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Exploration and Exploitation

A successful application of an optimizer resides in the well-found
trade-off between exploration and exploitation. So, we are continu-
ously searching for the best equilibrium between them. In this chapter
we pass to the analysis of the differentiation operation and equally to
the study of the control parameter influence. In order to make a better
choice of strategy I propose calculating an indicator of the strategy
diversity,1 its exploration capacity. Also, I shall show that differentia-
tion is the first step to the general operator integrating mutation and
crossover, where mutation provides the needed diversity of the pop-
ulation and crossover assures the capacities to survive. Moreover, in
this chapter I expose my studies consecrated to the control parameters
and their tuning. This results in practical recommendations for using
differential evolution.

When we speak about evolutionary algorithms — GA, ES, DE, or others —
we always expect to find the global optimum, but. . .

. . . the ability of an EA to find a global optimal solution depends on
its ability to find a right relation between exploitation of the elements
found so far and exploration of the search space. . . . [Bey98]

Thus, the successful application of the method consists in the choice of the
optimal exploration/exploitation union. As is well known, the excessiveness of
exploration leads to the global optimum with a high probability, but critically
slows down the convergence rate. On the other hand, the excessive exploitation
quickly results in local optima.

The capability of genetic operators to control exploration/exploitation bal-
ance as well as their relative importance has been discussed for many decades.
Some groups of scientists believe in mutation-selection superiority, others con-
centrate themselves on crossover power. But I make an effort to be impartial
to these opinions and elicit the advantages from both points of view.
1 The diversity measures the proportion of the surveyed space of solutions.
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4.1 Differentiation via Mutation

The strategies, which use objective function values to create the trial individ-
ual, accomplish an exploitation function. These are dir and dir-best groups.
The diversity in this case decreases twice, so in order to maintain it at a re-
quired level it is necessary to increase the population size and/or the number
of extracted individuals.

The fact of random choice of parents for a trial individual itself answers for
exploration capabilities. Besides the population size and the type of strategy,
exploration efficiency can be controlled by the differentiation constant F as
well [Zah01, LL02b, Š02].

To the present day, it was considered (disruption and construction the-
ories) that mutation cannot completely fulfill the functions of crossover and
vice versa [Spe93]. Mutation perfectly creates a random diversity, but it can-
not execute the construction function well. Crossover can show preservation,
survival, and construction, but often it cannot achieve a desirable diversity.
Thus, the EC community was looking forward to the one general operator that
could integrate mutation and crossover functions as well as any variations be-
tween them. Differentiation in the DE algorithm is the first step on the road
to such an operator. It does not fall under the influence of accepted disrup-
tion theory providing needed diversity and, at the same time, it luxuriously
preserves survival capabilities. Let discuss it in more detail.

Differentiation is the first step to the general operator.

There is no disruption effect for differentiation! Disruption rate theory esti-
mates the probability that an evolutionary operator will disrupt a hyperplane
sample, in other words, the probability that individuals within a hyperplane
will leave that hyperplane [Spe93]. Let all individuals of a population Xi be-
long to hyperplane H. Hence, β and δ are always on H. Therefore, ω = β+F ·δ
will belong H too. That is, there is no combination of individuals on the hy-
perplane that makes the trial individual leave this hyperplane. This means a
good survival capability of differentiation usually inherent to crossover.

4.2 Crossover

The principal role of crossover is as a construction. There is no such mu-
tation that can achieve higher levels of construction than crossover [Spe98].
Just as selection exploits objective function values, crossover exploits genetic
information. Moreover, crossover furnishes the high diversity of a population.

Convinced of the power of crossover I would like to make a point about
applying it to DE.

Videlicet, in the cases when we use the strategies with a direction analysis
(dir and dir-best groups) crossover operation becomes unnecessary, because
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it spoils a trial individual inducing the noise. In other words, when we choose
the directed strategies, it is supposed that we want to imitate the gradient
function, that is, to make the steps close to the gradient direction. If we use
crossover, the gene’s exchange between the trial and target individuals would
perturb the desired direction in most cases.

Furthermore, note that differentiation by itself is capable of executing the
both functions (exploration/exploitation) simultaneously. So, if we guaranteed
sufficient exploration (diversity of population), then the crossover operation
would be superfluous. Thus we could eliminate it and thereby reduce comput-
ing time as well.

4.3 Analysis of Differentiation

The structure of the DE algorithm is similar to that of genetic algorithms:
concepts of mutation and crossover are repeated here. In addition, DE in-
tegrates the ideas of self-adaptive mutation specific to evolution strategies.
Namely, the manner of realization of such a self-adaptation has made DE one
of the most popular methods in evolutionary computation. We examine it in
detail.

Originally, two operations were distinguished: differential mutation and
continuous recombination [Pri99]. Differential mutation was based on the
strategy ω = ξ3 + F · (ξ2 − ξ1) and required at least three randomly extracted
individuals. A continuous recombination was in need of only two individuals,
ω = ξ1 + K · (ξ2 − ξ1). Price emphasized the different dynamic effects of these
operations. In the case of a continuous recombination the trial individual ω
places only on the line created by its parents ξ1, ξ2. This compresses a pop-
ulation. In the case of a differential mutation the difference vector (ξ2 − ξ1)
is applied to an independent individual. And it is similar to the Gaussian
or Cauchy distribution used in ES, that makes no reference to the vector to
which it is applied. It does not compress a population. Founded on such an
inference several strategies were proposed [Sto96a].

Recently, in 2004, a new vision of these operations was discovered (see
[FJ04d] or Chapter 3). A new principle of strategy design (see [FJ04g] or Sec-
tion 3.2) was introduced, which synthesizes the previous two operations by one
unique formula and accentuates population diversity. Now, all strategies are
described by two vector terms: difference vector δ and base vector β (2.8). The
difference vector provides a mutation rate term (i.e., a self-adaptive noise),
which is added to a randomly selected base vector in order to produce a trial
individual. The self-adaptation results from the individuals’ positions. During
the generations the individuals of a population occupy more and more prof-
itable positions and regroup themselves. So, the difference vector decreases
(automatically updates) each time the individuals fit local or global optima.
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The strategies have been classified into four groups by information that
they use to “differentiate” the actual individual (rand/dir/best/dir-best).
Each group represents a proper method of search (random/directed/local/
hybrid). Hence, the key to ensure a required diversity of a population is not
only the dynamic effect of the operations, but, to a greater extent, the number
of randomly extracted individuals k needed to create a strategy.

We look at differentiation now from a combinatorial point of view. Usually,
population size NP and the constant of differentiation F are fixed. Thus NP
individuals are capable of producing potentially Θ(k) different solutions. We
refer to Θ(k) as a diversity characteristic of a strategy, whereas the method of
using of these individuals reflects strategy dynamics (see Sections 3.2 and 3.4
or [FJ04b]). We shall give an estimation of diversity. Let the individuals be
extracted from the population one after another, so the upper diversity bound
can be evaluated in the following way (see Fig. 4.1),

Θ(k) =
k∏

i=1

(NP − i) . (4.1)

Fig. 4.1. The upper diversity bound.

The strategy (difference vector) is created by calculating the barycenters
of two sets of individuals. The general differentiation formula can be rewritten
as

ω = β + F · (Bar(set2) − Bar(set1)) . (4.2)
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These sets, besides randomly extracted individuals (n1 in the first set and n2

in the second set), may also include the target and the current best individuals.
Because of such a generalization, the extraction order of individuals forming
a barycenter is not important, thus the diversity of population decreases in
n1!·n2! times, where n1+n2 = k. Moreover, if the directed or hybrid strategies
are used, then the diversity still drops down twice. Therefore we introduce a
direction factor

dir =
{

2 if RAND/DIR or RAND/BEST/DIR
1 if RAND or RAND/BEST (4.3)

Consequently, the exact diversity estimation is equal to:

Θ(k) =
∏k

i=1(NP − i)
dir · n1! · n2!

. (4.4)

It is obvious that a high diversity slows down the convergence rate, whereas
a low one results either in stagnation or premature convergence. Thus some
balance is needed. By controlling the number of randomly extracted individ-
uals (or more precisely a strategy type) we can easily provide the required
diversity of population (see Section 3.4).

Practical remark: As you already know, the diversity function depends on
the number of individuals used in a strategy and the size of a population. If the
number of individuals in a strategy surpasses 7 then the diversity of a strategy
becomes enormous and consequently the exploration would be excessive. So,
in practice, it is reasonable to use not more than 3, 4, or 5 individuals to give
sufficient exploration. This is a practical compromise between computing time
and quality of the search space exploration.

4.4 Control Parameters

The goal of control parameters is to keep up the optimal exploration/exploita-
tion balance so that the algorithm will be able to find the global optimum in
the minimal time. Practical tests show that within the search process the
diversity of a population (its exploration capabilities) usually goes down more
rapidly than we would like. Thus, one of the ways to provide good control is
to retain the desired diversity level.

4.4.1 Diversity Estimation

During the last years different manners of the diversity estimation were pro-
posed in the literature. I shall represent some of them here.
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Expected Population Variance

One of the exploration power measures is the population variance [BD99]

Var(IP) = X2 − X
2

, (4.5)

where X is a population mean and X2 is a quadratic population mean. So, if
Var(IP0) is an initial population variance, then after several generations the
expected population variance can be estimated as a function of the control
parameters Ω = Ω(F, Cr, NP, k) [Zah01].

E(Var(IPg)) = Ωg · Var(IP0) . (4.6)

The comparisons of the real and theoretical results confirm the likelihood
of such an estimation. To retain the given diversity it is necessary for the
transfer function Ω to be a little more than or at least equal to 1: Ω ≥ 1.

Average Population Diversity

In the work [Š02] a direct measure of average population diversity was intro-
duced.

div(g) =

∑NP
i=1

∑NP
j=i+1

|Xi(g)−Xj(g)|
H−L

2 · D · (NP − 1) · NP
. (4.7)

It represents for each generation an average normalized distance between the
individuals of the population.

Mean Square Diversity

Another direct way to estimate diversity is to use the mean square root eval-
uation for the population as for its objective function [LL02a].

P g
div =

1
kp

√√√√ 1
NP

NP∑
i=1

D∑
j=1

(xg
i,j − xg−1

i,j )2

F g
div =

1
kf

√√√√ 1
NP

NP∑
i=1

(fg
i − fg−1

i )2 ,

(4.8)

where kp, kf compress P g
div, F g

div into the interval [0, 1]. This method requires
an additional memory source both for the population and the vector of ob-
jective functions of the previous generation.
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P -Measure

There is a simpler and, perhaps, more practical way to estimate population
diversity (see Chapter 5). P (population)-measure is a radius of population,
that is, an Euclidean distance between the center of population Op and the
farthest individual from it.

Pm = max ‖Xi − Op‖E , i = 1, . . . , NP . (4.9)

4.4.2 Influence of Control Parameters

Constant of Differentiation

The constant of differentiation F is a scaling factor of the difference vector δ.
F has considerable influence on exploration: small values of F lead to prema-
ture convergence, and high values slow down the search. I have been enlarging
the range of F to the new limits F ∈ (−1, 0) ∪ (0, 1+] (see Subsection 3.2.5).
Usually, F is fixed during the search process. However, there are some at-
tempts to relax this parameter. Relaxation significantly raises the covering
of the search space and also partially delivers us from the exact choice of
F . Among the relaxations we can outline F = N(0, F ), N(F, σ)|σ�F , and
N(F, F ) with a normally distributed step length and the same variants with
uniform distribution.

Constant of Crossover

The constant of crossover reflects the probability with which the trial individ-
ual inherits the actual individual’s genes. Although using Crossover makes the
algorithm rotationally dependent (Appendix D and [Sal96, Pri99]), crossover
becomes desired when we know the properties of an objective function. For ex-
ample, for symmetric and separable functions Cr ≈ 1−1/D is the best choice;
for the unimodal (or quasi-convex) functions a good choice is crossover with
the best individual. Moreover, small values of Cr increase the diversity of
population. To put it differently, the number of potential solutions will be
multiplied by the number of vertices of a D-dimensional hypercube built on
the trial and target individuals.

Size of Population

The size of population NP is a very important factor. It should not be too
small in order to avoid stagnation and to provide sufficient exploration. The
increase of NP induces the increase of a number of function evaluations; that
is, it retards convergence. Furthermore, the correlation between NP and F
may be observed. It is intuitively clear that a large NP requires a small F ;
that is, the larger the size of a population is, the more densely the individuals
fill the search space, so less amplitude of their movements is needed.
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Type of Strategy

The strategy can be characterized by the number of randomly extracted in-
dividuals k and the dynamic effect resulting from the manner of their use.
k controls the diversity, whereas the way to calculate the trial individual di-
rectly reflects the dynamics of exploration. A small k makes the strategy a
slack one. A big k slows down the convergence rate because of both the ex-
cessive diversity and towering complexity of differentiation.

4.4.3 Tuning of Control Parameters

The effective use of an algorithm requires the tuning of control parameters.
And this is a time-consuming task. However, the parameter tuning may be
replaced by the parameter control [EHM99].

Three types of parameter control are distinguished.

1. Deterministic control: parameters are followed by a predefined determin-
istic law; there is no feedback information from the search process.

2. Adaptive control: parameters depend on feedback information.
3. Self-adaptive control: parameters depend on the algorithm itself; they are

encoded into it.

Deterministic Control

For the first time the deterministic control of the population size has been in-
troduced using the energetic selection principle (Chapter 8). The population
is initialized by a huge number of individuals; then an energetic barrier (deter-
ministic function that depends on the generation number) is applied to reduce
the population to a normal size. This method leads to global convergence and
increases its rate.

Next, the law switching from one type of strategy to another can be im-
plemented. In such a way both the number and type of used individuals are
controlled. Switching results from a predefined switch-criterion that depends,
for instance, on the relative difference (fmax − fmin).

Adaptive Control

Two methods of adaptive control are distinguished.

1. Refresh of population
2. Parameter adaptation

The refresh of population [Š02] is realized either by replacement of “bad”
individuals or by injecting individuals into the population. Both methods
increase the diversity. The refresh can be aimed at exploration of new regions
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of the search space as well as for convergence rate improvement. It repeats
periodically or each time when the population diversity reaches a critical level.

The parameter adaptation entirely obeys the state of population. The
feedback information calculated on the basis of this state modifies the control
parameter according to a control law.

By now, two variants of adaptation have been proposed.

• The first one is a fuzzy control that adjusts the constant of differentia-
tion F . The input signal for the fuzzy system is computed from (4.8).
Membership functions and fuzzy rules are established based on expert
knowledge and previous tests. Notice that diversity evaluation, fuzzifi-
cation/defuzzification, and execution of fuzzy rules are time-consuming
operations and their complexity might be comparable with one DE gen-
eration. Thus, it is always necessary to estimate the relative efficiency of
this method.

• The second one is an adaptation based on the theoretical formula of the
expected population variance (4.6) [Zah02]. Also, the parameter F is ad-
justed. But this parameter becomes unique for each gene of the individual;
that is, each gene has its own parameter value. The adaptation happens
each generation. It is less complex than the previous one (O(NP · D))
and does not modify the complexity order of one generation. Such an
adaptation prevents premature convergence, but does not ensure the best
convergence rate. Moreover, it does not depend on the objective function,
so the introduction of supplementary information would be desirable.

Self-Adaptive Control

The work [Abb02] first proposed self-adaptive crossover and differential mu-
tation. Also, separate parameters were proposed for each individual as well as
for differential mutation as for crossover. The self-adaptation scheme repeats
the principle of differential mutation: r = rξ3 +N(0, 1)·(rξ2−rξ1), r ∈ {F,Cr}.
The given adaptation was used for multiobjective Pareto optimization and the
obtained results outperform a range of state-of-the-art approaches.

4.5 On Convergence Increasing

Actually, we emphasize three trends of convergence improvement.

1. Localization of global optimum
2. Use of approximation techniques
3. Hybridization with local methods

All these trends represent a pure exploitation of available information.
They elevate the intelligence of the algorithm in order to improve its conver-
gence. The main purpose of the prescribed improvement is an ability to solve
large-scale nonlinear optimization problems.
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Localization

The energetic selection principle (Chapter 8) is a particular case that illus-
trates a fast localization of the global optimum. An initialization by a large
population helps to reveal promising zones; then a progressive reduction of
the population locates the global optimum. At the end, local techniques can
be used.

Approximation

The deterministic replacement of “bad” individuals by “good” ones is one
of the ideas to ameliorate the convergence. Let the good individuals be cre-
ated by approximation methods. For example, we construct a convex function
regression on the basis of the best individuals of the population. Then, the
optimum of this regression will replace the worst individual. Here, there are
lots of regression techniques that could be applied. For instance, a more recent
and promising one is support vector machines (Chapter 9). The main empha-
sis is made on choosing an appropriate kernel function, which considerably
influences the quality of approximation.

Local Methods

The most traditional idea is to use the population-based heuristics as “multi-
starts” for deterministic optimizers. The positive results were demonstrated by
hybridizing DE with the L-BFGS method [AT02]. This hybridization proves
to be more efficacious for large-scale problems than for small ones.



Problems

4.1. What do we mean by exploitation and exploration when speaking about
evolutionary algorithms?

4.2. What advantages and disadvantages has an excessive exploration? And
an excessive exploitation?

4.3. It is well known that the role of genetic operators is to control the balance
between exploration and exploitation. If you had a choice between mutation
and crossover, what would you prefer? And why?

4.4. Choose from Chapter 3 four different strategies (one strategy from each
group) and explain how the strategies realize the functions of exploitation
and/or exploration.

4.5. What do we mean by the diversity of population? Analyse how the di-
versity of population changes as exploitation increases?

4.6. Analyse the efficiency of exploration when the constant of differentiation
F increases.

4.7. What is the general operator? Could you consider the operation of dif-
ferentiation as the general operator? Explain your point of view.

4.8. Explain the disruption effect. Does the differentiation operator possess
this effect?

4.9. Suppose n individuals in n-dimensional space En are linearly dependent
vectors. Then, among them, there exists r linearly independent vectors form-
ing the basis in the subspace Er ⊂ En. Let the optimum Opt ∈ En be outside
of subspace Er, that is, there are no decompositions on basis vectors. The DE
algorithm implements only differentiation and selection (without crossover).
Is the found solution X∗ the optimum Opt? Write your arguments and give
an explaining sketch.

4.10. What properties should crossover have? Enumerate at least three prop-
erties and give an example for each of them.

4.11. How does the exploitation property appear in crossover?

4.12. In which cases does crossover become useless and may be even harmful?

4.13. Due to what does the self-adaptation of difference vector δ occur?

4.14. How, in theory, does one estimate the diversity of population from a
combinatorial standpoint? Take, from Chapter 3, any three strategies and
calculate the diversity according to the formula (4.4) of Chapter 4.



80 4 Exploration and Exploitation

4.15. Test the strategies selected for problem (4.14) using any test function
you have. Analyse the influence Θ(k) on the precision of the found solutions
and the computing time spent to obtain them. Make a written deduction.

4.16. Why are the control parameters necessary?

4.17. What empiric methods for diversity estimation do you know? Enumer-
ate at least four methods and implement one of them for choice.

4.18. Plot experimental curves (diversity from generation) for the strategies
chosen in problem (4.14) and the function used in problem (4.15). Explain
the obtained results.

4.19. What is the relaxation of F? Are there any advantages of relaxation?
Give some examples of relaxation. Does relaxation have some drawbacks?

4.20. Given a test function, the so-called Salomon function,

f(X) = − cos(2π‖X‖) + 0.1 · ‖X‖ + 1 ,

‖X‖ =

√√√√ D∑
i=1

x2
i , −100 ≤ xi ≤ 100 ,

f(X∗) = 0 , x∗
i = 0 , V TR = 1.0 × 10−6 .

Plot this function for D = 2. Make two experiments: the first for the fixed F
and the second for the relaxed F . Compare the results and show at least one
advantage and one disadvantage of the relaxation.

4.21. In which cases is crossover definitely necessary? Give concrete examples.

4.22. For any problem you choose, initialize the population as described in
problem (4.9). Find the optimal solution without using the crossover oper-
ation. Then, add the crossover operation and watch whether the new-found
optimal solution is changed? Make tests with different values of crossover.
Which value of crossover is the best for your case?

4.23. What chances do you take when the population size is too small?
Demonstrate on an example the stagnation effect of the algorithm. For the
demonstrated example, plot a graph of the time (generations), needed to find
the optimal solution (V TR) from the size of the population NP .

4.24. Choose arbitrarily one of four groups of strategies. Test several strate-
gies of this group on either your favorite problem or any known test function.
Plot curves of convergence for these strategies. Analyse how the convergence
of the algorithm depends on the number of randomly extracted individuals
needed for one or another strategy? Did you use, for validity of results, one
and the same initial population for all your tests?
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4.25. Why do we need to adjust the control parameters?

4.26. What is the difference between tuning of control parameters and the
parameter control? What three types of parameter control do you know?

4.27. Think out your own method of deterministic control, implement it and
test. Estimate its efficiency.

4.28. What kinds of adaptive control do you know?

4.29. Elaborate your own method of adaptive control for one of four parame-
ters (F, Cr, NP, k). Implement it and test. Estimate its efficiency.

4.30. Explain in short what is the self-adaptive control.

4.31. Think out your own version of self-adaptive control. Test it and estimate
how efficient your version is.

4.32. For optimization of a test function, the so-called Schwefel’s function,

f(X) = − 1
D

D∑
i=1

xi · sin(
√
|xi|) , −500 ≤ xi ≤ 500 ,

f(X∗) = −418.983 , x∗
i = 420.968746 , V TR = 0.01 ,

use the DE algorithm with three control parameters (F,Cr,NP ). Your task
is to optimize these parameters in order to ameliorate the convergence of the
algorithm. For this, use an algorithm of global optimization (either DE or
another). Plot the Schwefel’s function for D = 2. Write the program and find
the optimal control parameters.

4.33. What three trends of convergence improvement do you know? To what
are these improvements usually attributed? Write a short explanatory para-
graph.




