
Chapter 8

MODELING CSCL SCRIPTS - A REFLECTION
ON LEARNING DESIGN APPROACHES

Yongwu Miao, Andreas Harrer, Kay Hoeksema, and Heinz Ulrich Hoppe
Universitdt Duisburg-Essen

Abstract: The design of collaboration scripts is a new focus of research within the CSCL
research community. In order to support the design, communication, analysis,
simulation and also the execution of collaboration scripts, a general specifica­
tion language to describe collaboration scripts is needed. In this chapter, we
analyze the suitability and limitations of IMS LD for modeling collaborative
learning processes. Based on the analysis, we propose an approach to design­
ing a CSCL scripting language. This chapter presents the conceptual frame­
work of this modeling language and the solutions to the identified problems of
IMS LD for formalizing collaboration scripts. Especially, we compare the two
approaches through modeling the same collaboration script by using IMS LD
and our own CSCL scripting language.

1. INTRODUCTION

According to O'Donnell & Dansereau (1992) a collaboration script is a
set of instructions specifying how the group members should interact and
collaborate to solve a problem. The term script was initially used in schema
theory by Schank and Abelson (1977). According to schema theory, a script
is a mental structure representing the people's knowledge about actors, ob­
jects, and appropriate actions within specific situations. When members of a
learning group interact with each other, a shared script can help them to re­
duce the uncertainty about coordination efforts (Makitalo, Weinberger, Hak-
kinen, & Fischer, 2004), because they know how to behave and what to ex­
pect in particular situations. By providing learners with a collaboration
script, it is also possible to support learners in aiming at cognitive objectives
like fostering understanding or recall (Rummel & Spada, this volume). Ad­
ditionally, collaboration scripts might also foster the development of meta-
cognitive, motivational, or emotional competence (Kollar, Fischer, & Hesse,

118 Chapters

in press). A collaboration script is normally represented in the learners'
minds (internal representation) and can be represented somewhere in the
learning environment (external representation) with complex interplay be­
tween these two levels of representation (Carmien, Kollar, Fischer, &
Fischer, this volume). King elaborates on the cognitive perspective of CSCL
scripts (King, this volume). Because we focus on using collaboration scripts
in computer settings, we are interested in representing collaboration scripts
in a formal way so that they can be processed by the computer. Such a com­
putational representation of a collaboration script is called a CSCL script.

The conceptual components of a collaboration script and their relations
have been discussed in literature (Dillenbourg, 2002; Kollar et al., in press).
However, a general modeling language for formalizing collaboration scripts
is still missing and most CSCL scripts are embedded or encoded into the
learning support environment. Furthermore, there are only few correspond­
ing authoring tools for CSCL practitioners to create, reuse, integrate, and
customize CSCL scripts without substantial prerequisites of technical
knowledge; there are some proposals for script modeling based on finite
automata (Haake & Pfister, this volume) or statecharts (Harrer & Malzahn,
2006) to represent more complex learning processes than linear ones, yet this
representation might still be unfamiliar to the educational practitioner. As a
first step in the direction of a general CSCL scripting language we investi­
gate in existing learning process modeling languages. The most important
attempt in the current discussion in this direction is IMS Learning Design
(IMS LD; see IMS LD Website), a standard published by the IMS consor­
tium based on the earlier Educational Modeling language (EML) developed
at the Open University of the Netherlands OUNL (Koper, 2001). It is
claimed that IMS LD can formally describe any design of teaching-learning
processes for a wide range of pedagogical approaches (Koper, 2001; Koper
& Olivier, 2004). This modeling language has strengths in specifying per­
sonalized learning and asynchronous cooperative learning. However, IMS
LD provides insufficient support to model group-based, synchronous col­
laborative learning activities. Caeiro, Anido, and Llamas (2003) criticized
IMS LD regarding CSCL purposes and suggested a modification and exten­
sion of the specification. This modification and extension focuses on the
elements role-part and method part. Hernandez, Asensio, and Dimitriadis
(2004) suggested adding a special type of service, called "groupservice" to
extend the capacity of IMS LD. Such an extension at service level, rather
than at activity level, cannot appropriately capture the characteristics of col­
laborative learning activities, because different services may be able to sup­
port the same collaborative activity.

The research work presented in this chapter aims at developing a script­
ing language for formalizing CSCL scripts and exploring their potential

8. Modelling a CSCL script - a reflection 119

types of usage and system support possibilities. In this chapter, first we ex­
plain how a scripting language can help CSCL practitioners (e.g., teachers
and students) in the design phase (e.g., editing, communicating, predicting,
simulating) and in the execution phase (e.g., configuration, monitoring, scaf­
folding). Then, we clarify the limits of IMS LD when working on a compu­
tational methodology for the scripting of collaborative learning processes .
Based on the analysis, we propose an approach to design a CSCL scripting
language. Rather than a systematic description of the CSCL scripting lan­
guage, we present it by focusing on how the identified problems of IMS LD
for CSCL scripts are solved. In order to compare these two approaches, we
present how to model an example collaboration script with IMS LD and by
using our CSCL scripting language.

2. POTENTIAL USES AND SYSTEM SUPPORT OF
CSCL SCRIPTS

In the following we divide the potential uses of a CSCL modeling lan­
guage and the computer support it can enable into usage types during design
time and usage types while students are performing the learning activities
defined by a designed model. The first category is mainly oriented towards
the support of the designer in creating CSCL scripts, while the latter cate­
gory targets the amount of help a computer system can provide in imple­
menting effective scripts. Dillenbourg and Jermann provide a more general
discussion of the added value of computer support for learning scripts in
(Dillenbourg & Jermann, this volume).

2.1 Design time uses

The specification of learning processes using a modeling language may
have a broad variety of purposes on the part of the designer. Some educa­
tional designers use it as a note taking tool for lesson planning. Created
models can be saved and used (complete or partially) as a basis for further
development. Models can be used for communication between designers.
Even at an early state of development, when the model is far from being op­
erational, it can already express educational ideas. Though, due to the com­
plexity of collaborative learning processes, the models get excessively com­
plex and hard to understand. Therefore either reduction of the complexity
(by applying projections of specific elements or filtering techniques) or the
separation into different perspectives is a typical way to cope with the com­
plexity. The designer can switch between the different perspectives to keep
an overview, always choosing the perspective most suitable for further au-

120 Chapters

thoring. For learning processes typically the following aspects are relevant
and thus candidates for special perspectives:

Procedural/Temporal Perspective, Naturally the sequencing and timing,
that is, the process related aspects of the whole learning process, should be
represented explicitly

Artifacts Perspective, Artifacts given as resources, used as temporary re­
sults and the final outcome of learning activities constitute an important as­
pect of learning processes. Especially the change of artifacts over time (ver­
sion history) is information to consider by all participants of a learning proc­
ess.

Roles Perspective. For organization of specific tasks in group processes
the various roles needed for the tasks are an essential information, not only
during design time.

Individual/Group Perspective. To get an impression of the workload of
one specific member or one subgroup within a group process a perspective
stressing these individual aspects is a valuable information for the designer
to keep balance between the participants of the process.

The more details of a collaborative learning process are defined, the more
the authoring system can provide help to the designer. For example, depend­
encies or constraints between elements can be highlighted, such as necessity
of sequential phases or synchronizing the flow after a split into cooperative
sub processes. If the designer specified temporal constraints (minimum or
maximum time) for elements of the process, techniques from operations re­
search, such as optimization in network flows or critical path analysis can be
applied. A simulated execution of the specified learning process can give the
designer a more profound feedback on "what works and what does not?".
Imagine the benefit of doing a simulation run with information about se­
quence, time requirements, and produced artifacts before applying the whole
design to a real learning situation. The plausibility of the design can be
checked much easier than just based on the static structure of the model.
Deadlocks (e.g., when subgroups are waiting for each others' input) in the
process specification can be detected before making the bitter experience in
practical use.

2.2 Runtime uses

The first, weak approach to operationalizing the learning process for the
target user "at run time" is the configuration of the learning environment
with available tools, resources, communication structure and so on. If this
configuration is done once without dynamic addition and removal of ele­
ments we call this static configuration. "Compiling and instantiating" such

8. Modelling a CSCL script - a reflection 121

an environment from the specification should be the minimal functionality of
a system meant for "playing" the learning design.

While running a learning process model the system can monitor the ac­
tivities performed by the students. Monitoring functionality could be used
twofold: On the one hand the information can be used internally to adapt the
process according to the exact specification, on the other hand the monitored
information can be visualized to participants of the learning process and give
them information on what they have done and produced. This additional
feedback can be used to promote reflection about the process or the partici­
pants' own behavior, e.g., to stimulate meta-cognitive activities.

At the "informed end" of the spectrum of computer support we see the
potential use of the system for scaffolding the learning process, especially
when the "typical path" through the process was left by the participants
(Koedinger et al., 2004). An enriched specification can give advise to and
offer a scaffold to the learners on "what and when to do, how they can play
their assigned role besf and so on. Depending on the strictness of the scaf­
folding the system's behavior can vary between an unrestraining advisor and
an intervening tutor. Ideally a script could contain dynamic aspects for
adaptive fading in and fading out of scaffolds for the learners.

3. INVESTIGATING THE CAPACITY OF IMS LD
FOR FORMALISING COLLABORATIVE
LEARNING SCRIPTS

A collaborative learning experience can be described by a collaboration
script. Many collaboration scripts have been designed, tested, and even em­
bedded in CSCL applications (e.g., Hoppe & Ploetzner, 1999; Guzdial &
Turns, 2000; Miao, Hoist, Haake, & Steinmetz, 2000; Pfister & Muhlpfordt,
2002). When using IMS LD to formalize collaboration scripts, we see sev­
eral major difficulties and challenges:

Modeling groups: Modeling group work with IMS LD raises the problem
how to model multiple groups with the same role and how to model the dy­
namic changes of groups. IMS LD allows for defining muhiple roles. Each
role can be played by multiple persons. When investigating, we found that in
many cases the notational element of "role" can be used to model groups for
CSCL scripts. However, by using IMS LD it is very difficult to specify how
a group work pattern is assigned to several groups working in parallel and
how sub groups can be defined within these groups. If each group or sub­
group is defined as a role, the designer has to define a list of roles repre­
senting multiple groups. The problem of this solution is that the number of
groups in a run is unpredictable during the modeling phase. If only one role

122 Chapters

is defined for all members of all subgroups, then the information about
groups or subgroups will be missing and the run-time system cannot support
inter-/intra-group collaboration appropriately. In addition, in IMS LD roles
are assigned to persons before running a unit of learning and these assign­
ments stay unchanged within the life cycle of the run. However, in some
situations groups are formed and group members are assigned after the start
of the process execution. Therefore, in some situations, the notational ele­
ment of role cannot meet the requirement to model groups.

Modeling artifacts: A second major difficulty while modeling CSCL
scripts with IMS LD is the modeling of artifacts. In learning processes, ac­
tors usually generate artifacts such as a vote, an answer, an argument, or a
design. In IMS LD, an artifact can be modeled as a property, for example a
property of a person or a role, that creates the artifact. This property can be
used to maintain information such as the learning outcome of a person or a
role and to support personalised learning. In collaborative learning proc­
esses, an artifact is usually created and shared by a group of people. It is
normally used as an object of mediation to facilitate indirect interaction
among group members. It may be created in an activity and used in other
activities like in an information flow. In order to support group interaction,
an artifact should have attributes such as artifact type, status, created_by,
creation_activities, contributors, consume_activities, current_users, and so
on. By using IMS LD to model an artifact as a property, one has to model all
attributes of the artifact as properties as well. These properties should be de­
fined as a property-group with specific constraints. Such a complex defini­
tion cannot be understood intuitively. It will be very difficult to model dy­
namic features even for technically experienced designers, because the lim­
ited data-types of properties and the number of references needed make it
very complicated to handle artifacts. In addition, it is difficult to model a
collective artifact, because IMS LD does not support array-like data-types
for a property.

Modeling dynamic features: A third major difficulty while modeling
CSCL scripts with IMS LD occurs when modeling dynamic process aspects.
IMS LD provides two categories of operations on process elements: read-
access operations ("getters") to get the state of process elements (e.g., users-
in-role, datetime-activity-started) and write-access operations to change the
state of process elements (e.g., change-property-value, hide/show elements,
and send notification) to model dynamic features of learning processes. For
modeling collaborative learning processes, more of these read and write op­
erations are needed. At least, process element operations concerning our
proposed extensions like group and artifact should be extended. In addition,
some destructive or constructive operations (e.g., form a group with only
male members) should be added. Furthermore, more complicated operations

8. Modelling a CSCL script - a reflection 123

based on these elementary operations will be performed by run-time systems
or by users (e.g., to do the configuration and logistics work such as distribut­
ing artifacts within a group). Adding such actions will empower learning
designers to model complicated processes without being bothered by the
technical complexity.

Modeling complicated control flow: A fourth major problem is how to
model complex process structures. IMS LD provides play, act, role-part, and
activity-structure to model structural relations at different levels. Primarily
learning/teaching processes that are structured in a sequential way with con­
currently executable activities can be modeled. However, as Caeiro et al.
(2003) pointed out, the linear structure of a play with a series of acts intro­
duces a great rigidity while modeling network structures. Although it is pos­
sible to model non-linear structural relations among activities by using con­
ditions and notifications, the specification of a collaborative learning process
might be very complicated and confusing.

Modeling various forms of social interaction: The last difficulty we want
to stress in this chapter occurs when modeling various forms of social inter­
action. IMS LD uses a metaphor of a theatrical play to model learn­
ing/teaching processes. A play consists of a sequence of acts and within an
act there is a set of role-parts. These role-parts can run in parallel. Role-parts
enable multiple users, playing the same or different roles, to do the same
thing or different things concurrently on the same act. For example, while
each student reads the same article, the teacher prepares presentation slides.
If a group of people performs a synchronous activity, IMS LD enables them
to use a conference service and provides no means at the activity level to
support collaboration. In collaborative learning processes, it is quite usual
that people with the same or different roles perform a shared activity through
direct or indirect interaction. While making the joint effort, people with dif­
ferent roles may have different rights to interact with other roles and the en­
vironment. In particular, it can not be clearly modeled by using IMS LD
whether and how people collaborate, because people may work in a variety
of social forms: Individually, in an informal group, in sub-groups, in a group
as a whole, or in a community.

4. AN APPROACH TO REPRESENT CSCL SCRIPTS

In order to enhance effective collaboration designs, we have developed a
CSCL scripting language to represent collaboration scripts. Because of the
limited space of the chapter, we briefly present the CSCL scripting language
by explaining the core concepts and their relations, rather than giving a sys­
tematic description. Then we focus on describing how the identified prob-

124 Chapters

lems of IMS LD for CSCL scripts are solved in our scripting language by
introducing the required constructs on the conceptual level. This does not
necessarily imply that we want to provide a completely independent ap­
proach for formalizing learning processes, including providing our own in­
terpreting machine or engine. At the moment we are still in the process of
exploring if the existing standard can be extended according to the identified
needs. Another possibility is to consider our approach as a higher-level one
closer to the practitioner's and researcher's needs that can be "compiled",
that is, semantically mapped to the existing description format. This question
in its completeness is unresolved, but we will give some details on the as­
pects that we consider to be resolved at the moment.

4.1 A conceptual basis for CSCL scripting

In this subsection, we briefly present the core concepts and their relations
of the CSCL scripting language.

A CSCL script is a specific learning design which emphasizes collabora­
tion. A CSCL script contains contextual information that applies to other
elements within the process. As shown in Figure 8-1, a CSCL script consists
of a set of roles, activities, transitions, artifacts, and environments. A CSCL
script has attributes such as learning objectives, prerequisites, design ration­
ale, coercion degree, granularity, duration, target audience, learning context,
script specific properties, and generic information (e.g., id, name, descrip­
tion, status, creation date, and so on). The attribute design rationale enables
to express and communicate the design ideas and underlying pedagogic
principles. The values of the attribute coercion degree represent different
degrees of informedness, CSCL scripts with different coercion degrees have
different usages, which will be discussed later in the chapter. If a CSCL
script of fine granularity is embedded in a CSCL script of coarse granularity,
the mappings between the roles, properties, and artifacts of two CSCL
scripts should be specified. A role is used to distinguish users who have dif­
ferent privileges and obligations in the processes described in the CSCL
script. Both persons and groups can take a role. A group can have subgroups
and person members. An activity is a definition of one logical unit of a task
performed individually or collaboratively. There are three types of activities:
atomic activity, compound activity, and route activity. A compound activity
is decomposable into a set of networked activities and even other scripts. A
transition specifies a relation of temporal dependency between two activities.
An artifact may be created and shared in and/or across activities as an inter­
mediate product or a final outcome or both. An environment can contain
sub-environments and may contain tools and contents. A tool may use arti­
facts as input parameters or output parameters or both. A content is a kind of

8. Modelling a CSCL script - a reflection 125

learning object which exists and is accessible. An action is an operation and
may be performed by users during an activity or by the system before or af­
ter an activity. A property may be atomic or may have internal structure. An
expression may use properties and other expressions as operands. Like IMS
LD, a condition refers to a condition clause which is defined as an if-then-
else rule consisting of a logical expression and actions, transitions, and/or
other conditions. Actions, properties, expressions, and conditions have very
complicated relations with other process elements (e.g., scripts, roles, activi­
ties, artifacts, persons, groups, environments, and so on). For example, an
action may use process elements as parameters and change the values of at­
tributes of certain process elements. Such relations are not drawn in this dia­
gram in order to keep the diagram simple and readable.

Using the scripting language to formalise a collaboration script means
specifying how persons or groups or both, playing certain roles, work col­
laboratively towards certain outcomes (which can be artifacts) by performing
temporally structured activities within environments, where needed tools and
content are available. Actions, properties, expressions, and conditions are
useful to model more complicated, dynamic control-flow and information
flow in collaborative learning processes.

^ lole

E P •
' — gj'onp

1.1 •

OCSCLsciiptO-

n
—; nctivUy r

tioiii / •'
/ /to

; transition

lias- 101 e

pers*xi

\ \ from

I'IC-

l o - l -

IXiiiiia

iKli*ih-

W'-
ait line t

tool

menlj—'

r content —

piopei1\" '—^—

^;. Mi-c

1>...̂ \ . ; siJ^
— expression condition :

Figure 8-1: Core modeling elements and their interrelation

126 Chapters

4.2 Solutions

In this subsection, we focus on presenting our solutions to the identified
problems of IMS LD for CSCL scripts.

Explicitly introducing groups. The introduction of a group element en­
ables us to model group based collaboration in a simpler and more intuitive
way. In our CSCL scripting language, a group is modeled by using attributes
such as name, max-size, min-size, person members, super-groups, sub­
groups, engaged roles, form-policy, disband-policy, dynamic/static, and run­
time information. In addition, local-/global group properties are added for
learning designers to define additional attributes of a group. One or more
groups can play the same a role. Therefore, when a role is defined and is as­
signed to carry out an activity, it does not matter how many groups will play
this role at runtime. On the one hand, a group can have subgroups and form a
hierarchically structured organization (a directed-acyclic-graph). Any change
in the organization has no effect on the definition of the role in scripts. On
the other hand, re-definition of roles in scripts does not effect organization.
This proposal raises the question when to model a group and when to use a
role for a group. From our perspective, some roles are organization oriented
definitions like students and staff Others are behavior-oriented roles such as
meeting chairman and tutor. It would be better to model an organization-ori­
ented role as a group role and to model a behavior-oriented role as a role for
assigning tasks.

Explicitly introducing artifacts. The artifact element does not exist in the
IMS LD specification. As we explained already, the usage of artifact ele­
ments can enable to model CSCL contexts much more intuitive and easier
than to model the same process within IMS LD, because some burdens on
the designers to handle technical tasks are avoided by providing built-in
mechanisms. In our language, an artifact is treated as a file which can be a
MIME-type or user-defined type. The attributes of an artifact contain generic
information (e.g., title, description, type, status, URL, sharable, and aggre­
gated), association information (e.g., creationactivities, consume_activities,
and defaulttool), and run-time information (e.g., createdby, creationtime,
contributors, last_modification_time, current_users, locked_status, and so
on). An artifact and its status will be accessible in the environment of the
creation-Zconsume- activities at run-time. The specification of the relations
between artifacts and tools will help the run-time system to pass artifacts as
input/output parameters to and from tools automatically at runtime. Some
expressions and actions related to artifacts should be added for mediating
group work such as get-current-users-of-artifact and change-artifact-status.
The artifact-specific properties may be useful to model a specific feature of

8. Modelling a CSCL script - a reflection 111

an artifact. As an aggregated artifact, it is possible to append collective in­
formation to the same file.

Extending actions and expressions. An action is a generic and powerful
mechanism to model dynamic features of a collaborative learning process.
We add some actions as components of the CSCL scripting language that
can be executed directly by the runtime system. In addition, we add an action
declaration mechanism for experts to define a procedure by using the CSCL
scripting language. In order to support the definition of complicated proce­
dures, we add a "collection" data type and a loop control structure. The de­
fined procedure can be interpreted by the run-time system as process element
operations, and in turn, as executable code. Therefore, complicated actions
can be defined by using an action declaration and assigning the parameters
needed. IMS LD provides a limited set of actions such as property opera­
tions, showing/hiding entity, and notification. The action notation we intro­
duced provides a unified form of operations including not only actions de­
fined in IMS LD but also commonly used operations concerning script, ac­
tivity, artifact, role, group, person, transition, environment, and their rela­
tions. An expression is defined as it is in IMS LD: some read operations can
be used as operands in expressions like "is-member-of-role", "datetime-ac-
tivity-started", and "complete". However, it is necessary to add read opera­
tions to support collaboration such as "are-all-role-members-online" and
"artifact-contributors". Furthermore, corresponding to the action declaration,
we add an expression declaration mechanism for experts to define compli­
cated expressions which could be used by normal teachers and students.

Introducing transitions and routing activities. We partially accept the
suggestion of Caeiro et al. (2003) to introduce transitions and routing con­
structs recommended by the Workflow Management Coalition (WfMC
Website). Because interactions of person-to-person, group-to-group, and
role-to-role and splitting and synchronization of process threads are never
restricted at higher levels, we have to use such a mechanism not only at play
level but at all possible levels in order to model the arbitrarily complicated
structural relations among activities.

Using activity-centered methods to assign roles. We give up the meta­
phor of a theatrical play and the role-part method. Instead, we use an activity
centered role assignment method. In the CSCL scripting language, for mod­
eling an activity, the attributes are defined to specify engaged roles, used
environments, input/output artifacts, transitions and restrictions, pre-/post-
/during activity actions, user-defined activity-specific properties, comple­
tion-mode, execution-time, completion-condition, mode of interaction, social
plane, interaction rules, generic information, and simulation information.
Some attributes are important for designers to model collaborative processes
and some for the run-time system to configure collaborative learning envi-

128 Chapters

ronments appropriately for users. For example, the possible values of social
planes are: separately with a certain role, individually with a certain role,
collaboratively with one or multiple roles or both, collaboratively in sub­
groups with a certain role, and so on. If the choice is "separately", the run­
time system will create an activity instance for each user starting the activity.
If anyone completes his activity, all activity instances terminate. "Individu­
ally" means that the run-time system will create an activity instance for each
user. The run-time system synchronizes access to the following activity by
continuously checking whether all users have already completed the current
activity. In comparison, the run-time system based on IMS LD typically
handles this situation defined by using the role-part method. The choice of
"collaboratively with one and/or multiple roles" makes the run-time system
create only one activity instance and a session facilitating collaboration. The
semantics of the value "collaboratively in subgroups with a certain role" is
that the run-time system creates an activity instance and a session for each
sub-group and the members of each sub-group can have a shared activity
workspace. The run-time system synchronizes access to the next activity
when all subgroups finish their work. Another example is the attribute inter­
action rules. An interaction rule specifies under which condition which role
can (not) perform which actions. For example, the tutor can perform the ac­
tions to create (sub)groups and assign group members. Such information can
be used by the run-time system to automatically provide corresponding
awareness information in the user interface to help users to perform specified
actions. In short, interaction rules explicitly specify different responsibilities
of different roles in a collaborative learning activity.

5, MODELING A COLLABORATION SCRIPT WITH
IMS LD AND THE CSCL SCRIPTING
LANGUAGE

In this section, a collaboration script is used as an example. We discuss
how this collaboration script can be modeled by using IMS LD and by using
our CSCL scripting language. Our example will be the "Knowledge Conver­
gence Script" (Weinberger, Fischer, & Mandl, 2004, and Weinberger, Steg-
mann, Fischer, & Mandl, this volume), that has been shown to be effective in
improving the learners' convergence either on epistemic or on the social
level.

In short this script consists of the following phases and interactions be­
tween the members of groups of three students:

• Phase 1 - case reporting: Each student gets information about a
(educational) case and is writing a report about the case.

8, Modelling a CSCL script - a reflection 129

• Phase 2 - criticizing 1: Each student gets the case and the report of the
student to his left and writes a comment about the report.

• Phase 3 - criticizing 2: Each student gets a case, the report and the
comment the student to his left produced in phase 2 and writes a second
comment about the report.

• Phase 4 - Finalizing the report: Each student gets back his own report
together with the comments of the two other students and rewrites it
taking the comments into account.

The flow of the artifacts produced by the students, specifically the arti­
facts in relation to Case 1, can be seen in the graphical schema in Figure 8-2.

5.1 How to model the script by using IMS LD

IMS LD is designed mainly for supporting web-based learning environ­
ments and the run-time environment will render the web pages for users ac­
cording to the definition of the unit of learning. To give an impression of the
design work we will abstract from generation of HTML and XML content
pages, but focus on the major steps in the design process for the Knowledge
Convergence Script:

1. Define three roles for the three group members, since IMS LD does not
explicitly represent groups. Each role will be constrained to have at most
1 person playing the role.

2. Define 12 properties for the reports and comments produced by the
students, because each student writes a report, two comments on the
others' reports, and a final version of the report. Properties are the means
of choice in IMS LD, because they can be flexibly used for person- or
role-related aspects, thus also as a substitute for a missing
"document/artifact" construct. For a better structuring it is advisable to
compose sets of properties, such as all documents related to Case 1, in so
called property-groups, that contain references to their constituents.

3. Define the 12 activities that the learners should perform in this script and
their effects on the properties representing the documents (i.e., the
products of student writing). These properties have to be set explicitly
from the outside, that is, from an external service or from a learning
object document.

4. Predefine the document flow (represented in the properties) for each step
of the script explicitly, such as "Student 1 has to get report 3 from student
3, Student 2...". This is statically defined for a fixed number of
documents and learners.

130 Chapter 8

r e p o r t

Cown.iTi

d r a f t w r i t i n g

E a c h s t u d e n t : r e e t d s

d e s c t : i p t i o i

a n d u r i c e a

a b o u t

Role:

I t

.1

1 at h i 3

a r e p o r t

tudentl

Che

c a s e

d r a f t

1.. ""!'

"

V

Denominate 1
filst dossier rotation

[report commenting 1 R

Each student reads the J

case description and report

draft of the rece ived

dossier. Then he urites a

coRtnent about the reoort

Role; student2 Denominate

[repor t commenting Z

sedbnd dossier rotdtion

E«ch student reads case

description^ report draft

and comment. The Ije writes

p second comment into the

lin.sHiPf

^̂ -̂J Each student gets his dossier back, studies the

comnents and finalises

the report

Role; J

case 1 tiussier

IS
containing;
- case description

case 1 dossier

m
containing:
- case description
- case report dratt

case 1 dossier

15
containing:
-case description
- case report drall
-first comment

case 1 dossier

IE
I containing:

- case description
[- case report draft

- first comment
] - second comment

case 1 dossier

- case description
- case report drall
-first comment
- second comment
- final report

Figure 8-2: Diagram showing the flow of the dossier of Case 1 through activities

5.2 How to model the script by using the scripting
language

The same process will now be sketched for the CSCL script representa­
tion presented in the previous sections. Our main focus is also on the general
overview with some details about practical and technical issues of applying
and implementing this notation:

8. Modelling a CSCL script - a reflection 131

1. Define a group of three members explicitly; there is still also the option
of defining groups by roles, but the notation also offers a dedicated
"group" construct to the designers.

2. Explicitly define three artifacts that represent the documents produced by
the students. For better structuring these artifacts can be aggregated to
"composite artifacts" (e.g., one dossier for all documents related to one
case and even a collection of all dossiers) of complex structure.

3. Define actions for the initial distribution and the re-assignment/rotation
of artifacts to the group members. The independence of concrete numbers
for documents and persons is highly desirable, so that the action can be
re-used in different situations or stages of the learning process. These
actions can be freely defined by a learning designer, if he has some
understanding of specifying procedures on an abstract level. In our
example the two actions "DistributeArtifactCollection" and
"RotateArtifactCyclic" would be very useful, especially the latter,
because it is performed after every writing phase of the students, but with
different actors getting the dossiers. To give an impression of the
specification level of such a generic action we give some pseudo-code
representation for "RotateArtifactCyclic" and a graphical schema for this
procedure (see Figure 8-3), that gives the dossier to the next group
member in sequence.

rotateArtifactCyclic(ArtifactCollection art, Group learners){

while (art.hasMoreElements()){

assign(art.currentElement(), group.nextMember())/

}

assign(art.lastElement(), group.firstMember());

Artifact collection:

Group members:

DistributeArtifactCollection

RotateArtifactCyclic

Figure 8-3: The graphical schema for explaining two actions: "DistributeArtifactCollection"
and "RotateArtifactCyclic"

132 Chapter 8

4. Use the action to rotate artifacts in the learning design for each step of the
script; the advantage of having a generic action definition is now that the
action can be re-used now by calling this action with different parameters
(the current states of the dossiers and the group) without any manual
assignment of the respective documents. This re-use can be done for self-
defmed actions and also for any library of pre-defmed actions that other
learning designers created. Thus, in case that a suitable pre-defmed action
is already available (such as the mentioned "RotateArtifactCyclic" that
we defined for our own purposes), the Step 3 can be skipped, which is
especially desirable for practitioners without programming skills. Pre­
defined actions can be used conveniently in our tree-based editor tool, by
choosing and parameterizing the appropriate actions from a list (see
Figure 8-4).

G o a B B S tc-) C

1L.MM

0 n

I -pesi9fE9e

rutottj aitifact collection: iliciue colit'Cllon cyclic in a group: learners

' ~ ""'••• i

ApFily : Cancel

Figure 8-4: Define a post-activity action by assigning parameters

Figure 8-4 shows a screenshot of our tree-based authoring tool when de­
fining the script. The left panel is used to define the script elements (two ac­
tivities, a group, three artifacts and an artifact collection) and their structural
relations. The right panel is used to create a detailed design for each process
element, currently for the "criticizing/finalizing-report" activity. The
enlarged part illustrates how a post-activity action can be defined in a user-
friendly manner. Users can assign the parameters of the action by dragging

8. Modelling a CSCL script - a reflection 133

an element node from the structural tree in the left panel and dropping into
the parameter boxes of the action representation.

5.3 Comparison of the two approaches

Although the example script does not cover all features that we discussed
in the chapter, we can see the differences when modeling the script with IMS
LD and with the CSCL scripting language. We hope that we can provide
added value in different respect:

First, the use of a conceptual level, that is closer to the concepts practi­
tioners use, such as the availability of explicit group definitions and artifacts
produced by the participants, enables a better understanding for the designer
and also in the discussion between practitioners than the IMS LD constructs,
such as properties and roles as substitute for groups, offer.

Second, the presented approach of defining own actions in a potentially
very generalizable way (using parameters), makes these actions much more
re-usable than the IMS LD solution where the definition has to be predefined
in a static way; the activity "rotateArtifactsCyclic" in our example can be re­
used flexibly within the same script or in a completely different one just by
using different parameters for both artifact collection and group, while in the
LD solution each step has to be edited again; this is especially useful with
different numbers of artifacts to distribute to an arbitrary group (which
would not be a problem for our generic activity definition).

Our approach has been prototypically implemented in different tools for
editing of CSCL scripts. These tools have been presented in more detail in
Miao, Hoeksema, Hoppe, and Harrer (2005).

6. CONCLUSIONS

In this chapter we have identified five major limitations of IMS LD when
formalizing CSCL scripts. Based on this, we have suggested a scripting lan­
guage for CSCL. The identified problems of IMS LD are solved in the lan­
guage respectively by 1) explicitly introducing the group entity to facilitate
modeling organizational role and behavior role; 2) explicitly introducing the
artifact entity to enable designers to model artifact and information flow
easily and intuitively; 3) extending process element operations and providing
declaration mechanisms to capture dynamic features of collaborative learn­
ing processes; 4) exploiting WfMS routing technologies to enable the speci­
fication of complicated control flow; and 5) giving up the metaphor of theat­
rical play and the role-part and using an activity-centered definition method
to model various forms of social interaction. In addition, we briefly dis-

134 Chapters

cussed the potential usages of CSCL scripts and possibilities of system sup­
port.

Through comparing the two approaches of modeling the same collabora­
tion script with IMS LD and with the CSCL scripting language, we see, at
minimum, two advantages of our approach: First, at conceptual level, practi­
tioners can use terms that are closer to the concepts they use in practice. It
will be helpful for them to understand and design teaching/learning process
models. Second, using actions in our approach makes it possible for practi­
tioners to model complicated processes, because the burden of practitioners
to handle technical complexities is reduced.

REFERENCES

Caeiro, M., Anido, L., & Llamas, M. (2003). A critical analysis of IMS learning design. In B.
Wasson, R. Baggetun, U. Hoppe, & S. Ludvigsen (Eds.), Proceedings of the International
Conference on Computer Support for Collaborative Learning - CSCL 2003, COMMU­
NITY EVENTS - Communication and Interaction (pp. 363-367). Bergen, NO: InterMedia.

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning
with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we support
CSCL (pp. 61-91). Heerlen: Open Universiteit Nederland.

Guzdial, M., & Turns, J. (2000). Effective discussion through a computer-mediated anchored
forum. Journal of the Learning Sciences, 9(4), 437-469.

Harrer, A., & Malzahn, N. (2006). Bridging the Gap - Towards a Graphical Modeling Lan­
guage for Learning Designs and Collaboration Scripts of Various Granularities.
Proceedings of International Conference on Advanced Learning Technologies (ICALT
2006). Los Alamitos, CA., IEEE Press.

Hernandez, D., Asensio, J.I., & Dimitriadis, Y. (2004). IMS Learning Design Support for the
Formalisation of Collaborative Learning Flow Patterns. Proceedings of the 4^^ Interna­
tional Conference on Advanced Learning Technologies (Aug.30 - Sep. I, 2004), (pp.350-
354). Joensuu, Finland: IEEE Press.

Hoppe, U.H., & Ploetzner, R. (1999). Can analytic models support learning in groups. In P.
Dillenbourg (Ed.), Collaborative-learning: Cognitive and Computational Approaches
(pp.147-168). Oxford: Elsevier.

IMS LD Website. Retrieved August 05, 2005, from
http://www.imsglobal.org/learningdesign/index.cfm

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. M., & Hockenberry, M. (2004)
Opening the Door to Non-Programmers: Authoring Intelligent Tutor Behavior by Demon­
stration. In the Proceedings of the 7'^ International Conference on Intelligent Tutoring
Systems (ITS-2004), Maceio, Brazil.

Kollar, I., Fischer, F., & Hesse, F. W. (in press). Collaboration scripts - a conceptual analysis.
Educational Psychology Review.

Koper, E. J. R. (2001). Modeling units of study from a pedagogical perspective: The peda­
gogical meta-model behind EML. Document prepared for the IMS Learning Design
Working Group. Heerlen: Open Universiteit Nederland.

Koper, E. J. R., & Olivier. B. (2004). Representing the learning design of units of learning.
Educational Technology & Society, 7(3), 97-111.

8. Modelling a CSCL script - a reflection 135

Makitalo, K., Weinberger, A., Hakkinen, P., & Fischer, F. (2004). Uncertainty-reducing coop­
eration scripts in online learning environments. In P. Gerjets, P. A. Kirschner, J, Elen, &
R. Joiner (Eds.), Proceedings of first joint meeting of the EARLI SIGs "Instructional De­
sign " and "Learning and Instruction with Computers ". Tubingen: Knowledge Media Re­
search Center.

Miao, Y., Hoeksema, K., Hoppe, U., & Harrer, A. (2005). CSCL Scripts: Modeling features
and potential use. In T. Koschmann, D. Suthers, & T. -W. Chan (Eds.), Computer Sup­
ported Collaborative Learning 2005: The Next 10 Years (pp. 423-432). Mahwah, NJ:
Lawrence Erlbaum Associates.

Miao, Y., Hoist, S.L., Haake, J.M., & Steinmetz, R. (2000). PBL-Protocols: Guiding and
controlling problem based learning processes in virtual learning environments. In B.
Fishman & S. O'Connor-Divelbiss (Eds.), Fourth International Conference of the Learn­
ing Sciences (pp. 232-237). Mahwah, NJ: Lawrence Erlbaum Associates.

O'Donnell, A. M., & Dansereau, D. F. (1992). Scripted cooperation in student dyads: A
method for analyzing and enhancing academic learning and performance. In R. Hertz-
Lazarowitz & N. Miller (Eds.), Interaction in Cooperative Groups: The theoretical Anat­
omy of Group Learning (pp. 120-141). London: Cambridge University Press.

Pfister, H.-R., & Miihlpfordt, M. (2002). Supporting discourse in a synchronous learning
environment: The learning protocol approach. In G. Stahl (Ed.), Proceedings of the
CSCL2002 Conference on Computer Supported Collaborative Learning, Boulder, USA
(pp. 581-589). Hillsdale, NJ: Lawrence Erlbaum Associates.

Schank, R. C, & Abelson, R. P. (1977). Scripts, plans, goals and understanding. Hillsdale,
NJ: Lawrence Erlbaum Associates.

WfMC Website. Retrieved August 05, 2005, from http://www.wfmc.org/index.html
Weinberger, A., Fischer, F., & Mandl, H. (2004, April). Knowledge convergence in com­

puter-mediated learning environments: Effects of collaboration scripts. 85'^ Annual Meet­
ing of the American Educational Research Association (AERA), San Diego, CA, USA.

