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Preface

A dnica maneira de cumprir o trabalho era té-lo
como coisa lerda e continua, mansa, sem comego
nem fim, as maos sempre sujas da massa.

Joao Guimaraes Rosa, Buriti

The story of this book began in the late 1960s, when Prof. Buarque Borges
invited me to give a graduate course at the Aeronautics Institute of Technol-
ogy. The course was to deal with the perturbation theories used in Celestial
Mechanics, but they should be presented in a universal way, so as to be un-
derstandable by investigators and students from related fields of science. This
hint marked the rest of the story. The course evolved and for the past 30 years
was taught almost yearly at the University of Sao Paulo and, occasionally, in
visited institutions abroad. A long visit of Prof. Gen-Ichiro Hori to the Uni-
versity of Sao Paulo was the occasion for many illuminating discussions on
the subject.

Soon, in this story, came the project of a book. But two major obstacles
did not allow it to progress at that time. One of them was the concurrence
of many other time-consuming duties. The drafts of many chapters could
only be written during visits abroad: to Austin, Grasse, La Plata, Oporto,
Nice, Paris, Vienna, and the book could only be completed now, after my
formal retirement. The other obstacle, more determinant, was the fact that
theories able to treat Bohlin’s problem, a resonant Hamiltonian system with
two degrees of freedom, where the second degree of freedom is degenerate,
were not available. So, the book project had to wait for new investigations!

In accordance with the initial proposal, the aim of the book is to present
the main canonical perturbation theories used in Celestial Mechanics with-
out any involvement with the particularities of the astronomical problems to
which they are applied; one does not need to know Astronomy to read it. The
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other objective is to provide, in one book, all the information necessary for
the application of the theories. For instance, not only is it told how to actually
obtain action—angle variables, but they are explicitly given for important dy-
namical systems such as the simple pendulum, the Ideal Resonance Problem
and the first Andoyer Hamiltonian. In addition, every theory presented in the
book is followed by case studies and examples able to illustrate the directions
for their use in applications. For the sake of making the book useful as a hand-
book in investigations using perturbation theories, special care was taken to
avoid errors in the given equations. All my students have, in the past, com-
municated to me the errors found in the drafts. I have myself checked every
equation, but I am not foolish to say that no flaws remain. Transcriptions,
transpositions, and the work on ITEX source files are non-robust operations
that may have added new errors. A Web page will be created to inform readers
of any flaws finally remaining in the text.

The book is composed of 10 chapters and four appendices. The two first
chapters are devoted to some results of Hamilton—Jacobi theory. This short
presentation, where only points of practical interest are given a longer de-
velopment, is not a substitute for a full text on Analytical Dynamics. Many
sections were directly inspired by the seminal classes of the late Prof. Abrahao
de Moraes, which I had the privilege of attending in my undergraduate years
and by books with which I became acquainted in frequent visits to his per-
sonal library. One of them was Charlier’s Die Mechanik des Himmels, the
book referenced in many papers on fundamental Physics in the first decades
of past century.

Chapters 3 and 4 are devoted to perturbation theories where canonical
transformations are obtained by means of Jacobi’s generating function. These
chapters include the Poincaré theory for perturbed non-degenerate Hamiltoni-
ans, the von Zeipel-Brouwer theory for perturbed degenerate Hamiltonians,
the procedures of frequency relocation and quadratic convergence used by
Kolmogorov in the proof of his theorem, the theory used in Delaunay’s lunar
theory and the solution of Garfinkel’s Ideal Resonance Problem. It is worth
emphasizing that the definition of degeneracy used throughout this book, due
to Schwarzschild, is less strict than the definition of degeneracy used in Kol-
mogorov’s theorem.

Chapter 5 introduces Lie mappings and Chap. 6 reconsiders the study of
perturbed non-degenerate Hamiltonian systems with canonical transforma-
tions written as Lie series. Lie series theories in action—angle variables are
completely equivalent to those founded on Jacobian transformations and the
choice of one or another is a matter of work economy only. Their comparison
is done in two typical examples.

Chapter 6 introduces Hori’s theory with unspecified canonical variables
and this is the point where the equivalence to the old theories disappears.
Hori’s theory shows that every perturbation theory has a dynamical kernel,
the Hori kernel. From the algorithmic point of view, the Hori kernel is a
Hamiltonian system that repeats itself at every order of approximation, and
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whose Hamilton—Jacobi equation needs to be completely solved. From the
dynamical point of view, it forces the solutions given by perturbation theories
to have the same topology as the Hori kernel. However, generally, the Hori
kernel and the given Hamiltonian have different topologies and this difference
gives rise to the well-known small divisors.

In Chap. 7, it is shown how Hori’s theory with unspecified canonical vari-
ables allows the construction of formal solutions using non-singular Poincaré
variables, thus allowing the study of perturbed systems near the singulari-
ties of the actions. In Chaps. 8 and 9, the understanding of the role played
by the Hori kernel is the key to dealing with resonant systems with two or
more degrees of freedom presenting simultaneously resonant and degenerate
angles. The Hori kernels in these chapters are systems whose restrictions to
one degree of freedom are the simple pendulum and the first Andoyer Hamil-
tonian, respectively. The techniques discussed in Chap. 2 are used to extend
the action—angle of these models to the two-degrees-of-freedom Hori kernel.
Finally, in Chap. 10, the theories presented in the previous chapters are ap-
plied to some quasiharmonic Hamiltonian systems.

Appendix A is devoted to presenting Bohlin’s theory and an extension of
Delaunay’s theory and to discuss the difficulties presented by these theories
when applied to systems with more than one degree of freedom involving
simultaneously resonant and degenerate arguments.

Appendices B and C present the complete solutions of two integrable
Hamiltonians fundamental in resonance studies: the simple pendulum and the
first Andoyer Hamiltonian. The action—angle variables of these two Hamilto-
nians are constructed with the help of elliptic functions. Expansions in terms
of trigonometric functions valid in a neighborhood of the libration center are
also given. Appendix C also includes the construction of solutions in the neigh-
borhood of the pendulum separatrix and the associated whisker and standard
mappings. Appendix D presents the main features of some higher-order An-
doyer Hamiltonians.

One last comment on the contents of this book is that it is not aimed at
being an encyclopedia on the subject and does not cover every approach of the
problem. On the contrary, several sections and even one chapter not belonging
to the backbone of the subject were dropped during the revision. Canonical
perturbation theories are an old subject, and many approaches exist that were
not even mentioned in the book.

The list of references, at the end of the book, also deserves some comments.
One characteristic feature of this list concerns the old references where im-
portant concepts in present-day theories were introduced. It is human nature
to highlight the more recent contributions showing the importance of some
old concepts and to forget the founding fathers that introduced them much
earlier. Special attention was paid to give to them the acknowledgement that
they deserve and to inform new generations of their achievements. In what
concerns the recent references, we included only some items that have a very
direct relationship to what is written in this book. We considered it important
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not to let these few items disappear amid an exhaustive bibliography. This
choice was made having in mind that search engines on the internet may give,
nowadays, more and better bibliographical information than a long list at the
end of a book.

Acknowledgements. 1 thank my family for continuous support. Many friends
and colleagues have given me suggestions that helped to improve the book.
I thank all of them and, particularly, Prof. Jean Kovalevsky, who, long ago,
introduced me to canonical perturbation theories and Profs. André Brahic,
Rudolf Dvorak, Claude Froeschlé, Juan Carlos Muzzio and Bruno Sicardy,
who have often invited me to their institutions, allowing me to have time
to write. I thank all my students. They have read almost all the drafts of
this book and collaborated with valuable comments that resulted in many
improvements in the written text. I thank the copy editor Mike Nugent for
his invaluable contribution for the editorial quality of this book. During the
work on this project, I had the support of USP — University of Sao Paulo,
Observatério Nacional, Bureau des Longitudes (now IMCCE), Observatoire
de Paris-Meudon, Wien Universitdt, FAPESP — Research Foundation of the
State of Sao Paulo and CNPq — National Council for Scientific and Techno-
logical Development.

Sao Paulo, June 2006
Sylvio Ferraz-Mello
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1
The Hamilton—Jacobi Theory

1.1 Canonical Pertubation Equations

Astronomers in the nineteenth century found that the form of the Lagrange—
Laplace equations for the perturbed Keplerian motion becomes very simple
when the set of variables known as Delaunay variables,

{ = mean anomaly, L = /pa,
g = argument of the periapsis, G = LV1—e2, (1.1)
h = longitude of the node, H = Gcosi,

is used (see [15]). Here, y is the product of the gravitational constant and the
mass of the central body, a the semi-major axis, e the orbital eccentricity and
1 the inclination of the orbit over the reference plane.

With these variables, the equations of variation of the orbital elements are
the Delaunay equations

e  oF dL _ oF
dt 9L e o
dg oF dG oF
dt — oG dt —  dg (12)
dh  OF dH _ OF
dt  0H dt ~ 9n’
where )
o p
F= 2L2+R(L,G,H,£,g,h). (1.3)

In (1.3), R is the potential of the disturbing forces expressed with the Delaunay
variables. The variational equations are in canonical form'.

! In accordance with the conventions adopted in this book, the minus sign always
appears in the differential equations for the second set of variables (momenta).
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Delaunay soon discovered that the canonical form of the perturbation
equations make easier the research of their solution. He also introduced im-
portant new ideas in his lunar theories [22], which became the first instance
in which a canonical perturbation theory was used to obtain the “averaged”
solution of a cumbersome dynamical system. Later, many other problems
in Physics were brought to this form and the whole discipline of Analytical
Dynamics was established. A detailed account of this is not included here?.
However, some basic results and some details important in perturbation and
averaging theories are gathered in this chapter and in the next one. It is
worth emphasizing that this short introduction, say, for pedestrians, where
only points of practical interest are given longer development, may not re-
place a full text on Analytical Dynamics. In addition, many results are deeply
rooted in the theory of first-order partial differential equations. The learn-
ing of a few rules may not replace a correct understanding of the theories of
Lagrange, Hamilton, Jacobi, Lie and others.

It must be emphasized that the signs in (1.2) and (1.3) are not the same as
often seen in Celestial Mechanics books and papers. In fact, it is traditional in
Celestial Mechanics, as well as in Mathematics, to use, instead of the energy
of the system, its opposite. Also, instead of the potential, usually the so-called
force function, which is its opposite, is used. In the study of actual problems,
this ambiguity in convention is a frequent source of errors. Formally, both
practices are equivalent; however, energy and potential are not just two arbi-
trary functions but quantities with well-established physical meanings. Since
we have to make one choice, we choose that which is correct for everybody.
Thus, the signs in this book are those adopted in Physics and in Mechanics.

1.2 Hamilton’s Principle

Let us first introduce the usual concepts. We consider only unconstrained
dynamical systems whose configuration is completely defined by IV generalized
coordinates ¢; (¢ = 1,2,---,N). This system is said to have N degrees of
freedom. The state of motion of the system is given by the generalized velocities
G (i=1,2,---,N).

Let T be the kinetic energy defined by a function of the generalized ve-
locities ¢; (i = 1,2,---,N) whose actual expression depends on the par-
ticular geometry of the configuration space. For example, if ¢; are Carte-
sian coordinates, then the kinetic energy is given by the quadratic form
T= % Zf\il m;g;>, where m; are the masses of the particles (which, of course,
must be the same for groups of subscripts indicating coordinates of the same
particle).

Let V(g;,t) be the potential energy of the system. We assume that the
acting forces derive from a velocity-independent potential and this function

2 For an outstanding conceptual presentation of Dynamics, see [59].



1.2 Hamilton’s Principle 3

is defined in such a way that the generalized forces are obtained by means of

f = —grad V. We introduce also the generalized momenta,
oT

P = 5. 14

Pi= o4 (1.4)
and the Hamiltonian function
N

H=> pidi —T(gi, i) + V(qi, 1). (1.5)
i=1

Principle (Hamilton). The action of the system between t1 and to, defined
by the definite integral

to N
A= / [ZpiQi — H(qi, pi t)] dt, (1.6)
tr =1

s stationary for arbitrary variations of the solutions between the initial and
final states.

O
In the usual notation, we may write
ta
8A=8/ Ldt =0, (1.7)
ty
where
N
L="T(q,d)—V(gt) =Y pig — H(qi,pi,t) (1.8)
i=1

is the Lagrangian function associated to H.

This is a simple variational problem in 2 N-dimensional phase space3. Using
classical Euler-Lagrange equations for the solution of a variational problem,
we obtain a system of 2N differential equations:

d 0L OL dp; OH

— = =0
dt 9¢; Og; dt + Jq; (1.9)
QoL oL _ . OH _ |
dt 9p; Ip; B ai Ip; o
that is,
0H 0H
i = , 5, = — . 1.10
%= o, p oa; (1.10)

3 We are considering Hamilton’s principle in 2N dimensions instead of the more
usual formulation in N dimensions with L(q, ¢, t) as integrand. Both formulations
are equivalent (see [59], Chap. 6).
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These equations are the Hamilton equations of the given dynamical system.

This system of equations has the same simple formulation as (1.2) and its
main formal property is the complete definition of the right-hand sides of the
equations by the function H alone

However, notwithstanding this simple structure, there is no general tech-
nique for the integration of these equations. As for Lagrangian equations,
an important role is played by the operation known as Routhian reduction
(see [97]). In the case of Hamiltonian equations, the Routhian reduction is
immediate. Indeed, if the coordinate ¢, is cyclic (also called ignorable), that
is, if the Hamiltonian does not depend on g¢,, then 0H/0q, = 0 and p, = 0,
that is, the momentum p, is constant. Since p, = ¢, it may be replaced by c in
the Hamiltonian function and the reduced Hamiltonian function is a function
only of the g;,p; (i # o). Thus, the given dynamical system is reduced to
N — 1 degrees of freedom. When this reduced system is solved, the complete
integration is achieved afterwards by means of the integral

OH

%= 5. dt. (1.11)

This procedure is easily extended to other cyclic or ignorable variables.

Exercise 1.2.1. Show that, if T" is a purely quadratic kinetic energy (that is,
a homogeneous function of degree 2 in the ¢;), then the Hamiltonian is the
total mechanical energy H =T + V. Hint. Use the definition of generalized
momenta and Euler’s homogeneous functions theorem.

Exercise 1.2.2 (Conservative systems). Show that H = E (constant)
when H is time-independent.

Exercise 1.2.3. Show that one rigid system formed by M particles (M > 3)
has six degrees of freedom. Hint: Each particle has three coordinates but,
since the system is rigid, they are not independent. The distances between
the particles are constants unaltered by the motion of the system.

1.2.1 Maupertuis’ Least Action Principle

Principle (Maupertuis). The action

to N
S = / Zplqz dt (112)
=1

1

of a conservative dynamical system is stationary for arbitrary variations of
the solutions between the initial and final states.

O

Indeed, if the system is conservative, & f:f H dt = 0 because H is constant

and, then, 8]:12 Ldt= 5ftt12 Zf\; p;G; dt.
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This principle, stated one century before Hamilton’s principle, is usually
written, in the case of one particle, as
ta
) 2Tdt =0
t1
which is equivalent to 8S = 0 when T is assumed to be a quadratic function
of the velocity.

1.2.2 Helmholtz Invariant

Lemma 1.2.1. If we consider two isochronous solutions of a conservative
Hamiltonian system whose initial states are infinitesimally close, the differ-
ence in the actions A of the system between initial and final instants t = 0
and t = 7, along the two solutions, is

T

N
> b in] . (1.13)
i=1

0

0A =

A B

Fig. 1.1. Isochronous solutions starting at two neighboring points of I"

The proof of this lemma is trivial. From Hamilton’s principle, we know that
the action of the system between 0 and 7 is stationary for arbitrary variations
of one solution between the initial and final states, say, between A and A’ (see
Fig. 1.1). Therefore, if we change the integration path from AA’ to ABB'A/,
the result of the integral is the same. The decomposition of the integral along
the path ABB’A’ in its three parts and the substitution of the integrals over

the arcs AB and A’B’, respectively, by [Zf\; i dqz} . and [Ef\; Di dqz}
t=

. t=1
gives

i=1

N N N T
/ > pidy; —/ > pidg; = [sz in]
AA BB’ =1 i=1 0
as stated. a
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Theorem 1.2.1 (Helmholtz). If I" is an arbitrary closed curve in phase

space, the quantity
N
J:j{ Zpidqi7 (].].4)
I i=1

is an invariant of the motion.

Proof. [59] In order to prove this theorem, let us consider a curve I" and all
solutions whose initial state lies on I'. Let us consider two solutions whose
initial state lies on neighboring points of I', say A and B (see Fig. 1.1). The
difference of the actions on isochronous motions starting from the end points
of the element is given by (1.13). If we divide I" into a succesion of infinitesimal
arcs and add the contribution coming from each arc, the net result is null,

that is,
N
- ¢ [Zpi dqil
=1

Therefore, the integral of the function enclosed with brackets is the same at
t =0 and at t = 7, that is,

N N
j{ Zpid%’:]{ > pidai,
I =t "=t

where I is the closed curve into which I" is transported by the solutions in
the time 7. a

(1.15)
0

1.3 Canonical Transformations

The Routhian reduction is one of the basic steps in the Hamilton—Jacobi the-
ory and in the perturbation theories discussed in this book: It is the search
for one transformation leading to a new set of variables such that the canon-
ical form of the equations is preserved, but some of the coordinates become
ignorable. Transformations preserving the canonical form of the equations are
called canonical transformations.

If we consider a change of the given variables ¢;,p; into a new set ¢, p;
defined by a system of 2NV equations:

q;‘ :q;k(q“p“t)7 p; :p;(qzapzat)v (116)

this transformation is said to be canonical if it preserves the canonical form
of any given canonical system, that is, if, under the transformation, (1.10)

becomes
oOH* ok oOH*

= , e 1.17
q; opr ; dq (1.17)
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where H* is a new function of ¢}, p!. An equivalent definition is obtained by
saying that canonical transformations preserve Hamilton’s principle (see 1.7).
Thus, in the new variables,

) lZplqZ H*(q;, p}, )] dt = 0. (1.18)
t1

i=1

Comparing to (1.7), we obtain

) [szql szql (H — H*)] dt = 0. (1.19)

=1

One solution of the given problem is obtained by making the function under
the integral sign equal to zero. Moreover, the introduction under the integral
sign of an arbitrary exact differential does not alter the result, because

to .
8/ Sdt =0 (1.20)
t1

for any function S of the considered variables. As the 4N variables g¢;, p;, ¢}, D}
are not independent, we select 2N of them, for instance, ¢;, ¢} and write the
solution of (1.19) as

N N
> pidg — Y pidg; = dS(gi, ¢ ) + (H — H*) dt. (1.21)

It is worth recalling that our dynamical system is, by assumption, uncon-
strained; otherwise, we should take into account the non-independence of the
variables g;, p;. We recall that energies in this book are defined as in Physics.
When H is the opposite of the energy, the sign in front of the last parenthesis
in the above equation should be changed.

The function S is known as the generating function of the canonical trans-
formation. Later on, in this book, we will refer to it as the Jacobian generating
function, to distinguish it from the generating function due to Sophus Lie. It
completely characterizes the transformation. From (1.21), we obtain the equa-
tions of the canonical transformation of variables:

o . oS
bi = aql7 P; = aq*'

?

(1.22)

The relation between the Hamiltonian functions before and after the trans-
formation is

. as
H*=H+ . (1.23)

When S is time-independent, it follows that H* = H and the transformation
is said to be conservative.
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Equations (1.22) are not unique in many respects. For example, if we
introduce the exact differential

N N N
dY qipi =Y pidg + ) gidp; (1.24)
=1 =1 =1

into (1.21), it becomes
N N
> pidgi+ Y qidp; =dS' + (H - H)dt, (1.25)

where the new generating function, S’ = S + ZZ 19;p;, may be considered
as a function of the variables (g;, p;) and, instead of (1.22), we obtain

s .oy
pi = 6(]1’ q; = 8]9*

?

(1.26)

The relation between the Hamiltonians H and H' is the same as before (with
S’ instead of S).

Many different combinations are possible. However, we cannot escape the
fate of always having half of the equations defining the transformation solved
with respect to the old variables and half of them solved with respect to the
new ones. An algebraic inversion is always needed to obtain the transformation
in explicit form.

In (1.21) and (1.25), the time variation is important as it shows how the
Hamiltonian will be changed in a time-dependent transformation. However,
in what concerns the canonical condition itself, instead of the actual displace-
ments of the system, only the virtual displacements, or variations d¢; and 8¢
at a fixed instant are considered. The only requirement is that these displace-
ments are possible; for instance, if the dynamical system were assumed to
be constrained, the virtual displacements should obey the system constraints.
Using variations instead of differentials, (1.21) becomes

sz&zz Zpi‘&zz 85(qi, ;' +t)- (1.27)

The relationship between variations and differentials is obvious. For instance,

oS
dS =985+ ot dt.

Exercise 1.3.1. Show that the composition of two canonical transformations
is canonical.

Exercise 1.3.2. We could have introduced a wvalence (or multiplier) A and
written
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6/ [Zp1Q1_AszQz H_)‘H*) dt =0

instead of (1.19) (since that equation results from the comparison of (1.7)
and (1.18), both equal to zero). Construct the equations giving the canonical
transformation and the new conservation equation

H(q,p) = AH*(¢",p").

(1.28)

(1.29)

1.4 Lagrange Brackets

When, in (1.21), S is forced to be a function of ¢;, p;, the calculations are less
immediate. Let us consider the transformation in its explicit form

ar = qe(q] . pi, 1), e = pr(q;, pi,t) (1.30)

and let us calculate the variation 8¢ corresponding to an arbitrary change
dq},dp;. dqy, is a linear differential form in 8¢}, dp;, and the time-independent
part of (1.21) becomes

L (O gy, al
ZmZ((W 8g; + *5191) — > pidgf =388
k=1 =1 g =1

If the transformation is canonical, (1.31) must be an exact form. Thus, it may
satisfy the conditions for exact differential forms, which, after some calcula-
tions, give

(1.31)

XN: <3Qk Opk  Oqk 3pk> _ 5
=\ 0q; Op;  Op; Oq; !
N

9qi Opr. _ Oqi Opy,

_ =0 1.32

,; <8q2‘ 9q;  9q; 9q; ) (52
i <3Qk Opk gk 3pk>
— \ 9p; 9p;  Op; Ip;

where 6;; is the Kronecker symbol: §;; = 0 for i # j and d;;5 = 1 for i = j

(i,j =1,---,N). Using the Lagrange brackets
def Oqr Opr. Oqy, Opx
= — 1.33
1,4] ;(af e o (1.33)
equations (1.32) are written
[Qf,p;] = 0ij, g7, Q;k] =0, [pjvp;] =0 (1.34)
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Since

N
> 8aqi Adpr = Y _la;, 418 ASq; + > _[p},p18p; Adp;

k=1 i<j i<j
N N
3N lar p318q; A Sp;
i=1 j=1
N
= 8q; Ao,
=1

the form of the canonical condition given by (1.34) is often expressed by saying
that the differential form Ziil 8¢; A\ dp; is invariant under the transformation.

Equations (1.32) are relations among the elements of the Jacobian matrix
of the transformation (¢*,p*) = (¢, p):

< 0q; ) ( 0¢; )
8q; Bp; (1 35)
Opi Op;
(3@) (519? )

and are equivalent to the matrix equation
MM = J, (1.36)

where M’ is the transpose of M. J is the symplectic unit matrix* of rank 2V

J= (g‘g> (1.37)

where E is the unit matrix of rank N. Since the determinant of a product of
matrices is equal to the product of the determinants of the matrices being
multiplied and detJ = 1, we find from (1.36) that (det M)? = 1. The proof
that det M = +1 requires further considerations (see [99]). One must first
show that canonical transformations must be decomposed into a canonical
transformation whose Jacobian matrix is positive definite and one orthogonal
canonical transformation (that is, one canonical transformation whose Jaco-
bian matrix O is such that O’ = O~1). In the case of the orthogonal canonical

4 With the above definition of J, the energy sign and the ¢ — p order adopted in
this book, the Hamilton equations are:

In some other books, other conventions are adopted, changing the minus sign in
the above equation into plus.
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transformation, the canonical condition may be written as JO = OJ, and this
implies that O is of the form
AB
-BA /"

Then, one introduces the unitary complex matrix

F_ L (iEE
2N \E iE
and shows that det(FOF~!) is the product of the two complex numbers

det(A £iB) and so cannot be negative. Since det(FOF~!) = det O, the proof
is complete.

1.5 Poisson Brackets

The Poisson bracket of two differentiable functions of the canonical variables:

f=f(g,p)
9=9(g,p)

is the bilinear operation

N
def of og _ dg Of
ok = ;(3% dpi g 3p¢)' (139

The usefulness of these brackets comes from the fact that the canonical
equations (1.10) are simply the Poisson brackets of the Hamiltonian function
H(q,p) and the variables:

gi ={q, H}
pi = {pi, H}.

It is worth mentioning that Poisson brackets may be written as

{f,9} =grad f - (J - gradg);

that is, the scalar product of the gradient of f and the symplectic rotation of
the gradient of g.

(1.39)

Exercise 1.5.1 (Invariance to Canonical Transformations). Consider
two differentiable functions fr = fr(qi,pi) (k=1,2;i=1,2,---,N) and the
canonical transformation

¢ = 4i(q;,p})
pZ:pZ(q;ap;) (7’7]:17277N)
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Show that the Poisson bracket of the functions f; and fy is the same, no
matter whether it is calculated with the variables g;, p; or the variables ¢, p;;
that is

{f1aiq;,5), pi(q;,p7))s folai(q;, p7), pila;, p7))} = {fi(aqi, pi), fo(qi, pi)}

Exercise 1.5.2. Consider 2N differentiable functions f; = fi(g;,p;) (4,5 =
1,2,---,2N). Show that

2N

> s Fil{ s fo} = ur. (1.40)

k=1
Although cumbersome, the proof of this result is straightforward.

Exercise 1.5.3 (Canonical condition). Consider the canonical transfor-
mation

4 = 4;(45:p5) 141
and show that, in this case,

This new form of the canonical condition is an immediate consequence of
(1.40) and (1.34).

1.5.1 Reciprocity Relations

In the case of the above canonical transformation, in addition to (1.40), we
may establish some useful one-to-one relations between the mutual derivatives
of the two sets of canonical variables.

Proposition 1.5.1. Given a conservative canonical transformation

*

4 = 4; (45, ;)

* * ;o (1.43)
pi:pi(q]‘7pj) (1,7 =1,2,---,N)
and its inverse
4 = qj(qi*, pi) B o
pj = p;(4;,p}) (i,7=1,2,---,N)
then, for any i,j:
Oq; _ Opj opi _ Op;
dqr 0 i dg* O i
qj ’ o o (1.45)
9q; _ oq; Op; aq;

op; Op; op; g

J J
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The proof of this statement is very simple. Let us first consider the canon-
ical transformation given by (1.22), derived from the Jacobian generating
function S(g,¢*). From (1.22) we have

Opi 0%S __ap;
dq;  0qi0q; 9q;

and the second of equations (1.45) is proved. We may, then, repeat the same
calculations with the canonical transformation given by (1.26), derived from
S’(q,p*) and prove the fourth of equations (1.45) (as well as the first one
in which just the direction of the transformation is changed). The third of
equations (1.45) is similarly proved using transformations derived from the
generating functions S” (p, p*).

Exercise 1.5.4. Show that M~ = —(JMJ)’ and that the reciprocity relations
may be obtained by comparing the elements of both sides of this equation.

1.6 The Extended Phase Space

Time-dependent Hamiltonians and time-dependent canonical transformations
are not separately considered in this book. Time-dependent Hamiltonian dy-
namics is a particular case of time-independent Hamiltonian dynamics. To see
this, let the canonical equations of a time-dependent system be formulated in
parametric form. Let us introduce a parameter 7 and let us consider the time
t not as the independent variable, but as one of the N + 1 generalized coordi-

nates qi1,q2, -, qn,t given as functions of the parameter 7. The system now
has N 4 1 degrees of freedom and the 2N former equations become
dqi ,8H dpi ,8H .
=1 = —t =12,---,N), 1.46
dr Op; dr 0q¢; (@ ) ( )

where t’ denotes the derivative of ¢ with respect to 7, which is considered as a
known function of 7. As t’ is independent of the variables ¢;, p;, we may write
dg; O(HY dp; O(Ht
4 _ ot pi_ _OUIY) (1.47)
dr Op; dr dq;
If p; is the momentum conjugate to ¢, we may introduce one complemen-
tary differential equation:

/ dgf dt _ 8(t/pt)

t
dr 8pt

. (1.48)

These equations may be written in the unified form
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dg; _ oK dp; . _aK
dr  Op; dr — 9¢
dt 0K dpp 0K (1.49)
dr  Op dr ~  ot’
where
K(gist,pi,pe) =tV H +1'py (1.50)

is the Hamiltonian of the given system in the extended phase space. The
system was completed by the addition of one equation for the momentum p;.

Generally, knowledge of the meaning of p; is not needed. It may be kept in
the equations as an extra unknown function that, automatically, disappears
when we go back to the 2/N-dimensional phase space.

To understand the meaning of the momentum p; we have to construct the
Lagrangian function associated with K and to calculate its derivative with
respect to ¢'. This Lagrangian function is obtained from the Hamiltonian by
means of Legendre’s dual transformation:

N
L= Zpiqzl-—i—ptt'—fﬂ (1.51)
i=1

where primes denote derivatives with respect to 7. If we introduce in this
definition the above expression for K and note that ¢ appears in £ only as a
factor of some terms (two of which are opposite), we obtain
oL
PL= gy = —H, (1.52)
that is, the momentum conjugate to time is the opposite of the energy.

An immediate consequence is that the numerical value of K is zero. Since
K is independent of 7, the extended system is conservative and has the in-
tegral K = const. Thus, the condition K = 0 is permanently satisfied. The
introduction of ¢ as an (N + 1)*® generalized coordinate leads to a new me-
chanical system with IV + 1 degrees of freedom, always conservative. The only
difference from the usual conservative systems lies on the fact that the ex-
tended energy K cannot take arbitrary values. It is necessarily equal to zero
(or to another fixed constant, since the addition of a constant to K does not
alter the equations).

In practical applications, the relationship between the time ¢ and the para-
meter T is a mere identity. So, usually ¢’ = 1, and ¢ is written as an independent
variable, instead of 7, in the equations. In this case, the extended Hamiltonian
is, simply,

K(qi;t, pi,pe) = H(qi, pi, t) + pr- (1.53)

Another frequent choice is to introduce as a new generalized coordinate a
linear function of the time (a mean longitude) A = vt + const, instead of the
time itself. The transformation from the above case to this one is trivial and
the extended energy, now, is:
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K(qla )\upiap)\) = H(Qlapu >\) + VDX (154)

We still have K = 0 and the new generalized momentum p) is related to the
energy through py = —E/v.

1.7 Gyroscopic Systems

The word gyroscopic is often used to designate terms in the kinetic energy
that are linear in the velocity components. In this book, we use it to designate
systems whose Lagrangian has linear terms in the velocity, of the form » x
v. These terms may be introduced through a velocity-dependent potential
energy, as in the case of charged particles under the action of magnetic forces,
or through the kinetic energy, as in the case of a motion relative to a rotating
frame.

1.7.1 Gyroscopic Forces

In the topics studied in previous sections, the potential energy was velocity-
independent. Let us consider, now, a system of N points P; € R® with masses
my, let 7; and v; be the position vector and the velocity of P; with respect to an
inertial frame and let us assume that the system is submitted to gyroscopic
forces arising from a generalized potential energy W (r;,v;). How does the
generalized potential energy relate to the forces applied on the particles? The
corresponding Lagrangian equations may be written as

d (0T or d (oW oW
dt (8%) Tor dt (8'01') T or, (1.55)

Since T = é >~ m;v?, the above equations are equivalent to

dt \ Jv; or;

showing that the right-hand side of (1.55) expresses the forces applied on
the particles. One may note that this equation generalizes the usual F'; =
—0V /Or = —gradp, V of the velocity-independent case. The momenta of P;
are, now, given by

T — W) oW

p;, = o, m;v; — v, (1.57)

and the corresponding Hamiltonian is given by

N
H=> p,-vi-T+W, (1.58)
=1
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tha.( iS,
H E ,’La p’L 5 1v)9

where
1 2
Y(ry,p,) =W — o, (81)@) (1.60)

It is easy to see, by using the Hamiltonian equations instead of the La-
grangian ones, that the expression of the force applied on the particles in

terms of Y (r;,p;) is
d (OH d [0Y oY
F M <8pi) e <8pi) o, (1.61)

1.7.2 Example

Let us consider the simple generalized potential energy®

N
W = Zml[A, ri,vi].

=1

To get the right physical dimension of W, A needs to have the dimension
of an angular velocity. W is a scalar quantity; it is equal to |A| times the
projection of the angular momentum of the system on the direction of the
vector A. From (1.56) and (1.60), we obtain

F¢:2miA><’U¢

and

N g2
V=W =y mulr? ()]
i=1
where w is the unit vector in the direction of A. It is worth noting that
[r? — (r; - u)?] is the square of the distance of the particle P; to the axis
defined by u. Therefore, we may also write Y = W — A%Z/2, where T is the
moment of inertia of the system with respect to the axis defined by w.

An example of a force of this kind, in nature, is the force acting on an elec-
tric charge moving in a magnetic field: F' = —¢ B x v. (e is the electric charge,
¢ the velocity of light and B is the magnetic induction.) The corresponding
generalized potential energy is W = — ' [B,r, v].

5 [a, b, c] denotes the triple scalar product a - (b x ¢). Two elementary rules used in
this section are the invariance of the triple scalar product to a circular permutation
of the operands and Lagrange’s identity for the triple vector product: a x (bx¢) =
(a-¢)b — (a-b)c. These two rules combine to give (a x b)? = a?b* — (a - b)?.



1.7 Gyroscopic Systems 17

1.7.3 Rotating Frames

Let us consider a system under the action of applied forces depending on a
velocity-independent potential U(m;, r;), but in a frame rotating with angular
velocity §2 around an axis directed along a given unit vector u. Let r; and v;
be the coordinates and velocity components of P; with respect to the rotating
frame. With respect to an inertial (non-rotating) frame, the velocity is given
by v; + £2 x r; (where £2 = u) and the kinetic energy of the system is

N
1
i=1
or
z:mZ ? 4200, 2,75 + %17 — (2-1,)7]. (1.63)

The momenta conJugated to the relative vector radii r; are

oT
pP; = a’vi = m;v; + ml.Q X r; (164)
and the Hamiltonian function is given by
N
H=> p;-vi—T+mU, (1.65)
i=1

that is, in terms of the canonical variables r;, p;,
H = Z (Zmz (2.1 ) + mU(r). (1.66)

1.7.4 Apparent Forces

An observer fixed in the rotating frame will perceive modifications in the
motion of a point or system of points as if the system were under the action
of apparent forces corresponding to the “potential energy” — > [§2,7;,p;]
(in addition to mU(r)). To determine which forces these are, we substitute
Y =->[2,r;,p;] +mU(r) into (1.61) and obtain

F; =2mv; x 2 +mi2?[r; — (riu)u] — m;gradp, U.

The term m;02? [r; — (r;w)u] is the centrifugal force. Note that r; —
(r;.u)u = p; is a vector perpendicular to the rotation axis going from the
axis to the point PF;.

The term 2m;wv; x §2 is the so-called Coriolis force. The Coriolis force tends
to make the free motion of one particle on a rotating frame deviate from a
straight line. On the surface of the Earth, the deviation of the moving particle
due to the Coriolis force is to the right in the Northern hemisphere and to the
left in the Southern hemisphere (see [94]).
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1.8 The Partial Differential Equation of Hamilton and
Jacobi

The Hamilton—Jacobi theory is the cornerstone of Analytical Mechanics. The
entirely new understanding of the problems of mechanics that it allowed was
impressive. In the last quarter of the nineteenth century, it experienced an
enormous development in close relationship with the theory of first-order par-
tial differential equations and the introduction, by Sophus Lie, of contact
transformations. In modern Physics, it was introduced around 1916 through
the work of Schwarzschild, Epstein and Sommerfeld into the mechanics of the
atom and provided the basis of the old Quantum Theory and, a few years
later, of the new Quantum Mechanics of Schrodinger, Heisenberg and Born.
Much of that work was directly inspired from Celestial Mechanics and a key
reference in all papers of this period is Charlier’s Die Mechanik des Himmels.
Charlier’s book [20] included one chapter on the Staude-Stéckel theory of
conditionally periodic systems and the construction of the uniformized an-
gle variables, which would be later called, with their conjugates, angle—action
variables (see Chap. 2). More or less at the same time, Hamilton—Jacobi theory
played an essential role in the geometrization of dynamics and its variational
principles are the basis of Einstein’s theory of general relativity.

The equation nowadays named after Hamilton and Jacobi is due to Jacobi
and is a modification of the equation published by Hamilton in 1834. It
was an extension to dynamics of the partial differential equation discovered
by Hamilton 10 years before, in optics. Using canonical transformations, this
equation is easily obtained.

Let us consider a conservative mechanical system with N degrees of free-
dom, a time-independent Hamiltonian function H(q,p), (¢ = ¢1,42," -, qn;
p=p1,p2,--,pN) and one canonical transformation ¢ : (¢,p) = (¢*, p*).

The main idea of Hamiltonian theories is, in general, to seek a canonical
transformation such that the Hamiltonian of the resulting system is as simple
as possible. In the earlier Hamilton’s theory, the sought canonical transfor-
mation was expected to lead to a Hamiltonian independent of all variables.
In the current Hamilton—-Jacobi theory, it is required that the Hamiltonian
obtained by applying this transformation to H(g,p) shall be equal to one of
the new variables, say:

H*(q",p") = pi. (1.67)
This new Hamiltonian system is trivial. The energy integral is £ = p] and
the system has the general solution

= t4a = =F
qi 1 pi b1 (1.68)
qQ:aQ pg:ﬂg (Q:275N)7

where «;, 8; (i =1,2,---, N) are integration constants.

The equation found by Jacobi is the partial differential equation giving the
function that generates the canonical transformation. To obtain it, we use the
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fact that the canonical transformation ¢ is conservative. As a consequence,
the Hamiltonians, before and after the transformation, must be equal, that is,

H(q,p) = H*(q",p"). (1.69)

Let S(g,p*) be the generating function of the canonical transformation ¢.
Introducing the transformation equations

oS oS

* , S = , 1=1,2,---,N 1.70
=g P=ge ) )

into the conservation equation, we obtain the Hamilton-Jacobi equation

oS

H | q;, =p;=E. 1.71
(45 ) = (1.71)
This equation is a first-order partial differential equation for the function
S(q1,92, -+ ,qn)- E is just a parameter. To use the solution of the Hamilton—

Jacobi equation as a generating function of a canonical transformation, it may
be a function of 2V variables, S = S(g,p*). The role of p; may be played by
N integration constants [;.

Any solution of a first-order partial differential equation, containing as
many integration constants as there are variables, is called a complete solution.
The complete solution of the Hamilton—Jacobi equation generates a canonical
transformation flattening out the surfaces H(q,p) = E(constant) of the given
phase space into the parallel planes p; = E (Fig. 1.2).

When a complete solution S(g, 3) is known, the solution of the dynamical
system is given by

_ . 05(a.8)
t+a1 =q] = 95, (172)
0S(q, ’
aQ:qZ: 8(296) (QZZ, 7N)
D
—

Fig. 1.2. A simple Hamilton—Jacobi mapping
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Hamilton—Jacobi mappings, when they exist, are finite transformations
generally including singularities due to the topological differences between
the surfaces H(q,p) = E and the planes pj = E. As a consequence, they are
more general than the Lie mappings that will be introduced in Chap. 5. All
Lie mappings may be written as Hamilton—Jacobi mappings, but the converse
is not true. Lie mappings are infinitesimal (near-identity) homeomorphisms
of the phase space into itself.

1.9 One-Dimensional Motion with a Generic Potential
Let us consider the problem of the motion of one particle of mass m on

a straight line under the action of a generic velocity-independent potential
U(q1). Newton’s equations of motion are

i = erd Ula) = - o (1.73)

and the corresponding Hamiltonian is
H = Pi +mU(q1), (1.74)

2m

where p; = mgq; is the momentum of the particle. The Hamilton—Jacobi equa-
tion is )
1 [0S
U =F. 1.75
o (o) e (1.75)

The (complete) solution of (1.75) is

%mmzmm/¢§—wmwl (1.76)

and the equations of the motion are given by

oS 1 d
VE - Ula)

Because of the square root in (1.77), real solutions may exist only for the
values of ¢; such that 51 — U(q1) > 0. Moreover, for each such value, we
have two solutions: one, prograde, corresponding to the choice of the positive
branch of the square root, and the other, retrograde, corresponding to the
choice of the negative branch. When © — U(q;) > 0 for all g, (Fig. 1.3a), the
resulting function ¢ (¢) is monotonic. The variable ¢; is continuously increas-
ing or decreasing. The motion is unbounded. In the case of ¢; defined on a
circle (for instance, from 0 to 2), the solution ¢ (¢) is a periodic function of
t whose period is given by
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Fig. 1.3. Examples of functions f} —U(q)

[ d
T:¢QA Vﬁjz@f (1.78)

In this case, the periodicity of the motion is only due to the angular nature of
the variable ¢; and the motion is called a circulation. One simple example is
the motion of a pendulum whose energy is large enough to allow the weight
to reach the highest point of its trajectory with a non-zero velocity.

When the constant E is such that the function fl — U(q1) is positive for
some values of ¢; and negative for others, the motion is possible only for those
q1 for which 51 —U(q1) > 0. The boundaries of the regions of possible motion
are the roots of the equation E — mU(g1) = 0. To understand this motion,
let us start with a simple case. Let @ and b (a < b) be two simple roots of
E—mU(q) =0 and let £ —U(qy) be positive in the whole interval between
these roots (Fig. 1.3b). It is easy to prove that, in this case, the motion is
a periodic oscillation between the boundaries a and b. In what follows, we
assume that the motion starts at the time ¢ = ¢y at a point ¢19 between a and
b with a positive speed and, then, we choose the positive branch of the square
root in (1.77). Then, ¢; will increase continuously (g1 > 0) to reach b.

Proposition 1.9.1. b is reached in a finite time.

The time in which b is reached is given by

b
n:m+¢1/ dar (1.79)
2o \JE —U(qr)
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This integral is improper, since the function under the integral sign goes to
infinity when g1 — b. To circumvent this difficulty, we may separately consider
a small neighborhood of the root b; then, we replace the function fl —U(q)
by its linear approximation —U’(b)(¢1 — b). The improper integral, in this
neighborhood, will be approximated by

1 b dql
VU Vb—aq’

which is a classical example of a convergent integral. Thus, the result of (1.79)
is finite and the point b is reached in a finite time, as proposed.

(1.80)

Proposition 1.9.2. The motion is symmetrically reflected in b.

Indeed, in b we have ¢; = 0 and §; # 0. Then ¢; changes sign at ¢t = t;, and
we have to change the branch of the square root (for ¢ > t;), that is, to put a
minus sign in (1.77). As the only difference in the equations before and after
the instant ¢; is the sign of the square root, the motion after t; is an exact
reflection of the motion before ¢, and the function ¢;(t) is even with respect
tot =1p.

Proposition 1.9.3. The motion is periodic with period
b
d
T =2 / “wo (1.81)
o« \JE-Ula)

The proof of this proposition is immediate from the two preceding ones
and their extension to the reflection of the motion at the point g; = a. This
motion is, therefore, an oscillation between a and b and is usually called a
libration. The motion of a pendulum, when the energy is not sufficient to
allow the weight to reach the highest point of the circle, is an example of an
oscillation of this kind.

To complete this analysis, we may consider the limiting case in which one
of the roots of E —mU/(q1) = 0 is double (Fig. 1.3c). Let us assume that the
function ¥ — U(g1) has a minimum equal to zero in b. That is, 2 —U(b) =0
and —U’(b) = 0.

The analysis follows the same steps in proposition 1.9.1 up to (1.79). As
before, we separate a small neighborhood at the left of the root b and, in this
neighborhood, replace the function fL —U(q1) by an approximation. However,
the approximation used before does not work since, now, U’(b) = 0. We then
use the second-order Taylor approximation — 3 U” (b)(g1—b)? and the improper
integral, in this neighborhood, becomes

2 b dq1
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which is divergent. Thus, the result of (1.79), in this case, is infinite and the
point b is never reached. The motion tends asymptotically to b but never
reaches it. If the motion were retrograde at the initial instant, b would be its
limit for t — —oco. The point b is, itself, an unstable equilibrium point since a
small displacement from this position will make the point drift away from it.

The particular case where the function fL — U(q1) has a maximum equal
to zero at a point is trivial. The solution may only exist at this point and this

point is a stable equilibrium point (Fig. 1.3d).

1.9.1 The Case m < 0

The equations of this section were written in such a way that they still remain
valid when m < 0. This was done because, in perturbation theories, we often
have approximations corresponding to dynamical systems like that given by
(1.74) whose parameters, including m, may be either positive or negative. The
change of sign of m does not affect the dynamics and is equivalent to a time
reversal. The trajectory in the phase space is not changed when m changes
sign, but the direction of the motion is reversed.

It is worth recalling that we are not just changing the mass sign in an
equation like Newton’s f = ma, which would change an attractive action
into a repulsive one, or vice versa. In our case, f = —mgradU and, thus,
the actual equation is ma = —mgradU, which does not depend on m. The
only real change will be in the sign of the momentum since p; = m¢;, which
(because of the symmetric reflection) is equivalent to the above mentioned
reversal in the direction of the motion.

1.9.2 The Harmonic Oscillator

Let us consider the simple dynamical system defined by the potential U = gq%
(k > 0). The Hamiltonian is

pi | mk o

H=om™ 2@

and the trajectories, in the phase plane, are the ellipses H = const. We note
that the assumption m > 0 is not done.

The new Hamiltonian is H*(q7, p}) = p; whose trajectories are straight
lines. The Hamilton—Jacobi mapping of one domain of the plane (¢1,p1), not
containing the origin, into the plane (¢f,p}) is a homeomorphism (as in the
case shown in Fig. 1.2). However, they are no longer homeomorphic when
the origin is included in the domain. Indeed, the function .S, solution of the
Hamilton—-Jacobi equation, is singular at this point.

Equation (1.77), giving the solution of the system now becomes

ql—t+a1—\/ /\/m 2q1 (1.83)

(meR)
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For E/m < 0, there is no real solution; for E = 0, there is just a stable
equilibrium point at ¢; = 0, and, for E/m > 0, the solutions are oscillations
in the interval [— \/2E/mk, \/2E/mk] In the later case, the integral is easily
solved giving

1 . [mk
t+o; = \/karcsm\/2E a1 (1.84)
or
2F
Q= \/mk sin VE(t + o). (1.85)
Hence,
2F
;n:mepmwuwum. (1.86)

The coefficient in the last equation was not simplified because the simplifica-
tion depends on the sign of m. In fact, this is the only point where a change
is verified when the sign of m changes.

The motion is an oscillation with period 27/v/k. It is worth emphasizing
that the frequency (period) of the oscillation does not depend on the amplitude
of the oscillations, a situation physically acceptable only for small-amplitude
oscillations.

Exercise 1.9.1. Consider the harmonic oscillator with an additional repulsive
cubic force, whose potential is U = 5¢? — k'qf (k,k’ > 0), and study all
possible solutions, periodic and non-periodic.

1.10 Involution. Mayer’s Lemma. Liouville’s Theorem

Definition 1.10.1 (Involution). Let f1, fo, -, fm (M < N) denote M
functions of the 2N wvariables q;,p;; if the Poisson brackets {f;, f;} are all
zero, the functions f;, i =1,---, M are said to be pairwise in involution.

Lemma 1.10.1 (Mayer). Given N functions

that are pairwise in involution and such that the functional determinant
det(0f;/Op;) is not zero, there exist N functions g} (q,p) (i =1,---,N) such
that the transformation (q,p) — (¢*,p*) is canonical.

Proof. [18] From (1.87), we obtain
pi = ¢i(q,p")- (1.88)

When (g, p*) are considered as independent variables and (1.87) is differenti-
ated with respect to g, we obtain®

6 All sums are taken over subscripts from 1 to N.
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Z 8fz 8¢J _
apj an
By convolution of this equation with 0f,,/0pk, we obtain

Ofm Of Ofm 0fi 0¢;
J

Opr Oqi; Opy. Op; Oq

In an analogous way,

Of; Ofm Ofi 0fm 09
Sono - ST
J

Opr. Oqx, Op; Opr Og;

where the role of the subscripts ¢ and m was interchanged, as well as, in the
last summations, the repeated subscripts k and j. Introducing these equations
in the definition of the Poisson bracket { f;, fm}, we obtain

i m 0o,
J k

Opj Opr \ Oq;  Ogqy

which is equal to zero because, by hypothesis, the functions f; are pairwise in
involution. Introducing the auxiliary functions

3 Ofm (8¢k 0; ) y
—~ Opk \Oq; gy "
the previous equation becomes

8f1
Z _

8pj

This is a system of linear equations in the unknowns ¢,,; (7 = 1,---,N).
Since det(0f;/dp;) is the non-zero Jacobian of the functions f; with respect
to the pj, it follows that v,,; = 0, that is

Ofm (O0¢r  O¢;
; Opr. (3% 3%) 0

This is again a system of linear equations and as det(9f,,/dpy) is a non-zero

Jacobian, the solution is
ol 3¢‘>
=0. 1.89

< Jq; Iqx, ( )

This result means that the differential form

Z ¢i(q, f) dgi
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is exact and one function S(g, f) exists such that

08

i = Qilg,]) = . 1.90
pi=0ila. f) =5 (1.90)

If we introduce N new variables

oS

- , 1.91
P =t (1.91)
(1.90) and (1.91) define a canonical transformation (g,p) — (¢*, p*). O

The lemma is also valid in the case where the given functions are M
coordinates and N — M momenta provided that the involution property is
preserved (i.e. that there are no conjugate pairs among the given coordinates
and momenta).

The difference in this case is that when the given function f; is a coordi-
nate, the + sign in (1.91) may be changed into — for the subscripts ¢ < M.

Theorem 1.10.1 (Liouville). If a canonical system of N degrees of freedom
admits N integrals

filg,p) = ¢; = const (t=1,---,N) (1.92)

which are independent, pairwise in involution and can be solved for the mo-
menta p;, then the system is completely integrable and the general solution
can be constructed by means of quadratures.

Proof. [51]7 Since the conditions of Mayer’s lemma are satisfied, there exist
N functions ¢ (i = 1,---, N) such that the transformation (¢,p) — (¢*, f) is
canonical.

With the variables (¢*, f), the equations of motion are

dfi dg;  OH*
ar =0 dt — of.’ (1.93)

where H* is the Hamiltonian as a function of (¢*, f). The quadratures

. [oH
q; = 8fz

complete the integration of the system

dt (1.94)

O

If one of the integrals, say, f1, is the energy integral, then H* = f; and

the derivatives H*/0f; are zero for all ¢ > 2. The solution of the system is
then reduced just to the trivial quadrature:

q = /dt = t + const. (1.95)

7 For the classical proof using Jacobi’s lemma, see [45].
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The variables (¢*, f) are akin to the variables («, ) introduced in the solution
of the Hamilton—Jacobi equation.

When the number of known integrals in involution is not enough to guar-
antee the complete integrability of the system, they may be used to reduce
the number of degrees of freedom according to the following similar theorem.

Theorem 1.10.2 (Lie). If a canonical system of N degrees of freedom ad-
mits M (M < N) integrals f;(q, p) = const that are independent, in involution
and can be solved for M momenta, then we can reduce the number of degrees
of freedom of the system to N — M.

To prove this theorem we need to complete the involution system with
N —M functions f; and proceed as before. The analysis of the resulting Hamil-
tonian is trivial, the main difference being that, now, the aditional functions
fi =M+1,---,N) are not integrals of the motion and will not allow the
corresponding N — M degrees of freedom to be trivially solved.
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Angle—Action Variables. Separable Systems

2.1 Periodic Motions

The trajectories of systems with one degree of freedom are the curves
H(q1,p1) = E. As shown in Sect. 1.8, the equations of the motion are given
by

_0S def

t—|—o¢1:qf— 8E = Fll(q1)7 (21)

where oy is a constant and S = S(¢i1, E) is the solution of the Hamilton—Jacobi
equation.

In the particular examples given in Sect. 1.9, we have found two kinds of
periodic solutions:

e Circulatory Motions. Motions occurring when the variable ¢; is defined on
a circle (for instance, ¢; is an angle defined from 0 to 27) and is always
increasing or decreasing (see Fig. 2.1a). The periodicity of the motion is
due to the angular nature of ¢;. The phase space of this system is a cylinder
and the circulations are solutions closing on themselves after a complete
tour encircling the cylinder.

e Oscillatory Motions or Librations. Motions occurring when the variable ¢;
oscillates periodically between two boundaries a and b (see Fig. 2.1b). The
variable ¢; may be either an angle (as in the pendulum) or a length (as in
the harmonic oscillator). Accordingly, the phase space is either a cylinder
(if 1 € S) or a plane (if ¢ € R). Librations are closed curves with the
particular property, in the case q¢; € S, that they close on themselves
without encircling the cylinder.

It is not difficult to see that all bounded solutions of a Hamiltonian system
with one degree of freedom are either periodic or asymptotic to an unstable
equilibrium point. It is enough to remember that, since the phase flow pre-
serves volumes in phase space (see [5], Chap. 1, Sect. 3.6), the only ordinary
singular points allowed in the two-dimensional phase space of a Hamiltonian
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Fig. 2.1. Functions qi1(t): (a) circulation; (b) libration

system are centers and saddle points. All bounded curves in this space that
do not start or end in a saddle point correspond to a periodic motion.

2.1.1 Angle—Action Variables'
The equations resulting from the transformation (q1,p1) = (¢7, p7) are

G =t+om

pi=H5h=FE, (22)
where a3 and 5, are constants. The phase space (¢7, p) is either a plane or a
cylinder as discussed above. The phase trajectories are the lines p} = ;1 and
the phase velocity is ¢ = 1 on all trajectories. There are no explicit constraints
imposed on a1, 81, which, however, exist and may be found by the analysis of
S(q1, F). For instance, in the harmonic oscillator (Sect. 1.9.2), the solutions
exist only in the domain formed by the upper half-plane E/m > 0. Another
property not appearing in the functional expression of the Hamiltonian H* =
p7 is the possible periodicity of the solutions (or of one set of solutions). For
instance, in the harmonic oscillator, all solutions for E/m > 0 are periodic
with period T = 27 /Vk, that is, ¢f € R/TZ.

1 Throughout this book, the order coordinate-momentum is adopted. Thus, we
shall refer to these variables as “angle—action” variables, instead of “action—angle”
as usually done everywhere.
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To correct this lack of topological information on the motion in the phase
space ¢f,p;, we introduce, in the case of periodic motions, a new angular
variable w; € S'. By definition, it increases 27 when ¢; performs a complete
circulation or libration. From (2.1) we have

qi =t+ow = Fu(q1) (2.3)
G +T=t+a+T=Fulqa+§$da), '
where ¢ dg; means a complete circulation or libration of ¢;. Then, in order to
have, instead of ¢, a uniformized variable, it is enough to define?

t+ o q5
wy =2, :27r7£. (2.4)
Obviously, the period T is the same for all initial conditions on a periodic
orbit, but it is worth keeping in mind that it is not the same for all periodic
solutions of a given system.

The momentum conjugate to w; may be easily obtained in terms of g1, p;.
Let S(q1,J1) be the Jacobian generating function of the canonical transfor-
mation ¢ : (q1,p1) = (w1, J1). Hence,

0S 0S
p1= . (2.5)
0J1 o

w1 =

The following chain of calculations is simple and just uses elementary calculus:
dwy d [0S\ o (aS). S |
dt  dt 0J1 o oq1 \ 0J1 © = 0J10qq «

t+T 2O =~
B dw, . [ O 9 [05 9
2m = /t dt dt = 8J18q1 dCh N 8J1 8(]1 dCh N 8J1 %pl dQ1-

and

Hence

1
J1 = 9 j{pl dgi, (2.6)
v

except for an arbitrary integration constant (of the integration in Ji). The
quantity J; has the dimension of angular momentum or action and is an
invariant of the motion (see Sect. 1.2.2). It is equal to the variation of the
action when the solution performs a complete circulation or libration. Because
of this property, it was called modulus of periodicity of the action [93] or
modulus of variation of the action [11]. Since it gives the area delimited by the
trajectory in the phase plane, it was also called phase integral. The adoption of
these variables in the old Quantum Theory was first proposed by Sommerfeld.

2 We adopted fdwl = 27. In many classical texts, fdwl =1.
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The conjugate variables wj,J; were called angle and action variables,
a denomination that became standard after its adoption in Born’s Atom-
mechanik [12]. This denomination is the one currently used. The correspond-
ing canonical equations are
iy = 0B J=- 9 _g (2.7)
8J1 T 8?1)1

Finally, let us note that, when the periodic motion is a libration, the
quantity defined by (2.6) is singular when J; = 0. Indeed, the integral gives the
area enclosed by the libration orbit and the singularity J; = 0 is a consequence
of the fact that the direction of the motion in the phase space (g1, p1) cannot be
reversed. Examples and consequences of this singularity in Celestial Mechanics
will be extensively considered in Chap. 7

2.1.2 The Sign of the Action

We shall emphasize that the result of the operation defining the actions may
be either positive or negative. To avoid any ambiguity, it is enough to write
the definition of the action as

1 t+T
Jl = 9 / p1q1 dt. (28)
™ Jt

For instance, in the simple pendulum solutions, J; is positive if m > 0 or
negative if m < 0 (see Fig. B.1). We recall that w; is, by definition, always
such that wq; > 0.

Exercise 2.1.1 (Angle—Action Variables of the Harmonic Oscillator).

1. Show that the angle—action variables of the harmonic oscillator defined by
U="%¢? (k>0)are

k
wy; = arcsin \/m ¢ = Vk(t + o), (2.9)
2F
E
J1 = . 2.10
YV (2.10)
ok
o1 is a constant. Hint: H = P1 + mq%.
2m 2

2. Show that
p1 = V2mE cos wy. (2.11)



2.2 Direct Construction of Angle—Action Variables 33

2.2 Direct Construction of Angle—Action Variables

It is possible to rearrange the theory to directly obtain the angle-action vari-
ables. We may start from

1

h=y ]4 pi(gr, E) da, (2.12)

where p1(q1, E) is obtained from the inversion of the energy integral E =
E(q1,p1). If the given Hamiltonian is quadratic in p, like in Sect. 1.9, this is
an Abelian integral whose solution may benefit from some usual transforma-
tions and, when necessary, the use of the theory of residues®. The other basic
equations are

SZ /pl(ql,E) dq1 (213)
and

S )
— - E)day. 2.14
W= o / A p1(q1, E)dg: (2.14)

This step depends on the algebraic inversion of the solution of (2.12) to obtain
E = E(J1). Another possibility is to take, instead of (2.14),

_85’ dJi 71_ dr\"t oo
wl_aE<dE> —<dE> /8Ep1(q1,E)dq1. (2.15)

The replacement of dE/d.J; by (dJ;/dE)~!, which may be directly obtained
from (2.12) without the need of any algebraic inversion, is always possible as
long as E(J1) is a monotonic function.

However, these tasks are often made very difficult or even impossible to
accomplish analytically because of the reasonably complex forms of p1(E, ¢1).

There are ways of overcoming this situation. One of them, used in this book
to obtain angle—action variables for the small oscillations of the pendulum
(Sect. B.4) and of the Andoyer Hamiltonian (Sect. C.9), is founded on the fact
that we are dealing with periodic solutions of the given Hamiltonian system,
which may be represented by Fourier series. There are many different ways of
calculating these series. In this book, we limit ourselves to the neighborhood
of the equilibrium solutions. The solutions of the given system are represented
by the series

n
Q1 =ao+ Zawl}
i=1
where a; are undetermined periodic functions of the angle w; and ~ is a free
parameter of the order of the amplitude of the oscillations. (v = 0 corresponds

to the stable equilibrium solution ¢; = ag.) It is important to keep in mind
that we need to construct the whole family of periodic solutions and that w,

3 For some specific examples, see [93], Note 6.
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is not the same for all solutions but is itself also a function of the parameter
~. It is assumed to be a power series in v with undetermined coefficients:

n
w1 = wg + E o0iv".
=1

p1(w1) is constructed using the equations of the motion or the energy integral.
The angle—action variables are wy and

def 1 [*™ dq
J1 = dw;.
1 o /0 p1 dw; w1

The order n of the solution may be chosen according to the practical needs
of the problem being solved and the means available for the calculation. Exist-
ing algebraic manipulators allow high orders to be considered. The practical
steps of this construction may be seen in the cases presented in Sects. B.4 and
C.9.

A different method is the numerical construction of the angle—action vari-
ables [50]. Let H(q1,p1) be the Hamiltonian of an autonomous system and

¢1 = ¢1(qo, po, t)
2.16
P1 :pl(QO7p07t) ( )

its solution for a given initial condition (qg, po) and let T'(qq, po) be the period
of this solution.
The corresponding angle—action variables are

def 2m
w, E ot (2.17)
def 1 (T da 1" dp
J = dt = — dt
! 27T/0 P 27T/0 D g

and the inverses of these definitions are

Fig. 2.2. Orbits transverse to a curve 7
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g0 = qo(w1, J1)
2.18
Po = pol(wi, J1). (2.18)

In this technique, all functions are constructed numerically. It is noteworthy
that the last inversion may be more economically done when, beforehand, one
has constructed the derivatives 0.J;/9qo and 9.J1/9py.

A last practical point to be noted is that we need just to numerically
integrate from initial conditions lying on a given curve (v) transverse to the
orbits (and passing through the center of the orbits if we intend to include in
the study also its immediate neighborhood) (Fig. 2.2). The extension of the
solutions of (2.17) to the other points on each orbit is immediate.

The algorithms provided by Mayer’s lemma (Sect. 1.10) allow the above
construction to be extended to obtain a canonical transformation including
other degrees of freedom. (see Sect. 2.4.4)

2.3 Actions in Multiperiodic Systems. Einstein’s Theory

Let us consider a conservative Hamiltonian system with N degrees of freedom.
It was shown in Sect. 1.2.2 that the action

N
J = prz dg; (2.19)
i=1

is an invariant of the motion (Helmholtz invariant).
If S(q, B) is a solution of the Hamilton—Jacobi equation, then p; = 85/9¢;,

N
sz' dg; = dS(q,B)

i=1

is an exact differential and the integral (2.19) has the same value for all closed
curves that may be continuously deformed into one another. In particular,
for all curves that may be reduced to one point by means of a continuous
deformation, we have J = 0. When the solutions lie on a multiply connected
manifold, there are closed curves that cannot be reduced to one point by
continuous deformation (see [42]). This property was used by Einstein [26] to
prove that, when the Hamiltonian is integrable, it is possible to construct N
independent actions.

The multiperiodic solutions of a conservative integrable Hamiltonian cor-
responding to N constants 3; form a surface homeomorphic to TV. An N-
dimensional torus is an N times connected surface and then we can find N
different closed curves Iy that cannot be pairwise deformed into one another
or reduced to one point and that may serve to uniquely define N independent

actions
N
Ji :7{ > pidg. (2.20)
Iy

=1
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T

I o

Fig. 2.3. Curves on tori T2 (the tori are obtained by joining the opposite sides of
each square)

« «
I r T||¢

- -
r r

Fig. 2.4. Left: Integration paths I' and I"”. Right: Integration path obtained by
introducing a cut between them and inverting the direction of I"’

Let us consider the particular case N = 2. In T2, there are two types of
closed curves that cannot be reduced to one point or transformed into one an-
other by continuous deformation. They are shown in Fig. 2.3. All other closed
curves on the surface of the torus can, by means of continuous deformations,
be reduced to one point or transformed into one or more loops of the curves
Iy and I5. To the closed curves Iy and I, there correspond two independent
actions J; and Js.

In order that the definitions of Jj (k = 1,2) have a meaning, the values of
J obtained from all closed curves that can be continuously transformed into
one another may be the same. Let I" and I be two oriented closed curves
that may be transformed into one another (Fig. 2.4, left). We may prove that
the resulting actions J and J’ are such that J = J’. To show this, we calculate
J — J'. First, a cut joining I" and I’ is introduced. (The cut is shown in Fig.
2.4, right, as a pair of infinitesimally separated segments.) The resulting path
is a curve drawn on the torus without encircling it and which may be reduced
to one point; the integral over this path is then equal to zero. If we note that
the integrals over the cut are opposite and cancel each other and that the
integral over I is done in a direction contrary to that used to define J', it
follows that J — J = 0. O

The actions constructed with Einstein’s theory may be completed by an-
gles defined by wy, = 9S5/dJ where S(q,J) = S(q, (J))*.

4 For a modern and rigorous definition of the angle-action variables of an integrable
system, see [4], Sect. 50.
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2.4 Separable Multiperiodic Systems

There are no general methods for the solution of the Hamilton—Jacobi equation
in the case of more than one degree of freedom. The use of general theories,
such as Cauchy characteristics, just recovers the given Hamiltonian system.
However, under certain special conditions, for some important problems such
as Keplerian motion (or the Rutherford-Bohr atom), a complete solution of
the Hamilton—-Jacobi equation may be obtained. In these very particular cases,
one partial differential equation in N variables can be replaced by N sepa-
rate ordinary differential equations, one for each variable, and the complete
integration of the equation is achieved.

Generally speaking, a problem is said to be separable when the correspond-
ing Hamilton—Jacobi equation has a complete integral S(g, ) which may be
separated as

S(q,B) = Si(q1, B) + S2(q2, B) +--- + Sn(gwn, B), (2.21)

where each term Sy = Sk (qx, ) is independent of the g; (j # k).
In this case, the equations of the motion are given by

oS 8Sk qka
t+a=qf = = Fir(qr)
o ,; 0B Z
(2.22)
oS 8Sk qka
=i g3 =
(0=2,3,---,N), where we have introduced the functions
def OSk(qr,
Firlgr) = b(ar. B) (2.23)
B;

The other equations, completing the transformation, are

dS  9Sk(q.B)

— k=1,---,N). 2.24
s da ( ) (2.24)

Pk =

Equations (2.24) show that the trajectories projected in the phase sub-
spaces ¢k, pr are mutually independent. The law of motion along the projected
trajectories may be obtained by solving the equations of the motion, (2.22),
with respect to the gi. As in Sect. 2.1, these projected periodic motions may
be either circulations or librations.

2.4.1 Uniformized Angles. Charlier’s Theory

The generalization of the angle variables of Sect. 2.1.1 to N degrees of freedom
may be done following the same principle as there. We define a partial cyclic
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variation in which the corresponding variable ¢; performs a complete circu-
lation or libration while the other variables g (k # ) are kept unaltered. We
then define a set of N angle variables w; € S such that in a partial cyclic vari-
ation of g;, the corresponding w; increases 2w while the other angles wy (k # )
are not affected. Such angle variables are said to be uniformized.

In a partial cyclic variation of ¢;, the functions F)j; change while all func-
tions Fj,(k # i) remain unchanged. Let 7;; be the increment of the functions
Fji(¢i, B) in a partial cyclic variation of g;:

vii = Fji(qi + fd%') — Fji(qi), (2.25)

where § dg; denotes the partial cyclic variation of ¢;. It is important to keep
in mind that the resulting repetition numbers v;; are not independent of the
initial values of the ¢; (as T is not independent of the initial ¢; in the case of
one degree of freedom).

Proposition 2.4.1 (Charlier [20]). If det(v;;) # 0, the variables w; defined
by the equations

N
.1
G=o ;ng (2.26)

are uniformized angle variables.

Proof. Let us introduce the inverse matrix of (7;;) and denote its elements by
vj_il. If det(v;;) # 0, (2.26) may be inverted, giving

N
wi =21y (2.27)
j=1

In a partial cyclic variation of ¢;, the variation of wy, is

N
Siwk = 2T Y Vi; 8iq) = 27y (2:28)
j=1

(by construction, 8;q; = 7;;). Therefore, in a partial cyclic variation of g;, w;
increases of 27 while the others wy (k # ) remain unchanged. O

2.4.2 The Actions

The next step is to find the action variables Jj canonically conjugate to the
angle variables wy. To do this, we introduce the Jacobian generating function
of the canonical transformation ¢ : (¢,p) = (w,J), namely S(g,.J). We then
have N

a8

o7, (2.29)

wE =
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and
N

025 025
dwy = 7 dg; + E o dJj. (2.30)
- k X
Jj=1

In a partial cyclic variation of g, wy increases 27. Besides, along the given
path, dg; = 0 for j # k and d.J; = 0. The above equation then reduces to
S

2 =
™= P oquo, 4

A trivial calculation, similar to that of Sect. 2.1.1, gives

1
Jr = 9 fpk dgx (2.31)
v

for every k € {1,---,N}.

2.4.3 Algorithms for Construction of the Angles

In practice, we use some straightforward approaches to obtain the angles. The
separation of the Hamilton—Jacobi equation leads us to obtain p; = p;(q;, 5)
and the solution

N

S(q,8) = Si(4;,8 Z/p] 45, B) dg;. (2.32)
j=1

We may also solve (2.31) with pr = pr(gk,5) to obtain the actions Ji as
functions of the constants ;.

_ The Jacobian generating function S(q,J) may be obtained, now, from
S(q,J) = S(q,B8(J)) and (2.29) gives the angles:

08 0B 5@ / Op;
Z 90,0~ 2 0, Z og ‘4 )
These equations are akin to the equations

0 [

which would result if the canonical transformation of Mayer’s lemma (Sect.
1.10) were used in this case. The conditions under which that transformation
was established (involution of the functions J;(q, p) and possibility of inversion
to obtain the functions p;(q,J)) are satisfied and it can be used. Equation
(2.34) transforms itself into (2.33) in the separable case in which every term
p; depends only on the corresponding g;.
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2.4.4 Angle—Action Variables of H(q1,p1, P2, ,PN)

Let us consider the case of a Hamiltonian having the form H (q1, p1, p2, -, DN),
where the coordinates go,- - -, qn are ignorable and the momenta po,---,pyn
are constants. Because of frequent applications, it is worth having the algo-
rithm of the previous section explicitly given in this case.

The Hamiltonian H is reducible to one degree of freedom and the angle—
action variables of the reduced Hamiltonian may be obtained with one of the
algorithms discussed in Sect. 2.2. The results of the previous section allow the
one-degree-of-freedom transformation (g1, p1) — (w1, J1), thus obtained, to be
embedded into a more general transformation (gq,p) — (w, J) that considers
also the remaining degrees of freedom of the given Hamiltonian. To do this,
we consider as given the N functions

Ji = fila,p) (2.35)
JQ :pQEfQ(qap) (@:275N)
These functions are pairwise in involution and may be solved for the momenta.
Because of the particular form of the functions f,, the inversion is trivial,

giving p = p(q1, J). The resulting generating function of the transformation
(2.35) is simply

N
> [t Dda; = [Filannda+ Y duas (2:36)

j=1 0=2

We then have

wp = 2
Wo = QQ+Ep (@22)7 (2'37)
where P
Bk = / Pila, g (k> 1). (2.38)
0Jy

We note that (2.36) comes from the integration of an exact differential form
in dg; and that we may add to the generating function any arbitrary function
of J.

The one-degree-of-freedom canonical transformation (¢1,p1) — (w1, J1) is
often given in the inverted form

= Qi(wy,J)
p1 = Pi(w,J). (2.39)

In this case, (2.38) may be written

- _ op1(q1,J) oQ
=k —/|: 8Jk . 8?1)1 dwl. (2.40)
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It is worth emphasizing that the substitution ¢ = Q1(w1,J) may be done
after the differentiation and that it is no longer possible to permute the dif-
ferentiation with respect to Ji and the integration.

If the differentials of p1(q1,J) and P;(ws, J) are compared, we obtain

oP.  Op n Op1 0Q1
0J,  OJy  Oq1 OJy
0P, Op1 0Q1
8101 86]1 8101 ’

which, substituted in (2.40), give the equivalent result

w1 8@1 8P1 8@1 8P1
= — 2.41
° /0 (am aJ,  dJ, 8w1> dun, (241)

[1]

obtained by Henrard and Lemaitre [50]. We also have the trivial relation
21 = wj, since the integrand in this case is the one-dimensional Lagrange
bracket [wy, J1] which is equal to 1 because the given transformation (¢1,p1) —
(w1, J1) is canonical.

In this section, we have considered a Hamiltonian independent of the co-
ordinates ¢, (p = 2,---, N). The algorithms derived from Mayer’s lemma are
valid in more general circumstances, but the results are not angle-action vari-
ables of the given Hamiltonian when H depends on the g,. If, for instance, a
general H may be decomposed into two parts: H = Hg(q1,p1) + Hp(qo, Do),
and the formula is used to extend the angle—action variables of H,, the re-
sulting variables w,J are not angle—action variables of H. It is easy to see
that the calculations to obtain the w,, J, are the same for any H; and, thus,
we cannot expect that it eliminates the angles from Hj. This comment is
somewhat obvious, but is useful to avoid pitfalls.

Exercise 2.4.1. By construction, the functions ¢ (w1, J) and p;(wy,J) are
2m-periodic in the angle variable w;. Under which conditions may we guaran-
tee that the functions =, are also 27-periodic in w17

Exercise 2.4.2. Find the angle variable conjugate to J; = } (¢ 4+ p?). Check
the result with {wy, 1} = 1.

Exercise 2.4.3. Find a set of angle—action variables for the Hamiltonian
H— Lo oo 9 1 2242
= 2(1’1 +p3) + PGNE

where A = A(p2). Check the results with {w,J;} = 81;. Hint: See Exercise
2.1.1.
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2.4.5 Historical Postscript

The given definitions of angle-action variables follow those found in several
classical texts on Celestial Mechanics and on the old Quantum Theory®. An-
gles and actions appeared separately. The angles were first introduced by
Charlier [20] as a complement to what was then called Staude—Stdckel theory.
They came as a result of an application of Weierstrass’ theory of multiperi-
odic functions to the solutions of the Hamilton—Jacobi equation of a separable
system. The actions evolved from the quantity defined in Malpertuis’ least ac-
tion principle (see Sect. 1.2.1), quantized in the theories of Planck and Bohr,
to their definition for separable multiperiodic Hamiltonians given by Som-
merfeld [92] and Epstein [28]. The introduction of the angles as variables
canonically conjugate to the actions through a Jacobian generating function
S(q,J) is due to Kramers (cf. [10], Note 24). The definition of the actions
of an integrable Hamiltonian system without recourse to the separability hy-
pothesis is due to Einstein [26]. (An alternative construction was presented,
at the same time, by Burgers; cf. [12].) The introduction of invariant tori in
modern theory is due to Arnold [3]. It is worth mentioning that Einstein’s
construction of invariant tori is very different from that adopted in the mod-
ern theory of Hamiltonian systems. Einstein considered one example (central
motions in a plane) and used the fact that, for given [;, the phase space may
be seen as a vector field on a Riemann surface formed by two annular sheets
joined by their edges (which is homeomorphic to T?).

The angle-action variables ¢, g, h, L, G, H obtained in Sect. 2.7.2 as an
application of the Schwarzschild transformation to the angle-action variables
of Keplerian motion, were actually discovered by Delaunay a long time before
and fully employed in his (canonical) Théorie de la Lune [22].

It is worth emphasizing that the introduction of angle—action variables in
Delaunay’s work, as well as in the work of Sommerfeld and his contemporaries,
resulted from specific needs for the actual solution of problems in Astronomy
and Physics. The hiatus between the results of old Quantum Theory (before
1920) and modern theories (ca. 1960) has an explanation. The construction
of action variables was the central point of the Bohr—Sommerfeld quantum
condition. With the foundation of Quantum Mechanics, in the early 1920s,
the actions lost their position in center stage. KAM theory has again made
angle and action variables central concepts in Physics and Dynamics.

2.5 Simple Separable Systems

We only know some sets of sufficient conditions for separability. Some simple
cases are the dynamical systems whose Hamiltonians have special structures,
such as

® Specifically, we mention (in chronological order) Charlier [20], Schwarzschild [84],
Einstein [26], Sommerfeld [93], Born [12], and Boll and Salomon [11].
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H = G[fi(q,p1),- -, fnlan, pw)] (2.42)
and
H = fi{qi,p1, f2la2,p2, f3 (-, fn(an, pN))]} - (2.43)

In the first case, the variables in the expression for the function H are sepa-
rated, i.e., only one pair of conjugate variables ¢;, p; enters into each function
fi- The Hamilton—Jacobi equation corresponding to this case is

oS a8

G , R , =FE. 2.44
|:f1 (ql 8q1> In <QN an)] (2.44)
After the introduction of S = Efil S;(gi), this equation is separated into N

equations
dsS;

% (2 = Mi, 2.4

() = (2.45)

the integration constants §; being such that

E=G(B1,--,0n). (2.46)

In the second case, the variables appear in a hierarchical disposition and
the corresponding Hamilton—Jacobi equation,

oS oS oS
fl {QM 8q17f2 |:qQ7 8q27f3 (7fN (QN7 8QN>>:|}:E’ (247)

after the introduction of S = Zfil Si(g:), is separated into N equations

ds
In (CIN,qu = BN
ds; N (2.48)
fi (qz'vdq.,ﬂwl = G (i=1,---,N—-1),

with 81 = E. If we assume that 9f;/0p; # 0 for all ¢ = 1,---, N, these
equations can be solved to give

ds; .

ds

. N Gn(gn, BN)- (2.49)
gN

2.5.1 Example: Central Motions

The classical example of a separable system of this kind is the motion of a
particle in a central force field. In spherical coordinates, the total energy of
the particle is
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m(?'"z + 7202 + r?sin%0 (;52) +mU(r)

H=T+mU(r)= 9

or, introducing the generalized momenta

= or = mr
br = ar
oT Yy
= . = mr0
Do 96
or 2 29
= . = mr<sin“6 ¢,
D¢ 90 o}
we obtain
1

H =

9m +mU(r).

1 ¥
2 2 [
et r2 <p9 + sin? 9)

The above Hamiltonian has the special structure of (2.43) with

fi = 2; (p$+ TJE) +mU(r)=FE

_ 2 fs
fo = pg+ sin2 0 B2
fs = pj =Ps,

and an application of (2.49) gives

pr = S _ \/QmE—ﬂQ—QmQU(r)

dr r2
_dSy \/ﬂ _ B
P =49 27 sin20
dsS;
Py = de = \/53-

2.5.2 Angle—Action Variables of Central Motions

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

Let us calculate the angle—action variables of the central motions, starting

with Jy. A short chain of elementary calculations gives

1 1 27
To= g f Vo=, [ Vmdo =B =

(2.55)

The integration of the next one is also elementary, but not as immediate:

1 1 B
Jo = 27 j{pgdﬂ— QWj{\/ﬂQ sin29d0'
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It may, however, be avoided by noting that when the plane of the motion
is chosen as the fundamental reference plane, we have, in analogy with the
previous result, .

Jyp = pyp = mrip, (2.56)

where 1 denotes the longitude reckoned on the plane of motion. Taking into
account (2.53) and ¥ = 62 + sin® § 2, we obtain

Ty =/ Ba. (2.57)
Comparing, now, the kinetic energies in the two reference systems:
et + pob + pod = prit + pyl, (2.58)
it follows that
J—l% d9—17§( At — pydg) = Jy — J (2.59)
0= o Po = on Py Py =Jy ¢ :
and then®
Jo = /B2 — \/Bs. (2.60)
The radial action
1 B2
Jp = o 7{ \/2mE —2m2U(r) — .2 dr (2.61)

cannot be calculated now since the potential U(r) has not yet been given (see
next section).

To obtain the angle variables wg, we follow the procedure given in Sect.
2.4.1. We first write

S(q,8) = /pr dT+/p9 d9+/p¢ do¢ (2.62)
and then introduce

ﬂl =F = E(JT7J97J¢)
Bo = (Jo+ Jg)? (2.63)
ﬂ3 = J£7

where we have to keep in mind that the function £ = E(J,, Jy, J,) may be

known only when the potential U(r), of the central force, is given. We then
have

5 Jy>Js>0,62>0>0and Jp > 0.
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Wr

Weo

We

where

a8 S OFE
dJ, OF 0.J,
a8 dS OF N a8
0Jy OE 0Jy  0fs
a8 08 OE S a8

Z(Jg + J¢)

= os, = opos, "o 2t s
as Opr d
o8 ~ | o “"
oS Opr Ope
= dr + do
0 a3, " ] 9B,
5 [0y, [ o0
_ 0+ do.
05 95 o 4

2.J,,

(2.64)

(2.65)

As for the actions, some of these integral cannot be calculated, because U (r)

has not yet be

en given. Those that may be calculated are

Opg / dé
do =
002 2pg

de
do = —
903 / 2pg sin? 6

(2.66)

Fig. 2.5. Geometry of central motions (w = 2 + w)
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[2ag - [ &
Ip3 2py
The third of these integrals is trivial since py = Jy = const. Omitting the
integration constant,

0

003 2J¢,
The two other integrals are also easy to calculate using an immediate relation

between the angles and momenta (8/pg = 1)/ Doy = $sin® 0/ pe) and recalling
that py = Jy and py = Jy = Jg + Jy are constants. We thus obtain

o= [ 5= o
8ﬂ2 2pe pr J¢ + Jog)

8p9d0__/ e /d¢ -0
8ﬂ3 B 2pgsin29 2p¢ 2J¢, '

In general, we have omitted integration constants, since this arbitrariness is
intrinsic to the definition of the angles w;. However, in the last equation, to
shift the z-axis to the ascending node (N) of the orbit (see Fig. 2.5), we have
introduced the integration constant £2/2J.

We may summarize the results by writing

and

OE [ Op,
w, = o5, | oF dr (2.67)
_ OE [ Op, Opr
Wy = 90 8EdT+2(J9+J¢) 95, dT“f—w
_ OE [ Op, Opr
Wy = 0, 8Ed7‘+2(J9—|—J¢) 9, " dr 41+ 0.

2.6 Kepler Motion
In the case of the heliocentric motion of a planet, we have
1
Ulr)y=-",
(r=-"

where = G(M + m); G is the universal gravitation constant and M is the
mass of the Sun. Now, we can consider the several integrals left uncalculated
in the last section. The first one is the radial action J, (see 2.61). We have

1 1
=, 7{ C2mE? 4 2mr — By dr. (2.68)
™

The radicand has the real roots
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—um 2EB3;
= 14+4/1 . 2.
2= op ( \/ + J2m? ) (2.69)

One may note that, if £ > 0, the two roots are real, but one is negative. In
this case, the motion is only possible for r larger than the positive root and
has no upper bound. For —u?m3/23; < E < 0, the two roots are real and
positive, say r; < r2; the motion is periodic and is a libration between the
two roots. In this case, we may calculate the action J,.. The integral of (2.68)
may be done along a path in a two-sheet Riemann surface enclosing the two
branch points 71, r2. It has been thoroughly studied by Sommerfeld (see [93],
Note 6). The sophisticated procedure idealized by Sommerfeld has, since then,
been reproduced in many treatises on Mechanics. However, there is a simpler
way of doing it. We introduce the mean distance to the force center

def 71+ 72 um
= = — 2.
a 5 oF’ (2.70)
the eccentricity
def 72 — 71 2FE (3
= =4/1 2.71
c 2a \/ + w2m3 (2.71)
and the angle u (eccentric anomaly) defined through
r=a(l —ecosu). (2.72)
A lengthy but elementary calculation gives
przx/—2mE esinu
1—ecosu
and the given integral becomes
1 2 2 d
Jo = ae®—2mE / s ut (2.73)
2m o l—ecosu

The integral to be solved is trivial. We may just introduce z = e!* and perform
the integration along the circle |z| = 1 in the complex plane, with recourse to
the theory of residues. We obtain”

/27T sin? u du _2r (1_\/1_62). (2.74)
0

1—ecosu e?

After some elementary calculations, we obtain

Jr =v—2mE a (1 ~V1- 62) - ,um\/_ZLE /B (2.75)

" This integral is also found in tables, e.g. [25], [41].
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and the inversion of this equation gives

2m3

E=-
2(Jp + Jo + Jp)?

(2.76)

(since \/ﬂg =Jy =Jp+ J¢).
We may now proceed with the remaining integrals. They are

Opr P mdr
oF o [

Opr P _/ dr
862 N 2p7‘r2.

Introducing the eccentric anomaly u, these integrals are changed into elemen-
tary ones. The first one is

d 3/2 3/2
mar_a /(1—ecosu)du:a (u—esinu) (2.77)
pr Vi Vi
which introduces the mean anomaly
14 def u — esinu.
The second one is
1
_/ dr _ / du (2.78)
2p,12 2m\/pa ) 1 —ecosu

1 \/1 +e u
= — arctan tan
m/pa(l — e2) 1—e 2

which introduces the true anomaly

def 1+e U
= 2arct t . 2.79
v arcan\/l_e an (2.79)

The two remaining integrals are, then,

op, ad/2¢
dr =
ok Vi
opy dr — — v
92 2my/pa(l —e2)

Substituting these integrals into (2.67), and noting that

oF OF oF wrm3

oJy  0Jyg  0Jy  (Jr+Jo+ Jy)3
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Jr + Jo+ Jp = my/pa (2.80)

and
Jo+Jg = \/ﬂgzm\/,ua(l—ez)
it follows that
w, =4
wg =L —v+1Y ={+w (2.81)
wg=L—v+Yv+2=~0+w+ 12,

where we have introduced the so-called argument of pericenter w = ¢ — v,
giving the distance of the pericenter (II) to the ascending node (N) (see Fig.
2.5).

To complete the definition of the angle—action variables of the Kepler mo-
tion, we write®

Jy = m/pa(l — e2) cosi. (2.82)

2.7 Degeneracy

In the example studied in the previous section, the three frequencies

oE

o (2.83)

Vi =
of the system are equal. We follow Schwarzschild and call this case degenerate.

In general, degeneracy is said to occur when there exists a commensurability
relation

N
(h|v)=> hgy =0 hezN (2.84)
k=1

amongst the frequencies of the system. Degeneracy may be essential or acci-
dental. A degeneracy is said to be essential when it does not depend on the
initial conditions. We shall stress that this does not mean that the frequencies
themselves are independent of the initial conditions. The Keplerian motion
is a good example: the frequencies v,, vy, vy (defined by the derivatives of E
with respect to J;, Jg, Jg) depend on the initial conditions but they are always
equal, regardless of the initial conditions.

Otherwise, a degeneracy is called accidental when it only occurs for some
particular values of the initial conditions. One example is the motion of an as-
teroid in an orbit whose period is commensurable with Jupiter’s. In this case,
the commensurability relation ceases to exist if the asteroid orbit is moved
inward (or outward). The main consequence of an accidental degeneracy is

8 The inclination is introduced by the fact that Dy is the angular momentum of the
motion and py is the angular momentum of the motion projected on the reference
plane: py = py cos.
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the appearance of small divisors, which impair the performance of pertur-
bation theories. Motions affected by accidental commensurabilities are called
resonant and are the subject of several of the next chapters.

A separable multiperiodic system may be such that multiple commensura-
bility relations exist. Degeneracy affects the degree of periodicity of the solu-
tions: the solutions of a degenerate separable multiperiodic system with N de-
grees of freedom and D independent commensurability relations are (N — D)-
periodic. When D = N — 1, the system is said to be completely degenerate.
For instance, the degeneracy of the Keplerian motion is complete, since we
may write two independent commensurability relations, viz. vg — v, = 0 and
vy — g = 0. As a consequence, the Keplerian motion is periodic. The cen-
tral motions of Sect. 2.5 are always degenerate, since vy — 9 = 0. However,
they are not completely degenerate, except in some particular cases such as
Keplerian motion and the harmonic oscillator (Bertrand’s theorem). In these
cases, besides vy — vy = 0, we also have vy — v, = 0. For other laws of force, a
second commensurability relation may only occur for given initial conditions
(accidental degeneracy or resonance).

In Kolmogorv’s theorem, the non-degeneracy of an integrable Hamiltonian

H(J) is defined as
0’H
det <8Ji8Jj> #0, (2.85)

which guarantees the reversibility of the transformation from actions to fre-
quencies. This definition is more restrictive than Schwarzschild’s. Indeed, all
Hamiltonians linear in one of the actions are degenerate in Kolmogorov’s
sense’. For these Hamiltonians, one whole row of the Hessian determinant
consists of zeros. It happens that a common operation in the applications
of Hamiltonian Mechanics to Astronomy is the extension of the phase space,
because of time-dependent applied forces. In such an extension, a new general-
ized momentum (or action) is added to the given Hamiltonian. The extended
Hamiltonian will always be such that the Hessian determinant is zero. If the
condition given by (2.85) were a universal restriction, almost all dynamical
systems of Astronomy would be excluded from the possibility of application
of the theories discussed in this book. However, when frequency relocation is
not done, the most general non-degeneracy condition is Schwarzschild’s, that
is, (h | v) # 0 for all h € Dy C ZN\0.

2.7.1 Schwarzschild Transformation

In the study of degenerate systems, it is often convenient to redefine angles
and actions to introduce angles whose frequencies are equal to zero. Let a
separable multiperiodic system of N degrees of freedom have L essential com-
mensurability relations

9 For a more accurate discussion, see Sect. 3.11.4.
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N
S5 10 pmN-LiLN (2s6)
k=1

and let us introduce the point transformation of the angles,

w1 = €1
w2 = 82
i = lu (2.87)
Zk - ) = €M+1
Dok hk Wk = {n,

where, for simplicity, we have introduced M = N — L. Extending this trans-
formation to the momenta, we obtain

L=+ Y, 0,
Jo = z9 + ZQ hgg)xg
Jv = am+ ), h(")xg (2.88)
I = Zghg\g)+lx9
_ (o)
JN = ZQ h’N Lo,

where the x; are the momenta conjugate to the new angles /.

The angles £, (u = 1,---, M) are called non-degenerate'® while the re-
maining ones, ¢, (¢ =M +1,---,N), are called degenerate.

With the new variables, the Hamiltonian depends only on the actions
conjugate to non-degenerate angles. Thus, the frequencies of the degenerate
angles are

. dt, O0H(z) _ B
%=t = o, =0 (=M +1,---,N). (2.89)

The equations 7, = 0 are the new commensurability relations.

2.7.2 Delaunay Variables

The usual angle—action variables of the Keplerian motion, the Delaunay vari-
ables, are the result of the application of the Schwarzschild transformation

10 The actions conjugate to non-degenerate angles are sometimes called proper. How-
ever, the word proper is used, in this book, to indicate the almost constant actions
resulting from an averaging process. Thus, to avoid ambiguities, the word proper
will not be used to mean non-degenerate.
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to the angle—action variables obtained in Sect. 2.6. Indeed, in this case, the

commensurabilities are
vg— v, =0

2.90
Vp — Vg = 0. ( )
Then
él = Wy =/
by = wg —wr =w (2.91)
63 =Wy — Wy = 9
and
Jr =1 — X2
J9 =T — I3 (292)
J¢ = T3
or
x1 = Jp +Jo + Jy = m/ua
o = Jo+ Jy =my/pa(l — e2) (2.93)

3 = Jg = my/pa(l — e2) cosi.

For m = 1, these variables are exactly the variables ¢,g,h,L,G, H of
Delaunay. Indeed, point dynamics problems often are such that the mass of
the moving particle cancels in the equations and does not affect the results.
In this case, energies, momenta and actions are considered per unit mass and
we write

T1 =/ ua
Ty = x1V1 — €2 (2.94)
T3 = X9 COS?
and )
w
E=- . 2.
222 (2.95)

2.8 The Separable Cases of Liouville and Stackel

Autonomous systems whose energy consists of a kinetic energy quadratic in
the velocities and a potential energy independent of the velocities have been
thoroughly studied in the past. Sufficient conditions for their separability were
established by Liouville and Stéckel. These cases are generally presented as
sets of conditions for the potential and kinetic energies, separately. In what
follows, kinetic and potential energies are considered together to give a set of
conditions for the Hamiltonian; this choice is more appropriate for the scope
of this book.
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Theorem 2.8.1 (Liouville). The dynamical systems whose Hamiltonian
may be written as

fi(qi,p1) + -+ fn(aw, pN)

H:
91(q1,p1) + -+ gn (N, pN)

(2.96)

are separable.

The Hamilton—Jacobi equation in this case is

N N
oS oS
N g - F i | q, 2.97
;f (q 8%) ;g (q 8%) (2.97)
which, after the introduction of S = ). S;(¢;), may be separated into N
equations
dSi dSi
fi (% > — Eygi (qz', ) = Bi, (2.98)

dqi in

the integration constants [3; being such that ), 8; = 0. These equations may
be solved with respect to dS;/dg; when

8f1' 391’ .
(5pi>_E(3pi> #0 for all 1.

Theorem 2.8.2 (Stéckel). The dynamical systems whose Hamiltonian may
be written as

O

N
1
H= ; Aifilai,pi), (2.99)

where A is the determinant of a square matriz of rank N in which each column
depends only on the coordinate of the same subscript as the column:

A = det (aji(qi)) s (2100)

and the A; are the cofactors of the elements of any of the rows of the matrix,
are separable.

The Hamilton-Jacobi equation in this case is

N
> Aifi (qz-, 85) =EA. (2.101)
i=1 00

This partial differential equation has a complete integral of the form S =
> Si(gi). If we assume, for instance, that the A; are the cofactors of the
elements of the first row, the theorems of Laplace allow us to write
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N
i=1
N
Zam‘Ai =0 (QZQ,---7N).
=1

Because of these relations, the Hamilton—Jacobi equation is not affected
when we introduce the sum

N N
=D A Botgiar),
i=1 0=2

where the 3, are N —1 arbitrary constants. Using also the Laplacian expression
for A, the Hamilton—Jacobi equation becomes

N

N oS N
> A (fi (%'7 aq'> - Z@,@ﬂ(%‘)) =EY au(g)A, (2.103)
i=1 v 0=2 i=1

which may be separated into NV equations

ds; al
fi (q dqf) = Botyi(qi) + Eayi(q:)- (2.104)

0=2
These equations may be solved with respect to dS;/dg; if

Afi

O #0 for all i.

2.8.1 Example: Liouville Systems

The original form of Liouville’s separability conditions says that the kinetic
and potential energies may be written, respectively, as

1 . . .
T = (Ai+As 4+ AN)(Bidt + Bogs + -+ + Bndiy) (2.105)

and Vit Vot 4V,
= tTrETrr N 2.106
Ai+ Ay +- + An ( )
where A; = A;(q;), B; = B;(q;) and V; = V;(g;). (The function with subscript
i depends only on the generalized coordinate ¢;.) A simple calculation shows
that the energy H = T4V has the form given in the above theorem and that

the Hamilton—Jacobi equation is separated into the N equations:

1 /dS\?
=FA - V5. 2.1
2B, (qu) k+ Bk — Vi (2.107)
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2.8.2 Example: Stackel Systems

The original form of Stéackel’s separability conditions says that the kinetic and
potential energies must be, respectively,

1 (a @ i
T = 2A<A1 +A2 + +AN (2.108)
and
1 N
V= 42 oile) A (2.109)

where A and A; are the same as in the given theorem. The resulting energy
H =T + V has the form as given in the theorem and the Hamilton—-Jacobi
equation is separated into the N equations:

N2 N
;@z) =D Botoi(9i) + Bari(a:) = 9:(ai)- (2.110)

0=2

2.8.3 Example: Central Motions

The example of the motion of a particle in a central force field, considered in
the previous section, is also an example of a separable Stéckel system. The
Hamiltonian of this system is (see 2.52):

1 3
2 2 [
et r2 <p9 + sin® 9)

In order to see that this system satisfies the conditions of the Stéckel
theorem, we introduce the matrix

1
o=

=0 +V(r). (2.111)

—r2 1 0
(aij) = 0 —sin 260 1 (2.112)
1 0 0

whose determinant is A = 1 and the cofactors of the elements of the third
row are:

A =1
Ay = r72 (2.113)
Az = (rsinf)"2

Comparison to (2.97) shows that the functions f; are
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1
ho= Qmpz‘FV(T)
L 5
= 2.114
P 2mp0 ( )
L 5
f3 = 2mp¢

and the proof is completed.

2.9 Angle—Action Variables of a Quadratic Hamiltonian

Let us consider the case of a Hamiltonian given by a quadratic form in g, p,
with purely imaginary eigenvalues. Let it be

2N
Hy(2) = ), aijziz, (2.115)

4,j=1

where 2z = (¢,p) € R?". In this case, the techniques discussed in the previous

sections to obtain angle—action variables cannot be used because the Hamil-

tonian does not have the form of the considered separable systems. However,

the resulting differential equations are homogeneous and linear with constant

coefficients and a few steps are enough to solve them. These equations are
dz 8H2

w=""1 o, =15 (2.116)

’H
where J is the symplectic unit matrix of order 2V and S = (86 82 ) = (asj)
2i0%j

is the Hessian matrix of Hy. Let \; and /L- be, respectively, the eigenvalues
and eigenvectors of —JS. If we assume that all eigenvalues are distinct, the
general solution of (2.116) is

2N
z= Z ciA; exp A\t (2.117)
i=1

where ¢; are arbitrary constants. The characteristic polynomial P(\) =
det(—JS — Al) is even and, if A is an eigenvalue of —JS, then so is —A. The
eigenvalues of —JS, which were assumed to be imaginary, may thus be written
as

A = —lwg, AN+k = lwg (k=1,2,---,N). (2.118)

Let us now consider the matrix formed by the 2N eigenvectors, A = (fli),
its transpose A’ and let us form the matrix R = A’JA. A simple calculation
shows that the elements of R are

Oij = A;JAJ
We have to prove the following lemma (see [71] Sect. II.C):
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Lemma 2.9.1. If A; and flj are eigenvectors of —JS corresponding to two
eigenvalues \i, \j such that \j + X\; # 0, then AjJA; = 0.

The proof of this statement is very simple. We just have to recall that
the eigenvalue \; and the eigenvector A; corresponding to it are related by
JSA; = —\;A;. It then follows that:

NAJA; = —AlSA;  and
NAJA; = AjSA;;
and so, (\; + \j)AjJA; = 0, that is, A/JA; = 0.
Corollary 2.9.1. A/JA; =0 for alli=1,2,---,2N.
The following lemma is trivial.
Lemma 2.9.2. For all i,j = 1,2,---,2N, we have A}JA; = —A}J[li.

A consequence of these lemmas is that the only terms of R that may be
different from zero are those arising from eigenvectors corresponding to pairs
of eigenvalues +iwy,. We assume p;; # 0 for the pairs 4, j such that [j —i| = N.
Otherwise, g;; = 0:

0 0 —0Onirs 0
0 0 0 —0yias
R— e | 5119
Oniia 0 o 0 0o .- ( )

0 Ony22 " 0 0

Therefore, it is enough to rescale the eigenvectors (dividing the Ay, and A N4k
by \/0x 4k, for all k) to obtain J instead of R. If D is the diagonal matrix

def .. 1 1 1 1
D :d1ag P 5 P )
\/QN+1,1 \/QzN,N \/QN+1,1 \/QzN,N

the matrix M = AD is such that M’JM = J and therefore, the linear transfor-
mation ¢ — z = AD( is canonical (see 1.36).

If we compare the equation of this transformation to (2.117), we obtain
for the new canonical variables,

Art e)\N+kt

Ck = ck\/QNJFk,k € CN+]€ = cN+k\/aQN+kyk

(k=1,2,---,N). To complete the construction of the angle—action variables
(w, J) of Ha, it is enough to introduce them through the Poincaré-like complex
canonical variables v/iJ; e "* and v/iJ} e"* and compare them to . We get
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wr = wit — (2.120)
Ji = _i|ck|2@1\z+k,k (k=1,2,---,N),

where «y is the argument of cg. Because of the rules of conjugation, it is

enough to work with the equations giving the first N variables (. The other

N equations repeat the same results. It is worth stressing some points: (i) the

Jy are real since the o, , are imaginary; (ii) the J, may be either positive

or negative, according to the sign of —ig,,, ,; (iii) the N complex integration

constants ¢, are changed into ag, Ji; (iv) ¢, and ey are complex conjugates.
The direct comparison of equations (2.117) and (2.120) gives

N .

2=y 1k (Ape ' 4 A yp ™). (2.121)
k=1 @N-Hc,k

This equation is consistent with the fact that z is a real vector.

In terms of the angle-action variables, the new Hamiltonian follows
straightforwardly from the equations O0H/dJ;, = wy = wy, whose integra-
tion gives H = ), wiJ, or, as a function of {, H = — >, iwp(ulnyr. If we
compare this result to

1 1
H = 'Sz = ('DN'SADC,

we see that

0 0 ---—iw; O
0 0 -+ 0 —iwg---
PASAD=1 s 0 - 0 0

0 —iwg--- O 0

This matrix is the Hessian of H calculated with respect to the new canonical
variables (. It could be easily obtained from the properties of the matrices D,
A and S, using the lemma given in Exercise 2.9.6, below.

Exercise 2.9.1. Show that the characteristic polynomial P()\) = det(—JS —
Al) is even.

Exercise 2.9.2. Show that the eigenvectors Ay and A Nk of —JS correspond-
ing to two complex conjugate eigenvalues are complex conjugate themselves.

Exercise 2.9.3. Show that, for |i — j| = N, the g;; are imaginary.

Exercise 2.9.4. Show that the transformation (w,J) — (ViJe ™, V/iJ el®)
is canonical.

Exercise 2.9.5. Show that {; and (41 are not complex conjugates.

Exercise 2.9.6 (Lemma). Prove that for all 4,j = 1,2,---,2N, we have
A;S/L = =0y

Hint: Use the characteristic equation JSA; = —)\;A;.



60 2 Angle—Action Variables. Separable Systems

2.9.1 Gyroscopic Systems

Let us consider the important particular case of the two-degrees-of-freedom
gyroscopic system whose Hamiltonian is

2

H= ”2 —[k,r,p] + W(r), (2.122)

where r = (2,y),p = (P, py), k is a unit vector perpendicular to the plane
of motion and the potential energy is W = }(az* + by?) + dzy (a,b,d are
constants). (See Sect. 1.7; for the sake of simplicity, we have chosen units such
that m = 1 and |£2| = 1.) The Hessian matrix is

a d 0 —1
d b 1 0
S= o 1 1 0 (2.123)
-1 0 0 1
Then,
o 1 1 0
-1 0 0 1
“IS=| . g o (2.124)
—-d -b -1 0
and the eigenvalues of —JS are
1
N = j:2\/—2(a b+ 2) £ 2/ (a—b)2 +8(a+b)+ 4. (2.125)

We assume that these eigenvalues are imaginary and write them as +iw; and

+iwy. This means that the parameters a, b, d of the given function W are such

that ¢ def (a—b)2+8(a+b)+4d>>0and —(a+b+2)+ /o <0.

The eigenvectors of —JS are
—A? —(b+DA+d
. M4+d\j—a+1
Aj = o : 2.126
! ar? — b+ ab — d? (2.126)
d(X?4+1) = (a+Db)N;
The quantities pj42,1 are immediate. We just point out the fact that, of
the five parameters a, b, d, w1, ws, only three are independent. We use (2.125)
to eliminate b, d and obtain

031 =2iw (W} — w2)(1 — a+ aw? — wiw3)

2.127
042 =2 wa(w? — W) (1 — a + aw? — wiw?). ( )
The new angle-action variables are
Wi = Wit — a
bR TR (2.128)

Ji = _i|ck|2@1\7+k,k (k: 1725""N)7

where cj, = |cx|e!“* are the integration constants.
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Classical Perturbation Theories

3.1 The Problem of Delaunay

Many general perturbation theories devised since the nineteenth century were
founded on the powerful tools of Hamiltonian mechanics. They aimed at solv-
ing the specific problem of finding the solutions of the canonical system of 2V
differential equations
dg; OH dp; 0OH
¢ _ OH pi _ OH (3.1)
dt (9p¢ dt 8(]1'
(i =1,2,---,N), where the Hamiltonian H is the energy of the system and

may be written as
H =Ho(q,p) + R(q,p,¢) (3.2)

with ¢ = (q1,- -, qn), p = (p1,- -+, pN)- Ho is the Hamiltonian of a separable
system and R is a disturbing potential, analytical in some small parameter ¢,
and vanishing for € = 0.

Since Hy is the Hamiltonian of a separable system, we may choose, as new
variables, the angle-action variables (6;, J;) associated with it!. The Hamil-
tonian system thus becomes

do; OH dJ;  0H
dt — aJ;’ dt — 06;’ (3:3)
where, now,
H = Hy(J)+ R(, J,e) (3.4)

is a smooth function in TV x O x I (O is an open set of R and I C R).

! Generally, we use 6; to denote the given angle variables (instead of w;) to preserve
the usual notations of perturbation theories. Also, to be consistent with the usual
coordinate-momentum order, we adopt an angle—action order in all functions of
these variables and in the equations of motion.
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The characteristic properties of the new system are:

(a.) Hp does not depend on the angle variables 6;;

(b.) R is a 2m-periodic function of the angle variables;

(c.) Hy depends only on actions. When Hj has essential degeneracies,
we may suppose that the corresponding actions were eliminated
by means of a Schwarzschild transformation and that Hy depends
only on the non-degenerate actions J,, (n=1,2,---,M) (M <
N).

Since introduced by Delaunay in his celebrated Théorie de la Lune [22], canon-
ical perturbation theories have been constructed in agreement with the fol-
lowing scheme:

¢
H(0,]) — H*(J)
4 !
4 !

=01 ¢t 6 =v*t+const
J=J({t) «— J"=const

One seeks a canonical transformation ¢ : TV x RY = TV x RY such that
the transformed Hamiltonian does not depend on the new angle variables 6*
and, thus, the canonical system that it defines may be trivially solved. After
integration of the resulting equations, the inverse transformation allows us to
change the solution thus obtained into the solution of the given problem.

In reality, the ideal scheme of Delaunay is extremely ambitious and
Poincaré pointed out difficulties that makes its application generally impos-
sible. We refer to his theorem on the non-convergence of the infinite series
defining the transformation ¢ and the non-existence, in general, of analytic
integrals of the equations of the motion, besides the energy integral. Poincaré’s
proof of this theorem is very illustrative in understanding how the set formed
by the initial conditions leading to divergence becomes more densely filled at
every step of the construction of H* (see Sect. 3.10).

The general behavior of the dynamical systems defined by (3.1) is still
largely unknown. The theorem of Kolmogorov guarantees the persistence, un-
der small perturbations, of many of the invariant surfaces of the undisturbed
integrable system, albeit in distorted form. However, many of them are de-
stroyed, forming sets whose measure increases with the magnitude of the per-
turbations. Theories founded on this theorem have progressed enormously in
the last half-century [19], but the behavior of systems with three or more
degrees of freedom is yet, largely, a research subject. Notwithstanding their
importance, the theories of Kolmogorov, Arnold and Moser (KAM) will not
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be treated in this book, except for some generalities concerning Kolmogorov’s
theorem. A full study of their consequences is beyond the scope of this book
and the reader should look for them in the existing literature on Hamiltonian
systems.

In spite of the difficulties pointed out by Poincaré and Kolmogorov, the
schemes devised by Delaunay and Bohlin are of great practical utility to study
the Hamiltonian systems resulting from the perturbation of an integrable sys-
tem. The approximate solutions that they allow us to construct are valid, for
limited time intervals, for initial conditions in relatively large sets. To avoid
the above-mentioned convergence problems, perturbation theories are con-
sidered, in this book, under a finite formal point of view; the previous ideal
scheme must be replaced by

Pn
H(0,.J) — H*(J") + Rnta(67, 77, ¢)
4 !
4 !

0 =0(t) + O(gnﬂ) o Gz‘n) = v*t + const
J=J)+0E") «— J(;,) = const

Now, the sought canonical transformation ¢, is such that the transformed
Hamiltonian has a main part H*(J*) independent of angle variables, and a
remainder, R,,1, divisible by e®*!. The main part of the Hamiltonian defines
an easily integrable dynamical system and the inverse transformation ¢!
transforms its solution into a formal solution of order n of the given problem.

It must, however, be emphasized that almost every theory presented in
this book may be used to construct convergent solutions if accompanied by
the frequency relocation algorithm presented in Sect. 3.11.1, provided that the
conditions of Kolmogorov’s theorem are satisfied. Frequency relocation is a
powerful theoretical tool to avoid the uprise of small divisors, but is not used
in the construction of formal low-order theories, because it is work-expensive
and does not make low-order solutions significantly more accurate.

3.2 The Poincaré Theory

Under this title, we consider the construction of formal solutions of the canon-
ical equations defined by the Hamiltonian

H = Hy(J) + i eFHyL(6, ), (3.5)
k=1
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where we assume that Hy is non-degenerate (see Sect. 2.7). Then, Hy depends
on all actions J;. This case will often be referred to just as the case M = N (see
assumption (c.) in the previous section). In previous drafts of this book, it was
called Lindstedt—Poincaré theory, since Poincaré, himself, called it Lindstedt
theory ([80], Chap. IX). However, Lindstedt’s name is being increasingly used
to designate the direct calculation of the series (as done by Lindstedt [64]).
The name now adopted avoids confusion with Lindstedt’s direct method, and
is justified by the fact that the use of Bohlin’s ideas [8] to treat the general
Delaunay problem is due to Poincaré.

Let us consider the canonical transformation ¢,, : (6, J) = (6*, J*) defined
by the equations o5 o5

b = oJF Ji = 00’

where the generating function S = S(6, J*,¢) is assumed to be a polynomial
of degree n in € and such that the transformation defined by (3.6) reduces to
the identical transformation when € = 0. Hence

(3.6)

N n
S S0, 43R0, ) (3.7)
=1 k=1
and
" OSk " OSk
07 =0, b = J; o .
i +kZ:15 o7 J Jl+;5 06, (3.8)

Since the time-dependent cases may be properly considered in the ex-
tended phase space, we may assume that Sg(6,J*), as well as Hy(6,J) and
the transformed Hamiltonian H*(J*), does not depend on the independent
variable ¢; the transformation defined by (3.6) is therefore conservative and
we may write the conservation equation

H(9,J) = H*(J*) + Ruy1(0*, J*, €), (3.9)

or, taking the transformation into consideration,
08 s ox s
(0.5 ) =) 4 R (o 72) (3.10)

The equations of Poincaré theory are obtained by substituting into (3.10)
limited expansions of the functions H, H* and S:

o Y Hp 4 cHY +2Hy + -+ e H

(3.11)
S = So+¢eS1+e%8 + -+ e"Sp;

the expansion of the given Hamiltonian H is more complicated because every
Hy,(0,05/00) includes terms of several orders arising from S. The introduction
of these terms is necessary since the identification in € must be done using the
variables 6, J*. Those functions must be expanded beforehand, as described
below.
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3.2.1 Expansion of Hj

Following Taylor’s theorem, we have

HO:HO(Z§>E_O+§:1 ,[;; (g‘;)] (3.12)

which may be written as
Hy = G()y() + SGO,l + EQGQQ + e (313)

The components Gg j are given by

Go,o = Ho(J") (3.14)
and N
oSy,
— * .1
Go,k ;VZ 06, + &k, (3.15)
where

r def OHo(J")
The quantity J* is introduced in these equations through

BT = (J*an kas’“> — a(J7)
e=0

for all considered functions @(J;). The & are known functions of Sy, 52, -+, Sk—1.
In particular, we have

(3.16)

& =0,
N N
1 . 081 05,
&= 222% 5. 99, (3.17)
i=1 j=1 L
N N N N N
B 981 0S5 . 05,05, 85,
& =2 2 v 06, 90, ZZZVW o0, 00, 06,7 1O
=1 j=1 z:l J=1/¢=1
N N N N
_ 881 883 Ut 852 882
b = ;;” 00; 90, ;; i 90; 99,
N N N
1 « 051 051 059
T ;; Vit 99, 99, 96,
N N N N
1 051 9051 051 651
tou ;;2;”’” 06; 96, 99, b, (3.19)
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where we have introduced

e det Ho(J)
Yo aJragr
. def O°Ho(J*)

Vije = * * * 7
T agraTr0;

def  0*Ho(J*)

Yatm = 9107707075,

For the sake of future utilization of the above expansions, it is worth noting
that, for £ > 3, they may be written as

. 051 0Sk—1 ,
& = ZZ vy 0, o0, + &L, (3.20)
=1 j=1
where & represents a function of the derivatives of S1,S2, - -, Sk—2 (indepen-

dent of Si_1 and S).

3.2.2 Expansion of Hy

In the same way as before, we write

0S5

Hy(6;, 891-)

=G +eGr 1 + 62Gk,k+2 4+ (3.21)

where the components Gy, i are to be calculated by means of Taylor ex-
pansions. Following the same steps as for Hy, we obtain

Grx = Hi(6,J7),

N
L OH(, %) 05,
Gk7k+l—; o1 o6, (3.22)
N
X 9H(6,7) 352 O2H, (0, J*) DS, 95,
G’“’“"’_; 0. 22Z 0JraJ:  06; 09;
OH(6,J%) as N XL 92Hy(6,.0%) 95 08
RS Sher GRRL D 3 Skao b oo

0J;0T;  00; 06

i=1 i=1 j=1

N N
1 O Hy(0,J%) 051 05, 05,
"6 ;;; 0. 0J30.; 06 06; 06,
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3.2.3 Perturbation Equations

The next step is to introduce the above expansions in (3.10) and to identify
all terms multiplying the same power of €. For this task, we are helped by the
following notation: the subscripts in Sy, &k, Hy, H; and the second subscript
in the Gy indicate the power of ¢ multiplying it in the complete equation,
Thus, it follows that

Hy = Hj,

N
Z = H,

al s
Z : 4Gt & = 3, (3.23)
N
L0S
Z v} 89k+G1k+ -+ Gro1x + Hy + & = Hy,
i=1
N
oS,
ZV: 90, +Gl7n++Gn717n+Hn+gn—
i=1 v

the remaining terms have at least "' as a factor and are supposed to be
grouped in the remainder R, 1. In these equations, all functions are calculated
at the point (0, .J*) 2

The first of equations (3.23) gives H} and means that H{ is the same
function as Hy.

The other equations are first-order linear partial differential equations in
the unknown functions Sk (). The generic or homological equation is

N
> v Ok = ) - wto, ), (320
i=1 i

2 There is one question about notation that, although trivial, must be recalled to
avoid possible misinterpretations. It is usual, in many chapters of Physics and
Astronomy texts, to represent a given magnitude by the same notation no matter
which independent variables are used in its definition. For instance, the energy
of a perfect gas in a vessel is U no matter whether it is given as a function of the
temperature or of the pressure. This was also done in previous chapters of this
book. In the formulation of canonical perturbation theories, however, we must
adopt strict rules: Every function symbol ¢ represents only one function: ¢(x)
and ¢(y) indicate the same function ¢ calculated at the points z and y of its
domain of definition.
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where
=G+ -+ Gro1x + Hi + &

We have to note that the functions Gy are defined in such a way that
they become known when the functions Si,---,Skx—_r are known. The func-
tions Hj, are given functions (see 3.5) and the functions & are also known
when Si,---,Sk_1 are known. Thus, the function ¥ is a completely known
function provided that the equations corresponding to Si,---,Skx_1 were al-
ready solved; thus, the whole set of equations may be sequentially solved.

The homological equation is indeterminate since Hj; is also unknown. The
adopted choices for its solution are discussed in the next section. When it is
solved for all k& < n, we obtain the functions S (0, J*) and H}(J*) and may
perform the elementary operations leading to

07 \ = v} \t+ const
(n) (n)

J(*n) = const, (3.25)

which, through the inverse transformation ¢, !, lead to the formal solution of

order n of the given Hamiltonian system.

3.3 Averaging Rule

To overcome the indetermination of the homological equation (3.24), we have
to fix one of the two unknown functions. The main idea of canonical pertur-
bation theories is that the canonical transformation performs an averaging
and the resulting Hamiltonian has no periodic components. We thus adopt
the following rule:

1 N 27 27
HE(J) = < (0, %) > = (2 ) / / Uedby - dOx.  (3.26)
0 0 0

Therefore, the homological partial differential equation becomes

N 0Sk

v pt = < W0, T7) > — (6, T7) (3.27)

=1

in which all terms on the right-hand side are periodic.

The averaging operation defined by (3.26) is such that all terms inde-
pendent of 8; (i = 1,2,---,N) are included in H}} and are absent from the
right-hand side of (3.27). It is worth noting that, if non-periodic terms of this
kind were allowed to remain in the right-hand side of the partial differential
equation, they would appear in the solution S; multiplied by a linear combi-
nation of the #;. As a consequence, the transformation ¢, would also include
such linear combination as a factor and new and old variables would depart
of each other with the speed of this combination.
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It is of the utmost importance to emphasize that this averaging operation
is not just the scissors averaging found in some applications, which consists

of imposing N )

1 v Y

H; = ( ) / Hydb,---diy. (3.28)
27T 0 0

Scissors averaging and the one defined by (3.26) coincide only for & = 1. The
so-called averaging principle defined by (3.28) has been critically considered
by Arnold ( [4], Chap. 10, Sect. 52B). I quote his comments: “this principle is
neither a theorem, an axiom, nor a definition; it is |- - -] a vaguely formulated
and, rigorously speaking, wrong proposition”.

At variance with incomplete scissors techniques, the averaging defined by
(3.26) is not based on any principle and aims only at giving a rule for the choice
of the undetermined functions Hj . Such freedom of choice is allowed by the
fact that the given recurrent partial differential equations are indeterminate
and that it is necessary to fix one of the two unknown functions Sy and Hj
to proceed.

3.3.1 Small Divisors. Non-Resonance Condition

The above functions ¥y, generally have the form of truncated Fourier series:

W= > Awm(J*)exp(ih | 6). (3.29)
heD,CZ’

The averaging operation leads to
H; = Ako(J¥)

and
N

u;%?f:— > Awexp(ih ] 0). (3.30)
1 ! heDy\{0}

i=
The last equation admits the particular solution

iAkh exp (ih | 9)

S0, = >3 T

heD,\{0}

(3.31)

which introduces the divisors (h | v*). This is a common feature in perturba-
tion theory and is the way in which small divisors may appear. Therefore, it
is only valid if the following non-resonance condition is assumed.

Non-Resonance Condition. The condition for the non-existence of small
divisors is
(h|v*) #0

for all vectors h € Dy, (k < n).
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3.4 Degenerate Systems. The von Zeipel-Brouwer
Theory

Poincaré theory cannot be used when, for ¢ = 0, the Hamiltonian is degenerate
(in Schwarzschild’s sense), that is, when Hy does not depend on all actions J;.
Poincaré tried to overcome the difficulty represented, in this case, by the many
identically null divisors of (3.31) through the sum of some arbitrary functions
of 6 to the solutions Sy. These arbitrary functions were later determined
in such a way that the difficulties were transferred to higher orders and, in
some cases, eventually eliminated. An improved theory, due to von Zeipel [96],
was successfully used by Dirk Brouwer [14] to construct his solution of the
equations of motion of an artificial Earth satellite.

Let us consider a Hamiltonian system with M non-degenerate and N — M
degenerate degrees of freedom. A Schwarzschild transformation allows it to
be written as Hy = Ho(J,), where J, (u =1,---,M < N) are the actions
corresponding to the non-degenerate degrees of freedom. The actions J, (¢ =
M +1,---,N) corresponding to degenerate degrees of freedom are absent
from Hy; as a consequence, the undisturbed frequencies v, = 0Hy/0J, are
identically equal to zero. The algorithm proposed by von Zeipel to deal with
this case introduces an essential modification in the scheme of the Delaunay
problem of Sect. 3.1. Now, a canonical transformation is sought such that
the transformed Hamiltonian has a main part H*(6}, J*) independent of the
non-degenerate angles 67,---,603,, but depending on the degenerate angles

M1, 08 That is,

(bn
HO,0) — H*(03,J%) + Rua (0%, 7*.2).

The main part of the new Hamiltonian defines a canonical system that may be
reduced to M integrals, M quadratures, and a reduced Hamiltonian system
with N — M degrees of freedom. Indeed, the system defined by H* is separated
into two parts corresponding to the subscripts p = 1,---, M and o = M +
1,---, N, respectively:

0, = 8J:; J, =0

. OH* . oOH*

= = . .32
0= o e T an (3:32)

The corresponding results are the M integrals
J, = const,

the canonical system of N — M degrees of freedom given by (3.32), and M sep-
arated equations for 6}, that may be solved by quadrature after the integration
of the reduced canonical system.
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Thus, the von Zeipel-Brouwer theory is not a theory seeking the formal
solution of the given problem; it only leads to a reduction of the number of its
degrees of freedom. In some favorable cases, the successive application of the
theory may reduce the number of degrees of freedom to zero or to one, and thus
the problem is solved (see Sect. 3.9). As an example, we mention Brouwer’s
original application of the theory [14]. There, a first operation reduced the
number of degrees of freedom by only one unit, but a second one led to the
complete solution of the problem.

The reduction of the number of degrees of freedom and the simplification of
the equations due to the averaging often allows an easier analysis of problems
for which a complete solution is not possible.

To obtain the implicit equations of the von Zeipel-Brouwer theory, we
consider the canonical transformation ¢, : (6,J) = (0*,J*) defined by the
equations

oS aS
= 0F = ,
J, 09, P o (3.33)
with the generating function
N n
S=> 007 +> eFSi(6,7). (3.34)
i=1 k=1
Since the transformation is conservative, we have
H(,J) :H*(GZ,J*)—|—R71+1(0*,J*,5), (3.35)

or, taking (3.33) into account,

o8 L[ 0S . oS
H<9, aa)‘H <8J5,J>+Rn+1 <8J*,J,6). (3.36)

To identify both sides of (3.36), we use the same expansions of H and
S already used in the Poincaré theory. However, we have to consider that
H* now depends also on some angles and, thus, assumptions similar to those
made to obtain (3.23) are not sufficient. Indeed, when we assume

H*(05,7%) =Y " H}:(6;,.7%) (3.37)
k=0

we must take into account that every H} (k # 0) depends also on ¢ through
¢, = 05/0J; and, thus, we also need to consider the Taylor expansion of
these terms.

It is worthwhile mentioning that the first accounts of this theory, following
its successful application by Brouwer, missed the fact that, in more general
situations, the functions H; depend also on 6, and thus contribute to the
formation of the terms in the von Zeipel-Brouwer perturbation equations of
orders higher than k.
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3.4.1 Expansion of H*

Let us write

" (&];’J) = HUT) + D HL 00 T+ G ) (339)

where the functions G} are easily obtained by writing down the Taylor ex-
pansion explicitly:
1%

1 —
N

Gy = %1;11 gii, (3.39)
o=M+1 ¢ 770
N * N 2 T *
-y OH} 08y 1 O2H; 985, 08,  OH; 85,
3 * * * *
S \ 00, 005 T2 A= 060,00, 07500, " 00, 0T;

3.4.2 von Zeipel-Brouwer Perturbation Equations

When the functions in (3.36) are replaced by their expansions, and all terms
that multiply the same power of € are identified, we obtain

Hy = Hj,
M
L 08, .
2 i gg, * =M.
p=1
M
S
ZVZ&)HZ +Gio+ Hy + & = Hj + G, (3.40)
=1 H

n
M
oS
2%593 + G135+ Gos+ Hs + & = Hi + G,
p=1 i

L, 08
D Vg TGkt Gronp + Hi+ & = H + Gy
=1 H

=

S, « .
+Gin+ - +Guan+H,+ &, =H +G.
20,

NE

*
Vi
1

=
Il

The remaining terms have at least €"*! as a factor and are supposed to be
grouped in the remainder R, 4.
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The functions &, and Gj are the same as those defined in Sect. 3.2.
However, since Hy now depends only on Jy, Jo,- -+, Jps, the summations in
(3.17)—(3.22) are restricted to the subscripts 1,2, ---, M. In particular, (3.20)
becomes

M M
. 051081 ,
Ee=> Vi 26, 06, +&  (k>3), (3.41)
p=1p'=1
where & is a function of the derivatives of the functions Si,-- -, Sx—o with

respect to 61, -+, 0 (note that £ = 0).

As before, the first von Zeipel-Brouwer perturbation equation gives H
and means that H{ is the same function as Hy, where we have just replaced
the J,, by J;;. The other equations are the homological first-order linear partial
differential equations giving Si(0):

M08
Vigg = ~We(0,") + Hi (05, T°), (3.42)
p=1 "
where the functions ¥;, are, now,
U =G+ +Gro1p+ Hy + & — G, (3.43)
and are completely known if the functions Sy, -+, Sp—1 and HY,---, H}_, are

known.

3.4.3 The von Zeipel Averaging Rule

To overcome the indetermination of (3.40), we have to fix H}. The averaging
rule used in Poincaré theory needs a modification to be applied in this case.
Indeed, if we intend to avoid identically null divisors in (3.31), we need to
exclude from the summation all degenerate terms, that is, terms for which
the first M components of h € ZY are zero. In such terms, (h | v*) = 0
because v; =0 for o= M +1,---, N. The von Zeipel averaging rule is, then,

Hi(0,,J%) = < We(0,J7) >, (3.44)

where < --- > stands, now, for the average over the angles 8, (n=1,---,M)
only, on [0,27]. The angles 6, (o = M + 1,---,N) are not included in the
averaging. Therefore, we have

Hi(0,,J%) :wk(s)(J*)+wk(Lp)(99,J*) (3.45)
and "
.08 .
3125 om0, 10
— " 00,
p=1

where the subscripts S, LP, SP stand for different parts in the Fourier expan-
sion of ¥y, as follows:
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® Uy (5)(J*) — Secular part of Wy. This is the average of ¥, over all angles.

® Ui Lp) (0, J*) — Long-period part of ¥,. This is the collection of all periodic
terms of ¥y, independent of the fast angles 6, (n=1,---,M).

® Uyspy(0,J*) — Short-period part of ¥y. This is the collection of all periodic
terms of ¥y, dependent on at least one of the fast angles 6, (u=1,---, M).

The solution of the equations follows closely the same steps as the solution
of the equations of the Poincaré theory.

3.5 Small Divisors and Resonance

When ¥,gpy is replaced by its Fourier expansion, (3.46) becomes

M
05k _ ST Apn(J*) cos (| 0), (3.47)

vV =
ol
p=1 " h€Dy(sp)

where Dy gp) C ZV is a set of vectors of N integer components with at least
one of the M first components different from zero. Equation (3.47) has the
particular solution

Akh(J*) sin(h | 0) .

SOT) == 2 )

h€Dy(sp)

(3.48)

This solution introduces the divisors (h | v*). This is a common feature in
perturbation theory and is the way in which small divisors, which impair the
convergence of the solution, appear in the process of its construction. When
some of the (h | v*) become nearly zero, the von Zeipel-Brouwer theory fails
and, in such cases, different procedures must be adopted. (See Chap. 4.)

The non-resonance condition in this case is:

Non-Resonance Condition. The condition for the non-existence of small
divisors is

(h|v") #0

for all vectors h € Dyspy (k < n).

3.5.1 Elimination of the Non-Critical Short-Period Angles

When the non-resonance condition is not satisfied, the terms with angle com-
binations leading to small divisors (critical terms) can no longer be eliminated
using the theories of the previous sections. To study these cases, let us assume
that there are L (L < M) independent commensurability relations

(he|v™) =0 (3.49)
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nearly satisfied, simultaneously, by the frequencies v};.

The von Zeipel-Brouwer theory may still be used to eliminate the non-
critical periodic terms, but the scheme and the averaging operation need to
be modified. Instead of those previously adopted, we adopt, in this case, the
scheme

(bn
H0,]) — H*(he|0,0%, J%) + Ruyr (0%, J*, )

3 o)

and the averaging rule
H(hel0,0,,J") = < @i(0,J") >, (3.50)

where < --- > stands for the average over the angles 6, (x = 1,---,M) on
[0, 27] but, now, only when they are not in a critical combination. In this case,
the canonical transformation is sought in such a way that the transformed
Hamiltonian has a main part H*(h|0*, 0}, J*), independent only of the angles
conjugate to the actions J7, - - -, J;; which do not reduce themselves to one of
the critical combinations (hy | 6%).

This problem may be treated in a simple way if we perform, beforehand,
a Lagrange point transformation. We introduce a set of N new angles defined

by:

oo = (he | 60) {=1,---,L
b= (o |6) O =L+l M (3.51)
(bg:eg ‘Q:M+177N7

where (hg | 6) are the given L critical angles and (hy | 6) are M — L arbitrary
linear combinations of the 6, independent of the critical angles (he, he € Z'™).
The change in the actions may be easily obtained by means of the Jacobian
canonical condition in the particular form:

N N
> Ji860;=> I8¢
i=1 i=1

or
N L M N
D 080 = Li(he|80%)+ > Iu(he | 80%)+ > 1,505
i=1 =1 V'=L+1 o=M+1

The identification of both sides of this equation leads to the linear relations
defining the actions J; as functions of the I;:

M
Ju = > Dby p=1,--- M (3.52)
A=1

Jo = Iy,
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where h) , are the M integer components of hy (for an example, see [48]).

There are N — M + L degenerate degrees of freedom. L of them are ac-
cidentally degenerate and N — M are essentially degenerate (see Sect. 2.7).
The von Zeipel-Brouwer theory is applied in exactly the same way as before
except that, now, the degenerate angles are both the ¢y (resonant) and the
¢o. Now, the canonical transformation (¢,I) — (¢*,I*) eliminates the non-
critical short-period angles ¢/, but the critical and degenerate angles remain
in the transformed Hamiltonian H*. Every function Wy (¢, I*) appearing in
the homological equations is now decomposed as

Ui (9, I7) = Yoy (1) + Y(np) (Pos I™) + V() (D5 oy 1) + Wi(spy (9, ),

where the subscripts S, LP, K, SP stand for different parts in the Fourier
expansion of ¥y, as follows:

® Uy (s)(I") — Secular part. This is the average of ¥} over all angles.

® Ui Lp) (¢, I*) — Long-period part of ¥,. This is the collection of all periodic
terms of ¥, independent of the angles ¢, (u=1,---,M).

® Uiy (@r, ¢g, I") — Critical part. This is the collection of all periodic terms
of ¥y, independent of the fast angles ¢y (¢ = L+1,---, M), but depending
on at least one of the critical angles ¢, (¢ =1,---,L).

o U sp)(@, I*) — Short-period part of ¥y. This is the collection of all terms of
U}, dependent on at least one of the fast angles ¢ (¢’ =L+ 1,---, M).

With the new averaging rule and the above decomposition of the functions,
the homological equation of von Zeipel-Brouwer theory gives

Hi(be, 0o, I7) = Wiy (I7) + Yi(npy (Do, 1) + V(i) (D5 Doy 1) (3.53)

and
M

0Sy
v’ = _Wk(SP)(¢7I*)~ (354)
l;l ‘uaqs#

The transformed Hamiltonian is

n
M= ML) + D e M9, 6, 1),
k=1
independent of the angles ¢j,. Therefore, the I}, are constants and H* is the
Hamiltonian of a canonical system with N — M + L degrees of freedom. In
the new variables, the commensurability relations given by (3.49) are simply
written

v =0 (t=1,2,---,L),
where, now,
o O
CT o

This reduced form will be adopted in the study of resonant problems in
the forthcoming chapters.
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3.6 An Example — Part 1

The application of the von Zeipel-Brouwer theory follows straightforwardly
from the principles and formulas stated in the preceding sections. An example
will serve to summarize the ideas and to make clear the directions for other
applications.

We consider the Hamiltonian

1
H=—_" ) +w+eR(6J) (3.55)
with
“+oo
R(0,J) = Z (AS cos s(61 — 02) + Bscos[s6; — (s + 1)69) )

—+o0
+ Z M+/—Jscos[s0y — (s + 1)0s + 03]

S§=—00

“+o0
+ Z LS\/—J3COS[S(91—92)+93],

S§=—00

where Ag = a(J1) + b(J1)Js, and As(s # 0), Bs, M, Ls are known functions
of J; with Ay = A_. £ is a small parameter.

This example is suggested by a classical problem of the Mechanics of the
Solar System. H is the Hamiltonian of the elliptic restricted problem of three
bodies and governs the motion of an asteroid under the joint action of the Sun
and Jupiter, when Jupiter is assumed to move on a fixed Keplerian ellipse
around the Sun. 6; is the mean longitude of the asteroid, #; is the mean
longitude of Jupiter, v5 = 5, and 05 is the longitude of the asteroid perihelion.
In terms of the Keplerian elements of the asteroid, the actions are

Jl =1L = \/CL,
J3=G—-L=J(/1-¢e2-1) (3.56)
(see Sect. 1.1; note that J3 < 0). Jo is the momentum conjugate to the mean
longitude of Jupiter. The main axis of the reference system was taken directed
to Jupiter’s perihelion.

In the function R, we have kept the main parts and some less important
ones necessary to make this example more illustrative. The units are the
length of the Sun—Jupiter distance, the universal gravitational constant, and
the solar mass. € is the mass of Jupiter?.

3 Some authors use signs opposite to those in (3.55). However, in this book, H is
the energy itself and not its opposite. In the same way, R is not the so-called
disturbing function, but the potential of the disturbing force.
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To apply the results of the preceding sections, let us first note that, in this
example, we have

1
Hy=— .
0 2,]12 + I/2J2 (3 57)
N =3
M =2
Hy = R(0,.J) (3.58)
H; =0 (k >2);
also
e OHo(J7) _ 1 x — OHo(J") _
LY - Y
and 3
Vi = e Vig = V3y = 0.

1
(because of the adopted units, v, ~ 1).
We then obtain the two first von Zeipel-Brouwer perturbation equations,
which are

Hj = Ho(J") = + voJy

- 1
272
and

2
D Vigy = Hi = R(0.T°).
p=1 B

(It is not superfluous to emphasize again that all functions in the Poincaré and
in the von Zeipel-Brouwer perturbation equations have 8, J* as independent
variables.) The function R(¢,.J*) may be decomposed into its secular, long-
period and short-period parts:

Rs)(J7) = Ag = a(J7) + b(J7) J3 (3.59)
R(1p)(0g, J*) = L/~ J; cos s (3.60)
and
Rispy(0,0°) = > (A; cos 5(6 — 02) + Li\/—J5 cos[s(61 — 62) + 93])
s€Z\{0}
+ Z B cos[s8 — (s + 1)0s] (3.61)
SEZ

+ Z M7/~ J5 cos[s01 — (s + 1)0a + 03],
SEZ

where A:(s;éO) = A,(J}), B = Bs(J7), M} = My(Jf) and L% = Ls(J7). The
application of the averaging operation defined by (3.44) gives

Hi(03,J") = R(sy(J") + Rp)(03,J%) (3.62)
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and

L 08 .
ZVua "= —Resp)(0,J7) (3.63)

p=1 O

or, after integration,

S1(6,J%) = — Z <A: sins(01 — 62) n L:\/—Jg‘ sin [s(f; — 62) + 93]>

s€Z\ {0} s(vi —v3) s(vi —vs3)

3 Z Bl sin| 891 (s +1)69] (3.64)
= suf — (s +1)v3 '

B Z M;\/—J;sin[s0; — (s + 1)02 + 03]
= svi —(s+ 1)v3

when we assume that vf — v # 0 and svf — (s + 1)vs # 0 for all s € Z.
The next von Zeipel-Brouwer perturbation equation is

2, .08
S v = (0, J7) + Hy (03, J7), (3.65)

2" 99,

where

Uy =

2 .
R3S, 1 (asl> OH} 85, (3.66)

2o 00, 2"\ 06 ) T 065 05

See (3.43), (3.17), (3.22) and (3.39).
¥y may be decomposed into its secular, long-period and short-period parts.
The first summation in (3.66) gives

23: ORs) 081  ORwp) 051  OR(sp) 05
aJr 86, 8Jr 00; ' aJr 96; )"

Because of the elementary properties of the product of trigonometric func-
tions, the terms

23: OR(s) 051 N ORLp) 051
oJr 00, o 00,

are short-periodic, while the summation

OR(spy 05,
pt oJr 06,
will contribute secular, long-period and short-period terms. The secular terms

arise from the terms of the same (or opposite) arguments in the derivatives
of R(SP) and Slt
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3
8R * * *2
(sp) 051 _ _1 Z 1 ) (2814514: 8LSL:J§_LS )
V3

oo o] 2 L Vi 0.} 0. 2s
B* M* M*Q
1 (gJiSB;_%J:SM;E_ 2 )
- 1 ! : (3.67)

= svy —(s+1)v;
in the same way, the long-period terms arise from the products of terms whose
arguments differ by a multiple of 63:

[3 OR(sp) 851] _ 1 5 2,/—J; O(ALLY)
(LP)

Y
aJr 09, vi—vy  oJr 7

i=1 s€Z\{0}

1 —J3 BIM;
— Z *S\/ 3 . 8( s*s) COSGg
semnioy ST (s+1lvy  0J;
1 Lx L* J;
+ Z Ly Liols cos 205 (3.68)

s€Z\{0} 0Ji (v — 1)

We may calculate, in a similar way, the secular and long-period parts of
the second term of (3.66) obtaining

2 *2 *2 Tk 2 *2 *2 Tk
L. 85, _ 3 B> 247~ L2J5 | S(BY = M2J5)
2 00; ) 4.Jf (v —v3)? [svf — (s +1)v3]?

s€Z\{0}
(3.69)
and
1, 851)2] 3 QALE/— T}
1/11< ' = — Z .o cCosts (3.70)
l? 00; . 4.J; ez {0} (Vi —v3)
¥ 5 S\/ 3 cosfy— T3 cos205 .
[sv = (s + Dw3]? (i —w3)?
OHY 0S
Finally, we would have to consider the contributions from Lot , but
003 0J3

all terms arising from this part of W, are short-periodic. The short-period
contributions of this term and of the other two considered before will not be
written. They are of no importance in the context of a low-order example. In
practical problems, they need to be calculated and the use of one algebraic
manipulator is appropriate.

The application of the von Zeipel averaging rule to (3.65) gives the second-
order term of the averaged (or secular) Hamiltonian:

Hy (03, J7) = Was) (") + YarLp) (03, J7) (3.71)
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and the equation
v* 852 o
"0,

hE

~Wyspy(0,J7), (3.72)

p=1

the integration of which gives the second-order term of the generating function
that formally reduces the Hamiltonian given by (3.55) to one degree of freedom
with a remainder of order O(g?).

3.7 Linear Secular Theory

By secular theory, we mean the study of the solutions of the system defined
by the Hamiltonian obtained after the elimination of all fast angles.

Let us consider the averaged Hamiltonian resulting from the previous ex-
ample

* 1 * * * *
H = g2 T vads +e (Risy(J*) + Rppy (05, J7))
1
+ &% (Wo(sy(J*) + Warp) (03, 7)) -

By construction, it is independent of 87 and 65. The corresponding system of
equations is

dor  oH* djf _oHr _

dt — oJ; . 90y

dos  oH* dJ;  oH*

a ~ o a = op O (3:73)
dos  oH* dJ; _ OH*

dt — 0J3 905"

From these equations, it follows that J; and J3 are constants. In the original
asteroidal problem, J; constant means a* constant, or, in a first approxi-
mation, that the “average” semi-major axis of the asteroid’s orbit, < a >,
is constant. This fact is sometimes mentioned by saying that there are no
long-period terms in the asteroid’s semi-major axis. However, this is true only
in this approximation. Indeed, instantaneous and proper values are related
through (3.33)—(3.34), that is,

0; = 0F + e\ (0, J*€)

(3.74)
Ji=Jr + 20 (6,0 ¢) (i=1,2).

The iterations to solve this system introduce, at second and higher orders,
products of terms whose arguments are different but have equal short-period
parts. The results are long-period terms (that is, terms whose argument is a
multiple of 6s3).
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The third pair of equations is independent of the other two and may be sep-
arated from the system. It is more easily studied if we introduce the Poincaré
variables

z=/-2J; cosbj y=+/—2J3 sin6j. (3.75)
If we discard the terms independent of J3 and 635, H* becomes
H*(03,J%) = CoJi + Crn/—J; cos 0 + CoJi cos 203 (3.76)
_ —Co o 2 G Cy o 2
=y WHYIH prm gy @y,
where
g2 L oL sM; OM?
CO = €b+ ( * ° * i + * ° * :)
2 sezz\{o} vi —vi 0Jf svy — (s+1)vy OJ7
362 < L*2 SQM*Q >
+ . . e T o . (3.77)
4J sezz:\{o} (i —v3)* s — (s + v
g2 ( 2 O(ALLY) s 8(B*M*)>
Cl = EL* - * * S* ° + * * ° * 3
0 2 sezz\;{o} vi—viy  OJ] svf —(s+ vy dJ]
3 2 2A*L* ZB*M*
S ( ALy B *2>7 (3.78)
U sezn (o) (i —v3)?  [sf = (s + 1)3]
g2 <8L* L 3 L:L* )
Cy = PRI Lo . (3.79)
2 sezz\{o} 0Jf (vi—v3)  2J% (v —v3)?

When high-order terms are neglected, the corresponding differential equa-
tions are linear. Secular theories of this kind are called linear secular theories.
Actually, linear equations arise generally, at this order, when all functions
in the given problem are assumed to be analytical in z,y, and J3 is a small
quantity. This is the case in many Celestial Mechanics problems when 63, Js
have the definitions given by (3.56) (note that, in the asteroidal problem, J3
is of the order of the square of the orbital eccentricity).

The resulting linear system of differential equations is

dx OH*

a - —(Co = Ca)y (3.80)
dy ~ OH* Ch

a - — or (C() + 02)33 — \/2 (381)

(to fix the signs in these equations, one may note that the Poisson bracket of
the new variables defined by (3.75) is {z,y} = {05, J;} = 1). These equations
have the general solution
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Fig. 3.1. Secular motion in the (z,y) plane

x:E\/l— 22 cos (wt + Iy) + Ep

where

0 (3.82)
Cy .
y:E\/l—i- sin(wt + IIy),
Co
Ch
_ 2 _ (2 _
W= \/00 3 Eo = \/2(00 +Cy)

and E, I are integration constants. This solution is shown in Fig. 3.1. It has
two components:

One free component with amplitudes F \/ 1— gz in z and E\/ 1+ gi in

y, and polar angle IT = wt + Ily; in terms of the given example, F is the
so-called proper eccentricity and Il the longitude of the proper perihelion.
Note that, since Co/Cy = O(e), the proper frequency is w ~ |Cp|.

One forced component of amplitude Ey (the forced eccentricity) directed
along the z-axis. Since Cy and C; are both of order O(e), this quantity is
not controlled by the size of e. (Ey ~ L/+/2b.)

If the integration constant F is smaller than Ey and if the quantity Cs/Cj

can be neglected, the trajectory in the (x,y) plane does not include the origin
and the angle 6% oscillates about 0. (The asteroid perihelion oscillates about
the direction of Jupiter’s perihelion.) In the other case, when E > Fj, the
angle 05 circulates with period 27 /w.

3.8 An Example — Part II

In the example of the application of the von Zeipel-Brouwer theory considered
in Sect. 3.6, the divisors v§ —v3 and svj — (s+1)v3 appeared. Let us reconsider
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that example, but assuming, now, that the values of the actions J; and Jo are
such that
vV, — 2V2 ~ 0. (383)

In this case, the non-resonance condition is no longer satisfied by the previous
solution and the von Zeipel-Brouwer theory may not be used to eliminate the
short-period terms dependent on the critical combination 6; — 265. Therefore,
instead of the decomposition of R(6, J*), given by (3.62), we must consider in
R(spy only the non-critical terms. That is:

Rspy(0,J%) = Z (A: cos (01 — 02) + L:\/—Jgf cos [s(01 — O2) + 93])

s€Z\{0}

+ Y Bicos[sth — (s+1)s)] (3.84)
s€Z\{1}

+ Z MZ\/—J% cos[s01 — (s + 1)02 + 03]
s€Z\{1}

and the critical terms are included separately in
Ry (0, J%) = Bf cos (01 — 205) + M7 \/—J; cos (61 — 202+ 03).  (3.85)
The averaging rule fixed by (3.50) leads to
H{(61—202,03,J%) = Rsy(J*)+Rpy (03, J*)+ Rx) (01 =202, 03, ") (3.86)

and

.08 )
> 801 = —R(sp)(0, ") (3.87)
p=1 i

or, after integration,

SHOPOEIEEDY

s€Z\{0}
B Z B sin[sth — (s + 1)62]
svi —(s+ 1)}

(A; sins(6y —6a) Liy/—J; sin[s(01 — 65) + 93]>

s —13) s —13)

s€Z\{1}
B Z M;\/—Jjsin[s0y — (s + 1)02 + 03]
scTni1) svi —(s+ 1)vg

We still assume that v — v # 0 and svf — (s+ 1)vg # 0 for all s # 1. It is

worth noting that we have not yet done the Lagrangian point transformation

indicated in Sect. 3.5.1 because, in this case, we have only one resonance and

it is easy to trace the critical terms and to separate them from the others.
The next von Zeipel-Brouwer perturbation equation is
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2
aS
> v 392 = —Wy(0,J*) 4 Hj (61 — 264,06, J%), (3.88)
p=1 "

where W5 is similar to the one found in Sect. 3.5.1 and must be decomposed
following the rules given there. The secular and long-period parts of W, are
the same as given in (3.67)—(3.70), except for those terms having (v; — 2v3)
as divisor, which will no longer appear because the corresponding argument
was excluded from R(gpy and Sp. The critical terms in Wy arise from two
combinations of short-period angles:

(a.) (61 —62) and s — (s + 1) when s’ =1 —s;
(b.) s'(61 — 02) and s6; — (s + 1)03 when s’ = s — 1.
They have arguments 1 — 205 — 03, 61 — 2605, 0, — 205+ 03, and 6, — 205+ 205.
Thus, we have

Uy iy = (K7 + K3J35)cos (61 — 202) + Kj+/—J3 cos (01 — 202 — 05)

+KZ\/—J§ cos (61 — 202 + 03) + K: J3 cos (61 — 202 + 263),

where the coefficients K} are functions of J;. The calculation of the coefficients
is elementary, but cumbersome. The short periodic part is, also, lengthy. They

will not be given here.
The application of the von Zeipel averaging rule now gives

H3 = Wos)(J*) + oy (03, T) + Wiy (01 — 2602,05,.T7) (3.89)
and )
> 892 = —Wysp) (0, J"). (3.90)
p=1 B

When the calculations are done, we obtain a new canonical system whose
Hamiltonian is

1
HY0, ) = =y +vadi e (A;; + L/~ J3 cos 0 + B cos (6% — 2603)
1
+ M \/—J3 cos (6 — 2605 + 9;)) (3.91)
+ ¢’ (%(S)(J*) +WLpy(03,J7)
+ (K 4 K3J5) cos (0 — 203) + Kj+/—J; cos (07 — 205 — 03)

+ K/~ JF cos (07 — 205 + 603) + KiJ; cos (07 — 203 + 29;)).

It differs from the given Hamiltonian H by a remainder R3 divisible by &3.
The variables 6%, J* are related to the original variables 6, J by means of the
transformation

oS oS

Ji = 0F

90, LT (3.92)
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where
S=(0|J) +eS1(0,J%) + 2550, J*). (3.93)
The Lagrange point transformation defined by
¢ = 07 — 203 I =J;
P2 =065 Iy = J5 +2J7 (3.94)
¢p3 =03 Is = J3

leads to a Hamiltonian where the angle ¢o is absent. Thus, Ir = J5 + 2Jf is
a constant and the averaged Hamiltonian may be written

H*(¢,1) = o Tva(ly —2I) +¢ (AS + Liv/—Is cos ¢ + B cos ¢y
1

_ 1
2I

+ M7y \/—Ig cos (¢ + ¢3)) + &2 (@(S)(I) + @2(LP)(¢37 1)

+ (K7 + K31I3) cos ¢1 + K§\/—I3 cos (¢1 — ¢3)

+ Kj/—I5cos (¢1 + ¢3) + K315 cos (¢1 +2¢3)) ) (3.95)

where, for simplicity, we have kept the same symbol for the functions appear-
ing in the coefficients notwithstanding the fact that they are, now, expressed
with the new variables.

The transformed system has, now, two degrees of freedom (one degree of
freedom more than in the non-resonant case). The theories allowing for the
formal elimination of the critical angles from the Hamiltonian are the subject
of Chaps. 4 and 8.

3.9 Iterative Use of von Zeipel-Brouwer Operations

After one application of the basic operation of the von Zeipel-Brouwer theory,
the given system is split into two parts. One of them is a N — M degrees-of-
freedom canonical system whose Hamiltonian is

H* (05,05, J5.6) = > ebH(05,J5,7T3) (3.96)
k=1

0 e

(we have dropped the term Hg(J;) that gives no contribution to the new
differential equations). The actions were separated into J; and J;. J; are
constants and enter in the canonical equations as mere parameters.

In the favorable case where H{ does not depend on the 67, a new appli-
cation of the von Zeipel-Brouwer theory may, again, reduce the number of
degrees of freedom. Eventually, successive applications of the operation may
provide the solution of the Delaunay problem.

The best-known example of a problem solved by two successive operations
is the main problem of the theory of the Earth’s artificial satellites [14]. In that
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problem, the undisturbed motion is a Kepler motion, that is, Hy = —%Jl_z,
where J; is the only action appearing in Hy. The perturbation is
C )
Hy =— 3 (3sin” ¢ — 1), (3.97)

where C' is a constant factor determined by the physical parameters of the
Earth, and r and ¢ are the satellite radius vector and latitude over the Earth’s
equator. After substitution of the Delaunay angle-action variables, this be-
comes
Hy= > Ap(J) cos(h]f), (3.98)
heD,CZ®
where the elements of the set D have the following properties:

e h3 = 0 (that is, H; does not depend on the third Delaunay angle, the
longitude of the ascending node);

e hy = 0 when h; = 0 (that is, the second Delaunay angle, the argument of
the perigee, never appears alone in the cosine arguments of Hy).

We then have the decomposition
Hygy = Ao(J),

Hyspy = Y. An(J) cos(h|f), (3.99)
heD;\{0}
Hypy = 0.

Then, Hf = < Hy > = Hys) + Hy(pp) is a function of the actions only.
H} = Ao(J*) may play the role of the “undisturbed” Hamiltonian in a new
application of the von Zeipel-Brouwer theory, which allows us to eliminate
the angle 65 present in the higher-order terms H} (k > 2).

Theories in Celestial Mechanics are often classified as lunar or planetary
according to Hyzpy = 0 or Hy(py # 0, respectively. The different behavior
arises from the fact that the adopted small parameter is not the same in these
theories. In lunar theories, the small parameter is the inverse distance to
the disturbing body (the Sun). In planetary theories, it is the mass of the
disturbing body (another planet) in units of the solar mass. The different
hierarchy of the terms in the expansion of the disturbing potential in lunar
theories is such that Hypy = 0. Then, the new “undisturbed” Hamiltonian
HY(Jy) is not degenerate (in Schwarzschild’s sense), and the system defined
by H* may be formally solved through an application of the Poincaré theory.
If H(J;) is degenerate, the von Zeipel-Brouwer theory can be used again to
eliminate the non-degenerate degrees of freedom. The possibility of a further
reduction will now depend on whether or not the resulting H** depend on
the remaining angles 6.

In the case of planetary theories Hi depend on the longitudes of the per-
ihelion and ascending node (see [58], Sect. 83). Thus, a second application of
the von Zeipel-Brouwer theory to obtain a formal solution in terms of pure
trigonometric series is not possible in this case.
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3.10 Divergence of the Series. Poincaré’s Theorem

The Poincaré theory leads to the solution of a given Hamiltonian system by
means of a Jacobian canonical transformation whose generating function is
(see 3.31):

iAkh exp (lh | 9)

Sk(HaJ*): Z h|V* )

heD,\{0}

(3.100)

for whose existence it is necessary to assume that (h | v*) # 0 for all
h € DE\{0} (non-resonance condition). Poincaré noted that, since the prod-
uct of two Fourier polynomials introduces new combinations of the angles and
increases the number of terms in the resulting polynomial, the products ap-
pearing in the construction of ¥, make any non-trivial Dy grow with &k and,
as k grows, values of (h | v*) smaller than any arbitrarily small given limit
may be formed. The series are then divergent in any open set of the phase
space.

For this reason the canonical perturbation theories discussed in this book
are always considered as finite processes. However, infinite processes may be
considered if some more stringent conditions are adopted. This is the case in
Kolmogorov’s theorem.

3.11 Kolmogorov’s Theorem

Let us consider the same Hamiltonian system of Sect. 3.2:

H = Hy(J) + i ek H(0,.), (3.101)
k=1

where Hj is the Hamiltonian of an integrable system satisfying a non-
degeneracy condition more restrictive than Schwarzschild’s non-degeneracy
condition assumed in the previous sections. Kolmogorov’s non-degeneracy con-

dition is 52
Hy
. .102
det(aJian);éO (3.102)

The unperturbed system defined by Hy admits non-degenerate quasiperiodic

solutions
0; = v;t + const

J; = const (i=1,2,---,N), (3.103)
where § € TN are angles conjugate to the actions .J and
def OHo(J)
i : 3.104
Y oJ, (3.104)

Let us consider one of the above solutions, say
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0; = 07 = vt + const
Ji = J? = const (i=1,2,---,N) (3.105)

and let us assume that the frequencies v¢ satisfy the Diophantine condition
|(Bv?)] = K |[h]|=*D (3.106)

for all h € ZN\{0} and a certain K(v°) > 0.

The theorem of Kolmogorov [57] states that this solution persists when
the system is perturbed, provided only that the perturbation is sufficiently
small?,

To understand the nature of such preserved solutions, that is, of the so-
called Kolmogorov or KAM tori, one may recall that in any neighborhood
V(J°), there are infinitely many points J* for which (h | v*) = 0 for some
h € ZN\{0} and the series are divergent.

3.11.1 Frequency Relocation

To explain the procedure followed by Kolmogorov to obtain quasiperiodic
solutions, let us present the construction of the canonical transformation as
an extension of the Poincaré theory.

In Poincaré’s theory, for given initial conditions, we look for a quasiperiodic
solution starting at them. The frequencies of the solution of order n are given
by the derivatives of H . To each order n of approximation, there corresponds
a different set of proper frequencies v*. Even if the solution were to converge
to an actual quasiperiodic solution of the given Hamiltonian, the frequencies
of that solution would not be precisely known, being improved as the order
of the approximation grows.

To guarantee that, at J* = J°, the frequencies of the disturbed and undis-
turbed systems are the same, we have to introduce a slight modification in
Poincaré theory, relocating the frequencies in such a way that we have the
same proper frequencies at every order of approximation. To do this, we split
the Jacobian generating function into two parts:

Sy =S, + Sy (ke Z). (3.107)
S, is determined using the averaging rule of Poincaré theory:
!

N
> v %g{e =< W > — (6, 7). (3.108)
i=1

K3

The remaining part of the homological equation is

4 For simplicity, all functions in this section are considered to be analytical in the
angle—action variables and in the small parameter €.
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N

1"
> v %*Zk =Hi(J)— < >. (3.109)
i=1 i

Let us now determine S} in such a way that

OHE(J*)
oJ*

= 0. (3.110)
Jr=Je°

This definition allows us to eliminate from H; the linear terms in (J* — J°).
To achieve this elimination, we expand < ¥, > and v} in powers of (J* — J°).

Let Ej Byj(J; — J7) be the linear term of the expansion of < ¥ >. The
linear term of v} is

N

ov¥
2 o (J; = J7)
j:l 8J] Jx=Jo

or N

PHo(J) o o
2 gge0g0 i T
j=1 i Y

Equating the linear terms of both sides of (3.109), it follows that

N 2 o "
0" Ho(J°) 05y _ — By (3.111)

22 9J20J7 00

(H} has no linear term, by construction). The solution of this trivial equation

1S

Sk =¢&10, (3.112)
where ¢ € R is a constant vector given by the solutions of the linear
equations

N 92Hy(J°)

O\ ) & = — By (3.113)
0J20.T

i=1
We recall that, by hypothesis,

0?Hoy(J°)
det(@J{’@J]‘? #0.

The k*® component of the transformed Hamiltonian then becomes

N
Hi(J*) = <We >+ v/,
i=1
which, because of the definition of the £;, has no linear term in J* — J° and,
thus, satisfies the given hypothesis.
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The function S}/ does not obey the conditions fixed in Sect. 3.3. It is
proportional to an angle and goes to infinity as ¢ increases. However, it will
not generate terms of this kind in the explicit equations of the transformation,
because S only appears in the Poincaré algorithm through derivatives with
respect to angles.

When J* = J°, the solutions of the dynamical system whose Hamiltonian
is H* are

07 = vPt + const

J = J? = const,

(3.114)

that is, the quasiperiodic solution of the undisturbed Hamiltonian is trans-
formed into a quasiperiodic solution of the disturbed system, with the same
frequencies v?. The equal frequencies of the undisturbed and disturbed solu-
tions is achieved because of the adequate choice of the functions S}, .

The procedure described above is very similar to that of Poincaré’s theory,
differing from it only in the averaging rule adopted to solve the problem of
the indetermination of the homological equation.

3.11.2 Convergence

The crucial part of Kolmogorov’s theorem is the proof of the convergence of
the infinite series

N 0o
S=> 007 +> £"Sk(0,T7)
i=1 k=1
and
o0
H*=Hy+Y " H;
k=1
at the point J* = J°. At this point we have v* = v°, and the proof follows
from the Diophantine condition and the rules of decrease of the coefficients of
a Fourier series. These two properties enable the determination of a limiting
€* such that, for ¢ < £, the given series converge (see [3], [40]).

In order to have easier control of the small divisors and simplify the proof,
Kolmogorov adopted an approach different from that described above. Instead
of just looking for one canonical transformation (generated by S), Kolmogorov
sought a succession of canonical transformations, each generated by a first-
order Poincaré algorithm.

The first canonical transformation, ¢ : (6, J) = (6*,J*), is defined by the
generating function

N
S=> 0:J; +51(6,T),
=1
where S; is determined by
N
N BS? = H} — Hy, (3.115)
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with the additional split of Sy into S7 + 57 as discussed in the previous section
to eliminate the linear terms in J* — J° from H7. If the same hypotheses of
the previous section are adopted, the Fourier series giving S7 is convergent.

Since this algorithm is limited to first order, there is a remainder Ro
divisible by €2, and the Hamiltonian of the resulting system is

H* = HE(J*) + eHE(J*) + Ra(07, J*, €).

So, we have a new perturbed system whose integrable “undisturbed” part is
H} = H{ + eHj, and the perturbation R (6%, J*, ) is of the order of £2.

The second canonical transformation ¢* : (6%, J*) = (60**, J**) is defined
by the generating function

N
S* = 07T + 850",

i=1
with S5 determined by

N

S5 .. &
> w2 = Hyt - Hy, (3.116)
7 90;

where we include in H 1 all terms of Ry of orders O(g?) and O(e?). As before,
the Fourier series giving S5 is convergent.

Again, since the algorithm is limited to first order, there is a remainder
R4. Since the small parameter is €2, the remainder is divisible by %, and the
Hamiltonian of the resulting system is

0+ — I/‘\Ig*(,]**) +521/‘\If*(<]**) +R4(9**,J**75).

So, we have a new perturbed system whose integrable “undisturbed” part is

ﬁo = A(’)‘*(J**) + szﬁf*(J**), and the perturbation Ry (0™, J**,¢) is of
order 4.
The next step is again the canonical transformation defined by a first-order

algorithm with * as small parameter and considering the perturbation e*H 1
which includes all terms of orders O(e*) to O(¢7) of R4. And so on.

This algorithm is sometimes called super-convergent because it resem-
bles the super-convergent Newton’s method for finding the root of an equa-
tion following an approximation scheme in which the order of the “error” is
squared at each step. That is, we have the sequence ¢,e2,e%,¢8, - - - instead of
g,e2, €3, e, ..

The simplicity of the super-convergent approach is striking and, certainly,
a key point in the proof of the theorem. However, this approach and that of

Sect. 3.11.1 should lead to the same solution.
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3.11.3 Degenerate Systems

Kolmogorov’s theorem has been extended by Arnold [3], [5] to the case where
Hy depends only on M (M < N) actions and

0’H, >
det ( £0 (3.117)
0Ju0Jw /=1, ma

(proper degeneracy). The proof is a combination of the proof of Kolmogorov’s
theorem and the rules for iterative use of von Zeipel-Brouwer theory. The
procedure followed in Kolmogorv’s theorem is initially used to construct a
canonical transformation that reduces the given Hamiltonian to N — M de-
grees of freedom. If the frequencies vj, (1 = 1,---, M) satisfy the Diophantine
condition, the series giving the transformation is convergent and the reduction
is not merely formal as in the cases studied in this book. The resulting system
is written

o0

H* = Hy(J;) + > " H} (65, .%),

k=1
(0 =M +1,---,N). The angles 0} (u = 1,---, M) are ignorable and the
actions Jj are constants. The system is then reduced to N — M degrees
of freedom. We may rescale the independent variable to et and delete the
constant term Hg(.J;;). The Hamiltonian of the reduced system is

H=H{(05,J) + > " Hi (05,77,
k=1

where, by construction,
Hf(QZ, J*) = Hys)(J") + Hl(Lp)(QZ, J).

In the particular case where HY P)(GZ, J*) = 0, the reduced Hamiltonian
becomes -
H =Hys)(J*)+ Y _"Hy, (05, 77),
k=1

to which Kolmogorov’s theorem may be applied once more provided that

9°H J
det ( 1(5)( ))
aJQ&]Q’ 0,0/=M+1,-,N

The combination of the two operations leads to convergent series describ-
ing quasiperiodic motions with the given frequencies 1. The additional con-
ditions concern the first-order perturbation H;: they are the absence there of
long-period terms, i.e., Hy(zp)(0,,J) = 0, and the non-degeneracy (in Kol-
mogorov’s sense) of the secular perturbation Hy(gy(J,)-

£0. (3.118)
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3.11.4 Degeneracy in the Extended Phase Space

A particular kind of degeneracy occurs when the given system results from an
extension of the phase space. In that case, one linear term in the additional
momentum is added to the Hamiltonian (see Sect. 1.6) so that the resulting
Hessian has a row of zeros and is identically equal to zero. Let us assume, for
the sake of simplicity, that the system is non-degenerate in Schwarzschild’s
sense, that the action Jy is the only one for which we have

81/N
= i=1,---.N A1
o7, 0 (7 yoo N (3.119)
and that the Hessian matrix of Hy has rank N — 1 and is such that
0%H, )
det ( #0. (3.120)
8Ju8Ju’ o' =1,--- N—1

The construction of S}, is not affected by the degeneracy in Kolmogorov’s
sense as long as the system is non-degenerate in Schwarzschild’s sense. The
condition of non-degeneracy in Kolmogorov’s sense is however necessary in the
construction of S,;/ to establish the one-to-one correspondence between actions
and frequencies. However if the degeneracy in Kolmogorov’s sense results from
an extension of the phase space, the given Hamiltonian is such that

8H() — U 8Hk -0 (k‘Zl),

dJn dJn

as a consequence, the functions ¥y, are independent of Jy (the functions £ and
Gy i of Sects. 3.2.1 and 3.2.2 are independent of Jy). Therefore, we have to
eliminate from ¥ only the linear terms in (J;; —J3) (u =1,--+, N—1) and the
subscript in (3.113) may be restricted to 1, - -, N —1. The other operations are
not affected by this particular kind of degeneracy and a quasiperiodic solution
exist in this case for frequency sets satisfying the Diophantine condition (see
[5], Chapt. 5, Sect. 3).

In this case, Hj is said to be isoenergetically non-degenerate. The condition
for isoenergetic non-degeneracy has the general form

02H, \ (9H,
0.,00; ) \ aJ;

< )I
8<]] i\j 1,--,N

3.12 Inversion of a Jacobian Transformation

One successful application of the theories discussed in this chapter results in
a new Hamiltonian H*(J*) (or H*(0},.J")), and a canonical transformation
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defined by a Jacobian generating function S(6, J*). From the definitions (Sect.
3.2), we have

0, = m_zgkas’“(a’“’) = 0 +e4\(0, T ¢) (3.122)

Ji = J Z g kao* = T+ (0,07, (3.123)

The transformation is not explicitly given because 6 is still present in the
right-hand sides. Thus, an inversion is necessary to reach the solution of the
given problem. In low-order theories, the inversion can be achieved through
a straightforward iterative procedure. In more general cases, we may use an
extension of the well-known Lagrange formula (see Sect. 3.12.1).

Ounly the N equations (3.122) are implicit. Once they are solved, a mere
substitution of the results into (3.123) is enough to complete the inversion.
However, we will prefer to combine both into only one equation:

z=2"+ep(z;J"€), (3.124)

where z,2* € TN x O, and ¢ : TV x O — TV x O is analytical. (O is an
open set of R.) J* appears in the function ¢ as an external parameter and
is ignored during the inversion.

According to Lagrange’s theorem, the solution of (3.124) is

z=2z"+¢eo(z —i—Z il Gr(z"), (3.125)
keN

where the functions Gg(z) are given by

Go(z) = ¢(2; ", €),
= k—1 8Gk,g,1(z) (3'126)
Gr(z) = Gy(2), (k>1).
0= () () e

One may note that we have, on the right-hand side of the last equation, the
product of a matrix by a vector. Because of the mixed form of the Jacobian
transformation, ¢(z; J*,¢) does not depend on J, but only on 6. As a conse-
quence, all Gg(z) (kK > 0) depend only on 6 and the right-hand half of the
matrix (0Gk—¢—1/0%) is formed by zeros. Hence, the above equation may be

written e :kz_:l (k ; ) (86%(;0 1(z )) Go(2), (3.127)

£=0

where é@ is the restriction of Gy to its first N components.
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3.12.1 Lagrange Implicit Function Theorem

The one-dimensional Lagrange implicit function theorem is expressed by a
well-known formula allowing the root of an implicit equation involving an
analytic function to be obtained. It was extended to N dimensions by several
authors. We reproduce here the extension due to Feagin and Gottlieb [29].

Theorem 3.12.1. Consider the equation
z=2"+e¢(z),
where z € CN, ¢ : CN — CV is analytic in a neighborhood of z = z* and ¢

is a (small) real parameter. Let f : CN — CN be a given analytical function
in the neighborhood of z = z*. Then

f() = £z + kff R
where the functions Fy, are given by 7
Fo(e") = £(2"),
A= () (e ez

(=0
*)’

(
o) = :Lz_lo (é;l) (8G1g_g;:1(2*)> Gu(=) (k> 1)

Exercise 3.12.1. Show that, in the particular case f(z) = z, F, = kGjp_1.

&~

Go(z*)

|
-

W

3.12.2 Practical Considerations

The inversion given in this chapter is not often used. In many applications,
only H*(6*, J*) matters. For instance, in many applications in Mathematics,
it is enough to know that H*(0*, J*) and H (¢, J) are related through a smooth
transformation. In Astronomy, we may devise several kinds of applications,
ranging from the qualitative study of the evolution of given systems of bod-
ies, to the construction of ephemerides. In qualitative studies, generally, only
H*(0*, J*) matters. We know that the solutions of the given Hamiltonian
H(6,J) are in the neighborhood of the solutions of H*(#*,J*), and this is
often enough for our purposes. In the construction of ephemerides, on the
contrary, the purpose is to predict the actual position of one body at a given
time, and we have to obtain 6 = 6(t); J = J(t). Thus, the transformation has
to be done. In fact, precise ephemerides are nowadays constructed mainly with
numerical integrations. However, in the case of fast-moving objects, like close
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planetary satellites, the propagation of numerical errors limits the validity of
numerical integrations to spans of time that are not enough large. In this case,
long-term ephemerides are obtained by means of formal solutions.

Another example where formal solutions are often used is the computa-
tion of proper elements. Proper elements may be defined in several different
ways, but the classical and more rigorous definition is to define them as the J*
(see [61]). Indeed, if the corresponding Delaunay problem has been solved (to
a given order), and led to a Hamiltonian H(J*), these quantities are constant
(in fact, only almost constant because the remainder R, 1 still depends on
6*). To know the proper elements of a given body, it is necessary to know how
to relate J* to the actually observed quantities 6, J. Thus, knowledge of the
function J* = J*(0,J) is necessary. Again, the whole determination can be
done by means of numerical integrations, and is often done. However, numer-
ical procedures may present drawbacks. Consider the case of the asteroids.
There are more than 100 000 of them. They are affected by very-long-period
perturbations, and precise numerical integrations over some millions of years
are necessary to derive good proper elements. This must be done for every as-
teroid, and repeated each time our knowledge of the actual orbit is improved,
making the numerical approach inefficient.

Finally, we should note that even when the construction of a formal so-
lution is more convenient than numerical integrations, the cumbersome step
represented by the inversion of the Jacobian transformation can be done nu-
merically. The solution of a system of a few algebraic equations close to an
identity is a very inexpensive one-time numerical operation, which is not im-
paired by error’s propagation like numerical integrations.

3.13 Lindstedt’s Direct Calculation of the Series

By the end of the ninetenth century, the methods of Celestial Mechanics
were translated into the language of Hamiltonian mechanics, using Jacobian
generating functions to span the canonical transformations. Those methods
aimed, generally, at dealing with perturbed oscillators given by equations of
the form

d’z

di?
The essential feature, kept unaltered since then, is the search for solutions in
which the angles and the momenta (or actions) are given by

+w?z =ef(a,t). (3.128)

0=vt+ Y  Apexp(ihfvt) (3.129)
heZ’
and
J =Y Buexp(ihvt), (3.130)

hez’
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respectively.
Solutions of this kind are often called Lindstedt series [64]. Excepted for
the linear terms vt, they are in “pure trigonometric form” (cf. Charlier [20]),
that is, quasiperiodic functions with N fundamental frequencies.
In Poincaré theory, we seek an integrable Hamiltonian H*(J*), whose so-
lutions are
07 = vft + const

J¥ = const (3.131)

and then we transform these solutions by means of the inverse of the canon-
ical transformation defined by S(6, J*), to obtain the solutions of the given
system. The averaging operation defined in Sect. 3.3 guarantees that all S
are Lindstedt series. Therefore, the final solution has the required form.

It is worth recalling that most of the earlier planetary theories, founded
on Lagrange’s variation of the elements, included terms in powers of ¢ and the
so-called “Poisson terms”, t* exp (ih|vt), mixing powers of ¢ and trigonometric
functions. These terms, describing the solution with high precision during a
short interval of time, generally deteriorate rapidly as ¢ increases. As the mo-
tion of the planets is slow, approximations of this kind are generally good for
predicting purposes and remain valid for decades or even centuries. Neverthe-
less, it is not possible to use them in the study of fast motions. It is noteworthy
that the revival of von Zeipel’s theory, in modern Celestial Mechanics, hap-
pened when a good theory became necessary to describe the motion of Earth’s
artificial satellites [14].

If we know that a quasiperiodic solution (formal or exact) exists, we can
construct it directly without the need for any of the previous methods. It is,
in principle, possible to substitute the solutions given by (3.129) and (3.130)
directly into the equations and to solve the resulting infinite set of equations
resulting from the identification of both sides to obtain the unknown v, Ay, By,.
The solutions are constructed order by order, in €.

The direct calculation of the series has some drawbacks. One, obvious, is
the extra amount of work resulting from the separate consideration of each
of the 2N equations. It can be done only when the given equations are very
simple. The second drawback has been pointed out by Giorgilli [39]: the direct
calculation of the series leads to an increase in the number of terms with
small divisors. However, the solutions with both techniques cannot be different
and cancellations occur (many huge contributions that compensate among
themselves).



4

Resonance

4.1 The Method of Delaunay’s Lunar Theory

Delaunay was the first astronomer to use the mechanics of Hamilton and
Jacobi to obtain the approximated solution of the equations of motion of
a celestial body. His lunar theory [22] is a pioneer work in many respects.
We credit Delaunay with the introduction of the set of angle—action variables
£,g,h,L,G, H in which the Lagrange equations for the variation of the orbital
elements under a perturbation are canonical. His theory of the motion of the
Moon is not a collection of clever tricks, as other theories in the old Celestial
Mechanics. Having obtained the variation equations in canonical form, his
problem was to find the solutions of the differential equations defined by the
Hamiltonian

H =Hy(J)+¢c Y Ap(J)cos(hl6), (4.1)
heD
where the canonical variables are J = (Ji,...,Jn) and 0 = (61,...,0N),

¢ is a small parameter and D C Z". The technique adopted by Delaunay
is methodologically very clear. He defined an operation and performed it,
successively, almost 500 times. This operation starts with the choice of one
argument (h1]6) in (4.1) and the consideration of the dynamical system defined
by the abridged Hamiltonian

Fi = Ho(J) + A, (J) cos (). (42)

This system is integrable, since the angles 6; are present only through the
linear combination (h1]f). The main step of one Delaunay operation is to
obtain a particular solution of this selected system and to use this solution
to derive a canonical transformation leading to the elimination of the term
Ap, (J) cos (h1]0) from the given Hamiltonian. (In fact, it is a transformation
leading to the substitution of this term by others with much smaller coef-
ficients.) To obtain the solution of the dynamical system defined by F, we
introduce the Jacobian generating function
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s, 7)< 010 + 56,07, (4.3)

where X is a function of order O(e), and consider the Hamilton—-Jacobi equa-
tion

a8 a8
E, = Hy (89) +eAp, (69) cos (hy]0). (4.4)

The functions of 95/960;, on the right-hand side of this equation, may be
expanded about 05/96; = J and (4.4) becomes

N 9Hy(J*) 0%

E1 = Ho(J*) + I 00,

+eAp, (J*) cos (h1]0) + O(£?). (4.5)

=1

At variance with the standard Hamilton—Jacobi theory, we do not look
for a complete solution of the equation. We assume E; = Hy(J*), and seek a
suitable particular solution of the partial differential equation for X

N 9Ho(J*) 8%

0= aJF 00

+eAp, (J*) cos (h1]0) + O(e?). (4.6)

i=1

If the higher-order terms are neglected, we have the immediate particular

solution
_6Ah1 (J*)sin (h1]6)

Y= , 4.7
(inlo) o
where v* = (v, v3,--+,vx) and
OHo(J*)
* = 4.8
=" (48)

Once we have obtained a first-order solution of the dynamical system
spanned by Fi, we go back to the given Hamiltonian H and perform the
transformation of the variables generated by the function S:

03 0% os . ox

b it =~ 06,

_ 4.9
To complete the exposition of a Delaunay operation, we write the full
Hamiltonian as

H=F +AF. (4.10)

Hence, according to (4.5)—(4.7), when the above variable change is done, F;
becomes
FL(0%,J%) = Ho(J*) + O(?), (4.11)

that is, F4 plus the higher-order terms of (4.6), which were neglected when
(4.7) was obtained. With the same change, the additional part AF(0,J) is
transformed into AF (6%, J*)+O(e?). (The function AF is the same as before.)
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The result of the Delaunay operation is, then, a new Hamiltonian
H* = Ho(J*) + AF(0*, J*) + O(?) (4.12)

differing formally from the given one, in only two respects:

(a.) the term €Ay, cos (h1|0) has disappeared;
(b.) new terms of order O(¢?) were added.

In this way, performing as many operations as necessary, we may expect
to eliminate from H all periodic terms of order O(¢). Indeed, as shown in
the previous chapter, all these operations can be performed at one stroke, by
finding the function S generating a transformation that eliminates all periodic
terms of order O(e).

We may also expect to eliminate, with a second sequence of operations,
those terms of order O(e?), after that, the terms of order O(e?), and so on.
In reality, as discussed in Sect. 3.12, this is not so. The combination of the
arguments (h|6) in the transformation of H tends to enlarge the set of values
of h (the maximum of |h| increases). Thus, values of h for which (h|v*) is too
small can be reached (Poincaré Theorem) and the Delaunay theory, as well
as the theories of the previous chapter (with the exception of Kolmogorov’s)
cannot be extended indefinitely. Only a finite number of operations can be
done and the non-resonance condition (h|v*) # 0 must be verified for all
h € D, and for all h generated in the calculations. Otherwise, the theory
needs to be modified as discussed thereafter.

We may also consider the case where one or more values h € D are already
such that (h|v*) = 0. This case happens when Hy(J) is degenerate, that is,
when Hy does not depend on all components of J. One essential degeneracy
of this kind appears in Celestial Mechanics where Hy depends only on the
Delaunay variable L and on the variable A, the canonical conjugate to the

time t: )
I

2L2
In this case, the Delaunay theory does not allow one to get rid of the terms
independent of both the time ¢ and the mean anomaly ¢ (conjugate to L). In
the particular problem of the motion of the Moon, periodic terms of this kind
do not exist in the given perturbation (see the discussion in Sect. 3.9) and the
theory developed by Delaunay allowed all periodic terms of order O(e) to be
eliminated.

Hy = + A (4.13)

4.2 Introduction of the Square Root of the Small
Parameter

Let us consider, in this section, the equations of the Delaunay theory in the
case where one resonance exists. Let us assume that
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(ha|v*) = 0 (4.14)

for some h; € D and some point J* € O (O is the open set of R under
study). We may continue as in the previous section up to equation (4.7).
However, in this case, the resonance (hi|v*) = 0 happens at one point of
O. At such a point, the first term in the right-hand side of (4.6) vanishes
and the equation becomes singular. If we do not get rid of this singularity
and continue calculating as before, the divisor appearing in the result will
become null when the exact resonance is reached. To study this problem, we
will perform the same sequence of calculations as in the previous section, but
keeping in explicit form some second-order terms.

For the sake of simplicity, we will only consider, here, the simplest case of
only one degree of freedom, in which case the resonance assumption given by
(4.14) becomes, simply,

vy =0. (4.15)

Let us introduce again the generating function as
S(61,J7) = 01J7 + X (6041, J7)

and let us expand the function
oS oxX
H = H = H ’ .
o(J1) 0 (891) 0 <J1 + 801)

L 0x 1, [aZ?
HO(Jl):HO(J1)+y1391+2VH(891> .

Then

where we have introduced

. _ dHo(J7) . _ d*Ho(J})

vl = as; v, = a2 (4.16)

In the same way, we expand

R1(91, Jl) dgf Ah1 (Jl) COS 91

to obtain
OR:(01,J7) 0%
oJ; 061

When these expansions are substituted into the Hamilton—-Jacobi equation
(4.4), we obtain

Ri(61,J1) = Ri(61,J7) + e

_OR, 0%
8.J; 06,
(4.17)

ox 1 ox
By = Ho(J7) + vy (

2
+u1891+2u{1 891> + -+ eR(01,J7) +

and (4.6), correspondingly, becomes
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OR, 0%

=0 (41
oJr 00, T =0 (18)

LOXY 1, [0X\’ i
u1891+2u11 (891> + -+ eR(J],01) ¢

Let us, now, investigate the algebraic inversion of this equation. This is
done with the help of some classical results of Weierstrass’ implicit functions
theory. However, instead of making an application of the theory itself, we
prefer, here, to adapt it to the present problem.

Equation (4.18) may be written in a more compact form as

F(o,€) = apie + a0 + a0’ + ZZ aijoiaj =0, (4.19)
i g
where a5
= 4.2
o 00, (4.20)

and the a;; have obvious meanings. When the resonance condition
ajp = VT =0

holds, the leading terms in the expansion of F (o, ) are ap1¢ and a200?. There-
fore, the only possibility of having F(o,e) = 0, identically, with ap; # 0 and
ago # 0, is that the solution o(e) has, at the origin, an algebraic critical point
of order 2. Then, we may write

0 =bie+bye +bser/e+---. (4.21)

Since +/¢ has two branches, we have two solutions forming a system of two al-
gebraic functions, each corresponding to one branch of /e. It is worth empha-
sizing that, when the series written in (4.19) is convergent in a neighborhood
of the origin, the fundamental theorem on algebraic functions can be used to
prove the convergence of the solutions given by (4.21).

4.2.1 Garfinkel’s Abnormal Resonance

One hypothesis implicitly considered above and in this whole chapter is v{; #
0. The case v{; = 0 was called, by Garfinkel, abnormal. In such a case, a1g =
azo = 0 and the leading terms of the expansion of F(c,¢) are agie and azgo>.
Therefore, the origin is an algebraic critical point of order 3 and we have to

use the cube root of € instead of the square root in the series expansion of
o(e).
4.3 Delaunay Theory According to Poincaré

Poincaré considered Delaunay theory in the first part of his chapter on Bohlin’s
theory ([80], Chap. XIX). He considered the one-degree-of-freedom problem
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with a disturbing potential formed by the term e R; = € A; cosf; only. In this
section, we present the complete Delaunay theory for the canonical equations
defined by the Hamiltonian

H = HO(J1)+Ze’“H2;€(91,J1). (4.22)
k=1

One may note that the subscripts were modified to indicate the order of the
terms in \/e.

The initial calculations are the same as in the previous section. Since we
know that, in the neighborhood of the resonance, X' may be expanded in a
power series in /e, we consider the canonical transformation

(01,J1) = (o, E)

defined by the Jacobian generating function

S =007+ e"28,(61,E), (4.23)
k=1

where J; is the solution of the equation giving the exact resonance:
dH,
n(Jf) = ( 0) =0. (4.24)
J=J;

Poincaré considered, separately, the case vi = 0 and the general case v # 0
(but close to zero). The consideration of the case vy # 0 is, however, not
necessary and is not done here.

The equations of the canonical transformation are

as as
o = (4.25)

o =

and the transformed Hamiltonian is assumed to have a main part

eE+ H*(E)
independent of a, and a remainder R, divisible by e(**+1/2,
The solution is given by the integral
E = const (4.26)
and the quadrature
o= / ;E(H* +eE)dt. (4.27)

Since the transformation is conservative, we have

H(01,.1) = eE + H*(E) + Rps1(v, E). (4.28)
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Taking into account the canonical transformation generated by S, this equa-
tion becomes

H (01, o ) B4 H*(E)+ Rosr. (4.20)
1

To identify both sides of (4.29) according to the powers of /e, we need
the power-series expansions of Hy and H*. These expansions are identical to
those performed in Poincaré theory (see Sects. 3.2.1 and 3.2.2). We have

Hy = G070 + €G072 + 83/2G073 + -+ En/zGom + - (4.30)
Hy = G+ eY2Gh ki1 + G2+ + 6n/2Gk,n +--- (431
and .
H*(E) =Y _"*Hj(E). (4.32)
k=0

All remaining terms are at least of order e 1/, Since vi = 0, then Go; =

0 and Go = & (see 3.15). The functions Gy ; are defined by (3.22). In
particular, Gy = Hy (61, J7).

The identification in the powers of the small parameter is made simple by
the fact that € is always explicit in the formulas and that all other quantities
are finite. Thus, we have

Ho(J7) = Hy,

0=Hf,
1 981\ ?
5 v (am) + Hy(61,J7) = Hi + E,
. 05,08 .
vl 8911 aef + Gas + & = H, (4.33)
. 05,08 .
11 3911 aaf +Goprr + Gugpr + -+ Gy = Hiyy,
951 88,1 ,
1 n et = H*.
Vll 801 801 + G27 + G4) + + gn n

(The functions &}, are those defined implicitly by (3.20).) All remaining terms
have at least £("*t1)/2 as a factor and are supposed to be grouped with the
remainder R, 4.

As in the theories of the previous chapter, the first equation gives Hj and
says that it is the value of the function Hy at J; = J{. Thus H{§ is, now,
just a number (it does not depend on the new variables «, E). The second
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equation says that Hy = 0. The third equation is the fundamental equation
of Delaunay theory (the Delaunay or Delaunay—Poincaré equation):

1 * 85 ? * *
2”11 (89;) +H2(917J1)_H2 :E (434)

This equation is indeterminate while HJ is not fixed. This indetermination is
overcome by introducing the averaging rule

H; =< Hz(ol, Jf) >, (435)

where < --- > stands for the average over the angle 6. Therefore, we have

1, [(051)°
2 Vll <891) + H2(K) = Ea (436)
where
HQ(K)(Jl*):HQ(el,Jf)— <H2(91,J1*) > . (437)
Taking into account that the functions Gg k11, G4 k41, -+ and 8,'%1 are
completely known when the functions S, S5, -+, Sx_1 are known, the generic

or homological form of (4.33) (for k > 2) is

. 08, 9S;

V11 891 891 + WI:+1(017E) = HI:+1(E)7 (438)

where Wy 1 represents known functions. At variance with the fundamental
Delaunay—Poincaré equation, the homological equation is linear and it is suf-
ficient to obtain particular solutions of it.

4.3.1 First-Approximation Solution

When a complete integral of the fundamental equation is known, the gener-
ating function

Sy =01J7 + Ve S1(01, F)

defines a canonical transformation leading to a transformed Hamiltonian in-
dependent of «, except for terms factored by, at least, 3/2.
From the equations of the canonical transformation we have

1

08 2
Jio= Jf+ /e 801 + O(e)=J7 £ \/yf (E — Hyxy) + O(e), (4.39)
11

051

@ =Veap

L OE) =+ ;}; / \/ fi (E — Hyy) 46 + O(e).  (4.40)

The last equation, combined with (4.27) (which is reduced, at this order,
to a = [edt), gives
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_/ +d6;
\/2EV11(E - H2(K))

showing that the time scale of resonant phenomena is inversely proportional
to 4/, that is, the frequencies associated with the resonance are proportional
to v/e.

Equations (4.39) and (4.41) are the formal solutions of order O(y/g) of
the problem of Delaunay, in the presence of one resonance, in one degree of
freedom.

t—to +O(e) (4.41)

4.4 Garfinkel’s Ideal Resonance Problem

Let us use the Delaunay theory to obtain a complete solution of the Ideal
Resonance Problem. This problem, thoroughly studied by Garfinkel [37], is
defined as the problem of obtaining a formal solution of order £™/2 of the
canonical equations defined by the Hamiltonian

H = H()(Jl) - EA(Jl) COSs 91 (442)

in the neighborhood of the value J; for which vy = dHy/dJy = 0. The dis-
turbing term has not, here, the same form 2 A(.J;)sin?(#;/2) considered in
Garfinkel’s work, but the two forms are equivalent.

This Hamiltonian system has two equilibrium solutions, viz. §; = 0 and
01 = 7 whose stability depends on the sign of A*v}; (A* = A(J7)). Without
loss of generality, we assume that A*vf; > 0 and the stable equilibrium is at
61 = 0; otherwise, it is enough to change 6; into 6] + m so that the system
satisfies this assumption.

The fundamental equation corresponding to the Hamiltonian of (4.42) is

1, (0S1\> .,
o V11 (8911> —A%cosb; =E (4.43)
or
051 2
== E + A* cos 4.44
06, \/Vﬁ( + A* cos bh), (4.44)

where we take into account that Hy =< —A*cosf; >=0.

We may note that this fundamental equation is nothing but the Hamilton—
Jacobi equation of the simple pendulum. However, at variance with the con-
ventional simple pendulum, the “inverse mass” vj; may be either positive or
negative. The solutions of the simple pendulum given in Sect. B.1 apply with-
out modification. We just have to take care of the sign differences between
the cases v{; < 0 and v{; > 0.

The homological equation is (see 4.38)

0Sk 1 (851

1
- H  — —2... 44
891 Vf] 891 ) ( k+1 k-‘rl) (k ) 771), ( 5)
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where W7 | is a polynomial in the derivatives of 51, S, - -+, Sk—1 whose coef-
ficients are constants or derivatives of Hs. For instance
85, |1 851\> OH,
Uy = ¥ 4.46
5= 0, [6 Vi (aal) * o (4.46)
and

gr _ 1. (05 2+1V* 95, 2352+1V* 51\ *
47 9T 9, 2 1\ 90, ) 06, ' 24 A 9oy
OHo 08y L1 9%Hy (051\°
aJr 00, 2 9Jr2 \ 96

From the previous equations, we may write

1 851\”
Hy(61,J;) = —A*costy = E— vt [ 0} (4.47)
2 00,
and
O Hy  dFA* 1 dkar 1 8s1\’
= 0, = - 4.48
oIk T dgpk CTE T Ax qupk g Vi1 (ael> ’ (4.48)
that is, Ho and its derivatives may be written as polynomials in the first
derivative of Sy. Therefore, W5, Uy, --- , ¥ _; may be, successively, written as
polynomials in the first derivative of Sy:
k+1 K
051
Wi = Crw ( ) ) (4.49)
= 00,
where Ck = 0 when k and k' have the same parity; then, (4.45) may be
written as
9S, 1 [0S\ e 951 \"
= H , — Che 1r ) 4.50
06, — vi (391> ket kzzo PR\ 06, (4.50)

To avoid the singularity at the libration boundaries, where 951/96; = 0,
H} ., may be chosen to be such that the coefficient of (051/961)~" in (4.50)
vanishes:

H; = Crpo.

(One may note that H; = 0 for all £ odd because of the parity rule of the
coefficients Cj, -.) The homological equation then becomes

k+1 k-1
DSk 1 (asa)
= — E Ch. 1 . 4.51
891 Vfl =1 kok 891 ( )
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In particular, for £ = 2, we have
08 B dA* (vl 1 dA (0S1)° (452)
90, Awwr dJp \6vr,  24* dJf )\ 96, ) '

Once S is known, we may construct the formal solutions of the Ideal Res-
onance Problem. To order O(¢), they are:

08
Jp = J1+\/5 392
1 (4.53)
elt—tg) = \/ 951 05,
a =¢ 0) = EBE é‘aE.

4.4.1 Garfinkel-Jupp—Williams Integrals

The integration of (4.51), for all k, involves the integrals

881 k 9 i k/2
Ik_/<891> dal_/(l/ikl (E+A C0891)> d91,

which can be calculated by means of recurrence formulas [36]. Differentiating
(4.43) with respect to 61, we obtain

98, 0 (8Sl>__A*

00, 90, \ 96, sin ;. (4.54)

*
V11

Hence,

o (9s1\" 8s1\" 7 A
06, (801> __k<801) Vi sin 61, (4.55)

9 (05\" s\t AN\, 95\ % A
002 (801) _k(k_2)<801> (Vﬁ) sin 91_k<891> " cos b .
The trigonometric functions may be eliminated with the help of (4.43) giving
2 k 2 k k—2
82 051 :_k 051 bRk —1 )E 051
801 801 4 801 1/11 801
A*2 2 351
cr- L (891>

whose integration, with respect to 6, followed by the use of (4.55) and the
definition of Zj, yields

k 9S8 k A* E *2 _ 2
b1 - (aol> L sing (1) D Tok(-2)" LY T (450)
1

V11 V11 Vi1

(The integration constant is chosen to be such that Z, = 0 at #; = 0.) Thus,
all integrals are known when we know a sequence of four of them.
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For even k, the integrals are elementary and are the same no matter
whether the motion is a libration or a circulation:

Io=/d91=01,

2 *
I, = / (gjl) a0, = Py 2‘3 sin ;. (4.57)
1

VT "
For odd k, the integrals are elliptic and we have to consider separately the
cases where Evi; > A*v}; (circulation), | E |<| A* | (libration) and E = A*
(asymptotic motion). This will be done in the forthcoming sections.

4.4.2 Circulation (Evy, > A*vf, > 0)

Let us calculate the solutions of the Ideal Resonance Problem in the case
of circulations. The first step is to calculate the Garfinkel-Jupp—Williams
integrals necessary to generate the solutions at all orders. To complete the set
of four integrals necessary to span the whole set, we need two of them with
odd values of k. They are

2UF 01
T .=+ 11
! \/E+A*f(2”f”>’

8 0,
171 =+ B 4 A*
! \/Vfl( * )8(2’H>7

where F(% , k) and £(% , k) are incomplete elliptic integrals® of the first and
second kind, respectively, of modulus

2A*
H_\/E—FA* (0<k<1).

and

Double signs were used in front of the square roots to stress that these func-
tions have two branches each corresponding to a distinct family of circulations.
The solutions of the equations for Sy (k=1 and k = 2) are

4 [ A*
Sl = Zl = 4+ \/ % £ (91 y KJ) (458)
K\l v 2

E dA* vin 1 daAr
- To— M1,
Arvr, dJ} 617, 24* dJ;

and

82 = 127

! The slight change in the usual notation for the elliptic integrals made here (F
and & instead of F' and E) is necessary to avoid confusion with other functions
in the book. IK and IE are the corresponding complete elliptic integrals.
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or
Sy = _El/zlzl 0, (dA: B A*y§11> SiIl*ol. (459)
v dJ{ 3y 1z
From (4.58) and (4.59) we have, respectively,
851 K (91 > 852 1/{‘1191
=+ F K == .-
OF \/A*I/i‘l 2 OF 3V112
Therefore,
K 91 Vfll
t=ty+ Flooh) = o mbti+0We), 4.60
0 Ay ( 2 “) ;2 1 (Ve) (4.60)

where the upper sign corresponds to prograde circulations and the lower one
to retrograde circulations. 81 = 0 when t = ¢.
The period of the circulations is given, to this order, by

2K 2nvf
_ K(x 111
VeAT L o 3vit

where IK(k) is the complete elliptic integral of the first kind of modulus .

The use of Jacobian functions is necessary to write the complete solution,
as well as, for instance, to give the explicit form of the time law 8 = 6(¢).
Inverting the elliptic integral in (4.60) we obtain

A* * *
01 = £2am (T + VeAT V1112 91) + O(e),

*
K vy

T +0(Ve), (4.61)

where am is the Jacobian amplitude, and

e A*v¥F
_ 11

K

T

(t —to). (4.62)
To the given order of approximation, we may still write

* 4 % *
\/5A Vi1 Vi1

01 ==+2 4
1 am 7 + . 31/;12

am 7 dn 7+ O(e), (4.63)

where dn is the Jacobian delta amplitude elliptic function.
The variation of the action Jp, to the same order of approximation, is

2 A* 0 Ev}
Ji = Ji £ \/E* \/1—/~€QSin2 Lo V*1211
kv 2 vy

dA*  A*vfy; ) cosbq
_ +0 4.64
¢ (de 3vf, v (eVe), ( )
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where the upper sign corresponds to motions above the libration zone (J; >
JT) and the lower sign to motions below the libration zone (J; < Jj). One
should be aware that the relationship between the double signs in (4.63) and
(4.64) is not always the same. When v;; > 0, the upper (resp. lower) sign
in one of them corresponds to the upper (resp. lower) sign in the other (the
circulations above the libration zone are prograde and the circulations be-
low the libration zone are retrograde). When vf; < 0, we have to consider
that the second of them carries the sign of 957/06; (which is proportional
to \/A*/vf;), while the first of them carries the sign of 9S;/0E (which is
proportional to v{;+/A* /vi;; written as \/A*v{;). Then, when vf; < 0, these
two partial derivatives have opposite signs and, to the upper sign in one of
the equations, corresponds the lower sign in the other (the circulations above
the libration zone are retrograde and the circulations below the libration zone
are prograde).

In the inner limit k — 1, we have IK — oo and, thus, 7' — oo. The outer
limit kK — 0 corresponds to E — oo. From (4.56) and (4.57), it is evident
that, for k even, Z; has a leading term in E*/2; thus, for k — 0, the series
giving the function S is divergent, meaning that this theory does not allow us
to study the motion far of the resonance; it is only valid in the region of deep
resonance where k > O(y/¢) and where the general theories of the previous
chapter would fail because of the small divisor v}.

4.4.3 Libration ( |E| < |A*|)

The basic equations for librations and circulations are the same. However,
elliptic integrals must be treated in a different way since, now, x > 1. We
need to use the reciprocal modulus transformation

01

) (4.65)

sin{ = Kk sin

(see Sect. B.1.2) and the solutions describing the librations are obtained from
those describing the circulations by means of the well-known relations

n]—'(ezl,/f) :]-'<C, i) (4.66)
/ié'(%,/f)=H25<C,i>—(ﬁ2—1)f<§,i>. (4.67)
We thus have
_ vy 1
I—l - \/A* f(Ca /i)

a8 [e(e) oo ()
vl K K

and

and
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where
6= ) (4.68)

¢ = arcsin (n sin 921) = arcsin \/A (;:_jf 91). (4.69)

and

The integrals Zy and Z are the same as before.
The solution of the equation for k =1 is again

S1 =14,

(with the new value of 7;); for k = 2, the solution is the same as for circula-

tions. We also have e ) )
1
= F ¢, .
oF \/A* I/i“l (C K )

Substitution of these results into (4.53) gives, now, the time law

1 1 v
t=to+ JeArw; F (g, ﬁ> - 3;}}2 01+ O(Ve), (4.70)
11 11

where we assume 6, = 0 and 6; > 0 (or ¢ =0 and C > 0) at t = to.

The period of the librations is the time for 6; to perform a complete
oscillation between the boundaries of the libration. We may first note that the
term proportional to #; does not contribute to the period since the angle 6, will
be brought back to the initial value without completing one revolution; this
term only says that ; is faster in one direction than in another (if v{;; > 0,
it is faster when 6; grows). We have to consider, then, only the contribution
of the term involving the elliptic integral, whose calculation is the same as for
the simple pendulum:

T %6:*% K (i) +O(Ve), (@.71)

The inversion of the elliptic integral in (4.70) gives, now,

0 *
ksin L =sin¢ = sn { JeA i [(t—to)+ (D11 ) 0y| b+ 0Ge), (4.72)
2 v
where sn is the Jacobian sine amplitude elliptic function with modulus 1/x.
An iteration over 6 is necessary to complete the inversion of (4.70).
The analog of (4.64), in this case, is

2 [eA* eEvi, dA*  A*vi; ) cosb
Ji=J7 £+ - - o .
Ty \/ vi ¢ gz T asr T sy, ) own T OEVE)

(4.73)
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In all equations before the last one, we have not used double signs since the
two branches of the square roots meet at the boundary of the libration and
are parts of the same solution. However, as in the case of circulations, when
v} <0, \/A* v}, and \/A*v{; must be considered with different signs. Hence,
a double sign was included in the last equation, the positive sign holding when
v{; > 0 and the negative one when vy; < 0.

The inner limit x — oo (! — 0) corresponds to E — —A*, that is, to the
stable equilibrium point. The outer limit kK — 1 corresponds to the separatrix
(see below).

4.4.4 Asymptotic Motions (E = A*)

When k =1 (E = A*), (4.44) becomes, simply,

051 2A* 4A* 01
=+ 1 S ==+ ;
o0, \/Vfl (1 + cos6) \/Vikl cos  ;

the corresponding integral is only pseudo-elliptic and gives

S1 ==+ 813 (1 —cost) == 16:4 sin 91.
L6V L6 2

The derivative 957/0F needs some special consideration since, now, E is a
constant. This derivative may be obtained by calculating 92S1/06,0F from
(4.44), then making F = A*, and integrating with respect to 6. Then

1 T 91
:l:/\/4A* d91 \/A*Vﬁ lntan<4+4)

(=7 < 61 < 7). The formal solution of order O(e), for this particular choice
of the integration constant, is

4A*e 01 Ateviy e dA*
_ 1 ;
J=Jf + \/ Ve, cos 312 (14 cosby) + vz, dJs cosy + O(eve),
(4.74)
t=to+ L mtan (T4 01) - Vi 0 + O(Ve) (4.75)
0 eA* v} 47 4) 3 ' '

In these two equations, each choice in the double signs corresponds to one
of the separatrices. They are to be chosen in accordance with the same rules
used for circulations: upper or lower separatrix in the double sign of (4.74)
and prograde or retrograde motion in the double sign of (4.75). The terms
coming from the derivatives of S introduce an asymmetric correction to the
height of the pendulum separatrices and on the asymptotic motions on them.
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=0 L oE

< ++ = --

Fig. 4.1. Solutions of the Ideal Resonance Problem for diverse sign choices. Left:
vi1 > 0. Right: vi; <0

4.5 Angle—Action Variables of the Ideal Resonance
Problem

The angle-action variables of the Ideal Resonance Problem may be easily
calculated using the one-degree-of freedom formulas of Sect. 2.1.1. We just
have to pay attention to the need of some notation changes, since J; was
already used to denote the actions in the undisturbed (¢ = 0) problem. We
will calculate the new angle w; and the new action

A=+ ! 7{(J1 — J7)doy, (4.76)
2m
in the two regimes of periodic motion: circulation and libration. The intro-
duction of J§ in the function under the integral sign has the effect of adding
a constant to the definition given by (2.6); this can always be done, since
actions are defined except for an arbitrary additive constant.

4.5.1 Circulation

From (4.76) and (4.64), we have

4 A* Evyf
A =+ \/8 E(k) F o W 4 0ey/e), (4.77)

* *2
ko \| vy vy

where the sign in front of the integral is to be fixed in accordance with the
rules stated in Sect. 2.1.2. It is positive when 6; > 0 and negative when 6, < 0.
Combining this rule with the double sign of Sy, there are four possible sign
combinations: As a rule of thumb, the first of the double signs is + when
vi; > 0 and — when v{; < 0 and the second one is + for retrograde motions
and — for prograde motions. (See Fig. 4.1.)
The calculation of wy gives
T F(61/2, k) \/EA*VflVqu mF(61/2, k)
o=k " = ey (0 iy ) HOE (419
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or wy = un (t — to), where

. o m\/eAr Ui \/E ARV
= = 1+ 4.7
“e o kIK (k) 3vi2kIK(k) +0(eve), (4.79)

the double signs corresponding to prograde or retrograde circulations as in
(4.60).

4.5.2 Libration

We continue as before, just taking into account that, in the libration regime,
7, is not the same as for a circulation. In this case, the contribution of some
terms of J; — J; vanishes, since 6; oscillates in a bounded interval returning
to the initial value after one libration period, without performing a complete
rotation. The first approximation of the angle—action variables of the libration
is, thus, the same as in the simple pendulum (with just a different constant
factor and a double sign in A;):

b s A () ()] e

2 814* 1 3/2
4 \/ <1+852+ >+O(€ ) (4.80)

K2\ v
and ) J
TF(C w7 mrin/eATg
= — 0 4.81
U KR T ke O (4.81)
or, wy = w1 (t — to), where
o m/JeA* g
b = = . 4.82
W= 2K (k1) + O(ev/e) (4.82)
The inversion of (4.81) gives
2IK 110
sing = (%X w4 yearng, "+ o)) (483)
0 vy
or
, 21K m d 21K v,
sin ¢ :sn< . wl) + 9K duw; sn( - w1> VeA Y 3111/}12 +0O(e). (4.84)

All elliptic functions and integrals have modulus x~'. The elliptic function
may be replaced by its Fourier expansion?

2 See [17], Sect. 908.
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sn (27]f<w1> = 7};’; icsch K; + ;) x(nl)} sin (25 + 1wy ,

7=0
K(V1— k2
where x (k1) T ](I\{/(nll)i ) (see B.31). We also know that

1
01 = 2 arcsin ( sin C)
K

and some iterations are needed to obtain the expansion of 81 at a given order.
Here, it is useful to recall that

esch KJ i ;) X] _ 2(ef><)j+§ {1 _ (e*X)QJHLl}*l

and that lim,—1_q (k1) = oo.
In an analogous way, we may use (4.84) to obtain similar expansions for
cos (:

2IK T d 2IK . Vit
cosC:cn< - w1> +2]K dw, cn( - w1> VeA vl élVliklz +0O(e) (4.85)

and
2IK K — o1 1 .
cn( - w1> = K jz:%sech K] + 2) x(k )] cos (25 + Dwy

where cn is the Jacobian cosine amplitude elliptic function with modulus 1/x.
We also recall that

1 1 . _
sech |:<] + 2) X:| =2 (e*X)jJrz {1 4 (e*X)2j+1} 1 .
This series may be substituted into (4.73) to obtain J;.

4.5.3 Small-Amplitude Librations

When the amplitude of the librations is small, that is, when £=! ~ 0, we
may consider only the leading terms of the Taylor expansions of the elliptic
integrals in powers of x~! and, thus, obtain

2
01 = "~ sinw; + O(k?),
K

2 A*
Jy=Jf £ \/i* coswy + O(Ver ™).
11
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To obtain 61 and J; as functions of the action A;, we need to invert (4.80)
with respect to k™!

L ] (v : |A1| \/Vll o ~1
o \/ 9 <5A* 8A* + O(E™). (4.86)

It is also useful to introduce the libration frequency

. 27 . 1 I S
=5 = Ve vj (1—4H2+'--) =/eA V11_8V11A1+"" (4.87)

An easy calculation allows us to obtain

2%
0, = \/ ulj”“ sinwy + O (k%) ; (4.88)
1
21w
Jy=Jf £ \/ Viwl coswy + O (Ver™). (4.89)
11

These equations give, at the lower order of approximation, 61, J; as func-
tions of the angle-action variables of Garfinkel’s Ideal Resonance Problem.
We recall that A; and v, can be either positive or negative, but their prod-
uct or quotient is always positive. w; is always positive. The sign in front of
the square root of (4.89) is positive or negative according to the sign of vj;.
The calculation of terms of higher orders requires more work, but it does not
present any difficulty. (See Sect. 8.8.1.)

4.6 Morbidelli’s Successive Elimination of Harmonics

The central idea of Delaunay’s lunar theory has been explored by Morbidelli
[76] and used to study the overlap of resonances in the phase space of the
dynamical system defined by the Hamiltonian

H=HyJ)+e¢ Z Ap(J) cos (h|6). (4.90)
heD

Morbidelli’s successive elimination of harmonics starts with the choice of an
argument (hq]6) of H and the consideration of the system defined by the
abridged Hamiltonian

F1 = Ho(J) +€Ap, (J) cos (h1]6), (4.91)

where hy = (hiy, hi(2), -, hiv)) € Z" This system is integrable. However,
at variance with Delaunay theory, the non-resonance condition (hi|v) # 0
is not assumed; on the contrary, the term to start the procedure is selected
from among the most important resonant terms in the domain of the phase
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space under study. It is chosen in the set of resonant terms, by its topological
consequences. For instance, we may define the resonance strength of a term
by its width — defined as the maximum separation between the two branches
of the separatrices. From the equations of Sect. 4.4.4, we have

Adeep = 4 \/

where 7717 is the second derivative of Hy(J) with respect to the action Jj
conjugate to (h1|0). It is easy to see® that 11 ~ O(|h?]). Therefore, the most
important resonances are those with higher A, and lower |hq].

Once the term h; is selected, we change variables through a Lagrangian
extended point transformation where we impose 67 = (h1]6). Let it be, for
example,

EAhl

, 4.92
.~ (4.92)

0" = (h1]0 J = Ji/h
/1 (h16) } 1/h1(n) (4.93)
0, = 0, Jy = Jop = (hiey/h1(1)) 1
(0=2,---,N). Then, F; becomes
Fi= Ho(J(J/)) +€Ah1 (J(JI)) COS@II. (4.94)

This is the Hamiltonian of the Ideal Resonance Problem and we may construct
its angle—action variables w1, A; (see Sect. 4.5). Hence,

9/1 = G’I(wl,/ll; J;) J{ = J{(U}l,/ll; J;) (495)

Since the given system has N degrees of freedom, we have to extend this
transformation of one pair of variables to the whole set, which is done by
imposing Jé = A, and by using one of the algorithms of Sect. 2.4.4:

w, = 0}, + Zy(w1, A), (4.96)
where, for instance,
wr 90y oJ;  0J) 00
=, = — 4.
° /0 <8w1 oA, " ow 04,) 1 (4.97)

(Henrard-Lemaitre transformation).

Once we have completed the transformation, we go back to the given
Hamiltonian H and perform the canonical transformation (¢',.J") = (w, A).
F1 will become a function of A only, and the remaining terms of (4.90), not
included in F7, will be periodic functions of the angles w. They may be ex-
panded in Fourier series so that, instead of H, we have a new Hamiltonian

H* = Hi(A)+¢ Y Aj(A) cos (h|w). (4.98)
heD*

% From (4.93), we obtain i; = Z;V:1 25:1 Virha(yha k)-
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This completes one Delaunay—Morbidelli operation. We may, then, restart the
procedure by choosing a new term in H*:

Fo = H(A) + A, (A) cos (ha|w). (4.99)

We then introduce wj = (h2|w) and new angles w;, and momenta A’ through
a Lagrange point transformation; we construct new angle-action variables
11, K1 and complete the transformation to include the other degrees of free-
dom. We thus get a new H** and continue as before.

We have, purposely, presented the Delaunay—Morbidelli operation with-
out stressing that the angle-action variables are not globally valid and are
not computed in the same way in circulations and librations. In fact, Mor-
bidelli’s successive elimination of harmonics is not meant to construct formal
solutions (the chains of elliptic functions and integrals would make it impos-
sible), but to map the geometry of the resonances in a given domain of the
phase space. One important point is that, in H*, the angles are w. The w,
differ from the given 6, by the quantity =,, which is small: the corresponding
frequencies in Ho(J) and H{(A) are of the same order. wy is the uniform
angle associated with the libration (or circulation), and has the frequency
of this motion. Thus, new resonances may appear in H*, involving w; and
some of the w, not appearing in the given H. The best known examples are
the so-called secondary resonances in the Kirkwood gaps of the asteroid belt
(see [77]). These gaps appear near initial conditions corresponding to aster-
oids with an orbital period commensurable with Jupiter’s period. The motion
of an asteroid inside the gap is a libration about a periodic orbit; the libra-
tion frequency may be approximately known by selecting the main term with
the critical combination of the two longitudes, and using the Ideal Resonance
Problem. The Hamiltonian H* shows new critical terms in which the libration
frequency is a multiple of the frequency of motion of the perihelion (one of
the 0,). The overlap of these secondary resonances may be studied taking, in
turn, each of these terms in H* to compose the abridged Hamiltonian F,.

To circumvent the difficulties due to elliptic functions and integrals, it is
possible to construct numerically all transformations mentioned in this sec-
tion. We may use the direct techniques described in Sect. 2.2 to construct the
angle—action variables. In such case, the result will not be written as formal
functions, but as functions defined by a table or computer code allowing them
to be known.

4.6.1 An Example

Let us consider an application of Morbidelli’s elimination algorithm to the
Hamiltonian function obtained at the end of Sect. 3.8. We discard terms of
the order O(e?) and adopt the notation 6,.J (without stars) for angles and
actions. Also, for practical reasons, we interchange the subscripts 2 and 3
in the variables and adopt the particular value Ay = aJy for the secular
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term of the perturbation. We also assume that «, By, Ly and M; are positive
constants. Hence,
H(0,J) = Ho+cH,

where
1

Hy = —
0 2.J2

+ 1/3(.]3 - 2J1) (4100)
and

Hy = aJy + Lo\/—Jg cos By + By cos by + M \/—Jg cos (61 + 02). (4.101)

The action J3 is a constant (since the angle 03 is absent from the Hamiltonian)
and the exact resonance value of J; is defined by

OH
v =wn(Jy) = 8J10 def (4.102)
Ji=J¢
that is . . o
1 — \3/21/3- .
We also have
Vi = —6u3/2us = —3(2u3)Y/3. (4.104)

We recall that the example of Sect. 3.8 is founded on the asteroidal three-body
problem and B is, there, a quantity of the order of the orbital eccentricity of
the disturbing planet.

In the neighborhood of J; = J;, the Hamiltonian given by (4.101) has two
resonant terms: Bj cosf; and eMyy/—Js cos (01 + 02). Let us consider the
Ideal Resonance Problems (IRPs) which they, separately, define:

Fi(ay= Ho(J)+eBy cos b,

4.105
Fiwy= Ho(J)+eMi+/—Jz cos (61 + 63). ( )

1(a)

1(b)

Fig. 4.2. Separatrices of the two IRPs of (4.105)
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The widths (maximum libration amplitudes) of these resonances are, re-

spectively,
—SBl
e :% viy

—eM
Adyep(n) = 4\/ Y gy,

Y1

Figure 4.2 shows the locus of the separatrices of the two considered IRPs, in
the plane Jp, |Jo|. If | B1| < | M|, the strip corresponding to the resonance of
F1(a) is narrow (as shown in the figure) and the hierarchy of the two considered
harmonics is well established. It is then possible to start the elimination of
harmonics with the largest one, 7).

Following the recipe given above, we perform, initially, the point transfor-
mation

0h=06, Jhy=Jy — Jy — J;
O=60+6:  Ji=Js; (4.106)
JF1 becomes
Fi=Fipy = Ho(J(J')) + eMi\/—J cos 6. (4.107)

Let us consider the small-amplitude librations of this one-degree-of-freedom
system about the libration center Ji* = —.Jj. They are given by (see 4.88 and
4.89):

2A1v7
0 = \/ Y1 Ginwy (4.108)
w1
2411
J = —J — \/ Viwl cos wy, (4.109)
11

where wy, A1 are the angle-action variables of the IRP defined by Fi, vj; is
a known number and

1
Wy = \/—evi, My YTy — Vi (4.110)

In order to have 6] = 0 at the libration center, we assumed M; > 0 (we
recall that v§; < 0 and A; < 0). The next step in Morbidelli’s algorithm
is to complete the canonical transformation (0}, 65, J1, J5) = (w1, wa, A1, A2)
through

9’2: wo — Eg(wl, A17 AQ)

Jh=As,
_ /wl o0y 0J; _ 9 a0y
=27 ), \ w04y Ow04,) "

We note that 67, J; depend on Jj, that is, on As, also through w;. The deriv-
atives are

where
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09, _ \/2/111/;1

O, 0y coswy,
aJ; \/2/1111'}1 .
= sin w1,
8?1)1 I/i‘1
89’1 o I/Tl —26M1A1 sinw
oMy gt \ Wl :
of _ ;1 \/—ZleAl cosw
0/, - 8/13/4 Wy 1-
Hence,
w1 9/ A —8M *
Eo =—/ 00 + | 1|\/3/4 ) du,
o\ 9w 4A5 iy
or A
Sy =0, — 4111
2 1 8/12’ ( )

where, for the sake of simplicity, we kept w; restricted to its first approxima-
tion. The transformation is, now, complete and may be used to transform the
given Hamiltonian.

With the new variables, 1 may depend only on the actions. The substitu-
tion of variables in F; is cumbersome and the cancellation of periodic terms,
in higher orders, is only partially achieved because of the many simplifica-
tions introduced. However, a shortcut exists. We know that, if we denote by
F1(Aq, Ag) the result of the transformation, by definition,

e OF
L7 ooA,
or
Fl = /wl dA,.

The problem with this shortcut is that the integration introduces an arbi-
trary additive function of Ag, for whose derivation, the direct transformation
is necessary. Since this additive function cannot depend on A; and all involvgd
functions are polynomials in v/—Ay, we need just transform the parts of F;
independent of A; to obtain it. Hence

~ 1,

fl(/ll, AQ) = \/—EVflMl %/Ag/h — 16V11A§ + 8]\41\//127 (4112)
where the two first terms resulted from the integration of w; and the last
one from a direct calculation. The constant terms (depending on J3 and J;)
do not need to be taken into account since they do not contribute to the
equations. The terms of H not considered in Fj) need to be written with
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1(b)

*
J3

Fig. 4.3. Secular (v) and secondary (k = 1, 2, 3) resonances

the new variables. The results are Fourier expansions in the angle we + kw;.
The new Hj is R N
H() = fl - 60{/12. (4.113)

To do a new Delaunay—Morbidelli operation, we have to select a new resonant
periodic term to add to Hy. Let us, first, search the resonance locus of the
main terms. To do this, we need the expressions for w; and ws:

. 1,
Wy = \/—evi, My /Ay — gV (4.114)
. 5ﬁf0 Aq 1 eM;
= = — * M — . 4.].].
Wo O, \/ evi; My 4/13/4 + 2 /s [4e! ( 5)

When numerical values are given to ¢, vj;, M; and «, the locus of the
curves wy £ kw; = 0 is easily found. It is convenient to show these curves in the
plane Jp, |J2| instead of the plane Ay, As. The transformation Ay, As = Ji, Ja,
however, depends on w;. It is, then, necessary to fix the value of w;. We
follow the same practice usual in resonant asteroid dynamics, and fix it at the
boundaries of the librations of the action J{ conjugate to the critical angle
0). Thus, we assume |cosw;| = 1. As a consequence, to each point in the
plane (A1, A2) we obtain two points in the plane (J1, J3), one on each side of
the vertical line J; = Jf. Figure 4.3 (left) shows the lines falling inside the
boundary of the libration domain. They are: the secular resonance wy = 0
(indicated by v following astronomers’ classical notation); and the secondary
resonances o + ki = 0 with k > 0 (the lines k = 1,2, 3 are shown)*.

To each of the resonances in Fig. 4.3 (left) there corresponds one libration
zone defined by the separatrices of the Ideal Resonance Problem obtained
when the corresponding perturbative term is selected and added to Hy. Let
us introduce the new set of canonical variables

4 For a Lie series study of secular and secondary resonances, see Sects. 9.4.5 and
9.4.6.
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pr1=wz + kw;y Ki=A,
4.116
o= w1 Ko= /Ay — kA (4.116)
and study the Ideal Resonance Problems
Foky = Ho(K(A)) + Ap(K) cos 1 (k=0,1,2,3), (4.117)

where the coefficients Ay (K) come from the expansion of those terms of
H(6,J) whose coefficients are By and L.

Figure 4.3 (right) shows the separatrices of the IRPs corresponding to k =
0,1, 2. The secular resonance k = 0 (v) and the secondary resonance k = 1 are
isolated in this figure, while the secondary resonances k = 2 and k = 3 (shown
only in Fig. 4.3 left) are very close and overlap each other. (The secondary
resonance k = 3 is inside the resonance zone of the secondary resonance
k = 2.) If Fig. 4.3 (right) were the result of an exact numerical calculation,
Fa) and Fy(py could be considered as good candidates for elimination of
further harmonics. On the contrary, because of the overlap of their libration
domains, the isolated consideration of Fyg) or Fy3) would be unrealistic.
However, Fig. 4.3 (right) is the result of analytical approximations valid only
in a small neighborhood of J; = Jf, and we have to restrict our analysis to
it. The motions in this neighborhood are far from the resonance lines of Fig.
4.3 (left) and we may use the original Delaunay operation of Sect. 4.1 to get
rid of the harmonic remaining in the Hamiltonian. Maybe, in the case of the
harmonic k = 2, given the broadness of its resonant zone, we should consider
the expression of the circulations given by the Ideal Resonance Problem, since
that given by the classical Delaunay operation assumes that the resonance is
very far and do not influence the solution.

One important remark yet to be made concerns the numerical choice of
the coefficients appearing in the Hamiltonian. To obtain Fig. 4.3 (right), we
had to consider Ly <« M; and neglect the term B3 cosf;. Otherwise, the
libration zones of the F5(;) would be so broad that they would overlap over
almost the whole region shown in the figures. In that case, it would no longer
be possible to select one domain in the plane for further studies with the
technique discussed here. These limitations may not, however, be considered
as a weak point. On the contrary, allowing us to map the overlap of resonances,
Morbidelli’s successive elimination of harmonics clearly shows the extreme
limits where approximate regular solutions can exist.

The given example used the heavy analytical machinery of Garfinkel’s
Ideal Resonance Problem with the aim of allowing the reader to have a step-
by-step view of the technique. But one should take advantage of the possibility
of direct numerical construction of the transformations leading to particular
angle—action variables, as discussed in Sect. 2.2, to have exact calculations
and, as a consequence, an exact chart of resonances and libration domains, at
every step.
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Lie Mappings

5.1 Lie Transformations

There is a straightforward way of introducing Lie series mappings into the
study of Hamiltonian systems. Proposition 5.3.1 shows that the mapping de-
fined by the series (5.25)—(5.26) is canonical and may be used in the construc-
tion of canonical perturbation theories. Thus, the reader interested only in
such applications can go straight to those equations and skip the first two
sections whose aim is to introduce Lie derivatives, Lie mappings and the re-
lationship between Lie mappings and Jacobian canonical transformations.

5.1.1 Infinitesimal Canonical Transformations

Let us consider a Jacobian generating function .S, continuous and with con-
tinuous derivatives with respect to a parameter A:

S =5(Q,q;\) A€ (a,b) CR (5.1)

Q= (Q1,Q2,---,Qn), ¢=(q1,q2,---,qn). It spans a one-parameter family
of canonical transformations:

i = 95(Q,q; ) p_ 08(@Q.a;N
' 94 ' 0Q;

fixed by the parameter . The transformation generated by S(Q,¢;A) maps
one point (@, P) of the given phase space into one point (g,p) of the trans-
formed phase space. In the same way, the transformation generated by
S(@Q,¢" ; A*) maps the same point (@, P) into some other point (¢*,p*). Since
S(Q,q;A) is a continuous function of A, to neighboring values of A € (a,b)
there correspond neighboring points in the phase space. Thus, the transfor-
mation determines, in the new phase space, an ordered set I" which is the
locus of the points into which (@, P) is mapped when A varies in (a,b) (Fig.
5.1).

(5.2)
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(Q.,P)

>

(a*,p*)

(9,p)

Fig. 5.1. The transformations generated by S(Q,q;\)

Because of the group property of the canonical transformations, the trans-
formation from (¢*, p*) to (g, p) is itself canonical. When A— A* is an infinitesi-
mal quantity, the transformation (¢*, p*) = (g, p) is a special type of canonical
transformation in which each point of the phase space is transformed into a
neighboring point. These transformations are called infinitesimal canonical
transformations [97].

We use the Jacobian canonical condition of Sect. 1.3 to write

(p8g) —(P|8Q) =35(Q,q;A)
(p* [8¢") — (P |8Q) = 35(Q,q"; 1),

where the variations & refer only to arbitrary changes in the canonical vari-
ables; the parameter is kept fixed during this operation. Forming the difference
of the two equations above, we obtain the relation

(P 18q%) = (p[8g) =8 [S(Q,q"; A7) = S(Q,q;M)] - (5.4)
We may then write the first-order Taylor expansion of S :

3S(Q,q;k)‘q*_q> L 95@ ;A

(5.3)

(A = \).

S(Q,q*;/\*)ZS(Q,q;/\)Jr( 9 o\

Substituting this expansion into (5.4) and taking (5.2) into account, we obtain,
to first order,

P [8¢°) — (0| 8¢) =8(p | ¢* —q) + (\ = \)& [5S(Q,q;)\)] .

(3

A straightforward calculation leads to the remarkable equation

35(@4%)]7

00180~ =" 139 = (1= x5 [ O (5:5)
where, in the first term, we have neglected the higher-order infinitesimal dif-

ference (p — p* | 8¢* — 8¢q). What makes this equation remarkable is that the
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differential form in the left-hand side of (5.5) involves the variations of the
two old variables ¢, p, instead of mixing variations of new and old variables as
with the differential forms of Sect. 1.3. The price to be paid for having this
uniformity is that the transformation (q,p) = (¢*,p*) is only infinitesimally
different from the identity. Thus, it is not so general as the Jacobian canon-
ical transformations. In order to draw further conclusions, we introduce the

function 95(Q.q: \)
SMQ,q: ) = 8’;1’ :

The system (5.2) may be solved with respect to @ giving Q@ = Q(q, p, \). Thus,
we may substitute it for @ in S} and call =W the resulting function:

(5.6)

def

Wi(g,p;\) = —S5(Q(g;p;N),q; M)

With the help of the function W, (5.5) is written in a simpler way,

(q—q"|[8p) = (p—p" [ 8g) = (A= \") W (q,p; N), (5.7)

and comparison of the two sides of this equation yields the transformation
equations

. o OW . o OW

G —qi =A=X) Op:’ pi—pi = —(A=X%) 90 (5.8)

These equations show that infinitesimal canonical transformations can be

represented in explicit form. The relative variables p — p* and ¢ — ¢* are

explicitly expressed in terms of a single function W (g, p; \) characterizing the
transformation.

Dividing both sides of (5.8) by A — A* and letting A — A* tend towards

Zero, gives
dg; OW dp; ow
% _ Pi_ 9 (5.9)
dA opi dA 0¢;
The general solution of these differential equations is a one-parameter
group of canonical transformations. The function W determines this group
uniquely. We shall call W the Lie generating function or Lie generator of the

group.

Definition 5.1.1 (Lie mapping). Lie mappings are all canonical transfor-
mations defined by solutions of the canonical equations (5.9).

It is worthwhile mentioning that the reasoning with first-order infinitesimal
quantities is necessary only to establish the equations. Once the limit oper-
ation is accomplished, the result is an exact equation whose solutions allow
us to extend the domain of these transformations to finite intervals. They
are usually presented in power series, as in Sect. 5.3, but the definition given
above is more general.
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Equation (5.9) serves also to show the duality existing between canonical
equations and canonical transformations. Every property of one of them may
be extended to the other. The exploration of this duality is beyond the scope of
this work. However, the transposition of the results from canonical equations
to canonical transformations and vice versa is easy.

5.2 Lie Derivatives

Definition 5.2.1 (Lie derivative [65]). Let O be an open subset of the phase
space and let F be the ring of all functions f: O — R of class C*°. The Lie
derivative generated by W is the application

f—=Dwf= {fa W}7 (510)

where {f, W} is the Poisson bracket of the functions f and W € F:

N
of oW oW of
W} = — . A1
W ; (3% dpi g 3p¢) (5.11)
The application (5.10) has the following characteristic properties:
Dw(f+g9) =Dw/f+Dwyg
Dw(fg) = fDwg+ gDw f (5.12)

DW{ZZO

for all f € F,g € F and all constants c. These properties allow us to say that
Dy defines a derivation of the ring F.
The well-known Jacobi identity

gk by +{{g,h}, fY+{{h f},g} =0

leads to another important property of the Lie derivatives:

Dw{f,9} = {Dwf, g} +{f, Dwg}. (5.13)

This property of the Lie derivatives allows us to say that they form a Lie
algebra.

The Jacobi identity also implies the existence of a property concerning the
composition of the Lie derivatives generated by two functions W; and Wa:

Dw, .w.} = Dw,Dw, — Dw, Dw,

Repeated application of the operator Dy gives

wf=DwDyf).
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By recurrence over n, the properties given by (5.12) and (5.13) can be
extended to become

w(f+g) = Dy S+ Dipg (5.14)

D (fg) Z( >D"fD (5.15)
k=0

wif.g) = () {Dk, £,Di g}, (5.16)
k=0

Lie derivatives have an important interpretation:

Proposition 5.2.1. The Lie derivative of f generated by W is the derivative,
with respect to A, of the restriction of f to an integral curve of the canonical
equations spanned by W.

Proof. Let f: I' — R be a restriction of the function f defined by

f=ra),p\), (5.17)

where q(A), p(A) is a solution of the differential equations (5.9) for a given set
of initial conditions. We then have

§: 0f da; , of dp;
dg; A\ T dp; dA
or, taking into account (5.9) and the definition of the Lie derivatives,

af B
D= {f,W}=Dwf. (5.18)
O

Exercise 5.2.1 (Homogeneity). Show that the Lie derivative D}, is ho-
mogeneous of degree n in W, that is, if £ € R is a constant,

twf = KDy f. (5.19)

5.3 Lie Series

We have defined the Lie mapping as a solution of the canonical system of
differential equations (5.9). It follows, therefore, that the construction of a Lie
mapping is the construction of solutions of (5.9). The usual integration by
series involves the Cauchy existence theorem:
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Theorem 5.3.1 (Cauchy' ). Given a system of ordinary differential equa-
tions in Weierstrass normal form:

dy

de = Y (y,x), (5.20)

where Y : R — R is analytical in some domain D C R""L, this system
has a solution y(x) analytical in a non-infinitesimal domain Dy C D that
contains the given initial conditions xg,yo.

Cauchy’s existence theorem means that the solutions of (5.20) may be
written as a convergent Taylor series:

Y=yo+ Z kl, (dxk>z (x — x0)", (5.21)

where the values of the derivatives d*y/dz* can be formally deduced from the
given equations by repeated differentiation of (5.20). Hence,

> k=1 x),T
Yy =10+ Y (Yo, z0)(z — z0) + » ;, (d L(,f/fl)’ )> (z —z0)". (5.22)
k=2 =m0

Now, let O be an open subset of the phase space and let the right-hand
sides of (5.9) be analytic for (¢,p) € O and A in a neighborhood V(0) of the
origin. The series

a1 oW

qZ+Z [dAk L s )} (5.23)
=N L e Lo o) 1 4

Pi = D; —; X {d/\’fl(aqi )] . (5.24)

converge in some O; C O and V1(0) C V(0) and represent the solution of
(5.9) that assumes the values ¢*,p* when \ = 0.
The derivatives dd)\ are just the Lie derivatives generated by the function

W (see 5.18) and the above equations may be written as

4 = Z k [DléVQi]A:O (5.25)
k=0

pi=>_ " D, (5.26)
k=0 "

These relations define the Lie series.

! For a proof of Cauchy’s theorem, see [91].
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Definition 5.3.1 (Lie series). For each function f € F, each point (q,p) €
O and a given Lie generator W of class C* in O, the application

e k
foBwf =Y Dl f (5.27)
k=0

is the Lie series of the function f, generated by W.
The following properties are immediate consequences of (5.14), (5.15) and
(5.16):

Ew(f+g)=Ewf+ Ewg
Ew(fg) = Ewf.Ewg (5.28)
FEwe=c.

In addition, we have

Proposition 5.3.1 (Canonical condition).

Proof.
© Ak . o0 /\k’ o O A\kt +k' "
k=0 k'=0 k=0 k/=
or, changing to n = k + k&’ in the summations:
n=0 k=0
= A" S n k n—Fk
= Z n! Z k {DWfaDW g}
n=0 " k=0

Hence, because of (5.16),

o0 n

(Buf Bwa =Y ) Divlf.0} = B /.9,

n=0
O

Proposition 5.3.1 states that Poisson brackets of two canonical variables
are invariant to the transformation (¢,p) = (Ewgq, Ewp) and therefore, this
transformation is canonical Thus, the canonical nature of Lie mappings is a
consequence of (5.29). When a direct introduction of Lie series is desirable,
we may start the subject at this very point, just defining the Lie series and
stating Proposition 5.3.1.

We may extend to the Lie series, the interpretation given to the Lie deriv-
atives:
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Proposition 5.3.2. The Lie series of f, generated by W(q,p), is the Taylor
series expansion, around X\ = 0, of the restriction of f to an integral curve of
the canonical equations spanned by W .

Proof. Let us consider, again, the restriction f : I' — R of the function f (see
(5.17)). Then, (5.27) may be written

ANk (dRf
Bwf=) k! <dAk>
k=0 A=0
O

The series representation of the Lie mapping generated by the function
W(q,p), given by (5.25)—(5.26), may be written in a very compact form as

z = Ew-z", (5.30)

where z = (¢,p), 2* = (¢*,p*) and W* = W(z*). Equation (5.30) gives the
Taylor series expansion around A = 0 of the restriction of the variables z to
an integral curve of the canonical equations spanned by W. Proposition 5.3.2
shows that this result is not restricted to the variables and the transformation
defined here is such that for any f € F we have?

f(z) = Ew-f(z"). (5.31)

Canonical transformations given by Lie series have the practical advantage
of avoiding cumbersome operations such as inversions and substitutions, which
are always necessary when Jacobian transformations are used (as discussed in
Sect. 3.12).

However, one must keep in mind that Lie series mappings are not universal
in the sense that not every canonical mapping can be represented as a Lie series
mapping. This representation is restricted to mappings in the neighborhood
of the identity. This makes them very useful in perturbation theories. We
recall that the classical theories discussed in Chap. 3 are always such that
the canonical transformation is reduced to the identical transformation, when
¢ = 0 (the generating function is reduced to (q | p*)).

5.4 Inversion of a Lie Mapping

Proposition 5.4.1. Ew E_w is the identity operator.

2 This result is known as the commutation theorem [43]. Indeed, from (5.30) and
(5.31), it follows that f(Ew=z*) = Ew=f(z%).
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Proof. Using the definition of Lie series, we obtain

k/
EwE_w f(z Z Zl,,k, WD f(2)

=0 k=0

or, changing to £ = k + &/,
o© /£ )\g /
BwEwf(2) =303 4 (-0 () D)

‘
The proof follows from the fact that Z(—l)k (ﬁ) = 0 for all £ # 0, and
k=0

then Ew E_w f(2) = f(2). O

Proposition 5.3.2 and Fig. 5.1 allow us to get a trivial insight into the above
proposition. f(z) = Ew~f(z*) (where W* = W (z*)) is the Taylor series of
the restriction of f to the integral curve I' about A = 0 (that is, about
z* = (¢*,p*)) and gives the value of f at a generic A (that is, at a generic
z = (¢,p)). To get the inversion of the Lie series, we have just to invert the role
played by z and z* and the direction of motion along I" (that is, the sign of the
generating function). Then f(z*) = E_w f(z) (where W = W(z)). It is worth
recalling that, by construction, W(z) = W(z*) (W is the “Hamiltonian” of
the equations (5.9) defining the Lie mapping.

5.5 Lie Series Expansions

In the applications to canonical perturbation theory, some authors (e.g. Deprit
[23]) used, instead of the external parameter A, the same parameter & used
to characterize the strength of the perturbation. This choice is not possible
here because the Lie derivative may operate on functions depending on € and
several of the previous results, e.g. (5.18), no longer holds if f depends on
the parameter. If it is desired to write Lie series expansions as power series in
€, it is enough to replace the Lie generator by eWW and use the homogeneity
property D7y, = "D}, to obtain such a series (but keeping A as the formal
parameter of the transformation). Besides, since W is always introduced in
perturbation theory as an arbitrary function to be determined so as to satisfy
some given property, we may arbitrarily take whichever Lie generator suits us
best. For instance, as Mersman [69], we adopt

A=1. (5.32)

It is worth noting that the canonical condition given by (5.29) holds for all A. Tt
is not necessary to assume that A is small. The decrease of the terms necessary
to guarantee the convergence of the series may be obtained otherwise, for
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instance by choosing ||W|| small. (Remember again that the operator Dy, is
homogeneous of degree n with respect to W.)
Let us, now, assume that f and W are the series

F=Y f and W=> W (5.33)
k=0 k=1

We write these series in a more general form than just power series in some
small parameter. The subscript k£ in f; and Wy indicates that these terms are
homogeneous functions of degree k in a given set of parameters, or, for short,
of k' order. In the case where this set of parameters has just one element,
say €, we have the usual power series. But this is not the only possible case in
Lie series perturbation theories and less restrictive possibilities will be widely
explored in forthcoming chapters.

In what follows, the only restrictive assumption made is that the order of
the terms (in the chosen set of parameters) is not affected by differentiation
with respect to the variables. We also assume Wy = 0 (or any constant); this
is equivalent to saying that the Lie mapping reduces itself to the identity at
order 0.

5.5.1 Lie Series Expansion of f

With the above assumptions, the Lie series expansion of f is
Ewf= Jfo
+ f1+Dw, fo
+ f2 +Dw, f1 + Dws fo + 5 Dw, Dw, fo
+ f3+ Dw, f2 + Dws f1 + Dw, fo + 5 Dw,Dw, f1
+ 5 Dw,Dw, fo + 5 DuwoDw, fo + ¢ Dw,Dw, Dw, fo
_|_ BRI

(5.34)

where the terms were grouped in accordance with their orders (which increase
by one unit from one row to the next).
When Poisson brackets are used instead of the Dy notation, we have

Ewf= Jo
+ f1 + {fo, W1}
+ fo + {f1. Wi} + {fo, Wa} + 5 {{fo, W1}, W1}
+ f3 + {fos Wi} + { f1, Wa} + {fo, W3}
+ 5 (LA W Wit + 5 {{fo, Wat, Wit + 5 {{fo, Wi}, Wa}
+ o {{{fo, W1}, Wi}, W1}
_|_...
(5.35)

In the Lie series perturbation theories of the forthcoming chapters, this
expansion with explicit Poisson brackets will be preferred.
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5.5.2 Deprit’s Recursion Formula

The calculation of high-order Lie derivatives is a painstaking task. An im-
portant result, allowing extended calculations to be kept under control, is
Deprit’s recursion formula [23]. In order to derive it, we first consider the Lie
derivative of f generated by W (as given by 5.33):

DWCf E: E::DW@fM
k=1k'=

or, changing to £ = k + k'

co £
Dy f=> > Dw,fos

(=1 k=1

Let us, now, introduce the functions:

[
= ZDkag,k (£>1). (5.36)
k=1
Hence,
Dwf=)Y &.
(=1

We proceed similarly to obtain the second Lie derivative:
o0 o0 o0
DY f=Dw > @ =Y > Dw, o,
k=1 k=1k'=1

or, changing again to £ = k + k':

oo £—1

E: Dw%éb%'

=2 k=1
We then introduce the functions:

=> Dw, b}, (¢ >2) (5.37)
and obtain -
DYy f =) &
=2

Continuing with the iterations, we obtain Deprit’s recursion formula:
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where

P

and

Wi=> o} (n>1), (5.38)
l=n
L—n+1
7= Y D&} 7} (t=n)
k=1
) = fo (£=0).

From the above equations, we obtain:

@} = Dw, fo

@y = Dw, f1 + Dw, fo

@2 = Dy, f2 + Dw, f1 + Dws, fo

@} = Dw, f3 4+ Dw, f2 + Dw, f1 + Dw, fo
P3 = Dy, Py

@3 = Dy, &5 + Dy, &1

45?1 = led% + DWZQ% + DW3QY>%

& = Dy, 83
452 = DW1€Z5§ + DWZQ%
&% = Dy, 8}

and the Lie series expansion of f becomes

Ewf=

fo
+ f1+ &}
+f2+¢§+%@%
+f3+ D5+ 5 P3+ | DY
F o+ Pi+ PR+ Di+ o, B

(5.39)
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Lie Series Perturbation Theory

6.1 Introduction

In 1966, the Poincaré and von Zeipel-Brouwer theories were rejuvenated by
Hori [53] through the introduction of canonical transformations expressed by
Lie series mappings instead of the classical Jacobian transformations. The use
of mathematical operations in perturbation theories with the same properties
as Lie derivatives and Lie series was already current among physicists [13]
and, around 1960, in at least one instance (Sérsic [85]), it was suggested that
Lie series could be used to represent the canonical transformations of Celestial
Mechanics.

Hori theory takes full advantage of the invariance of Lie derivatives (i.e.
Poisson brackets) to canonical changes of variables. The invariance of Lie
derivatives allowed him to use unspecified canonical variables instead of angle—
action variables and, as a consequence, to formulate a general perturbation
theory. His theory is free of particularities associated with specific sets of
canonical variables. Hori’s general theory disclosed, in a natural way, the ex-
istence of a privileged dynamical system — the auziliary system — hereafter
called the Hori kernel. This system, defined from the homological partial dif-
ferential equation, exists in every perturbation theory. Its topology, in some
sense, freezes the phase space and constrains the solutions of the transformed
system. It is the key to understanding the dynamics behind perturbation the-
ories, and a necessary tool to solve more complex perturbation problems such
as Bohlin’s problem (see Chaps. 8 and 9).

In practical applications, we prefer to use, where possible, angle—action
variables, in which case the theory follows closely what was done in the theories
using Jacobian canonical transformations. The task of solving the homological
partial differential equation becomes trivial and the development of the theory
is much simpler (but hides the existence of a privileged dynamical system
behind the perturbation equations). It is presented below and, then, compared
to Poincaré theory by means of some examples.
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6.2 Lie Series Theory with Angle—Action Variables

Let us start with the canonical system of equations:

d¢; OH dJ; 0H
= e .1
dt  9J; dt 20;’ (6.1)
where H = Hy(J) +eR(0,J) is a smooth time-independent Hamiltonian and
0= (01,02, ---,0n), J = (J1,Jo,- -, Jn) are angle-action variables. Let us,
then, consider the transformation (6,J) = (6*,J*) defined by the generic
equation

¢(0,J) = Bw-p(07,J%) =Y ;'D’“ LO(0%, ), (6.2)
k=0

where W* = W (6*, J*)!. For the reasons explained in Sect. 5.5, the parameter
of the Lie mappings is fixed at A = 1. Some authors prefer to adopt, here,
the same parameter ¢ used to characterize the strength of the perturbation,
and let it be free. However, such a choice leads to unnecessary discussions
about transformations that depend explicitly on the parameter. These com-
plications are avoided when we fix A = 1 and no generality is lost because of
the homogeneity properties of Lie derivatives.

The assumption that the Hamiltonian is time-independent is also made
without loss of generality. We recall that, in the case of a time-dependent
Hamiltonian, it is enough to extend the phase space and to introduce a new
degree of freedom. The Hamiltonian of the resulting parametric equations
does not depend on the new independent variable (see Sect. 1.6).

We follow, now, the same steps as in Chap. 3, but considering the canonical
transformation defined by (6.2). The given Hamiltonian is transformed in the
same way:

=1
H(0,]) = Ew-H(0",J*) =) le’“ CH(0*,T), (6.3)
k=0

which will be written hereafter with the explicit Poisson brackets, instead of
the Dy notation (see 5.35).

The conservation of the Hamiltonian in time-independent canonical trans-
formations allows us to write

H*(0%,J%) = H(6,J), (6.4)

where H* is the Hamiltonian of the transformed system. The combination of
(6.4) and (6.3) gives

! We have written (6,J) = (6*,J*) to retain the classical way of presenting the
transformation, but, in fact, (6.2) gives the transformation (6*,J*) = (0,J),
which is the transformation that indeed matters in actual theories (see [73]).
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H*(0*,J*) = Ew~H(0",J"). (6.5)

Hori’s perturbation equations are obtained by substituting into (6.5) the
expansions
H = Ho+cecHi+ e?Hot+ -+ e"Hp+ -+
H* = H} +eHi+ e?Hj+ -+ e"H}+ - -- (6.6)
W = W+ Wi+ - +e" Wit - -
The simplicity of these expansions is remarkable Now, there are no expansions
due to the internal substitution of variables by the series defining the trans-
formation as in classical theories and we just need the power series expansions
of H and H* in €, in their explicit form.
We may compare the Lie series expansion of H (6, J) with the expansion of

H*(6*,J*), according to (6.6) and (5.35), and identify the terms in the same
powers of €. We obtain the perturbation equations

H; = Hy
Hf = Hy + {Ho, Wy}
H3 = Hy + {H\, Wi} + J{{Ho, Wi}, Wi} + {Ho, W5}
Hj = Hs + {Hy, Wi} + {Hy, W5} + J{{H, W}, Wy}
+ o {{Ho, Wi}, W5} + J{{Ho, W5}, Wi}
+ g {{{Ho, Wi}, Wi}, Wi} + {Ho, W3}

(6.7)

Hyy = Hy + {Hno1, Wi+ o {{Hn—2, Wi}, Wi} + -+ {Ho, Wi}

In these equations, the functions Hj, are to be read as Hy(6*, J*), that is,
functions depending on (6*, J*) in the same way as Hy (6, J) depend on (6, J).
We note that, in the k' equation, W only appears through the additive term
{Ho, W;'} and H}; only appears in the left-hand side; all other W} and H, in
that equation, have subscripts smaller than k. The generic equation for k > 1
is the homological equation:

Hy =¥ + {Ho, Wy}, (6.8)

where ¥ (0*,J*) is a known function when the previous k equations have
already been solved?.

2 Some simplified expressions with fewer brackets to calculate are

U, = Hy + é{Hf‘FHl,Wl*}a
Vs Hs + ;{H; + Ho, W'} + ;{Hf + Hi, W3} — 112{{Hf — Hqi, Wi}, Wi},
Wy = Hi+ y{Hi+ Hs, Wi} + ;{H3 + H2, W5} + j{H{ + Hi, W5}

— o UH{H: — Ho, Wiy, Wi} — L {{HT — Hi, W5}, Wi}

— L U{HY = Hi, Wi}, W3}
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Equation (6.8) is a partial differential equation in the unknown function
Wi

OHo OW; oWy 8H0> 69)

N
Hjp = Wy, + {Ho, Wi} =W + > (am dJ*  90r 9JF
i=1 i ¢ ¢ !

We have not yet made a definite assumption about the given Hamiltonian.
If, as in von Zeipel-Brouwer theory, we assume that Hy = Ho(J,) (@ =

1,--+, M < N), the homological equation becomes
M
p=1 w
where OH
0
r = . 6.11
= o (6.11)

6.2.1 Averaging

Equation (6.8) is the same homological equation of von Zeipel-Brouwer theory
(see Sect. 3.4) and its solution may be obtained in exactly the same way. To
solve the indetermination of (6.10), we adopt the averaging rule

1 M 27 27
Hi= <W,> = ( > / / 0, d6; - 4%, (6.12)
2 0 0

The averaging involves only those angle variables whose associated frequency
v, is different from zero.

The multiperiodic functions Wy are split into secular, long-period and
short-period parts. These parts are indicated by the subscripts S, LP and
SP, respectively, and are defined as in Sect. 3.4. Using this separation, (6.12)
and (6.10) may be written

H} = W5y + Yp)

and
M

oWy
* =V ) 6.13
;Vz 9 k(SP) ( )
The solution of (6.13) introduces the divisors nyzl h,v;,. When one of them
becomes close to zero, the theory fails. We assume, then, that a relation

224:1 hyv;, = 0 does not hold for any of the h values present in the ¥y (sp) 3.

3 The terms with h1 = --- = hays = 0 were excluded from Y, (spy and included in
Wk(S) and Wk(LP),
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The new Hamiltonian H* does not depend on the short-period angles
0),(u=1,---,M). The system is thus reduced to N — M degrees of freedom
and the transformed Hamiltonian may be written

H* = Hg(J*)+ Y Hj(J*,6%) (6.14)
E>1

with 8* € TN-M j* ¢ RN,

The results thus obtained are formally identical to those obtained with
von Zeipel-Brouwer theory (Sect. 3.4). The only important difference is that
Lie series theories are algebraically more straightforward than classical von
Zeipel-Brouwer theory. Much of this simplification comes from the fact that
Lie mappings are resolved with respect to the new (or the old) variables while
Jacobian mappings have a mixed structure, with half of the equations resolved
with respect to the new variables and half of them with respect to the old
ones. The structure of Lie series theories is particularly suited to the use of
algebraic manipulators, allowing programmable iteration schemes to be set.

6.2.2 High-Order Theories

In the case of high-order calculations, it is convenient to use Deprit’s recursion
formula and to substitute, in the comparison of both sides of (6.5), the Lie
series expansion of H given by (5.39), instead of the one with explicit Poisson
brackets. Hence, the perturbation equations become

H§ = Hy
Hy = Hy + &}

Hjy = Hy + &5 + 54’%

Hj = Hs + ®% + )3 + | &3 (6.15)

and the functions ¥, in the homological equation H; = ¥y, + {Ho, W}'}, are

¥, =H;

Wy = Hy+ 735 + 303

W3=H3+T31+%€Z5§+é@§

Wy = Hy+ 0] + ;0% + (95 + 5, D4 (6.16)

n 1
— 1 k
W =Hy + 11+ 1 P
k=2

where we have introduced
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k—1
1 _ 5l
Y} = Dw; Hy_ = &} — Dy Ho. (6.17)
=1
The calculations up to an order n may be easily organized into cycles. Each
cycle starts with the value of a generic W' and ends when W}, | is obtained
and may be schematized as follows:

W* _ Tkl-i,-l _ w}e{»l N H* W*
k 1 @2 3 k1 Wea
¢k7¢k+lv¢k+27 T
Each calculation only depends on functions already calculated in previous
cycles or in previous steps of the same cycle. This scheme is easily program-
mable and may be used up to very high orders of approximation.

Exercise 6.2.1. Use the above routines to calculate H}; and W} (up to k = 4)
in the case of the one-degree-of-freedom Hamiltonian

1
H=J — 2J12+5\/2J100591.

(For the results up to k = 3 see Sect. 6.6.1.)

6.3 Comparison to Poincaré Theory. Example I

The equivalence of Hori’s Lie series perturbation theory to Poincaré and von
Zeipel-Brouwer theories is a direct consequence of the fact that Lie mappings
and Jacobian canonical transformations in the neighborhood of the identity
(that is, infinitesimal) are equivalent, as shown in Sect. 5.1.1 (cf. [59], Chap. 7).
As a consequence, the series solutions obtained in angle—action variables with
theories using either one or another transformation are the same [54], [90].
However the paths to the solution are different in both cases and, depending
on the problem being considered, may represent very different amounts of
work.

Let us consider an example and solve it using both Hori’s Lie series theory
in angle—action variables and the Poincaré theory. Let us consider the system
given by the Hamiltonian

H=Hy+eR(6,J) = + Ja+e(J1J2 + J1 cos 201 + J1J2 cos 203) (6.18)

- 2J2

This is a non-degenerate (in Schwarzchild’s sense) system with frequencies
(for e = 0)

V_@Ho_l u—aHO—l'
YToon gy T ok
and, also,
0%H, 3
v = = Voo = v1g = 0.

aJ: L
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The homological equations are

LIE SERIES THEORY POINCARE THEORY
oWy oSy
Svr et = W07, J7) — Hf Sy ot = Hi —w(6,.07),

where vi = vy (J*) = J773% We recall that W; = Wy (0*,J*) and Sy =
Sk(0, J*). The functions ¥, are

W, = H, = R(6%, ) 0y = = R(O,.J")
Wy = Hy + 3 {{Ho, W;}, Wy} Wy =Hz+ 53, 2,V %! 96,
+{H1’ Wl*} + Zz glfi %gl’

= Hy + y{H1 + H{, Wy},

where R(6,J) = Ji1Ja + J1cos20; + J1Jacos20s. Then, in both cases, we
obtain the same Hy:
Hi =<¥>=J7J;

and the integration of the homological equation for k =1 gives
Wi = 1Ji*sin 207 + JJ;J3sin203; Sy = — 3 Ji4sin 20, — L J7 J5 sin 26,.

The following derivatives are necessary in the next step (an open box
means that the corresponding derivative is not used and, then, not calculated):

as 4. .
86%/3 = Ji* cos 203 59, = —J1"cos26;
oW 881 _ _ 7k 7x
393 = J}J3 cos 203 09, = —J1J3 cos 26

%V;fl = 2J73sin 205 + 1 J3 sin 2603

oWy
L= ) J; sin 263

8J;
6<H5;H1> = —2J} sin 267
B(Héng 1) = 27 J5 sin 263

O(HL+HY) _ 2J5 + cos20F + J; cos 203 ‘3’}’5 = J5 + cos 201 + J} cos 20y

aJf
O(H1+HT OH; __
( 5; D = 2Jf + Ji cos 263; oM = Ji + Jf cos 205,

In the next set of calculations, we just show the left-hand sides of the
equations. The non-written right-hand sides result from products of the above
given trigonometric polynomials. We do not show them, but we indicate all
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of them; they are the lengthier parts in the calculations and determine the
amount of work involved in the application of each of the theories.

O(H\+HY) OW

o0r  agr — °°°
A(H,+H}) oWy

so;  ag; — °°°
8(H1+H ) BW* OH, 0S1 __

— o000 by — o000

aJ; 807 aJy 96,
8(H1+H1) 6W1 OH, 0S4 —

aJy  aey — °°° 8J; 90, — °°°

2
1, 08
2 V11 (3011) =o0coo.
Once these products are calculated, we may add them together to obtain ¥,.
We obtain, in both cases, the same Hj:

5 1
Hy = <@ >=— Ji' = JJ;

and the integration of the homological equation for k = 2 yields

Wy = —%J{”J; sin 20% Sy = LJF7J5 sin 20,

— 17325 sin 203 +§5J{‘2J§‘ sin 26,

+ 3 J;7 sin 467 16 J;7 sin 46,

+ + J{‘QJQ sin 46,
*7

+ Lty le*s sin(207 + 263) +; fiJ{g sin(20; + 26,)
*T7

— It fﬂig sin(2607 — 263); — fl J{?g sin(26;, — 26,).

We have, thus, completed the transformation of the given Hamiltonian
system up to O(g?). The amount of calculation is slightly larger with Hori’s Lie
series theory than with Poincaré theory. We may compute, now, the explicit
values of the variables. We present here the calculation of J;. The equations
necessary to get Ji up to the second-order are:

S = Bw-Ji Ju=J; +egp +e2 50
= Ji +e{Ji, Wit +2{Jr, Wi}
2
+5 {47 Wik Wil
=t —i—saj}ql —1—6225{%;

or

oW 2 OW T 20Ty
Jl:Jl_E(’)e*l —€ 80*2 Ji = J1+569* +e 007

1
Wy oWy 2 9Ty AT
2 Z] 207007 9J ) 207007 9.7

a2w oW
+5 Z] 00 a}* ae*l (6.19)
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where (in 6.19)
7, s (00,0%).

The more visible practical advantage of Lie’s over Jacobian mappings lies
on the fact that Lie mappings do not mix old and new variables as Jacobian
mappings do. Thus, the iteration leading to (6.19), which becomes extremely
cumbersome in high-order theories, is not necessary to obtain the solutions in
a Lie series theory. However, this advantage is reduced by the fact that the
explicit calculation of the Lie series giving 61, .J; involves the calculation of
many brackets.

The not yet calculated derivatives necessary to obtain Jy (6%, J*) are

2w . 92T .
1
32W* oT, _ %3 : 1 % %
oprare = 4J7P cos 207 ost = —2J7sin 207 — , J3 sin 205
1
oW = > _ 540
067 = ocoo 20

(some null derivatives and the terms multiplying them are not written). The
non-zero contributions come from the terms:

owy oTy _

007 =000 BOI—OOO
W oWy 9%T, oTy
— = . =000
002 oy — °°° 862 8J}
_o*wy owy oo
ao;ag&**ao; o
2 —
80;:0007 80r_ooo7

where, as before, the right-hand sides were omitted.
In both cases, the result is

3
Jio= Jp 4282 TT — eJit cos 205 + 2T 7Ty cos 205 — 452J{‘7 cos 407

1 J*4J* . .
_ 252 ) _1’_ J§3 cos(207 + 203) +

1, JitJ;

91 I3 cos(207 — 2603). (6.20)

In these equations, J7 are constants and ¢ are linear functions of ¢ with time
derivatives equal to 0H*/0J}.

This example shows that the proper variable J; is not the average of J;.
This noteworthy point will be discussed in Sect. 6.8.

6.4 Comparison to Poincaré Theory. Example II

Let us consider a second example, suggested to us by J. Henrard, and let
us solve it using both theories. It is the case of the one-degree-of-freedom
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Hamiltonian
H = Hy+¢eR(01,.J1) = J1 + £1/2J; cos b, (6.21)

with the constant undisturbed frequency v; =1, and v1; = 0.
The homological equations are

LIE SERIES THEORY POINCARE THEORY
oW Sk _
vl oot = W05, J7) = Hi(J7) Y ey = Hi (1) = (0, 7).

We recall that W) = Wy (6*, J*) and Sy, = Sk(6, J*). The functions ¥; are

Uy = Hy (07, J7) = \/2J5 cos 0 Uy = Hy(0y,J7) = /2JF cos by
gy . .
WB_ Q{Hl +H17W2} W3: g{]{f ‘3312 +§%Jlg2l(ggi)2,

+5{H3, Wy}
_112{{]{;< - Hla Wl*}a Wl*}
where we have already take into account that Hy = Hz = 0 and v{; = 0. In

both cases we obtain
Hi=<¥>=0

and the integration of the homological equation for k =1 gives
Wi = \/2Jf sin6;; S = —/2J; sinb;.
The derivatives necessary in the next step are

owy * * 051 _ _ *

067 = \/2J; cos b5 90, \/2J5 cos by

oWy 1 .
1= sin 6

aJy V205 1

OHi _ * i O
201 = —\/2J; sin 6}

OH, __ 1 * OH, __ 1
L= cos L= cos
oIy T\ J2a; 1 oI T\ J2a; !

and their products are

AH, OW{ . 2

d0r 0g; = — S 0]

9H, OW; 2 % OHy 051 _ _ 2
aJ; a0y — CO8 H 8JF 961 cos™ 0.
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Hence

WQZ—% WQZ_%_%COS291

and we obtain, in both cases, the same H3:
, 1
Hy =<¥y>=—
2
The integration of the homological equation, for k = 2, yields
W3 =0 So = }lsin201.

Let us continue and similarly calculate the next order terms. Now, the
calculations in the two theories are very different and the parallel presentation
of them no longer makes sense. Taking into account that Hy =0, Hy = 0 and
W35 = 0, the expression of ¥3 in Lie series theory becomes

1 * * 1 * *
Vs = 2{H27W1}+ 6{{H1,W1},W1 }-

The first bracket is equal to zero because H3 is a constant; the second term
is also equal to zero because the bracket {Hy, W;} is also a constant. Then,
W3 = 0. Similarly, we have ¥, = 0 and H} = 0 for all k¥ > 3, and the
transformed Hamiltonian obtained by means of Lie series theory is exact.

In the application of the Poincaré theory, we obtain

OH, 9S; 19%H, (asa)z
Wy =

C0Jr 00, 20J32 \ 06,

or )
Uy = — cos #y — cos 30
3 3 \/2 i ( 1 1)
and, as in the Lie series theory, we obtain H; = < ¥3 > = 0. The integration
of the homological equation gives

1 ) 1.
S3 = 8\/2Jf (811191 ~ 3 sm301> .
The transformation is completed at the given order of approximation, and we
do not have any hint of the next approximations. The only way to obtain S
and Hj for higher values of k is through the actual calculations.

Let us compute, now, with both theories, the explicit value of J;. The
equations to third order are:
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LIiE SERIES THEORY POINCARE THEORY
. " _o7x 85, 2088, 3083
J1 = Ew-Jj J = Ji +€801 +e 90, +e 90,
= Ji +e{J5 Wit + 2 {7, W5}
2 * 051 2 0S5 30853
+5 (U, Wik wit 07 = O tegp +eym +evyrt

+2 {7, W5}

+5 ({77 W33, w7y

+5 {1 Wi W5

+5 L W Wi ) Wy}

Once more, in this example, the calculations in the two theories are very
different and a parallel presentation makes no sense. In the Lie series theory,
since W;' = 0 for all £ > 2, the Lie series reduces to

* * * 62 * * * 63 * * * *
Ji=J0 +e{JT, Wit + 2{{J1,W1},W1}+ 6 (I, Wb Wit Wi+

the first Lie derivative in this series is

oWy
L= —\/2Jf cosb;

{J17W1}:_ 891

and the second one is

{{Jl*v Wl*}vwl*} =

) (aw;) oWy 0 (aw;) owr

“o0: \ o0r ) o1 Tor\ a0r ) oo

Since the second Lie derivative is equal to a constant, all the following ones
will be equal to zero, and the calculation is completed. Hence, exactly,

1
Ji = Jf —e/2J; cos 0 + 252. (6.22)

In the case of Poincaré theory, the first step is to solve the implicit equa-
tions to obtain J; as a function of 67, J;. This is a cumbersome task. The
extended Lagrange formulas of Sect. 3.12 may be used to obtain

Jl _ Jf + EaTl 62 (8T2 82T1 8T1> 1 383T1 (8T1>2

00: T \oor ~ o205 ) T 2% a0 \ o
I 3 82T1 82T1 8T1 B 82T1 8T2 B 82T2 8T1 n 8T3
06:2 00107+ 9F 0032 0Jr  00:2 0Jr T 96 )

where T, def Si(0*,J*). To order O(e?) the above equation gives the same
result as (6.22). All monomials yield terms
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1
coefl , (cos 0] — cos 367)

V2J;
1

with coefficients §, j,0,—1, &, respectively. As expected, the sum is zero; but,
it can only be known after the actual calculations are done. The calculations
at higher orders are more cumbersome, but (6.22) allows us to anticipate that
they also will have a null contribution to the expression of J; as a function of
N

Therefore, in the case of this example, the advantage of Lie series theory
over Poincaré theory is enormous. Several reasons work together for this result,
namely: (a) the given system may be easily integrated with elementary func-
tions; (b) Hy is trivial and leads to a constant vq; (c¢) the given Hamiltonian
is a polynomial in the variables 1/2J; cosfy, v/2J1 sinf;. The last property,
known as the d’Alembert property, is conserved by Lie derivatives, since the
Poisson brackets of two such polynomials is also a polynomial in these vari-
ables (see Sect. 7.3). However, the d’Alembert property alone is far from being
a guarantee for what has been shown. For instance, the Hamiltonian consid-
ered in Exercise 6.2.1, H = J; — éJlg + £v/2J cos 01, satisfies the d’Alembert
property and is integrable. However, the series cannot be so easily obtained as
in the given example. The main advantage of Lie series theory, in that case, is
limited to the recursion formulas allowing high-order solutions to be obtained.

The example considered in this section showed how a bad choice may in-
troduce unnecessarily cumbersome calculations. Even the Lie series approach
used here with angle—action variables is not a good choice in this case. Non-
singular variables allow this problem to be trivially solved (see Exercise 7.6.1).
In fact, the transformation of this Hamiltonian becomes obvious when the
right variables are used.

6.5 Hori’s General Theory. Hori Kernel and Averaging

Let us consider, now, the canonical system of equations

dgi OH dp; OH
4 _ Di _ : (6.23)
dt  Op; dt 9qi
where H(q,p) is a time-independent Hamiltonian, ¢ = (q1,¢2, -, qn), p =
(p1,p2,---,pN) are unspecified canonical variables and let us consider the
transformation (g, p) = (¢*,p*) defined by a Lie series:

¢(q,;p) = Ew-9(q",p") =Y kl, Diy-é(a*,p"), (6.24)
k=0

where W* = W(g*,p*). As in Sect. 6.2, the conservation of the Hamiltonian
leads to
H*(q*,p*) = Ew~H(q¢*,p"), (6.25)
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where H* is the Hamiltonian of the transformed system and the perturbation
equations are obtained by substituting the expansions (6.6) into (6.25). The
perturbation equations are the same as (6.7), but, now, the functions depend
on (g*,p*) instead of (*, J*). The homological equation is

N
OH, OW;  OW; 9H,
HY =0+ - 2

e T2 (&1? op;  9q; op; )’ (6:26)

where ¥y (¢*, p*) is a known function if the previous k equations were already
solved.

This homological equation can no longer be trivially solved as in Sect.
6.2.1. To solve this linear partial differential equation in the unknown function
Wy, we use the Cauchy-Darboux theory of characteristics. We may apply
the results of Theorem 6.5.1 below and go on straight to (6.30) and (6.31).
However, since the homological equation is linear in the derivatives of W
and includes W}; only through its derivatives, we may easily construct those
equations. To do this, let us introduce a generic 2N-dimensional variable z* =
(¢*,p*). With it, the homological equation becomes

(—JHy..

Wil.) = W, - Hf, (6.27)

where H(,. = 0Hy/0z* and W}, = OW}' /0z* are the gradients of Hy(z*) and
Wi (2*) in the 2N-dimensional phase space, respectively, J is the symplectic

matrix of rank 2/V:
0 —-E
J= (E 0) (6.28)

and E is the unit matrix of rank N. H{,. and H} — W, are assumed to be con-
tinuous in the domain under consideration and do not vanish simultaneously.

Let W}k (2*) be a solution of (6.27) and let us consider the integral manifold
M defined by W} (z*) — W} = 0 in the (2N + 1)-dimensional space of the
variables (z*, W}) (Fig. 6.1). We introduce a family of curves on M through
the parametric equations

These curves, called characteristics by Monge, define a vector field T tangent
to the manifold. At every point P of M, the vector T is proportional to
(dz*/du, dW}r /du). We may also construct a vector IN, normal to M at P,
by means of the gradient of the function (W} (z*) — W}¥). The gradient of
this function in the (2N 4 1)-dimensional space of the variables (z*, W}) is
(W}l.,—1). Since the vectors T' and IN are orthogonal, T.IN = 0 and, then,

dz* o dwy
« ) = =0. 2
(du ’ Wi > du 0 (6:29)

Comparison of this equation, issued from a simple geometric construction, to
(6.27) gives
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W*

Fig. 6.1. The manifold M and a set of characteristic curves.

dWp
v 6.30
du g F ( :
and da*
z
iy . (6.31)
or, in the variables ¢*, p*,
dg;  0H, dp; _  OH,
9 _ Oto by _ _O0Ho (6.32)
du  Opf du dq;

Equations (6.30) and (6.31) (or 6.30 and 6.32) are the system of differential
equations of the characteristic curves of the given partial differential equation.

Equations (6.31) (or 6.32) are the same for all values of k. They were called
auzxiliary equations by Hori and the system whose Hamiltonian is Hj is often
referred to as the Hori kernel of the perturbatrion theory thus constructed.

To solve the homological equation, for all k, (6.32) must be completely
integrable, and we need to obtain the general solution:

a; = q; (u+ 1,7, Cj)

. (6.33)
P = pi (u+ 71,7, Cj)

(j=1,---,N;£=2,---,N); C; and v; are arbitrary constants of integration.

The solution of the homological equation is completed by the integration
of (6.30). Its left-hand side contains the unknown function Wy (¢*, p*) and the
right-hand side contains the undetermined H}. This last function is chosen to
be such that
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Hf =<9, > (6.34)

and, thus, < dW;/du > = 0. We note that, when the solutions given by
(6.33) are bounded, ¥x[g*(u),p*(u)] is an almost periodic function. Bohr’s
mean-value theorem for almost periodic functions [9] may then be used to
average Wy:

Y
<We> = lm /0 7 du. (6.35)

Wi (u) is, then, immediately determined from (6.30) through
Wi () = / (0 — H)du, (6.36)

In these operations, we use the solutions (6.33) to write ¥y, as a function
of u and then we perform the integration; the arbitrary constant is set to be
such that < Wj(u) > = 0. Finally, to know H}; and W} as functions of
q*,p*, we replace u + 7, and the integration constants 7,,C; by the inverses
of (6.33):

u+m = g1(¢",p*)
Ye = ge(q*, p*) (6.37)
Cj:gN+j(q*7p*) (]:1’7]\[’6:2’7]\[)

Because of this inversion, the actual application of Hori’s theory with unspec-
ified canonical variables to general problems is, generally, cumbersome. When
possible, it is always convenient to use angle—action variables or variables close
to them.

It is worth noting that the resulting transformed Hamiltonian H* =) H}
is a function of the variables ¢*, p*. Eventually, when the angle—action vari-
ables of the Hori kernel are introduced, at least one of the angles becomes
ignorable and the reduction of the system becomes evident. However, while
the variables ¢*, p* are used, the reduction of the system comes from the ex-
istence of a new formal first integral as shown in Sect. 6.7. One example with
variables that are not angle—action variables is presented in Sect. 7.8.

6.5.1 Cauchy—Darboux Theory of Characteristics

Definition 6.5.1 (Characteristic curves). Consider the partial differential
equation
F(z, W, W) =0, (6.38)

where z = (21,22, 2n), Wo = (W, , Wy, -+, W, ), W:R" - R € C? and
n OF 2

F:R** — R € C? in the neighborhood of one point where Z ( > #*
— \ oW,

0.
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The characteristics of the given partial differential equations are the solu-
tions z(u) , w(u), W(u) of the system of 2n+1 ordinary differential equations:

dz;  OF(z,m,W)

du or;
dm; _ OF(z,m,W)  OF(z,m, W)
du 0z; i ow (6.39)
dw K OF(z,m W)
du ;m om; ’
where ™ = (71,72, +, 7).

Theorem 6.5.1. All solutions W(z) : R* — R € C? of the partial differen-
tial equation F(z,W.,W) =0 can be obtained from the characteristic curves.
These functions are, in general, uniquely determined by prescribing their val-
ues at the points of an (n — 1)-dimensional manifold.

For simplicity we have adopted notations similar to those used in Hori’s
general theory. The construction of the function W(z), in the general case,
follows the same steps as in the previous section: elimination of integration
constants between the solutions of (6.39). The proof of the theorem is classical
in the theory of first-order partial differential equations (see [18], Chap. 3).

Hori used the notation ¢t* for the parameter u of the equations. The in-
terpretation of the Cauchy—Darboux parameter as a pseudo time [53] hid its
actual meaning and, worst, allowed some noxious misunderstandings to be-
come widespread.

6.6 Topology and Small Divisors

Hori’s general theory is conceptually important because it allows us to un-
derstand a basic operation involved in perturbation theories, which usually
remains hidden by the very particular form of the equations in angle-action
variables. It shows the existence of a privileged dynamical system — the Hori
kernel. The Hori kernel is the projection on the phase space (¢*,p*) of the
characteristic curves of the homological equation. It is the same for all k. For
different values of k, the characteristic curves differ only in the (2N + 1)™
coordinate W;'.

To understand the role played by the Hori kernel, let us consider a Hamil-
tonian system with a non-degenerate Hy. In angle-action variables, the cor-
responding Hori kernel equations are:

doy  0H,
du  0J;F

dJ;  9H,

=y = — = A
vi#0 do a0¢ 0 (6.40)
(i = 1,2,---,N). The solutions of this system lie over N-tori defined by

the equations J;(¢*,p*) = const. The transformed Hamiltonian H* is also a
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function of J (and only of them) and, thus, their solutions lie over the same
N-tori, only with different frequencies.

A consequence of this fact is that a perturbation theory is not suitable to
disclose the actual topology of the given perturbed Hamiltonian system. It is
only good for the calculation of solutions with the same topology as its Hori
kernel.

6.6.1 Topological Constraint. The Rise of Small Divisors

The overall geometry of the transformed system is the same as that of the Hori
kernel and it is so, regardless of the perturbation represented by the given Hy
and of the bifurcations that they may have introduced in the flow of the given
Hamiltonian [30]. Moreover, the Lie series mapping is a diffeomorphism and
cannot introduce any topological change. In general, the bifurcations of the
given perturbed Hamiltonian lead to small divisors whose unbound increase
in number, from one order to the next, is responsible by the non-convergence
of the results in an open set when n — oo.

Let us illustrate the rise of a small divisor at the place where a bifurcation
should occur with a simple example. Let us consider the Hamiltonian

1
H=J~ J +ev/2J; cos b (6.41)

This Hamiltonian is one well-known particular case of the Ideal Resonance
Problem thoroughly studied by Andoyer (see Appendix C). Its portrait in the
(61, J1) plane is shown in the left side of Fig. 6.2. The application of Lie series
theory to this Hamiltonian gives:

g2 Jr

€
w* = 2.J; sin 0 5 sin 26}
Vf\/ 1 sinty + 4uf3 sin 2604

3 22 3Jf
+5 27 (5 singy + 7L (5sin) +sin307) ) + O(eY),
48 vy vy

where
vi =1—-J7, (6.42)
and
ooyl © O(eh) (6.43)
— Y1 2 1 2Vi=2 ’
with the proper frequency
OH* g2
= = — O(eh).
gl 8Jik Vl Vfg + (E )

The portrait of H* in the (07, J}) plane is shown in the right side of Fig.
6.2. It mimics the phase portrait of Hy(J). At the place where a bifurcation
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J; Ji

P

«
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_

9

Fig. 6.2. Phase portraits of H (left) and H* (right)

occurs in the complete Hamiltonian (J; ~ 1), the transformed Hamiltonian
H* undergoes a complex change of sign of its proper frequency g1 (g1 = 0
on both bold dashed lines). This change cannot be correctly studied with the
given equations, since the series giving W* and H* have the divisor v} and
become singular at J; = 1.

The above discussion shows that when the quantitative study of a feature
is aimed at, it is necessary to engineer the Hori kernel and introduce that
feature in its topology.

Exercise 6.6.1. Consider a one-degree-of-freedom system and introduce the
canonical variables ¢1, Fq, where ¢; is a uniform angle with unit frequency
and E; is the Hori kernel energy. Show that H = H(E;) and that the set
of curves H = const and E; = const coincide. Extend the reasoning to
two degrees of freedom. Hint: Introduce the canonical variables ¢1, ¢, F1, J2
and consider the set of curves H = const and E; = const in the manifold
Jo = const.

6.7 Hori’s Formal First Integral

Theorem 6.7.1 (Hori [53]). The function F(q,p) = Ho(q*(q,p),p*(q,p)) is,
at the order of approximation of the canonical transformation, a first integral
of the given perturbed system.

The proof of this theorem is very simple and just a simple chain of calcu-
lations. We have to show that the time derivative of F' is equal to zero at the
order of approximation of the canonical transformation. Indeed,

dF _i 0Hydq*  9H, dp:
dt ogr dt ~ opr dt )

i=1
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We may then use: (1) the equations of the transformed dynamical system to
replace the time derivatives of ¢}, p} by partial derivatives of H*; (2) the equa-
tions of the Hori kernel to replace the partial derivatives of Hy by derivatives
of g7, p} with respect to u. Hence,

aF EN: (_ dpr OH*  dg; 8H*)

dt = du dp;  du dg;
or
dr  dH*
dt  du’

which is equal to zero since H* is defined by definite integrations over u.
O
This integral is only formal, not a true one, since the remainder R,,(¢*, p*, €)
of the calculation of H* was not considered in the above demonstration, and it
is not independent of u. The order of approximation of the formal first-integral
Fisem™

6.8 “Average” Hamiltonians

The word “average” and its variations became popular in the past century,
implicitly carrying the idea that methods founded on “averaging” operations
lead to “average” Hamiltonians governing the secular variation of the given
system. However, in more than one instance, second-order solutions such as
that given by (6.20) (at the end of Sect. 6.3), were found showing that their
average is not equal to the solution of the “averaged” equations — in (6.20),
we have < J; > # J;. The non-periodic terms appearing in the solution were
often a source of disappointment.
In Lie series perturbation theory, the solutions have the general form

¢ =Ew¢" = ¢"+Dwo" +  Diy¢” + , Diy¢” + -, (6.44)

where ¢ denotes a generic variable and W (6*, J*) the Lie generating func-
tion resulting from the theory. By construction, the generating function is a
zero-average periodic function of the angles 61,05,---,0xn. A glance at the
above equation is enough to see that, notwithstanding the zero average of W,
the terms of order 2, and higher, involve products of derivatives of W be-
tween themselves, and, in these operations, non-periodic terms are eventually
generated.

A consequence of these non-periodic terms is that H* is not an average.
The actual solutions of the given Hamiltonian system oscillate about the solu-
tions of the Hamiltonian system defined by H*, but with a non-zero average.

For k = 1, (6.44) is reduced to ¢ = ¢* + {¢*, W} including only one
bracket: {¢*, W}, which is equal to a derivative of W and, therefore, a zero-
average function. This means that, to first-order, the transformed H* behaves
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as an average. This fact certainly played a role in the introduction of the word
“average” and its variations to designate perturbation theories of this kind.

In the above discussed case, we may suspect that the non-periodic terms
come from the definition of the canonical transformations through a Lie gen-
erating function, but it is possible to see that for any canonical transformation
(0,J) = (0%, J*) defined explicitly by

Ji = T + PO, J*) + PYO*,T) £+ |
it is not possible to have simultaneously H; independent of * and < P} > =
< Qi >= 0 (for all i and k > 1) [34].

6.8.1 On Secular Theories and Proper Elements

Given the large number of degrees of freedom of the equations of planetary
motion, it is usual, since the work of Laplace and Lagrange, to reduce the
equations of motion to first-order averaged ones. The classical “secular theory”
of Laplace and Lagrange is the analysis of the solutions of the Hamiltonian
resulting from the elimination of short-period terms by means of first-order
perturbations theory (see Sect. 3.7). In the case of asteroids, canonical per-
turbation theories may be used to define “proper actions”, which are choice
parameters for the identification of asteroid families. For practical reasons,
they are often replaced by average values of elements calculated numerically.
Even if, strictly speaking, averages differ for proper actions, it is evident that
in non-degenerate systems, averages are functions of the proper actions and
may show the same time invariance as the proper actions themselves.
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Non-Singular Canonical Variables

7.1 Singularities of the Actions

The actions J; defined by the phase integrals J; = 217T § p;dg; may become
singular. The simplest example is given by the actions of a Hamiltonian de-
pending on the squares of the momenta. In this case, p; is proportional to ¢;
and, as a consequence, the integral [ p;dg; is proportional to [ ¢2dt and, thus,
sign definite. In other words, the integration path is always circulated in the
same direction and the sign of J; may not be reversed (Fig. 7.1). Consequently,
the equations of motion in this variable are singular at .J; = 0.

Fig. 7.1. Integration paths

Examples are abundant in Celestial Mechanics. The Delaunay actions

L = \/ua
G = LV1—e¢? (7.1)
H = Gcosi

are singular for a =0, e = 0 (or e = 1), and sini = 0.

The singularities at @ = 0 and e = 1 correspond to critical physical sit-
uations. At a = 0, the orbit degenerates into one point. We recall that the
attracting force becomes infinite for » = 0 and specific regularizing techniques
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are needed to deal with motions in which r becomes close to zero (see [6], [95]).
For e = 1, non-rectilinear motions cease being bounded. The other two singu-
larities (e = 0, and ¢ = 0), often found in practical applications, are, however,
just geometric and do not correspond to singular physical situations. They
can be overcome with the pure geometrical tools described in this chapter.

7.2 Poincaré Non-Singular Variables

When the actions J; are small, the corresponding angle-action variables may
lead to algebraic difficulties as, for instance, division by zero. (The equations
of motion, generally, include these actions as denominators.) If the singular-
ity is just the geometrical singularity of the angle—action variables, we know,
since Lagrange, that a transformation of variables from the polar-like angle—
action variables 0;,J; to the associated non-singular rectangular-like coor-
dinates J; cos6;, J; sin#; is enough to avoid numerical difficulties. However,
for the needs of the Hamiltonian theories discussed in this book, this is not
sufficient, since Lagrange’s variables are not canonical. Nevertheless, similar
canonical variables were proposed by Poincaré by taking \/ 2|J;| instead of J;.

When J; < 0, the Poincaré non-singular canonical variables associated
with 6;, J; are

T; = \/—2J1 COS 91

7.2
Y, = \/—QJZ' sinei. ( )
In this case, the inverse transformation is given by
L o 2
Ji = —2(%' + ;) (7.3)
_ Yi
0; = arctan ” . (7.4)

Ly

The Poisson bracket of the new variables with respect to the old ones is
{ziyit ={0i, Ji} = +1

and, therefore, the pair of canonical equations

. O0H . 0H

0; = o7, Ji=— 06, (7.5)
becomes R R

. o0H . OH

Tq = 82/1 Yi = _8331" (76)

where H = H(0;(zi,y:), Ji(2i, yi))-
We started with the case J; < 0 for two important reasons. The first
one is that, in this case, we have {x;,y;} = +1. The second reason is that
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this is often the case in Celestial Mechanics. Indeed, near the singularities
e = 0,7 = 0, the origin of the angles ¢ and w, canonically conjugate to L
and G, becomes indeterminate (see Sect. 2.5.2). It is them common usage to
replace the ordinary Delaunay elements by the set

A =Ll+tw+ 2 L
w = w+ G—-L = L(V1-e2-1) (7.7)
n H -G = G(cosi—1).

The new angles are longitudes and take their origin at the same point, e.g.
the point O of Fig. 2.5, or, in Astronomy, the equinox!'. The actions now
associated with @ and {2 are both negative (G— L <0, H — G <0).

When J; > 0, instead of (7.2), we have

xZ:\/QJZ COS 91

yi =+v/2J; sin 6; (7.8)
and the inverse transformation is

Ji= ) (7.9

f; = arctan zl . (7.10)
In this case, {z;,y;} = —1 and, thus, to keep equations written in the same

order as through this whole book, we have to change to {y;,x;} = +1. The
corresponding canonical equations are, now,

o0H OH
) = t; = — . 11
U= o & ;s (7.11)

(Compare the signs of (7.6) and (7.11).)
It is easy to see how to modify the given definitions to deal with cases
where the singularity of the actions occurs for non-zero values.

Exercise 7.2.1. Show that, in Poincaré variables, the action variables are

-5 +s
A= o fydx = 9r f;vdy, (7.12)

where s = £1 is the sign of J (s does not change over the path). Hint: Using
the given definitions show that Jdw = } s(zdy — ydz).

! These variables are sometimes called equinoctial.
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7.3 The d’Alembert Property

When a function regular in a domain about the origin is written with polar co-
ordinates, pure geometrical singularities may appear at r = 0 because of these
coordinates. This singularity disappears when rectangular coordinates x, y are
used instead of the polar ones. This situation is current in Celestial Mechanics
and occurs with the pairs of polar-like variables e, w (eccentricity, longitude
of the periapsis) and i, 2 (inclination, longitude of the ascending node). The
non-singular variables used instead of them, since Lagrange, are the associated
rectangular pairs ecosw, esinw and icos (2, isin 2. (More usual definitions
have sini, sin(i/2) or tani instead of i.)

Let g(z,y) : R? — R be a regular function in a domain O about the origin
and let f(a,r) be the expression of this function in polar coordinates:

flayr) =g(z,y).

As the function g(z,y) is regular in O, it may be expanded in a power series
in m) y7

g(z,y) = Z aijxiyja

3,5>0
convergent in O. Hence
[n/2]
fla,r) = Z Z " {Cjn cos[(n — 2j)a] + S}, sin[(n — 2j)al}, (7.13)
n>0 j=0

where [n/2] means the integer part of n/2 and Cjy,, S;, are numerical coeffi-
cients.

The features shown by this expression of f(a,r) are part of a set of rules
found in the expansion of the disturbing potential in planetary theory known
as d’Alembert properties (or d’Alembert characteristics). In the case of the
above expansion, they may be expressed as follows: for each n, the coefficients
of the multiples of « in the trigonometric part have the same parity as n and
are at most equal to n.

However, the simple polar-to-rectangular transformation is not canonical
and we have rather to consider the transformation defined by (7.2) (or 7.8).
The d’Alembert property appears, then, in a slightly modified form: If we
have

f00,J) = g(z,y),

where, now, x,y are Poincaré non-singular variables and 6, J the correspond-
ing angle—action variables, the power series in x,y becomes

(/2]
FO,7) =" |72 {Cjn cos[(n — 25)0] + Sjn sin[(n — 2j)0]}.  (7.14)

n>0 7=0
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The d’Alembert property still holds and the only difference with respect to
(7.13) is the n/2 exponent of |J|.

The situation described above is trivial; but it may become more complex
when other variable transformations are added. In order to avoid the acciden-
tal transformation of a geometrical singularity into a singularity whose origin
is not easily recognized, one transformation must comply with some simple
rules:

Theorem 7.3.1 (Henrard [47]). A transformation from an angle—action pair
of variables to another preserves the d’Alembert property of a function if it is
a Lie series mapping whose generating function has the d’Alembert property.

Indeed, Lie series mappings are defined by the equation
f(ov J) = EW*f(o*v J*)7

where W* = W (6*, J*). They involve only the computation of Poisson brack-
ets, which are invariant to canonical transformations. Since the necessary and
sufficient condition for a Poisson bracket of two functions to be regular is that
these functions are regular, if f and W* have the d’Alembert property then
Dy« f and Ew-~f also have the d’Alembert property.

7.4 Regular Integrable Hamiltonians

The perturbation techniques of Celestial Mechanics always consider that the
undisturbed Hamiltonian is completely integrable. (See the statement of De-
launay’s problem in Sect. 3.1.) The series expansion of a non-singular inte-
grable Hamiltonian, about the origin, in terms of its angle-action variables
(91', Jl) is

N 1 N N

H0=ZVfJi+ZZZijJiJj+---7 (7.15)

i=1 i=1 j=1

where oH.
v = 1(0) = ( 0) (7.16)

g ) ;_o

and P2H

vy = v5(0) = <8Ji83j>J_0' (7.17)

The angles 6; may not appear in the Hamiltonian by the very definition of the
angle—action variables. On the other hand, half-integer powers of J; cannot
appear because of the regularity hypothesis. Indeed, non-singular functions
must satisfy the d’Alembert property, which means that any half-integer power
of J; should necessarily appear multiplied by a trigonometric function of 6;,
at variance with the previous statement.
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(@) (b)

Fig. 7.2. Regular integrable Hamiltonians near the origin

In non-singular variables, Hy is
| T
_ o( 2 2 2
_2;”i(xi+yi)+8;§ (@7 +yD) (@ +y) +-- (7.18)

(where, for the sake of simplicity, we assumed J; > 0).
Let us consider, for a moment, the case N = 1. In this case, Hy is the
Hamiltonian of a differential rotator:

1 ] 1 o
Ho = i@l +y7) + vh(at +y1)* + - (7.19)
Figure 7.2 shows the function Hy in the neighborhood of the origin in the two
possible cases:

(a.) v§ and vy, have the same sign (v > 0, vy, > 0);
(b.) v{ and v{; have opposite signs (v{ < 0, v{; > 0).

(If v§; < 0, the figures would be equal, but turned upside down.) When v = 0,
the figure is similar to Fig. 7.2(a), but the curvature at the vertex is equal to
zero since, in this case, the origin is a zero of fourth order.

The motions on these surfaces are circular and have constant velocities.
Their frequencies are

0Hy

o, =l +uvyJi+-. (7.20)

v =
Thus, in the neighborhood of the origin of the (x1, y1) plane, in (a) the motions
are direct (v{ > 0 and v} > 0). In (b), the motions near the origin are
retrograde up to the distance where the minimum of Hy is reached, and direct
beyond this minimum (up to the distance where another extremum of the
function Hy, if it exists, is reached)?.
In the most frequent case, J; < 0, we have

2 In the case Jy > 0, the motion in the (z1,y1) plane is retrograde (resp. direct)
when the motion of 0; is direct (resp. retrograde). See Fig. 7.3.



7.5 Lie Series Expansions About the Origin 167

1 (e}
vi (el +yi)? + - (7.21)

1 o
Ho = — vi(a +y7) + o

2
and the situations invert with respect to the previous case. Now we have

(a'.) v} and v§; have opposite signs (v < 0, vg; > 0);
(b’.) vy and vy, have the same sign (v > 0, vg; > 0).

(again, we assumed v9; > 0). The directions of the motions are reversed with
respect to those of the case J; > 0. The motions in (a') are always retrograde
(on the (z1,y1) plane) while, in (b'), they are direct near the origin and
retrograde outside the minimum of Hy.

A
NIV

V1J1 <0
Fig. 7.3. Directions of motion in the (x1,y1) plane

At this point, let it be pointed out that the transformation to Poincaré
non-singular variables defined by (7.2) (or 7.8) has regularizing properties
that are more powerful than those of the simple geometric transformation
1 = |J1|cosby, y1 = |J1|sinf; (which is sufficient only to eliminate the geo-
metrical singularity). Indeed, in the general case, we have v{ # 0 and this
means that the first derivative of the function Hy has a finite limit at the ori-
gin. If the ordinary polar-to-rectangular geometric transformation were used
instead of the Poincaré transformation, the first derivative of Hy would have
no limit at the origin; Figs. 7.2(a) and (b) would have a cone-like structure
near the vertex (except for v{ = 0). This additional regularizing property of
the transformations defined in Sect. 7.2 arises from the fact that they involve
V/|J1] instead of J;.

7.5 Lie Series Expansions About the Origin

Following the definitions given in Sect. 5.3, for each f € F, each point z,y in
O and a given Lie generator W of class C*° in O, the application

f=Bwf=)_ " Dyf (7.22)
k=0
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is the Lie series expansion of the function f, generated by W. The Lie deriv-
atives D{?V f are defined recursively from

f—=Dwf={f,W} (7.23)

In the theories of Poincaré, von Zeipel-Brouwer and Hori, all expansions
were done in series of powers of € (or y/e in Delaunay theory). In the neigh-
borhood of the origin, we assume that the variables z,y are small quantities
of order O(¢4) (generally d < 1) and we have to adopt new rules for the
comparison of terms. We will no longer use the powers of ¢ (or y/¢), but the
degree of homogeneity of the function with respect to the elements of the set
S = (z,y,e%).

To write the Lie series expansion of the function f in the neighborhood of
the origin, let it be assumed that f is a homogeneous function of the elements
of § and also that

W => Wi(z,y,e), (7.24)
E>1

where the W (x,y, €) have degree k in the elements of S. Then

Ewf=f+{f, Wi} +{f, Wa} +{f, W5} +--
+ oL WA, Wik 4 S {{f. Wi}, Wb + S{{f, Wa}, Wi} + -
+ é{{{f’ W1}7W1}7W1} +e
(7.25)
where, as in previous theories, we assumed A\ = 1. The law of formation of the
terms for the &' row is very simple:

DI]ij = Z{{ e {{fa Wh}?sz}’ - .},ng},

where the sum extends over all combinations ({1, /s, ...,/0;) € ZF.

We have to take into account, now, that the Lie derivative Dy modifies
the order of the terms by subtracting two units, because of the differentiations
with respect to x and y in each term of the Poisson bracket defining the Lie
derivative. Therefore, if L is the degree of f, the degree of each term in D¥, f
is

k
L+§:&—2k
=1

This means that there are, in the derivatives, terms with degree less than L
(and even negative). To avoid this inconvenience, we assume Wi = 0. Another
difficulty resulting from the order losses in the derivatives is that the collection
of the terms of the same degree of homogeneity as f,

PSS+ T WEL Wi+ (LU WEHWEL WS+

has an unlimited number of terms. One practical requirement in the construc-
tion of the perturbation equations of a Lie series theory is that the number of
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terms in the Lie series Eyw- f, of a given order (or degree of homogeneity), is
finite. We then assume W3 = 0 and the Lie series expansion of f becomes

Ewf=f +{f,Ws}
+ {fv W4} + é{{fa W3}7W3}
+ {f, W5} + 3 {{f, Wa}, Wi} + S {{f, Wa}, W3} (7.26)
+ {{{f W}, Wal, Wi}
+ BN

where, now, the terms have been ordered following their degree of homogene-
ity: L and L + 1 in the first row, L 4+ 2 in the second row, L + 3 in the third
row, etc.

This series is very similar to those given in previous chapters; the only
difference lies in the subscripts of W, which, in the expansion about the origin,
are two units larger than in ordinary expansions.

7.6 Lie Series Perturbation Theory in Non-Singular
Variables

Let us use Hori theory to study the solutions of a perturbed regular Hamil-
tonian, in the neighborhood of the origin. This can be done because Hori
theory is valid for any set of canonical variables and thus may be used with
non-singular canonical variables. We recall that the classical theories of Chap.
3 apply only to problems stated in angle-action variables and may not be
straightforwardly used here.

Let us consider the Hamiltonian system given by

H=Hy(J)+ > e"Hi(6,.). (7.27)
E>1

We assume that the undisturbed Hamiltonian Hy(J) is regular in a domain
around the origin and that »; # 0, for all 4, in this domain (there is no
resonance at the origin). Hence

N N

N
Hy=> Xo(J)=> viJi+ ; SN vididi+ - (7.28)
=1

E>1 i=1 j=1

(see Sect. 7.4), or, with non-singular variables (assuming by default the case
Ji <0),

N N N
1 o 1 .
HO:_2 Z%‘ (@ +y7) + SZZVU(J:?—Fyf)(xf-FyJ?)_F (7.29)
i=1

i=1 j=1

The disturbing terms will be written
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Hy=) Vi () (7.:30)

k'>1

with V,’jl denoting the part of Hy of degree k' with respect to x,y. As already
stated, the orders of magnitude will no longer be the powers of € (or /), but
the degrees of homogeneity in the elements of a given set S. In this theory,
we assume

T; = O(E) Y = 0(6)
and

S = (z,y,¢).

The functions expand as indicated in the previous section with d = 1.

Let us introduce, now, the canonical transformation ¢,, : (z,y) = (z*,y*)
defined by

where Ey« f is the Lie series expansion of f(x,y) about the origin. Following
the same development as in Chap. 6, we introduce

Z Wi (2", 9" €) (7.32)

where the quantities W} are homogeneous functions of degree k in the ele-
ments of S. Since the given canonical transformation is conservative, we have

H(z,y) = H*(z",y") + Rn(z", y"),
that is,
H* (2", y") + Ru(2",y") = Ew-H (2", y"). (7.33)

We then introduce, in these equations, the expansions already given for W*

and H as well as
Z H}(z%,y",¢) (7.34)
E>2

where the quantities H; are homogeneous functions of degree £ in the elements
of S.

Comparing the parts of the same degree in both sides of (7.33), we obtain
the equations of the Hori perturbation theory in the case under consideration:

H = Xo+ EVll
Hi = eVE +e2Vi + {Xo + eV, Wi}
Hi = Xy+ Vi +e2Vi+ 3V + {Xo + eV, Wi}
+{eVE+ 2V, Wit + J{{ X2 + eV, Wi}, W5}

n—1 n—2
Hy =Vi+ Y e vph 4 3 M w4+ {(Xa VL W)
k=1 k=0
(7.35)
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In the last equation of this system, we introduced V{ with the definition
Vi = X, for n even and V' = 0 for n odd. The rules of construction of the
right-hand sides are very simple. It is enough to replace the generic function f
of (7.26) by the expansions of H and its parts and take into account the degree
of homogeneity of every part. These rules are simple and, when computer
algebraic manipulators are used, they allow simple iterative schemes to be
introduced.

If the equations are used in turn to simplify those of higher orders, we
have

H; = Xo +€V11

Hi = V2 +2Vi + {H; W5}

3
1

Hi = Vit {HS + Vi + Vg Wik + {H, Wi}
k=0
(7.36)
n—1 1 n—2

% k~yn—k * kym—k—1 *
Hn:kz_oa Vlc +2{H71—1+kz_05 Vlc 7W3}+

1
+2{H§+EV12+62V21? 77—1}+{H55W:}'

Let it be recalled that all functions X and V,’j, in the preceding systems
are understood as X (z*,y*) and VF (¢, y*), that is, X;(2,y) |z~ y=y- and
Vllj (%,Y) o=z y=y=-

Equation (7.36) may be synthesized in the homological partial differential

equation
{H, W;'} = Hf — W, (7.37)

and the Hori kernel associated to it is

dr;  OHj dy;  OHj
du Oy} du Oz}’ (7.38)

K2

where the signs in the equations were chosen in accordance with the assump-
tion J; < 0 (that is, {z;,y;} = +1). The first feature to be considered in (7.38)
is that these equations are separable into N second-order systems, since Hj
is composed of N parts, each depending on only one pair of variables z}, y;.
In addition, each separated system is easily integrated. Indeed, we have

dz?* dyf
df; = —viy! + &b} dyzz = vzl — by, (7.39)
where we have assumed
N
Vi(e),yp) = Y (bar} + biyy). (7.40)

i=1
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The general solutions of (7.39) are
Ebi

o
vi
/
eb]
o’
i

x; = Cjcos(VSu+y;) +

y; = Cisin(vfu+ ) + (7.41)

where the integration constants ; are chosen such that C; > 0. The function
Ui (z*,y*) is then a quasiperiodic function of u and one of the averaging
operations of Chap. 6 may be used to obtain the corresponding H; .

7.6.1 Solutions Close to the Origin (Case J; < 0)

The study of the solutions close to the origin may be simplified if, beforehand,
we perform the canonical transformation

~ b; ~ b
xi:g;i—go yizyi—aol. (742)
Y Vi

With these variables, the given problem is transformed into a modified one

where
N

1 0/nD =
XZ:—QZ%w(x%y?); Vi =0.

(The hat is used to indicate the functions transformed by means of (7.42)).
The first of the perturbation equations is, now, simply

H; =X,
and the solutions of the modified Hori kernel are
z; = Cicos(VJu+ )
) = Cisin(viu + ;). (7.43)

When there is no commensurability among the frequencies vy, we may use
the mean-value theorem of quasiperiodic functions to obtain the averages:

Hf = <0(@*,75%) >, (7.44)

where < --- > stands for the average over all angles vyu + ; from 0 to 2.
For all £ > 3, H} will be a function of

224y =C7 (7.45)

only. The transformed Hamiltonian system is easily integrated. The new equa-
tions are
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awr ofr  agr  of*

at ~ ogr at ~ omr (7.46)

Equation (7.45) shows that the solutions are circles and a simple calculation
shows that the motions on these circles are uniform with frequencies

1 OH*
*_ ) 7.47
Vz Ci aCl ( )
Exercise 7.6.1. Consider the Hamiltonian that served as an example for a
practical comparison of Poincaré and Lie series theories in Sect. 6.4. Show that
the study of that Hamiltonian with non-singular variables is trivial (H* = H
and W* =0).

7.6.2 Angle—Action Variables of H; (Case J; < 0)

Notwithstanding the simplicity of the above calculations, one may easily ver-
ify that the integration constants (y;, C;) are not canonical. This means that,
in the calculation of the Poisson brackets of the next-order perturbation equa-
tion, these constants may not be used and one has to use the inverse of the
general solutions to write all concerned functions again as functions of (z}, y}).
This task can be avoided by using canonical integration constants (as given
by the solution of the corresponding Hamilton—Jacobi equation), or, simply,
by introducing the angle-action variables of H3. In the case under study, they
are trivially obtained:
w; = |vfu + 7l

1
Ay ==+ _C2,
2 K3

where the sign of A; is equal to the sign of Y. We recall that s = —1 (J; < 0)
and that (7.12) gives, in this case, A = 217T § ydx, whose sign is opposite to
the sign of Jv§ (see Fig. 7.3). Hence

b;
¥ = \/2|Ai|coswi+s .

Y (7.48)
yr = :t\/2|/li|sinwi +e v,

12

i

where the sign in the last equation is opposite to the sign of vy .

7.7 The Non-Resonance Condition

The condition for the use of the averaging rule fixed by (7.44) is a non-
resonance condition analogous to that of Sect. 3.5: (h | v°) # 0 for all integer
vectors h € Z" appearing in the arguments of the given Hamiltonian or formed
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through the successive multiplication of trigonometric polynomials during the
calculation of the ¥, (k < m). When a resonance is approached, we have to
proceed as in von Zeipel-Brouwer theory: The von Zeipel averaging rule is
written in the same way as before, but < --- > stands for the average over
the non-resonant short-period angles only.

To explain the procedures to follow in this case, we introduce the angle-
action variables (67, J) associated with (z;*,%;") by means of the Poincaré
relations

&7 = /2177 cos B
= \/2|$f|sin§;r.

The average of a function @,’; is now given by

(7.49)

<TLO",T) > = W) (T) + e (| 67, T7),

where the subscripts S, K mean secular and critical, rebpectlvely The critical
terms are those depending on the angles (h | 9*) , h € Z", such that (h |

)If V\(:e assume that there are L = N — M commensurability relations
(ho|v°)=0 (o=M+1,---,N), (7.50)
and construct the Lagrange point transformation
9o=(hy|8")  (e=M+1,---.N) (751)
Pu=(hy | 07) (w=1,---,M =N — L),

the canonical transformation is completed through the introduction of new

actions I; such that
N R N
> T80 => 156
i=1 i=1

The transformed Hamiltonian is now

n

H* = Z d)g,l €

k=3
and it is independent of the angles qb#. Therefore, the I, , are constants and
H(dg, 1o,€) = H* (¢, 1, )

is the Hamiltonian of a canonical system with L = N — M degrees of freedom;
the commensurability relations given by (7.50) are, in this new system, simply

=0, (7.52)

exactly as was assumed in the presentation of the von Zeipel-Brouwer theory.
Thus, at variance with what was seen in Sect. 7.6, in the non-resonant case,
the averaging does not reduce the system to a completely integrable one, but
only to a reduced system with L = N — M degrees of freedom.
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7.8 Example

A complete non-singular Hamiltonian, as used in the theory of Sect. 7.6, is
not often found in Celestial Mechanics because the main Keplerian term of
the Hamiltonian depends only on the semi-major axis and is not affected by
pure geometrical singularities. Non-singular Hamiltonians generally do appear
after the averaging over the mean longitudes, as in the linear secular theory
considered in Sect. 3.7. Some other important examples are studied in Chap.
10. The most common problems in Celestial Mechanics mix angle-action and
non-singular Poincaré variables. Thus, the example given below is not a mere
application of the previous theory, but rather an application of the principles
used to construct it together with those of the previous chapter. It is the
continuation of the example treated in Sect. 3.8.
The Hamiltonian given by (3.95), up to order O(e), may be written as

1

H=—
272

— 217 +e (a + bl3 + L\/—213 cos ¢3 + B cos ¢

(7.53)

+M+/—21I5 cos (¢ + ¢3))
with several modifications: (a) the stars and coefficient subscripts were dropped;
(b) the constant term vy was dropped (it does not contribute to the differ-
ential equations, since ¢y is ignorable); (c) some factors v/2 were introduced
to get simpler coefficients in the forthcoming calculations; (d) the value v = 1
was adopted; and (e) Af was assumed to be linear in I3: A§(I1,1I3) = a+ bls.

First, we expand Hy = H |.—¢ about a reference value I7:

1 1
Hy = const + )= + 2V‘f152 + 6V‘f1153 o (7.54)
where
E=L-I; (7.55)
and 1 3 12
Vf = IfB — 2, Vfl = If47 I/fll = If5 ottt (756)

The coefficients a(I1), b(I1), B(I1), L(I1) and M (I;) are expanded in the same
way. Then,

H = Hj +¢ (bQI3 + Lo\/—2.[3 cos ¢3 + By cos ¢p1 + MQ\/—2I3 cos ((bl + ¢3))
+eE (a1 +b1Iz + Ly \/—213 cos ¢3 + By cos ¢

+ Miy/=2E5cos (91 + s) ) + -+, (7.57)

where, now, all coefficients are calculated at the point I; = I7 and, therefore,
are constants. The subscript 1 in the coefficients denotes that they are first
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derivatives with respect to Iy. (The term eay was dropped; it is constant and
does not contribute to the equations.)

The next step is to assess the order of magnitude of the results. This
assessment is critical because it determines the Hori kernel of the perturba-
tion theory and, thus, constrains the solution. This is done by comparing the
leading terms of Hy with those of the perturbation. To see this, it is worth
recalling that this example is suggested by the planar motion of an asteroid
disturbed by Jupiter, L, B are proportional to Jupiter’s eccentricity and I3
is proportional to the squared asteroid eccentricity (see Sect. 3.6). Thus, if
the eccentricities of Jupiter and the asteroid are assumed to be comparable,
the leading terms of the perturbation have coefficients e By and e My (M is a
finite quantity)®. Then, we assume Z = O(ey/—1I3) and By = O(y/—13). We
have, also, to assume a relationship between the orders of € and v/—1I5 and we
assume \/—I3 = O(e). This choice is not the only one possible and, depending
on the problem under study, may not even be a good one. However, it is the
simplest when the actual calculations are concerned.

The given Hamiltonian may be expanded in a series ordered according to
the degree of homogeneity of the elements of the set

S=(WVE V-Ise).

With the notation of Sect. 7.6, we have

Hy=XE)+X4(E)+---, (7.58)
where )
X, = 1fE, X, = 21/5152, (7.59)
and
Hl = va(¢l7¢375713)7 (760)
k>1
where

VI = Bycosdr + Moy/—2I5 cos (¢1 + ¢3)

V2 = bols + Loy/—2I5 cos g3 + a1 2

V3 = BiEcos ¢y + MiE\/—2I5 cos (¢1 + ¢3) (7.61)
V& = b1 Bl + LB/ 215 cos ds + ;aQEQ

The perturbation equations are (7.36). It is worth noting that those equa-
tions were obtained under the hypothesis that every Poisson bracket loses two
units in its degree of homogeneity because of the differentiations. This is the

3 It is useful to have in mind the orders of the various quantities present in this
equation: a,b, M and their derivatives are finite quantities; B, L and their deriv-
atives are of order O(¢); Z, I3 are of order O(e?).
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case also in this example for both pairs of variables (¢1,Z) and (¢3, I3), re-
gardless of the fact that we have not yet introduced the non-singular variables.
The homological equation is

{H;, Wi} = Hy — Wi(971, 03, 5%, 13), (7.62)

where
= OE te (BO cos &% + Mor/—21% cos (¢ + ¢>§)) . (7.63)
The two terms of H3 have arguments including the angle ¢7. When Jupiter

is on a circular orbit, only M\/—2I; cos (¢} + ¢3) remains. It is, then, chosen
as the main one and we define a new set of canonical variables (6*, J*) through

=01+ =l .
— .64
05=0} J3==* — I. (7.64)

We are interested in solutions with |I3| small. We then replace 65, J; by the
non-singular variables
xi=y/—2J; cos b5

yi=+/—2J; sin ;. (7.65)
With the new variables, H3 becomes
Hj} = v7E* 4+ ¢ (Bg cos 05 + MoxT), (7.66)
where )
E*=J) — Z(xfz +472). (7.67)
The Hori kernel is
dz} 0H;] dy; 0H;
_ — 0% - _ — o, % M
du oy 14 du Ox3 ity —eo (7.68)
do;  OH; o dJ; _  0H; _ B sin 0 '
du oy du — ey — CUOmR2
whose general solutions are
M,
a:f:(]cosv+6yoo y; = Csiny
1 B, . . (7.69)
05 = viu + 605 Jy = ~ e cosf5 + J3,
1
where
v =viu+07.

(05 and 05 are two independent integration constants.) Before continuing, it is
worthwhile noting that the integration constants C' and J5 are, respectively,
of orders O(e) and O(g?), so that Z* = O(?) as assumed.



178 7 Non-Singular Canonical Variables

First Perturbation Equation
The first perturbation equation is
{H;, W3} = Hy — s, (7.70)
where (with the new variables)
W3 = Vi = e [boJ; + Lo(x} cos Oy + yj sin ) + a1 =¥ (7.71)

(since V3 = 0). Once the solution of the Hori kernel is substituted into ¥3, we
get

H; = <¥3 > (7.72)
1 2 1 3 M(? o o o
= —25(b0 +a)C* — oF (bo + a1) o2 +eayJs +eLoC cos (67 — 03)
1
and
Wy = /(w3 — H)du (7.73)
g2 g?
= o2 (MoLo — a1 Byp) sin (v{u + 65) — o2 (bo + a1)C My sin (v7u + 67).
1 1

The only necessary condition is that v{ is not a small quantity (non-resonance
condition).

The integration constants 65,605, C,Js are not canonical and the above
functions may be transformed into Hj(z7,y:,05,J3) and W5 (a7, 7,05, J5)
before the next step, since ¥y includes the calculation of { H3, W5'}. In this ex-
ample, this task may be accomplished trivially, but in more complex examples,
this may not be the case.

Angle—Action Variables of H}

The frequent use of the inverse of the general solutions of the Hori kernel may
be avoided if those solutions are written in terms of the parameters (o, 3) of
the corresponding Hamilton—Jacobi equation or, equivalently, the angle—action
variables of Hj. Poisson brackets are invariant to canonical transformations
and we may calculate them using the parameters («, 3) or the angle-action
variables of H3. In the given example, HJ is separated into

Hy = Ki(a1,y7) + Ka(63, J3), (7.74)

where

1 o/ % * *
Ky = oMt (7> 4 y7?) + e Mo}

Ko =17J5 +eBycosb; (7.75)

and both sets of canonical parameters may be easily constructed. We will use,
in this example, the angle—action variables:
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o Angle—action variables of K1: K; is a harmonic oscillator with frequency
v{. Then, keeping the same constants as before,

wy = |7 |u+ 607 (7.76)

and

M 2
yi+ (:q - gyc)o) ] . (77T

1 C? 1
A = *d * = =
1 277%1/1 =+, =%, i

The sign of A; may be chosen as opposite to the sign of v7.

e Angle—action variables of Ko: All solutions of K5 are isochronous circula-
tions with frequency v7. Then

wy = |v7|u+ 65 (7.78)

and

1 B,
Ay = ij;dag Sy g (J; + EVOO cos 9;) . (7.79)

27 T
The sign in front of J$ may be chosen as equal to the sign of v5.

With the angle-action variables thus introduced, the energy is
Ey = [17|(Ar + A2). (7.80)

This system is degenerate and one more change of variables, in the direction
contrary to that given by (7.64), is useful:

w1 = Wo A=Ay + Ay
- ~ 7.81
W3 = W1 — W2 A3:A1 ( )
(see Sect. 2.7.1), where we restored the subscript 3 to make evident the cor-
respondence with the variables of the given problem. The energy becomes

EQ = |I/f|/11. (782)

If, to avoid unnecessary complicated notation with double signs, we assume
vy > 0, we may write the general solution of (7.68) as

M,
&} = /=241 coswy + c OO Y} = /=241 sinwy
"1 7.83)
B (7.
05 = woy Jé“:/lg—6 00 CoSs wo,

1

instead of (7.69). Once these solutions are substituted into s, instead of (7.72)
and (7.73), we get
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H; = <¥3 > (7.84)

- 1 M?2 - - -
e(by + a1)As — 253(b0 +aq) Vog +ear (A — As) + 6L0\/—2A3 COS W3
1

and
Wy ::(/kiﬁ-—fii)du (785)
g2 ) &2 i
- wﬂM%LO_“ﬂ%“mﬂh—Vwam+aﬂkﬁ¢—mhanwn+w9.
1 1

O

We will not continue the calculations, since they are, now, simple appli-

cations of the given routines. We just recall that the Poisson brackets in ¥y
(k > 4) are more easily computed through

./ 9f 89 g Of
(1= (o 0~ o) (750
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Lie Series Theory for Resonant Systems

8.1 Bohlin’s Problem (The Single-Resonance Problem)

The integration of the homological equation of the general perturbation the-
ories of Chaps. 3 and 6 is only possible when the short-period frequencies v},
(uw=1,---, M) obey the non-resonance condition

M
(hlv*) = huv) #0 (8.1)
p=1

for all h = (hy,---,hy) € Z" appearing in the right-hand-side trigonometric
polynomials. The strong restriction introduced by this condition is the very
reason for which, in general, those theories cannot be extended to an arbi-
trarily high order. As discussed in Sect. 3.3.1, the set Dj, C Z" of values of h
grows with the order of approximation k and values of (h|v*) smaller than any
given limit may be formed as the set Dy grows. However, in the applications,
we are often interested in a phase space domain where (h|v*) = 0 for some h
present in the given perturbation e R(6, J; ). We have, then, to extend canon-
ical perturbation theories to such cases and learn how to construct formal
solutions valid in the neighborhood of resonances.
The general Hamiltonian in perturbation theory is

H = Hy(J,) +eR(0,J;¢) (8.2)

with 8 = (01,---,0n), J = (J1,---,Iy)and p=1,---, M < N. R is a smooth
function in TV x O x I (O C RY is an open set and I C R) represented by
a trigonometric polynomial in 6. We, generally, write,

R = Rs)+ RLp) + Rsp),

where the subscripts (S), (LP), (SP) mean secular, long period and short
period, following the definitions given at the end of Sect. 3.4. At variance
with the assumed non-resonance condition of general theories, we assume,
now, that, for some h € Z" and some J* € O, we have, simultaneously
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M —
(a.) Z huv;, = 0;
p=1

(b.) either the trigonometric polynomial R(gp) includes one term Ay cos (Ah[6)
(A € N) or one such term will be formed in the calculation of some Wy,
(k <mn).

This means that one resonance has to be considered in the solution of the
given problem.

For simplicity, we assume that all non-critical short-period angles were
eliminated beforehand from H with the help of one of the previously discussed
general theories using von Zeipel’s averaging rule. We also assume that a
Lagrangian point transformation such as (3.51) transformed the Hamiltonian
of the resulting system into

H = Ho(J) +R(0, Je). (8.3)

Our problem is then stated as the search for formal solutions of the Hamil-
tonian (8.3) in a neighborhood of the value J; = Jj, where

dHy
dJ1 Ji=J;

*_
vy =

= 0. (8.4)

The problem of finding a formal canonical transformation able to elim-
inate the angle corresponding to the critical frequency (h | v*), from the
Hamiltonian, was first proposed by Bohlin (see Appendix A) and is referred
hereafter as Bohlin’s problem. As discussed in Appendix A, it is shown that
all attempts at solving Bohlin’s problem in the presence of the degenerate
actions J, (0 = 2,---, N), with classical theories, lead to an unsolved singu-
larity (Poincaré singularity). The solution of Bohlin’s problem in the presence
of degenerate actions using Lie series theory is the subject of this chapter and
the next.

8.2 Outline of the Solution

There is no general recipe to solve the single-resonance problem. We know
that Hori theory, as given in Chap. 6, cannot be used to construct a for-
mal solution of the stated single-resonance problem because Hy(J1) is not a
topologically adequate Hori kernel in the neighborhood of a resonance. In the
simple one-degree-of-freedom case, the Poincaré-Birkhoff theorem states that
the perturbation R may change the topology of the phase plane by introduc-
ing a finite set of new equilibrium points. The new stable equilibrium points
are centers of libration lobes separated from the general flow by asymptotic
motions emanating from unstable equilibrium points. A simple example of
such a flow bifurcation is shown in Fig. 6.2 (left). General theories fail in the
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neighborhood of a resonance because they consider the undisturbed Hamil-
tonian as the Hori kernel, regardless of the topological differences between
the flows of disturbed and undisturbed Hamiltonians. This diagnosis of the
origin of the small divisors appearing in general theories, at resonances, is the
only clue that we have to attempt a solution of Bohlin’s problem: The only
way to study resonant problems is to get rid of Hy(J1) as the Hori kernel and
to choose a new one whose flow reproduces the main topological features of
the given flow in the neighborhood of the resonance. At this point, it is not
superfluous to emphasize that this is not enough to get rid of all problems.
It is only good to get formal solutions with the assigned topological features.
The real nature of perturbed Hamiltonian flows is much more complex. For
instance, when the order of the solutions inside a libration zone is pushed
too far, small divisors due to other resonances are unavoidable. In practice,
these other resonances generally appear as commensurabilities amongst the
low-frequency terms of Ry p) (secular resonances) or among the low frequen-
cies and the proper frequency of libration around one stable equilibrium point
(secondary resonances) (see Fig. 4.3). These resonances are, generally, the
only ones taken into account; but one may be aware that the process of elim-
in