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Abstract: Transmission Line Modelling, TLM, is an established technique for
simulating electromagnetic fields in a wide variety of application areas. As with
any numerical algorithm, the complexity of the problem that can be practically
dealt with is determined by the availability of computational resources.

Particularly demanding of resources are simulations that involve a diverse
range ofphysical scales, all of which have a discern able impact on the results of
the simulation and which therefore must be adequately modelled. One recurring
illustration of this, typical of EMC predictions, is the inclusion of thin wires
in simulations of large-scale objects and where a significant volume of empty
space must be modelled.

Previously, a specific TLM node has been developed that allows a single thin
wire to be analytically embedded within one of the TLM nodes; centrally in 3D
and arbitrarily placed in 2D. In this work we extend this formulat ion to provide
a 2D TLM node that can include an arbitrary number of arbitrarily placed thin
wires within one cell and which are coupled by their near fields. This is of
particular interest for simulating cabling looms as well as for consideration of
certain classes of micro-structured materials .

9.1 Introduction

Modeling for electromagnetic compatibility (EMC) requires dealing with
systems that are both electrically large and yet contain small -scale features
that significantly affect the overall behavior. The epitome of this scenario is
the integration of thin wires into numerical simulations of large-scale objects
separated, or surrounded, by a significant volume of empty space . Transmis­
sion line modeling (TLM) is a full wave numerical electromagnetic simulation
method, I which offers both ease of use and flexibility and is, therefore, often
applied to such EMC problems. Although, in principle, the use of fine mesh­
ing and multi -gridding techniques are possible with TLM, in practice, these
can result in excessive storage and computational times in the above scenario.
In an attempt to overcome these limitations, various special TLM approaches
have been introduced to deal with thin wire structures, including the use of
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separated or integrated solution procedures.? diakoptic techniques.' and spe­
cial, nonstandard wire node models.i -' However, in all cases , the wires are
assumed to be straight and orientated along one of the Cartesian axes.

An alternative thin wire TLM model has recently been proposed, which
embeds the known analytical solutions in the immediate vicinity of the wire
within an individual TLM node. This approach has been found to be ex­
tremely accurate without incurring any additional computation overheads.v"
This model has also been extended to the case of offset wires, removing the
restriction that wires must lie at the centre of the node,? so that the only remain­
ing shortcoming of this technique is that it is only possible to model one wire
in each TLM node, which precludes its use for wires in very close proximity
or for the important case of wire bundles. In this paper, the extension to this
case is presented. As before, the local field is represented as a superposition of
analytical field solutions, which are then sampled on the link lines of the TLM
node, resulting in second order accuracy and guaranteed stability. A number of
practical examples are presented and validated against exact analytic solutions.

9.2 Theoretical Formulation

Consider an arbitrary number of infinitely long z-directed wires in close prox­
imity so that they all lie within the scope of one TLM node. The TLM node
has four link lines entering into it and upon which the voltages and currents
represent the electric and magnetic fields. As the circuit quantities in the TLM
node represent the fields in a closed volume of space, the required relationship
between all the link line currents and voltages is of the form

4
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where the admittance matrix , t, is Hermitian. The explicit construction of
the admittance matrix from theset ~ requires identifying a set of four local
solutions to Maxwell's equations whose magnetic and electric fields at the link
line sample points satisfy!!:.." = YII~ '

The total field can be expressed as

E
T

= E
i +LE~

q=1

where E i is an incident field and E~ represents the field scattered from the qth
wire. The field scattered from each wire can be analytically expressed in terms
of Hankel functions centred upon its own local coordinate system , as shown in
Figure 9.1.
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where k = wlc, wand c being the angular frequency and the speed of light in
vacuo. Each component of this expansion can then be re-expressed in terms
of the coordinate system of the pth wire using the Bessel function summation
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Figure 9.1 Notationusedtodescribethe multi-wireTLMnode.The wiresare numbered
from I .
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where g = e: jnllpJ (kr ) so that fT = gT Tpn n pr» "-<l _p=pq
Enforcing the vanishing of the total tangential electric on the surface of the

pth wire requires that

00
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where the incident field, e has been defined in terms of the coordinate system
centred on the node. Ei can be re-expressed in the coordinate system of the pth

wire using a matrix U, derived in the same manner as T above, i.e.,
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Therefore, satisfaction of the boundary conditions.on the wires requires that for
all p
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which, for convenience, can be expressed as

U Xi + A XS +"T K' = 0
==po~ ==p--p ~==pq~

q#t'

where 4,p is a diagonal matrix of elements H~2)(kap)/Jm(kap), ap being the

radius of the plh wire. This is a linear problem which can be solved for the
scattering coefficients, K~, given the excitation coefficients X1.In general,

K' = M Xi--p =p~

To allow the mapping of the fields onto the TLM node, it is now necessary to
express the total scattered field in the coordinate system centered on the node,
which upon application of Green's theorems , is given by
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Therefore, the total fields are given by

. . (d
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Now the eigenvalue problem discussed above can be imposed by requiring
that the total electric field is proportional to the total magnetic field on the link
lines, i.e., at r = IJ. and ¢o = 0, n /4, n and 3Jr/4, where IJ. is half the nodal
spacing . Therefore, we solve for the four lowest order eigensolutions of

(

dgT dfT )
=0 + =0 N Xo = Y(gT + t" N) Xo
dr dr - =0 =0-

Given the solutions of this problem and the corresponding electric and mag­
netic fields, the admittance relationsh ip for the TLM circuit model is now con­
structed as described above.

9.3 Numerical Results

Before the full capability of the new multi-wire node is demonstrated, results
for the special case of a single wire, centrally positioned within a node, are
compared and validated against those from the TLM node specifically designed
for this case? and the analytical solution . An infinitely long z-directed wire is
placed in the x-y plane with perfect magnetic (open circuit) boundaries at the
top and bottom of the calculation window and excited by an incident plane wave
pulse polarized parallel to the wire, as shown in Figure 9.2.

The simulation parameters are: node size = 0.05 m, total mesh area 60 m x
60 m, and the wire radius a = 0.00625 m, r = 0 m and B = 0°, where rand
Bare the distance and angle from centre of the TLM cell, respectively.

Figure 9.3 shows the electric field observed at the point OP, placed either two
or eight nodes in front of the wire to assess both the near and far field accuracy.
The frequency is normalized to the maximum frequency in the TLM simula­
tion. From the graph it is observed that the multi-wire node provides excellent
accuracy over the normalised frequency range, even beyond the normalised
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Figure 9.2 General test configuration: OP,observation point: W, - wire position.

frequency of 0.1, which is conventionally accepted to be the dispersion limit
of TLM. Figure 9.4 presents the far field phase response of the field scattered
from a wire for the same experiment.

The results presented so far indicate that the new multi -wire node can
correctly model the single, centred wire case. To demonstrate its use with mul­
tiple wires an example with five wires of different radii and locations inside a
single TLM node is examined. The simulation parameters are: mesh size = 0.05
rn, total mesh area 60 m x 60 m, wire radii : at = 0.00625 m, ai = 0.003125
m, a3 = 0.003 m, a4 = 0.005 rn, as = 0.0075 m, and the distances and angles
from the centre of the node with reference to Figure 9.2 are: rl =0.0 m, ri =
0.0125 m, r s =0.015 m, r4 =0.01625 m, as =0.015 m, and (JI = 0°, (J2 = 30°,
(J3 = 130°, (J4 = 225°, (Js = 320°, respectively.

Figures 9.5 and 9.6 show the amplitude of the total field and a phase of the
scattered field for the five wires in a single TLM node. Clearly, the multi-wire
technique can accurately model multiple wires with arbitrary placement within
the cell and arbitrary radii, as very good agreement with theoretical results is
observed.
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Figure 9.3 Magnitude of theelectricfield observed bothtwo andeight nodesbeforea singlecentrally
placedwire excitedby a plane wave.
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Figure 9.4 Phase of the electric field observed eight nodes before a single centrally placed wire
excited by a plane wave.

The next two examples illustrate that the methodology developed above can
also be modified to allow for more complex cylindrical scatterers. Specifi­
cally, small radii dielectric rods as well as dielectric coated conducting wires .
Figure 9.7 shows the amplitude of the total electric field observed in front of
two dielectric wires of the same radius a = 0.00625 m, placed in TLM cell at
the same distances r = 0.0125 m from centre but at different angles 8) = 45°
and 82 = -45°, respectively, for two different values of permittivity.
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Figure 9.5 Magnitude of the electric field observed two and eight nodes in front of the node
containing five wires when excited by a plane wave.
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Figure 9.6 Phase of the electric field observed five nodes in front of the node containing five
wires when excited by a plane wave.

Figure 9.8 shows the amplitude of electric field measured in front of three
wires of radii al = 0.005 m, a2 = 0.00625 m, a3 = 0.0075 m coated with
dielectric relative permittivity 100 and radius a = 0.0125 m. The distances of
wires from the centre of the cell are rl =0.01 m, r2 = 0.01125 m, rs = 0.0125 m
and angles 01 = 45°, 02 = -45°, 03 = 180°, respectively.
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Figure 9.7 Magnitude of the electric field observed two and eight nodes in front of the node containing two
dielectric wires when excited by a plane wave: a) er = 10 and b) er = 50.
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Figure 9.8 Magnitude ofthe electricfield observedtwoandeightnodesinfrontof thenodecontaining
threedielectriccoated wires whenexcitedby a planewave.

9.4 Conclusion

The high quality of the results presented above demonstrates that the multi­
wire model has the ability to accurately integrate thin wires into a 2D TLM
coarse mesh . There is no restriction on the number of wires, wire radii or their
placement within a cell. The good accuracy of the results extends well beyond
the frequency limit defined by requiring 10 nodes per wavelength. Finally,
it has been shown that the approach easily extends to the case of dielectric
rods or dielectric coated wires , and as no significant computational overhead is
incurred, the new node is a powerful tool for numerical description of cabling
looms and bundles or wire shields.
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