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Energetic Selection Principle

In this chapter1 I shall introduce a new energetic approach and, based
on it, the principle of energetic selection, which can be applied to any
population-based optimization algorithm including differential evolu-
tion. It consists in both decreasing the population size and the compu-
tation efforts according to an energetic barrier function that depends
on the number of generations. The value of this function acts as an
energetic filter, through which can pass only individuals with lower
fitness. Furthermore, this approach allows us to initialize the popula-
tion of a sufficient (large) size. This method leads to an improvement
of algorithm convergence.

8.1 Energetic Approach

Perhaps this new energetic approach may be associated with the processes
taking place in physics. As a matter of fact, it was inspired by sociology from a
certain sociobiological phenomenon, the so-called phenomenon of dispergated
genes, that was observed during World War II. As only a few people know
this phenomenon, I prefer to make reference to physics because it is in some
sense similar and, in addition, many of the researchers working in evolutionary
computation possibly know well a simulated annealing algorithm.

Let there be a population IP consisting of NP individuals. Let us define
the potential of an individual as its cost function value ϕ = f(ind). Such a
potential shows the remoteness from the optimal solution ϕ∗ = f(ind∗), that
is, some energetic distance (potential) that should be overcome to reach the
optimum. Then, the population can be characterized by superior and inferior
potentials ϕmax = max f(indi) and ϕmin = min f(indi). As the population
1 Some material in this chapter originally appeared in [FJ04f]; this work was se-

lected as the best paper of ICEIS 2004 to be republished in the book Enterprise
Information Systems VI [FJ06].
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evolves the individuals take more optimal energetic positions, the closest pos-
sible to the optimum level. So if t → ∞ then ϕmax(t) → ϕmin(t) → ϕ∗, where
t is an elementary evolution step. Approaching the optimum, apart from stag-
nation cases, can also be expressed by ϕmax → ϕmin or (ϕmax−ϕmin) → 0. By
introducing the potential difference of population �ϕ(t) = ϕmax(t) − ϕmin(t)
the theoretical condition of optimality is represented as

�ϕ(t) → 0 . (8.1)

In other words, the optimum is achieved2 when the potential difference is close
to 0 or to some desired precision ε. The value �ϕ(t) is proportional to the
algorithmic efforts, which are needed in order to find the optimal solution.

Thus, the action A done by the algorithm for passing from one state t1 to
another t2 is

A(t1, t2) =
∫ t2

t1

�ϕ(t)dt . (8.2)

We introduce then the potential energy of population Ep that describes
total computational expenses.

Ep =
∫ ∞

0

�ϕ(t)dt . (8.3)

Notice that (8.3) graphically represents the area Sp between two functions
ϕmax(t) and ϕmin(t).

Fig. 8.1. Energetic approach.

2 Recall that a population based algorithm is usually aimed at the global solution,
so the cases where a local optimum is achieved are theoretically excluded from
the context.
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Let us recall that our purpose is to increase the speed of algorithm con-
vergence. Logically, convergence is proportional to computational efforts. It
is obvious that the smaller the potential energy Ep is, the fewer computa-
tional efforts are needed. Thus, by decreasing the potential energy Ep ≡ Sp

we augment the convergence rate of the algorithm. Hence, the convergence
increase is transformed into a problem of potential energy minimization (or
Sp minimization).

E∗
p = min

�ϕ(t)
Ep(�ϕ(t)) . (8.4)

8.2 Energetic Selection Principle

8.2.1 Idea

Now we apply the above-introduced energetic approach to the DE algorithm.
As an elementary evolution step t we choose a generation g.

In order to increase the convergence rate we minimize the potential energy
of population Ep (Fig. 8.1). For that a supplementary procedure is introduced
at the end of each generation g. The main idea is to replace the superior poten-
tial ϕmax(g) by the so-called energetic barrier function β(g). Such a function
artificially underestimates the potential difference of generation �ϕ(g).

β(g) − ϕmin(g) ≤ ϕmax(g) − ϕmin(g)
⇔ β(g) ≤ ϕmax(g), ∀g ∈ [1, gmax] .

(8.5)

From an algorithmic point of view this function β(g) serves as an energetic
filter for the individuals passing into the next generation. Thus, only the
individuals with potentials less than the current energetic barrier value can
participate in the next evolutionary cycle (Fig. 8.2).

In practice, it leads to the decrease of the population size NP by rejecting
individuals such that:

f(ind) > β(g) . (8.6)

8.2.2 Energetic Barriers

Here, I shall show you some examples of the energetic barrier function. At the
beginning we outline the variables upon which this function should depend.
First, this is the generation variable g, which provides a passage from one
evolutionary cycle to the next. Second, it should be the superior potential
ϕmax(g) that presents the upper bound of the barrier function. And third, it
should be the inferior potential ϕmin(g) giving the lower bound of the barrier
function (Fig. 8.3).
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Fig. 8.2. Energetic filter.

Fig. 8.3. Energetic barrier function.

Linear Energetic Barriers

The simplest example is the use of a proportional function. It is easy to obtain
by multiplying either ϕmin(g) or ϕmax(g) with a constant K.

In the first case, the value ϕmin(g) is always stored in the program as the
current best value of the cost function. So, the energetic barrier looks like

β1(g) = K · ϕmin(g), K > 1 . (8.7)

The constant K is selected to satisfy the energetic barrier condition (8.5).
In the second case, a small procedure is necessary to find the superior

potential (maximal cost function value of the population) ϕmax(g). Here, the
energetic barrier is
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β2(g) = K · ϕmax(g), K < 1 . (8.8)

K should not be too small in order to provide a smooth decrease of the
population size NP .

An advanced example would be a superposition of the potentials.

β3(g) = K · ϕmin(g) + (1 − K) · ϕmax(g) (8.9)

So, with 0 < K < 1 the energetic barrier function is always found between
the potential functions. Now, by adjusting K it is easier to get the smoothed
reduction of the population without condition violation (8.5). Examples of the
energetic barrier functions are shown in Fig. 8.4.

Fig. 8.4. Linear energetic barriers.

Nonlinear Energetic Barriers

As we can see, the main difficulty of using the linear barriers appears when
we try to define the barrier function correctly in order to provide a desired
dynamics of the population reduction. Taking into consideration that ϕmax →
ϕmin when the algorithm converges locally, the ideal choice for the barrier
function is a function that begins at a certain value between ϕmin(0) and
ϕmax(0) and converges to ϕmax(gmax).

Thereto, I propose an exponential function K(g)

K(g) = Kl + (Kh − Kl) · e(−Tg/gmax) . (8.10)

This function, inspired by the color-temperature dependence from Bernoulli’s
law, smoothly converges from Kh to Kl. The constant T , so-called tempera-
ture, controls the convergence rate. The functional dependence on the tem-
perature constant K(T ) is represented in Fig. 8.5.
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Fig. 8.5. Exponential function K(g, T ).

By substituting the constant K in (8.7)–(8.9) for the exponential function
(8.10) we can supply the energetic barrier function with improved tuning
(Fig. 8.6).

Fig. 8.6. Nonlinear energetic barrier.

8.2.3 Advantages

1. The principle of energetic selection permits us to initialize the population
of a sufficiently large size. This fact leads to better (careful) exploration
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of a search space during the initial generations as well as increasing the
probability of finding the global optimum.

2. The energetic barrier function decreases the potential energy of the pop-
ulation and thereby increases the convergence.

3. The double selection principle is applied. The first one is a usual DE se-
lection for each individual of a population. Here, there is no reduction of
the population size. And the second one is a selection of the best individ-
uals that pass in the next generation, according to the energetic barrier
function. It leads to the reduction of the population size and consequently
the number of function evaluations.

Practical Remarks

Notice that a considerable reduction of the population size occurs at the be-
ginning of the evolutionary process. For more efficient exploitation of this fact
a population should be initialized with a much larger size NP0 than usual.
Then, when the population shrinks to a certain size NPf , it is necessary to
stop the energetic selection procedure. This forced stopping is explained by
possible stagnation and not so efficient search by a small size population. In
fact, the first group of generations locates a set of promising zones. The se-
lected individuals are conserved in order to make a thorough local search in
these zones.

8.3 Comparison of Results

In order to test this approach I took three test functions (8.11) from a standard
test suite (see Appendix C). The first two functions, Sphere f1 and Rosen-
brock’s function f2, are classical DeJong testbeds [DeJ75]. The third function,
rotated ellipsoid f3, is a quadratic nonseparable function.

f1(X) =
3∑

i=1

x2
i

f2(X) = 100(x2
1 − x2)2 + (1 − x1)2

f3(X) =
20∑

i=1

⎛
⎝ i∑

j=1

xj

⎞
⎠

2

.

(8.11)

I fixed the differentiation F and crossover Cr constants to be the same for
all functions. F = 0.5. Cr = 0 (there is no crossover in order to make the DE
algorithm rotationally invariant; Appendix D). The stopping condition of the
algorithm is a desirable precision of optimal solution V TR (value to reach).
It is fixed for all tests as V TR = 10−6. As usual, we count the number of
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Table 8.1. Initial test data.

fi D NP NP0 NPf K

1 3 30 90 25 0.50
2 2 40 120 28 0.75
3 20 200 600 176 0.15

function evaluations NFE needed to reach V TR. The initial data are shown
in Table 8.1.

For DE with the energetic selection principle the initial population size was
chosen three times larger than in the classical DE scheme: NP0 = 3 ·NP . The
forced stopping was applied if the current population became smaller than
NP . Hence NPf ≤ NP . As an energetic barrier function the linear barrier
β3(g) was selected (8.9). So, K is an adjusting parameter for barrier tuning,
which was found empirically. D is the dimension of the test functions.

The average results of 10 runs for both the classical DE scheme and DE
with the energetic selection principle are summarized in Table 8.2.

Table 8.2. Comparison of classical differential evolution (cl) and differential evolu-
tion with energetic selection principle (es).

fi NFEcl NFEes δ, %

1 1088.7 912.4 16,19
2 1072.9 915.3 14,69
3 106459.8 94955.6 10,81

The numbers of function evaluations (NFEs) were compared. It is consid-
ered that the NFEcl value is equal to 100%, therefore the relative convergence
amelioration percentagewise can be defined as

δ = 1 − NFEes

NFEcl
. (8.12)

Thus, δ may be interpreted as the improvement of the algorithm’s convergence.

Remark

I tested DE with a great range of other functions. The stability of results was
observed. So, in order to demonstrate my contribution, here I have generated
only 10 populations for each test function relying on statistical correctness.



Problems

8.1. What is the potential of an individual? potential difference? Give an
explaining sketch.

8.2. Given a test function, the so-called Schubert’s problem,

f(X) =
D∏

i=1

⎛
⎝ 5∑

j=1

j cos((j + 1)xi + j)

⎞
⎠ , −10 ≤ xi ≤ 10 .

Plot empirical curves for both superior and inferior potentials, consider one
generation (iteration) as an elementary step of evolution. Calculate the action
A done by the algorithm for the first 10 and last 10 generations. Estimate
the operation efficiency of the algorithm at the beginning and the ending
iterations. At which moment is the algorithm most efficient? Explain why.

8.3. Calculate the potential energy of the population. As a basis for this take
the curves plotted in problem (8.2).

8.4. How are the potential energy and the algorithm’s convergence related?

8.5. What is the energetic barrier? Explain, how does the energetic barrier
influence the population?

8.6. On what parameters does the function defining the energetic barrier de-
pend?

8.7. Which of the linear energetic barriers do you think is most efficient from
a practical point of view?

8.8. What does the constant K influence?

8.9. In which cases should you use a nonlinear energetic barrier?

8.10. What is the constant T in (8.10) of Chapter 8 and what does it in-
fluence? Using the potential’s curves from problem (8.2), plot functions of
nonlinear energetic barriers for the constant T = 0, 1, 3, 5.

8.11. Solve, for example, the following test function, the so-called McCormick’s
problem,

f(X) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1
−1.5 ≤ x1 ≤ 4 , −3 ≤ x2 ≤ 3 ,

using linear and nonlinear energetic barriers. Compare the obtained results.

8.12. Implement “forced stopping” of the energetic selection procedure for
problem (8.11).
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8.13. What are the advantages of using the method of energetic selection?
For what kind of problems (test functions) is this method more appropriate?
Argue your suppositions.

8.14. for determining the promising zones using the population state. Imple-
ment it in your DE algorithm.

8.15. For the algorithm realized in problem (8.14) develop a technique which
permits individuals to rapidly migrate from less promising to more promis-
ing zones. Estimate the efficiency of your algorithm on 2–3 multimodal test
functions at your discretion.




