
Chapter 16

DESIGNING INTEGRATIVE SCRIPTS

Pierre Dillenbourg and Patrick Jermann
Ecole Polytechnique Federate de Lausanne (EPFL)

Abstract: Scripts structure the collaborative learning process by constraining interac
tions, defining a sequence of activities and specifying individual roles. Scripts
aim at increasing the probability that collaboration triggers knowledge genera
tive interactions such as conflict resolution, explanation or mutual regulation.
Integrative scripts are not bound to collaboration in small groups but include
individual activities and class-wide activities. These pre- and post-structuring
activities form the didactic envelope of the script. In many cases, the core part
of the script is based on one among a few schemata: Jigsaw, conflict, recipro
cal. We propose a model for designing this core component. This model pos
tulates that learning results from the interactions that students engage in to
build a shared understanding of a task despite the fact that it is distributed.
Hence, the way the task is distributed among group members determines the
interactions they will engage in. Interactions are viewed as the mechanisms for
overcoming task splits. A large variety of scripts can be built from a small
number of schemata, embedded within activities that occur across multiple so
cial planes, activities which are integrated with each other by few generic op
erators.

1. INTRODUCTION

When teachers ask students to carry out collaborative activities, they usu
ally provide them with global instructions such as "do this task in groups of
three". These instructions are completed with implicit expectations with re
spect to the way students should work together, for instance an even group
participation is often believed as desirable. A script describes the way stu
dents have to collaborate: task distribution or roles, turn taking rules, work
phases, deliverables, etc. This contract may be conveyed through initial in
structions or encompassed in the learning environment.

276 Chapter 16

Scripts illustrate the convergence between instructional engineering and
socio-constructivism. The need for engineering collaborative learning results
from empirical studies on the effectiveness of collaborative learning. These
studies show that this effectiveness depends upon multiple conditions such
as the group composition (size, age, gender, heterogeneity, etc.), the task
features and the communication media. These conditions are multiple and
interact with each other in such a complex way that is not possible to guar
antee learning effects (Dillenbourg, Baker, Blaye, & O'Malley, 1995). What
predicts learning outcomes is the richness of social interactions (conflict
resolution, elaborated explanations, mutual regulation, ...). Scripts aim at
enhancing the probability that these knowledge productive interactions occur
during collaboration. Hence, the key design issue: which interactions need to
be scaffolded in order to reach the educational objectives?

Most chapters in this volume address the notion of scripts in computer-
supported collaborative learning (CSCL). Within the classification proposed
by King (this volume), our approach clearly belongs to the pedagogical
stream: our scripts are pedagogical artifacts designed by educators and ex
plicitly imposed on learners. The striking similarity between the many ex
isting scripts resembles an invitation to produce a design model. Beyond the
sake of modeling, this model could be used to foster exchanges among
teachers or designers and to build tools for authoring CSCL scripts. It is not
presented as a cognitive model of collaborative learning processes but as a
design metaphor, i.e., a way to envision scripts. Its basic principle is to in
troduce a perturbation in a distributed system, so that the system will trigger
repair mechanisms. These repair mechanisms require the knowledge-inten
sive interactions that the script aims to trigger.

2. EXAMPLES OF CSCL SCRIPTS

We present four scripts that we have developed and used with our own
students. These examples will enable us to better describe the variety of
scripts (section 3) and then to explain our design model (sections 5 and 6).

2.1 The "Concept Grid" script

The best-lcnown collaborative script is the Jigsaw: each group member
has only access to a subset of the information needed to solve the problem
(Aronson et al, 1978) and therefore no individual can solve the problem
alone. Group members should not simply forward information to each other:
the member who owns a body of information has to process it, to become an
"expert" of that sub-domain, in order to share it and to contribute to problem

16. Designing integrative scripts 111

solving. The information given to group members defines their role. There
exist multiple variations of the Jigsaw model. Some scripts alternate two
types of meetings: students work in mixed groups (role-x role-y role-z), but
from time to time, they form perpendicular groups, also called expert groups
(role-x role-x role-x...) to share their expertise. In our example, knowledge
distribution is induced by the script, but another script may also exploit
'natural' differences in prior knowledge: students with qualitative versus
quantitative knowledge in physics (Hoppe & Ploetzner, 1999), students in
medicine versus students in psychology (Hermann, Rummel, & Spada,
2001), students from different countries (Berger et al, 2001, see 2.4),...

Grille des concepts

<.t!UUMU.3>».4^AitU

" C I EAO&DIOA

f(ii

te""
L'UnijiiMiti

»*
w

Bfiwdtf^masMi

! ^
!i»i

if-t) b>:h

£t'irA'!&.Kt.i«gft31!££ umiaaBiatEPtQi.iip^tDl

« > HA' a^fi^V .MI *< i\V .-••cnfiwv't.^ »1 h u ! * ji| ^,;i"jr .*» li 'f:i!,i 1 iJoi.f .ti^ '^•'p wiMr. !> (Kfa- ro/v«<s(| |W*[narr^Ki d p t» c a s *

Figure 16-1. ConceptGrid Script in phase 4: Students build a grid of concepts. Each concept
links to a definition they have written in phase 3. For each symbol between cells, they write a
text explaining the similarity/difference between neighbor concepts. The 2 names in the cells
are their own name (blurred) and the name of the role they are playing.

We implemented an instance of Jigsaw, the Concept Grid, in a master
course on learning theories for educational software. Students have to learn
the key concepts of the domain and the underlying theoretical framework.
Figure 16-1 shows a grid produced for the first chapter, concerning learning
theories in traditional computer-based teaching. The script runs as follows:

• Phase 1. Groups of four students are freely formed. They distribute roles
among themselves. Roles coiTespond to theoretical approaches to be
learned. In Figure 16-1, the roles are Skinner, Bloom, Anderson and
Saint-Thomas. New roles are proposed for each chapter except for 'Saint-
Thomas': his role is to be skeptical with regards to the effectiveness of
the educational software under study and hence to review experimental
studies. To enter into their role, students have to read three papers de
scribing the related theory or studies.

• Phase 2. Groups receive a list of concepts to be defined. Examples of
concepts appear in the cells of Figure 16-1. They cover the key notions
that the teacher expects the learners to acquire. The group distributes

278 Chapter 16

concepts to be defined among its members. The teacher does not specify
which role is Icnowledgeable for which concepts.

• Phase 3. Each student writes a 10-20 lines definition of the concepts that
were allocated to him/her.

• Phase 4. Groups assemble the concepts into a grid (see Fig. 16-1) and
define the relationship between grid neighbors: The "<>" and "><" sym
bols are links toward a short text that describes relationship between two
concepts: the symbol "<>" links to explanations that discriminate similar
concepts (and could be confused by students) and the symbol "><" links
to explanations that articulate concepts that are apparently unrelated.
Groups have to try many organisations of the concepts on the grid before
being able to define all relationships.

• Phase 5. The teacher analyses all grids before the debriefing session.
During this session, he points out the inconsistencies between grids pro
duced by different groups, the cases where close concepts have not been
recognized as being similar and, vice-versa, concepts that have been as
sociated while they have a very different meaning.

This script is not fully collaborative. Phase 3 is cooperative (each student
individually writes a text). The core part is Phase 4: the only way to build the
grid and to define the relationship between two concepts CI and C2 is that
the student who read about CI explains it to the student who read about C2
and vice-versa. It cannot be a shallow explanation; they have to reach a rea
sonable level of shared understanding to write these "relationship" texts.

2.2 The "ArgueGraph" script

The "ArgueGraph" script was used in an educational technology course.
The goal of the session was that students relate courseware design with
learning theories. We tested several versions of this script, within two CSCL
environments, with different combinations of co-presence and distance
(Jermann & Dillenbourg, 2003). It includes five phases:

• Phase 1. Each student takes a multiple-choice questionnaire produced
by the teacher. The questions have no correct or wrong answer; their an
swers reflect theories about learning. For each choice, the students enter
an argument in a free-text entry zone.

• Phase 2. The system produces a graph in which students are positioned
according to their answers (Figure 16-2). A horizontal and vertical score
is associated to each answer of the quiz and the students' position is sim
ply the sum of these values. Students look at the graph and discuss it in
formally. The system or the tutor forms pairs of students by selecting

16, Designing integrative scripts 279

peers with the largest distance on the graph (i.e., that have most different
opinions).
Phase 3. Pairs answer the same questionnaire together and again provide
an argument. They can read their individual previous answer.
Phase 4. For each question, the system aggregates the answers and the
arguments given individually (Phase 1) and collaboratively (Phase 3).
During a face-to-face debriefing session, the teacher asks students to
comment on their arguments. The set of arguments covers more or less
the content of the course but is completely unstructured. The role of the
teacher is to organize the students' arguments into theories, to relate
them, to clarify definitions, in other words, to structure emergent knowl
edge
Phase 5. Each student writes a synthesis of arguments collected for a
specific question. The synthesis has to be structured according to the
theoretical framework introduced during the debriefing (Phase 4).

Figure 16-2. ArgueGraph, phase 3: Graph representing individual answers (names have been
erased).

2.3 The "UniverSante'' script

This "UniverSante" script was designed for teaching public health
(Berger et al, 2001) in a course jointly given at the Universities of Geneva
(Switzerland), Beirut (Lebanon), Monastir (Tunisia) and Yaounde
(Cameroon). The students were divided into five thematic groups: AIDS,
cancer, infectious diseases, cardiovascular diseases and accidents. Each the
matic group includes four students of each country and a tutor. The script

280 Chapter 16

includes seven phases: starting from a clinical case (Phases 1 & 2), students
address public health issues (3 to 5), explore methods of epidemiology (5 &
6) and build strategies to cope with public health problems (Phase 7).

[=]

D o t e '"j--^:.: •• : \ •-:

CrER F'tAHRE,

Cc/Time ncLS 'sf*om sigtisi^ I'autr-f fob ,cft WiC^ dy [» j>xn ett
prooablemant uri Mrdnornp a p&nt6S telMes «vec fTtrttottoies pleural*
Done .a ce sXsds on na p«iit pa& parler d« pTevanikr* pnmalre ou rTterre
sftcondatr* .mala on cftferchfr un a r i * oj-atsf (crJinto •» p:)rittiom

basae esseniiellenifent suf la lute ooi^ire le tabegisme (aiaffa
'if^dijcation 0fM»ant966 ur-t foia tO'je i « ojirv-fis Jciu'S ckns tous le;.
';eo,l<:ec de pnei.rro-p'Mvsiot(JOi« 9n tijnteie j.aLfis) e4e<« 9Jr la
^Lr\'eillancar^guiie<ie des travaiHerjE et efrploves d'usins evcoEes ^j>

II n'gxbte pos ce v#rlt*lft DfJ'jrammg cte kitt<f contrg cwctfr du
pjijm^n €0 t'xiislv .L«prBv,5ntn)nr&5i* KVJKiduefle (ei/il-er I9 tabs: t̂
hiQidr^ f.\<i vie).
M^. I ,.-;l..l-;f,f!

h^: Frovencicnc-xioar iju r*>uir.:iri

Tr65 bi«ri. Con5<=c',

•
f'roWciiic: prwirilairci Ca'i^o

C. A. a 57 ars. D a tiowdlle dirant 30 ers dsni dst chantten ruvds <t1
rn«Mk»t «n h(ut« ni»«r. !l v a 12 sra, un meoeon 01/(«vatt conajiw poirj
maivi^se ^rtrp* Li dt/eiccon&elt^ d'err^ter de ^im^r, hEbOKle qu'l dvdd
I.»dokf»oence, C. & ne s'cn etaitguere emu, tfiBuunt qa'^ «ctt« -^oque
i»'.*rM vivr« dans ton pa.it, nawt ou ti ftvait recre i n trt'it r«f Miranc c«n
t i ;«n)tl«. SCO rfv« 4utt (tnsi r«^^# gnlef d«S <^LIC&^«« «r) Ajrri^c <K<
ct^ifette; ttvtc en emirt-ftind i/ie mij5>:;we d- ganguette.
[>:piJ5 St.: mc<s, 0 . «. sc leni nions en fcrme. [I touiie rros le»)c*jr-s o

i l^n iijn grtit«i:fi r i dtrous une icmsne. il d de In p«ir>e ri icuffts' qj ir i l
1.1--J =r j ; i,i c.Tir.i ,•-!•,=(.-,-. v'ctli troii jouri, Ej vc«ne tu a dt; " Cfier Mo]

- - . • ; • . • . , . • . . - , ,r . . . -AH d* w e z dl i f (<*>r te (i x t * i f *.
'••• ' '• •'.t.';<jrx l-Oard , Pas t r H r j 9 s o r i n i « qj i t lu I

• ij-.- f;.T, •.'T .iiy;-. . j : , . LT, . j r i i t ' . Et Kuwait note d a i i tondouer tcote uf

Esttrait <]u daifi^r rritJtcd d& C. A. rirAvi^ par C. 1. Gard l£ ^ x r (t* Is OITA
• iinBmncse: Tato^atne de longue dote (un paojet <Je cigarettes,-'40 anJ
(0(vj^^d« d« 10 l-.fl *« il> rnoisi h r̂noc>tys»«^ (3 o:) ^ >rc<s r*t*rt3^ A\I
rii.:.«4coul4.
'Rx t^igrox: Cpcnc)icm«nt plsu-d drgit m«der«; rnass>; pulmcnarc au Ic
nfencir ohsttOcm cfc dametrc); odctxcothesouhJcpUmonorcdrDrtI

U)Ocncn:kncLi tc|jid«conrtenuentre tes fVtvrei (3 dl) avatramerw un liJ
I4u«c«tr.ef.t trcutte *tf-ieiYiorr*i)a»e. L« tpf>c»«l&te -rc i^i»'.pr\ crjetOL«s|
j-jun<s(«'tt*i el !«4 */4it -tut^iK sur d4S l3frt« d^ <^iri pour tes iti«mini|
niior.:rtcOF>e.
Lc v t n i a ctoH tombc: ' D n'y o M 5 * ocfmci dans te lt':|j»ici mos dts
i:3fCfiortiat*y64s «w«: dw novsi^ hvPSKiTOrnsDitJ^B CV^t ^ n i <]CJK
r.icpLame d'onpne fulmcnore. Je v»s vc"ji envoyer i f)-»i<:ttjJ oouf far^

Figure 16-3. A snapshot from the UniverSante environment.

Phase 1. Each group receives a clinical case. For example, one "cancer"
group works on the case of a woman with breast cancer whereas a second
"cancer" group receives a case of a man with lung cancer. Each group
discusses the case in a specific forum. The tutor guides the discussion in
order to help the students identify and discuss the case with regard to
public health.
Phase 2. Two groups of the same country working on the same theme
(e.g., the two "cancer" groups from Monastir University) interact through
an on-line forum. A synthesis of the elements identified by each thematic
group is presented during a face-to-face debriefing meeting in each
country.
Phase 3. Within a thematic group, the students of each country create a
fact sheet describing the status of this public health problem in their
country. For example, the Swiss students in the cancer group create a fact
sheet "Cancer-Switzerland", which they enter into the database. The
"Cancer" group of every country produces the same data.

16. Designing integrative scripts 281

• Phase 4. The students of each thematic group from different countries
discuss the differences and the similarities between the fact sheets of the
four countries in the forum.

• Phase 5. Fact sheets are discussed during a face-to-face debriefing meet
ing in each country. The tutor prompts the students to identify any issue
concerning the way in which statistical data were collected, treated or
presented.

• Phase 6. Students modify their fact sheet according to the methodologi
cal comments received in Phase 5.

• Phase 7. Each thematic group is divided into two subgroups working on
the cases they studied during Phase 1. Each subgroup proposes a health
strategy to cope with the problem. The students enter their strategy (ob
jectives, actions, resources, evaluation) into the knowledge base through
an on-line form.

This script generates interactions by playing with differences: differences
between clinical cases of the same disease (phase 2) aim at generating
abstraction; differences between the statistics collected in different countries
generate discussion on the salience of the disease (phase 4) but also on the
methods for collecting comparable data (phase 5). Comparison of the
different societal answers to disease generates awareness of the public health
policies.

2.4 The '̂Studio" script

As last example, our Courseware Design Studio is an adaptation from the
PhaseX script (Engeli, 2001) for supporting project-based learning. The goal
of the project was to design a courseware. The project is segmented into
phases. At each phase, all teams deposit their intermediate product in a
shared space. At the next phase, each team is allowed to borrow the work
produced by another team and to continue its work from it. The phases were
goal definition, content analysis, activity design, and so forth. The rationale
for this script is that the shared space allows for a permanent idea-seeding.
However, while it seems to work very well in Engeli's 3D-design projects,
our students were reluctant to exchange intermediate results in their design
process.

3. THE DIVERSITY OF SCRIPTS

This book presents a variety of scripts. Our scripts illustrate different
script schemata but are still rather similar to each other compared to other

282 Chapter 16

examples in this book. This section reviews different understandings of a
script while the next section specifies categories within our own scripts.

3.1 Role: Why playing a script?

For KoUar, Fischer, and Hesse (in press) and King (this volume), the
term "external script" refers to the pedagogical scenario that students are
asked to play, while the term "internal script" describes the mental represen
tation that students construct of the external script. The external script is a
didactic artifact to be used during a training session. The internal script is a
cognitive structure that, in many cases, existed before the training session
(e.g., "How to argue with a peer?") and will continue to exist after the train
ing session. When the goal is that students internalize the script in order to
reuse it in future situations, the script is a pedagogical objective. This is for
instance the case of the reciprocal teaching script (Palincsar & Brown, 1984)
which effectively fostered a high level of internalization. More modestly, the
internalization of our Studio script was also an objective for our students,
since the segmentation of courseware design into phases was something they
had to learn.

When the script is "only" a method to be used during a training session
and not internalized for the future, students still have to build some internal
script in order to be able to participate in the learning activities. We did not
expect our students to remember the ArgueGraph or the ConceptGrid scripts
a few weeks later; we expected them to have learned the content being dis
cussed in the script but not the script itself

In summary, when the script is a method, the internal script is instru
mental to play well the external script; when the internal script is the objec
tive, it's the other way around. These are not exclusive: an argumentation
script in which roles rotate may have as objectives both the content of argu
mentation (script as a method) and the ability to take the other's perspective
(script as an objective). It is important to make explicit the status of a script
before conducting an empirical study because they imply different forms of
assessment, such as transfer task when the script is the objective and knowl
edge task when the content is the objective.

Finally, Harrer, Bollen, and Hoppe (2004) use scripting collaboration to
refer to another pedagogical method: the post-hoc analysis of the interaction
log files by the students themselves. This reflective activity is namely a use
ful phase when the script needs to be internalized. Our scripts are prescrip
tive while their approach is descriptive.

16. Designing integrative scripts 283

3.2 Congruence: Do they play the script?

When the teacher sets up an (external) script for the students, each of
them constructs some internal script that will - to some extent - be different
from the external script. Within a group, since students develop their own
internal script, the interactions that actually take place will - to some extent
- drift away from the interactions prescribed by the script. The congruence
between the external script and emergent interaction patterns depends upon
four script features: the degree of coercion, the intelligibility of the script,
the degree of granularity and its fit to the team distribution. We now review
these four congruence factors.

The first congruence factor is the degree of coercion of the script. A
script may be simply conveyed through initial instructions or be regularly
enforced by prompts or other design features. Although this is a continuous
variable, we identified five levels of coercion (Dillenbourg, 2002) presented
in increasing order

1. Induced scripts. The communication interface induces interaction pat
terns; it implicitly conveys the designer's expectations with respect to the
way students should tackle the problem and interact with each other. This
low degree of coercion is elegant but often not sufficient to significantly
shape the collaborative processes.

2. Instructed scripts. Students receive oral or written instructions that they
have to follow. The coercion is higher than in the induced script since the
teacher's expectations are made explicit, but they can of course be mis
understood, incorrectly applied, forgotten or completely ignored. Stu
dents have to build an internal script that corresponds to the external
script presented by the teacher.

3. Trained scripts. Students are trained to collaborate in a certain way before
using the script it in a real learning situation. The degree of coercion is
higher than in the instructed scripts since the teacher may control the stu
dent's internal script.

4. Prompted scripts: The system displays cues that encourage the learners to
take their respective role (Weinberger, Fischer, & Mandl, 2002). Their
system delivers cues (text messages), that are supposed to lead students
to take specific roles such as "analyzer" or "critic".

5. Follow-me scripts. Students interact with an environment that does not
allow them to escape from the script.

A high degree of coercion reduces the gap between the external script
and emergent interaction patterns but increases the risk of overscripting (see
4). Our scripts have a low degree of coercion, obtained in various ways. In
the ArgueGraph, the coercitive factor was the interface. In a first environ
ment we used, pairs could only provide one answer per question and argu-

284 Chapter 16

mentation was more intensive than in a second environment, where the inter
face enabled them to enter more subtle answers. In the ConceptGrid, coer
cion was induced by the grid structure which forces the students to explain
concepts to each other. The UniverSante degree of coercion was very low
and tutors had to permanently reinforce the script. In the Studio script, the
most coercitive feature was the linear structure of the project segmentation.
When coercion is naturally induced by the interface, as in ArgueGraph, we
could talk about affordances, which sound more positive than coercion.

The second congruence factor is the intelligibility of the script. We face
intelligibility problems with the UniverSante script that occurred to be too
complex (Berger et al, 2001) in this international public health course (stu
dents from Switzerland, Lebanon). Since we were aware of the script com
plexity, we provided teams with a graphical representation of the script and
offered a close follow-up by teaching assistants, but nonetheless the students
- and even some tutors - did not manage to construct a clear internal script.
The interaction patterns drifted away from the external script.

The third congruence factor, granularity, refers to the time scale (dura
tion of each phase) and the grain size of phases (subtasks) definition. For
instance, the Studio script included a "programming" phase that lasted four
weeks, the whole script running over the academic year, while the Argue
Graph script ran over four hours with phases ranging from 5 to 100 minutes.
At the lower end, finest grain scripts reach the utterance level, i.e., specify
the authorized dialogue moves at the next utterance. Fine grained scripts
tend to be more coercitive. The gap between the external script and emergent
interaction patterns may increase if there is a mismatch between the natural
granularity of the task and the granularity enforced by the script. A mismatch
could occur if the questions in ArgueGraph or the concepts in the Concept-
Grid were too specific to capture the key differences between the theories
under scrutiny. Another mismatch would occur if the Studio script structured
a design phase as a sequence of questions while designers would address
these questions in parallel.

The fourth congruence idiCXox, fitness, is important for scripts that specify
a distribution of roles among group members. For instance, one group mem
ber is asked to be leader or coordinator while another one is in charge of
taking notes. The interaction patterns depend on the good match between the
role requirements and the group members' skills or profiles. Fitness inspired
various jokes such as "If the French member is in charge of cooking and the
German one in charge of organization... (high fitness), but, if it is the other
way around..." Low fitness is detrimental to role adoption and role adher
ence (students do not stick to the roles very long). Fitness inherits from
transactive memory (Moreland, 1999), that is the representation that each
group member has of the skills of the others: what matters is not only that

16. Designing integrative scripts 285

team members are able to play their role but also that their team mates be
lieve they are able to play that role. We did not encounter fitness problems in
the ConceptGrid, for instance cases where one student would not manage to
play "Skinner" for personal reasons. The fact they choose the roles them
selves probably increases fitness. The fitness question is a greater concern in
project-oriented scripts that select one student as team leader.

3.3 Granularity: Macro versus micro-scripting

We introduced the notion of script granularity as a continuous variable.
There is however a qualitative difference between macro and micro scripts.
Let us illustrate these differences with scripts that aim at raising argumenta
tion. A micro-script scaffolds the interaction process per se: when learners
state a hypothesis, the script will for instance prompt their peer to produce
counter-evidence. A macro-script sets up pairs in which argumentation
should occur, as in the ArgueGraph, by pairing students with opposite opin
ions. The micro-script reflects a psychological perspective, acting on the in
ternal script (scripting as a goal), while the macro-script reflects an educa
tional perspective, influencing the process more indirectly (scripting as a
method). Micro and macro-scripts do not constitute clear-cut categories but
rather define a continuum. Most examples described in this volume are on
the "micro" side: in the work reported by King (this volume), by Lauer and
Trahash (this volume), by Weinberger et al. (this volume), by Carmien et al.
(this volume), the script includes prompts that directly scaffold interactions
and is expected to be internalized as higher-order thinking skills (argumen
tation, problem solving or metacognition). The grain size is somewhat
coarser in the scripts of Rummel and Spada (this volume), and Ertl et al.
(this volume), where the script prompts episodes of interactions. The exam
ple presented by Kolodner (this volume) is, like our examples, on the macro
side. Ayala (this volume), and Haake and Pfister (this volume) describe envi
ronments that articulate micro-scripts within phases of a macro-script.

3.4 Integrated learning

We use CSCL scripts for promoting a vision of e-learning that is broader
than what the CSCL label may indicate. Our script examples are neither
strictly collaborative, nor strictly computerized; they illustrate our integrated
learning approach that we define with 3 features:

• Despite the first C in CSCL, there is no reason to restrict CSCL scripts to
distance interactions. ArgueGraph and ConceptGrid scripts have mostly
been used in a situation where stxidents were co-present. UniverSante
used distant interactions, since geographical diversity was the key princi-

286 Chapter 16

pie, but still included key face-to-face discussion (one per country).
Computers are justified by other reasons than simply connecting distant
learners (see section 4). Integrated learning differs from the so-called
'blended learning', which is often the mere juxtaposition of face-to-face
and computer-mediated activities. Integrated learning scripts articulate
activities which are on-line or not, in front of a computer or not, occur
ring across a variety of places (classroom, lab, field trip, home, work . . .) .
The rapid transition between activities with or without computers is fa
cilitated by lighter/mobile hardware. Integration is pedagogical but also
functional: scripts support data flow between multiple activities (see 7.4).
For instance, in the ArgueGraph, the individual answers (phase 1) are
used to form pairs (phase 2) and the pairs' answers and arguments are
collected for the debriefing (phase 4).

• Despite the second C in CSCL, there is no reason why collaborative
learning should be treated as an exclusive pedagogical approach. Instead,
group activities gain from being integrated with other classroom activi
ties. Scripts may include individual work (e.g., writing a synthesis, read
ing a paper,...) and/or class-wide activities (introductory lectures, de
briefing, . . .) . In ArgueGraph, phases 1 (answering the quiz) and 5 (writ
ing a summary) are individual while phases 2 (observing the graph) and 4
(debriefing) are done with the whole class. In the ConceptGrid, phase 3 is
individual (reading papers and writing concept definitions) while phase 5
(debriefing) is at the class level. The designers' challenge is to integrate
these diverse activities within one consistent script.

• Last but not least, the illustrated scripts maintain the teacher in his lead
ing role. He or she is not properly teaching but is active and salient as the
chef d'orchestre of the whole script: he or she may shorten a phase,
regulate groups, give feedback, etc. We therefore should be concerned by
the script flexibility, i.e., the possibility for the teacher to modify the
script on the fly (see section 4).

These features define what we refer to as integrated learning, a peda
gogical approach that is broader than the approach indicated by the terms
collaborative and computer in CSCL. However, the breadth of this concept
may weaken the identity of a script. Are scripts just a trendy word to refer to
lesson plans? No! CSCL scripts are instructional sequences in which peer
interactions are targeted to be the core learning mechanism. Therefore our
design model distinguishes the core script, which governs collaborative in
teractions, from the didactic envelope, that encloses the core activities into
other activities, forming the integrated learning approach.

16. Designing integrative scripts 287

4. BENEFITS AND RISKS IN COMPUTERIZED
SCRIPTS

This volume concerns scripts in computerized environments. What is the
added value that technology brings to the use of scripts? What are the draw
backs? We start with the advantages:

• Connecting: When scripts include remote activities, technology is simply
the communication tool.

• Sharing: Computers provide a space for sharing products, allowing teams
to get inspired by what other teams produce, as in the Studio script. This
simple feature is important, as long as plagiarism can be controlled.

• Management: Computerized scripts off-load teachers from some logistics
duties such as time management (reminding deadlines, ...) and informa
tion flows (e.g., distributing data to different group members).

• Reification: Computerized scripts provide students with a concrete repre
sentation of the external script, which is dynamically updated.

• Scaffolding: Computerized scripts offer opportunities for shaping
communication with semi-structured communication interfaces and dia
logue grammars or both (as illustrated by Runde et al, this volume).

• Traceability: Computerized scripts enable recording interactions and out
puts, which, despite privacy concerns, enable teachers to analyze and
regulate teamwork and enable students to reflect upon previous steps.

• Adaptivity: Computerized scripts enable dynamically generated events
that would be harder to create without computers, such as, in the Argue-
Graph, fmding peers with most opposite opinions. Real-time adaptations
can be improved by real time analysis of interactions among peers (e.g.,
Soller, Martinez, Jermann, and Muehlenbrock, 2005).

Among the drawbacks of computerized scripts, we find the general dis
advantages of computer-mediated communication versus face-to-face com
munication. It is not the place here to review them (see Bromme, Hesse, &
Spada, 2005). With integrated scripts, these drawbacks are compensated by
face-to-face situations (see 3.4).

A key problem is the loss of flexibility. Good teachers adapt their plans
on the fly, while a computerized script can hardly be modified in real time.
Of course, the very idea of a script implies a decrease of flexibility: a script
aims at structuring group processes, which requires some rigidity. However,
implementing the script often generates constraints that are not part of the
pedagogical intentions. Designers have to disentangle the flexibility loss in
herent to the pedagogical intentions from the flexibility loss that is an unde-
sired effect of translating the script idea into a computer program (Dillen-
bourg & Tchounikine, accepted).

288 Chapter 16

Another risk is what we called over-scripting (Dillenbourg, 2002), i.e.,
situations that constrain natural collaboration in a way that makes it sterile,
inhibiting the natural peer interaction mechanisms. Factors of over-scripting
are:

• Disturbing natural interactions. If a learner wants to express A while the
CSCL system only offers means for interactions B or C, either the learner
will fail to say what he wanted to say or he will pervert the system (e.g.,
re-purpose B to say A). If similar breakdowns occur frequently, they may
spoil the collaboration process. This risk concerns scripts that cumulate a
high degree of granularity and a high degree of coercion.

• Disturbing natural problem solving processes. A script usually segments
a global task into a sequence of activities. In our Studio script, this seg
mentation was a problem for students who had a holistic approach of
courseware design. The script proposed an approach that was very linear.
Some students rejected this artificial linearization. Our Grid script also
introduces coercion with respect to the task: it is easier to draw a free
concept map than to arrange concepts on a two dimensional grid. To
some degree, coercion may become incompatible with the students' cog
nitive processes. Overscripting may then make the task so hard that it
spoils the students' motivation.

• Increasing cognitive load. Complex scripts may interfere with the main
learning process by augmenting the learners' cognitive load. The extra
neous load comes from the necessity to understand, memorize and exe
cute the script. However, an alternative hypothesis is that scripts reduce
cognitive load by partly offloading interaction management (Dillenbourg
& Betrancourt, 2006).

• "Didactising" collaborative interactions. Collaborative problem solving
triggers natural interactions. A peer asks a question because he wants to
know the answer, while a teacher usually asks questions which he already
knows the answer to. Peers negotiate a concept when they disagree on
interpreting the phenomenon they jointly observed while teachers discuss
concepts for which they own the right definition. A danger of "didacti-
cised" interactions is to miss the engagement that is expected from
genuine collaboration.

• Goalless interactions. Collaboration is driven by a shared goal. Scripts
being quite didactic, they may prevent students from adopting the script
goals as their own goals. The more the scripts segment collaboration into
subprocesses, the more it seems difficult for team members to forget the
didactic nature of the script.

Pitfalls are numerous; scripts need to be thoughtfully designed. The rest
of this chapter investigates the design of CSCL scripts.

16. Designing integrative scripts 289

5. THE STRUCTURE OF SCRIPTS

Integrated learning scripts include a kernel, the core script, and a set of
pre- and post-structuring activities, the didactic envelope. The core script is
the collaborative activity in which the interactions that the script is intended
to trigger should appear. In the ArgueGraph script, the core activity is the
formation of conflicting pairs and argumentation triggered for answering the
questionnaire together (Phase 4). In the ConceptGrid script, the core activity
is the distribution of knowledge and the mutual explanation process neces
sary to build the grid (Phase 4). In the UniverSante script, the core activity is
when students must identify similarities and dissimilarities between the ways
different national health systems cope with the same medical issue. The core
script defines how the knowledge or task is distributed over the group mem
bers. We therefore borrow the distributed cognition model as explained in
section 6.

The didactic envelope encloses the core script with other activities that
contribute to the script consistency. Pre-structuring activities provide the
conditions necessary to make the core script activities work well: introduc
tory lectures, readings, exercises to activate pre-requisite skills, metaphors,
etc. They namely enable students to play their role in the script. Post-struc
turing activities include debriefing activities such as the comparison of mul
tiple solutions, synthesis lectures or readings, summary writing, etc. These
are mostly reflective activities, aimed at turning group experience into
knowledge. The activities in the envelope make the difference between col
laborative learning in a restricted meaning and integrated learning, as ex
plained in section 3.4.

The envelope has two salient features, its temporal structure and its social
structure. A clear time structure differentiates scripts from free collaboration:
scripts define a sequence of phases and in many cases these phases are lim
ited in time. The rationale for setting up a semi-rigid time frame is threefold:

• Time management is a critical factor in everyday educational practice,
for both teachers and learners. It is even more important for web-based
activities taking place outside the time habits that exist in schools.

• The time structure facilitates teacher regulation by providing him or her
with an easy way to follow the teams' progress.

• The time structure makes the task distribution more salient, especially
since deadlines define clear boundaries between consecutive subtasks.

290 Chapter 16

10
to
-^ Compare the
U grids

Build tlie
grid

Define
Concepts

Figure 16-4. Structure of the 'ConceptGrid' script, time is represented horizontally and the
social structure vertically.

The second dimension of integrated learning scripts is their social struc
ture: activities occur at different social planes. Vygostky (1978) discrimi
nated three planes: the intra-psychological plane, the inter-psychological
plane and the social plane. The intra-psychological plane is individual. The
difference between the inter-psychological and the social plane is not clear-
cut, group size is a continuous variable, but there is a cognitive threshold:
group activities occur at the inter-psychological plane as long as team mem
bers maintain some representation of their teammates' cognition; the social
plane is the level where individual representations disappear behind the cul
ture that the community members jointly constructed. If we relate these psy
chological levels to CSCL environments, we usually observe five levels of
activity:

• Individual Plane: Solo activities.
• Group Plane: Activities in small groups ranging from two to, let's say,

eight people. This is where proper collaboration occurs.
• Class Plane: Activities involving all students enrolled in the same course.

We also refer to them as collective activities.
• Community Plane: Activities that involve external but identified actors

such as other classes, expert groups, families. For instance, when a class

16. Designing integrative scripts 291

from school X designs a mathematical challenge for all other classes in
the community, this activity is at the community level.

• World Plane: Activities that are accessible to unidentified actors, for in
stance when a class journal is produced on the web, the entire world may
read it. If a survey is conducted via the web, any user may vote.

What matters here is not to agree on the exact definition of the levels but
to stress the fact that script activities define moves across multiple planes.
Figure 16-4 illustrates the time by social structure of the script "Concept
Grid". One could argue that activities always occur at multiple planes: indi
vidual cognition does not freeze during class interactions and culture does
not stop shaping our thinking during individual work. Activities do occur in
parallel on multiple planes, but their focus varies with time.

The curved arrows on Figure 16-4 represent what we cdX\Q^ functional
integration in section 3.4. Functional integration refers to dataflow between
activities at different planes. The output of an activity Aj at social level N is
later on reused by an activity Aj+i at social level M, in many cases, N being
different from M. This dataflow may appear as a technical feature, but in fact
it affords the design of innovative scripts by combining storing, processing,
distributing and representing data during collaborative learning. These data
are student productions (answers in the ArgueGraph, concept definitions in
the ConceptGrid and deliverables in the Studio) and student interactions
(e.g., their arguments in the UniverSante). We describe dataflow operators in
section 7.4.

6. THE SWISH MODEL

How to design the core script activities? We propose a model, called
SWISH, which borrows the distributed cognition vision, according to which
a group of actors and the tools they use can be understood as a single cogni
tive system. The components of the system are the students who participate
in the scripted teamwork as well as the tools and resources available. The
script itself can be considered as a tool that shapes the functioning of the
distributed system.

The core script defines the organization of a distributed cognitive system
i.e., which team member will perform which subtasks. We refer to subtasks
in a generic way: they can be independent from each other, like in coopera
tive work, or tightly coupled, like when one peer has to regulate the other.
Scripts often define roles that induce a somewhat natural distribution of
work into subtasks.

Why would we formalize task distribution while we aim to support col
laboration? A formal task division appears to be in contradiction with the

292 Chapter 16

close interactions expected in collaboration (Dillenbourg, 1999). Since col
laborative learning is often defined as the process of constructing and main
taining a shared understanding of the task (Roschelle & Teasley, 1995), it
may sound counter-intuitive to split the task among different learners: this
opens the door to misalignment of views, understandings and goals. To the
same extent, scripts that foster conflict among peers would be detrimental to
the construction of a joint solution. To bypass this counter-intuition, we rely
on Schwartz' (1995) definition of collaborative learning as the effort neces
sary to build a shared understanding. Learning is the side effect of the cog
nitive processes triggered by the interactions (explanation, argumentation,
mutual regulation, etc.) engaged to develop this shared understanding.
Scripts that trouble a smooth collaboration increase the cognitive effort and
hence are expected to augment the learning outcomes. In other words,
learning results from over-compensating the drawbacks of task distribution.

This principle is the base of our design model: "Split Where Interaction
Should Happen*'. SWISH can be formulated in three points:

1. Learning results from the interactions students engage in while construct
ing a shared understanding of the task despite the fact that the task is dis
tributed.

2. Hence, the task distribution determines the nature of interactions. Interac
tions are mechanisms for overcoming task splits.

3. Hence task splits can be, following some kind of reverse engineering,
designed for triggering the interactions that the designer wants to foster:
Split Where Interaction Should Happen.

This model can be applied for describing the main script schemata, i.e.,
classes of scripts. We distinguish three basic schemata:

• l\iQ jigsaw schema distributes the knowledge or information necessary to
solve the task, either by forming pairs that have complementary knowl
edge (e.g., in UniverSante, students from different countries import
knowledge of their national health system) or by providing them with
complementary information (e.g., different readings in the ConceptGrid).
Since none of the group members has enough information or knowledge
to solve the task alone, they need to explain or justify their knowledge or
contribution to others. For describing the ConceptGrid in SWISH terms,
the split is performed by distributing information and it is compensated
by explaining concepts to each other.

• The conflict schema triggers argumentation among group members by
forming pairs of students with conflicting opinions (e.g., ArgueGraph),
by providing them with conflicting evidence or by asking them to play
conflicting roles. For describing the ArgueGraph in SWISH terms, the

16. Designing integrative scripts 293

split is performed by finding peers with conflicting opinion and it is
compensated by argumentation.

• The reciprocal schema defines two roles in teams, one of the peers regu
lating the other and then switching roles. A well known example is the
reciprocal teaching approach (Palincsar & Brown, 1984). For describing
the reciprocal tutoring script in SWISH terms, the split is performed hori
zontally, between cognitive and metacognitive layers of the task and is
compensated by mutual regulation. Since the cognitive and metacogni
tive subprocesses need to remain tightly coupled, the only way to build a
shared solution is that peers continuously engage in mutual regulation
interactions.

7, GENERALIZING SCRIPTS

As any pedagogical method, scripts raise hopes of generalization: can we
reuse these scripts to teach a large variety of contents? The ArgueGraph
script can be used for different subject matters but is only relevant in do
mains where key notions can be argued about. The ConceptGrid script can
be generalized to many conceptual sets, but not all conceptual domains can
be segmented as in the grid. The UniverSante was very specific to the con
tent to be taught, public health: using national differences is a natural way to
let students discover the variety of societal answers to a similar medical
problem. The Studio script can be generalized to a variety of design proc
esses but with the constraint that this design process should be rather linear.

Generalisability is not bound by classical scientific boundaries (e.g., a
script would be good for mathematics but not for social sciences) but by the
specific learning objectives (ArgueGraph could be used in mathematics if
students argue to choose among three ways to compute a value). In other
words, there is definitely a potential of generalisability; a script is not uni
versally relevant but can be reused in various domains.

7.1 Descriptive model

Scripts can be defined as variations of a generic template with a limited
set of attributes. Most scripts can be defined with a limited number of com
ponents (groups, participants, roles, activities and resources) and mecha
nisms that capture the dynamics of scripts, i.e., how individual learners are
distributed over groups (group formation), how roles, activities or resources
are distributed over participants (component distribution) and how both
components are distributed over time (sequencing) (Kobbe, Weinberger,
Dillenbourg, Harrer, Hamalainen, & Fischer, submitted).

294 Chapter 16

This simple description scheme could be translated within an educational
modeling language (EML). These languages propose a well-structured ter
minology for describing instructional sequences. They do constitute a step
forward compared to the content-centric approach of the educational meta
data initiatives. However, they do not constitute a design model; they pro
vide a description of the scripts but fail to capture the core idea of a script. A
design model should describe the mechanisms by which the script is ex
pected to generate learning. IMS Learning Design• could be expanded to
model the core script, but groups are not defined explicitly but indirectly by
assigning roles. This prevents for instance building a jigsaw script where
team members have different roles within each team, or a reciprocal teaching
script where roles rotate among group members at each script phase. The
social structure of a script should be explicitly represented in the model.

Instead of producing yet another pedagogically neutral authoring lan
guage, we deliberately aim for a non-neutral model, i.e., a modeling scheme
that conveys specific pedagogical ideas. This is the condition to produce
scripts that differ from genuine lesson plans. Therefore, instead of looking
for a highly abstract modeling scheme, we identify classes of similar scripts
and infer their core idea, their identity.

7.2 Script schemata

Despite the diversity of scripts, there are recurrent patterns. We called
them schemata instead of patterns to avoid confusions with the term design
pattern, which has a more technical meaning in software engineering. A
schema simply indicates commonalities among scripts, independently from
the algorithms used by the CSCL environments to support these scripts. For
instance, scripts that belong to the jigsaw schema have in common to dis
tribute the necessary information among team members. Schemata are more
abstract than programming structures, but if we translate them into software
components, we could design tools that reduce the computational burden of
CSCL script construction.

In section 6, we described three types of script schemata, the jigsaw
schema, the conflict schema and the reciprocal schema. Other methods for
group-based learning can also be described as script schemata:

• The project schema defines phases of a project, roles among teams (mod
erator, leader, writer, ...) and a calendar of intermediate deliverables.
These scripts vary in coercion: does each team work on the same project;
are they free to define the phases of their work and the calendar. The fo
cus is often put on the regulation of project work.

' http://www.imsglobal.org/learningdesign

16. Designing integrative scripts 295

• Problem-based learning (Koschmann, Kelson, Feltovich, & Barrows,
1996) covers a variety of scripts that, despite differences, include similar
phases: analysing the problem, defining learning objectives, acquiring the
necessary knov^ledge and solving the problem collectively.

• The science making schema includes scripts in which team work is struc
tured into a sequence of phases that drive learners through the scientific
process of knowledge construction, as researchers are supposed to do.
One example for these schemata is inquiry based learning (Hakkarainen
& Sintonen, 2002).

We stress the fact that these schemata are not recipes for collaborative
learning. They provide a general structure but the art of design is to apply
this structure to the specific learning objectives, the peculiarities of the target
audience and the specific content.

7.3 Generalization hierarchy

The ConceptGrid is a subclass of jigsaw schema. We could reuse the
same script but replacing the Cartesian grid used in Phase 4 by a graphical
concept map. The diversity of links between concepts that is offered in a
concept map might be more appropriate to complex semantic fields. This
new script, let's call it ConceptGraph, and the ConceptGrid are two sub
classes of a higher script class, let's call it ConceptStructure.

In the ArgueGraph, a subclass of the argumentation schema, pairs are
formed on the basis of their distance on the graph. The distance is computed
by associating an X- and Y- value to each answer. These values are not
computed in a scientific way, they are arbitrarily fixed by the designer. Their
interest is to provide positions on the map with a semantic value. To avoid
this arbitrary value allocation, one could use an algorithm that forms pairs of
students with the lowest number of common answers. Let's call this new
script ArgueList and their super-class ArgueFromQuizz. In another version,
rather than using a chat or face-to-face discussion, we could have students
argue with a semi-structured communication interface such as Belvedere
(Suthersetal, 2001).

296 Chapter 16

SWISH Model

Conflict Schema Reciprocal SQh^ma Jigsaw Schema

.C'^

ArgueFromQuizz ConceptStructure

Argue List ConceptGrid ConceptGraph

ArgueGraph ArgueBelvedere

ArgueGraph on
learning theories

ArgueGraph on
learning theories -
Session 356

ConceptGrid on
learning theories -
Session 453

Figure 16-5. Generalization hierarchy for CSCL scripts.

Figure 16-5 represents the hierarchy of generalization. We arbitrarily dis
criminate four levels:

• Schemata describe the core mechanism of a large set of scripts.
• Script classes and subclasses define scripts, including their didactic enve

lope, independently from a specific content.
• Instances are scripts that have been instantiated with a specific content.
• Sessions are scripts instances with the student-specific data (users per

groups, deliverables, ...), dates, etc.

This hierarchy is not a proper tree: A script may borrow ideas from sev
eral schemata. The UniverSante script for instance plays with both the com
plementarity (Jigsaw schema) and the conflicts among students knowledge.

16. Designing integrative scripts 297

One could argue that this tree-Hke representation is not appropriate. For in
stance, in the ArgueFromQuizz family (a subgraph), the mode of pair for
mation (Phase 2; graph distance versus common answers) is independent
from the mode of argumentation (Phase 4: free versus semi-structured dia
logues). Each of the pair formation modes could be combined with each of
the argumentation modes. A script grammar, combined with these different
modes as vocabulary, would be more powerful for describing all possible
combinations. However, syntax may not carry semantics. A combinatorial
approach may lead to assemble script elements into something that does not
constitute a script, i.e., a sequence of events that will not trigger specific in
teractions. Script classes make the design space discrete, which is a simplifi
cation, but enables to convey the design rationale.

7.4 Executable model

As pointed out by Kobbe et al (submitted), a script can be defined as a
number of mechanisms that manipulate a set of script components (roles,
activities,...). Some of these components are intrinsic to the script class (e.g.,
the grid structure of ConceptGrid; some prompts in ArgueGraph), some ob
jects are specific to the script instance (e.g., the questions included in an
ArgueGraph on biology; the list of documents to read in a ConceptGrid on
history) and some objects are specific to a script session (e.g., the definition
produced by ConceptGrid students; the answers produced by ArgueGraph
students). An executable model of script has to manipulate these objects,
e.g., to allocate individuals to groups or roles to individuals, to gather an
swers within a group or conversely to distribute data among group members,
etc. We expect these mechanisms to be formalized as the combination of a
limited number of basic operators.

Dataflow operators. Dataflow enables the design of dynamic CSCL
scripts. The dataflow used in our scripts can be described by a small number
of operators for moving up and down the planes of the social structure. The
research in producing these operators should benefit from the advances on
workflow technology, namely workflow standards such as WFXMLl

• Upward operators are aggregate, list, differentiate, etc. They collect data
at a social plane and turn them into a data structure at higher social plane.
The type of processing depends on the nature of data. If data are struc
tured in a table with social planes (individuals, groups, ...) in rows and
task outputs in columns, we can define simple operators. The aggrega
tion operator collapses columns, e.g., computes a value (sum, mean, ...)
for all individuals. The differentiation operator collapses columns (data)

2 http://www.wfmc.org/standards/wfxml_demo.htm

298 Chapter 16

for each user. It is used in the ArgueGraph, where the answers to the 10
questions are summarized into a [X Y] pair for each individual in order to
plot them on the graph. When data are too complex to be turned into a
single value, they can simply be listed as it is the case in the Studio script
{list operator).

• Downward operators distribute an object among members of the lower
social plane. For instance, in the ConceptGrid, each group of four stu
dents (social plane 2) is associated with four roles and 12 readings. A
downward operator would distribute the roles and readings to each team
members (social plane 1). As for aggregation, the simplest operator is
non-transformational: it distributes the same object O from plane N to all
members at plane N-1.

Social operators. Other operators transform the structure of the groups
either by reallocating roles within a group (role rotation) or by moving indi
viduals between groups (group rotation).

• The role rotation operator redistributes the roles (subtasks) among group
members at different phases. Role rotation reinforces the distributed sys
tem model that underlies the SWISH model. A set of interrelated compo
nents can be depicted as "a system" if it is capable of plasticity, i.e., to re
allocate dynamically subtasks to different subcomponents. The rotation
operator enforces this plasticity.

• The group rotation operator redistributes individuals among teams. It is
applied in scripts where individuals are member of two groups, namely in
Jigsaw scripts, where an individual sometimes works with his or her team
but sometimes works with the individuals that have the same role in other
teams.

• The group formation operators determine how groups are formed from
individuals: it relies on the difference of opinions in ArgueGraph and the
complementary of knowledge in Hoppe and Ploetzner's (1999) scripts.

These few examples of operators stress both the usefulness and the com
plexity of developing abstract mechanisms that would apply to a variety of
script domains.

8. SYNTHESIS

The SWISH model can be explained simply. First, one introduces a per
turbation in a distributed system, by splitting it. Second, the system triggers
repair mechanisms for reducing the perturbation. These repair mechanisms -
hopefully - are knowledge-intensive interactions that produce learning.

16. Designing integrative scripts 299

Learning is therefore the result of over-compensating the drawback of task
splits.

However, this model only holds if the group has both the ability and the
will to compensate task splits. In some cases, solving conflicts, explaining
complex concepts or regulating bad problem solvers may be beyond the
skills of individuals. In other situations, the motivation to reach a shared un
derstanding may be insufficient. The SWISH model is only valid for tasks
that require a high level of shared understanding. If students manage to solve
the task without constructing a shared understanding, repairing the system
will not be worth the effort.

SWISH is not a cognitive model grounded in experimental results. We
used these scripts with our own students, but only two of them have been
formally assessed. However, no script could be proved to be generally effec
tive. We cannot establish the effectiveness of a script class in general since it
depends on its relevance for specific learning objectives and target groups.
Nonetheless, by describing CSCL scripts in a structured way, this chapter
may help researchers to clarify the variables they investigate when running
experimental studies.

This framework contributes to design tools for authoring CSCL scripts.
Most scripts are implemented in specific CSCL environments. Our script
examples were implemented as dynamic web pages, generated with PHP
programs from database contents (MySQL). Not all teachers can install a
database and write PHP. Tools for authoring CSCL scripts aim at promoting
practices of e-learning that are more innovative than those offered by exist
ing learning management systems.

ACKNOWLEDGEMENTS

This chapter benefited from the discussions within CoSSICLE a research
group of KALEIDOSCOPE, a European Network of Excellence on "Concepts
and methods for exploring the future of learning with digital technologies'',
funded by the European Union and the Swiss Federal Office for Education
and Science. This work is also partly funded by the Swiss Center for Inno
vation in Learning (SCIL; University of St Gallen, Switzerland). This chap
ter has been enriched by comments from Frank Fischer, Armin Weinberger,
Karsten Stegmann, and the book reviewers.

300 Chapter 16

REFERENCES

Berger, A., Moretti, R., Chastonay, P., Dillenbourg, P., Bchir, A., Baddoura, R., et al. (2001).
Teaching community health by exploiting international socio-cultural and economical dif
ferences. In P, Dillenbourg, A. Eurelings, & K. Hakkarainen (Eds.). Proceedings of the
first European Conference on Computer Supported Collaborative Learning (pp. 97-105).
Maastricht.

Bromme, R., Hesse, F., & Spada, H. (Eds.) (2005). Barriers and biases in computer-mediated
knowledge communication. Computer-Supported Collaborative Learning Series. New
York: Springer.

Brousseau, G. (1998). Theorie des situations didactiques. Grenoble: La Pensee Sauvage.
Dillenbourg P. (1999). What do you mean by collaborative learning? In P. Dillenbourg (Ed.),

Collaborative-learning: Cognitive and computational approaches (pp. 1-19). Oxford:
Elsevier.

Dillenbourg, P., & Betrancourt, M. (2006). Collaboration Load. In J. Elen & R. E. Clark
(Eds.), Handling complexity in learning environments: research and theory (pp. 142-163).
Advances in Learning and Instruction Series, Pergamon

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning
with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL, Can we support
CSCL (pp. 61-91). Heerlen: Open Universiteit Nederland.

Dillenbourg, P., Baker, M., Blaye, A., & O'Malley, C. (1995). The evolution of research on
collaborative learning. In H. Spada & P. Reimann (Eds.), Learning in humans and ma
chine: Towards an interdisciplinary learning science (pp. 189-211). Oxford: Elsevier.

Dillenbourg, P., & Tchounikine, P. (in press). Flexibility in macro-scripts for CSCL. Journal
of computer assisted learning.

Engeli, M. (Ed.). (2001). Bits and spaces, architecture and computing for physical, digital,
hybrid realms. Basel: Birkhauser Publishers.

Hakkarainen, K., & Sintonen, M. (2002). The interrogative model of inquiry and computer-
supported collaborative learning. Science & Education. 11(1), 25-43.

Harrer, A., Bollen, L., & Hoppe, U. (2004). Processing and transforming collaborative learn
ing protocols for learner's reflection and tutor's evaluation. In E. Gaudioso & L. Talavera
(Eds.), Proceedings of the European Conference on Artificial Intelligence. Valencia.

Hoppe, U. H., & Ploetzner, R. (1999). Can analytic models support learning in groups. In P.
Dillenbourg (Ed.), Collaborative-learning: Cognitive and Computational Approaches
(pp. 147-168). Oxford: Elsevier.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19, 265-288.
Jermann, P., & Dillenbourg, P. (2003). Elaborating new arguments through a cscl scenario. In

G. Andriessen, M. Baker, & D. Suthers. (Eds.), Arguing to learn: confronting cognitions
in computer-supported collaborative learning environments. Computer-Supported Col
laborative Learning Series. Amsterdam: Kluwer.

Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hamalainen, R., & Fischer, F. (sub
mitted). Specifying Computer-Supported Collaboration Scripts.

Kollar, I., Fischer, F., & Hesse, F. W. (in press). Computer-supported collaboration scripts - a
conceptual analysis. Educational Psychology Review.

Koschmann, T., Kelson, A. C, Feltovich, P. J., & Barrows, H. S. (1996). Computer-supported
problem-based learning: A principled approach to the use of computers in collaborative
learning. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm.
Mahwah, NJ: Lawrence Erlbaum Associates.

16. Designing integrative scripts 301

Lave J. (1991). Situating learning in communities of practice. In L. Resnick, J. Levine, & S.
Teasley (Eds.), Perspectives on Socially Shared Cognition (pp. 63 - 84). Hyattsville, MD:
American Psychological Association.

Moreland, R. L. (1999). Transactive memory: Learning who knows what in work groups and
organizations. In L. Thompson, D. Messick, & J. Levine (Eds.), Shared cognition in or
ganizations: The management of knowledge (pp. 3-31). Mahwah, NJ: Lawrence Erlbaum
Associates.

O'Donnell, A. M., & Dansereau, D. F. (1992). Scripted cooperation in student dyads: A
method for analyzing and enhancing academic learning and performance. In R. Hertz-
Lazarowitz & N. Miller (Eds.), Interaction in cooperative groups: The theoretical anat
omy of group learning (pp. 120-141). London: Cambridge University Press.

Palincsar A. S., & Brown A. L. (1984). Reciprocal teaching of comprehension-fostering and
comprehension-monitoring activities. Cognition and Instruction, 7(2), 117-175.

Roschelle, J., & Teasley S. D. (1995). The construction of shared knowledge in collaborative
problem solving. In C. E. O'Malley (Ed.), Computer-supported collaborative learning.
(pp. 69-197). Berlin: Springer-Verlag

Salomon, G. (1993), No distribution without individual's cognition: a dynamic interactional
view. In G. Salomon (Ed.), Distributed cognitions. Psychological and educational consid
erations (pp. 111-138). Cambridge, USA: Cambridge University Press.

Schwartz, D. L. (1995). The emergence of abstract dyad representations in dyad problem
solving. The Journal of the Learning Sciences, 4{'i), 321-354.

Soller, A., Martinez, A., Jermann, P., & Muehlenbrock. M. (2005). From Mirroring to Guid
ing: A Review of State of the Art Technology for Supporting Collaborative Learning. In-
ternationalJournal of Artificial Intelligence in Education, 15, 261-290.

Suthers, D., Connelly, J., Lesgold, A., Paolucci, M., Toth, E., Toth, J., et al. (2001). Repre
sentational and Advisory Guidance for Students Learning Scientific Inquiry. In K. D. & P.
J. Feltovich (Eds.), Smart machines in education: The coming revolution in educational
technology (pp. 7-35). Menlo Park, CA: AAAI/Mit Press.

Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes.
Cambridge, MA: Harvard University Press.

Weinberger, A., Fischer, F., & Mandl, H. (2002). Fostering computer supported collaborative
learning with cooperation scripts and scaffolds. In G. Stahl (Ed.), Computer support for
collaborative learning: foundations for a CSCL community. Proceedings of the Interna
tional Conference on Computer Support for Collaborative Learning (CSCL) 2002 (pp.
573-574). Hillsdale, NJ: Lawrence Erlbaum Associates.

