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Abstract: When an ultra-wideband electromagnetic pulse penetrates into a
causally dispersive dielectric , the interrelated effects of phase dispersion and
attenuation alter the pulse in a fundamental way that results in the appearance
of precursor fields. For a Debye-type dielectric, the dynamical field evolution
is dominated by the Brillouin precursor as the propagation distance exceeds
a penetration depth. Because of its nonexponential peak decay, the Brillouin
precursor is of central importance in ultra-wideband electromagnetics. Of equal
importance is the frequency structure of the Brillouin precursor which exhibits
a complicated dependence on both the material dispersion and the input pulse
characteristics. A Brillouin pulse is defined and shown to possess optimal ma­
terial penetration .

8.1 Introduction

The dynamic evolution of an ultra-wideband electromagnetic pulse, as it
propagates through a causally dispersive dielectric, is a classical problem' <'
in electromagnetic wave theory with considerable current interest.v " For a
causally dispersive medium, the frequency dependent phase and attenuation
are interrelated through a Hilbert transform pair.5 Because of this, an ultra­
wideband pulse undergoes fundamental structural changes as it propagates
through a causally dispersive material. Each spectral component present in the
initial pulse travels through the dispersive medium with its own phase velocity
so that the phasal relationship between the various spectral components of the
pulse changes with the propagation distance. In addition, each monochromatic
spectral component is attenuated at its own rate so that the relative ampli­
tudes between the various spectral components of the pulse change with the
propagation distance . These two interrelated effects result in a complicated
dynamical evolution of the propagated field6- 8 that is accurately described by
the asymptotic theory as the propagation distance exceeds a value set by the
absorption depth of the material at the input pulse carrier frequency." For an
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ultra-wideband pulse, these combined effects manifest themselves through the
formation of well-defined precursor fields which asymptotically dominate the
dynamical field behavior in the mature dispersion regime.v '?

The precursor fields are a characteristic of the material dispersion.!" the
input pulse merely providing the requisite spectral energy in the appropriate
frequency domain. For the Lorentz model I1 of resonance polarization phenom­
ena , used throughout the classical theory of dispersive pulse propagation in
materials that exhibit anomalous dispersion.!"!" both a high-frequency Som­
merfeld precursor and a low-frequency Brillouin precursor are present in the
propagated field structure when the input pulse is ultra-wideband. Additional
precursor fields may also exist in the passband between each absorption band."
For both the Debye model' ? of orientational polarization phenomena and the
Rocard-Powles extension!' of the Debye model, only the Brillouin precursor
field is present in the propagated field structure.10 Because of its unique nonex ­
ponential peak decay, the Brillouin precursor has direct application to foliage
and ground penetrating radar, remote sensing and wireless communications in
adverse environments.

8.2 General Formulation

Plane wave electromagnetic pulse propagation in a temporally dispersive
medium may be derived from the Fourier-Laplace integral representation of
the scalar wave''

A(Z,t)=_l {j(w)exp{i[k(w)~z-wt]}dw, (I)
2rr Jc

for ~z == z - zo ~ 0, where f (t) = A (zo, t) with temporal frequency spec­
trum j (w). Here A (z, t) represents any transverse component of the electric
or magnetic field whose spectrum satisfies the Helmholtz equation

(V 2 + P (w») A(z, w) = 0, (2)

with complex wavenumber k (w) = (wlc) n (w), where n(w) = (c(w)lJ.,/cOIJ.,0)1/2
is the complex index of refraction of the homogeneous, isotropic, locally lin­
ear medium with constant magnetic permeability IJ., and frequency-dependent
dielectric permittivity e (w). For f (t) = u (t) sin (wct + 1/1) with fixed carrier
angular frequency W c > 0, Eq. (I) becomes

A(z,t)= 2~m{ieXP(-i1/l)lU(w-wc)exP{i[k(W)~Z-wt]}dW}'

(3)

for all z ~ Zo, where 1/1 is a phase constant and u(w) denotes the temporal
frequency spectrum of the initial pulse envelope function u (t). If the initial
time behavior A (zo, t) = f (t) of the plane wave field at the plane z = zo is
zero for all time t < °and if the model of the material dispersion is causal ,
then6.8 the propagated field given by either Eq. (I) or (3) identically vanishes
for all t < ~z/c with ~z > 0.
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8.3 Asymptotic Description in Debye-Type Dielectrics

In the asymptotic approach, the integral representation, Eq. (3), is written as1-8

A(z,t)= 2~m{ieXP(-i1/t)£U(W-Wc) exP[(t1ZIC)41(W ,8)]dW} '

(4)
with an analogous expression for Eq . (I). Here

41 (w , 8) == i (clt1 z) [k (w) t1z - wt] = ito [n (w) - 8] (5)

is the complex phasefunction and 8 == ctIt1z is a dimensionless space-time
parameter. The asymptotic description of (4) for large t1z > 0 proceeds by
first determining the set of saddle points of 41 (w, 8) for 8 > 800 , where 800 ==
lim {n (w)} ::: I . The condition that 41' (w , 8) = 0 at a saddle point yields the

w->oo
saddle pointequation n (w) + om' (w) - 8 = O.

For a single relaxation time Rocard-Powles-Debye model dielectric,12.13 the
complex index of refraction is given by

n(w)= [ coo + ( )] ~,
(I - iWT) 1 - iWTf

where a == C,< - Coo with C,< == C(0) and Coo == lim {c (w)} . Here r denotes the
w-> oo

relaxation time and Tf the frictional relaxation time of the dielectric mate-
rial, where typically T > Tf . Notice that the Debye model is obtained when
Tf = O. The branch points of n(w) include the singularities Wpl = -iITf,
Wp2 = -i Ir and zeroes Wzi = -i (rp - cz)/(2T~) , Wz2 = -i (Tp + cz ) /(2 r~ ) ,

with Tp == r + r F: T~ == rTf , and cz == JT~ - 4rJ, (I + alcoo). Appropriate

parameter values for triply-distilled water at 25°C are given by Coo = 2.1,
a = 74.1, T = 8.44 X 10- 1205 , and Tf = 4.62 X 1O-14s.

For a Debye-type dielectric, the saddle point equation yields!" just a near
saddle point solution in the low-frequency domain Iwi :s IWp21about the origin .
For Iwi « IWp21, the complex index of refraction given in Eq. (6) may be
approximated as

aT
2

[T;(coo+3c,<) ] 2 arp
n(w)~80--.!!!. . -I w +i-w,

280 4c,< rJ, 280

where 80 == n (0) . With this substitution, the saddle point equation yields the
approximate near saddle point solution

WN (8) ~ i!- [I - /1 + 3; (8 - 80)] , (8)
3~ V K

for 8::: 800 ~80 -K2/3~ with ~ == (aT~/280)[r;( coo +3c,<)/(4c ,<T~) - 1]
and K == arp(280' This saddle point moves down the imaginary axis as 8 in­
creases from 800 , crosses the origin at 8 = 80, and then approaches the branch
point W p2 = -i IT in the limit as 8 -+ 00.

The integral representation in Eq . (4) may be expressed'<" in terms of an
integral I (z, 8) with the same integrand but with a new contour of integration
P (8). By Cauchy's residue theorem, these two contour integrals are related by
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A (z, t) = I (z, 0) - 9t {2rri A (O)} , where A (0) is the sum of the poles of the
integrand in Eq.(4) that were crossed in deforming C to P (0). This residue con­
tribution is nonzero only if it (w - we) has poles. For the asymptotic evaluation
of the contour integral I (z, e), as ~z -+ 00 in a Rocard-Powles-Debye model
dielectric, the path P (e) is taken as the Olver-type path6,8,14 through the near
saddle point WN (0). Both the nonuniform and uniform asymptotic descriptions
of the propagated field may then be expressed either in the form6- 8, to

A (z. t) r-.J A B (z, t) + Ae (z , t) (9)

(10)

as ~z -+ 00, or as a superposition of expressions of the form given in Eq. (9).
For example, an input rectangular envelope pulse of temporal duration T > °
may be expressed as the difference between two Heaviside unit-step-function
signals displaced in time by T, each propagated signal being described by
the asymptotic expression given in Eq. (9), the first being referred to as the
leading-edge field and the latter as the trailing-edge field. The propagated field
component AB (z. t) appearing in Eq. (9) is due to the asymptotic contribution
from the near saddle point WN (e) and is referred to as the Brillouin precursor. to

The propagated field component Ae (z, t) is due to the pole contributions A (e),
if there are any, and is referred to as the signal.

The asymptotic description of the Brillouin precursor in a Rocard-Powles­
Debye model dielectric is obtained through a direct application of Olver 's
theorem 6,8,14 with the result

As (z, I) - 11l!exp . - . "') [2H l>z<," (~N (0),.r
x it (WN (e) - we) exp [ ~Z ¢ (WN (e) , e)] }

as ~z -+ 00 with e > eoo.This expression is uniformly valid for all finite e >
eoo provided that any pole singularities of the spectral function it (WN (e) - we)
are sufficiently well removed from the near saddle point location .

The Brillouin precursor described by Eq. (10), which is characteristic of
Debye-type dielectrics.!" appears as a single positive pulse with peak ampli­
tude occuring at the space-time point e = eo = n (0), so that it propagates
with the velocity vo = eNo = cfn (0) through the dispersive dielectric. Since
n (0) > n; (w) for all real W > 0, the peak amplitude velocity is the minimum
phase velocity for a pulse in the given dispersive Debye-type dielectric. Since
WN (eo) =°and ¢ (WN (eo) , eo) = ¢ (0, eo) = 0, Eq. (10) then shows that the
propagated field amplitude at this space-time point is given by

AB(Z,tO) r-.Jm!eXP(-iJ/!)it(-We)[ -ie ]~I (II)
4rrn' (0) ~z

as ~z -+ 00 with to == eo~zle, and the peak amplitude point in the Brillouin
precursor only decays algebraically as I j.fifi..

Although the instantaneous oscillation frequency of the Brillouin precursor
at the peak amplitude point is identically zero, this does not mean that the Bril­
louin precursor is a static field. A physically meaningful frequency measure is
determined by the temporal width of the Brillouin precursor, which is deter­
mined by the e- I points of the exponential function exp [(~zle) ¢ (WN (e) , e)] ,
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given by (!::J.z/c) ¢ (WN (B), B) = -I. Since these two points occur about the
peak amplitude point B = Bo = n (0) when the near saddle point crosses the
origin , it is appropriate to approximate ¢ (w, B) about the origin by the first few
termsofit'sMaclaurin'sseriesexpansionas¢(w, B) ~ ¢ (0, B) + ¢ ' (0, B)w +
(I (2) ¢ " (0, B) w2, where ¢ (0, B) = 0, ¢ ' (0, B) = i (Bo - B), and ¢ " (0, B) =
2in ' (0) . As a first approximation, take ¢ (W N (B), B) ~ i (Bo - B) WN (B). With
the approximate near saddle point location given by Eq. (8), the space-time
locations of the e- I points are found to be given by

(12)

The temporal width of the Brillouin precursor is then given by

as !::J.z ---+ 00. This then corresponds to the oscillation frequency

( )
~

I I Boc
Js = 2!::J. Tn ~ 4 a (T + Tf) !::J. z

(13)

(14)

(15)

of the Brillouin precursor as !::J.z ---+ 00. These two results then show that the
temporal width and oscillation frequency of the Brillouin precursor are set by
the material parameters independent of the input pulse for sufficiently large
propagation distances. Notice that the oscillation frequency of the Brillouin
precursor approaches zero as the propagation distance increases to infinity, in
which limit the Brillouin precursor becomes a static field (with zero amplitude).
Numerical results presented in Figure 8.1 show that for an input single cycle
rectangular envelope pulse , the effective oscillation frequency Jeff of the prop­
agated pulse decreases monotonically from the initial pulse carrier frequency
feat !::J. z = 0 and asymptotically approaches the curve described by Eq. (14) as
!::J.z ---+ 00, the transition to the asymptotic behavior occuring when !::J.z / Zd rv I,
where Zd = a -I (we) denotes the e- I penetration depth at the carrier angular
frequency We, where a (w) = ~ Ik(w) I is the attenuation coefficient of the dis­
persive dielectric.

8.4 Optimal Pulse Penetration

Because the peak amplitude of the Brillouin precursor decays only as (!::J.Z)-1 /2,
it is then seen that an input pulse that is comprised ofa pair of Brillouin precursor
structures with the second precursor delayed in time and n phase shifted from
the first will possess optimal penetration into the dispersive dielectric. This
so-called Brillouin pulse is obtained from Eq. (10) with !::J. z set equal to Zd =
a -I (we) in the exponential and the other factor s not appearing in the exponential
set equal to unity. The input Brillouin pulse is then given by

I' () [¢ (WN (B) , B)] [¢ (WN «».Br)]
J BP t = exp - exp ,

wen; (we) wen; (wJ

where Br = B - cT / Zd with T > 0 describing the fixed time delay between
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Figure 8.1 Effective oscillation frequency (in Hz) of a single cycle rectangular envelope
pulse as a function of the propagation distance (in meters) in triply-distilled water for
0.1 GHz, 1.0 GHz, and 10 GHz input pulse frequencies . The solid curve describes the
asymptotic behavior given by Eq, (14).
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Figure 8.2 Peak amplitude as a function of the relative propagation distance in triply­
distilled water for the input unit amplitude single-cycle rectangular envelope pulse and
the Brillouin pulses BP1, BP2, and BP3 with 1 GHz carrier frequency. The solid curve
describes pure exponential decay with propagation distance.
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the leading and trailing edge Brillouin precursor components . If T is chosen
too small , then there will be significant destructive interference between the
leading and trailing edge precursors and the pulse will be rapidly extingui shed.
For practical reasons, 2T should be chosen near to the inverse of the operating
frequency f e of the antenna used to radiate this pulse .

The numerically determined peak amplitude decay with relative propagation
distance !:i.Z/Zd is presented in Figure 8.2. The lower solid curve describes
exponential attenuation as given by exp (- !:i.Z/Zd), and the lower dashed curve
describes the peak amplitude decay for a single cycle pulse with f e = I GHz.
Notice that the departure from pure exponential attenuation occurs when
!:i.Z/Zd ~ 0.5, as the leading and trailing edge precursors emerge from the
pulse . The dashed curve BPI describes the peak amplitude decay for the
Brillouin pulse in Eq. (15) with T = 1/(2fe), BP2 describes that for the
Brillouin pulse with T = I/fe' and BP3 describes that for T = 3/(2fe)' If
the initial field is perturbed from that given in Eq. (15), the peak amplitude is
decreased. Hence, by adjusting the time delay between the leading and trailing
edge Brillouin precursors, optimal pulse penetration can be obtained over a
given finite propagation distance .
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