦11 > 0.
In that case, H0 has a minimum on a circle of radius

√−4ν◦1/ν
◦
11 on which the

direction of motion changes. This is the classical case of a twist mapping and
the Poincaré–Birkhoff theorem predicts that, when the rotator is perturbed,
new centers and saddle points may appear in the phase portrait near the place
where the frequency of the undisturbed rotator is zero (see [63]). A typical
example is shown in Fig. 9.1 right. A web of separatrices with termination at
the saddle points encloses the centers forming libration lobes1 and separating

Fig. 9.1. Phase portrait of a resonant system (right). The corresponding undis-
turbed differential rotator is shown on the left

1 Since the considered Hamiltonian system has one degree of freedom, the sepa-
ratrices meet, forming a well-defined structure without the possibility of chaotic
motions.
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210 9 Single Resonance near a Singularity

the two regions where the motions are circulations around the origin with
different directions.

The given example corresponds to a non-central resonance happening at
a finite distance from the origin. When

√−4ν◦1/ν◦11 is small, the bifurcation
happens very close to the origin and may give rise to more complex situ-
ations. For instance, in the case of a linear perturbation (e.g. the Andoyer
Hamiltonian with k = 1), the libration lobe may enclose the origin (see the
case α = 1.1 of Fig. C.3).

When ν◦1 and ν◦11 have the same sign (e.g. both positive),
√−4ν◦1/ν◦11 be-

comes imaginary. The phase portrait of the undisturbed rotator in the (x1, y1)
plane is shown in Fig. 9.2 (left). The motions are circulations all in the same
direction. However, when ν◦1/ν

◦
11 is small, an important phenomenon may oc-

cur when the system is perturbed. The bifurcation is now occurring in the
complex continuation of the (x1, y1) plane, but part of the virtual libration
lobes raised by a perturbation may appear in the portrait of the perturbed
system in the real phase plane. We call this phenomenon a virtual resonance.

Fig. 9.2. Phase portrait of a perturbed systems showing libration lobes due to
a virtual resonance (right). The corresponding undisturbed differential rotator is
shown on the left

Examples of dynamical systems showing virtual resonances are the An-
doyer Hamiltonians with k = 2 and k = 3. The example shown in Fig. 9.2
(right) corresponds to the Andoyer Hamiltonian

H2 =
1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 + ετ(x2

1 − y2
1)

when ν◦1 = 0.3, ν◦11 = 2 and ετ = 0.3 (see Sect. D.2.1). The frequency change
occurs in the complex continuation of the phase plane on the circle (x2

1+y2
1) �

−0.6.

9.2 One Degree of Freedom

Let us consider the Hamiltonian

H = H0(J1) +
∑
k≥1

εkHk(θ1, J1) (9.2)
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9.2 One Degree of Freedom 211

in the particular case of only one degree of freedom.
We assume that:

(a.) J1 ≤ 0;
(b.) H is regular in a domain about the origin (in the sense discussed in Sect.

7.4); and
(c.) ν1 = dH0/dJ1 = 0 at some point J1 = J∗

1 < 0 close to the origin (that
is, the resonance is located near the origin).

H may be expanded about the origin and, following the notation introduced
in Chap. 7, we have

H0 = −1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 + · · · ; (9.3)

Hk =
∑
k′≥1

Vk′

k (x1, y1), (9.4)

where Vk′

k are homogeneous functions of degree k′ with respect to x1, y1.
Because of the assumption (a), the non-singular variables x1, y1 are those
defined by (7.2) (so that {x1, y1} = +1).

Order of a Resonance. The order of the resonance is the degree of the term
of H1 of least degree in x1, y1.

In the one-degree-of-freedom case studied in this section, the leading term
is V1

1 (first-order resonance).
It is worth emphasizing that, because of assumption (c), the quantity

ν◦1 = νi(0) � −ν◦11J∗
1 is small and ν◦1 → 0 when J∗

1 → 0. Therefore, the
term 1

2ν
◦
i (x2

1 + y2
1) is not enough to determine the main integrable topological

features of the flow in the neighborhood of the origin. The leading terms of
H are

Hlead = −1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 + εV1

1 . (9.5)

Hlead is the first Andoyer Hamiltonian studied in Appendix C and the bi-
furcation due to the resonance appears for |J∗

1 | > |J∗
1crit| = O(ε2/3). For

|J∗
1 | < |J∗

1crit|, the only qualitative effect of the perturbation is to shift the
center of the family of orbits away from the origin. We then assume:

ν◦1 = O(ε2/3) (9.6)

to have a theory representing the main regimes of motion that may take place
near the origin. This assumption does not introduce a real limitation on the
values of ν◦1 ; however, if the value of this quantity is large, the neighborhood
of the origin can be studied with the simpler theory of Sect. 7.6 and the
resonance zone, situated far away from the origin, may be studied with the
angle–action theory of the previous chapter.

In the forthcoming developments, we follow [31] and introduce the set
S ≡ (x1, y1, 3

√
ε). The adopted subscripts indicate the degree of homogeneity

of the function with respect to the elements of S. Thus,
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212 9 Single Resonance near a Singularity

H0 =
∑
k≥2

X2k(J1), (9.7)

where, because of the assumption made on ν◦1 (9.6), X2 = 0 and

X4 = −1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2. (9.8)

In the continuation, we follow the same standard developments of Lie
series theory in non-singular variables. We start by considering the canonical
transformation φn : (x1, y1) ⇒ (x∗1, y∗1) defined by the equation

f(x1, y1) = EW∗f(x∗1, y
∗
1), (9.9)

where EW∗f is the Lie series expansion about the origin of the function
f(x∗1, y

∗
1), generated by

W ∗ =
n∑

k=3

W ∗
k (x∗1, y

∗
1 , ε). (9.10)

The W ∗
k are homogeneous functions of degree k with respect to the elements

of S. The Lie series expansion is the same as that shown in (7.26).
Since the transformation φn is conservative, we have

H(x1, y1) = H∗(x∗1, y
∗
1) + Rn(x∗1, y

∗
1),

that is,
H∗(x∗1, y

∗
1) + Rn(x∗1, y

∗
1) = EW∗H(x∗1, y

∗
1). (9.11)

In the sequence, we introduce, in these equations, the expansions already given
for H and W ∗ as well as

H∗ =
∑
k≥4

H∗
k (x∗1, y

∗
1 , ε), (9.12)

where the H∗
k (x∗1, y

∗
1 , ε) are unknown homogeneous functions of degree k with

respect to the elements of S. (H∗
2 = H∗

3 = 0.) The identification of the terms
having the same degree of homogeneity gives the perturbation equations

H∗
4 = X2 +X4+ εV1

1 ( = H∗
lead)

H∗
5 = εV2

1 + {H∗
4 ,W

∗
3 }

H∗
6 = X6+ εV3

1 + 1
2{H∗

5 − εV2
1 ,W

∗
3 } + {H∗

4 ,W
∗
4 }

· · · · · · · · · .
(9.13)

The homological equation is

{H∗
4 ,W

∗
k−2} = H∗

k − Ψk(x∗1, y
∗
1) (9.14)

and the corresponding Hori kernel is given by the differential equations
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9.3 Many Degrees of Freedom. One Single Resonance 213

dx∗1
du

=
∂H∗

4

∂y∗1

dy∗1
du

= −∂H∗
4

∂x∗1
. (9.15)

We recall that the sign of these equations follows the rules stated in Sect. 7.2.
In explicit form,

dx∗1
du

= −ν◦1y∗1 +
1
2
ν◦11y

∗
1(x∗21 + y∗21 ),

dy∗1
du

= +ν◦1x
∗
1 −

1
2
ν◦11x

∗
1(x

∗2
1 + y∗21 ) − ετ1, (9.16)

where, for simplicity, we assumed that V1
1 = τ1x1 (τ1 > 0).

Equations (9.16) form an autonomous differential system whose Hamil-
tonian is the first Andoyer Hamiltonian. Its integration is given in Appendix
C. We are thus able to proceed and obtain H∗

k and W ∗
k−2 (k ≥ 5) by means

of
H∗

k = < Ψk(x∗1, y
∗
1) >

and
W ∗

k−2 =
∫

(Ψk −H∗
k ) du;

however, as happened with the study of Garfinkel’s Ideal Resonance Problem,
in Chaps. 4 and 8, the integration involves elliptic functions and integrals and
the actual calculations are rather complex as can be seen in the case study of
Sect. 9.4.

9.3 Many Degrees of Freedom. One Single Resonance

Let us consider the general case of one single resonance in non-singular vari-
ables. Let us consider the Hamiltonian

H = H0(x1, y1) +
∑
k≥1

εkHk(x1, y1, q, p), (9.17)

where H0 is assumed to depend on x1, y1 only through J1 = − 1
2 (x2

1 + y2
1).

(Again, we assume J1 < 0 to be close to actual Celestial Mechanics problems.)
We also assume that

ν◦1 =
dH0

dJ1

∣∣∣∣
J1=0

(9.18)

is a small quantity. This means that the subsystem corresponding to the vari-
ables x1, y1 is resonant and that this singularity appears in the vicinity of the
origin.

No hypothesis is made concerning the nature of the variables q�, p� (� ≥
2). They may be non-singular, angle–action, or any other pairs of canonical
variables. We just assume that they are finite quantities.
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The given Hamiltonian may be expanded as follows:

H0 =
∑
k≥1

X2k = −1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 + · · · (9.19)

and
Hk =

∑
k′≥0

Vk′

k (x1, y1, p, q), (9.20)

where Xk′ and Vk′

k are homogeneous functions of degree k′ in x1, y1. In an
rth-order resonance, the least non-zero value of k′ in H1 is r.

The leading terms of H that should be present in the Hori kernel are

Hlead = −1
2
ν◦1 (x2

1 + y2
1) +

1
8
ν◦11(x

2
1 + y2

1)
2 + εF1lead. (9.21)

As discussed in Sect. 8.4, the Poisson bracket of two homogeneous functions
in x1, y1 is not homogeneous in these variables since the terms arising from
derivatives with respect to x1, y1 will have a loss of two units in the degree of
homogeneity. Indeed, given two functions ψ1(x1, y1, q, p) and ψ2(x1, y1, q, p)
homogeneous in x1, y1, their Poisson bracket is

{ψ1, ψ2} =
(
∂ψ1

∂x1

∂ψ2

∂y1
− ∂ψ2

∂x1

∂ψ1

∂y1

)
+

N∑
�=2

(
∂ψ1

∂q�

∂ψ2

∂p�
− ∂ψ1

∂q�

∂ψ2

∂p�

)
. (9.22)

The second part of this Poisson bracket is an ordinary operation and the degree
of homogeneity of the result is equal to the sum of the degrees of homogeneity
of ψ1 and ψ2. However, in the first part of the bracket, the operations ∂

∂x1
and

∂
∂y1

subtract, each, one unit of the degree of homogeneity and the result is an
homogeneous function with two degrees of homogeneity less than the rest of
the terms. Therefore, as in Sect. 7.3, we introduce

{ψ1, ψ2}1 =
∂ψ1

∂x1

∂ψ2

∂y1
− ∂ψ2

∂x1

∂ψ1

∂y1
, (9.23)

{ψ1, ψ2}� =
N∑

�=2

(
∂ψ1

∂q�

∂ψ2

∂p�
− ∂ψ2

∂q�

∂ψ1

∂p�

)
(9.24)

and write the Poisson bracket as

{ψ1, ψ2} = {ψ1, ψ2}1 + {ψ1, ψ2}�. (9.25)

Equation (8.11) still holds but, now, the term with two brackets showing the
subscripts 1 and � has two degree of homogeneity less than the sum of the
degrees of the ψk while the term where the subscript 1 appears twice has four
degrees homogeneity less than the sum of the degrees of the ψk.
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9.3 Many Degrees of Freedom. One Single Resonance 215

Taking into account these rules and proceeding along the same steps of the
calculations done in Sect. 8.3 and 8.4, we obtain the Lie series of a function
f(x1, y1, q, p) homogeneous of degree L with respect to the elements of S ≡
(x1, y1, ε

d). The generating function is assumed to be

W ∗ =
∑
k≥3

W ∗
k (x∗1, y

∗
1 , q

∗, p∗; ε), (9.26)

where W ∗
k are homogeneous functions of degree k in the elements of S. As in

other similar calculations, in order to avoid an unlimited number of terms at
every order, we assume W ∗

1 = W ∗
2 = 0. Hence,

EW∗f = f

+{f,W ∗
3 }1

+{f,W ∗
4 }1 + 1

2{{f,W ∗
3 }1,W

∗
3 }1

+{f,W ∗
5 }1 + {f,W ∗

3 }� + 1
2{{f,W ∗

3 }1,W
∗
4 }1

+ 1
2{{f,W ∗

4 }1,W
∗
3 }1 + 1

6{{{f,W ∗
3 }1,W

∗
3 }1,W

∗
3 }1

+{f,W ∗
6 }1 + {f,W ∗

4 }� + 1
2{{f,W ∗

3 }�,W
∗
3 }1 + 1

2{{f,W ∗
3 }1,W

∗
3 }�

+ 1
2{{f,W ∗

3 }1,W
∗
5 }1 + 1

2{{f,W ∗
5 }1,W

∗
3 }1 + · · · ,

(9.27)
where we have put terms of degree L in the first row, terms of degree L + 1
in the second row, etc. At the given order, the only difference with respect to
the expansion given by (7.26) is the subscript 1 in all brackets and additional
terms like {f,W ∗

3 }� in the order L+2 row and others brackets with subscript
� in higher orders. The order L + 2 is enough for the practical applications
presented in this chapter.

We now introduce the canonical transformation φn : (x1, y1, q, p) ⇒
(x∗1, y

∗
1 , q

∗, p∗) defined by the equation

f(x1, y1, q, p) = EW∗f(x∗1, y
∗
1 , q

∗, p∗). (9.28)

Since the transformation is conservative, we have

H(x1, y1, q, p) = H∗(x∗1, y
∗
1 , q

∗, p∗) + Rn(x∗1, y
∗
1 , q

∗, p∗), (9.29)

that is,

H∗(x∗1, y
∗
1 , q

∗, p∗) + Rn(x∗1, y
∗
1 , q

∗, p∗) = EW∗H(x∗1, y
∗
1 , q

∗, p∗). (9.30)

The perturbation equations are obtained by introducing in this equation the
expansions already given for EW∗ and H , as well as

H∗ =
∑
k≥4

H∗
k (x∗1, y

∗
1 , q

∗, p∗; ε). (9.31)

They are
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H∗
4 = X2 +X4 + εV1

1

H∗
5 = εV2

1 + {H∗
4 ,W

∗
3 }1

H∗
6 = X6 + εV3

1 + ε2V0
2 + {H∗

4 ,W
∗
4 }1 + 1

2{{H∗
4 ,W

∗
3 }1,W

∗
3 }1 + ε{V2

1 ,W
∗
3 }1

H∗
7 = εV4

1 + ε2V1
2 + {H∗

4 ,W
∗
5 }1 + {H∗

4 ,W
∗
3 }� + 1

2{{H∗
4 ,W

∗
3 }1,W

∗
4 }1

+ 1
2{{H∗

4 ,W
∗
4 }1,W

∗
3 }1 + 1

6{{{H∗
4 ,W

∗
3 }1,W

∗
3 }1,W

∗
3 }1

+ε{V2
1 ,W

∗
4 }1 + ε

2 {{V2
1 ,W

∗
3 }1,W

∗
3 }1 + {X6 + εV3

1 + ε2V0
2 ,W

∗
3 }1

· · · · · · .
(9.32)

(Brackets with the subscript � only appear in the equation for H∗
7 .)

In this case, the homological equation is

{H∗
4 ,W

∗
k−2}1 = H∗

k − Ψk(x∗1, y
∗
1 , q

∗, p∗) (9.33)

and the corresponding Hori kernel is formed by the differential equations

dx∗1
du

=
∂H∗

4

∂y∗1

dy∗1
du

= −∂H∗
4

∂x∗1
. (9.34)

On Examples and Case Studies

In previous chapters, we have always presented theories followed by examples.
However, when motions near singularities of the angle–action variables are
considered, it becomes more convenient to adopt a different approach. In
this chapter, instead of an example, we present a case study where the given
theory is not simply applied, but adapted. Indeed, to define a general resonant
system including all features found in real problems would introduce many
unnecessary complications. For instance, it may happen that some of the
q, p are also small quantities, and other parts of the partial Poisson bracket
denoted as { , }� may have a loss of degrees of homogeneity. In addition, it is
not possible to make general assumptions on the order of magnitude of x1, y1

and ν◦1 putting all terms in Hlead on the same footing in all cases. In the case
of a first-order resonance, such as the one studied below, x1, y1 are assumed
to be of order O( 3

√
ε). For a second-order resonance, we should assume x1, y1

of order O(
√
ε) and, for a third-order resonance, we should assume x1, y1 of

order O(ε).2

9.4 A First-Order Resonance Case Study

Let us reconsider the example studied in Sects. 7.8 and 8.6:

2 These assumptions are justified by properties of the Andoyer Hamiltonians. See
Appendices C and D.
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H = − 1
2I2

1

− 2I1 + ε
(
a(I1) + b′ I3 +B cosφ1 + L

√
−2I3 cosφ3

+M
√
−2I3 cos(φ1 + φ3)

)
, (9.35)

where we changed bI3 into b′I3 to avoid confusion with the b of the Andoyer
Hamiltonian. We assume, here, that all coefficients are constants, except a
(taken as a = a1I1). In addition, we assume that M, b′, a1 are finite and that
B,L are small (and of the same order). In the vicinity of the resonance of φ1,
the leading terms of the Hamiltonian are

Hlead =
1
2
ν◦11(I1 − I◦1 )2 + εB cosφ1 + εM

√
−2I3 cos(φ1 + φ3), (9.36)

where
I◦1 = 2−1/3 ν◦11 = −6 3

√
2.

The resonance in φ1 is of first order and to have all terms on an equal footing,
we assume B = O(

√−I3), ξ = I1 − I◦1 = O(ε2/3) and I3 = O(ε2/3). With
these assumptions, the Poisson bracket of two homogeneous functions in ξ, I3
is homogeneous, and we do not have to split it in the way discussed in the
previous section. The Lie series expansion of a function of (φ1, φ3, ξ, I3) is
obtained from (9.27) by deleting the brackets with subscript �, changing the
brackets with subscript 1 into true Poisson brackets, and assuming that the
terms are grouped according to their degrees of homogeneity in the elements
of S ≡ (

√
ξ,
√−I3, ε1/3).

A different approach was adopted by Message [70] in the study of this
problem and its extension to higher-order resonances where the first approx-
imation solutions were obtained assuming that S ≡ (

√
ξ,
√−I3,

√
ε).

The integrability of Hlead, necessary for the application of Hori theory, is
trivially proved when we use the Sessin transformation (see Sect. 9.5.1)3 to
introduce the new set of canonical variables

X = x3 + β cosφ1

Y = y3 + β sinφ1 (9.37)
ϑ2 = φ1

G = ξ − I3 + β(x3 cosφ1 + y3 sinφ1) +
1
2
β2,

where

x3 =
√
−2I3 cos(φ1 + φ3), y3 =

√
−2I3 sin(φ1 + φ3)

and β = B/M is a constant. The definition of β is such that the two periodic
terms of Hlead are merged into only one term. With these new variables, we
have
3 In addition, the (canonical) analogy w1 = φ1 + φ3, w2 = φ1, J1 = I3 < 0,

J2 = ξ − I3 was used.
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Hlead =
1
2
ν◦11

(
G − 1

2
(X2 + Y 2)

)2

+ εMX. (9.38)

The angle ϑ2 is absent from the transformed Hamiltonian. Therefore, G =
const is a first integral of Hlead (Sessin integral) and this Hamiltonian is
integrable.

We may, also, introduce the angle–action variables corresponding to X,Y :

J =
1
2
(X2 + Y 2) ϑ1 = arctan

Y

X
(9.39)

and their inverses
X =

√
2J cosϑ1

Y =
√

2J sinϑ1.
(9.40)

The invariance of Poisson brackets to canonical transformations allows us to
indifferently use ϑ1,J or Y,X (in this order because J > 0) as the first pair
of variables. We may use, in each operation, those variables appearing to be
the most convenient.

9.4.1 The Hori Kernel

The Hori kernel is

H∗
4 = H∗

lead(φ∗, I∗) =
1
2
ν◦11

(
G∗ − 1

2
(X∗2 + Y ∗2)

)2

+ εMX∗. (9.41)

This Hamiltonian is the first Andoyer Hamiltonian. To use the solutions given
in Appendix C, it is convenient to convert it into the standard b > 0, τ > 0
case. To do this, we initially consider, instead of H∗

4 , the Hamiltonian

F4 =
1
2
ν◦11G∗2 −H∗

4 =
1
2
ν◦11G∗(X∗2 + Y ∗2) − 1

8
ν◦11(X

∗2 + Y ∗2)2 − εMX∗.

Comparing to (C.12), the coefficients of this Andoyer Hamiltonian are

a = ν◦11G∗

b = − 1
2ν

◦
11

τ = −M.

The coefficient of (X∗2 + Y ∗2)2 is, now, positive, since ν◦11 < 0. In order to
have the same behavior shown in Fig. C.3, we assume M < 0 (that is, τ > 0;
otherwise, a trivial angle transformation should be made beforehand).

Limiting ourselves to the case of small oscillations about the stable equi-
librium, the solution of H∗

4 is (see Sect. C.9)

J ∗ = Jc +
ετh0

ω0
γ cosw + O(γ2) (9.42)

ϑ∗
1 = π + γ sinw + O(γ2), (9.43)

Page: 218 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



9.4 A First-Order Resonance Case Study 219

where

h0 =
√

2Jc (9.44)

ω0 =

√
ετ(a + 3bh2

0)
h0

+ O(γ2) (9.45)

w = ω0(u− u0). (9.46)

Jc is the center of the oscillation and γ > 0 is a constant of the order of
the oscillation amplitude of ϑ1. J ∗, ϑ∗

1 are the transformed J , ϑ1. u is the
independent variable of the Hori kernel equations and u0 is chosen such that
when w = 0, we have ϑ1 = π and J = J0 is maximum. It is worth emphasizing
that the opposite directions of the motion in the solutions of the Hamiltonians
H∗

4 and F4 have already been taken into account through a transformation of
w into −w in the solutions of the Andoyer Hamiltonian.

To complete the solution of the Hori kernel, we still need to integrate the
last pair of canonical equations:

dϑ∗
2

du
=

∂H∗
4

∂G∗ = ν◦11(G∗ − J ∗)

dG∗

du
= 0

whose solutions are G∗ = G0 (const) and

ϑ∗
2 = χ0 − P1γ sinw + O(γ2), (9.47)

where
χ0 = ϑ20 + ν◦11(G0 − Jc)u (9.48)

is a uniformly varying angle and

P1 =
ετh0ν

◦
11

ω2
0

. (9.49)

It is worth noting that, because of the integration with respect to w, the order
of every term decreases and P1 is finite4. This characteristic will repeat itself
in the next terms of the series giving ϑ∗

2 and the numerical convergence may
arise only from the decreasing value of the powers of γ.

9.4.2 First Perturbation Equation

The first perturbation equation is

{H∗
4 ,W

∗
3 } = H∗

5 − εV2
1 , (9.50)

4 In the control of the orders recall that h0 = O(ε1/3) and ω0 = O(ε2/3).
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where
V2

1 (φ, I) = a1ξ + b′I3 + L(x3 cosφ1 + y3 sinφ1)

(the same V2
1 of Sect. 7.8). Let us write V2

1 with the new variables ϑ,J ,G. To
do this, it is useful to have the inverses

ξ = G − J
I3 = −J + β

√
2J cos(ϑ2 − ϑ1) − 1

2β
2.

(9.51)

We also have

x3 cosφ1 + y3 sinφ1 =
√

2J cos(ϑ2 − ϑ1) − β.

Hence, at the point (φ∗, I∗), with the new variables, we have

V2
1 = a1G∗ − (a1 + b′)J ∗ + (L+ b′β)

√
2J ∗ cos(ϑ∗

2 − ϑ∗
1) − Lβ − 1

2
b′β2.

9.4.3 Averaging

The next step in the application of Hori theory is the averaging of V2
1 to

determine H∗
5 in such a way that the average of the right-hand side of (9.50)

is zero. That is,

H∗
5 = ε < V2

1 > = lim
û→∞

1
û

∫ û

0

V2
1 (ϑ∗,J ∗,G∗)du. (9.52)

The only cumbersome term in the integrand is the periodic one. It may be ex-
panded as a trigonometric series in w with coefficients expanded, themselves,
in powers of γ. After some manipulation, we obtain (at the considered order)

√
2J ∗ cos(ϑ∗

2 − ϑ∗
1) = h0 cosχ0 +

ετ

ω0
γ cosχ0 cosw

+h0(1 + P1)γ sinχ0 sinw. (9.53)

Hence,

H∗
5 = ε < V2

1 > = εa1G0 − ε(a1 + b′)Jc − εLβ − 1
2
εb′β2. (9.54)

The solution of the first perturbation equation is completed with the in-
tegration giving W ∗

3 :

W ∗
3 =

∫
(εV2

1 −H∗
5 )du,

that is,

W ∗
3 = −ε(a1 + b′)

ετh0

ω2
0

γ sinw (9.55)

−ε(L+ b′β)
(

h0 sinχ0

ν◦11(G0 − Jc)
+D1γ sin(χ0 + w) +D2γ sin(χ0 − w)

)
,
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where

D1 =
1

2ω0

ετ − ω0h0(1 + P1)
ν◦11(G0 − Jc) + ω0

D2 =
1

2ω0

ετ + ω0h0(1 + P1)
ν◦11(G0 − Jc) − ω0

.

The transformation ϑ,J ,G ⇒ ϑ∗,J ∗,G∗ is formally defined by the Lie
series f(ϑ,J ,G) = EW∗f(ϑ∗,J ∗,G∗); at the first post-identity approximation
we have f(ϑ,J ,G) = f∗ + {f∗,W ∗

3 }, where, for simplicity, we have written
f∗ = f(ϑ∗,J ∗,G∗).

The problem is, now, that we have W ∗
3 given as a function of u and some

integration constants and we need to know W ∗
3 (ϑ∗,J ∗,G∗) to calculate the

Poisson brackets appearing in the Lie transformations. This is not, in general,
an easy task, as it involves the construction of the inverse transformation
w1, χ0, γ,G0 ⇒ ϑ∗,J ∗,G∗.

The inversion of the variables, giving ϑ∗
1,J ∗, is, in general, cumbersome.

However, when only the harmonic approximation of the solutions of the Hori
kernel is used, they are easily obtained:

γ cosw =
ω0

ετh0
(J ∗ − Jc)

γ sinw = − sinϑ∗
1. (9.56)

The inversion of the second pair of equations is trivial. In particular, we have

sinχ0 = sinϑ∗
2 − P1 sinϑ∗

1 cosϑ∗
2 + O(γ2)

cosχ0 = cosϑ∗
2 + P1 sinϑ∗

1 sinϑ∗
2 + O(γ2). (9.57)

We note that in the terms factored by coefficients of order O(γ), the approx-
imations sinχ0 = sinϑ∗

2 and cosχ0 = cosϑ∗
2 are enough. We thus obtain

W ∗
3 = ε(a1 + b′)

ετh0

ω2
0

sinϑ∗
1 −

ε(L+ b′β)h0

ν◦11(G∗ − Jc)
sinϑ∗

2

− ε(L+ b′β)(D1 +D2)
ω0

ετh0
(J ∗ − Jc) sinϑ∗

2

+ ε(L+ b′β)
(
D1 −D2 +

h0P1

ν◦11(G∗ − Jc)

)
sinϑ∗

1 cosϑ∗
2.

9.4.4 The Post-Harmonic Solution

To complete this example, it is necessary to consider the actual construction
of the solutions. At this point, we have to consider one particularity of our
example. Since J > 0, we have {ϑ1,J } = −1. This means that in the Poisson
brackets with respect to the variables ϑ∗,J ∗,G∗, the derivatives concerning
the first pair of conjugate canonical variables must be taken in the order
∂/∂J ∗, ∂/∂ϑ∗

1.
The post-harmonic solution is, then, given by
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ϑ1 = EW∗ϑ∗
1 � ϑ∗

1 + {ϑ∗
1,W

∗
3 } = ϑ∗

1 −
∂W ∗

3

∂J ∗

ϑ2 = EW∗ϑ∗
2 � ϑ∗

2 + {ϑ∗
2,W

∗
3 } = ϑ∗

2 +
∂W ∗

3

∂G∗

J = EW∗J ∗ � J ∗ + {J ∗,W ∗
3 } = J ∗ +

∂W ∗
3

∂ϑ∗
1

G = EW∗G∗ � G∗ + {G∗,W ∗
3 } = G∗ − ∂W ∗

3

∂ϑ∗
2

.

The derivatives are easy to calculate yielding

ϑ1 = ϑ∗
1 + ε(L+ b′β)(D1 +D2)

ω0

ετh0
sinϑ∗

2,

ϑ2 = ϑ∗
2 +

ε(L+ b′β)h0

ν◦11(G∗ − Jc)2
sinϑ∗

2

− ε(L+ b′β)
∂(D1 +D2)

∂G∗
ω0

ετh0
(J ∗ − Jc) sinϑ∗

2

+ ε(L+ b′β)
(
∂(D1 −D2)

∂G∗ − h0P1

ν◦11(G∗ − Jc)2

)
sinϑ∗

1 cosϑ∗
2.

Similarly, for the actions, we have

J = J ∗ + ε(a1 + b′)
ετh0

ω2
0

cosϑ∗
1

+ ε(L+ b′β)
(
D1 −D2 +

h0P1

ν◦11(G∗ − Jc)

)
cosϑ∗

1 cosϑ∗
2,

G = G∗ +
ε(L+ b′β)h0

ν◦11(G∗ − Jc)
cosϑ∗

2

+ ε(L+ b′β)(D1 +D2)
ω0

ετh0
(J ∗ − Jc) cosϑ∗

2

+ ε(L+ b′β)
(
D1 −D2 +

h0P1

ν◦11(G∗ − Jc)

)
sinϑ∗

1 sinϑ∗
2.

In the last set of equations, ϑ∗
1, ϑ

∗
2,J ∗,G∗ are the solutions of the averaged

Hamiltonian

H∗
4 +H∗

5 =
1
2
ν◦11(G∗ − J ∗)2 + εM

√
2J ∗ cosϑ∗

1 + εa1G∗, (9.58)

where we discarded the constant terms of H∗
5 . These solutions are the same

as those of the Hori kernel, with a small modification due to the term εa1G∗.
J ∗ and ϑ∗

1 are the same functions given by (9.42) and (9.43), just replacing,
there, w(u) by

ŵ = ω0(t− t0). (9.59)

In addition, G∗ = const and
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ϑ∗
2 = ϑ20 + ν◦11(G∗ − Jc)t + εa1t− P1γ sin ŵ.

(The only modification with respect to (9.47) is a correction in the progressive
part of this angle.)

From a strict point of view, the canonical transformation J , ϑ,G ⇒
J ∗, ϑ∗,G∗ is not a solution of Bohlin’s problem in its original form, because
the critical angle ϑ∗

1 was not eliminated from the Hamiltonian. However, in
terms of the angle–action variables ŵ and

Λ =
ω0h

2
0γ

2

4π(a+ 3bh2
0)

+ O(γ4), (9.60)

(see C.74) we have, at the considered order of approximation,

H∗
(5)(ŵ, ϑ

∗
2, Λ,G∗) = −H4(Λ) + εa1G∗, (9.61)

where H4(Λ) is a series in Λ whose leading terms are given by (C.77)5. It is
worth noting that the transformation J ∗, θ∗,G∗ → Λ, ŵ, θ∗2 ,G∗ is canonical
because the transformation J ∗, θ∗1 → Λ, ŵ is independent of θ∗2 and G∗.

Therefore, when the problem is considered with the variables Λ, ŵ instead
of J ∗, ϑ∗

1, the Bohlin’s problem is solved, provided only that the non-resonance
condition is satisfied.

9.4.5 Secular Resonance

In the previous sections, the averaging followed the general Hori-theory aver-
aging rule: H∗

5 = ε< V2
1 > and all periodic terms of εV2

1 were integrated in
u and included in W ∗

3 . The non-resonance condition, in this case, is that the
frequencies of the combinations of the angles χ0 and w present in V2

1 are not
small.

One important case, in which the non-resonance condition is not satisfied,
happens when G0 − Jc is small and the angle ϑ∗

2 is critical. In this case, the
adoption of the averaging rule of Sect. 9.4.3 leads to a small divisor. It is worth
emphasizing that G0 and Jc are quantities of order O(ε2/3), but this smallness
was already considered in the perturbation equations where a perturbation of
order O(ε5/3) gives a generating function of order O(ε). The smallness to
which we refer now arises from the fact that their values become close to one
another, making their difference yet smaller than themselves.

When this happens, we need to use the von Zeipel averaging rule: we split
V2

1 into its secular, long-period and short-period parts (considering ϑ2 as a
slow angle and w as a fast one)6, and average only on the fast angle:

5 The − sign in front of H4(Λ) comes from the fact that {ŵ, Λ} = {ϑ1,J } = −1
and that we restored the angle-action order of the variables in H∗

(5).
6 We need to have in mind that χ0 is just an auxiliary angle and not one of the

variables of the problem.
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H∗
5 =

1
2π

∫ 2π

0
(ϑ2=const)

εV2
1dw. (9.62)

The periodic term of the integrand may be writen, in this case,
√

2J ∗ cos(ϑ∗
2 − ϑ∗

1) = −h0 cosϑ∗
2 −

ετ

ω0
γ cosϑ∗

2 cosw − h0γ sinϑ∗
2 sinw,

hence

H∗
5 = εa1G0 − ε(a1 + b′)Jc − εLβ − 1

2
εb′β2 − ε(L+ b′β)h0 cosϑ∗

2. (9.63)

The integration of (εV2
1 −H∗

5 ) gives, now,

W ∗
3 = −ε(a1 + b′)

ετh0

ω2
0

γ sinw (9.64)

−ε(L+ b′β)
γ

ω2
0

(ετ cosϑ∗
2 sinw − ω0h0 sinϑ∗

2 cosw) .

The continuation is done exactly as before, and the results are similar. The
most important difference appears in the equations giving the time varia-
tion of the averaged variables ϑ∗

1, ϑ
∗
2,J ∗,G∗, which are now solutions of the

Hamiltonian

H∗
4 +H∗

5 =
1
2
ν◦11(G∗ − J ∗)2 + εM

√
2J ∗ cosϑ∗

1 + εa1G∗ − ε(L+ b′β)h0 cosϑ∗
2

(9.65)
or, introducing the variables ŵ, Λ (in which Bohlin’s problem appears as
solved):

H∗
(5) = −H4(Λ) + εa1G∗ − ε(L+ b′β)h0 cosϑ∗

2. (9.66)

9.4.6 Secondary Resonances

Another instance in which the non-resonance condition is not satisfied, ap-
pears when one of the divisors ν◦11(G0−Jc)±ω0 is small and the corresponding
angles ϑ∗

2±w becomes critical; that is, a resonance occurs between the proper
angle of the Andoyer Hamiltonian, w, and the slow angle ϑ∗

2. (We recall that
ω0 is also a quantity of order O(ε2/3).) In this case, we shall follow a von
Zeipel averaging rule exactly as in the previous section. Once more, we divide
V2

1 into its secular, long-period and short-period parts, but now the slow an-
gle is the critical combination of ϑ∗

2 and w, and the average is done over all
angles which do not reduce themselves to a multiple of the critical one. Let
us consider, for instance, that the critical angle is ϑ∗

2 − w. In this case, the
averaged Hamiltonian is

H∗
5 =

1
2π

∫ 2π

0
(ϑ2−w=const)

εV2
1dw, (9.67)
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that is,

H∗
5 = εa1G0−ε(a1+b′)Jc−εLβ− 1

2
εb′β2−ε(L+b′β)

ετ + ω0h0

2ω0
γ cos(ϑ∗

2−w).

(9.68)
The integration of (εV2

1 −H∗
5 ) gives7

W ∗
3 = −ε(a1 + b′)

ετh0

ω2
0

γ sinw − ε(L+ b′β)
h0

ω0
sinϑ∗

2

+ε(L+ b′β)
ετ − h0ω0

4ω2
0

γ sin(ϑ∗
2 + w).

The continuation is, again, done exactly as before, and the results are sim-
ilar. The averaged variables ϑ∗

1, ϑ
∗
2,J ∗,G∗ are, now, solutions of the Hamil-

tonian

H∗
4 +H∗

5 =
1
2
ν◦11(G∗ − J ∗)2 + εM

√
2J ∗ cosϑ∗

1 + εa1G∗

+ε(L+ b′β)
ετ + h0ω0

2ω0

(
ω0

ετh0
(J ∗ − Jc) cosϑ∗

2 − sinϑ∗
1 sinϑ∗

2

)
,

where (9.56) was used to obtain the last term. In terms of ŵ, Λ, we have

H∗
(5) = −H4(Λ) + εa1G∗ − ε(L+ b′β)

ετ + h0ω0

2ω0
γ cos(ϑ∗

2 − w). (9.69)

The problem is, thus, reduced to one degree of freedom (only the critical
angle of the secondary resonance remains in H∗

(5)). An identical procedure
may be followed when the angle is ϑ∗

2 + w or another combination of ϑ∗
2 and

w present in a more complete representation of V2
1 becomes critical.

9.4.7 Initial Conditions Diagram

Let us draw the main features of the studied example on a diagram. This
diagram is called the “initial conditions diagram” since the axes are the initial
conditions G0 and J0, where J0 is the value of J ∗ at w = 0. In fact, to have a
figure with the same aspect of those found in applications to actual problems,
the x-axis in Fig. 9.3 represents the difference G0 − J0 instead of just G0.

To avoid having to give numbers to the coefficients of the given problem,
we adopt A2

1 = (4ετ/b)2/3 as unit for both G0 and J0 (see Sect. C.2.1). With
these units, J = ξ2/2 and G = 3α/8 (where ξ and α are the parameters
defined in Sect. C.2.1).

7 In the integration in w, it is necessary to use as independent angles w, φ = ϑ∗

2−w
instead of w, ϑ∗

2.
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Fig. 9.3. Initial conditions diagram

Law of Structure
Curve s in Fig. 9.3 is the locus of the center of libration Jc calculated with
(C.19). We also plot its continuation for α < 1 calculated with (C.20) and
(C.21).

Libration Limits
Curves b and b′ in Fig. 9.3 show the limits of the libration zone given by ξ2
and ξ3 of Sect. C.4. The line g is the lower limit of the libration zone, which
corresponds to the catastrophe value α = 1 of the Andoyer Hamiltonian. In
this case, G0 = 3/8 and, given our choice of the abcissas, g is a straight line
inclined by 45 degrees (when equal scales are used for both axes).

Secondary Resonance
The secondary resonances occur for G0 −Jc ± ω0 = 0. In the case of the Hori
kernel, the calculation shows that, because of the smallness of G0 − Jc, these
resonances do not occur in this problem. However, when the initial conditions
diagram is drawn to interpret results of numerical experiments, we have to
look for the critical lines of the full averaged Hamiltonian and not only those
of the Hori kernel. We have, thus, to consider the contributions coming from
εa1 to the motion of the angle ϑ2. When a1 is considered, G0 −Jc + εa1 is no
longer a small quantity and the locus of the resonance may occur inside the
libration zone. The curves r in Fig. 9.3 show the locus of the initial conditions
for which the angles ϑ2 ± w become critical.

Secular Resonance
The secular resonance occurs for G0 − Jc = 0. The value of this difference is
given by the law of structure showing that, in this problem, it is never equal
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to zero, but always small. When the full averaged Hamiltonian is considered,
the motion of the angle ϑ∗

2 becomes equal to G0 −Jc + εa1. If a1 > 0, it may
happen that the line G0 = −εa1 crosses the law of structure at some point. Let
it be the point shown by a dot in Fig. 9.3. In this case, the angle ϑ2 becomes
critical over all solutions on the line g′ of the figure.

The initial conditions diagram is an important tool for understanding the
results of numerical experiments. In that case, we have also to fix the ini-
tial value of the angles. In the given example we could take, for instance,
ϑ10 = π, ϑ20 = 0; we discard, for interpretation purposes only, the differences
between these angles and the averaged ones and consider ϑ∗

10 = π, ϑ∗
20 = 0,

instead of the actual given values. The condition ϑ∗
10 = π is satisfied by both

w = 0 and w = π. Then, each oscillation will be represented in the initial
conditions diagram by two points: one when J ∗ is a maximum and another
when it is a minimum (the two borders of the oscillation). Since G∗ is a con-
stant, these two points may be over a line with the same inclination as g and
g′, one on each side of the curve giving the law of structure.

9.5 Sessin Transformation and Integral

The integrability of the Hamiltonian

H = A(C + J1 + J2)2 +D1

√
2J1 cosw1 +D2

√
2J2 cosw2, (9.70)

where w ∈ T2 and J ∈ R2
+ are angle–action variables and A,C,Dj ∈ R are

constants, has been proved by Sessin [86], [87] through the introduction of a
new set of variables.

The Sessin transformation becomes trivial if we introduce, beforehand, the
non-singular Poincaré variables associated with w, J :

xi =
√

2Ji coswi

yi =
√

2Ji sinwi. (9.71)

In non-singular variables, the Hamiltonian becomes

H = AQ2 +D1x1 +D2x2, (9.72)

where

Q = C +
1
2

(x2
1 + y2

1 + x2
2 + y2

2). (9.73)

The surfaces H = const are fourth-degree four-dimensional surfaces that are
reduced to a 4-sphere when D1 = D2 = 0. The corresponding differential
equations are
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dxi

dt
= −2AQyi

dyi

dt
= 2AQxi +Di. (9.74)

Sessin has shown that the canonical transformation8

X1 =
D1

D
x1 +

D2

D
x2 X2 = −D2

D
x1 +

D1

D
x2

Y1 =
D1

D
y1 +

D2

D
y2 Y2 = −D2

D
y1 +

D1

D
y2,

(9.75)

where D =
√
D2

1 +D2
2, reduces the Hamiltonian to

H = AQ̂2 +D1X1, (9.76)

where

Q̂ = C +
1
2

(X2
1 + Y 2

1 +X2
2 + Y 2

2 ), (9.77)

which may be easily integrated. Indeed, in this case, we obtain for the equa-
tions corresponding to the subscript i = 2:

dX2

dt
= −2AQ̂Y2

dY2

dt
= 2AQ̂X2

and, eliminating Q̂ from them,

X2
dX2

dt
+ Y2

dY2

dt
= 0

or

G =
1
2

(X2
2 + Y 2

2 ) = const (9.78)

(the Sessin integral).
In terms of the given variables w, J , the Sessin integral is written

D2G = D2
2J1 +D2

1J2 − 2D1D2

√
J1J2 cos(w1 − w2). (9.79)

The Sessin transformation may be easily interpreted as a rotation in the
four-dimensional phase space. Indeed, H is formed by the symmetric part
x2

1 + y2
1 +x2

2 + y2
2, which is invariant to rotations, and the linear term

∑
Dixi,

which is one vector in the (x1, x2) plane and is affected by rotations. It is
then enough to consider one rotation on the (x1, x2) plane that brings the
vector

∑
Dixi to one of the the principal axes (e.g.

∑
Dixi = DX1) and

to introduce a rotation on the (y1, y2) plane such that the resulting four-
dimensional rotation is canonical.
8 Linear transformations of this kind were called orthogonal by Poincaré [80], who

used them to diagonalize quadratic Hamiltonians.
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9.5 Sessin Transformation and Integral 229

Exercise 9.5.1. Show that the transformation (x, y) ⇒ (X,Y ) defined by(
X1

X2

)
= R

(
x1

x2

) (
Y1

Y2

)
= R

(
y1

y2

)
,

where R is the planar rotation matrix

R =
(

cosα sinα
− sinα cosα

)
,

is canonical.

Exercise 9.5.2 ( [32]). Show the integrability of the Hamiltonian

H = F
(

N∑
1

Ji

)
+

N∑
1

Di

√
2Ji coswi, (9.80)

where F is a differentiable function, w ∈ TN and J ∈ RN
+ are angle–action

variables and Di ∈ R are constants.

9.5.1 The Restricted (Asteroidal) Case

The Hamiltonian (9.70) comes from the study of first-order resonance in a
system of two planets and its symmetry certainly played a role in the discov-
ery of the Sessin transformation. In restricted systems, in which one planet is
replaced by one asteroid, the symmetry is broken by the fact that the attrac-
tion of the asteroid on the planet is neglected. Instead of (9.70), we have, as
in the asteroidal case studied in Sect. 9.4,

H = A(C + J1 + J2)2 +D1

√
2J1 cosw1 +D2 cosw2, (9.81)

It is easy to see that a restricted form of the Sessin transformation can be
applied to change this Hamiltonian into a trivially integrable case [100]. The
Sessin transformation in this case is written

Y1 = y1 + β sinw2 ϑ2 = w2

X1 = x1 + β cosw2 Λ2 = G(y1, x1, J2), (9.82)

where β =
D2

D1
and the function G is defined by the relations {ϑ2, Λ2} = 1

and {X1, Λ2} = {Y1, Λ2} = 0, so that the transformation (y1, x1 ;w2, J2) ⇒
(Y1, X1 ;ϑ2, Λ2) is canonical9. Hence,

∂G
∂J2

= 1

∂G
∂y1

= − ∂G
∂J2

β sinw2

∂G
∂x1

= − ∂G
∂J2

β cosw2,

9 Since J1 > 0, the order of the variables in the brackets is (y1, x1 ; w2, J2).
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230 9 Single Resonance near a Singularity

that is,
G = J2 − β(x1 cosw2 + y1 sinw2) + C′, (9.83)

where C′ is an arbitrary integration constant. The new Hamiltonian is

H = A

(
C′′ − β2

2
+

1
2

(X2
1 + Y 2

1 ) + G
)2

+D1X1, (9.84)

where C′′ = C − C′. Since the new Hamiltonian does not depend on ϑ2, we
have G = const (Sessin integral).

Exercise 9.5.3. Show that in the case J1 < 0, that is, when the Hamiltonian
is

H = A(C + J1 + J2)2 +D1

√
−2J1 cosw1 +D2 cosw2,

the derivation is analogous, but the Sessin integral is

G = J2 + β(x1 cosw2 + y1 sinw2) + C′ (9.85)

and the new Hamiltonian is

H = A

(
C′′ +

β2

2
− 1

2
(X2

1 + Y 2
1 ) + G

)2

+D1X1. (9.86)
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10

Nonlinear Oscillators

10.1 Quasiharmonic Hamiltonian Systems

A quasiharmonic Hamiltonian system is a system whose unperturbed part
H0(J) is a linear function of the actions. That is,

H =
N∑

i=1

ωiJi +R(θ, J, ε), (10.1)

where ωi = const and R is a 2π-periodic function of the angles θi, analytical
in ε and vanishing for ε = 0. This system is a paradigm of many conservative
nonlinear systems.

In terms of coordinates and momenta, these systems arise from the study
of systems of differential equations which are reduced to separate harmonic
oscillators when the small parameter ε is zero. In appropriate variables, the
Hamiltonian is written

H =
1
2

N∑
i=1

ωi(x2
i + y2

i ) +R1(x, y, ε), (10.2)

where R1(x, y, ε) = R(θ, J, ε). The corresponding differential equations are1

ẋi = −ωiyi − ∂R1

∂yi
ẏi = +ωixi +

∂R1

∂xi
(10.3)

or
ẍi + ω2

i xi = φi(x, y, ẋ, ẏ, ε), (10.4)

where the function φi vanishes when ε = 0. The angle–action variables asso-
ciated with

H0 =
1
2

N∑
i=1

ωi(x2
i + y2

i ) (10.5)

1 The sign of these equations correspond to the choice Ji > 0. See Sect. 7.2.
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232 10 Nonlinear Oscillators

are

θi = arctan
√
yi

xi
(10.6)

and
Ji =

1
2

(x2
i + y2

i ). (10.7)

We notice that, in this problem, all elements of the Hessian of H0,

det
(

∂2H0

∂Ji∂Jj

)
, are equal to zero.

10.2 Formal Solutions. General Case

Let us consider the application of the Hori theory to the canonical system
defined by the Hamiltonian

H =
N∑

i=1

ωiJi +
∞∑

k=1

εkFk(θ, J). (10.8)

Let us assume that, for ε = 0, there is no trivial degeneracy (in Schwarzschild’s
sense), that is, ωi �= 0 for all i = 1, · · · , N .

Let us introduce the canonical transformation φn : (θ, J) ⇒ (θ∗, J∗) de-
fined by

f(θ, J) = EW∗f(θ∗, J∗),

where

W ∗ =
n∑

k=1

W ∗
k (θ∗, J∗, ε) (10.9)

with W ∗
k of order εk. Following the steps of Sect. 6.2, we obtain the same set

of equations as there. However, the high-order derivatives of H0 now vanish
because H0 is a linear function of the actions.

The homological equation is

H∗
k = {H0,W

∗
k } + Ψk(θ∗, J∗) (10.10)

or
N∑

i=1

ωi
∂W ∗

k

∂θ∗i
= Ψk(θ∗, J∗) −H∗

k ,

where H∗
k is the term of order εk of the new Hamiltonian and Ψk is a function

that is completely known when the equations for the subscripts smaller than
k are solved. Since (θ, J) are the angle–action variables of the undisturbed
Hamiltonian H0, we may use the averaging operation of Sect. 6.2 in the form

H∗
k(J∗) = < Ψk(θ∗, J∗) >,
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10.2 Formal Solutions. General Case 233

where < . . . > stands for the average over the angles θ∗i (i = 1, · · · , N) from 0
to 2π. If Ψk is written as

Ψk =
∑

h∈Dk

εkAkh(J∗) cos (h | θ∗), (10.11)

where Dk ⊂ ZN is a finite set, we obtain

H∗
k = εkAk0(J∗) (10.12)

and
N∑

i=1

ωi
∂W ∗

k

∂θ∗i
=

∑
h∈Dk\{0}

εkAkh(J∗) cos (h | θ∗). (10.13)

A particular solution of this equation is

W ∗
k (θ∗, J∗) =

∑
h∈Dk\{0}

εkAkh(J∗) sin(h | θ∗)
(h | ω)

. (10.14)

This solution introduces the divisors (h | ω). The condition for the ap-
plication of the method under consideration is the non-resonance condition
(h | ω) �= 0 for all integer vectors h ∈ Dk\{0} and all k ≤ n. When this
non-resonance condition is satisfied, we obtain the Lie generator of the canon-
ical transformation φn, which transforms the Hamiltonian H into a function
depending only on the actions J∗

i , except for a remainder Rn divisible by
εn+1.

The resulting Hamiltonian is

H∗ =
N∑

i=1

ωiJ
∗
i +

n∑
k=1

H∗
k (J∗) (10.15)

and the differential equations spanned by H∗ have the solutions

θ∗i = ωit+
n∑

k=1

∂H∗
k(J∗)
∂J∗

i

t+ const J∗
i = const. (10.16)

(Note that Hori’s formal integral of Sect. 6.7 is, here, simply,H∗
0 =

∑N
i=1 ωiJ

∗
i =

const.)
The formal solutions of the problem stated in Sect. 10.1 are, then,

θi = EW∗θ∗i , Ji = EW∗J∗
i , (10.17)

where θ∗I , J
∗
i are the solutions of the resulting (averaged) system and W ∗ is

the Lie generator defined by (10.9) and (10.14).
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234 10 Nonlinear Oscillators

10.3 Exact Commensurability of Frequencies
(Resonance)

Let us assume that the coefficients ωi satisfy, simultaneously, L independent
commensurability relations

(h̄� | ω) = 0 (� = N − L+ 1, · · · , N), (10.18)

where h̄� ∈ Z
N .

To study this case, we introduce, beforehand, the Lagrangian point trans-
formation

φµ = θµ (µ = 1, · · · ,M = N − L)
φ� = (h̄� | θ) (� = M + 1, · · · , N),

(10.19)

which is completed by the introduction of new actions by means of the Jaco-
bian canonical condition in the particular form

N∑
i=1

Ji δθi =
N∑

i=1

Ii δφi

or
N∑

i=1

Ji δθi =
M∑

µ=1

Iµ δθµ +
N∑

�=M+1

I� (h̄� | δθ).

The identification of both sides leads to

Jµ = Iµ +
∑

� I�h̄�µ

Jσ =
∑

� I�h̄�σ
(10.20)

(σ = M+1, · · · , N), where h̄�ν means the νth integer component of the vector
h̄�.

It then follows that

H0(J) =
N∑

i=1

ωiJi =
M∑

µ=1

ωµIµ +
N∑

�=M+1

I� (h̄� | ω) (10.21)

or, because of (10.18),

H0(J) =
M∑

µ=1

ωµIµ. (10.22)

The complete Hamiltonian is, now,

Ĥ =
M∑

µ=1

ωµIµ + R̂(φ, I, ε). (10.23)

It is current in the literature on nonlinear mechanics to refer to this sys-
tem as a resonant oscillator involving L simultaneous resonances. However,
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10.3 Exact Commensurability of Frequencies (Resonance) 235

because of the linearity of Ĥ0(J), the L commensurabilities given by (10.18)
are essential: They give rise to L degenerate degrees of freedom.

Since resonances and essential commensurabilities are different concepts
in perturbation theories, we rather say that the Hamiltonian system under
consideration in this section is degenerate with M = N − L short-period and
L long-period variables. Therefore, we adopt the von Zeipel averaging rule,
which takes into due account the fact that Ĥ0 is independent of the actions
I�. We use

H∗
k (φ∗

�, I
∗) = < Ψ̃k(φ∗, I∗) >, (10.24)

where < · · · > stands for the average over the angles φµ (µ = 1, · · · ,M), from
0 to 2π. If Ψ̃k has the form

Ψ̃k =
∑

h∈Dk

εkAkh(I∗) cos (h | φ∗), (10.25)

where Dk ⊂ Z
N , it follows that

H∗
k (φ∗

�, I
∗) = Ψ̃k(S)(I∗) + Ψ̃k(LP)(φ∗

�, I
∗) (10.26)

and
M∑

µ=1

ωµ
∂W ∗

k

∂φ∗
µ

= Ψ̃k(SP)(φ∗, I∗), (10.27)

where the subscripts S, LP, SP stand for the different parts of Ψ̃k (secular,
long-period and short-period).

The result of the averaging operation is a system of canonical equations
whose Hamiltonian is

H∗ =
M∑

µ=1

ωµI
∗
µ +

n∑
k=1

H∗
k (φ∗

�, I
∗). (10.28)

This Hamiltonian is equal to Ĥ , except for a remainder divisible by εn+1.
The system defined by the new Hamiltonian leads to

I∗µ = const,

the reduced system

φ̇∗
� =

n∑
k=1

∂

∂I∗�
H∗

k(φ∗
�, I

∗), İ∗� = −
n∑

k=1

∂

∂φ∗
�

H∗
k (φ∗

�, I
∗) (10.29)

and the quadratures

φµ =
∫

∂H∗

∂I∗µ
dt.

The averaging reduces the given system to a system with L = N − M
degrees of freedom. The continuation depends on the complete integrability,
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236 10 Nonlinear Oscillators

or not, of the system defined by the leading part, Ĥ1(φ∗
�, I

∗), of the new
Hamiltonian.

It is worthwhile mentioning that the linearity of Ĥ0(Iµ) does not influ-
ence these results, which are the same as those already obtained with the
more general Hamiltonians in Sect. 10.2. However, the point transformation
(θ, J) ⇒ (φ, I) does not preserve the d’Alembert property of the given func-
tion. When this property is an essential feature in the given problem, we may
use (10.19) only to separate the secular, long-period and short-period parts
of Ψk, as follows:

(a.) Ψk(S)(J∗) is the average of Ψk over all angles;
(b.) Ψk(LP)(θ∗, J∗) is the collection of periodic terms of Ψk independent of

φµ; they have arguments (h|θ), where h is a linear combination of the h̄�

(Ψk(LP) does not depend on φµ, but may depend on θµ);
(c.) Ψk(SP)(θ∗, J∗) is the collection of remaining periodic terms of Ψk, depen-

dent on φµ.

The averaging rule is now written

< Ψk(θ∗, J∗) > = Ψk(S) + Ψk(LP) (10.30)

and the homological equation is separated into

H∗
k(θ∗, J∗) = Ψk(S)(J∗) + Ψk(LP)(θ∗, J∗) (10.31)

and
N∑

i=1

ωi
∂W ∗

k

∂θ∗i
= Ψk(SP)(θ∗, J∗). (10.32)

10.4 Birkhoff Normalization

Let us consider a regular dynamical system with N degrees of freedom, in the
variables q, p, and let us assume the existence of a stable equilibrium point
P0 ≡ (q0, p0).

The motion in the neighborhood of P0 is governed by the Hamiltonian

H =
∞∑

k=2

Xk(q − q0, p− p0), (10.33)

where Xk are the components of the Taylor series expansion of the Hamil-
tonian. The subscript k means the degree of homogeneity of the functions
with respect to the components (qi − q0i) and (pi − p0i). The functions X0

and X1 are missing in H : X0 is a constant and does not contribute to the
equations of motion and X1 = 0 because the coefficients of the linear terms
are zero at an equilibrium point. X2 is a sign-definite quadratic form and we

Page: 236 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



10.4 Birkhoff Normalization 237

assume that a rotation of the axes was done, bringing the coordinate system
to the principal axes of X2. We may also change the scales along these axes
to have

X2 =
N∑

i=1

1
2
ωi(x2

1 + y2
1), (10.34)

where xi, yi are the coordinates along the scaled principal axes of the quadratic
form (centered at P0).

Birkhoff’s normalization is the name given to the reduction of H to a
polynomial in (x2

i +y2
i ) – the so-called Birkhoff normal form. Before stating the

main result on this topic, we introduce some usual nomenclature concerning
resonance. We say that a commensurability relation of order k holds when
there exist h̄ ∈ ZN such that

(h̄ | ω) = 0

and

||h̄||1 =
N∑

i=1

| h̄i |= k,

where h̄ ≡ (h̄1, h̄2, · · · , h̄N) and ω ≡ (ω1, ω2, · · · , ωN ) 2. The following result
is well known.

Theorem 10.4.1 (Birkhoff). If the frequencies ωi do not satisfy any com-
mensurability relation of order n or smaller, there is a canonical transforma-
tion such that H is reduced to a Birkhoff normal form of degree n except for
terms of degree higher than n.

The normal form of degree n may be constructed by means of the perturbation
theory for the neighborhood of the origin described in Sect. 7.6, with only a
few modifications. Indeed, the given Hamiltonian is regular at the origin but
has no rotational symmetry (the terms with odd subscripts: X3, X5, · · · are
not equal to zero as in Sect. 7.6). Moreover, it is not perturbed (that is, Hk = 0
for all k > 0). In order to have a more straightforward approach of the proof of
Birkhoff’s theorem, it is convenient to transform the variables to angle–action
variables, by means of

xi =
√

2Ji cos θi yi =
√

2Ji sin θi (10.35)

and the inverse relation giving the actions

Ji =
1
2

(x2
i + y2

i ). (10.36)

We thus have

2 Other definitons of order are usual. In the study of nonlinear oscillators, the order
is often defined as k = ||h̄||1 − 2. In the study of planetary motions, when the ω

are mean motions, it is defined as k = |∑N

i=1
h̄i|.
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X2 =
N∑

i=1

ωiJi (10.37)

and
Xk =

∑
h∈Dk

Akh exp i(h | θ), (10.38)

where the Akh(J) are homogeneous functions of degree k in
√
Ji. Dk ⊂ Z

N is
the set of integers associated with the powers of

√
Ji in Akh by d’Alembert

property rules. This means that, for all h ∈ Dk, ||h||1 = k, k − 2, k − 4, · · ·
(see Sect. 7.3). It is worth mentioning that we have introduced complex Akh

and resorted to exponential functions only to avoid separating sine and cosine
terms in Xk.

The conservation of the Hamiltonian is written

H∗(J∗) + R(θ∗, J∗) = EW∗

∞∑
k=2

Xk(θ∗, J∗) (10.39)

and the comparison of the terms with the same degree of homogeneity in the
elements of S ≡ (

√
J1,

√
J2, · · · ,

√
JN ) leads to the equations

H∗
2 = X2

H∗
3 = X3 + {X2,W

∗
3 }

H∗
4 = X4 + {X3,W

∗
3 } + {X2,W

∗
4 } + 1

2{{X2,W
∗
3 },W ∗

3 }
H∗

5 = X5 + {X4,W
∗
3 } + {X3,W

∗
4 } + {X2,W

∗
5 } + 1

2{{X3,W
∗
3 },W ∗

3 }
+ 1

2{{X2,W
∗
3 },W ∗

4 } + 1
2{{X2,W

∗
4 },W ∗

3 } + 1
6{{{X2,W

∗
3 },W ∗

3 },W ∗
3 }

H∗
6 = X6 + {X5,W

∗
3 } + {X4,W

∗
4 } + {X3,W

∗
5 } + {X2,W

∗
6 }

+ 1
2{{X4,W

∗
3 },W ∗

3 } + 1
2{{X3,W

∗
4 },W ∗

3 } + 1
2{{X3,W

∗
3 },W ∗

4 }
+ 1

2{{X2,W
∗
3 },W ∗

5 } + 1
2{{X2,W

∗
4 },W ∗

4 } + 1
2{{X2,W

∗
5 },W ∗

3 }
+ 1

6{{{X3,W
∗
3 },W ∗

3 },W ∗
3 } + 1

6{{{X2,W
∗
3 },W ∗

3 },W ∗
4 }

+ 1
6{{{X2,W

∗
3 },W ∗

4 },W ∗
3 } + 1

6{{{X2,W
∗
4 },W ∗

3 },W ∗
3 }

+ 1
24{{{{X2,W

∗
3 },W ∗

3 },W ∗
3 },W ∗

3 }
· · · · · ·
H∗

n = Xn +
∑n−1

k=2{Xk,W
∗
n−k+2} + · · · + 1

(n−2)!{{· · · {X2,W
∗
3 }, · · ·},W ∗

3 }.
(10.40)

We recall that the degree of homogeneity of the Poisson bracket of two
functions, in the elements of S, is two units lower than the sum of the degrees
of homogeneity of the two functions.

These equations may be written in a generic form (homological equation)
as

{X2,W
∗
k } = H∗

k − Ψk(θ∗, J∗) (10.41)

and the equations of the associated Hori kernel are
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dθ∗i
du

=
∂X2

∂J∗
i

= ωi,
dJ∗

i

du
= 0, (10.42)

whose general solution is

θ∗i = ωiu+ γi, J∗
i = Ci, (10.43)

where γi, Ci are integration constants3.
The first perturbation equation is

{X2,W
∗
3 } = H∗

3 − Ψ3(θ∗, J∗), (10.44)

where Ψ3 = X3. Because of the rules of formation of the set D3, all h ∈ D3 are
such that ||h||1 is equal to 1 or 3. Thus, there is no secular term in Ψ3. Since,
by hypothesis, there is no commensurability relation of order 3, it follows
H∗

3 = < X3 > = 0.
The second perturbation equation is

{X2,W
∗
4 } = H∗

4 − Ψ4(θ∗, J∗), (10.45)

where Ψ4 = X4 + {X3,W
∗
3 } + 1

2{{X2,W
∗
3 },W ∗

3 }.
Since the d’Alembert property is preserved by Poisson brackets, Ψ4 may

be written
Ψ4 =

∑
h∈D4

B4h(J∗) exp i(h | θ∗). (10.46)

Because of the rules of formation of the set D4, all h ∈ D4 are such that ||h||1
is equal to 0, 2 or 4. Thus, if there is no commensurability relation of order 4,

H∗
4 = < Ψ4 > = B40(J∗). (10.47)

Similar reasoning may be done at all orders k ≤ n if no commensurability of
order n or smaller exist. The result is

H∗ =
[n/2]∑
k=1

H∗
2k(J∗) + Rn+1(θ∗, J∗), (10.48)

and this proves Birkhoff’s theorem since H∗
2k are functions only of the

Ji = 1
2 (x∗2i + y∗2i ). We note that no infinite series expansion was used in

3 Some simplified expressions with fewer brackets to calculate are

Ψ4 = X4 + 1
2
{H∗

3 + X3, W
∗

3 }
Ψ5 = X5 + 1

2
{H∗

4 + X4, W
∗

3 } + 1
2
{H∗

3 + X3, W
∗

4 } − 1
12

{{H∗

3 − X3, W
∗

3 }, W ∗

3 }
Ψ6 = X6 + 1

2
{H∗

5 + X5, W
∗

3 } + 1
2
{H∗

4 + X4, W
∗

4 } + 1
2
{H∗

3 + X3, W
∗

5 }−
1
12

{{H∗

4 − X4, W
∗

3 }, W ∗

3 } − 1
12

{{H∗

3 − X3, W
∗

4 }, W ∗

3 }−
1
12

{{H∗

3 − X3, W
∗

3 }, W ∗

4 }.
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the construction of the canonical transformation since, by construction, we
adopted

W ∗ =
n∑

k=3

W ∗
k . (10.49)

A convergence analysis is thus only necessary if we want to know the asymp-
totic behavior of R for n → ∞.

10.4.1 A Formal Extension Including One Single Resonance

From the viewpoint of perturbation theory, a Birkhoff normalization can,
generally4, be done even when one commensurability of order 5 ≤ k ≤ n
exists (except for a remainder of degree higher than n, of course).

We may proceed exactly as in the previous section up to obtaining the
homological equation

{X2,W
∗
k } = H∗

k − Ψk(θ∗, J∗) (10.50)

and the associated Hori kernel defined by

θ∗i = ωiu+ γi

J∗
i = Ci.

(10.51)

The function Ψk may be written

Ψk =
∑

h∈Dk

Bk,h(J∗) exp i(h | θ∗) (10.52)

and, because of the formation rules of the set Dk, all h ∈ Dk are such that
||h||1 is equal to k, k − 2, k − 4, · · ·.

When one commensurability relation

(h̄ | ω) = 0 (10.53)

exists, the averaging rule should be modified to become:

H∗
k = < Ψk > = Bk,0(J∗) +

∑
h∈D′

k

Bk,h(J∗) exp i(h | θ∗), (10.54)

where D′
k ⊂ Dk is the subset formed by all multiples of h̄ of order at most

equal to k. If no other commensurability of order n, or smaller, exists, the
Hamiltonian resulting from the nth-order perturbation equation is

H∗ =
[n/2]∑
k=1

H∗
2k(h̄ | θ∗, J∗) + Rn+1(θ∗, J∗). (10.55)

4 That is, apart from the case of some exceptional conditions to be discussed later.
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We may now introduce the Lagrangian point transformation

φµ = θ∗µ (µ = 1, 2, · · · , N − 1)
φN = (h̄ | θ∗)
Iµ = J∗

µ − J∗
N h̄µ/h̄N

IN = J∗
N/h̄N ,

(10.56)

where h̄ ≡ (h̄1, h̄2, . . . , h̄N ) ∈ Z
N . The only angle present in the resulting

Hamiltonian Ĥ is φN . The corresponding canonical equations are

dφN

dt
=

∂Ĥ

∂IN
,

dIN
dt

= − ∂Ĥ

∂φN
,

dφµ

dt
=

∂Ĥ

∂Iµ
= Gµ(φN , I),

dIµ
dt

= − ∂Ĥ

∂φµ
= 0, (10.57)

(µ = 1, 2, . . . , N − 1), where

Ĥ =
n∑

k=2

B̂k,0(I) +
n∑

k=2

∑
�

B̂k,�h̄(I) exp i�φN . (10.58)

The Hamiltonian Ĥ may be reduced to one degree of freedom and, therefore,
is integrable. The Iµ (µ = 1, 2, . . . , N−1) are constants and the angles φµ may
be obtained by integrating the corresponding equations (when the functions
IN (t) and φN (t) are known):

φµ =
∫

Gµ[φN (t), Iµ, IN (t)]dt.

If it is possible to construct angle–action variables associated with the
Hamiltonian Ĥ , the composition of the canonical transformations (θ, J) ⇒
(θ∗, J∗) ⇒ (φ, I) with the canonical transformation defining the angle–action
variables associated with Ĥ transforms H into a normal form (up to order n).

The conditions for the existence of angle–action variables of Ĥ(φN , I) are
almost the same of the stability theorem of Arnold (see [71], Sect. IX.E).
To find them, let us analyze the structure of Ĥ . Let B̂k1,�0h̄ exp i�0φN be the

lowest order periodic term in Ĥ and let Ck2,0 be the lowest-order non-periodic
term of Ĥ actually dependent on IN . Because of the d’Alembert property,
B̂k1,�0h̄(I) is at least of order �0h̄. If k2 < k1, Ck2,0 will lead the expansion of

Ĥ in the neighborhood of the origin of the (φN , IN ) plane. Then, in the limit
IN → 0, the solutions of the system are circular motions of radius IN = const
and frequency Ωn = ∂Ck2,0/∂IN . Therefore, there is a neighborhood of the
origin where periodic solutions exist and, then, angle–action variables may be
constructed.

Page: 241 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



242 10 Nonlinear Oscillators

10.4.2 The Comensurabilities of Lower Order

The cases ||h̄||1 ≤ 4 were excluded from the above discussion for obvious
reasons. In general, the lowest-order terms B̂k1,�h̄(I) exp i�φN have � = ±1.
Since k2 ≥ 4, we have k1 = ||h̄1|| ≤ k2. Therefore, C4,0(I) may no longer lead
the expansion. These cases are thus distinct and need to be considered one by
one. Let us first recall that commensurabilities ||h̄||1 = 2 can only appear in
Ĥ through the average of Ψ2k (k ≥ 2) (X2 does not contain periodic terms)
and are, thus, at least of fourth order.

In the case ||h̄||1 = 3, the lowest-order possible periodic terms in Ĥ are

B̂3,±h̄(I) exp(±iφN ). If B̂3,±h̄ �= 0, these periodic terms will lead the new
Hamiltonian. Let us write their sum as A3,h̄(I) sin(φN − αN ), where the am-
plitude A3,h̄(I) and the phase αN are elementary functions of B̂3,±h̄(I). This
sum is 0 at the origin and also on the rays φN = αN (mod π). The phase
portrait of the leading term is similar to that shown in Fig. 10.2. No periodic
orbits exist in this case. Therefore, one necessary condition for having periodic
solutions in the case ||h̄||1 = 3 is B̂3,±h̄ = 0, that is, that no resonant term
exist in X3.

In the cases ||h̄||1 = 2 and ||h̄||1 = 4, the lowest-order possible secular and
periodic terms are C4,0(I) and B̂4,±h̄(I) exp(±iφN ), respectively. If C4,0 �= 0
and B4,±h̄ �= 0, these terms will lead the new Hamiltonian. Let us write
their sum as A(4, 0)(I)+A4,h̄(I) sin(φN −αN ), where the coefficients A4,0(I),
A4,h̄(I) and the phase αN are simple functions of C4,0 and B̂4,±h̄. The phase
portrait of the leading terms depends on the values of A4,0(I) and A4,h̄(I). If
|A4,0| > |A4,h̄|, in a neighborhood 0 < IN < Ilim, the isoenergetic curves in
the (IN , φN ) plane are closed and are loci of periodic orbits that may be used
to construct an angle-action pair of variables. Otherwise, Ĥ will be constant
along the rays φN = αN +arcsin(−A4,0/A4,h̄) going away from the origin and
no periodic orbits circling the origin can exist.

10.5 The Restricted Three-Body Problem

An important two-degrees-of-freedom gyroscopic system, in Celestial Mechan-
ics, is the restricted three-body problem. It is the planar problem of the mo-
tion of a particle of negligible mass in the gravitational field created by two
bodies (primaries) moving around their common center of gravity in circular
Keplerian orbits. If we consider one reference system rotating with the two
primaries so that, in this system, they remain fixed, we have the same gyro-
scopic system studied in Sect. 1.7.1. W is, now, the potential energy of the
gravitational interaction between the third body and the two primaries. To
avoid artificial difficulties due to the negligible mass of the third particle, we
use the Hamiltonian per unit mass. In this case, (1.66) becomes
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10.5 The Restricted Three-Body Problem 243

H =
p2

2
− [Ω, r,p] + V (r), (10.59)

where r ≡ (ξ1, ξ2), p ≡ (p1, p2) = ṙ + Ω × r and Ω is the angular velocity
vector of the reference frame; V is the gravitational potential created by the
two primaries at the point r:

V = −Gm1

d1
− Gm2

d2
,

where m1,m2 are the masses of the primaries, d1, d2 the distances of the
primaries to the third body and G the gravitational constant. For simplicity
in the calculations, we introduce units such that the distance between the
primaries is R = 1, the angular velocity of the rotating frame is Ω = |Ω| = 1
and the sum of the masses is m1 + m2 = 1. The third Kepler law, R3Ω2 =
G(m1 +m2), shows that, with these units, G = 1. We write the masses of the
primaries as m1 = 1 − µ and m2 = µ and obtain d1, d2 immediately from the
geometry of the problem (Fig. 10.1):

d2
1 = (µ+ ξ1)2 + ξ2

2 d2
2 = (1 − µ− ξ1)2 + ξ2

2 .

m 0 m1 2

µ                               1−µ

L4

d r d1 2

Fig. 10.1. Lagrangian point L4

This system has five equilibrium solutions. Three equilibrium solutions
(Euler collinear solutions) lie on the axis passing through the two primaries
(one of each side and one between them). The other two equilibrium solutions
(Lagrange equilateral solutions) lie on the vertices of two equilateral triangles
having the two primaries as the two other vertices5. The Lagrange solutions,
designated as L4 and L5, are given by r0 ≡ (ξ0

1 , ξ
0
2) with

ξ0
1 =

1
2
− µ ξ02 = ±

√
3

2
. (10.60)

5 For a thorough discussion of these solutions, see [66], [95]. For a description of
the motions around the Lagrangian points, see [24].

Page: 243 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



244 10 Nonlinear Oscillators

10.5.1 Equations of the Motion Around the Lagrangian Point L4

The theories presented in this book may be used to study the oscillations about
the Lagrangian points. To do this, the first step is to expand the potential V
in powers of x = r − r0. The transformation x = r − r0 is also introduced in
the kinetic part of the Hamiltonian, along with the transformation y = p−p0,
where p0 is the vector momentum of the equilibrium solution. We recall that,
at the equilibrium points, ṙ = 0 but p �= 0. A simple calculation, using the
definition of p, shows that p0

1 = −ξ0
2 , p

0
2 = ξ0

1 .
The result of these operations is

H = H2 +H3 +H4 + · · · ,
where

H2 =
1
2
y2
1 +

1
2
y2
2 + x2y1 − x1y2 +

1
8
x2

1 −
1
4
γx1x2 − 5

8
x2

2

H3 = −7
√

3
144

γx3
1 +

3
√

3
16

x2
1x2 +

11
√

3
48

γx1x
2
2 +

3
√

3
16

x3
2

H4 =
37
128

x4
1 +

25
96

γx3
1x2 − 123

64
x2

1x
2
2 −

15
32

γx1x
3
2 −

3
128

x4
2

and
γ

def= 3
√

3(1 − 2µ).

The constant term − 11
8 − 1

216γ
2 was discarded since it does not contribute to

the differential equations.
The linear approximation of the equations of the motion around L4 is

obtained from H2. It is the same Hamiltonian as that studied in Sect. 2.9 (see
2.122) with a = 1

4 , b = − 5
4 and d = −γ

4 . The eigenvalues are

λj = ∓1
2

√
−2 ±

√
γ2 − 23 def= ∓iωk (10.61)

(k = 1, 2). The necessary conditions for which the four eigenvalues are imagi-
nary and different is

√
23 < γ <

√
27. The lower limit corresponds to having µ

equal to the Routh critical mass ratio µ1 = 1
2 (1−

√
23
27 ) = 0.03852 . . . and the

upper limit to the degenerate cases µ = 0 and µ = 1. The system is linearly
stable for 0 < µ < µ1.

The components of the two first eigenvectors Ãk (k = 1, 2) are

A1,k = 4λ2
k − 9

A2,k = −8λk + γ
A3,k = 4λ3

k − λk − γ
A4,k = −4λ2

k + γλk − 9.

(10.62)

We recall that |Ãk| is arbitrary and therefore the choice is not unique (here,
the choice is not the same as that made in Sect. 2.9.1).
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To get the Hamiltonian in normal form, we have to use the transformation
given by (2.121). The functions �N+k,k (see 2.127) are

�31 =8 iω1(ω2
1 − ω2

2)(9 + 4ω2
1)

�42 =8 iω2(ω2
2 − ω2

1)(9 + 4ω2
2).

Adopting the convention 0 < ω1 < ω2, we have −i�31 < 0 and −i�42 > 0. This
means that the resulting action variables are such that J1 < 0 and J2 > 0.

The canonical transformation to the angle–action variables is

zj =
2∑

k=1

√
Jk

−i�N+k,k
(Ãke−iwk + Ãkeiwk), (10.63)

where the overline indicates complex conjugation.
The lower order part of the Hamiltonian is

X2 = ω1J1 + ω2J2. (10.64)

In terms of the corresponding Poincaré non-singular variables x̂k, ŷk, we have

X2 = −1
2
ω1(x̂2

1 + ŷ2
1) +

1
2
ω2(x̂2

2 + ŷ2
2). (10.65)

The difference of signs in the two terms comes from the fact that the the rules
for transformation into non-singular variables are not the same for Jk > 0 and
Jk < 0 (see Sect. 7.2).

With the help of an algebraic processor, it is possible to obtain the higher-
order parts in terms of the angle–action variables. However, the results are
enormous expressions that we refrain from reproducing here. In schematic
form, we may write,

Xk =
∑

h∈Dk

Bk,h(J) ei(h|w),

where Dn is the set of all h such that ||h||1 is n or n − 2 or n − 4, etc. and
Bn,h are homogeneous functions of degree n/2 in the actions J1, J2. (The Xn

and the functions Ψn formed in the construction of the perturbation equations
have the d’Alembert property.)

The first perturbation equation is

{X2,W
∗
3 } = X∗

3 −X3(w∗, J∗). (10.66)

Because of the rules of formation of the set D3, there are no secular terms in
X3. If there is no commensurability between the proper frequencies ω1 and
ω2, then X∗

3 =< X3 >= 0.
The second perturbation equation is

{X2,W
∗
4 } = X∗

4 − Ψ4(θ∗, J∗), (10.67)

where Ψ4 = X4 + {X3,W
∗
3 }+ 1

2{{X2,W
∗
3 },W ∗

3 }. Ψ4 is given by a summation
over h ∈ D4, where D4 is the set of all h such that ||h||1 is 0, 2 or 4. When
commensurabilities are excluded, X∗

4 is equal to the constant term of the
trigonometric polynomial Ψ4.
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10.5.2 Internal 2:1 Resonance

Let us consider the case ω2 = 2ω1. A simple calculation using the fact that
ω2

1+ω2
2 = 1 and the relationship between γ and the frequencies in symmetrical

form, γ =
√

27 − 16ω2
1ω

2
2 , easily gives:

ω1 =
1√
5

ω2 =
2√
5

γ =
√

611
5

(10.68)

and the value of µ is the critical value

µ2 = 0.0242938970 · · · .

The transformation discussed above allows the angle–action variables to be
introduced. We get, for instance,

X2 =
1√
5
J1 +

2√
5
J2 (10.69)

and

X3 = J1

√−J1 (3.339604686 cosw1 − 9.096749597 sinw1

+6.212220054 cos3w1 − 10.32983562 sin3w1)
+J1

√
J2 [−9.171392587 cosw2 + 23.06026831 sinw2

−20.71122172 cos(2w1 + w2) + 28.04734005 sin(2w1 + w2)
−1.322197100 cos(2w1 − w2) + 0.298260493 sin(2w1 − w2)]

+
√−J1J2 [−3.061304295 cosw1 + 6.830954032 sinw1

−21.96976280 cos(w1 + 2w2) + 24.35104283 sin(w1 + 2w2)
−5.667138826 cos(w1 − 2w2) − 11.57701846 sin(w1 − 2w2)]

+J2

√
J2 (1.940102278 cosw2 − 4.329118636 sinw2

+7.534561805 cos3w2 − 6.840066733 sin3w2).

The integration of X3 may take into account the existence of the critical
angle 2w1 − w2 among the arguments. The Von Zeipel averaging rule can be
used to easily obtain the average of X3. All terms are averaged over w1, w2

except the secular (which is absent from X3) and the terms depending on the
critical angle. That is

< X3 > = J1

√
J2 [ −1.322197100 cos(2w1 − w2)

+0.2982604928 sin(2w1 − w2)].

The two leading terms of the transformed Hamiltonian areX∗
2 = X2(J∗

1 , J
∗
2 )

and X∗
3 =< X3(J∗

1 , J
∗
2 ) >. We may use the theory presented in the previ-

ous section to obtain some higher-order terms of the new Hamiltonian and
of the generating function of the canonical transformation (w, J) → (w∗, J∗).
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Fig. 10.2. 2:1 resonance. Phase portrait of H∗

(3) in the plane I1 = 0. Polar coordi-

nates:
√

I2, φ.

Nevertheless, this last step is not necessary to get the main result about this
internal resonance.

We may reduce this system to one degree of freedom through the point
transformation

φ′ = w∗
1 I1 = J∗

1 + 2J∗
2

φ = w∗
2 − 2w∗

1 I2 = J∗
2

(10.70)

and the leading part of the Hamiltonian becomes

H∗
(3) =

1√
5
I1 + (2I2 − I1)

√
I2 (1.322197100 cosφ+ 0.2982604928 sinφ)

Since φ′ is absent from H∗
(3), I1 is a constant. Figure 10.2 shows the re-

sulting curves H∗
(3) = const on the manifold defined by I1 = 0. It shows

asymptotic branches (rays) going away from the origin (shown with a plus
sign). Therefore, the equilibrium solution I2 = 0 of the reduced transformed
system is unstable [67], [68] (see also [27] and references therein).

10.5.3 Internal 3:1 Resonance

Let us consider, now, the case ω2 = 3ω1. In this case,

ω1 =
1√
10

ω2 =
3√
10

γ =
√

639
5

(10.71)

and the value of µ is the critical value

µ3 = 0.0135160160 . . . .

We proceed as before and obtain

X2 =
1√
10
J1 +

3√
10
J2. (10.72)
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Fig. 10.3. 3:1 resonance. Phase portrait of H∗

(4) in the plane I1 = 0. Polar coordi-

nates:
√

I2, φ

The expression for X3 is similar to the previous one, but with different numeri-
cal coefficients. Since it does not contain, now, any critical term, its integration
is trivial, giving < X3 >= 0 and W ∗

3 . We have, then, to consider the second
perturbation equation:

{X2,W
∗
4 } = X∗

4 −X4 − 1
2
{X3,W

∗
3 }. (10.73)

The integration of X4 may take into account the existence of the critical
angle 3w1 − w2 among the arguments. The Von Zeipel averaging rule can be
used to easily obtain the average of X4. All terms are averaged over w1, w2

except the secular and the terms depending on the critical angle. These cal-
culations are cumbersome and we show only the result.

The new Hamiltonian depends on only one angle, and we use the exis-
tence of one first integral to reduce it to one degree of freedom. The point
transformation is, now,

φ′ = w∗
1 I1 = J∗

1 + 3J∗
2

φ = w∗
2 − 3w∗

1 I2 = J∗
2

(10.74)

and the leading part of the transformed Hamiltonian is

H∗
(4) =

1√
10

I1 + 0.246875I2
1 + 0.6955357143I1I2 − 4.170535714I2

2

+(3I2 − I1)3/2
√
I2 (12.70709081 cosφ+ 4.384418361 sinφ)

+(3I2 − I1)I1
√
I2 (4.235696938 cosφ+ 1.461472787 sinφ).

As in the previous case, since φ′ is absent from H∗
(4), I1 is a constant.

Figure 10.3 shows the resulting curves H∗
(4) = const on the manifold defined

by I1 = 0. It shows asymptotic branches (rays) going away from the origin
(shown with a plus sign). Therefore, as in the case of the 2:1 internal resonance,
the equilibrium solution I2 = 0 of the reduced transformed system is unstable.
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10.5.4 Other Internal Resonances

We have already seen that I4 is unstable at the 2:1 and 3:1 internal resonances.
The other resonance, which may occur when H∗

4 is considered, is the 1:1
resonance (ω1 = ω2). However, the solutions in this case cannot be studied
in the same way as the previous two resonances because, in this case, the
transformation to angle–action variables introduced in Sect. 10.5 can no longer
be used (the divisors �31, �42 become equal to zero). Because of the d’Alembert
property of the functions Xk and Ψk, these three resonances are the only ones
that may appear in H∗

(4). For other resonances, ||h||1 > 4 and they only appear
in higher orders. Let us consider, as an example, the case 3ω1 = 2ω3. In that
case,

ω1 =
2√
13

ω2 =
3√
13

γ =
3
√

443
13

(10.75)

and the value of µ is
µ2 = 0.0326224067 . . . .

If we proceed as before, we obtain

X∗
2 =

2√
13
J∗

1 +
3√
13
J∗

2 ,

X∗
3 = 0

and

X∗
4 = −984.3080179J∗2

1 + 2765.829446J∗
1J

∗
2 − 494.3119688J∗2

2 .

If we use variables (φ, I) defined in the same way as in the previous sections,
with the multiplier 3/2 instead of 2 or 3, we obtain for the leading part of the
Hamiltonian:

H∗
(4) =

2√
13
I1 − 984.3080179I∗21 + 5718.753500I1I2 − 6857.749179I∗22 .

Since no angle appears in H∗
(4), the curves H∗

(4) = const are concentric circles
in the manifolds I1 = const. The terms depending on the angle φ = 3w1−2w2,
which will appear at the next order, will somewhat distort these circles far
from the origin, but will not change the fact that the origin is, now, a cen-
ter. This situation is different of those found in the two previous cases. In
those cases, the existence of a solution along rays asymptotic to the origin
was enough to say that the equilibrium was unstable. In the case of the 3:2
internal resonance, the origin is a stable equilibrium solution of the Hamil-
tonian H∗ (reduced to one degree of freedom). This is a necessary condition
for the stability of the Lagrange equilibrium solutions L4 and L5, but it is not
sufficient. From Arnold’s theorem [72], we need also to have the condition
X∗

4 (ω1, ω2) = 2765.829446ω1ω2 − 494.3119688ω2
2 − 984.3080179ω2

1 �= 0, which
is satisfied.
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This situation will reproduce itself for all other high-order resonances. In
all cases H∗

(4) will be a quadratic from in I1, I2 differing from the above H∗
(4)

only in the numerical coefficients.

10.6 The Hénon–Heiles Hamiltonian

One important example of a quasiharmonic system with one commensurability
is the system defined by the Hénon–Heiles Hamiltonian [46]

H =
1
2
(x2

1 + y2
1) +

1
2
(x2

2 + y2
2) + x2

1x2 − 1
3
x3

2 (10.76)

or
H = X2 +X3,

where

X2 =
1
2
(x2

1 + y2
1) +

1
2

(x2
2 + y2

2) = J1 + J2 (10.77)

X3 = x2
1x2 − 1

3
x3

2

=
1
6
J2

√
2J2 (3 cos θ2 + cos 3θ2)

+
1
2
J1

√
2J2 [2 cos θ2 + cos (2θ1 + θ2) + cos (2θ1 − θ2)]

and θj , Jj are the angle–action variables associated with the Poincaré pairs
xj , yj . This system has the order-2 commensurability

ω1 − ω2 = 0.

We may perform a formal averaging following the theory given in Sect. 10.4.1
and reduce this Hamiltonian to one degree of freedom up to order n.

The first perturbation equation is

{X2,W
∗
3 } = H∗

3 −X3(θ∗, J∗). (10.78)

Since there is no critical term in X3, the solution of this equation is

H∗
3 = < X3 > = 0

and
W ∗

3 =
∫

X3du, (10.79)

where u is related to θ∗1 and θ∗2 through the solution of the Hori kernel asso-
ciated with the homological equation:

θ∗1 = u+ γ1 θ∗2 = u+ γ2 (10.80)
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10.6 The Hénon–Heiles Hamiltonian 251

(J∗
1 and J∗

2 are constants in the Hori kernel). When we introduce these equa-
tions into (10.79), perform the integration and use the inverse transformation
to go back to the variables θ∗i , we obtain

W ∗
3 = −1

6
J∗

2

√
2J∗

2 (3 sin θ∗2 +
1
3

sin 3θ∗2)

+J∗
1

√
2J∗

2

[
sin θ∗2 +

1
6

sin(2θ∗1 + θ∗2) +
1
2

sin(2θ∗1 − θ∗2)
]
.

The next perturbation equation is

{X2,W
∗
4 } = H∗

4 − Ψ4,

where

Ψ4 = X4(θ∗, J∗) +
1
2
{H∗

3 +X3,W
∗
3 },

or, taking into account the fact that X4 = 0 and H∗
3 = 0,

Ψ4 =
1
2
{X3,W

∗
3 }.

After some calculations, we obtain

Ψ4 = − 1
12
J∗2

1 (5 + 4 cos 2θ∗1 − cos 4θ∗1) −
1
12
J∗2

2 (5 + 4 cos 2θ∗2 − cos 4θ∗2)

+
1
6
J∗

1J
∗
2 [2 − 2 cos 2θ∗1 − 2 cos 2θ∗2 + cos (2θ∗1 + 2θ∗2) − 7 cos (2θ∗1 − 2θ∗2)]

and

H∗
4 = < Ψ4 > = − 5

12
(J∗

1 + J∗
2 )2 +

7
6
J∗

1J
∗
2 [1 − cos (2θ∗1 − 2θ∗2)]. (10.81)

The expression for W ∗
4 is obtained in exactly the same way as W ∗

3 . With the
help of an algebraic manipulator, we may easily compute higher order terms
and obtain H∗

5 = 0 and

H∗
6 =

1
432

(101J∗3
1 − 235J∗3

2 ) − 1
16

J∗
1J

∗
2 (65J∗

1 − 47J∗
2 )

− 1
72
J∗

1J
∗
2 (161J∗

1 − 175J∗
2 ) cos (2θ∗1 − 2θ∗2).

In terms of the variables

φ1 = θ∗1 I1 = J∗
1 + J∗

2

φ2 = θ∗2 − θ∗1 +
π

2
I2 = J∗

2 , (10.82)

we have, to order 6,
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Ĥ∗
(6) = H∗

2 +H∗
4 +H∗

6

= I1 − 5
12
I2
1 +

101
432

I3
1 − 7I2

1I2 +
56
3
I1I

2
2

−112
9
I3
2 +

7
3
I2(I1 − I2)(1 +

23
12
I1 − 4I2) sin2 φ2.

Ĥ∗
(6) is an integrable Hamiltonian; it depends on only one angle and has the

integral I1 = J∗
1 + J∗

2 = const.

Fig. 10.4. Phase portrait of H∗

(6) for I1 = 0.2

The additive constant π/2 in the definition of φ2 was introduced to have
the phase portrait with the same orientation seen in the published surfaces
of section of the Hénon–Heiles Hamiltonian. Those surfaces are defined as
intersections with the plane x1 = 0 (that is, θ1 = 90 degrees). The given phase
portrait is not constructed with the variables x, y but with the averaged ones.

The structure of the singular points and the phase portrait of H∗
(k) becomes

more intricate as the order k of the formal solution increases (see [63], Sect.
1.4). For instance, the phase portrait of H∗

(4) shows only the two centers at
φ2 = 0(mod π). The phase portrait of H∗

(6) (Fig. 10.4) shows four centers (and
three saddle points). The thick border corresponds to J∗

1 = 0.

10.6.1 The Toda Lattice Hamiltonian

A similar example of a quasiharmonic system with one commensurability is
the Toda lattice Hamiltonian:

H =
1
2
(y2

1 + y2
2) +

1
24

e2x2

[
e2

√
3x1 + e−2

√
3x1

]
+

1
24

e−4x2 − 1
8

(10.83)

(see [7]). After the Taylor expansion of the exponentials about the origin, we
obtain

H =
1
2
(x2

1 + x2
2 + y2

1 + y2
2) + x2

1x2 − 1
3
x3

2

+
1
2
(x2

1 + x2
2)

2 + x4
1x2 +

2
3
x2

1x
3
2 +

1
3
x5

2 + · · ·. (10.84)
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The first part of this Hamiltonian is the Hénon–Heiles Hamiltonian. There-
fore, the construction of a formal solution is similar to that above, up to the
fourth order perturbation equation, where, in contrast to the previous case,
X4, X5, · · · are no longer equal to zero and need to be considered in calculating
Ψk (k ≥ 4). They are

X4(θ∗, J∗) = 2(J∗
1 cos2 θ∗1 + J∗

2 cos2 θ∗2)2

X5(θ∗, J∗) = 4J∗2
1

√
2J∗

2 cos θ∗2 cos4 θ∗1 − 4
3
J∗2

2

√
2J∗

2 cos5 θ∗2

+
8
3
J∗

1J
∗
2

√
2J∗

2 cos3 θ∗2 cos2 θ∗1

X6(θ∗, J∗) =
8
5
J∗3

1 cos6 θ∗1 + 8J∗2
1 J∗

2 cos2 θ∗2 cos4 θ∗1 +
88
45

J∗3
2 cos6 θ∗2

+
8
3
J∗

1J
∗2
2 cos4 θ∗2 cos2 θ∗1 .

Proceeding exactly as before, we obtain

Ĥ∗
(6) =

1
27

I1(27 + 9I1 + 5I2
1 ) +

4
9
I2(3 − 7I1)(I1 − I2) sin2 φ2. (10.85)

Again, I1 = J∗
1 + J∗

2 is a constant. The phase portrait of H∗
(6) is shown in

Fig. 10.5. It shows two centers and does not differ significantly from the phase
portrait of H∗

(4). The Toda lattice Hamiltonian is integrable and surfaces of
section of the full Hamiltonian show that the next orders will not change the
topology of the phase portrait.

Fig. 10.5. Phase portrait of H∗

(6) for I1 = 0.2

10.7 Systems with Multiple Commensurabilities

In the previous sections, it was seen that when the basic frequencies of one
quasiharmonic system satisfies one commensurability relation, it is possible
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to proceed with the formal reduction of this system to one degree of freedom
and thus obtain a formal solution of the given system. When there are L
commensurability relations, the system may only be reduced to L degrees of
freedom and, very particular cases excepted, the new HamiltonianH∗ depends
on all variables J∗

� , θ
∗
� (� = N − L + 1, . . . , N). It is not a near-integrable

system and, in general, it is not possible to separate a lower degree integrable
or reducible part.

The wildest cases are those with N degrees of freedom and N − 1 com-
mensurability relations (N ≥ 3). A well-studied example is the N -dimensional
three-phonon interaction Hamiltonian, defined by the following properties:

(a.) ωj = jω1 (j = 1, . . . , N);
(b.) R(θ, J, ε) is homogeneous of degree 3/2 with respect to the variables Jk

and has the d’Alembert property; it is non-singular at the origin (see Sect.
7.3).

This Hamiltonian may be written as H = X2 +X3, where

X2 =
N∑

j=1

jJj;

X3 = ε
∑

h∈D3

ah(J) cos (h | θ).

D3 is the set formed by all h ∈ Z
N such that ||h||1 = 1, 3.

We may apply to this system the algorithm described in Sect. 10.3 and
reduce the Hamiltonian to N − 1 degrees of freedom The first perturbation
equation is

{X2,W
∗
3 } = H∗

3 −X3 (10.86)

and the averaging operation is H∗
3 = < X3 >. H∗

3 will be formed only by the
long-period part of H1, that is, by terms of two different kinds:

(a.) terms whose arguments include three different angles with coefficients
+1, +1, −1, e.g. θi + θj − θk with i+ j − k = 0;

(b.) terms whose arguments include two different angles with coefficients +2,
−1, e.g. 2θi − θj with 2i− j = 0.

In the next order,

Ψ4 =
1
2
{H∗

3 +X3,W
∗
3 }.

By construction, the terms in W ∗
3 are such that ||h||1 = 1, 3; that is,

∑
hj may

be equal to −3,−1,+1,+3. The bracket {H∗
3 +X3,W

∗
3 } generates terms with

||h||1 even, in the interval [−6,+6]. It is also worth noting that Ψ3(SP) = 0,
but Ψ4(SP) �= 0.
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10.7.1 The Ford–Lunsford Hamiltonian. 1:2:3 Resonance

An example is the Hamiltonian

H = J1 + 2J2 + 3J3 + εαJ1

√
J2 cos (2θ1 − θ2) + εβ

√
J1J2J3 cos (θ1 + θ2 − θ3)

(10.87)
thoroughly studied by Ford and Lunsford [35]. It is also known as the 1:2:3
resonance [83].

In this case, both periodic terms are such that
∑

jhj = 0. It is the Hamil-
tonian of an irreducible system with two degrees of freedom and it is already
as averaged as possible. The impossibility of construction of formal solutions
for this system is related to the high chaoticity of the solutions revealed by
Poincaré maps.

It is easy to show, using the equations of Sect. 7.6, that this system is
irreducible even in the neighborhood of the origin (that is, for Jj � 0).

10.8 Parametrically Excited Systems

In this section, we consider systems in which an excitation appears in coeffi-
cients of the differential equation. One example is the linear oscillator with a
time-dependent frequency, whose Hamiltonian is

H(q, p, t) =
p2

2
+

1
2
A(t) q2. (10.88)

The differential equations spanned by this Hamiltonian may be combined to
give the well-known Hill equation q̈ + A(t) q = 0. One particular case of the
Hill equation is the Mathieu equation, obtained when we introduce

A(t) = ω2(1 + ε coskt). (10.89)

The Mathieu equation is a linear ordinary differential equation with pe-
riodic coefficients for which powerful instruments, such as Floquet’s theory
exist ( [78], Sect. 5.2). We could add a nonlinear term, say, αq4 and transform
the harmonic oscillator into a nonlinear oscillator. In this case, it would no
longer be possible to use linear theories, but, when ε is small, it is possible
to deal with the problem using perturbation theories. This will be done in
this section, but, initially, to keep the development limited, only the linear
Mathieu equation will be considered. The linear case is enough to show the
main features of these systems, namely, that a small parametric oscillation
can produce a large response when the frequency of the excitation is close to
twice the proper frequency of the system.

If we introduce the angle–action variables of the harmonic oscillator q̈ +
ω2q = 0,
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J1 =
1
2ω

(ω2q2 + p2) sin θ1 =
√

ω

2J1
q, (10.90)

the Hamiltonian becomes

H = ωJ1 +
1
2
εωJ1 cos kt− 1

4
εωJ1[cos (2θ1 + kt) + cos (2θ1 − kt)] (10.91)

or, in the extended phase space,

H = ωJ1+kJ2+
1
2
εωJ1 cos θ2− 1

4
εωJ1[cos (2θ1+θ2)+cos (2θ1−θ2)], (10.92)

where θ2 = kt and J2 is the action canonically conjugate to θ2.
The resulting Hamiltonian for ε = 0, H0 = ωJ1 + kJ2, is linear in the two

actions and completely degenerate. It is thus convenient to use the extended
point transformation (θ, J) → (w, I) defined by the equations

θ1 = ωw1 J1 =
1
ω

(I1 + kI2)

θ2 = kw1 − w2 J2 = −I2
to put into evidence the degenerate degree of freedom (the action I2 is absent
from H0). Hence

H = I1 +
ε

2
(I1 + kI2)

(
cos (kw1 − w2) − 1

2
cos [(2ω + k)w1 − w2]

−1
2

cos [(2ω − k)w1 + w2]
)
. (10.93)

To continue, we have to choose one canonical perturbation theory and
obtain a canonical transformation (w, I) → (w∗, I∗) that eliminates the short-
period terms. In this very particular case, the von Zeipel–Brouwer theory is
more expeditious. We follow closely the procedures described in Sect. 3.4 for
the case N = 2,M = 1.

The first von Zeipel–Brouwer perturbation equations are

H0(I∗) = H∗
0 (I∗)

ν∗1
∂S1(w, I∗)

∂w1
+H1(w, I∗) = H∗

1 (w, I∗), (10.94)

where H0(I∗) = I∗1 , ν∗1 = 1 and

H1(w, I∗) = 1
2 (I∗1 + kI∗2 )

(
cos (kw1 − w2) − 1

2
cos [(2ω + k)w1 − w2]

−1
2

cos [(2ω − k)w1 + w2]
)
.
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H∗
1 and S1 are functions to be determined. Using the von Zeipel averaging

rule, we obtain

H∗
1 = < H1(w, I∗) > =

1
2π

∫ 2π

0

H1dw1 = 0 (10.95)

and

∂S1

∂w1
= − 1

2 (I∗1 + kI∗2 )
(

cos (kw1 − w2) − 1
2

cos [(2ω + k)w1 − w2]

−1
2

cos [(2ω − k)w1 + w2]
)

or

S1 = − 1
2 (I∗1 + kI∗2 )

(
1
k

sin (kw1 − w2) − sin [(2ω + k)w1 − w2]
2(2ω + k)

− sin [(2ω − k)w1 + w2]
2(2ω − k)

)
.

This equation introduces the divisors 2ω±k and can only be considered when
none of these divisors is equal to zero. In this case, we may proceed and
consider the next von Zeipel–Brouwer equation (when the divisors 2ω ± 2k
will appear). And so on.

In the absence of resonance, the transformed Hamiltonian is independent
of the angle w∗

1 . However, when one of the divisors 2ω± k is close to zero, the
term with the critical angle cannot be included in S1 and should be included
in H∗

1 . If, for instance, 2ω − k � 0, equation (10.94) is split into

H∗
1 = −1

4
(I∗1 + kI∗2 ) cos [(2ω − k)w1 + w2] (10.96)

and

∂S1

∂w1
= −1

2
(I∗1 + kI∗2 )

(
cos (kw1 − w2) − 1

2
cos [(2ω + k)w1 − w2]

)
or

S1 = −1
2
(I∗1 + kI∗2 )

(
1
k

sin (kw1 − w2) − sin [(2ω + k)w1 − w2]
2(2ω + k)

)
.

The next von Zeipel–Brouwer perturbation equation is the third of (3.40).
However, since both angles w1 and w2 will remain in H∗, we have to consider
this fact when writing the equations. (In this case, the von Zeipel–Brouwer
theory eliminates the short-period perturbations but does not reduce the num-
ber of degrees of freedom of the given Hamiltonian.) Writing that equation in
an explicit way, we get
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∂S2

∂w1
+
∂H1

∂I∗1

∂S1

∂w1
+
∂H1

∂I∗2

∂S1

∂w2
+H2 = H∗

2 +
∂H∗

1

∂w1

∂S1

∂I∗1
+
∂H∗

1

∂w2

∂S1

∂I∗2
,

where, to avoid writing too much, we have introduced ν∗1 = 1 and ν∗2 = ν∗ij =
0 (i, j = 1, 2). The solution of this equation is easy.

The second and third terms of the left-hand side are products of periodic
terms. They will give rise to new periodic terms with arguments 2ωw1, 4ωw1,
2(kw1 −w2), 2(ω+ k)w1 − 2w2, 2(ω− k)w1 +2w2 and 2(2ω+ k)w1 − 2w2 and
to the non-periodic term

− ω

16(2ω + k)
(I∗1 + kI∗2 ).

The periodic terms will contribute ordinary periodic terms to S2; the second
and third terms of the right-hand side are also products of periodic terms, but
they give rise only to periodic terms with arguments 2ωw1, 4ωw1, 2(kw1−w2)
and 2(ω − k)w1 + 2w2.

Then, the averaging rule gives

H∗
2 = − ω

16(2ω + k)
(I∗1 + kI∗2 )

and the resulting partial differential equation can be solved to obtain S2(w, I∗).
The uprise of new small divisors is ruled out by the fact that we are, now, an-
alyzing the neighborhood of 2ω−k = 0 and the new periodic terms generated
by the series products are not critical there. This integration is elementary
and is not shown here.

The resulting second-order Hamiltonian is

H∗
(2)(w∗, I∗) = I∗1 − ε

4
(I∗1 + kI∗2 ) cos [(2ω − k)w∗

1 + w∗
2 ] − ε2ω

I∗1 + kI∗2
16(2ω + k)

.

It is worth noting that all angles appearing in the above calculations have
the form aωw1 + b(kw1 − w2) (a, b ∈ Z) and that no angles with a different
form can be produced by the product of trigonometric functions of two of
them. Thus, no term in w2 alone can be formed, and the only angle that may
appear in H∗ is the critical angle (2ω−k)w∗

1 +w∗
2 or an integer multiple of it.

The transformed system has thus, actually, only one degree of freedom and
can be solved. In order to do this in a ordered way, we perform one more
change of variables and write H∗

(2) as a one-degree-of-freedom Hamiltonian.
The transformation is

α1 = (2ω − k)w∗
1 + w∗

2 Λ1 = I∗2
α2 = w∗

1 Λ2 = I∗1 − (2ω − k)I∗2 .
(10.97)

In terms of the new variables, the second-order Hamiltonian becomes

Ĥ∗
(2) = (2ω − k)Λ1 + Λ2 − ε

4
(2ωΛ1 + Λ2) cosα1 − ε2ω

2ωΛ1 + Λ2

16(2ω + k)
.

(10.98)
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The angle α2 is ignorable and this gives the first integral

Λ2 = I∗1 − (2ω − k)I∗2 = const. (10.99)

The system is reduced to three differential equations:

α̇1=(2ω − k) − εω

2
cosα1 − ε2ω2

8(2ω + k)
,

Λ̇1=−ε

4
(2ωΛ1 + Λ2) sinα1,

α̇2=1 + −ε

4
cosα1 − ε2ω

16(2ω + k)
.

(10.100)

The two first equations define one one-degree-of-freedom Hamiltonian system.
The first equation may be written as

dα1

cosα1 + γ
=

εωdt
2

, (10.101)

where, for simplicity, we have introduced

k′ = k +
ε2ω2

8(2ω + k)

and

γ = −2(2ω − k′)
εω

.

We see that there are two different kinds of solutions according to |γ| < 1 or
|γ| > 1. When |γ| > 1, the angle α1 circulates monotonically. The period of
circulation is easily calculated from the integral over one cycle. It is

T =
4π

εω
√
γ2 − 1

. (10.102)

It is easy to write the equation for dΛ1/dα1 and see that in one cycle Λ1

oscillates and returns to the initial point. The only condition to be satisfied
is that ωΛ1 + Λ2 > 0, but this quantity is the averaged J1, which is positive
by its definition.

When |γ| < 1, the situation is more complicated as the denominator be-
comes equal to zero when α1 = arccos (−γ) and the integral of the left-hand
side of (10.101) goes to infinity logarithmically, with α̇1 positive in one side
and negative in the other. Thus, α1 has two equilibrium points (one stable
and one unstable). In turn, Λ1 also has one equilibrium point corresponding
to ωΛ1 + Λ2 = 0. However, the Hessian of the corresponding one-degree-
of-freedom system is always negative indicating that the equilibrium points
where α̇1 = Λ̇1 = 0 are unstable. The phase portrait of the system is shown in
Fig. 10.6. It shows the main characteristic of parametrically excited systems
in the neighborhood of ω = k/2. No matter how small ε is, the oscillations
grow without limit.

Page: 259 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



260 10 Nonlinear Oscillators

1

<

> >

∗

α

J

1

Fig. 10.6. Solutions J∗

1 (α1) of the Mathieu equation when |γ| < 1.

10.8.1 A Nonlinear Extension

Let us consider the case in which the parametrically perturbed oscillator has a
cubic perturbation, with the nonlinearity of the same order as the parametric
excitation (µ = O(ε)). Let the Hamiltonian be

H(q, p, t) =
p2

2
+

1
2
ω2(1 + ε coskt)q2 + µω4q4. (10.103)

When we consider µ and ε on the same footing, we may proceed exactly as
before and obtain the second-order Hamiltonian

H∗
(2) = (2ω − k)Λ1 + Λ2 +

3
2
µ(2ωΛ1 + Λ2)2 +

ε

4
(2ωΛ1 + Λ2) cosα1

− ε2ω

16(2ω + k)
(2ωΛ1 + Λ2) +

17
4
µ2(2ωΛ1 + Λ2)3

− (9k + 14ω)
16(2ω + k)

µε(2ωΛ1 + Λ2)2 cosα1. (10.104)

The phase portrait of this Hamiltonian for the resonant case 2ω − k � 0
is shown in Fig. 10.7. It shows that the main characteristic of the parametri-
cally excited systems is changed when a small anharmonicity of the oscillator
is considered. The oscillations no longer grow unbounded, but oscillate about
one center. If we remember that harmonic oscillators appear in Physics gen-
erally as approximations of real nonlinear oscillators, the portrait given here
is, in many cases, more suitable than the unbounded increases of the linear
approximation.

If we neglect the terms of second-order in µ and ε and one trivial constant
term (kΛ2/2ω), the above Hamiltonian may be written

Ĥ = aJ∗
1 + bJ∗2

1 + 2ετJ∗
1 cos 2σ, (10.105)
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1
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Fig. 10.7. Solutions J∗

1 (α1) of the Mathieu equation with a small nonlinear term
(µ = 0.1 ε). Same scale and parameters as Fig. 10.6

where

a =
2ω − k

2
, b =

3
2
µω2, τ =

ω

8
, σ =

α1

2
. (10.106)

Recall that Λ2 is a constant and, therefore, in the one-degree-of-freedom phase
plane, the transformation σ = α1/2; J∗

1 = 2Λ1 + Λ2/ω is canonical. Ĥ is the
second Andoyer Hamiltonian (see Sect. D.2) whose morphogenesis is depen-
dent on the parameter

γ = − a

2ετ
= −2(2ω − k)

εω
(10.107)

(which is the same γ as above, if we neglect the higher-order correction em-
bedded into k′, and the same as the parameter α used in Sect. D.2). Inspection
of Fig. D.2 shows that, for |γ| < 1, the origin is an unstable equilibrium point.
However, in contrast to the linear case, there is, now, a stable equilibrium
point off the origin. It is located at

α1 = π J∗
1 = J0

1 =
ε(γ + 1)
12µω

. (10.108)

The location of the center and the maximum amplitude of the oscillations
around it are proportional to ε/µ. Therefore, the center is as close to the
origin as the parametric excitation ε is small. As in the linear case, the origin
J∗

1 = 0 is a stable equilibrium point when |γ| > 1.
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A

Bohlin Theory

A.1 Bohlin’s Resonance Problem

Karl Bohlin is one of the founding fathers of Hamiltonian perturbation theo-
ries. In his lone paper on the subject [8], several of the ideas extensively used
since then in these theories can be found:

(a.) the search for a solution of the Hamilton–Jacobi equation as a power
series in the small parameter;

(b.) the derivation of a homological equation for the generic term of the gen-
erating function of a canonical transformation;

(c.) the introduction of the square root of the perturbation as a small para-
meter to study the neighborhood of a resonance.

It is no wonder that Poincaré wrote three chapters of his Méthodes Nouvelles
[80] developing Bohlin’s theory. Moreover, the direct influence of Bohlin’s
work is felt in other chapters in the second volume of Poincaré’s work. For
instance, what Poincaré called “Lindstedt Method” – and that we have called,
here, “Poincaré Theory” (see Sect. 3.2) – is, essentially, the same method
introduced by Bohlin for the study of resonant systems, but using ε as the
small parameter, instead of

√
ε.

The problem studied by Bohlin in his paper is that of finding series so-
lutions of the second-order differential equation corresponding to the Hamil-
tonian

H =
1
2
p2

ζ − pω + ε
∑

h∈Z2

Bh(p) cos (h1ζ − h2ω), (A.1)

where pζ , pω are actions conjugate to the angles ζ, ω, near initial conditions
where the angle h◦1ζ − h◦2ω leads to a null divisor.

We introduce a new set of canonical variables defined by

θ1 = ζ − h◦2
h◦1
ω J1 = pζ

θ2 =
1
h◦1
ω J2 = h◦2pζ + h◦1pω

(A.2)
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264 A Bohlin Theory

and Bohlin’s Hamiltonian becomes

H =
1
2
J2

1 +
h◦2
h◦1
J1 − 1

h◦1
J2 + ε

∑
h∈Z2

Bh cos (h1θ1 + khθ2), (A.3)

where kh = h1h
◦
2 − h2h

◦
1.

This is a typical two-degrees-of-freedom Hamiltonian showing no essential
degeneracy in Schwarzschild’s sense (see Sect. 2.7). Then, von Zeipel–Brouwer
theory may be used to eliminate the non-critical terms, for which kh �= 0, and
to obtain the reduced Hamiltonian

H∗ =
1
2
J∗2

1 +
h◦2
h◦1
J∗

1 + ε
∑
h∈Z

B′
h(J∗

1 ) coshθ∗1 . (A.4)

This one-degree-of-freedom Hamiltonian is resonant in the neighborhood of
J∗

1 = −h◦2/h◦1. It is more general than Garfinkel’s Ideal Resonance Problem,
and may be studied in a similar way.

The problem initially proposed by Bohlin included other angles. The ar-
guments of the periodic perturbations were (h1ζ−h2ω+γh), where the angles
γh were slowly varying angles. They were considered as constant because, in
the approximation adopted, the perturbation coefficients Bh were indepen-
dent of the actions conjugate to γh. In the astronomical problem considered
by Bohlin, this meant that long-term variations were discarded, and thus that
the results had a short-time validity only.

Since non-critical short-period perturbations may always be considered as
having been eliminated by means of an application of von Zeipel–Brouwer
theory, the most general Bohlin Hamiltonian is

H = H0(J1) + εR(θ, J ; ε), (A.5)

where J ≡ (J1, · · · , JN ), θ ≡ (θ1, · · · , θN ). The N − 1 degrees of freedom
corresponding to the subscripts � = 2, · · · , N are degenerate and the actions J�

are absent from H0; the undisturbed frequencies ν� = ∂H0/∂J� are identically
equal to zero. H0 only depends on the action J1 and the sought solution may
be valid in a neighborhood of the action value J∗

1 for which the frequency
ν1 = ∂H0/∂J1 vanishes.

The problem of finding a formal canonical transformation able to elimi-
nate the critical angle from the corresponding Hamiltonian is called Bohlin’s
problem. Poincaré considered Bohlin’s problem in its complete form as given
by the Hamiltonian (A.5) and showed that the search for a series solution of
the corresponding Hamilton–Jacobi is impaired by the rise of a singularity
at the second-order of approximation (see Sect. A.3). In Chaps. 8 and 9, we
have shown that, in a large number of circumstances (which include even the
presence of secular and secondary resonances), a Lie series perturbation the-
ory allows the solution of Bohlin’s resonance problem to be obtained, at the
sought order, without the formation of Poincaré’s singularity.
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A.2 Bohlin’s Perturbation Equations 265

A.2 Bohlin’s Perturbation Equations

What is often called Bohlin theory appeared at the eve of space age as a tool
to study resonant motions of artificial satellites (such as artificial satellites
moving with a critical inclination [52] and geosynchronous satellites [75].) It
incorporated the key idea of von Zeipel–Brouwer theory: the search for succes-
sive transformations, each able to eliminate one or more degrees of freedom,
instead of searching for one transformation able to solve, at one stroke, the
Hamilton–Jacobi equation. In artificial satellite theories, the starting point
is the averaged Hamiltonian obtained by Brouwer [14] where the non-critical
short-period angles have been eliminated. Therefore, the theory consists of
the search for of one canonical transformation (θ, J) ⇒ (θ∗, J∗) defined by
the (Jacobian) generating function

S = (J∗ | θ) +
n∑

k=1

εk/2Sk(θ, J∗), (A.6)

able to eliminate the critical angle θ1 and to reduce the number of degrees of
freedom of the system. The small parameter is the square root of ε and the
subscripts were accordingly adopted, indicating the order of the terms in

√
ε.

This transformation may be able to eliminate the critical degree of freedom
and the new Hamiltonian will be independent of θ∗1 .

The transformation is conservative and we have

H(θ, J) = H∗(θ∗�, J
∗) + Rn+1(θ∗, J∗) (A.7)

or, taking into account the canonical transformation generated by S,

H

(
θ,
∂S

∂θ

)
= H∗

(
∂S

∂J∗
�

, J∗
)

+ Rn+1

(
∂S

∂J∗ , J
∗
)
. (A.8)

To identify both sides of (A.8) according to the powers of
√
ε, we need

the power series expansions of Hk and H∗. These expansions are the same as
those used in Poincaré and von Zeipel–Brouwer theories (see Sects. 3.2.1 and
3.2.2) with just a change in the small parameter. We have

H0 = G0,0 +
√
εG0,1 + εG0,2 + · · · + εn/2G0,n + · · · , (A.9)

Hk = Gk,k +
√
εGk,k+1 + εGk,k+2 + · · · + εn/2Gk,n + · · · (A.10)

and (see Sect 3.4.1)

H∗
(
∂S

∂J∗
�

, J∗
)

= H∗
0 (J∗) +

n∑
k=1

εk/2 [H∗
k (θ�, J

∗) +G′∗
k (θ�, J

∗)] + · · · . (A.11)

The functions Gij and G′
i are those defined by (3.15), (3.22) and (3.39). The

identification of both sides of (A.8) follows the same steps described in Sect.
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266 A Bohlin Theory

3.4.2 (for M = 1) except that, now, ν∗1 = ∂H0/∂J
∗
1 is assumed to be a quantity

of the order of the adopted small parameter (
√
ε), and the disturbing function

εR has only the even components (εR = εH2+ε2H4+· · ·). Equating the parts
of the same order in (A.8), we obtain the perturbation equations

H0 = H∗
0 ,

0 = H∗
1 ,

ν∗1√
ε

∂S1

∂θ1
+

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(θ, J∗) = H∗
2 +G′∗

2 ,

ν∗1√
ε

∂S2

∂θ1
+ ν∗11

∂S1

∂θ1

∂S2

∂θ1
+G2,3 + E ′

3 = H∗
3 +G′∗

3 , (A.12)

· · · · · ·
ν∗1√
ε

∂Sk

∂θ1
+ ν∗11

∂S1

∂θ1

∂Sk

∂θ1
+G2,k+1 +G4,k+1 + · · · + E ′

k+1 = H∗
k+1 +G′∗

k+1,

· · · · · ·
ν∗1√
ε

∂Sn−1

∂θ1
+ ν∗11

∂S1

∂θ1

∂Sn

∂θ1
+G2,n +G4,n + · · · + E ′

n = H∗
n +G′∗

n .

All remaining terms are of order O(ε(n+1)/2), at least, and are supposed to
be grouped with the remainder Rn+1. The functions E ′

k are those defined
implicitly by (3.20).

The analysis of these equations is similar to the analysis of others done in
classical theories. The first equation gives H∗

0 and says that it is equal to H0 at
the point J1 = J∗

1 . The second equation says that H∗
1 = 0. As a consequence,

G′∗
2 = 0 and

G′∗
3 =

∑
�

∂H∗
2

∂θ�

∂S1

∂J∗
�

(see 3.39).
The next equation is the fundamental equation of Bohlin theory, or

Bohlin’s equation:

ν∗1√
ε

∂S1

∂θ1
+

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2 = H∗
2 (A.13)

or
∂S1

∂θ1
=

1
ν∗11

√
ε

(
−ν∗1 ±

√
ν∗21 − 2εν∗11(H2 −H∗

2 )
)
. (A.14)

(G′∗
2 = 0 since H∗

1 = 0.) This nonlinear equation is almost the same as that
which appeared as the fundamental equation (4.34) of Delaunay’s theory. It
is indeterminate while H∗

2 is not fixed. This indeterminacy was overcome by
the introduction of the weak averaging rule
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H∗
2 (θ�, J

∗) = < H2(θ, J∗) >, (A.15)

where < · · · > stands for the average over the angle θ1. This is not the only
choice found in the literature. The so-called “minimum principle”:

H∗
2 (θ�, J

∗) = min
θ1
H2(θ, J∗)

was also used. However, none of these rules was able to solve Bohlin’s problem
and they brought, as a consequence, the singularity discussed in the next
section. If we adopt the averaging rule defined by (A.15), we have

ν∗1√
ε

∂S1

∂θ1
+

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(K) = 0, (A.16)

where
H2(K)(θ, J∗) = H2(θ, J∗) − < H2(θ, J∗) > . (A.17)

Bohlin’s equation defines several regimes of motion (as in Garfinkel’s Ideal
Resonance Problem), but their study can only be done when the function
H2(θ, J∗) is explicitly given.

The remaining equations may be generically written as(
ν∗1√
ε

+ ν∗11
∂S1

∂θ1

)
∂Sk

∂θ1
+ Ψk+1 = H∗

k+1 (A.18)

(homological equation). Taking into account that the functions G2,k+1, G4,k+1,
· · ·, E ′

k+1 and G′∗
k+1 are completely known when the functions S1, S2, · · · , Sk−1

are known, the term Ψk+1 in the homological equation (A.18) represents a
known function. In contrast with Bohlin’s equation, the homological equation
is linear.

In addition to the practical difficulties in the integration of (A.14), involv-
ing an elliptic integral, there are other difficulties to consider. As discussed
by Garfinkel et al. [36], ν∗1 = O(

√
ε) while its derivative with respect to J∗

1

is ν∗11 = O(1). Thus, differentiation with respect to J∗
1 reduces the order of

every function having ν∗1 as a factor1. As a consequence, when the explicit
equations of the transformation are calculated, the term Sk contributes parts
of order (k − 1) in the expression for θ1 = ∂S/∂J∗

1 .
Since θ1 is given by the derivative of the Jacobian generating function with

respect to J∗
1 , the dependence of the Sk on J∗

k must be determined. For this
reason, we cannot fix the value of the constant J∗

1 , and the simplification ν∗1 =
0, used in Delaunay’s theory, cannot be used here, before the transformation is
obtained. However, once the transformation is known, the adoption of ν∗1 = 0
is possible. The order-half approximation
1 This is a key difference between the classical theories and the Lie series theory

for resonant system of Chap. 8. There, and in [33], the order in
√

ε is replaced
by the degree of homogeneity in the elements of the set S ≡ (J1 − J∗

1 ,
√

ε), thus
allowing us to control the order of the terms and avoiding any mixing.
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J1 = J∗
1 +

∂S1

∂θ1
+ O(ε)

= J∗
1 +

1
ν∗11

√
ε

(
−ν∗1 ±

√
ν∗21 − 2εν∗11(H2 −H∗

2 )
)

+ O(ε)

shows that, in the case of libration, a choice of ν∗1 not equal to zero introduces
an offset in the mean value of the oscillation of J1, with respect to J∗

1 .

A.3 Poincaré Singularity

As pointed out by Poincaré, the most serious difficulty in the study of the gen-
eral Bohlin’s problem by means of the perturbation equations (A.12) occurs
in the case of librations. In that case, the homological equation is, generally,
singular. For instance, the equation giving S2 is(

ν∗1√
ε

+ ν∗11
∂S1

∂θ1

)
∂S2

∂θ1
+ Ψ3 = H∗

3 , (A.19)

where

Ψ3 = G2,3 + E ′
3 −G′∗

3

=
∂H2

∂J∗
1

∂S1

∂θ1
+

1
6
ν∗111

(
∂S1

∂θ1

)3

+
N∑

�=2

(
∂H2

∂J∗
�

∂S1

∂θ�
− ∂H∗

2

∂θ�

∂S1

∂J∗
�

)
.

(A.20)

Equation (A.19) is singular when

ν∗1√
ε

+ ν∗11
∂S1

∂θ1
= 0

and this condition always happens at the border of the librations. In the partic-
ular case of the problem initially proposed by Bohlin (A.5) and in Garfinkel’s
Ideal Resonance Problem, the last term of (A.20) does not exist. Therefore,
a suitable choice of H∗

3 can be made so that the right-hand side also appears

multiplied by
(
ν∗1√
ε

+ ν∗11
∂S1

∂θ1

)
and the equation is no longer singular. How-

ever, in the general Bohlin’s problem, the singularity cannot be eliminated
just through an appropriate choice of H∗

3 because some terms of the last
summation depend on θ1 and H∗

3 cannot depend on θ1.
Notwithstanding several attempts, these difficulties were not properly

solved in the frame of classical theories, except for systems with just one
degree of freedom, like Garfinkel’s Ideal Resonance Problem, or reduced to
one degree of freedom, such as the restricted problem proposed in Bohlin’s
paper.
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A.4 An Extension of Delaunay Theory

A classical alternative to Bohlin theory is the Delaunay theory presented in
Sect. 4.3 for one degree of freedom. It may be generalized to be used in the
study of Bohlin’s problem. To do this, we introduce the canonical transfor-
mation

(θi, Ji) ⇒ (α, θ∗�, E, J
∗
� ) (i = 1, 2, · · · , N ; � = 2, · · · , N)

defined by the Jacobian generating function

S = (θ | J∗) +
n∑

k=1

εk/2Sk(θ, E, J∗
� ), (A.21)

where J∗
1 is the solution of the equation giving the exact resonance:

ν1(J∗
1 ) =

(
dH0

dJ1

)
J1=J∗

1

= 0. (A.22)

The equations of the canonical transformation are

α =
∂S

∂E
; θ∗� =

∂S

∂J∗
�

; Ji =
∂S

∂θi
(A.23)

and the transformed Hamiltonian is assumed to have a main part

εE +H∗(θ∗�, E, J
∗
� ),

independent of α, and a remainder Rn+1 divisible by ε(n+1)/2. As in the
von Zeipel–Brouwer theory (for M = 1), the main part of the transformed
Hamiltonian defines a canonical system reduced to N − 1 degrees of freedom:

θ̇∗� =
∂H∗

∂J∗
�

, J̇∗
� = −∂H∗

∂θ∗�
. (A.24)

The solution is completed with the integral

E = constant (A.25)

and the quadrature

α =
∫

∂

∂E
(H∗ + εE) dt. (A.26)

Following the same steps as in Sect. A.2, we obtain H0(J∗
1 ) = H∗

0 , 0 = H∗
1 ,

the particular Bohlin equation

1
2
ν∗11

(
∂S1

∂θ1

)2

+H2(θ, J∗
� ) −H∗

2 (θ, E, J∗
� ) = E, (A.27)
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and the homological equation (k ≥ 2)

ν∗11
∂S1

∂θ1

∂Sk

∂θ1
+ Ψ∗

k+1(θ, E, J
∗
� ) = H∗

k+1(θ, E, J
∗
� ), (A.28)

where Ψ∗
k+1 represents known functions. As in the previous section, G′∗

2 = 0
because H∗

1 = 0. These equations are very similar to those of Bohlin theory
except for the introduction of E and for the fact that J∗

1 is no longer a variable
but a constant. The constant J∗

1 allows ν∗1 to be fixed (as ν∗1 = 0).
In contrast with Bohlin’s theory, a particular solution of the fundamental

equation is no longer sufficient to determine the canonical transformation. As
in Hamilton–Jacobi theory, we need an integral depending on the non-trivial
constant E, that is, we need a complete integral of the fundamental equation
(A.27). When a complete integral is known, the generating function

S(1) = (θ | J∗) +
√
εS1(θ, E, J∗

� )

defines a canonical transformation leading to a transformed Hamiltonian in-
dependent of α, except for terms factored by, at least, ε3/2. The same weak
averaging rule of Bohlin’s theory is used.

The homological equation (A.28) defining the transformation at higher or-
ders is linear and it is sufficient to obtain particular solutions of them. How-
ever, for librations, (A.28) is singular for ∂S1/∂θ1 = 0 (Poincaré’s singularity).
It is possible to use this method for one-degree-of-freedom problems [88], but,
in the general case, it is not possible to eliminate this singularity through just
an appropriate choice of H∗

k+1.

Page: 270 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



B

The Simple Pendulum

B.1 Equations of Motion

The simple pendulum is a one-dimensional mechanical system with a force
field whose potential is

U(q) = −k cos q (k > 0). (B.1)

Its Hamiltonian is

H(q, p) =
p2

2m
−mk cos q (B.2)

and the corresponding differential equations are

dq
dt

=
∂H

∂p
=

p

m
(B.3)

dp
dt

= −∂H

∂q
= −mk sin q (B.4)

or
d2q

dt2
= −k sin q. (B.5)

The last equation is the Newtonian equation of a point of mass m attracted
by a center at q = 0 with a force mk sin q. In a real pendulum, k = g/�, where
g is the local acceleration of gravity and � is the length of the pendulum.

The solution of (B.5) is classical. First of all, we have the energy integral

1
2

(
dq
dt

)2

− k cos q =
E

m
(B.6)

from which we obtain

dq
dt

= ±
√

2
(
E

m
+ k cos q

)
(B.7)
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and the elliptic integral

t− t0 =
∫ q

q0

dq

±
√

2( E
m + k cos q)

. (B.8)

The trajectories in the phase space are obtained just by plotting the curves
H = E (constant) for various values of E. They are shown in Fig. B.1.

We have the possibilities

• E
m > k > 0 (circulations)

In this case, the square root in (B.7) is real for all values of q. The sign
in front of the square root depends on the branch chosen for dq/dt and
does not change for all t. Thus, the angle q is a monotonically increasing
(or decreasing) time function. To each value of E, two solutions may be
found, one in the upper half of the phase plane (mq̇ > 0) and another in
the lower half of it (mq̇ < 0). These solutions of the pendulum motion are
called circulations.

• E = mk (separatrices)

Again, the square root in (B.7) is real for all values of q but becomes
zero at q = ± π. At this point we also have d2q/dt2 = 0. The solutions
corresponding to this energy level are the unstable equilibrium point U

at q = ± π and the two separatrices starting in one unstable point and
ending at its congruent, 2π away.

• |E| < |mk| (librations)

In this case, the square root in (B.7) is real only in the interval |q| <
arccos(−E/mk) (since otherwise E

m +k cos q < 0). The motion is a limited
oscillation about q = 0. That the motion is an oscillation is an immediate

S U S U S U

m>0

m<0

S U S U S U

Fig. B.1. Phase portrait of the pendulum
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consequence of having d2q/dt2 �= 0 at the two interval boundaries q =
± arccos(−E/mk). These solutions of the pendulum motion are called
librations.

• E = −mk

In this case, the square root in (B.7) is real only when q = 0. The corre-
sponding solution is the stable equilibrium point S.

The square root is not real when E/m < −k < 0 and no motion corresponds
to this case.

B.1.1 Circulation

In order to use standard elliptic integrals and elliptic functions in the integra-
tion of (B.7), we introduce

cos q = 1 − 2 sin2 q

2

and write (B.7) as
dq
dt

= ± η

√
1 − κ2 sin2 q

2
, (B.9)

where

κ =

√
2mk

E +mk
(0 < κ < 1) (B.10)

and

η =

√
2
m

(E +mk) =
2
√
k

κ
. (B.11)

The positive sign corresponds to the prograde circulations (dq/dt > 0) and
the negative sign to retrograde circulations (dq/dt < 0). According to (B.3) p
has the same sign as m in the prograde motion branch and the opposite sign
in the retrograde motion branch (see Fig. B.1). The integration of (B.9) gives

ηt = ± 2F
(q

2
, κ
)
, (B.12)

where F( q
2 , κ) is the elliptic integral1 of first kind with modulus κ. We assume

t = 0 at q = 0. The period of the circulation is the time to go from q = 0 to
q = 2π, that is,

TC =
4
η

IK(κ), (B.13)

1 Calculations with elliptic integrals are easy when good tables are available. In
order of increasing completeness, we cite [25], [1], [17]. The slight change of the
usual notation for the elliptic integrals introduced here (F and E instead of F
and E) is necessary to avoid confusion with other functions in the book. IK and
IE are the corresponding complete elliptic integrals.
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where IK(κ) = F(π
2 , κ) is the complete elliptic integral of the first kind.

The inversion of (B.12) gives

q = ± 2 am
ηt

2
, (B.14)

where am stands for the Jacobian amplitude. It is worth recalling that we also
have

cos
q

2
= cn

ηt

2
sin

q

2
= ± sn

ηt

2
,

where cn and sn stand for the Jacobian cosine amplitude and sine amplitude
elliptic functions, respectively. The modulus of these elliptic functions is κ.

For practical purposes, it is important to have the expression for sin q. This
may be easily obtained from the classical formulas for trigonometric functions
and their equivalent for elliptic functions:

sin q = 2 sin
q

2
cos

q

2
= ± 2 sn

ηt

2
cn
ηt

2
= ∓ 4

ηκ2

d
dt

dn
ηt

2
(B.15)

where dn is the Jacobian delta amplitude elliptic function.
The Fourier expansions of the solution are2

q = ±w ±
∞∑

�=1

2
�

sech �χ sin �w, (B.16)

sin q = ± 2π2

κ2IK2

∞∑
�=1

� sech �χ sin �w, (B.17)

where

w =
πηt

2IK
=

2πt
TC

(B.18)

and

χ(κ) =
πIK(

√
1 − κ2)

IK(κ)
. (B.19)

We recall that the quantity e−χ is the so-called Jacobi’s nome (designated by
q in tables of elliptic functions).

B.1.2 Libration

In this case, κ > 1 and the left-hand side of (B.9) is real only for | sin q
2 | < 1

κ .
This difficulty is circumvented by means of the reciprocal modulus transfor-
mation. We introduce

2 These formulas are found in [17]. There is a printing flaw there in equation 908.03.
The right denominator is 1 + q(2m+1) (see [98], p. 511). For a different approach
see [82].
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 µ

−µ

q

π                         2π                         ζ

Fig. B.2. The function q(ζ). (µ = 2 arcsin κ−1)

sin ζ = κ sin
q

2
(B.20)

or, after differentiation,
cos ζ dζ =

κ

2
cos

q

2
dq

and
dζ
dt

=
κη

2

√
1 − 1

κ2
sin2 ζ, (B.21)

where the double sign disappears because the branches of arcsin (α sin q
2 ) are

chosen such that ζ(t) is monotonic. The integration of this equation gives

κηt

2
= F

(
ζ,

1
κ

)
, (B.22)

where we assumed ζ = 0 and ζ̇ > 0 (i.e. q = 0 and q̇ > 0) at t = 0. The period
of libration is equal to four times the time to go from q = 0 to the boundary
of the libration at q = 2 arcsin 1

κ (or ζ = π
2 ) (see Fig. B.2). Thus

TL = 4

√
1
k

IK
(

1
κ

)
. (B.23)

The inversion of (B.22) gives

ζ = am
κηt

2
. (B.24)

We also have

sin ζ = sn
κηt

2
and, therefore,

sin
q

2
=

1
κ

sn
κηt

2
. (B.25)

In the above calculations (and in the forthcoming ones), one must bear
in mind that the modulus of the elliptic functions is now 1/κ (instead of κ).
Using the fundamental relations of elliptic functions, we obtain
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cos
q

2
=

√
1 − 1

κ2
sn2

κηt

2
= dn

κηt

2
(B.26)

sin q =
2
κ

sn
κηt

2
dn

κηt

2
= − 4

κ2η

d
dt

cn
κηt

2
. (B.27)

The Fourier expansions of the solution are

ζ = w +
∞∑

�=1

1
�

sech �χ sin 2�w, (B.28)

sin q =
π2

IK2

∞∑
�=1

(2�− 1) sech (2�− 1)
χ

2
sin (2�− 1)w, (B.29)

where

w =
κπηt

4IK
=

2πt
TL

(B.30)

and

χ = χ

(
1
κ

)
=

πIK
(√

1 − 1
κ2

)
IK( 1

κ )
. (B.31)

Since we adopted q̇ > 0 at t = 0, the above equations become insensitive to
the individual sign of m. One should bear in mind, however, that differences
will appear when the variation of p is considered (see B.4). At t = 0, p may
have the same sign as m. Then, the motion in the phase plane is clockwise
when m > 0 and counterclockwise when m < 0 (see Fig. B.1).

B.1.3 The Separatrix

In this case, κ = 1 and the integrals are no longer elliptic. Equation (B.7)
becomes

dqsx
dt

= ±
√

4k cos
qsx
2
, (B.32)

where we use qsx to denote the angle q over the separatrix. The solution of
this equation is

t = ±
√

1
k

ln tan
(qsx

4
+
π

4

)
(−π < qsx < π), (B.33)

or, after inversion,
qsx = 4 arctan e±

√
kt − π, (B.34)

where we have fixed the initial condition qsx = 0 at t = 0. The positive sign
in the above equations corresponds to a prograde motion along the separatrix
(qsx increases with t) and the negative sign corresponds to a retrograde motion
along the separatrix (qsx decreases as t increases). When m > 0, the prograde
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motion occurs on the upper separatrix and the retrograde motion on the lower
separatrix. When m < 0, this situation is reversed.

From (B.3) and (B.32), we obtain

psx = ± 2|m|
√
k cos

qsx
2

; (B.35)

The width of the libration zone is given by the maximum separation of the
two separatrices, that is, twice the value of |psx| at qsx = 0, or 4|m|

√
k.

Equation (B.33) shows that the motion along the separatrices is asymp-
totic to the unstable equilibrium points qsx = ± π, since

lim
qsx→±π

|t| = ∞.

Exercise B.1.1. Show that the quantities w defined by (B.18) and (B.30) are
the same angle variables defined in Sects. B.2.1 and B.2.2.

Exercise B.1.2. Explain, kinematically, why the argument of the periodic
terms of q in (B.16) is w, while that of ζ in (B.28) is 2w.

B.2 Angle–Action Variables of the Pendulum

Let us use the basic equations of Sects. 2.1 and 2.2 to construct the angle–
action variables of the simple pendulum:

S =
∫

p (q, E) dq = m

∫ (
dq
dt

)
dq, (B.36)

J
def=

1
2π

∮
p (q, E) dq (B.37)

and
w

def=
∂S(q, E(J))

∂J
=

∂S

∂E

dE
dJ

. (B.38)

We have to consider separately the cases of circulation (E/m > k > 0) and
libration (|E| < |mk|).

B.2.1 Circulation

In this case, the integration of (B.36) gives

S = ±mη

∫ √
1 − κ2 sin2 q

2
dq = ± 2mη E

(q
2
, κ
)
, (B.39)
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where we have introduced κ and η as defined in Sect. B.1.1. E( q
2 , κ) is the

elliptic integral of the second kind with modulus κ. The + sign corresponds
to the branch of the circulation where q̇ > 0, and the − sign to that where
q̇ < 0. Differentiating S with respect to E, it follows that

∂S

∂E
= ± 2

η
F
(q

2
, κ
)
. (B.40)

Since the angle q is circulating, the function S(q) is 2π-periodic, and
∮

is just
an integral from q = 0 to q = ± 2π. Then

J =
1
2π

S(± 2π) =
2mη

π
IE(κ), (B.41)

where IE(κ) = E(π
2 , κ) is the complete elliptic integral of the second kind with

modulus κ (the double signs of S and of its argument cancel themselves):

dJ
dE

=
2
ηπ

IK(κ). (B.42)

Hence, the angle variable is

w = ± πF( q
2 , κ)

IK(κ)
=

πF(± q
2 , κ)

IK(κ)
, (B.43)

or w = ẇ(t− t0), where

ẇ =
πη

2IK
=

π
√
k

κIK
> 0. (B.44)

B.2.2 Libration

We have to introduce, first, the reciprocal modulus transformation, and re-
place q by the variable ζ defined by (B.20). It follows that

S = 4m
√
k

[
E
(
ζ,

1
κ

)
+ βF

(
ζ,

1
κ

)]
(B.45)

and

J =
8m
π

√
k

[
IE
(

1
κ

)
+ βIK

(
1
κ

)]
, (B.46)

where

β =
1 − κ2

κ2
=

E − km

2km
. (B.47)

The calculation of the derivatives of S(q, E) is, now, more cumbersome than
in the previous case because the above functions depend on E also through
the variable ζ. However, all calculations are elementary and the results are
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∂S

∂E
=

1√
k
F
(
ζ,

1
κ

)
(B.48)

and
dJ
dE

=
2

π
√
k

IK
(

1
κ

)
. (B.49)

As a consequence,

w =
πF(ζ, κ−1)
2IK(κ−1)

, (B.50)

or w = ẇ(t− t0), where

ẇ =
π
√
k

2IK(κ−1)
> 0. (B.51)

B.3 Small Oscillations of the Pendulum

In the case of small oscillations, the results of Sect. B.1.2 can be written
in a more explicit way. In this case, 1/κ is a small quantity (κ → ∞) and
we can use power series to express the hyperbolic functions appearing in the
coefficients of the Fourier series. The key series is the one giving Jacobi’s nome
with modulus 1/κ:

e−χ(κ−1) = α2(1 + 2α2 + 15α4 + 150α6 + 1707α8 + · · ·)4,
where

α =
1
4κ

; (B.52)

or, computing the fourth power indicated in the right parenthesis,

e−χ(κ−1) = α2(1 + 8α2 + 84α4 + 992α6 + 12514α8 + · · ·). (B.53)

Using the series for IK:

IK
(

1
κ

)
=

π

2
(1 + 4α2 + 36α4 + 400α6 + 4900α8 + · · ·),

and the elementary equation

sech bχ =
2

ebχ + e−bχ
= 2e−bχ(1 + e−2bχ)−1,

we obtain

sin q = 8α(1 − 5α2 − 25α4 − 219α6) sinw + 24α3(1 + 4α2 + 30α4) sin 3w
+40α5(1 + 12α2) sin 5w + 56α7 sin 7w + O(α9). (B.54)

It is also useful to have
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ẇ =
√
k(1 − 4α2 − 20α4 − 176α6 + · · ·) (B.55)

and

p = mdq
dt = 8m

√
k
[
α (1 − α2 − 9α4 − 99α6) cosw

+α3(1 + 8α2 + 82α4) cos 3w + α5(1 + 16α2) cos 5w
+ α7 cos 7w

]
+ O(α9). (B.56)

Exercise B.3.1. Write the small-amplitude oscillations of the simple pendu-
lum as

q � sin q � Θ sinw, (B.57)

where Θ is the oscillation’s half-amplitude and w is the angle variable of
the simple pendulum. Since, by definition, {q, p} = 1, show that the action
conjugate to w, in this approximation, is

J =
mẇΘ2

2
. (B.58)

Hint: The small oscillations are isochronous.

B.3.1 Angle–Action Variables

The equations of Sect. B.2 may be approximated with elementary functions in
the case of small-amplitude librations. To obtain J , besides the approximate
formulas already introduced in Sect. B.3, we need:

IE
(

1
κ

)
=

π

2
(1 − 4α2 − 12α4 − 80α6 − 700α8 + · · ·). (B.59)

Hence
J = 32m

√
k α2(1 + 2α2 + 12α4 + 100α6 + · · ·) (B.60)

and its inverse
α2 = Υ (1 − 2Υ − 4Υ 2 − 20Υ 3 + · · ·), (B.61)

where

Υ =
J

32m
√
k

=
1
4π

[IE(κ−1) + βIK(κ−1)] > 0. (B.62)

With angle–action variables, the oscillations are given by:

sin q = 8
√
Υ

[(
1 − 6Υ − 25

2
Υ 2 − 84Υ 3

)
sinw + 3Υ

(
1 + Υ +

11
2
Υ 2

)
sin 3w

+ 5Υ 2(1 + 7Υ ) sin 5w + 7Υ 3 sin 7w
]

+ O(Υ 9/2). (B.63)

The angle variable is uniform and has the variation rate
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ẇ =
√
k (1 − 4Υ − 12Υ 2 − 80Υ 3 + · · ·) (B.64)

and the libration period is

TL =
2π√
k

(1 + 4Υ + 28Υ 2 + 240Υ 3 + · · ·). (B.65)

Similarly, for the momentum p, we obtain

p = 8m
√
kΥ

[(
1 − 2Υ − 17

2
Υ 2 − 62Υ 3

)
cosw + Υ

(
1 + 5Υ +

75
2
Υ 2

)
cos 3w

+ Υ 2(1 + 11Υ ) cos 5w + Υ 3 cos 7w
]

+ O(Υ 9/2). (B.66)

Finally, we may express the energy (that is, the Hamiltonian) with the
angle–action variables. It is

E = −km+ 32kmα2 = −km+ 32kmΥ (1 − 2Υ − 4Υ 2 − 20Υ 3 + · · ·). (B.67)

B.4 Direct Construction of Angle–Action Variables

In the case of small oscillations, the alternative formulations with undeter-
mined coefficients (see Sect. 2.2) may be used to construct the angle–action
variables of the pendulum. The first and most lengthy step in that formulation
is the construction of the series representing the periodic solutions.

Let us represent the solutions of the pendulum by the series

q =
n∑

i=1

aiγ
i,

where γ is a free parameter of the order of the amplitude of the oscillations
(γ = 0 corresponds to the stable equilibrium solution q = 0) and ai are
undetermined periodic functions in the angles w. It is important to keep in
mind that ẇ is not the same in all solutions and is itself also a function of the
parameter γ with undetermined coefficients. Let it be written

ẇ = ω0 +
n∑

i=1

oiγ
i.

These series are then substituted into the differential equation. The iden-
tification following the powers of γ gives the equations allowing the determi-
nation of ai and oi. In the case of the pendulum, the differential equation is
q̈ = q′′ẇ2 = −k sin q, where the primes indicate differentiation with respect
to w. The equations resulting from the identification in the powers of γ are:
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• i = 1
a′′1ω

2
0 + ka1 = 0. (B.68)

The solution is
a1 = sinw ω0 =

√
k. (B.69)

Only the particular solutions of these equations are required. The arbitrary
integration constants are the parameter γ and the phase of w (which does
not need to appear explicitly).

• i = 2
a′′2ω

2
0 + ka2 = −2a′′1ω0o1. (B.70)

When the results for i = 1 are substituted into the right-hand side of the
above equation, it becomes −2ω0o1 sinw. The resulting equation is then a
non-homogeneous ordinary differential equation with constant coefficients
with equal proper and forced frequencies. The existence in the forced part
of terms with the same frequency as the proper frequency of the associated
homogeneous equation leads to unwanted unbounded terms in the solution.
The identificsation to zero of the terms proportional to sinw in the right-
hand side gives a rule to determine the oi. In this simple case, o1 = 0.
For the resulting homogeneous equation we have the particular solution
a2 = 0.

• i = 3

a′′3ω
2
0 + ka3 =

1
6
ka3

1 − a′′1 (2ω0o2 + o2
1) − 2a′′2ω0o1 (B.71)

or, after substitution of the previous results,

a′′3k + ka3 = 2
√
k o2 sinw +

1
8
k sinw − 1

24
k sin 3w. (B.72)

Again, the terms in sinw in the right-hand side must vanish to avoid
unbounded terms in the solution. This gives

o2 = −
√
k

16
. (B.73)

The particular solution of the equation formed by the remaining terms is
now easily obtained:

a3 =
1

192
sin 3w. (B.74)

��
The next orders are treated in exactly the same way and we do not need

to give the details of the calculations here. Collecting the results up to n = 7,
we obtain

q = γ sinw +
γ3

192
sin 3w +

γ5

20480
(5 sin 3w + sin 5w)

+
γ7

1835008
(21 sin 3w + 7 sin 5w + sin 7w) + O(γ9)
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and

ẇ =
√
k − 1

16

√
k γ2 +

1
1024

√
kγ4 − 1

65536

√
kγ6 + O(γ8). (B.75)

In the sequence, we have, by mere application of the given expressions,

p = mq̇ = m
√
k

(
γ cosw +

γ3

64
(−4 cosw + cos 3w)

+
γ5

4096
(4 cosw − cos 3w + cos 5w)

+
γ7

262144
(−4 cosw + cos 3w + cos 5w + cos 7w)

)
+ O(γ9),

J =
1
2π

∫ 2π

0

pq′dw =
1
2
m
√
k γ2

(
1 − 1

16
γ2 +

5
4096

γ4 − 1
131072

γ6

)
+ O(γ8)

(B.76)
and

H = −mk +mk

(
1
2
γ2 − 3

64
γ4 +

17
8192

γ6 − 13
262144

γ8

)
+ O(γ10). (B.77)

To obtain the Hamiltonian as a function of the actions, we need to solve
(B.76) with respect to γ. We obtain

γ2 =
2J
m
√
k

+
(

J

2m
√
k

)2

+
27
64

(
J

2m
√
k

)3

+
111
512

(
J

2m
√
k

)4

+O(J5), (B.78)

hence

H = −mk+
√
kJ − 1

16m
J2 − 1

256
√
km2

J3 − 5
8192km3

J4 +O(J5). (B.79)

Exercise B.4.1. Show that the solutions obtained above are equivalent to
those given in Sects. B.3 and B.3.1. Hint. Show first that

γ = 8α+ 24α3 + 184α5 + 1832α7 + O(α9).

B.5 The Neighborhood of the Pendulum Separatrix

In studies of diffusion or capture into resonance, when separatrix crossings
play a major role, we need the expressions of the action–angle variables in the
neighborhood of the separatrix. These estimations are easy to obtain using the
asymptotic expansions of the elliptic integrals for κ → 1. These expansions
are found in the literature [25], [17] as functions of κ′2 = 1 − κ2. In this ap-
plication, it is convenient to have them written as functions of the normalized
energy3:
3 In diffusion studies, this quantity is often represented by w instead of h.
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h =
E

mk
− 1. (B.80)

We remember that at the separatrix, E = mk. Thus, h → 0 when the
trajectory approaches the separatrix. (Just for completeness, note that h =
−2 at the stable equilibrium point O.) Some useful auxiliary expressions are
η =

√
2k(h+ 2), κ =

√
2/(h+ 2) and

1 − κ2 =
h

h+ 2
=

h

2
− h2

4
+ O(h3). (B.81)

In solutions outside the pendulum separatrix (that is, circulations), we use

ln
4√

1 − κ2
=

1
2

ln
32
h

+
h

4
+
h2

16
+ O(h3)

to obtain

IK(κ) =
1
2

ln
32
h

+
h

16

(
ln

32
h

+ 2
)

+ O(h2 lnh)

IE(κ) = 1 +
h

8

(
ln

32
h

− 1
)

+ O(h2 lnh)

F(φ, κ) = ln
1 + sinφ

cosφ
− h

4

(
sinφ
cos2 φ

− ln
1 + sinφ

cosφ

)
+ O(h2)

E(φ, κ) = sinφ− h

4

(
sinφ− ln

1 + sinφ
cosφ

)
+ O(h2).

For solutions in the domain inside the separatrix (that is, librations), the
arguments of the elliptic integrals are 1/κ instead of κ (in this case, h < 0
and κ > 1). We then use the exact expressions

1 −
(

1
κ

)2

= −h

2
(B.82)

and
ln

4√
1 − κ−2

=
1
2

ln
32
|h|

to obtain

IK(κ−1) =
1
2

ln
32
|h| −

h

16

(
ln

32
|h| − 2

)
+ O(h2 ln |h|)

IE(κ−1) = 1 − h

8

(
ln

32
|h| − 1

)
+ O(h2 ln |h|)

F(ζ, κ−1) = ln
1 + sin ζ

cos ζ
+
h

4

(
sin ζ
cos2 ζ

− ln
1 + sin ζ

cos ζ

)
+ O(h2)
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E(ζ, κ−1) = sin ζ +
h

4

(
sin ζ − ln

1 + sin ζ
cos ζ

)
+ O(h2).

The calculation of the action corresponding to one solution in the neighbor-
hood of the separatrix is, now, easy to do. With the equations corresponding
to circulation, we get

J =
4m

√
k

π

[
1 +

h

8

(
1 + ln

32
|h|

)]
+ O(h2 lnh). (B.83)

With the equations corresponding to libration, we obtain twice the above
value. This is due to the fact that the angle–action variables are not continuous
at the separatrix between librations and circulations. It is enough to recall
that the action is the area under the trajectory in the phase space ( 1

2π

∮
p dq)

to understand the doubling of the factor when passing from circulation to
libration

B.5.1 Motion near the Separatrix

Let us consider the motion along a circulating or librating trajectory near the
pendulum separatrix. We know that the time to go from one end of the sepa-
ratrix to the other is infinite. We will calculate, in this section, the time spent
in going from the vicinity of A to that of B along one of the two trajectories
adjacent to the separatrix, shown in Fig. B.3. The travel times are long, but
finite. In fact, the periods of circulation and libration tend to infinity, as the
trajectory tends to the separatrix, with the same speed as | lnx| tends to ∞
when x → 0. This means that it is enough to be a tiny distance away from
the separatrix to have finite periods which are indeed large, but whose order
of magnitude is not very different from that of the period of motions close to
the stable equilibrium point O.

A O B

Fig. B.3. Trajectories adjacent to the separatrix

Let us calculate, separately, the times spent to go from one extremity to
another along the two adjacent trajectories shown in Fig. B.3. Let us start with
the outside one. The motion on this trajectory is a circulation. If we replace
the complete elliptic integral IK(κ) by its asymptotic value for κ→ 1−,
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IK(κ) ≈ ln
4√

1 − κ2
, (B.84)

a simple calculation shows that

t≈AB = TC ≈
√

1
k

ln
32
h
.

In the adjacent trajectory inside the separatrix, we similarly have

t≈AB =
1
2
TL ≈

√
1
k

ln
32
|h| . (B.85)

The only differences with respect to the previous case are that h is, now,
negative, TL is proportional to IK( 1

κ ) instead of IK(κ), and t≈AB is equal to
only half of TL because the trajectory considered is only half of a complete
libration.

B.6 The Separatrix or Whisker Map

One important characteristic of the motion near the separatrix is that even a
small perturbation is enough to allow the motion to change from libration to
circulation (or vice versa). The statistical study of these separatrix crossings
is a necessary step to understanding the transport of trajectories through the
phase space. To see this, it is convenient to obtain a map able to describe the
evolution of the trajectories.

Let us consider a parametrically perturbed pendulum whose Hamiltonian
is

H =
p2

2m
−mk(1 − ε cos θ) cos q, (B.86)

where θ = ωt+ θ◦, and let us calculate the variation of the energy when the
system evolves on one trajectory adjacent to the separatrix. We have

dE
dt

=
∂H

∂t
= − εmkω cos q sin θ.

The variation of E during the travel over the whole arc may be approximated
by the corresponding variation along the separatrix:

∆Esx =
∫ ∞

−∞
− εmkω cos qsx sin θ dt,

where qsx is the function defined by (B.34). We may decompose sin θ and
discard from the integrand the term −εAω cos qsx sinωt cos θ◦, since it is odd
with respect to the central point of the integration interval. Then

∆Esx = − 1
2
εmkω sin θ◦

∫ ∞

−∞
[cos (qsx − ωt) + cos (qsx + ωt)] dt. (B.87)
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B.6 The Separatrix or Whisker Map 287

The integral on the right-hand side is improper (no limit exist). We may write
it using the Melnikov integrals (see [21])

Aν(λ) def=
∫ ∞

−∞
cos

(ν
2
q+
sx − λτ

)
dτ, (B.88)

where q+
sx = 4 arctan(eτ ) − π and τ =

√
k t. We also have

Aν(−λ) = (−1)νAν(λ)e−πλ. (B.89)

Hence, since τ =
√
kt,

∆Esx = −1
2
εmkλ [A2(λ) + A2(−λ)] sin θ◦, (B.90)

where
λ =

ω√
k
.

When λ � 1,
|A2(−λ)| � |A2(λ)|

and
∆Esx ≈ −1

2
εmkλA2(λ) sin θ◦

or, after introducing the normalized energy h defined by (B.80),

∆hsx ≈ −1
2
ελA2(λ) sin θ◦.

The separatrix map is a model giving, step by step, the variations of h
and θ◦ when the system evolves from the vicinity of A to that of B near
the separatrix (or from B to A, in the contrary direction, close to equivalent
trajectories existing in the lower half of the phase portrait). The variation of
the phase θ is given by t≈AB as calculated in the previous section:

∆θ = ωt≈AB =
ω√
k

ln
32
|h| = λ ln

32
|h| .

Therefore in the next step of the mapping, the initial phase θ◦ may be changed
to θ◦+∆θ; the corresponding variation of the energy is approximated by ∆hsx.
Since we have assumed λ � 1, A2(λ) is small, the variation of h during the
motion on the given trajectory is small and h may be approximated by its
value in any point of the interval, e.g. the final value. We thus obtain the
separatrix or whisker map

hn+1 = hn −W sin θ◦n

θ◦n+1 = θ◦n + λ ln
32

|hn+1| ,
(B.91)
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288 B The Simple Pendulum

where

W =
ελ

2
A2(λ) ≈ 4πελ2e−πλ/2;

to calculate the Melnikov integral, we have used the asymptotic (λ � 1)
estimate of the non-oscillatory terms [21]:

Aν(λ) ≈ 4π(2λ)ν−1

(ν − 1)!
e−πλ/2 (ν > 0). (B.92)

We should emphasize that we have chosen a perturbation even with respect
to q to avoid having to discuss the change of the arguments of A2 in ∆Esx

when the motion is near the lower separatrix instead of the upper one shown
in Fig. B.3. When the perturbation is even with respect to q, the Melnikov
integrals appear in pairs as in (B.90) and the result is invariant with respect
to the considered sign changes.

B.7 The Standard Map

A very important form of the separatrix map is obtained through the lin-
earization about a suitably chosen value hr. In the neighborhood of h = hr,
we have

ln
32

|hn+1| ≈ ln
32
|hr| −

hn+1 − hr

hr
.

We then introduce, in the separatrix map, the variable

I = −λh− hr

hr

and the constant

K =
λW

hr
≈ 4πελ3

hr
e−πλ/2.

The map becomes
In+1 = In +K sin θ◦n

θ◦n+1 = θ◦n + λ ln
32
|hr| + In+1.

The reference value hr is chosen to be such that λ ln 32
|hr| is an integer multiple

of 2π. Then, since θ◦ ∈ S1, this term has no influence on the result and may
be neglected.

The resulting map is the standard map

In+1 = In +K sin θ◦n
θ◦n+1 = θ◦n + In+1.

(B.93)
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C

Andoyer Hamiltonian with k = 1

C.1 Andoyer Hamiltonians

Andoyer Hamiltonians are one-degree-of-freedom Hamiltonians of the form

Hk = aJ + bJ2 + ετ(2J)k/2 cos kσ (k = 1, 2, 3, 4), (C.1)

where a, b, τ are constants and ε is a constant small parameter (ε � | b |).
σ ∈ S and J ∈ R+

0 are two canonically conjugate variables. Without loss
of generality, we may assume b > 0 and ετ > 0. (Otherwise it is enough to
change the variables t into −t or σ into σ + π/k, respectively, to have those
conditions satisfied.) The restriction J ≥ 0 may be easily replaced by J ≤ 0.
Indeed the whole geometrical study of the surfaces Hk = const is done with
non-singular variables and (C.7) is valid for either J ∈ R+

0 or J ∈ R−
0 , if the

Andoyer Hamiltonian is written as

Hk = a |J | + bJ2 + ετ |2J |k/2 cos kσ (k = 1, 2, 3, 4) (C.2)

The only real restriction is that J is sign-definite.
Andoyer Hamiltonians arise naturally as the Hori kernels in the analysis

of resonant systems in the neighborhood of the origin. The case k = 1 was
introduced in modern literature by Sessin, in 1981 [86], [89] and the com-
posed case k = 1, 2 by Gerasimov, in 1982 [38]. It is found since then, in the
literature, under the name “second fundamental resonance model” [49]. (The
“first” fundamental model is the pendulum, which arises as the Hori kernel
in the study of systems with a resonance occurring at a finite J .) It is worth
stressing the fact that σ, J are not the angle–action variables of the Andoyer
Hamiltonian, but those of the non-singular differential rotator Hamiltonian
H0 obtained from Hk when ε = 0.

The importance of these Hamiltonians was first recognized by Poincaré
and Andoyer. Poincaré pointed out the existence of the two stable solutions
when k = 1, but did not notice that they occur, one for σ = 0 and the other for
σ = π. In fact, he did not pay much attention to the center close to the origin
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290 C Andoyer Hamiltonian with k = 1

(the one that is misplaced in his figures) since it does not fulfill completely the
requisites of what is called a resonance center [81]. The first complete analysis
is due to Andoyer [2], who considered the composed Hamiltonian k = 1, 2,

aJ + bJ2 + ετ
√

|2J | cosσ + ετ ′J cos 2σ, (C.3)

and correctly pointed out the possibilities of oscillations about σ = 0 and
σ = π when the term ετ

√
|2J | cosσ dominates over the last one. This Hamil-

tonian also appeared when averaging the conservative Duffing equation [44].
Differential equations identical to those resulting from the Andoyer Hamil-
tonian were also considered by Pars [79] in his study of forced oscillations
of small amplitude. Extended models including J3 were considered by Bre-
iter [16].

C.2 Centers and Saddle Points

In this section, we determine the singular points of Andoyer Hamiltonians, a
necessary step to study their phase portraits. Because of the singularity at
J = 0, it is usual to introduce Poincaré’s non-singular variables1 (see Chap.
7):

x =
√
|2J | cosσ y =

√
|2J | sinσ. (C.4)

However, to have a unified geometric analysis of Andoyer Hamiltonians, we
prefer, here, to introduce a new angular variable

θ = kσ (C.5)

and the set of Cartesian-like variables defined by

X =
√
|2J | cos kσ Y =

√
|2J | sin kσ. (C.6)

The main property of these transformations, in what concerns the study
of the singular points of (C.1), is the k–folding due to (C.5). However, it is
important to keep in mind that, when k �= 1, the transformation to (X,Y ) is
a canonical transformation, but with a valence (multiplier) sk (where s is the
sign of J). However, we do not intend to use

Hk =
1
2
a(X2 + Y 2) +

1
4
b(X2 + Y 2)2 + ετ(X2 + Y 2)(k−1)/2X, (C.7)

as a Hamiltonian function, but only as a constant of the motion (energy) that
can be used to determine geometrical properties of the orbits, except at the
origin.
1 When canonical equations in non-singular variables are used, it is important to

recall that the corresponding canonical transformations are (σ, J) → (x, y) when
J < 0 and (σ, J) → (y, x) when J > 0.
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C.2 Centers and Saddle Points 291

The locus of the singular points of the system of curves defined by Hk =
const is given by

∂Hk

∂X
=

∂Hk

∂Y
= 0,

that is,

∂Hk

∂X
= 2DX + ετ(X2 + Y 2)(k−1)/2 = 0 (C.8)

∂Hk

∂Y
= 2DY = 0, (C.9)

where D is the partial derivative of Hk with respect to (X2 + Y 2):

D =
1
2
a +

1
2
b(X2 + Y 2) + ετ

k − 1
2

(X2 + Y 2)(k−3)/2X.

An immediate consequence of these equations is that Y = 0 and the sin-
gular points lie necessarily on the X-axis. Indeed, the other possibility from
(C.9) is D = 0. However, when this condition is introduced into (C.8), the
resulting equation may only be satisfied if ε = 0, that is, if the Hamiltonian
is reduced to the undisturbed differential rotator H0.

Introducing Y = 0 into (C.8), it becomes

aX + bX3 + kετ |X |k−1 = 0, (C.10)

where the introduction of |X | instead of X comes from the fact that this
quantity is the square root of X2, which is taken as positive, whichever is the
sign of X .

In order to know the nature of the singularity, we have to compute the
Hessian of Hk at the singular point:

∆k = [a+ 3bX2 + ετk(k − 1)X |X |k−3] [a + bX2 + ετ(k − 1)X |X |k−3],

where, as before, the same precautions concerning the sign of some terms
were taken. The singular point is a center or a saddle point according as ∆k

is positive or negative, respectively. For ∆k = 0 the singularity is a double
point.

Taking into account that the roots must satisfy (C.10), the previous equa-
tion may be reduced to

∆k =
[
2a+ ετk(4 − k)X |X |k−3

]
ετX |X |k−3. (C.11)

We note that the origin (X = 0, Y = 0) is always a singular point for
k �= 1. However, its nature cannot be obtained from the sign of ∆k, since
the change of variables defined by (C.6) is singular at the origin. In order to
determine the nature of the singular point at the origin, we may note that for
k ≤ 4 and under the condition ετ � b, the curves Hk = cte tend to regular
closed curves enveloping the origin as (X2 + Y 2) → ∞. Thus, if there are no
other singular points of higher orders, the topological nature of the singular
point at the origin is obtained from the simple rule “Number of centers =
Number of saddle points + 1”.
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292 C Andoyer Hamiltonian with k = 1

C.2.1 The Case k = 1

In this case, we have

H1 =
1
2
a(X2 + Y 2) +

1
4
b(X2 + Y 2)2 + ετX (C.12)

and (C.10) is a cubic equation,

aX + bX3 + ετ = 0, (C.13)

whose solution may be easily found using classical formulas.
Equation (C.13) has one, two or three real solutions according to the value

of a. We normalize the value of X using the factor

A1 = 3

√
4ετ
b

> 0,

and introduce the critical value

a∗1 = −3
2

3
√

2bε2τ2 = −3bA2
1

4
< 0. (C.14)

Then, (C.13) becomes
4ξ3 − 3αξ + 1 = 0, (C.15)

where

ξ =
X

A1
(C.16)

and
α =

a

a∗1
. (C.17)

When α ≥ 1, that is, a ≤ a∗1, (C.15) admits three real roots2:

ξ =
√
α cos

[
1
3

arccos (−α−3/2) +
2nπ
3

]
(n = 0, 1, 2). (C.19)

Figure C.1 shows the sectors in which the arguments of ξ are defined for
n = 0, 1, 2; the figure corresponds to the case π/2 ≤ arccos (−α−3/2) ≤ 3π/2.
2 In solving (C.15), we prefer to use analogies with some elementary transcendental

functions instead of the classical algebraic formula. The formulas giving these
analogies are

4 cos3 χ − 3 cos χ = cos 3χ when α ≥ 1

4 cosh3 χ − 3 cosh χ = cosh 3χ when 0 < α < 1 (C.18)

4 sinh3 χ + 3 sinh χ = sinh 3χ when α < 0

and the analogy with (C.15) is obtained by making ξ =
√

α cos χ, ξ = −√
α cosh χ

or ξ =
√−α sinh χ, respectively.
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C.3 Morphogenesis 293

n = 1 n = 2 n = 0

Fig. C.1. Argument of the roots on the unit circle

In the other possible case, 3π/2 ≤ arccos (−α−3/2) ≤ 5π/2, the figure has a
counterclockwise shift of 30 degrees and the order of the solutions correspond-
ing to n = 2 and n = 0 is interchanged.

When α = 1, the two real roots on the right-hand side coalesce into ξ = 1
2 ,

and (C.15) has two roots: one single and one double.
For α < 1, that is, a > a∗1, (C.15) admits only one real solution, which is

written

ξ = −√
α cosh

[
1
3

arccosh (α−3/2)
]
, (C.20)

when 0 < α < 1, or

ξ = −√−α sinh
[
1
3

arcsinh (−α)−3/2

]
(C.21)

when α < 0. If α = 0, the solution is ξ = −4−1/3.
The nature of these singular points is fixed by the sign of the Hessian

∆1 = a∗21 (α − 4ξ2)
(
α− 4

3
ξ2

)
.

Some easy calculations allow one to see that, for α ≥ 1, the rightmost root is
a saddle point and the two others are centers. When α = 1, the two rightmost
roots coalesce into a double point (∆1 = 0). For α < 1, the only remaining
root is a center at the left of the origin.

C.3 Morphogenesis

The morphogenesis of the curves H1 = const may be studied using the pa-
rameter a (or α). This parameter defines the existence, or non-existence, of
a resonance. For ε = 0, the Andoyer Hamiltonian degenerates into the non-
singular differential rotator studied in Sect. 7.4, whose solutions are circular
motions with frequency
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294 C Andoyer Hamiltonian with k = 1

a > 0 a < 0

Fig. C.2. Phase portraits of the undisturbed differential rotator H0. The arrows
show the direction of the motion when J > 0

ν0 =
∂Hk

∂J

∣∣∣∣
ε=0

=
(

a

|J | + 2b
)
J. (C.22)

All motions have the same direction when a·b > 0 (or a > 0, since we assumed
b > 0). A zero frequency, that is, a resonance, located at

|Jr | = − a

2b
, (C.23)

occurs when a · b < 0 (or a < 0). These undisturbed solutions are shown in
Fig. C.2.

The orbits defined by the Andoyer Hamiltonian H1 are shown in Fig. C.3
starting from values α < 1 (or a > a∗1), crossing the critical value α = 1 (or
a = a∗1 < 0), and going up to positive values of α.

The nomenclature of the different regimes of motion in this resonance is
not unambiguously established. In the case α > 1, we have to distinguish
between oscillations about two centers.

(a.) The center appearing near the origin, at its right in Fig. C.3 (bottom
right), which, using a purely topological point of view, may be seen as the
new position of the center of the unperturbed differential rotator (H0), just
slightly shifted to the right of the origin because of the linear perturbation.
The motions around this center are called circulations or, more exactly,
inner circulations, to distinguish them from the large orbits enclosing the
whole resonance region (the outer circulations).

(b.) The new center and the domain surrounding it, appearing at the left of
the origin for α > 1 (a < a∗1) – see Fig. C.3 (bottom) – which comes from a
qualitative change of the phase portrait of the regular differential rotator
H0 due to the action of a perturbation on the zero frequencies located at
|Jr |. This region, with its center and saddle point, is the kind of modifi-
cation expected in these circumstances (Poincaré–Birkhoff theorem). The
motions inside it, around this new center are called librations.

Thus, from a topological point of view, circulations are all motions topo-
logically equivalent to the motions of the undisturbed differential rotator while
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α = −0.5 α = 0.5 α = 0

α = 1 α = 1.1 α = 2

Fig. C.3. Phase portraits of the Andoyer Hamiltonian H1 (b > 0, ετ > 0). The
origin of the (X, Y ) plane is marked with +. The arrows show the direction of the
motions when J > 0

librations are those that happen in the region of the phase portrait created
by the perturbation ετX .

However, the names circulation and libration have kinematical origin and,
according to their original definitions, circulations are motions on orbits go-
ing around the origin of the (X,Y ) plane while librations are motions on
closed orbits not including the origin. Since the center of the inner circula-
tions does not coincide with the origin of the (X,Y ) plane, the kinematical
and topological definitions are not equivalent, thus giving rise to ambiguities.
For instance, in asteroid dynamics, the asteroids known as “apocentric libra-
tors” have a regime of motion in which the critical angle oscillates about π
but, topologically, these librations are just inner circulations with amplitudes
small enough to allow the orbits not to include the origin of the (X,Y ) plane.
In this book, when it is necessary to consider these regimes of motion, they
will be referred to explicitly, to avoid ambiguities. For instance, the region
whose size is discussed hereafter is that of the motions about the center at
the left of the origin, that is, the topologically defined libration zone.

When α < 1, we have only one center and, from the topological point of
view, all motions are circulations. But, kinematically, we always have circu-
lating and librating solutions.

The regimes of motion and bifurcations ofH1 are schematically represented
in Fig. C.4, where we have introduced the energy unit
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- 2 .0 - 1 .0 0 .0 1 .0 2 .0 3 .0 4 .0
α

- 2 .5

- 1 .5

- 0 .5

0 .5
C

Cir culat ion
(outer & inner )

L ibr ation

Cir culation Cir culation (outer )
n = 2

1

T

n
=

1

n
=

0

No s olut ions ex is t

Fig. C.4. Morphogenesis of the solutions of H1. The lines n = 1 and n = 2 corre-
spond to the centers and the line n = 0 to the saddle point. T corresponds to the
cusp

H∗
1 =

1
4
bA4

1 (C.24)

and considered (C.12) restricted to the axis Y = 0 as

C1 =
H1

H∗
1

∣∣∣∣
Y =0

= ξ4 − 3
2
αξ2 + ξ. (C.25)

It is worth noting that the catastrophe set separating the families of curves
with three singular points from those having only one singular point does not
happen for α = 0, but for α = 1 (a = a∗1). For α = 1, the frequency of the
undisturbed differential rotator H0 vanishes at

|Jr | =
3
2

(ετ
2b

)2/3

=
3
8
A2

1.

For 0 < α < 1, the resonance (or zero frequency) still appears in the undis-
turbed differential rotatorH0 at J = Jr. Nevertheless, in this interval, the only
qualitative effect visible in the phase portraits of the Andoyer Hamiltonian
H1 is the shift of the center to the left of the origin.

Exercise C.3.1. Show that, for α = 0, the normalized energy C1 correspond-
ing to the center is C1 = −3 × 4−4/3.

Exercise C.3.2. Show that, at the cusp, C1 = 0.1875.

C.4 Width of the Libration Zone

The width of the libration zone is given by the intersections with the X-axis
of the two separatrix branches emanating from the saddle point. Let ξ1 be the
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Fig. C.5. Width and location of the libration zone

value of ξ at the saddle point and ξ2, ξ3 its values at the other intersections.
The d’Alembert form of the polynomial (C.25) is

(ξ − ξ1)2(ξ − ξ2)(ξ − ξ3) = 0;

hence

ξ4 − (2ξ1 + ξ2 + ξ3)ξ3 + [ξ2
1 + 2ξ1(ξ2 + ξ3) + ξ2ξ3]ξ2

−[ξ2
1(ξ2 + ξ3) + 2ξ1ξ2ξ3]ξ + ξ2

1ξ2ξ3 = 0. (C.26)

Comparing the coefficients of ξ3, ξ2 and ξ0 in (C.25) and (C.26), we obtain

2ξ1 + ξ2 + ξ3 = 0,

ξ2
1 + 2ξ1(ξ2 + ξ3) + ξ2ξ3 = −3α

2
and

ξ2
1ξ2ξ3 = −C1,

respectively. The two first results may be combined to give the width of the
resonance

∆ξ = ξ2 − ξ3 =
√

6α− 8ξ2
1 . (C.27)

ξ1 is the normalized abscissa of the saddle point and, for ετ > 0, the rightmost
of the three roots of (C.26):

ξ1 =
√
α cos

[
1
3

arccos (−α−3/2)
]

(C.28)

(note that ξ2 and ξ3 are not roots of (C.15) and that ξ3 < ξ2 < ξ1).
The functions ξ2(α) and ξ3(α) are shown in Fig. C.5 for α > 1.
In terms of Xj = A1ξj , we have

(X2 −X3)2 = −8a
b

− 8X2
1 . (C.29)
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If we prefer to measure the size of the libration zone using the actions J , we
use the immediate relation

∆J = |J3 − J2 | =
1
2
|X2 +X3|(X3 −X2) = X1(X2 −X3).

When ξ2 becomes positive, it is more appropriate to define the resonance
width through ∆ξ = |ξ3 | or, in the actions:

∆J = |J3 | =
1
2
X2

3 .

Two limits are important:

(a.) α = 1 (a = a∗1).
In this case, one center and the saddle point coalesce into a cusp and
ξ1 = ξ2. The cusp abscissa is ξ1 = 1

2 . Then X1 = A1ξ1 = 1
2A1 = 3

√
ετ/2b

and

X2 −X3 = 2A1 = 4 3

√
ετ

2b
; ∆J =

1
2
X2

3 =
9
8
A2

1 =
9
4

3

√
2ε2τ2

b2
.

The width of the libration zone in the (X,Y ) plane is of order O(ε1/3)
and, in the action J , of order O(ε2/3).

(b.) α � 1 (a � a∗1 < 0).
In this case, we may expand the trigonometric and inverse trigonometric
functions of (C.28) to obtain

ξ1 =
√

3α
2

− 1
6α

+ O(α−5/2).

Then, X1 =
√
−a/b and, from (C.27), ∆ξ ∼ 2 × (3α)−

1
4 , or

∆X ≈
√

8ετ√−ab ; ∆J ≈
√

8ετ
b

√
−a
b
.

The width of the libration zone is of order O(
√
ε) in the (X,Y ) plane as

well as in the action J .

Exercise C.4.1. Show that, when α = 3
√

2, the inner branch of the separatrix
passes through the origin.

C.5 Integration

Let us consider the first Andoyer Hamiltonian:

H1 = a |J | + bJ2 + ετ
√

|2J | cosσ. (C.30)
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To reduce the number of free constants, we introduce the same quantities used
in the study of the morphogenesis of H1, viz.

A1 = 3

√
4ετ
b

> 0, H∗
1 =

1
4
bA4

1, a∗1 = −3
2

3
√

2bε2τ2 = −3bA2
1

4
< 0,

the adimensional quantities

α =
a

a∗1
, C1 =

H1

H∗
1

,

and the scaled action

I =
|J |
A2

1

> 0. (C.31)

Equation (C.30) then becomes

C1 = −3αI + 4I2 +
√

2I cosσ. (C.32)

C1(σ, I) is the Hamiltonian of a dynamical system whose equations are

dσ
dt′

= −3α+ 8I +
1√
2I

cosσ

dI
dt′

=
√

2I sinσ. (C.33)

The definition of the new independent variable t′ must take into account that:

(1) the Hamiltonian was scaled by the factor H∗
1 ;

(2) the valence (multiplier) of the canonical transformation (σ, J) → (σ, I) is
λ = sA−2

1 (where s = ±1 is the sign of J) (see Sect. 1.5.2).

Then
t′ =

1
4
sbA2

1t = −1
3
sa∗1t. (C.34)

Equation (C.33) may be combined with the energy integral C1 = const to give(
dI
dt′

)2

= 2I − (C1 + 3αI − 4I2)2 ≡ P (I) (C.35)

= −16I4 + 24αI3 − (9α2 − 8C1)I2 + (2 − 6αC1)I − C2
1 .

To proceed with the calculation, we need to know the behavior of the
polynomial P (I). First of all, we notice that P (I) < 0 for all I < 0 (since,
in this case, P (I) is the sum of two negative parts). Therefore, all roots are
positive, except when C1 = 0, in which case one root is zero.

Let us now consider two consecutive real roots of P (I) delimiting one
interval where P (I) > 0. The motion in this interval may be obtained from
the integration of (C.35) and is given by
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t′ − t′0 =
∫ I

I0

dI√
P (I)

, (C.36)

where I0 is the smaller of the two real roots of P (I). The inversion of this
integral gives

I = I0 +
1
4
P ′(I0)

[
℘(t′ − t′0; g2, g3) − 1

24
P ′′(I0)

]−1

, (C.37)

where ℘ is Weierstrass’ elliptic function and g2, g3 are its invariants ( [98],
Sect. 20.6)

g2 =
1
3

(
8C1 +

9
2
α2

)2

− 12α

g3 =
1
27

(
8C1 +

9
2
α2

)3

− 2α
(

8C1 +
9
2
α2

)
+ 4.

The three constants appearing in this solution, C1, I0, t′0, are not inde-
pendent; indeed, the constants C1 and I0 are related by P (I0) = 0. To avoid
the solution of the quartic equation

C1 = 4I2
0 − 3αI0 +

√
2I0 cosσ0,

it is wise to keep I0 as an arbitrary integration constant and use it to obtain
C1. We recall that I0 is a point of minimum of I(t) and, therefore, sinσ0 = 0
(see C.33); in addition, if b > 0, ετ > 0 and the solution is a true libration,
σ0 = π (see Fig. C.3).

To make applications easier, Jacobian elliptic functions are introduced
instead of the Weierstrass function. To do this, we need to consider the sign
of

∆ = g3
2 − 27g2

3, (C.38)

the discriminant of the cubic resolvent of the equation P (I) = 0:

4e3 − g2e− g3 = 0. (C.39)

∆ is equal to zero for the values of C1 for which a double root occurs, that is,
at the values of C1 corresponding to centers and saddle points.

Exercise C.5.1. Show that the roots of the system formed by the equations
P (I) = 0 and P ′(I) = 0 are the singular points of the Hamiltonian H1. Hint:
Start with the definition of singular points.

Exercise C.5.2. Identify the domains where ∆ > 0 and ∆ < 0 in Fig. C.4.
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C.5.1 The Case ∆ > 0

In this case, the polynomial P (I) has four real positive roots and to each value
of C1 and α there corresponds one outer and one inner circulation3. In this
case, g2 > 0 while g3 may be either positive or negative.

When ∆ > 0, the Weierstrassian function ℘ is related to Jacobian elliptic
functions (see [1], Sect. 18.9) through

℘(t′ − t′0) = e3 +
e1 − e3

sn2z
, (C.40)

where e1, e2, e3 are the roots of (C.39) in decreasing order (e1 > e2 > e3),

z =
√
e1 − e3 (t′ − t′0)

and sn is the Jacobian sine amplitude elliptic function of modulus

κ1 =
√
e2 − e3
e1 − e3

.

It then follows that

I − I0 =
A sn2z

1 −B sn2z
, (C.41)

where

A =
P ′(I0)

4(e1 − e3)

and

B =
P ′′(I0) − 24e3
24(e1 − e3)

. (C.42)

It may also be convenient to introduce the Jacobian amplitude

φ = am z

and (C.41) becomes

I − I0 =
A sin2 φ

1 −B sin2 φ
. (C.43)

This formulation brings the additional problem of having to solve the
algebraic equation (C.39). This may be easily done using the first of (C.18).
Then

ei =
√
g2

3
cos

[
χ

(
mod

2π
3

)]
,

where

3 One should remember that P (I) is not an integral of the motion. The classification
of the roots of P (I) and, correspondingly, of the solution types, following the
values of two parameters, is however possible. See [87].
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χ =
1
3

arccos

√
27g2

3

g3
2

(
0 ≤ χ ≤ π

6

)
.

Then, in the order requested by their definitions,

e1 =
√
g2

3
cosχ

e2 =
√
g2

3
cos

(
χ+

4π
3

)
(C.44)

e3 =
√
g2

3
cos

(
χ+

2π
3

)
.

One may note that the well-known relations e2.g3 < 0 and e1 + e2 + e3 = 0
are satisfied.

C.5.2 The Case ∆ < 0

In this case P (I) has only two real roots. When α > 1 (or a < a∗1), the
corresponding motions are outer circulations or librations; otherwise, they
belong to the only regime of motion existing for α < 1 (or a > a∗1). All sign
combinations of g2 and g3 are possible.

When ∆ < 0,

℘(t′ − t′0) = e2 + η
1 + cnz
1 − cnz

, (C.45)

where e2 is the only real root of (C.39),

z = 2
√
η (t′ − t′0),

η =
√

3e22 −
g2

4

and cn is the Jacobian cosine amplitude elliptic function of modulus

κ2 =
√

1
2
− 3e2

4η
.

It then follows that

I − I0 =
A′(1 − cn z)

2 −B′(1 − cn z)
, (C.46)

where

A′ =
P ′(I0)

4η

and

B′ =
P ′′(I0) + 24(η − e2)

24η
. (C.47)
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If we introduce the Jacobian amplitude

φ′ =
1
2

am z,

(C.46) becomes

I − I0 =
A′ sin2 φ′

1 −B′ sin2 φ′ . (C.48)

Transforming back to elliptic functions one may see that (C.46) can be written
in the same form as (C.41):

I − I0 =
A′ sn2z′

1 −B′ sn2z′
,

where z′ = am−1φ′ = am−1(1
2 am z) is no longer a function linear with

respect to t′, at variance with z.
Once more, we have to solve the algebraic equation (C.39), which is done

using the second and third of (C.18) according to g2 > 0 and g2 < 0, respec-
tively. We then have, for g2 > 0,

e2 = ±
√
g2

3
coshχ, (C.49)

where

χ =
1
3

cosh−1

√
27g2

3

g3
2

and, for g2 < 0,

e2 = ±
√

−g2

3
sinhχ, (C.50)

where

χ =
1
3

sinh−1

√
27g2

3

−g3
2

.

In (C.49) and (C.50), the sign in front of the square root is to be chosen equal
to the sign of g3. One should keep in mind that these solutions are numerically
unstable in the neighborhood of g2 = 0, in which case their limits for g2 → 0
should be used.

C.5.3 The Separatrices

Let us consider, now, the motion along the separatrices. In this case, ∆ = 0,
the integral given by (C.36) is only pseudo-elliptic and the Weierstrassian
function of (C.37) degenerates into elementary transcendental functions. The
motions along the separatrices are asymptotic to the unstable equilibrium. A
numerical study shows that g3 < 0. Then (see [1], Sect. 18.12),
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304 C Andoyer Hamiltonian with k = 1

℘(t′ − t′0) = c+
3c

sinh2 z
, (C.51)

where

c =
√
g2

12
= 3

√
−g3

8
= −3g3

2g2

and
z =

√
3c(t′ − t′0).

Hence

I − I0 =
A′′ sinh2 z

1 −B′′ sinh2 z
, (C.52)

where

A′′ =
P ′(I0)
12c

and

B′′ =
P ′′(I0)

72c
− 1

3
.

In the specific case of the separatrix asymptotic to the cusp, occurring
when α = 1 (a = a∗1), we have g2 = g3 = 0 and then

℘(t′ − t′0) =
1

(t− t0)2
. (C.53)

Therefore, the motion asymptotic to the cusp is given by

I − I0 =
6P ′(I0)(t′ − t′0)

2

24 − P ′′(I0)(t′ − t′0)2
. (C.54)

C.5.4 The Angle σ

The canonical equations issued from the Hamiltonian C1 were reduced to only
one differential equation in I, which was integrated to give I(t′). To complete
the solution of the canonical system it is also necessary to obtain σ(t). This
can be obtained from

sinσ =
1√
2I

dI
dt′

=
d
dt′

√
2I. (C.55)

One should keep in mind that, in this equation,
√

2I means the positive branch
of the square root. Thus, I(t′) increases monotonically when sinσ > 0 and
decreases when sinσ < 0. This is also the behavior of J(t) as one may observe,
in the case J > 0, in Fig. C.3. (When J < 0, J(t) increasing means |J(t) |
decreasing and the arrows in Fig. C.3 are inverted.)
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Fig. C.6. Location of the equilibrium points. Case k = 1

C.6 Equilibrium Points

Let us study the stable equilibrium points of H1. The location of these points
on the horizontal axis of the (X,Y ) plane, in terms of the scaled variables ξ,
is shown in Fig. C.6.

At the equilibrium points we have, simultaneously, P (I0) = 0 and P ′(I0) =
0 (see Exercise C.5.1). Solving these two equations with respect to the para-
meters α and C1, we obtain

C1 = −4I2
0 ± 1

2

√
2I0

α =
1
3

(
8I0 ± 1√

2I0

)
, (C.56)

where the double sign is taken as positive when σ = 0 and negative when
σ = π.

The corresponding values of g2 and g3 are

g2 =
1
12

(
1

2I0
∓ 8

√
2I0

)2

g3 =
1

216

(
1

2I0
∓ 8

√
2I0

)3

.

We note that the double sign is, in these equations, the opposite of that of
the preceding ones. One may also note that g2 and g3 are such that ∆ =
g3
2 − 27g2

3 = 0.
At the equilibrium points, we also obtain
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P ′′(I0) = − 1
I0

± 16
√

2I0 = −12
√
g2

3
.

It is worthwhile noting that the final result is such that P ′′(I0) < 0 at both
centers, a result in agreement with the fact that these points correspond to
maxima of P (I)

C.6.1 The Inner Circulations Center

This center is located on the positive semi-axis (ξ > 0) and is the ∆ → 0 limit
of the case ∆ > 0. The discriminant of the cubic resolvent has, in this case,
one single and one double real root. Using (C.44), we obtain

e1 =
√
g2

3
(C.57)

and

e2 = e3 = −1
2

√
g2

3
(since χ = 0 when ∆ = 0).

B is given by (C.42). Therefore, from the equations given above, we obtain
P ′′(I0) − 24e3 = 0 and, then, B = 0.

C.6.2 The Libration Center

This center is located on the negative semi-axis (ξ < 0) and is the ∆ → 0
limit of the case ∆ < 0. The roots e2 and e3 of the discriminant of the cubic
resolvent are complex and the only remaining real root is

e2 =
√
g2

3
.

We also have

η =
√

3e22 −
g2

4
=

3
2
e2. (C.58)

B′ is given by (C.47) and, from the equations given above, we obtain P ′′(I0)+
24(η − e2) = 0 and, then, B′ = 0.

C.7 Proper Periods

With the values of the several parameters determined in the previous section,
we may calculate the proper frequencies at the two centers, or, equivalently,
the proper periods. The actions I are π-periodic functions with respect to
the arguments φ and φ′. However, φ and φ′ are different functions of t′ and
the periods of the oscillations about the two equilibrium points need to be
calculated separately.
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C.7.1 Inner Circulations

In this case, ∆ > 0 and φ = am z. The variation of z in one period is 2IK
(since am0 = 0 and am2IK = π). Then

T ′ =
2IK(κ1)√
e1 − e3

,

where we have indicated the period by T ′ since the time variable of the given
solution is t′. To have the period in the actual timescale of the given Hamil-
tonian, we first note that, from (C.34),

T =
3T ′

|a∗1 |
=

4T ′

bA2
1

. (C.59)

Hence

T =
8IK(κ1)

bA2
1

√
e1 − e3

. (C.60)

In the limit, when the oscillation amplitude goes to zero, the ej have the limits
given by (C.57) and κ1 → 0. To find the period as a function of the initial
conditions, we recall that, in the limit, P ′′(I0) = 24e3. Hence

T → 8π
√

2
bA2

1

√
−P ′′(I0)

. (C.61)

We note that φ is a monotonically increasing or decreasing function ac-
cording to J > 0 or J < 0, respectively.

C.7.2 Librations

In this case, ∆ < 0 and φ′ = 1
2 am z. The variation of z in one period is 4IK

(since am0 = 0 and am4IK = 2π). Then

T ′ =
4IK(κ2)

2
√
η

and
T =

8IK(κ2)
bA2

1

√
η
. (C.62)

In the limit, when the libration amplitude goes to zero, η has the limit given
by (C.58), κ2 → 0 and

T → 4π
√

2
bA2

1

√
3e1

. (C.63)

T tends to a limit given by the same equation as the period of small-amplitude
librations (C.61). However, the limits of the two cases are not equal since I0
(and P ′′(I0)) are not the same at both equilibrium points
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C.8 The Angle Variable w

The angle variable is, by definition,

w =
2π(t− t0)

T
=

2π |t′ − t′0 |
T ′ . (C.64)

The origin of the angle w is taken at the lowest point of the solution in the
(σ, I) plane. The modulus in (C.64) is used because t′(t) is a monotonically
decreasing function when J < 0. (In the standard case b > 0, τ > 0.)

Exercise C.8.1. Show that

φ = ±w

2
+ O(κ2

1) (C.65)

and the same for φ′. Discuss the double sign on the right-hand side.

C.9 Small-Amplitude Librations

We may use the expansions of the elliptic functions to obtain harmonic ap-
proximations of the solutions in the case of small oscillations about one center.
However, the alternative formulation presented in Sect. 2.2, to obtain angle–
action variabes, is more convenient. We present, in this section, the direct
construction of the angle–action variables of the Andoyer Hamiltonian in the
case k = 1, for small-amplitude librations, using Fourier series to represent its
periodic solutions. It is worthwhile noting that this technique can be easily
extended to the Andoyer Hamiltonians with k > 1 and even to more complex
Hamiltonians including several trigonometric terms4.

The first and lengthy step is the construction of the periodic solutions
themselves. We represent the solutions of the Andoyer Hamiltonian by the
series

σ =
n∑

i=0

siγ
i J =

n∑
i=0

aiγ
i, (C.66)

where si and ai are undetermined periodic functions in the angle w and γ
is a free parameter of the order of the amplitude of the oscillations. (γ = 0
corresponds to one of the stable equilibria discussed in Sect. C.6.) For sim-
plicity, we assume s0 = 0, that is, the oscillations are around one center in
the right-hand side of the X-axis. There is no loss of generality in this choice
since a center on the negative semi-axis is moved to the right-hand semi-axis
when we perform the transformation σ → σ′ = σ+ π. It is important to keep
in mind that ẇ is not the same in all solutions and is itself also a function of
the parameter γ. We assume:
4 For the angle–action variables of the composed Andoyer Hamiltonian (C.3) with

the two harmonics k = 1, 2, see [74].
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ẇ = ω0 +
n∑

i=1

oiγ
i. (C.67)

The given series must satisfy the differential equations (assuming J > 0):

dσ
dt

= a+ 2bJ +
ετ√
2J

cosσ

dJ
dt

= ετ
√

2J sinσ.

However, when the series representing the solutions are substituted into the
differential equations written in this form, the results are cumbersome and
the task of identification of the undetermined coefficients is very complex. A
great deal of simplicity results from the introduction of the auxiliary variable
h =

√
2J and by multiplying the first equation by h to avoid denominators.

The above equations then become:

h
dσ
dt

= ah+ bh3 + ετ cosσ

dh
dt

= ετ sinσ. (C.68)

In what follows, we substitute the given series for σ and the series

h =
n∑

i=0

hiγ
i

in the above equations. The identification in powers of γ gives the equations
allowing for the determination of hi, si and oi. The equations resulting from
the identification are:

(a.) i = 0
ah0 + bh3

0 + ετ = 0, (C.69)

h′0 = 0,

where the prime indicates differentiation with respect to w. The second
equation shows that h0 is a constant and (C.69) allows this constant to be
determined. Equation (C.69) is the same cubic equation discussed in Sect.
C.2.1. The only difference is that, there, the unknown is the non-singular
variable X ∈ R while, here, it is h =

√
2J . To be consistent with the

choice s0 = 0, we assume that h > 0 and play with the sign of τ to recover
all solutions. Equation (C.69) may have up to three real roots according
to the value of α (see C.17). When α > 1, we have three real roots as indi-
cated in Fig. C.1 by n = 0, 1, 2. n = 1 corresponds to the libration center;
to have it on the positive semi-axis, we choose σ so that τ < 0. This is
the case considered in this section. n = 0 corresponds to the center of the
inner circulations and we should choose τ > 0 to study this case. n = 2
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corresponds to a saddle point and is of no interest here. When α < 1,
the only remaining root is a continuation of the libration center that will
be on the positive side for τ < 0. In the latest cases, the solutions are in
the neighborhood of the origin and we need to use non-singular variables.
This is the subject of Exercises C.9.2 and C.9.3.

(b.) i = 1
ω0h0s

′
1 −Ξh1 = 0, (C.70)

ω0h
′
1 − ετs1 = 0,

where
Ξ = a + 3bh2

0.

These two equations are equivalent to the second-order equation

ω0h0s
′′
1 − ετΞ

ω0
s1 = 0. (C.71)

Since we have assumed that w is the angle variable, the proper frequency
of the solution may be equal to 1. Therefore,

ω0 =
√−ετΞ

h0
(C.72)

and the system has the particular solution

s1 = sinw

and, from (C.70),

h1 =
ω0h0

Ξ
cosw = − ετ

ω0
cosw.

The role of integration constants is played by the parameter γ and the
initial phase of w.
The above equations introduced the condition τΞ < 0, which is the con-
dition for which h0 is a stable equilibrium point. (See Sect. C.9.1. By
hypothesis, ε > 0, τ < 0.) The solutions are librations.

(c.) i = 2

ω0h0s
′
2 −Ξh2 = −o1h0 cosw +

aετ

Ξ
cos2 w − 1

2
ετ sin2 w,

ω0h
′
2 − ετs2 = −εo1

ω0
sinw.

These equations are transformed into the second-order equation

ω0h0(s′′2 + s2) = 2o1h0 sinw − 3ετω2
0

2Ξ2
sin 2w. (C.73)
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The existence, in the forced part, of terms with the same frequency as
the proper frequency of the associated homogeneous equation leads to
non-acceptable unbounded solutions. The elimination of the terms pro-
portional to sinw in the right-hand side of the equation is necessary and
gives the rule to determine the oi. In this simple case, we get o1 = 0.
Integration gives

s2 = − (Ξ − 2 bh2
0)

2

2ω0Ξ
sin 2w = − ω3

0

2Ξ3
sin 2w,

h2 = −ετ Ξ − 6 bh2
0

4Ξ2
+ ετ

Ξ − 2 bh2
0

4Ξ2
cos 2w.

We note the existence of a non-periodic term in h2 showing that the
large-amplitude oscillations do not have the same symmetry center as the
small-amplitude ones.

(d.) i = 3
Proceeding in exactly the same way, we obtain

o2 = − ετbh0

2ω0Ξ2
(2Ξ2 − 12Ξbh2

0 + 15 b2h4
0),

s3 =
8Ξ3 − 36Ξ2bh2

0 + 54Ξb2h4
0 − 27 b3h6

0

24Ξ3
sin 3w

and

h3 = ετ
Ξ3 + 8Ξ2bh2

0 − 48Ξb2h4
0 + 60 b3h6

0

8ω0Ξ3
cosw

−ετ Ξ
3 − 4Ξ2bh2

0 + 6Ξb2h4
0 − 3 b3h6

0

8ω0Ξ3
cos 3w.

The next orders are analogous. However, the results become cumbersome
and we omit them here. It deserves to be noted that we have to go to order
k + 1 to determine ok. From the equations for i = 4 and i = 5, we obtain
o3 = 0 and

o4 =
ετb2h3

0

16ω0Ξ5
(48Ξ4 − 648Ξ3bh2

0 + 2816Ξ2b2h4
0 − 5052Ξb3h6

0 + 3255 b4h8
0).

It is worthwhile mentioning that the five parameters appearing in the above
expressions (b, τ, ω0, h0, Ξ) are not independent, and these expression can be
written in many other equivalent ways.

The quality of the periodic solution thus constructed may be assessed from
Fig. C.7, which shows exact and approximated solutions of the Hamiltonian
shown in Fig. C.3 in the case α = 2, |ετ | = −0.3. The agreement is very good
up to libration amplitudes as high as 45 degrees, but deteriorates for larger
amplitudes.
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0

π/3

Fig. C.7. Solutions of the Hamiltonian shown in Fig. C.3 in the case α = 2, |ετ | =
0.3 (dash-dot lines) and neighboring solutions of the same Hamiltonian constructed
with the series, up to γ5 (solid lines). The dashed line corresponds to a libration
amplitude of 60 degrees

Exercise C.9.1. Show that, when τΞ < 0, the positive roots of the polyno-
mial P = bh3 + ah + ετ correspond to stable equilibrium points. Hint: Ξ is
the derivative of P at h = h0.

C.9.1 The Action Λ

Using the solutions up to γ5, the definition of the action variable leads to

Λ =
ω0h

2
0

2Ξ
γ2 − bh4

0

4ω0Ξ3
(6Ξ3 − 33Ξ2bh2

0 + 61Ξb2h4
0 − 38b3h6

0)γ
4. (C.74)

In the construction of the new Hamiltonian, we need to solve this equation
with respect to γ. At this order, we obtain,

γ2 =
2Ξ
ω0h2

0

Λ+
2b

h2
0Ξω

2
0

(6Ξ2 − 21Ξbh2
0 + 19 b2h4

0)Λ
2 + O(Λ3). (C.75)

C.9.2 The New Hamiltonian

In terms of the action Λ, the Hamiltonian may be obtained directly by substi-
tuting h and σ into the given Andoyer Hamiltonian (recalling that J = h2/2).
The result is:

H = −1
2
h0ετγ

2 +
ετ bh3

0

8Ξ3
(10Ξ2 − 30Ξbh2

0 + 23 b2h4
0)γ

4 + O(γ6), (C.76)

where the γ-independent term − 1
4h

2
0(a+ Ξ) was discarded. Using (C.75), the

above equation becomes

H = ω0Λ+
b

2Ξ2
(2Ξ2 − 12Ξbh2

0 + 15b2h4
0)Λ

2 + O(Λ3). (C.77)
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As expected, periodic terms are absent from H . Since the six parameters used
(a, b, τ, ω0, h0, Ξ) are not independent, we have to use the definitions of some
of them (e.g. ω0, h0, Ξ) to check the cancellation of the periodic terms.

A better approximation for H , using the solutions at the same order of
approximation as above, may be obtained from the integration of the equation
ω = ẇ = ∂H

∂Λ . From the solution up to i = 5, we obtain ω = ω0+o2γ
2 +o4γ

4 +
O(γ6), whose integration with respect to Λ gives the Hamiltonian up to O(Λ3)
(one order more than the Hamiltonian obtained from the direct substitution).

The explicit calculation gives, for the additional term of the Hamiltonian,

− b3h2
0

4ω0Ξ4
(64Ξ3 − 432Ξ2bh2

0 + 960Ξb2h4
0 − 705 b3h6

0)Λ
3.

Exercise C.9.2. Obtain the solutions of the equations of the motion in the
non-singular canonical variables x = h cosσ, y = h sinσ.

Exercise C.9.3. Adapt the solutions in non-singular canonical variables to
the case τ > 0 (small-amplitude inner circulation). Hint: See Exercise C.9.1.

Exercise C.9.4. Show that, in the case of inner circulations, the actions Λ
are negative.
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D

Andoyer Hamiltonians with k ≥ 2

D.1 Introduction

Andoyer Hamiltonians with k = 1 are important integrable systems that are
used as Hori kernels in the construction of the solutions of problems involving
first-order resonances1. In the study of higher-order resonances, we need the
Andoyer Hamiltonians with k > 1 [60].

The study of the centers and saddle points of these Hamiltonians can be
done using the general equations derived in Sect. C.2.

D.2 The Case k = 2

The energy of the second Andoyer Hamiltonian is

H2 =
1
2
a(X2 + Y 2) +

1
4
b(X2 + Y 2)2 + ετ

√
X2 + Y 2 X (D.1)

and (C.10) becomes
aX + bX3 + 2ετ |X | = 0, (D.2)

whose roots may be easily found.
We normalize the value of X using the factor

A2 =

√
4ετ
b

(D.3)

and introduce the critical value

a∗2 = −2ετ = −bA2
2

2
. (D.4)

1 In the study of planetary motions, the order of a resonance (h̄ |ω) � 0 is defined

as k = |∑N

i=1
h̄i |. (The ωi are the high frequencies, the so-called mean motions.)
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316 D Andoyer Hamiltonians with k ≥ 2

Equation (D.2) then becomes

−αξ + 2ξ3 + |ξ | = 0, (D.5)

where

ξ =
X

A2
(D.6)

and
α =

a

a∗2
. (D.7)

Equation (D.5) has one root at the origin and the two others are given by

ξ = s

√
α− s

2
(s = ±1),

whose condition of existence is α − s > 0, that is α > −1 for the root in the
negative semi-axis and α > 1 for the root in the positive semi-axis.

The nature of these singular points is fixed by the sign of the Hessian

∆2 = −sa∗22 (α− s).

Since the condition of existence of the roots is (α−s) > 0, these singular points
are one center and one saddle point. The center is the root in the negative
semi-axis (in which case s = −1 and ∆2 > 0). The nature of the singularity
lying at the origin of the (X,Y ) plane is given by the topological rule given
in Sect. C.2: when |α | ≤ 1, it is a cusp, and, when |α | > 1, it is a center.

D.2.1 Morphogenesis

The morphogenesis of the curves H2 = const, when α varies, is shown in Figs.
D.1 and D.2. These curves are shown in two different planes: (a) the plane
of the coordinates (X,Y ) defined by (C.6); (b) the plane of the Poincaré
canonical variables (x, y) defined by (C.4)

In the (x, y) plane, the cusp at the origin of the (X,Y ) plane (when |α | ≤
1) gives rise to a saddle point while the center situated away from the origin
moves to the vertical axis and is duplicated. (One should keep in mind that
this picture corresponds to ετ > 0; when ετ < 0, the center lies on the positive
X semi-axis and, as a consequence, the centers resulting from the duplication
in the (x, y) plane remain on the horizontal axis.)

There are, in this case, two catastrophe sets, respectively at α = −1 and
α = +1. One of the catastrophe sets appears for α = 1, when the singularity
at the origin changes from a center (α > 1) to a saddle point (α ≤ 1).
In the Andoyer Hamiltonian k = 1, only orbit deformations are seen for
α ≤ 1. In this Hamiltonian, however, we have the formation of the figure
eight shaped separatrix and, inside it, the family of librations continue to
exist up to α = −1. At this point, a second catastrophe set appears and,
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D.2 The Case k = 2 317

α = −1.5 α = −0.5 α = 0

α = 0.3 α = 1 α = 1.5

Fig. D.1. Regimes of motion of H2 represented in the (X, Y ) plane. The origin of
the (X, Y ) plane is marked with +

α = −1.5 α = −0.5 α = 0

α = 0.3 α = 1 α = 1.5

Fig. D.2. Phase portraits of the Andoyer Hamiltonian H2
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318 D Andoyer Hamiltonians with k ≥ 2

- 2 - 1 0 1 2 3 4 5

α

- 2

- 1

0

1 C
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Fig. D.3. Morphogenesis of the solutions of H2

for α < −1, the origin becomes a center again and the flow of trajectories
is topologically equivalent to that of the undisturbed differential rotator. We
may also note that the effects of the resonance appear in the phase portrait
even in the interval −1 < α < 0, when no change in the direction of the
motions is seen in the phase portrait of the undisturbed differential rotator
H0. (The resonance is “virtual”. See Sect. 9.1.)

The morphogenesis is schematically represented in Fig. D.3 where we in-
troduced the energy unit

H∗
2 =

1
4
bA4

2 (D.8)

and considered (D.1) restricted to the axis Y = 0, as

C2 =
H2

H∗
2

∣∣∣∣
Y =0

= ξ4 − αξ2 + ξ |ξ |. (D.9)

When k ≥ 2 the ambiguities of the nomenclature discussed in Sect. C.3 no
longer exist. In these cases, the origin of the (x, y) plane is always a singular
point (center or saddle point), thus, topological and kinematical points of view
lead to equal classifications.

Exercise D.2.1. Show that, in the (X,Y ) plane, when |α | < 1, the angle
between the tangents to each branch of the cusp and the X-axis is

Φcusp = lim
J→0

Φ = arccos (α)

and interpret the cases α = −1, α = 0 and α = +1.

D.2.2 Width of the Libration Zone

The width of the libration zone is given by the intersection of the separatrix
and the X-axis. In the calculations of the boundaries of ∆X , we have to
consider two different subcases following |α | < 1 or α > 1. These boundaries,
as functions of α, are shown in Fig. D.4
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Fig. D.4. Width and location of the libration zone. Case k = 2

(a.) |α | < 1 ( |a | < 2ετ)
In this case, since the separatrix ends at the origin, we have H2sep =
0. The other intersection with the X-axis is given by the other root of
H2(X, 0) = 0 or C2(ξ) = 0. Hence

∆ξ =
√

1 + α; ∆X =

√
4ετ − 2a

b
; ∆J =

2ετ − a

b
.

The width of the resonance zone is zero when a = −a∗2 (α = −1) and
increases to reach

∆ξ =
√

2; ∆X =

√
8ετ
b

; ∆J =
4ετ
b

at a = a∗2 (α = +1). It is of order O(
√
ε) in the (X,Y ) plane and of order

O(ε) in the action J .

(b.) α > 1 (a < −2ετ)
This case is very similar to the case k = 1 considered in Sect. C.4, but it
cannot be studied by just using some elementary theorems on polynomials,
as was done there, because H2(X, 0) is not a polynomial, but a matching
of two bi-quadratic polynomials, one for X positive (s = +1) and the
other for X negative (s = −1). However, since only even powers of X
appear in H2(X, 0), the direct calculation is simple. The intersections of
the separatrix with the X-axis are given by H2(X, 0) = H2sep. The value
of H2sep is the value of H2 at the saddle point, which is known, since
the value of X at the saddle point is the root of (D.2) corresponding to
s = +1. In normalized variables

ξsad =

√
α− 1

2
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320 D Andoyer Hamiltonians with k ≥ 2

and

C2sep = C2(ξsad) = −
(
α− 1

2

)2

.

The boundaries of the libration zone are the two negative roots of the
equation

ξ4 − (α+ 1)ξ2 − C2sep = 0,

that is,

ξ2,3 = −
√
α± 1√

2
.

Therefore2

∆ξ =
√

2; ∆X =

√
8ετ
b

; ∆J =
√−8aετ

b
.

It is noteworthy that, in this case, ∆X is independent of α and is of order
O(

√
ε). In the action J , the width of the libration zone is of order O(ε), at

the limit value a = a∗2 = −2ετ , and becomes of order O(
√
ε) for a finite. The

functions ξ2(α) and ξ3(α) are shown in Fig. D.4

D.3 The Case k = 3

The energy of the third Andoyer Hamiltonian is

H3 =
1
2
a(X2 + Y 2) +

1
4
b(X2 + Y 2)2 + ετ(X2 + Y 2)X (D.10)

and the equation giving the singular points is

aX + bX3 + 3ετX2 = 0. (D.11)

We normalize X using the factor

A3 =
3ετ
2b

(D.12)

and introduce the critical value

a∗3 = −9ε2τ2

4b
= −bA2

3. (D.13)

Equation (D.11) then becomes

−αξ + ξ3 + 2ξ2 = 0, (D.14)

where

2 ∆J = 1
2
|X2

2 − X2
3 | = 1

2
∆X |X2 + X3 |.
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D.3 The Case k = 3 321

ξ =
X

A3
(D.15)

and
α =

a

a∗3
. (D.16)

When α > −1, (D.14) has one solution at the origin and the others at the
points

ξ = −1 ±√
1 + α. (D.17)

When α = −1, the two roots away from the origin coalesce into a cusp at
ξ = −1 and, for α < −1 these two roots are no longer real and the origin is
the only remaining real root.

The Hessian of H3 is

∆3 = −4
3
a∗23 ξ(α− ξ)

or, taking (D.14) and (D.17) into account,

∆3 = ±4
3
a∗23 ξ2

√
1 + α.

Therefore, the singular points situated away from the origin of the (X,Y )
plane are, always, one center and one saddle point. The origin is a center.
The only exception occurs when α = 0, in which case one of the roots defined
by (D.17) (the saddle point) coalesces with the center located at the origin
giving rise to a cusp. This cusp is not apparent in the corresponding phase
portrait, in Fig. D.1, because the two cusp branches have vertical tangent at
the cusp. After the triplication of the polar angle, the origin becomes, in the
(x, y) plane, a second-order saddle point with three stable and three unstable
branches concurring there.

D.3.1 Morphogenesis

The curves H3 = const are shown in Figs. D.5 and D.6 for several values of
the parameter α. They are shown in two different planes: the (X,Y ) plane
and the (x, y) plane. There are, again, two catastrophe sets: one at α = 0,
when the saddle point, whose abscissa is

ξsad = −1 +
√

1 + α,

crosses the origin, passing from one side of the X-axis to another; the other
at α = −1, when the number of singular points in the (X,Y ) plane changes
from 1 to 3.

The morphogenesis of these orbits is schematically represented in Fig. D.7
where we introduced the energy unit

H∗
3 =

1
4
bA4

3
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α = −1.5 α = −1 α = −0.9

α = 0 α = 2

Fig. D.5. Regimes of motion of H3 represented in the (X, Y ) plane. The origin of
the (X, Y ) plane is marked with +

α = −1.5 α = −1 α = −0.9

α = 0 α = 2

Fig. D.6. Phase portraits of the Andoyer Hamiltonian H3
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Fig. D.7. Morphogenesis of the solutions of H3

and considered (D.10), restricted to the axis Y = 0, as

C3 =
H3

H∗
3

∣∣∣∣
Y =0

= ξ4 +
8
3
ξ3 − 2αξ2. (D.18)

Exercise D.3.1. Show that, in the (X,Y ) plane, when the saddle point is
not too close to the origin, the angle Φ between the tangents to the branches
of the saddle point and the X-axis is

Φ = arctan
(

lim
X→Xsad

Y

X −Xsad

)
= ± arctan

√
3(ξsad + 1) (D.19)

and interpret the limit α → −1. Hint: The expansion of H3 about the saddle
point is

H3 = H3(Xsad, 0) +
(
bX2

sad +
3
2
ετXsad

)
(X −Xsad)2 − 1

2
ετXsadY

2 + · · ·

Exercise D.3.2. Show that (D.19) is not valid in the limit α = 0.

Exercise D.3.3. Show that, in the case α = 0, when the saddle point coa-
lesces with the center situated at the origin, the angle Φ between the X-axis
and the tangents to the singular point thus formed is 90◦. Hint: When α = 0,

the curve H3 = 0 degenerates into a circle with center at
(
−2ετ

b
, 0
)

and

radius 2ετ/b.

D.3.2 Width of the Libration Zone

The intersection of the separatrix with the X-axis are given by the roots of
C3 = C3sad. Since ξsad is a double root of C3 − C3sad = 0, we may divide the
left-hand side of this equation by (ξ − ξsad)2. The result is
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324 D Andoyer Hamiltonians with k ≥ 2

ξ2 +
(
ξsad +

4
3

)
(2ξ + ξsad) = 0, (D.20)

where (D.14) was used to simplify ξsad in the result. The other intersections
of the separatrix with the axis Y = 0 are given by the solutions of (D.20):

ξ2,3 = −ξsad − 4
3

(
1 ±

√
1 +

3ξsad
4

)
.

The width of the resonance zone is calculated differently in the cases −1 <
α < 0 and α > 0.

(a.) −1 < α < 0 (0 < a < |a∗3 |)
In this case the libration zone is the lobe not including the origin. These
particular librations are indicated with the label Le–type3 in Fig. D.7.
Adopting ξ2 > ξ3, it follows that

∆ξ = ξsad − ξ3 = 2ξsad +
4
3

(
1 +

√
1 +

3ξsad
4

)
,

∆X = 2Xsad +
2ετ
b

(
1 +

√
1 +

bXsad

2ετ

)
and

∆J =
3ετXsad

b
+

4ε2τ2

b2

(
1 +

bXsad

2ετ

) 3
2

.

The width of the libration zone is zero when α = −1 (ξ3 = ξ2 = −1)
and it grows up to 4ετ/b as α → 0, in the (X,Y ) plane, or 4ε2τ2/b2, in
the action J . The boundaries ξsad and ξ3 delimiting the libration lobe are
given by the leftmost arc in Fig. D.8. The vertex A represents the point
where this lobe vanishes and merges with the origin.

(b.) α > 0 (a < 0)
In this case the libration zone is delimited by the two branches of the
separatrix. Then

∆ξ = ξ2 − ξ3 =
8
3

√
1 +

3ξsad
4

;

∆X =
4ετ
b

√
1 +

bXsad

2ετ
and

∆J =
8ε2τ2

b2

(
1 +

bXsad

2ετ

) 3
2

(D.21)

3 Mnemonic for the lemniscata-like appearance of the separatrix.

Page: 324 job: b macro: svmono.cls date/time:20-Oct-2006/9:21



D.4 The Case k = 4 325

- 1 0 0 1 0 2 0 3 0 4 0

-1 0

-8

-6

-4

-2

0

2

                  ξ
 
 
 
ξ

2

ξ
s ad

ξ

α

3

A

Fig. D.8. Width and location of the libration zone. Case k = 3

The width of the libration zone is of order O(ε) in the (X,Y ) plane and
O(ε2) in the action J . The functions ξ2(α) and ξ3(α) are shown in Fig. D.8.

(c.) α � 1 (a � a∗3)
Now, the distance of the saddle point to the origin may be approximated
by Xsad ≈

√
−a/b, that is, Xsad is finite and |bXsad/2ετ | � 1. Hence

∆X ≈
√

8ετXsad

b
,

which is of order O(
√
ε). In the same way

∆J ≈
√

8ετX3
sad

b
,

which is also of order O(
√
ε).

D.4 The Case k = 4

The energy of the fourth Andoyer Hamiltonian is

H4 =
1
2
a(X2 + Y 2) +

1
4
b(X2 + Y 2)2 + ετ(X2 + Y 2)

√
X2 + Y 2X (D.22)

and (C.10) becomes

−αX +X3 + ε1X
2 |X | = 0, (D.23)

where we normalized the parameters by introducing
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α = 0 α = 0.1 α = 0.6

Fig. D.9. Regimes of motion of H4 represented in the (X, Y ) plane. The origin of
the (X, Y ) plane is marked with +

α = 0 α = 0.6

Fig. D.10. Phase portraits of the Andoyer Hamiltonian H4

α = −a

b
and ε1 =

4ετ
b
.

(X is not normalized since in this case we would have A4 = 1.) The only
critical value, in this case, is α = 0. When α = 0, the equation has just a
triple singular point at the origin. When α > 0 (a < 0), the equation has one
root at the origin and the others are given by

Xi = s

√
α

1 + sε1
(s = ±1)

(note that 0 < ε1 < 1 if b > 4ετ > 0). When α < 0 (a > 0), there is only one
singular point, which is a center at the origin.

The Hessian of H4 is

∆4 = 2aετX |X | = −1
2
αb2ε1X |X |. (D.24)

Therefore, the singular points situated away from the origin (when α > 0) are
one center and one saddle point. (The center is the singular point lying on
the negative semi-axis.)
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Fig. D.11. Morphogenesis of the solutions of H4

D.4.1 Morphogenesis

The morphogenesis of the curves H4 = const, is simpler than those shown in
the previous sections. The regimes of motion and bifurcations are shown in
Figs. D.9 and D.10, in the (X,Y ) and (x, y) planes, respectively. The only
catastrophe set corresponds to α = 0. In this set, the origin is a triple root
of (D.23), where the saddle points and the two centers coalesce into a center
at the origin. The two rightmost portraits in Fig. D.9 show how the whole
structure inside the separatrix is squeezed into a vanishing neighborhood of
the origin when α → 0 (α > 0) with almost no changes. The morphogenesis is
schematically represented in Fig. D.11 where we have introduced the energy
unit

H∗
4 =

b

4
.

On the axis Y = 0, we have

C4 =
H4

H∗
4

∣∣∣∣
Y =0

= X4 − 2αX2 + ε1 |X |X3. (D.25)

The curves separating the regimes of motion in the half-plane α > 0 are arcs
of the parabolas C4 = −α2/(1 ± ε1). The lower parabola corresponds to a
center.

D.4.2 Width of the Libration Zone

The intersections of the separatrix with the X-axis are given by the roots
of C4 = C4sep. As in the case k = 2, we have to remember that C4 is not
a polynomial, but a matching of two bi-quadratic polynomials, one for X
positive (s = +1) and the other for X negative (s = −1).

According to (D.24), the saddle point is the singularity for which s = +1
and the values of C4 at the two other intersections of the separatrix are given
by
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328 D Andoyer Hamiltonians with k ≥ 2

C4sep = C4(Xsad) = − α2

1 + ε1
.

The boundaries of the resonance zone are the two negative roots of the
bi-quadratic equation C4(X) = C4sep (see Fig. D.9), that is,

(1 − ε1)X4 − 2αX2 +
α2

1 + ε1
= 0. (D.26)

They are

Xi = −
√

α

1 − ε1

(
1 ±

√
2ε1

1 + ε1

)
.

Then

∆X =
√

α

1 − ε1

⎛⎝√
1 +

√
2ε1

1 + ε1
−
√

1 −
√

2ε1
1 + ε1

⎞⎠
and

∆J =
2α

1 − ε1

√
2ε1

1 + ε1
.

If ετ � b, then ε1 � 1 and we may write the approximate equations

∆X =
√

2αε1 ∆J = 2α
√

2ε1. (D.27)

The limits in this case are immediate. The width of the resonance is 0 when
α = 0 and is of order O(

√
ε) when α is a finite quantity.

Exercise D.4.1. Modify (D.26) to make it valid in the positive semi-axis
X > 0 and show that the only roots of C4 = C4sep are, indeed, the above
calculated two roots and the saddle point.

D.5 Comparative Analysis

Let us summarize the topological evolution of the solutions. In all cases, when
α � 0 (a � 0), Hk(X,Y ) has three singular points, all of them in the X-
axis, in the order center–center–saddle while, when α � 0 (a � 0), only
one singular point – one center – remains. The transitions follow different
routes. For k = 1, one center and the saddle point coalesce into a cusp when
α decreases and reaches α = 1 (a = a∗1), disappearing for α < 1 (a > a∗1).
For k = 2 the transition is similar. However, what occurred in only one point
for k = 1, now occurs in the whole interval |α | ≤ 1 ( |a | ≤ |a∗2 |), where
the singular points are one center and one cusp. For k = 3, the transition is
more complex: when α decreases and reaches α = 0 (a = 0), a double point
forms, but the two singular points forming it are not destroyed, subsisting
for α < 0 (a > 0), with only the change in their relative positions. In the
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transition zone −1 < α < 0 (a∗3 < a < 0), the three singular points in the X-
axis are in the order center–saddle–center. Only when the two singular points
coalesce for the second time, do they disappear. For k = 4, there is no cusp
formation; in the transition at α = 0, all three singular points coalesce at the
origin.

The other point deserving a comparison is the width of the libration zone.
First of all, we mention that for finite a (a < 0), this width is of order O(

√
ε)

in the action J , as well as in the Poincaré canonical variables defined by (C.4)
for all k. This result is related to the introduction of the square root of the
small parameter discussed in Sect. 4.2. A similar study of the singularities of
the solution of the Hamilton–Jacobi equation in this case has not been done.
For practical purposes, the order of magnitude of the width of the libration
zones near the catastrophes gives the necessary indication. They are O( 3

√
ε),

O( 2
√
ε) and O(ε), for k = 1, 2 and 3, respectively. As a consequence, the series

solution of problems involving such resonances near the origin are calculated
using the powers of the cube root of the parameter, the square root of the
parameter or the parameter itself, according to the order of magnitude of the
width of the libration zone. If the square root of the small parameter used far
from the origin were adopted also for resonances near the origin, the rigorous
identification of the orders in the separation of perturbation equations would
be impaired. For instance, in the case of a first-order resonance, the adoption
of 2

√
ε as the small parameter leads to terms of higher fractional orders (e.g.

5/4), while the adoption of 3
√
ε, as indicated by the width of the resonance,

does not introduce spurious fractional orders and the perturbation equations
may be established without ambiguities, as seen in Chap. 9.

For k = 4, the libration zone width starts from zero and is of order O(a
√
ε).

A perturbation theory for this case should consider this particular width.
Andoyer Hamiltonians with k > 4 were not considered. Indeed, in real

problems, aJ + bJ2 is the leading part of the Taylor expansion of a function
H0(J) regular at the origin and higher-order terms ought also to be included
in H0(J) when k ≥ 5.

D.5.1 Virtual Resonances

Virtual resonances are present in the cases k = 2 and k = 3. In these cases,
topological changes are seen near the origin in the interval −1 < α < 0.
If the last term of the Andoyer Hamiltonians is seen as a perturbation of a
differential rotator, in the two quoted cases, this perturbation creates libration
zones for some negative values of α, notwithstanding the fact that no zero
frequencies appear in the phase portrait of the undisturbed differential rotator
in that cases (see Sect. 9.1). Indeed, the right-hand side of (C.23), giving the
critical value |Jr |, becomes negative for α < 0 and a circle where ν0 = 0 in
the undisturbed ε = 0 case does not exist in the real (x, y) plane. However,
it exists for “virtual” values of J , that is, for values of J corresponding to
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complex values of x, y and the disturbance created by the term ετX is wide
enough to be seen in the portrait of the system in the real (x, y) plane.
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action–angle, see angle–action

algebraic manipulators

branch choice, 202

almost periodic functions

mean value theorem, 154

Andoyer, 290

Andoyer Hamiltonians, 289
centers and saddle points, 290

comparative analysis, 328

libration width, 296, 318, 323, 327

morphogenesis, 293, 316, 321, 327

with k = 1, 192, 218, 226, 292–313

equilibrium points, 304

integration, 298–304

proper periods, 306

small-amplitude librations, 308

with k = 2, 210, 261, 315–320

with k = 3, 210, 320–325

with k = 4, 325–328
angle–action variables, 30–60, 179

in Lie series theory, 140

of a quadratic Hamiltonian, 57

of Andoyer Hamiltonian, 308

of the ideal resonance problem, 115

of the pendulum, 277, 280

apparent forces, 17

Arnold, 42, 69, 93, 241, 249

artificial satellite motion, 86, 265

asteroid motion, 77, 176, 191

asymptotic motions, 114, 182

averaging principle, 69

averaging rule, 68, 75, 106, 142
weak, 266, 270

Birkhoff normalization, 236
single resonance, 240
theorem, 237

Bohlin, 63, 182, 263
equation, 266, 269
Hamiltonian, 264
problem, 139, 181, 223, 263
theory, 103, 263

Bohr, H., 154
Bohr, N., 42
Born, 32, 42
Brouwer, 70, 265
Burgers, 42

canonical condition, 12, 133
canonical transformations, 6–13

conservative, 7
infinitesimal, 127
multiplier, 8
valence, 8

Cartesian-like variables, 290
Cauchy existence theorem, 132
Cauchy–Darboux theory of characteris-

tics, 154
central motions, 43, 56
centrifugal force, 17
characteristic curves, 152, 154
Charlier, 18, 42, 98

theory, 37
circulation, 21, 29, 110, 115, 272, 273,

277
inner, 294, 301, 302
outer, 294, 301

conditionally periodic, see multiperiodic
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conservative systems, 4
convergence, 63
coordinate–momentum order, 30
Coriolis force, 17
critical

angles, 75
terms, 76, 174

cubic equation, 292
cusp, 296

d’Alembert property, 164, 236
degeneracy

accidental, 50
complete, 51
essential, 50, 101, 235
in the sense of Kolmogorov, 88
in the sense of Schwarzschild, 50
isoenergetic, 94
proper, 93

degenerate
angles, 76
systems, 70, 93, 94

degree of homogeneity
as order of magnitude, 168, 184, 185,

211, 267
Delaunay

equation, 106
lunar theory, 99
operation, 99
problem, 61
theory, 103

extension, 269
variables, 1, 42, 52

singularities, 161
variation equations, 1

Delaunay–Morbidelli operation, 120
Delaunay–Poincaré equation, 106
Deprit, 137, 143
differential rotator, 166, 209, 293, 329
Diophantine condition, 89
divergence of the series, 88, 156
Duffing equation, 290

√
ε, 3

√
ε, see small parameter

eccentric anomaly, 48
eccentricity, 48

forced, 83
Einstein, 35, 42

theory, 35

elimination of harmonics, 118
energy

in extended phase space, 14
normalized, 284
total mechanical, 4

Epstein, 42
equinoctial elements, 163
equivalence of Lie and Jacobian

mappings, 129
Euler collinear solutions, 243
extended phase space, 13, 94

Ford–Lunsford Hamiltonian, 255
formal solution, 63, 232
frequency commensurability

exact, 234
multiple, 253
third and fourth order, 242

frequency relocation, 63, 89

Garfinkel, 103, 107, 204, 267
Garfinkel–Jupp–Williams Integrals, 109
generalized coordinates and momenta, 2
generalized potential energy, 15
Gerasimov, 289
Giorgilli, 98
gyroscopic

forces, 15
systems, 15, 60, 242

Hénon–Heiles Hamiltonian, 250
Hamilton, 18

equations, 4, 10
principle, 3

Hamilton–Jacobi equation, 18–20
complete solution, 19

Hamilton–Jacobi mapping, 20
Hamiltonian, 3

average, 158
quadratic, 57
quasiharmonic, 231
reduction, 4, 93, 154, 174
regular, 165

harmonic oscillator, 23, 32
Helmholtz invariant, 5, 35
Henrard, 41, 147, 165
Hill equation, 255
homological equation, 67, 73, 107, 141,

152, 171, 190, 212, 216, 236, 263
indetermination, 68

Page: 338 job: b macro: svmono.cls date/time: 20-Oct-2006/9:21



Index 339

Hori, 139
auxiliary equations, see Hori kernel
formal first integral, 157
general theory, 151
kernel, 153, 155, 171, 183, 216, 289

separated, 198
theory, see Lie series perturbation

theory

ideal resonance problem, 107–118,
204–207, 267

inclination, 50
initial conditions diagram, 225
involution, 24

Jacobi’s lemma, 26
Lie’s theorem, 27
Liouville’s theorem, 26
Mayer’s lemma, 24

Jacobi, 18, 26
identity, 130
partial differential equation, 18

Jacobian canonical transformation
inversion, 94

Jacobian generating function, 7
Jupp, 207

KAM
theory, 42, 63
tori, 89

Kepler motion, 47
Kolmogorov, 63

theorem, 88–94
Kramers, 42

L4, 244
stability, 249

Lagrange
brackets, 9
equilateral solutions, 244
formula, 95
implicit function theorem, 96
point transformation, 86, 174
variables, 162

Lagrangian, 3
law of structure, 226
least action principle, 4
Lemaitre, 41
libration, 22, 29, 112, 116, 272, 274,

278, 302

Le–type, 324
ambiguity in definition, 295, 318
apocentric, 295
center, 226
domain, 192
limits, 226
lobes, 182, 210
width, 277

Lie, 27
Lie derivative, 130

homogeneity, 131
Lie generating function, 129
Lie mapping, 20, 129

duality, 130
inversion, 134

Lie series, 131
canonical condition, 133
commutation theorem, 134
Deprit’s recursion formula, 137, 143
expansion, 136

about the origin, 167
in resonance neighborhood, 185, 187

perturbation theory, 139
comparison to classical, 144–151
in angle–action variables, 140
in non-singular variables, 169
in unspecified variables, 151

Lie transformation, 127
Lindstedt, 97

series, 98
theory, 263

Liouville, 26, 54
long-period terms, 73, 76, 236
longitudes, 163
lunar theories, 87

m < 0, 23
Mathieu equation, 255, 261
Maupertuis principle, 4
Mayer’s lemma, 24, 39
mean anomaly, 49
mean distance, 48
Mechanik des Himmels, 18
Melnikov integrals, 287
Message, 217
Méthodes Nouvelles, 103, 263
minimum principle, 267
Monge, 152
Morbidelli, 118
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multiperiodic systems, 35–57

non-degenerate, 52
actions, 62
degrees of freedom, 70
quasiperiodic solutions, 88

non-resonance condition, 69, 74, 88,
173, 181, 223, 233

non-singular variables, 162, 213, 290
nonlinear oscillators, 231
normal form, 237
normalization, 236

old Quantum Theory, 18, 31, 42
order of a resonance, see resonance

order

pendulum, see simple pendulum
parametrically perturbed, 286

periodic motions, 29
perturbation equations

Bohlin, 266
for resonant systems, 189, 215
Hori, 141
in non-singular variables, 170
Poincaré, 67
von Zeipel–Brouwer, 72

perturbation theory
equivalence of Lie series to classical,

144
phase integral, 31
Planck, 42
planetary theories, 87
Poincaré, 62, 70, 103, 228, 290

singularity, 182, 268, 270
theorem, 88
theory, 63, 263

equivalence to Lie series, 144
variables, 82, 162

Poincaré–Birkhoff theorem, 182, 209,
294

Poisson brackets, 11
splitting, 186, 214

Poisson terms, 98
post-harmonic solution, 221
post-pendulum solution, 197, 200
post-post-pendulum solution, 201, 206
proper degeneracy, 93
proper elements, 83, 97, 159

proper frequencies, 89
pseudo time, 155

reciprocity relations, 12
repetition numbers, 38
resonance, 51, 74, 101, 234

1:2:3, 255
abnormal, 103
higher-order, 315
in a neighborhood of the origin, 209
internal

2:1, 246
3:1, 247
higher orders, 249

non-central, 210
order, 211, 237, 315
overlap, 125
parametric, 255

nonlinear, 260
second fundamental model, 289
secondary, 183, 224, 226
secular, 183, 197, 223, 226
single, 213
virtual, 209, 318, 329

resonant oscillator, 234
restricted three-body problem, 242

elliptic, 77, 229
Riemann surface, 42, 48
rotating frames, 17
Routh critical mass ratio, 244
Routhian reduction, 4

Schwarzschild, 42, 50
transformation, 51

scissors averaging, 69
secular terms, 73, 76, 236
secular theory, 81, 159
semi-major axis, see mean distance
separable systems, 37, 42, 53

Liouville, 55
Stäckel, 56

separatrix, 303
separatrix crossing, 283, 286
separatrix map, 286
Sérsic, 139
Sessin, 227, 289

integral, 218, 227
transformation, 217, 227

asteroidal case, 229
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short-period terms, 73, 76, 236
simple pendulum, 107, 192, 271–288

separatrix, 272, 276
separatrix neighborhood, 283
small oscillations, 279

single-resonance problem, 181
singularities of the actions, 161
small-amplitude librations, 117, 280,

308
small divisors, 69, 74, 155
small parameter, 216

cube root, 211, 216, 298
square root, 101, 216, 263, 298, 319,

325
Sommerfeld, 31, 42, 48
Stäckel, 54
standard map, 288
super-convergent algorithm, 92
symplectic unit matrix, 10

three-phonon interaction, 254

Toda lattice, 252
topological constraint, 156
true anomaly, 49
twist mapping, 209

undetermined periodic components, 33,
281, 308

uniformized angles, 37
unspecified canonical variables, 151

virtual resonance, 209, 329
von Zeipel, 70

averaging rule, 73, 174, 190, 223, 235,
265

von Zeipel–Brouwer theory, 70–87, 256
equivalence to Lie series, 144
iterative use, 86, 93

Weierstrass
implicit functions theory, 103

whisker map, 286
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