
7

On Analogy with Some Other Algorithms

Nothing tempts a person as much as a cure for all problems. Nothing
delights the scientist as much as a universal algorithm capable of ef-
ficiently solving any problem. We all well know that there is no such
“remedy”, but we are in continuous expectation of its appearance.
Differential evolution seems to be a gleam of hope. In this chapter
we shall establish an analogy between differential evolution and some
other popular algorithms. It is obvious that DE can be easily com-
pared with genetic algorithms and evolution strategies; I leave this
task to the mercy of the reader. But here, we shall compare DE with
nonlinear simplex, a very old and famous algorithm, and with two
recent and efficient metaheuristics, particle swarm optimization and
free search. From the outside, drawing an analogy will help us to dis-
close advantages and disadvantages of differential evolution. Ex altera
parte, on the inside, I shall make an attempt to interpret the other
algorithms through Differential Evolution.

Direct search methods, the methods we are speaking about in this book, firstly
were proposed in the 1950s. The state of the art at that time was presented
by Swann in 1972 [Swa72]. These methods, as you know, are used in one or
more of the following cases.

1. Calculation of the objective function is time-consuming.
2. The gradient of the objective function does not exist or it cannot be

calculated exactly.
3. Numerical approximation of the gradient is slow.
4. Values of the objective function are “noisy”.

In order to disengage oneself from constraint-handling techniques and to
devote one’s attention to the algorithms themselves we shall consider only
boundary constraints (2.15).



102 7 On Analogy with Some Other Algorithms

7.1 Nonlinear Simplex

The class of simplex direct search methods was introduced in 1962 [SHH62].
The most famous direct search method was suggested by Nelder and Mead in
1965 [NM65]. I shall briefly describe this method [Wri95].

Four operations, characterized by scalar parameters, are defined: reflection
(ρ), expansion (χ), contraction (γ), and shrinkage (σ). In the original version
of the algorithm these parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1 . (7.1)

The standard version of the algorithm assumes that

ρ = 1, χ = 2, γ = 1/2 and σ = 1/2 . (7.2)

The Nelder–Mead algorithm is:

1. Order. Order the D + 1 vertices in IRD space to satisfy

f(x1) ≤ f(x2) ≤ · · · ≤ f(xD+1) . (7.3)

2. Reflect. Find the reflection point xr from

xr = x̄ + ρ · (x̄ − xD+1) , (7.4)

where x̄ =
∑D

i=1 xi/D. Evaluate fr = f(xr).
If f1 ≤ fr < fD then accept the reflected point xr and terminate the
iteration.

3. Expand. If fr < f1 then calculate the expansion point xe,

xe = x̄ + χ · (xr − x̄) , (7.5)

and evaluate fe = f(xe). If fe < fr then accept xe and terminate the
iteration, otherwise accept xr and terminate the iteration.

4. Contract. If fr ≥ fD then perform a contraction between the better of
xD+1 and xr.
(a) Outside. If fD ≤ fr < fD+1 then outside contraction

xc = x̄ + γ · (xr − x̄) , (7.6)

and evaluate fc = f(xc). If fc ≤ fr then accept xc and terminate the
iteration, otherwise perform a shrink.

(b) Inside. If fr ≥ fD+1 then perform an inside contraction

xcc = x̄ − γ · (x̄ − xD+1) , (7.7)

and evaluate fcc = f(xcc). If fcc < fD+1 then accept xcc and terminate
the iteration, otherwise perform a shrink.



7.1 Nonlinear Simplex 103

5. Shrink. Evaluate f at the D points for the next iteration from

vi = x1 + σ · (xi − x1), i = 2, . . . , D + 1 . (7.8)

In spite of world-wide popularity this algorithm suffers from the following
drawbacks [Tor89, Wri96].

• It fails when the simplex collapses into a subspace, or becomes extremely
elongated and distorted in shape. In most of these cases, the objective
function has highly elongated contours and a badly conditioned Hessian.

• It fails when its search direction becomes nearly orthogonal to the gradient.
• It is very sensitive to an increase of the problem dimension.

Now, let us examine a DE strategy from the RAND/DIR group (see Chap-
ter 3). For the dimension D, at each iteration (generation g) we shall ran-
domly extract D + 1 individuals from the population IPg. The worst individ-
ual of this subpopulation (xD+1) belongs to the negative class C−; the others
(xi, i = 1, . . . , D) form the positive class C+. There is no average shift in this
strategy. So, the strategy can be rewritten as

ω = x̄ + F · (x̄ − xD+1) , (7.9)

where x̄ =
∑D

i=1 xi/D.
It is obvious that such a strategy is identical to the reflection in the Nelder–

Mead algorithm (7.4) taking into account that F ≡ ρ. Moreover, a wide range
of differentiation constant values, F ∈ (−1, 2+), can be easily interpreted as
an expansion, F ≥ 2, and an inside, F ∈ (−1,−0), or outside, F ∈ (+0, 1),
contraction.

Unlike the logic of passing from one step to another in the Nelder–Mead
algorithm, differential evolution immediately (or after crossover) selects the
best individual among the target and the trial ones. The value of the differ-
entiation constant is either controlled by an adaptation scheme or could be
perturbed randomly. Also, the “simplex” is created randomly on the basis of
the population for each individual per generation. Furthermore, there is no
restriction on the number of used individuals.

I shall emphasize the following advantages/features of the DE approach in
comparison with the Nelder–Mead simplex:

• Search is performed in random subspaces.
1. The fact that in strategy (7.9) or, more generally (3.7), any number of

individuals (usually n < D) can be used illustrates the creation of a
simplex in subspaces of the search space.
This makes the algorithm less sensitive to the problem dimension. On
the other hand, such a strategy is more flexible in assigning a descent
direction.



104 7 On Analogy with Some Other Algorithms

2. The subspace, generated from a population, better fits the optimal
zones within each new generation.
Thus, even if an inefficient simplex has appeared at the next step there
is a great probability of constructing an efficient one. Often, a “bad”
simplex executes the role of an explorer by testing unknown regions.

3. Introduced in (3.7), average shift allows us to correct a rough direction.
In addition, hybridization with the best individual (RAND/BEST/DIR
group) localizes, in some cases, the optimum more briskly.

• Existence of many simultaneous optimizers.
DE could be perceived as a set of autocorrelated simplex optimizers.

Such a distributed organization provides more thorough exploration,
and improves convergence and precision of solution.

So, as you can see, DE overcomes all the drawbacks stated for the Nelder–
Mead simplex. The DE strategy (7.9) of the RAND/DIR group inherits and
develops the ideas underlying the simplex algorithm.

7.2 Particle Swarm Optimization

The first particle swarm optimization (PSO) method was proposed by J. Ken-
nedy and R.C. Eberhart in 1995 [KE95]. It progressed simultaneously with DE
and, at present, possesses one of the best performances among evolutionary
algorithms, or even more widely, among metaheuristics. PSO issued from the
metaphor of human sociality. It was born of attempts to simulate human
cognition and to apply this model to a real optimization problem.

The idea is to use a set of individuals (a swarm of particles) for search space
exploration. A particle represents a vector solution xi ∈ IRD, i = 1, . . . , NP
of an optimization task (the same notation as for DE is used here). At each
iteration t the particle changes the position influenced by its velocity vi(t).

xi(t) = xi(t − 1) + vi(t) . (7.10)

In order to update the velocity two rules are combined.

1. Simple Nostalgia
In the view of psychology it realizes the tendency of an organism to repeat
successful behaviors from the past or, in case of failure, to return to the
last success. Let pi be the best solution attained of the ith particle up to
the present iteration, thus the velocity is updated in the following way.

vi(t) = vi(t − 1) + ρ1 · (pi − xi(t − 1)) . (7.11)

2. Social Influence
In spite of an infinite number of possibilities to represent a social behavior
two methods were distinguished for defining a neighborhood:



7.2 Particle Swarm Optimization 105

• gbest — considers the entire population as a neighborhood;
• lbest — defines the subpopulation surrounding the particle.
The gbest case is more practical and generally gives better results. Let pg

be the best solution of the population, so the mathematical expression of
the social influence is ρ2 · (pg − xi(t − 1)).
In the view of sociology this term represents the tendency of an organism
to emulate the success of others.

To sum up, each of the particles is updated per iteration in the following
way.

vi(t) = vi(t − 1) + ρ1 · (pi − xi(t − 1)) + ρ2 · (pg − xi(t − 1))
xi(t) = xi(t − 1) + vi(t) .

(7.12)

The constants ρ1 and ρ2 are control parameters. They define which of two
behaviors is dominant.

However, this algorithm in such a form has several drawbacks, leading
mainly to premature convergence. In order to improve its performance some
modifications were proposed:

• Limitation of ρ1,2 up to 2 and its relaxation ρ1,2 · rand(0, 1]
• Limitation of the velocity vi ∈ [−Vmax, +Vmax], Vmax = H − L
• Introduction of the inertia weight w applied to the previous velocity

vi(t − 1), which understates the influence of the preceding behaviors on
the current one

All this results in the next update formula:

vi(t) = w(vi(t − 1)) + ρ1 · rand(0, 1] · (pi − xi(t − 1))
+ ρ2 · rand(0, 1] · (pg − xi(t − 1))

vi ∈ [−Vmax, +Vmax] ; ρ1, ρ1 ∈ (0, 2] .
(7.13)

Let us compare PSO with DE now. The PSO strategy (7.13) consists of
three components:

1. Damped history of previous velocities w(vi(t − 1))
2. Personal behavior ρ1 · rand(0, 1] · (pi − xi(t − 1))
3. Social behavior ρ2 · rand(0, 1] · (pg − xi(t − 1))

The history of previous velocities in terms of psychology characterizes the
memory of an organism, and the damping mechanism realizes its property
— forgetting. Memory always appears together with personal qualities. If the
strategy is built only on personal behavior (second component), the algorithm
will not work at all. Thus, memory induces positive effects for an individual
movement of the particle, and, on the other hand, it retards its social reaction.

DE does not contain the first two aspects of PSO in pure form. Most likely
the transversal technique (see Chapter 6) could illustrate personal behavior.



106 7 On Analogy with Some Other Algorithms

The individual makes a random walk in the search space and then chooses
its optimal (best) position. Here, in DE, the walk is defined by the state of
the population, whereas in PSO the next position (of the walk) is defined
by the personal optimal position pi and by the particle’s velocity vi. In PSO
terms, DE (differentiation) is more social strategy. Nevertheless, I have made
an attempt to introduce into DE the memory aspect in the form of damped
preceding velocities (difference vectors). Various damping mechanisms, linear
and nonlinear, were tested. As a result, such a modification induced only an
inertia of search and showed decrease of convergence.

The third aspect of PSO (social behavior) can be interpreted in DE by the
following strategy.

ω = Vb + F ∗ · (Vb − ind) , F ∗ = F · rand(0, 1] . (7.14)

This strategy is an example of the RAND/BEST group (see Chapter 3, Equa-
tion (3.8)). We easily catch an identity between this strategy and the social
aspect of PSO (ω = xi(t), Vb = pg, F = ρ2 − 1, ind = xi(t − 1)).

Finally, two complementarity features might be observed:

1. DE enlarges the social behavior by its groups of strategies.
2. PSO propagates the ideas of leadership on developing a local neighbor-

hood.

It should be noticed that PSO uses the selection operation in an implicit form,
whereas DE regards selection as a separate operation.

The success of DE may be explained by its collective intelligence behav-
ior. If PSO exploits only two optimal positions (the particle’s optimal position
and leader’s position), DE involves in evolution the positions and fitness of all
the individuals of a population (population state). From a sociopsychological
point of view, PSO represents the conscious, and DE the unconscious way
of reasoning. It is well known that a human brain treats about only 10% of
information consciously and 90% of information unconsciously (or modified
states of consciousness). Perhaps, by imitating the human, the best of univer-
sal optimizers would be an alternation of PSO and DE with near to natural
proportions.

7.3 Free Search

Free search (FS) is a very recent population-based optimizer. It was invented
by K. Penev and G. Littlefair in 2003 [PL03]. Just as PSO emulates social
cognition, FS is associated with an animal’s behavior. FS partially imitates
Ant Colony Optimization (ACO) adapted for continuous search [BP95]. Also,
it includes: a PSO mechanism to refresh an animal’s position, a DE strategy
principle to create the animal’s action and, also, the general structure of GA.



7.3 Free Search 107

An animal in free search makes a journey, several exploration steps in the
search space. Then, it moves at the best found position and marks it by a
pheromone. The behavior of any animal is described by two aspects.

1. Sense
Each of the animals has a sense to locate a pheromone. The more sensitive
animal is able to find a better (promising) place for the search. The less
sensitive one is forced to search around any marked position.

2. Action
Each of the animals makes a decision of how to search; that is, it chooses
its own neighborhood of search. So, the search journey of an animal may
vary from local to global movements.

Both sense and action of an animal are random factors.
Let xi be an animal of a population IP. The population consists of NP

animals. The animals mark their positions by a pheromone Pi ≤ 1:

Pi = f(xi)/fmax , (7.15)

where fmax = maxi{f(xi)} , i = 1, . . . , NP . Then, one endows each of the
animals with the sense Si:

Si = Pmin + randi(0, 1] · (Pmax − Pmin) , (7.16)

where Pmax, Pmin are the maximum and the minimum pheromone values of a
population.

At each generation the animal xi begins its journey from any position xk

(from any animal of the population) satisfying its sense; that is,

xk : Si ≤ Pk, ∀k ∈ [1, . . . , NP ] . (7.17)

During the journey each animal performs T steps in the following way.

xt
i = xk + R · (H − L) · randt(0, 1), t = 1, . . . , T . (7.18)

R ∈ [Rmin, Rmax] ⊂ IRD is a randomly generated vector that defines a neigh-
boring space. H,L are boundary constraints. The favors of step are considered
as values of the objective function f(xt

i). The animal moves itself to the best
found position

xi : f(xi) = max
t

{f(xt
i)} .

When all animals perform their journeys, a new pheromone is distributed
(7.15) and new senses are generated (7.16). Then, the population passes to
the next generation.



108 7 On Analogy with Some Other Algorithms

This method has many random factors:

• Start position xk

• Neighboring space R
• Steps of a journey xt

i

• Generation of a sense Si

In spite of the fact that the authors present such a randomness as a self-
adaptation mechanism [Pen04, PL03], I suppose that it is exclusively a ran-
domness. From my point of view self-adaptation is developed only in the
restrictions on choosing a start position for a journey (7.17).

Free search can be confronted with transversal DE (Chapter 6). The intro-
duction of a pheromone, in FS, has purely an ideological meaning. Without
loss of generality the sense generation could be calculated directly from the
minimal and the maximal values of an objective function. The next DE strat-
egy will better coincide with the ideas underlying FS:

ω = x + F ∗ · (H − L), F ∗ = F · rand(0, 1) . (7.19)

F ∗ ⊂ IRD is a relaxed vector of differentiation. x is a randomly extracted
individual. This case presents a constant difference vector δ = H − L. And,
contrary to the usual DE, where extracted individuals form an exploration
walk, here, only F ∗ moves the individual through the search space.

It is clear that there are two main disadvantages.

1. The information about the state of the population is not used; that is, the
algorithm loses the perfect property of self-adaptation. In the common DE
case, the difference vector is created on the basis of randomly extracted
individuals that partially present the population state.

2. A random choice of the vector of differentiation produces many useless
steps in the global neighborhood, and a local search is needed at the end
of optimization.

However, free search introduces a new individual’s feature (sense) that
permits controlling the sensibility of an individual to the search space. Sense
suppresses exploration of the search space, but at the same time, increases
convergence by exploiting promising zones. It would be very attractive to join
together the intelligence of a DE strategy and the sensitivity of a FS animal.



Problems

7.1. Formulate a definition of direct search methods. Enumerate the cases
where these methods should be applied. Mention at least five direct search
methods that you have already met.

7.2. What four operations of nonlinear simplex do you know? Explain and
sketch in each of these operations.

7.3. Enumerate the drawbacks of the nonlinear simplex method.

7.4. Which of the strategies of differential evolution nearly completely inter-
prets nonlinear simplex? Draw an analogy between these two algorithms.

7.5. Enumerate the advantages of differential evolution as against nonlinear
simplex.

7.6. What the main idea does underlie particle swarm optimization?

7.7. Which of two appearances from psychology and sociology does particle
swarm optimization reflect?

7.8. What role does the inertia weight w play in the PSO algorithm?

7.9. How is the effect of memory implemented in PSO and how is its property
of forgetting implemented?

7.10. Is the memory is a positive or negative aspect of the algorithm?

7.11. Does differential evolution contain the elements of memory and personal
behavior, likewise PSO? If yes, explain the difference of their implementation.

7.12. Which of the DE strategies in the best way interprets the social behav-
iour of PSO? Implement this strategy in your DE algorithm.

7.13. Add to problem (7.12) the implementation of the memory mechanism
and the effect of personal behavior peculiar to PSO. Test the new algorithm
and analyze the obtained results.

7.14. Write the algorithm that will alternate the strategy of PSO (7.13) from
Chapter 7 with one of the DE strategies from Chapter 3. Experiment with
alternation of one strategy with another. For the following test function,

f(X) =
1
2

+

(
sin

√
x2

1 + x2
2

)2

− 1/2

(1 + 0.001(x2
1 + x2

2))2
, −100 ≤ x1, x2 ≤ 100

f(X∗) = 0 , X∗ = 0 ,

plot the graphs of convergence depending on the percentage of one or another
strategy in the algorithm. Justify the results. Compare this algorithm with
the classic one from Chapter 1.



110 7 On Analogy with Some Other Algorithms

7.15. Show with an explaining sketch two main aspects of the free search
algorithm.

7.16. How does one calculate the pheromone of an individual?

7.17. How does one calculate the sense of an individual?

7.18. Give a flow-graph of the free search algorithm.

7.19. What random factors does Free Search have? In your opinion are these
factors advantages or drawbacks?

7.20. Which of the DE strategies coincides in the best way with the idea
underlying free search? What drawbacks of this strategy do you see?

7.21. Add to your algorithm the aspect of “sense” inherent in free search.
Estimate the new algorithm using, at least, the following test function

f(X) = (x2
1 + x2

2)
0.25

(
sin2

(
50(x2

1 + x2
2)

0.1
)

+ 1
)

−100 ≤ x1, x2 ≤ 100 , f(X∗) = 0 , X∗ = 0 .

7.22. Find (approximate) the probability density function for the difference
vector of DE. Compare this function with other familiar probability density
functions. Use the obtained function to automatically generate the difference
vector independently of other individuals of the population. Compare the new
algorithm with the classical one.




