Unsupervised Learning: Clustering

In this Chapter, we introduce the concept of clustering, present the basic terminology, offer a
commonly encountered taxonomy of clustering algorithms, and discuss in detail some represen-
tative algorithms. We cover essential issues of scalable clustering that offers an insight into the
issues of handling large data sets.

1. From Data to Information Granules or Clusters

Making sense of data has been an ongoing quest within various types of research communities
in almost every practical endeavor that deals with collected experimental evidence. The age of
information technology, whose eminent manifestation is a vast amount of data, has amplified this
quest and made it even more challenging. The collections of large quantities of data anytime and
anywhere have become the predominant reality of our lives.

Within this context, clustering arises as a remarkably rich conceptual and algorithmic framework
for data analysis and interpretation. In a nutshell, clustering is about abstraction—discovering
structure in collections of data. The task of clustering is challenging both conceptually and
computationally. As explained in Chapter [l the term clustering is often used as a synonym
for unsupervised learning (but we need to remember that another key unsupervised learning
technique is association rules). As the name clustering implies, it is anticipated that a suitable,
unsupervised algorithm is capable of discovering structure on its own by exploring similarities or
differences (such as distances) between individual data points in a data set under consideration.
This highly intuitive and appealing guideline sounds deceptively simple: cluster two data points
if they are “close” to each other and keep doing the same by exploring the distances between
newly formed clusters and the remaining data points. The number of different strategies for cluster
formation is enormous, and a great many approaches try to determine what ‘“similarity” between
elements in the data means. Different clustering algorithms address various facets and properties
of clusters. Their computational aspects are of paramount importance, and we need to become
cognizant of them at the very beginning, in particular with reference to scalability issues. Let
us stress that dividing N data (patterns) into ¢ clusters (groups) gives rise to a huge number of
possible partitions, which is expressed in the form of the Stirling number:

1< :
G (§) m
g !
To illustrate the magnitude of the existing possibilities, let us consider N = 100 and c =5,
which sounds like a fairly limited problem. Even in this case, we end up with over 10% partitions.

Obviously, we need to resort to some optimization techniques the ones known as clustering
methods.

257



258 3. Similarity Measures

2. Categories of Clustering Algorithms

Clustering techniques can be divided into three main categories:

1. Partition — based clustering, sometimes referred to as objective function-based clustering
2. Hierarchical clustering
3. Model-based (a mixture of probabilities) clustering.

The clustering principles for each of these categories are very different which implies very different
style of processing and resulting formats of the results. In partition based clustering, we rely on
a certain objective function whose minimization is supposed to lead us to the “discovery” of the
structure existing in the data set. While the algorithmic setup is quite appealing and convincing
(the optimization problem could be well formalized), one is never sure what type of structure to
expect and hence what should be the most suitable form of the objective function. Typically, in this
category of the methods, we predefine the number of clusters and proceed with the optimization
of the objective function. There are some variants in which we also allow for successive splits
of the clusters, a process that leads us to a dynamically adjusted number of clusters. The essence
of hierarchical clustering lies in the successive development of clusters; we begin either with
successive splits (starting with a single cluster that is an entire data set) or with individual points
treated as initial clusters, which we and keep merging (this process leads us to the concept of
agglomerative clustering). The essential feature of hierarchical clustering concerns a suitable choice
of a distance function and a means to express the distance between data and patterns. These
features, in essence, give rise to a spectrum of various clustering methods (single linkage, complete
linkage, etc.). In model-based clustering, as the name itself stipulates, we assume a certain proba-
bilistic model of the data and then estimate its parameters. In this case, we refer to a so-called
mixture density model where we assume that the data are a result of a mixture of ¢ sources
of data. Each of these sources is treated as a potential cluster.

3. Similarity Measures

Although we have discussed the concept of similarity (or distance) in Chapter F] it is instructive
to cast these ideas in the setting of clustering. In the case of continuous features (variables) one
can use many distance functions as similarity measures (see Table [0.1)). Each of these distances
comes with its own geometry (such as hyperspheres and hyperboxes). As will become clear later
on, the choice of distance function implies some specific geometry of the clusters formed.

In the case of binary variables, we usually do not use distance as a similarity measure. Consider
two binary vectors X and y, that are two strings of binary data:

x=[xx...x,]"

Y=y, vl"

compare them coordinate-wise and then count the number of occurrences of specific combinations
of 0’s and 1I’s:

a) when x, and y, are both equal to 1
b) when x, =0 and y, = 1
c) when x, =1 and y, =0
d) when x, and y, are both equal to 0

These four combinations of numbers can be organized into a 2 x 2 co-occurrence matrix to
show how the two strings are “close” to each other. Note that since the strings are composed of



Chapter 9 Unsupervised Learning: Clustering 259

Table 9.1. Selected distance functions between patterns x and y.

Distance function Formula and comments

B

Euclidean distance d(x,y) = (x; —»)?
il

Hamming (city block) distance dx,y) =2 |x, —yl
i=1

Tchebyschev distance dx,y) = max,_j, | — il
Minkowski distance d(x,y) = % (x;—y)?,p>0
i=1
n
Canberra distance dx,y) =X —‘i’: ;i . x, and y, are positive
i=1 Nt
Lt XiYi
Angular separation dx,y) = —=
[zx,z zy,z}
i=1 i=1

Note: similarity measure expresses the
angle between the unit vectors in the
direction of x and y

0’s and 1’s, we encounter four combinations; these are represented in the tabular format shown
below. For instance, the first row and the first column corresponds to the number of times 1s’
occur in both strings (equal to a):

110
1|a|b
0| cld

Evidently, the zero nondiagonal entries of this matrix indicate ideal matching (the highest
similarity). Based on these four entries, there are several commonly encountered measures of
similarity of binary vectors. The simplest is the matching coefficient defined as

a+d

— ()
a+b+c+d
Another measure of similarity, Russell and Rao’s, takes the following form:
a
_ 3
a+b+c+d 3)

The Jacard index is more focused since it involves cases in which both inputs assume values
equal to 1:
a

_ 4
a+b+c “)

The Czekanowski index is practically the same, but by adding the weight factor of 2 it
emphasizes the coincidence of situations when both entries in x and y assume values equal to 1:

2a

_— 5
2a+b+c )



260 4. Hierarchical Clustering

For binary data, the Hamming distance could be another viable alternative. It is essential to be
aware of the existence of numerous approaches to defining similarity measures used in various
application-oriented settings.

When the features assume p discrete values, we can express the level of similarity/matching
by counting the number of situations in which the values of the corresponding entries of x and y
coincide. If this occurs r times, the pertinent measure could be in the following form, where n
denotes the dimension of the corresponding vectors:

n—r

1= ©)

n

d(x,y) =

4. Hierarchical Clustering

Hierarchical clustering algorithms produce a graphical representation of data. The construction
of graphs (these methods reveal structure by considering each individual pattern) is done in two
modes: the bottom-up and top-down. In the bottom-up mode, also known as the agglomerative
approach, we treat each pattern as a single-element cluster and then successively merge the closest
clusters. At each pass of the algorithm, we merge the two clusters that are the closest. The process
repeats until we get to a single data set (cluster) or reach a predefined threshold value. The
top-down approach, also known as the divisive approach, works in the opposite direction. We
start with the entire set, treat it as a single cluster, and keep splitting it into smaller clusters.
Considering the nature of the top-down and bottom-up processes, these methods are quite often
computationally inefficient, except possibly in the case of binary patterns.

The results of hierarchical clustering are represented in the form of a dendrogram. A
dendrogram is defined as a binary tree with a distinguished root that has all the data items at its
leaves. An example of a dendrogram is shown in Figure along with distance values guiding
the process of successive merging of the clusters. Depending upon the distance value, we produce
a sequence of nested clusters.

Dendrograms are visually appealing graphical constructs that help us understand how difficult
it is to merge two clusters. The nodes (represented in the form of small dots) located at the
bottom of the graph correspond to the patterns/data points (a, b, c, ...). While moving up in the
graph, we merge the points that are the closest in terms of some assumed similarity function.
For instance, the distance between g and ’ is the smallest, and thus these two are merged. The
distance scale shown at the right-hand side of the graph helps us visualize distance between the
clusters. Moving upwards, the clusters get larger.

Thus, at any level of the graph (see the dotted line in Figure @), we can explicitly enumerate
the content of the clusters. For instance, following the dotted line, we end up with three clusters,
that is {a}, {b, c,d, e}, and {f, g, h}. This process implies a simple stopping criterion: given a
certain threshold value of the distance, we stop merging the clusters once the distance between

{a}
ssdansssssssnssmanannnnpannnnn (D C d, €}

{f, g h}

a b ¢ d e f g h

Figure 9.1. A dendrogram as a visualization of structure in the data.



Chapter 9 Unsupervised Learning: Clustering 261

them exceeds the threshold. In other words, merging two quite distinct structures (where their
distinctiveness is expressed via the distance value) does not seem to be a good idea.

An important issue arises as to the way in which one can measure distance between two
clusters. Note that we have discussed how to express distance between two patterns. Here, since
each cluster may contain many patterns, distance computations are not that obvious and certainly
not unique. Consider clusters A and B as illustrated in Figure Let us describe the distance
(between A and B) by d(A, B) and denote the number of patterns in A and B by n, and n,,
respectively.

We have several ways of computing the distance between two such clusters, as described below.

Single link method (see Figure (a)) the distance d(A, B) is based on the minimal distance
between the patterns belonging to A and B. It is computed as

d(A’ B) = minxeA,yeB d(X, y) (7)

In essence, this distance is a radically “optimistic” mode, where we involve the closest patterns
located in different clusters. The clustering method based on this distance is one of the most
commonly used.

Complete link method (see Figure 0.2] (b)) This approach is on the opposite end of the spectrum,
since it is based on the farthest distance between two patterns in two clusters:

d(A, B) = maxye s yep d(X.Y) )

Group average link (see Figure @2](c)) in contrast to the two previous approaches, in which the
distance is determined on the basis of extreme values of the distance function, in this method we
calculate the average between the distances as computed between each pair of patterns, with one
pattern from each cluster:

1

d(A, B) = card(A)card(B) XegeB d(x.y) ©)

Obviously, the computations are more intensive, but they reflect a general tendency between the
distances computed for individual pairs of patterns.

One can develop other ways of expressing the distance between clusters A and B. For instance,
we can calculate the Hausdorff distance between two sets of patterns:

d(A, B) = max{max,., minyp d(X,y), max,p min., d(x, y)} (10)

To illustrate the essence of distance computations between a data point and a cluster we will
use the following example.

..o/... °e °

e %0 Q——r/;:
° B P

A @ ®

s mE

(©)

Figure 9.2. Two clusters A and B and several ways of computing the distance between them: (a) single
link; (b) complete link; (c) group average link. Data are denoted by small circles.



262 4. Hierarchical Clustering

Example: Let cluster A consist of three points (1,3), (2,3), and (1.5, 0.5). The distance between
x and A, d(x,A) is computed using formulas @)—@). In the computations we use the Euclidean,
Hamming and Tchebyschev distance, respectively. The results are displayed in a series of graphs
shown in Figure

An interesting general formula for expressing various agglomerative clustering approaches is
known as the Lance-Williams recurrence formula. It expresses the distance between cluster A and
B and the cluster formed by merging these two (which gives rise to cluster C):

daup,c =audy c+oagdg c+Bdy p+yldy c —dp el (11)

with adjustable values of the parameters o, (o), 3, and . The choice of values for these
parameters implies a certain clustering method, as shown in Table

With reference to the algorithmic considerations, hierarchical clustering can be realized in many
different ways. One interesting alternative comes in the form of the Jarvis-Patrick (JP) algorithm.
For each data point, we form a list of k nearest neighbors (where the neighborhood is expressed
in terms of some predefined distance function).

We allocate two points to the same cluster if either of the following conditions is satisfied:

a) the points are within each other’s list of nearest neighbors
b) the points have at least k. nearest neighbors in common.

min

Here k and k,_;, are two integer parameters whose values are specified in advance before
building the clusters. The JP algorithm has two evident advantages. First, it allows for nonconvex

Figure 9.3. Plots of distance d(x,A) for (a) the single link (b) complete link, (c) group average link, and the
Euclidean, Hamming, and Tchebyshev distances, from left to right, respectively.



Chapter 9 Unsupervised Learning: Clustering 263

Table 9.2. Values of the parameters in the Lance-Williams recurrence
formula and the resulting agglomerative clustering; n,, ngy and n.
denote the number of patterns in the corresponding clusters.

Clustering method ay(ag) B Y

Single link 172 0 —-1/2

Complete link 172 0 172

Centroid " _ Ay 0
ny+ng (na+ng)?

Median 172 —1/4 0

clusters. This point becomes obvious: the data point @ may be clustered with » and b could be
grouped with ¢, and subsequently, the points @ and ¢ which do not seem to be related to each
other end up in the same cluster. Second, the algorithm is nonparametric. Since it is based upon
the ordering of the distances (ranking) it is less sensitive to potential outliers.

5. Objective Function-Based Clustering

The key design challenge in objective function-based clustering is the formulation of an objective
function capable of reflecting the nature of the problem so that its minimization reveals meaningful
structure (clusters) in the data.

Objective function-based clustering looks for a data structure through minimization of some
performance index (called also objective function). Our anticipation is that a proper choice of
the objective function and its minimization would help reveal a “genuine” structure in the data.

There are many possibilities for formulating the objective function and various ways of
organizing the optimization activities. In what follows, we discuss several representative
algorithms by emphasizing the very nature of the underlying methods. The representation of the
structure (clusters) is provided in two ways, namely, as a collection of representatives (prototypes)
and as a partition matrix. Let us denote the prototypes by v,,V,,...,Vv.. The partition matrix
U = [u,,] consists of ¢ rows and N columns whose entries describe allocation of the corresponding
data to the consecutive clusters.

5.1. K-Means Algorithm

The minimum variance criterion is one of the most common options that help organize the data. It
comes with a clear and intuitive motivation: the prototypes of a large number of data should be
such that they minimize a dispersion of data around them. Having N patterns in R” and assuming
that we are interested in forming c clusters, we compute the sum of dispersions between the
patterns and a set of prototypes v,, V,,..., V.

c*

¢ N
2
Q=22 wllx —vill (12)
i=1 k=1
where || ||* being Euclidean distance between x, and v,. The important
component in the above sum is the partition matrix U = [uy],i = 1,2,...,¢c,
k=1,2,..., N whose role is to allocate the patterns to the clusters. The entries of U are binary.

Pattern k belongs to cluster i when u;,, = 1. The same pattern is excluded from the cluster when
u; is equal to 0.



264 5. Objective Function-Based Clustering

Partition matrices satisfy the following conditions:

e cach cluster is nontrivial, i.e., it does not include all patterns and is nonempty:

N
0<> uy<N,i=1,2,....,c (13)

k=1

e cach pattern belongs to a single cluster

C
Sup=1k=1,2,...,N (14)

i=1

The family of partition matrices (binary matrices satisfying these two conditions) will be
denoted by U. As a result of minimization of Q, we construct the partition matrix and a set of
prototypes. Formally, we express this construct in the following way, which is an optimization
problem with constraints:

Min Q with respect to v, V,,...,v.and U €U (15)

There are a number of approaches for this optimization. The most common is K-Means, a well
established way to cluster data.

The flow of the main optimization activities in K-Means clustering can be outlined in the
following manner:

Start with some initial configuration of the prototypes v,,i =1,2,..., ¢ (e.g., choose them
randomly)

e iterate
e construct a partition matrix by assigning numeric values to U according to the following rule

_J1if d(x, v;) =min;,; d(x;, v;)
i = {0, otherwise (16)

e update the prototypes by computing the weighted average, which involves the entries of the
partition matrix

N
kzl Ui Xy
V= —— (17)
D Uy
k=1

until the performance index Q stabilizes and does not change, or until the changes are negligible.

Partition matrices form a vehicle to illustrate the structure of the patterns. For instance, the
matrix formed for N = 8 patterns split into ¢ = 3 clusters is shown as follows:

10010101
U=(01100000
00001010

Each row describes a single cluster. Thus we have the following arrangement: the first cluster
consists of patterns {1, 4, 6, 8}, the second involves a set of patterns {2, 3}, and the third one
covers the remaining patterns, that is {5, 7}

Graphical visualization of the partition matrix (data structure) can be shown in the form of a
star or radar diagram as shown in Figure



Chapter 9 Unsupervised Learning: Clustering 265

Figure 9.4. Star diagram as a graphical representation of the partition matrix for three clusters.

5.2. Growing a Hierarchy of Clusters

Objective function-based clustering can be organized in some hierarchical topology of clusters
that helps us reveal a structure in a successive manner while reducing the required computing
effort. The crux of this approach is as follows: we start with a fairly small number of clusters,
say, 3-5. Given this low number, the optimization may not be very demanding. For each cluster
formed here, we determine the value of the associated objective function, say the one given by
expression (@) and computed for each cluster separately. Denote it by Q,. The cluster with the
highest value of Q; is a candidate for further splitting (structural refinement). We cluster the data
belonging to this cluster into ¢ groups and next compute the values of the objective function for
each of these groups. Again, we find the cluster with the highest objective function and proceed
with its refinement (further splits). This process is repeated until we reach the point where the
values of the objective functions for each cluster have fallen below a predefined threshold or
we have exceeded the maximal number of clusters allowed in this process. The growth of the
cluster tree (Figure @.3]) depends on the nature of the data. In some cases, we can envision a fairly
balanced growth. In others, the growth could concentrate upon portions of the data where some
newly split clusters are subject to further consecutive splits.

The advantage of this stepwise development process is that instead of proceeding with a
large number of clusters in advance (which carries a significant computing cost associated with
this grouping), we successively handle the clusters that require attention due to their heterogeneity
(dispersion).

c-clusters

R
o5 d
——

c-clusters c-clusters

(a) (b)

Figure 9.5. Growing a tree of clusters (a) balanced growth where most clusters at the higher level are split;
(b) imbalanced growth, in which some clusters are subject to consecutive splits.



266 5. Objective Function-Based Clustering

5.3. Kernel-based Clustering

The structure present in original data could be quite complicated — a situation that poses a
genuine challenge to a variety of clustering techniques. One interesting alternative to address
this problem is to elevate the original data x,y,z... to a higher dimensional space M (where
typically M >> N) in anticipation that the structure arising there could be made quite simple.
This possibility could create an advantage when clustering the data in this new space. Consider
a certain mapping ¢(x). By applying it to all data to be clustered, e.g., X;, X,, ..., Xy we end up
with d(x,), d(Xx,), ..., d(x,), which are now located in the extended (augmented) space and are
subject to clustering. As an illustration of the concept, let us focus on the following objective
function involving distances ||.|| formulated in some augmented space:

0= 3 ullle(s) — oW’

i=1 k=1

The optimization of Q is realized with respect to the partition matrix U and the prototypes
b(vy), d(vy), ..., d(v,) located in this new space. This task could appear to be more complicated
given the fact that now the patterns are located in a highly dimensional space. Hopefully, there
are ways around it that alleviate this potential difficulty. The use of the Mercer theorem allows
us to express a scalar product of the transformed data as a kernel function K(x,y) so that

K(x.y) =" ()

Obviously, there is a direct correspondence between the kernel function and the mapping ¢.
Here also originates the name of the kernel-based clustering itself.
If we use Gaussian kernels of the form

K(x,y) = exp(~||x—y|[*/o?)

then the distance present in the objective function transforms into the far more manageable form

lb(x) = d(V)I]* =2~ K(x;, v;)

Once this transformation has been noted, the derivations of the complete algorithm are straight-
forward. These will become obvious when we present the details of Fuzzy C-Means (FCM)
clustering.

5.4. K-medoids Algorithms

Before we move on to the essence of the K-medoids clustering algorithm, we note that the
prototypes of the clusters are formed on the basis of all elements, and if any data point is affected
by noise, this affects the prototypes. Furthermore, the prototype is not one of the elements of the
data, which again could be treated as an undesired phenomenon. To alleviate these difficulties,
we resort to representatives of the data that are more robust. These come under the term medoids.
To explain the concept, we start with the concept of a median.

The median, med {x, x,, ..., xy}, of real numbers is an ordered statistic that expresses a
“central” element in the set. Assume that the above set of data is ordered, say, x <, x,, ... < x,. The
median is defined as follows: (a) median = Xy, ;,, if N is odd and (b) median = (x,, +xy/241)/2
if N is even. It is worth stressing that the median is a robust estimator: the result does not depend
on noisy data. To illustrates, let us imagine that x, assumes a value that is far lower than the
rest of the data. x, is therefore an outlier and, as such, should not impact the result. The median



Chapter 9 Unsupervised Learning: Clustering 267

median median
o o
— 00— O0—0—0—0—0 > O Oo—0 >
1T i

mean mean

Figure 9.6. Median of dataset {x,, x,, ..., xy}. Note its robustness property which manifests as no change
even in the presence of one or more outlier(s) — see the situation represented on the right-hand side.

reflects this situation — note that its value has not been changed (see Figure B.6). Evidently, in
this case because of the outlier, the mean of this data set is pushed far down in comparison with
the previous case.

One could easily demonstrate that the median is a solution to the following optimization
problem:

N N
min;; Z |2, — x| = Z |, — med| (18)
k=1 k=1

where med denotes the median. Interestingly, in the above objective function we encounter a
Hamming distance, which stands in sharp contrast with the Euclidean distance we found in
the K-means algorithm. In other words, some objective functions promote the robustness of
clustering.

In addition to the evident robustness property (highly desirable), we note that the prototype is
one of the elements of the data. This is not the case in K-means clustering where the prototype
is calculated from averaging and hence does not have any interpretability.

In general, for n-dimensional data, the objective function governing the clustering into ¢ clusters
is written in the form

c N ¢ N n
QZZZuik”Xk_vz‘”z:Zzzuiklxkj_vij| (19)

i=1 k=1 i=1 k=1 j=1

Finding the minimum of this function leads to the centers of the clusters. Nevertheless, this
optimization process can be quite tedious. To avoid this type of the optimization process, other
arrangements are considered. They come under the name of specialized clustering techniques
including Partitioning Around Medoids (PAM) and Clustering LARge Applications (CLARA).

The underlying idea of the PAM algorithm is to represent the structure in the data by a collection
of medoids — a family of the most centrally positioned data points. For a given collection of
medoids, each data point is grouped around the medoid to which its distance is the shortest.
The quality of the produced clustering formed from the collection of medoids is quantified by
taking the sum of distances between the medoids and the data belonging to the corresponding
cluster represented by the specific medoid. PAM starts with an arbitrary collection of elements
treated as medoids. At each step of the optimization, we make an exchange between a certain
data point and one of the medoids, assuming that the swap results in improvement in the quality
of the clustering. This method has some limitations with reference to the size of the dataset.
Experimental results demonstrate that PAM works well for small datasets with a small number
of clusters, for example, 100 data points and 5 clusters. To deal with larger datasets, the method
has been modified to sample the dataset rather than operating on all data. The resulting method,
called CLARA (Clustering LARge Applications), draws the sample, applies PAM to this sample
and finds the medoids. CLARA draws multiple samples and produces the best clustering as the
output of the clustering.



268 5. Objective Function-Based Clustering

In summary, note that the K-medoids algorithm and its variants offer two evident and highly
desirable features:

a) robustness and
b) interpretability of the prototype (as one of the elements of the dataset).

However it also comes with a high computational overhead, which needs to be phased into the
overall knowledge discovery process.

5.5. Fuzzy C-Means Algorithm

In the above described ““standard” clustering methods, we assumed that clusters are well-delineated
structures, namely, that a data point belongs to only one of the clusters. While this assumption
sounds mathematically appealing, it is not fully reflective of reality and comes with some
conceptual deficiencies. Consider the two-dimensional data set shown in Figure

How many clusters can we distinguish? “Three” seems like a sound answer. If so, we assume
¢ =3 and run a clustering algorithm, the two data points situated between the two quite dense
and compact clusters have to be assigned to one of the clusters. K-means will force them to be
assigned somewhere. While this assignment process is technically viable, the conceptual aspect is
far from being fully accepted. Such points may be difficult to assign using Boolean logic, therefore
we would do better to flag them out by showing their partial membership (belongingness) to both
clusters. A split of membership of 1/2—1/2 or 0.6 —0.4 or the like could be more reflective
of the situation presented by these data. To adopt this line of thought, we have to abandon
the concept of two-valued logic (0—1 membership). Doing so brings us to the world of fuzzy
sets, described in Chapter @l The allocation of the data point becomes a matter of degree — the
higher the membership value, the stronger its bond to the cluster. At the limit, full membership
(a degree of membership of 1) indicates that the data point is fully allocated to the cluster.
Lower values indicate weaker membership in the cluster. The most “unclear” situation occurs
when the membership in each cluster is equal to 1/c that is the element is shared among all
clusters to the same extent. Membership degrees are indicative of “borderline” elements: their
membership in the clusters is not obvious, and this situation is easily flagged for the user/data
analyst.

The concept of partial membership in clusters is the cornerstone of fuzzy clustering. In line
with objective function-based clustering, we introduce the concept of a fuzzy partition matrix. In
contrast to the binary belongingness of elements to individual clusters, we now relax the condition
of membership by allowing the values of u,, to be positioned anywhere in [0,1]. The two other

Figure 9.7. Three compact clusters and two isolated data points inbetween them: a two-valued logic challenge
and the emergence of fuzzy sets.



Chapter 9 Unsupervised Learning: Clustering 269

fundamental conditions remain the same as before, as given by equations (I3) and ([4). The
objective function incorporates the partition matrix and comes in the form of the double sum:

c N
Q=ZZMZZ ||Xk_vi||2 (20)

i=1 k=1

The elements of the partition matrix come with a fuzzification coefficient (m) whose values
are greater than 1. The optimization of equation (Z0) is completed with respect to the prototypes
and the partition matrix. Without going into computational details, we offer a general iterative
scheme of Fuzzy C-Means clustering, in which we successively update the partition matrix and
the prototypes.

Initialize: Select the number of clusters (c¢), stopping value (&), and fuzzification coefficient (m).
The distance function is Euclidean or weighted Euclidean. The initial partition matrix consists of
random entries satisfying equations (3)—(4).

Repeat

update prototypes

N
D UG,
V= (1)
2 U
k=1
update partition matrix
1
Wy = c 2/(m—1) (22)
v <\|xk—vf|\>
= ||X1<—V;’H

Until a certain stopping criterion has been satisfied

The stopping criterion is usually taken to be the distance between two consecutive partition
matrices, Ul(iter) and U(iter + 1). The algorithm is terminated once the following condition is
satisfied:

max,, |uy(iter+ 1) —uy(iter)] <e (23)

We may use for instance & = 107°. Note that the above expression is nothing but a Tchebyshev
distance. The role of the parameters of this clustering is the same as that already discussed in the
case of K-means. The new parameter here is the fuzzification coefficient, which did not exist in
the previous algorithms for the obvious reason that the entries of the partition matrix were only
taken to be 0 or 1. Here the fuzzification coefficient plays a visible role by affecting the shape of
the membership functions of the clusters. Some snapshots of membership functions are shown in
Figure
Notably, the values close to 1 yield almost Boolean (binary) membership functions.

5.6. Model-based Algorithms

In this approach, we assume a certain probabilistic model of the data and then estimate its
parameters. This structure, which is highly intuitive comes under the name of mixture density.
We assume that the data are a result of a mixture of ¢ sources of data that might be thought
of as clusters. Each component of this mixture is described by some conditional probability
density function (pdf), p(x|6,), characterized by a vector of parameters 0,. The prior probabilities



270 5. Objective Function-Based Clustering

0.8+
0.64
0.44

0.24

(a) (b)

0.84
0.6-
0.44

0.24

(©)

Figure 9.8. Plots of membership functions for several values of the fuzzification coefficient (m) used in the
objective function (a) m = 1.2; (b) m = 2.0; (c) m = 3.0.

P> Pas - - -» D Of clusters are given. Under these assumptions, the model is additive and comes in
the form of mixture densities:

P(x[0,.0,.....0) =3 p(x10,)p, (24)

i=1

Given the nature of the model, we also refer to p;, p,, .. and p. as mixing parameters. To
build the model, one has to estimate the parameters of the contributing pdfs. To do so we have
to assume that p(x, 0) is identifiable which means that if 0 7 0’ then there exists an x such that
p(x]0) # p(x|0). The standard approach used to discover the clusters is to carry out maximum
likelihood estimation. In essence, this estimate maximizes the expression

P(X|0) =[] p(x,10) (25)
k=1

One should know that the above optimization problem is not straightforward, especially with
high-dimensional data.



Chapter 9 Unsupervised Learning: Clustering 271

5.7. Scalable Clustering Algorithms

5.7.1. Density-Based Clustering (DBSCAN)

As the name indicates, density-based clustering methods rely on the formation of clustering on
the basis of the density of data points. This approach follows a very intuitive observation: if in
some region of the feature space the data are located close to each other, then their density is
high, and hence they form a cluster. On the other hand, if there are some points in some region
and their density is low, they are most likely potential outliers not associated with the majority
of the data.

This appealing observation constitutes the rationale behind the algorithms belonging to the
category of density-based clustering. The DBSCAN method is one of the common representatives
of this category, with OPTICS, DENCLUE, and CLIQUE following the same line of thought.

To convert these intuitive and compelling ideas into the algorithmic environment, we introduce
the notion of the e-neighborhood. Given some data x,, the e-neighborhood, denoted by N, (x,),
is defined as:

N.(x) = {x|d(x,x,) <eg} (26)

Note that the form of the distance function implies the geometry of the e-neighborhood.
Obviously, higher values of & produce larger neighborhoods. For the neighborhood of x,, we can
count the number of data points falling within it. We introduce another parameter, N_Pts, that
tells us how many data points fall within a neighborhood. If the neighborhood of x, is highly
populated by other data, that is

card (N,(x,)) > N_Pts

we say that x, satisfies a core point condition. Otherwise, we label x, as a border point.
We say that x; is x, density-reachable with parameters € and N_Pts if:

(a) x; belongs to N,(x,), and
(b) card (N.(x,)) > N_Pts

Figure @8l illustrates this type of reachability. Note that the x; could also be density-reachable
from x, by a chain of other data points:

X1 Xppos -5 X (27)

such that x;_ | is density reachable from x;, X, ,, is density reachable from x;_ , etc. This type of
transitivity is again illustrated in Figure 0.9

The property of density reachability becomes the crux of the underlying clustering algorithm.
We form the clusters on the basis of density reachability, and all data belonging to the same
cluster are those that are density reachable.

N, (x3)

Figure 9.9. The concept of density reachability and its transitive character when a sequence of data is
involved.



272 6. Grid - Based Clustering

Given this background rationale, the generic DBSCAN algorithm consists of the following
sequence of steps.
Set up the parameters of the neighborhood, e and N_Pts:

(a) arbitrarily select a data point, say, X,

(b) find (retrieve) all data that are density reachable from x,

(c) if x, is a core point, then the cluster has been formed (all points are density reachable from x,)
(d) otherwise, consider x, to be a border point and move on to the next data point

The sequence (a) — (d) is repeated until all data points have been processed.

If we take a closer look at the clustering mechanisms, we can see that the concept of density-
based reachability focuses on the formation of groups in a local way. In essence, each data point
(regarded as a potential core) “looks” at its surroundings, which are formed by its neighborhood
of some predefined size (g). This situation offers a broad variety of potential geometric shapes
of clusters that could be formed in this manner. The elements that are not density reachable are
treated as outliers. Obviously, as in any other mechanism of unsupervised learning, one should be
aware of the number of parameters whose values directly impact the performance of clustering
and the form of the results. Three of these play an essential role. The distance function, as already
mentioned, defines the geometry of the formed neighborhood. The size of the neighborhood and
the number of points, N_Pts, affect the granularity of the search. These latter two are related;
a higher value of & requires higher values of N_Pts. If we consider very small values of &, the
DBSCAN starts building a significant number of clusters. With increasing values of &, far fewer
clusters are formed, more data points are regarded as outliers, and a more general structure is
revealed. In essence, these parameters offer a significant level of flexibility, yet the choice of
suitable values of the parameters becomes a data-dependent task. The computational complexity
of the method is O (NlogN).

5.7.2. Cure

The essence of CURE (Clustering Using Representatives) is to exploit the concept of scattered
points in clusters. Let us contrast this method with the two extreme clustering techniques. In
centroid-based clustering (such as, e.g., K-means), we use single elements (prototypes) to represent
the clusters. In hierarchical clustering, on the other hand, at the beginning of the process all points
are representative for the clustering process. In the CURE algorithm, we choose a collection of
scattered data in each cluster. The intent of these scattered points is to reflect the shape of the
clusters. During the process of clustering, the scattered points shrink toward the center (mean).
The speed of shrinking is controlled by the damping coefficient (called the shrinking factor),
which assumes values between 0 and 1. If the value of the shrinking factor is 1, then we end
up with K-means clustering. At the other extreme, with the shrinking factor equal to 0 (where
no shrinking occurs), we end up with hierarchical clustering. Since each cluster is represented
by a collection of points, the method is less sensitive to outliers as shrinking helps eliminate
their potential impact. For the realization of CURE in the presence of large datasets, the method
implements the following process. First, it draws a random sample of data. Assuming that the
sample is large enough, one could anticipate that this sample could reflect the overall structure.
Next CURE partitions the random sample and clusters the data in each partition.

6. Grid - Based Clustering

The ideas and motivation behind grid-based clustering are appealing and quite convincing.
Clustering reveals a structure at some level of generality, and we are interested in describing such
structures in the language of generic geometric constructs like hyperboxes and their combinations.



Chapter 9 Unsupervised Learning: Clustering 273

These result in a highly descriptive shape of the structure. Hence it is appropriate to start by
defining a grid in the data space and then processing the resulting hyperboxes. Obviously, each
hyperbox is described in terms of some statistics of data falling within its boundaries, yet in
further processing we are not concerned with dealing with individual data points. By avoiding
this detailed processing, we save computing time. Let us start with a simple illustrative example.
Consider a collection of quite irregular clusters as shown in Figure 0101

It is very likely that partition-based clustering could have problems with this dataset due to
the diversity of geometric shapes of the clusters. Likewise, to carry out clustering, we have to
identify the number of clusters in advance, which poses a major challenge.

Grid-based clustering alleviates these problems by successively merging the elements of the
grid. The boxes combined together give rise to a fairly faithful description of the clusters, and
this otcome becomes possible irrespective of the visible diversity in the geometry of the shapes.

Let us move into a more formal description of grid—based clustering by introducing the main
concepts. The key notion is a family of hyperboxes (referred to as blocks) that are formed in the
data space. Let us denote these by By, B,, ..., B,,. They satisfy the following requirements: (a) B;
is nonempty in the sense that it includes some data points, (b) the hyperboxes are disjoint, that

P

is B;NB; =@ if i # j, and (c) a union of all hyperboxes covers all data that is |J B; = X where

X ={x,,X,,...,Xy}.We also require that such hyperboxes “cover” some maxinllall number (say,
b.x) Of data points. Hyperboxes differ between themselves with respect to the number of data
they cover. To measure the property of how well a certain hyperbox reflects the data, we compute
a density index that is computed as the ratio of the number of data falling within the hyperbox
and its volume.

Next, the clustering algorithm clusters the blocks B;, (and, in essence, the data) into a nested
sequence of nonempty and disjoint collections of hyperboxes. The hyperboxes with the highest
density become the centers of clusters of hyperboxes. The remaining hyperboxes are afterwards
clustered iteratively based on their density index, thereby building new cluster centers or merging
with existing clusters. We can merge only those hyperboxes that are adjacent to a certain cluster
(“neighbor”). A neighbor search is conducted, starting at the cluster center and inspecting adjacent
blocks. If a neighbor block is found, the search proceeds recursively with this hyperbox.

Algorithmically, grid-based clustering comprises the following fundamental phases:

e Formation of the grid structure

e [nsertion of data into the grid structure

e Computation of the density index of each hyperbox of the grid structure

e Sorting the hyperboxes with respect to the values of their density index

e Identification of cluster centres (viz. the hyperboxes of the highest density)
e Traversal of neighboring hyperboxes and the merging process

(a) (b)

Figure 9.10. (a) A collection of geometrically different clusters; (b) and a grid structure formed in the data
space along with clusters being built by merging the adjacent boxes of the grid structure.



274 7. Self-Organizing Feature Maps

One should be aware that since clustering moves only towards merging hyperboxes, the choice
of grid (which becomes a prerequisite for the overall algorithm) does deserve careful attention.
A grid which is rough may not help capture the details of the structure in the data. A grid that is
too detailed produces a significant computational overhead.

In the literature, most studies focus on cases that involve a significant number of data (N)
yet they shy away from discussing data of high dimensionality. This tendency is perhaps under-
standable since grid-based clustering becomes particularly beneficial in these cases (the processing
of the hypeboxes abstracts all computing from the large number of the individual data points).

To summarize, let us highlight the outstanding features of grid-based clustering:

e The grid-based clustering algorithm scans the data set only once and in this way can potentially
handle large data sets.

e By considering basic building blocks the method could handle a broad range of possible
geometric shapes of clusters.

e Since grid-based clustering is predominantly concerned with the notion of density, it is helpful
in handling clusters of arbitrary shapes. Similarly, although we rely on the density of points,
we can detect potential outliers.

7. Self-Organizing Feature Maps

Objective function-based clustering forms one of the main optimization paradigms of data
discovery. To put it in a broader perspective, we switch to an alternative arising in neural networks
(see Chapter [[3)), namely self-organizing feature maps. This alternative will help us to contrast
the underlying optimization mechanisms and to look at formats of results generated by different
clustering methods.

The concept of a Self-Organizing feature Map (SOM) was originally developed by Kohonen. As
emphasized in the literature, SOMs are regarded as neural networks composed of a grid of artificial
neurons that attempt to show highly dimensional data in a low-dimensional structure, usually
in the form of a two- or three-dimensional map. To make such visualization meaningful, one
ultimate requirement is that the low-dimensional representation of the originally high-dimensional
data has to preserve the topological properties of the data set.

In a nutshell, this requirement means that two data points (patterns) that are close to each
other in the original feature higher-dimensional space should retain this similarity (or closeness or
proximity) in their representation (mapping) in the reduced, lower-dimensional space. Similarly,
two distant patterns in the original feature space should retain their distant locations in the
lower-dimensional space. By being more descriptive, SOM acts as a computer eye that helps
us gain insight into the structure of the data and observe relations occurring between patterns
that were originally located in a high dimensional space by showing those relations in a low-
dimensional, typically two- or three-dimensional space. In this way, we can confine ourselves
to a two-dimensional map that apparently preserves all the essential relations between the data
as well as the dependencies between the individual variables. In spite of many variations, the
generic SOM architecture (as well as the learning algorithm) remains basically the same. Below
we summarize the essence of the underlying self-organization algorithm that realizes a certain
form of unsupervised learning.

Before proceeding with detailed computations, we introduce necessary notation. We assume, as
usual, that the data are vectors composed of “n” real numbers, viz. they are elements of R". The
SOM is a collection of linear neurons organized in the form of a two-dimensional grid (array), as
shown in Figure [9.1 1]



Chapter 9 Unsupervised Learning: Clustering 275

)
O p-rows
)

Figure 9.11. A basic topology of the SOM constructed as a grid of identical neurons.

In general, the grid may consist of p rows and » columns; quite commonly, we use the square
array of p x p neurons. Each neuron is equipped with modifiable connections w(i, j) where these
form an n-dimensional vector of connections:

w(i, j) = [wi (@, Hws (i, ) - . w, (i, J)]

Note that the pair of indexes (i0, jO) refers to the location of this neuron on the map (array of
neurons). It completes computing of the distance function ||.|| between its connections and the
input vector Xx:

y(i, j) = [Iw(i, j) = x|| (28)

The distance function can be any of those discussed earlier. In particular, one could consider
Euclidean distance or its weighted version. The same input x is fed to all neurons. The neuron
with the shortest distance between the input vector and its own weight vector becomes activated
and is called the winning neuron. Let us denote the coordinates of the neuron by (i0, j0). More
precisely, we have

(i0, jO) = argmin, ; [|w(i, j) —x|| (29)

The winning neuron best matches (responds to, is similar to) the input vector x. As a winner of
the competition, it is rewarded by being allowed to modify its weight so that it becomes positioned
even closer to the input. The learning rule is read as follows (see Chapter[I3] Sec. 3.2.1 for more
details):

w_new(i0, jO) = w(i0, jO) + n(x — w(i0, jO)) (30)

where 1 denotes a learning rate, 7 > 0. The higher the learning rate is, the more intensive the
updates of the weight are. In addition to the changes of weight of the winning neuron, we often
allow its neighbors (the neurons located at the consecutive coordinates of the map) to update their
weights as well. This influence is quantified via a neighbor function ® (i, j, i0, jO). In general,
this function satisfies two intuitively appealing conditions:

a) it attains a maximum equal to 1 for the winning node, i = i0, j = jO, ®(i0, j0, i0, jO) = 1 and

b) when the node is apart from the winning node, the value of the function gets lower (the updates
are smaller). Evidently, there are also nodes where the neighbor function goes to zero and the
nodes are not affected.



276 7. Self-Organizing Feature Maps
Considering the above, we rewrite Equation (BQ) in the following form:
w_new(i, j) = w(i0, jO) + n®(i, j, i0, jO)(x —w(i, j)) (31)
The typical neighbor function comes in the form
®(i, j, i0, jO) = exp(=B((i —i0)* + (j - j0)*)) (32)

with parameter (3 usually assuming small positive values.

Expression (B)) applies to all the nodes (i, j) of the map. As we iterate (update) the weights, the
neighborhood function shrinks: at the beginning of the updates, we start with a large region, and
when the learning settles down, we start reducing the size of the neighborhood. For instance, one
may think of a linear decrease of neighborhood size. To emphasize this relationship, we can use
the notation ®(iter, i, j, i0, jO) where iter denotes consecutive iterations of the learning scheme.

Either the number of iterations is specified in advance or the learning terminates once there are
no significant changes in the weights of the neurons.

Some conditions for successful learning of the SOM neural network algorithm are as follows:

e The training data set must be sufficiently large since self-organization relies on statistical
properties of data.

e Proper selection of the neighbor function will assure that only the weights of the winning neuron
and its neighborhood neurons are locally adjusted

e The radius, and thus the size, of the winning neighborhood must monotonically decrease with
learning time (in successive iterations)

e The amount of weight adjustment for neurons in a winning neighborhood depends on how close
they are to the input.

Another approach to designing a SOM network is to use heuristics and simulation-based
findings:

e Since the weights of the SOM network have to approximate the probability density of input
vectors p(x), it is advisable to have visual inspection of this distribution first. This can be done
by using Sammon nonlinear projection as an initial step before designing the SOM network
(we elaborate on this idea later on).

e The size of the 2D array of neurons should be large enough to accommodate all the clusters that
can be present in the data. An array that is too small may allow discovery of only the coarse
clustering structure (smaller clusters may be put together). For smaller problems, the number
of neurons in a 2D array should be approximately equal to the number of input vectors.

e Since good accuracy of statistical modeling requires a large number of samples (say 100,000), in
practice, for a limited size of input data sets, we may use the data set several times repetitively,
either randomly or by cycling the data in the same sequence through the network.

e To enhance the impact coming some patterns that are known to be important, we can simply
present them to the network a large number of times, or increase their learning rate nd/or
neighbor function ®(i, j, i0, jO).

e Patterns with missing values can be still used for training, with the missing value being replaced
by the average of that feature

e when it is desired in some applications such as, monitoring of real-time measurements, to map
some nominal data in a specific location on the map (for instance, in the middle) we can copy
these patterns as initial values for the neurons in the desired map location, and then keep their
learning rate low during successive adjustments.



Chapter 9 Unsupervised Learning: Clustering 277

Example: This example shows the use of the SOM algorithm for finding the hierarchical structure
of pattern vectors after Kohonen. It is an interesting example of SOM self-organization and global
ordering as shown for five-dimensional patterns. The labeled training set, shown in Table
contains 32 input vectors with categories labeled by letters A, B, ...,Z and digits 1,2,...,6. The
SOM neural network has been composed with its 5 inputs fully connected by weights with 70
neurons.

The neurons have been arranged in a rectangular 7 x 10 array with hexagonal neighborhood
geometry:

The SOM network has been trained using only unlabeled patterns selected randomly. After
10,000 iterations, the weights of the network converged to the stable values. Then the trained
network was calibrated by presenting to it known labeled patterns (x;, class;), the classes being
shown as feature x, in Table 9.2.

ABCDE

F

G

HKLMNOPQR

I S w

J T X123456
8] Y
\% zZ

For each labeled pattern, the array response was computed and the neuron with the strongest
response was labeled by the pattern class. For example, when the pattern (2,0,0,0,0 ; B) was
presented to the network, the left upper neuron in the array had the dominating strongest response
was labeled as class B. It was shown that only 32 neurons were activated during calibration,
whereas the remaining 38 neurons remained unlabeled, as is shown below.

This structure represents a global order, achieved through local interactions and weights adjust-
ments, and reflects a minimum spanning tree relationship among the input patterns as shown
below.

This example shows the power of self-organization. The minimum spanning tree is a mathe-
matical technique, originating in graph theory. Assume that the data patterns from a given set
will be presented as a planar graph, where each vertex represents one data pattern (vector). In
addition, assume that one assigns to each edge, connecting two vertices a weight equal to the
distance between the vertices. The minimum spanning tree is the spanning tree of the pattern
vertices for which the sum of its connected edges is minimal. In another words, the minimum
spanning tree for the data vectors is a corresponding planar tree that connects all data patterns to
their closest neighbors such that total length of the tree edges is minimal. Analyzing the data in



278 7. Self-Organizing Feature Maps

Table 9.2. Kohonen’s five-dimensional example.

Class

=
~
=
N
=
w
=
N
=
©n

LY LY LY LY LY 1LY LY LY 1LY LY LY LY L LY LY LY LW LW L) L W W W W W W W WL A~ W —
LWLLWLWWLWWWWWLWWWWWWWWWWWUWWLMRAE WD, OOOOO
AN AN WWWWROIANANNE WO, ODODODODDODDODDODODODOOO
NSRS N (S I O ST (S RN SNRUV I S IE N SV S I e N e e No e o No oo oo No o No o No No N
AN WLWNONRL OO COCO
CULLWR=NHKNEE<LCHIITOZIDN R——TQTMEOmUQW >

Table we find that the Euclidean distances between subsequent neighboring patterns differ
by a value of one. For instance, for patterns x, and xg

[ — x5l =1 < ||xa —x/||, i=C,D,...,Z,1,...,6

SOM and FCM are complementary, and so are their advantages and shortcomings. FCM requires
the number of groups (clusters) to be defined in advance. It is guided by a certain performance
index (objective function), and the solution comes in the clear form of a certain partition matrix.
In contrast, SOM is more user oriented. There is no number of clusters (group) that needs to be
specified in advance.

As emphasized very clearly so far, SOM provides an important tool for visualization of high-
dimensional data in a two- or three-dimensional space. The preservation of distances is crucial to
this visualization process.

The same idea of distance preservation is a cornerstone of the Sammon’s projection method;
however, the realization of this concept is accomplished in quite a different manner. This nonlinear
projection attempts to preserve topological relations between patterns in the original and the
reduced spaces by preserving the interpattern distances. Sammon’s projection algorithm minimizes
an error defined as the difference between patterns in the original and reduced feature spaces. More



Chapter 9 Unsupervised Learning: Clustering 279

formally, let {x,} be the set of L n-dimensional vectors x, in the original feature space R”, and let
{y,} be the set of L corresponding m-dimensional vectors y in the reduced low-dimensional space
R™, with m << n. Most often we take m = 2. Let us denote by d(x;,x;) the distance (usually
Euclidean) between two vectors in the original feature space. Denote by d(y;,y;) the distance
between two vectors in the (reduced) projected feature space. Sammon’s algorithm determines the
projection such that it minimizes the following distortion measure J,, for all L patterns, defined
as follows

1 L L
Jy=—1—7 Y%
> d(x, xp) =hiA=LA

i=Lig j=Lji

(d(x;, Xj) —d(y;, Yj))2
d(x;, Xj)

This criterion, called Sammon’s stress, expresses how well all interpattern distances are preserved
in the projection into a lower-dimensional feature space. Minimization procedures, such as
gradient descent, can be used to find optimal projections that minimize this distortion criterion.
To avoid getting stuck in a local minimum, one may start from different, random, initial config-
urations, or add noise. Since for every iteration step, L(L — 1)/2 inter-pattern distances need to
be computed, this algorithm becomes impractical for large number of patterns. Other techniques
for minimization, such as evolutionary programming, can also be used for finding a solution and
possibly even finding the global minimum. Unfortunately, Sammon’s algorithm does not provide
an explicit function describing the relationship between pattern vectors in both the original and
projected spaces. Consequently after finding the optimal projection for a given set of L patterns,
the algorithm does not exhibit a generalization capability. Thus, for new data, the minimization
procedure must be rerun from scratch to accommodate both old and new data.

8. Clustering and Vector Quantization

Briefly speaking, vector quantization concerns various means of data compression, which is
essential when dealing with storage and transmission of images, audio files, multimedia infor-
mation and so forth (see Chapter [). There are two important criteria, namely, quality of recon-
struction (here we are interested in minimal quantization error) and high compression rate (so that
we can store and transmit only a small portion of the original data to faithfully reconstruct the
original source). An overall scheme for such processing is shown in Figure

At the encoding end, we represent data through prototypes. These are usually referred to as a
codebook. Any input datum is then captured in terms of the elements of the codebook and the
index of the representative that matches it best is transmitted or stored. Formally, we can explain
the flow of processing in the following manner:

Y

— encoder decoder | ———)

4 ,‘--n....
s, Pl ',
L ", o ",
o ey, o

of
o

s
&
",

&
, &
%, o
R

avsrrn,,
o ",

o

", o
*

",
"o,
", "
o, o
RRATTRRRPRTL

codebook

Figure 9.12. The principle of vector quantization. The encoder and decoder both use the same codebook; in
transmission, rather than sending a multidimensional vector x, one transmits an index of the best prototypes
(iy) which are used at the decoding end (hence the result of decoding is one of the elements of the codebook).



280 9. Cluster Validity

Encoding: determine the best representative (prototype) of the codebook and store (transmit)
its index iy, i, = argmin, ||x —v,|| where v, denotes the i" prototype.

Decoding: recall the best prototype given the transmitted index (i;).

Clustering as we have discussed here, is geared towards the discovery of structure in the data.
There are some similarities and differences between the processes of vector quantization and
clustering.

Clustering is an integral part of vector quantization. As a matter of fact, in the formation of the
codebook we directly use various tools of clustering, such as K-Means.

The apparent differences concern key objectives. In vector quantization, we are interested in
the quality of reconstruction (recall) while in clustering, cast in the framework of data mining,
interpretability becomes very important. For instance, to maintain a low reconstruction error we
might need to consider two very close elements of the codebook (their use helps us keep the
error low enough). The same two prototypes, considered in the context of data mining may not
be retained since their closeness makes them almost the same (conceptually redundant) from the
point of view of data interpretation.

9. Cluster Validity

Since clustering is one of the two key unsupervised learning techniques, we should proceed
very carefully with the assessment of its results. Are the generated clusters (along with their
representation in the form of prototypes, partition matrices, dendrograms, etc.) reflective of the
true nature of the data? This is a fundamental issue that permeates all clustering pursuits and
profoundly impacts the practical usefulness of the technique. We should be fully cognizant of the
fact that, while in essence being unsupervised, clustering is subconsciously endowed with some
implicit components of supervision. The selection of these components impacts the character and
quality of the results delivered by any clustering algorithm. We focus on the two main components
present in almost any algorithm no matter what its nature and algorithmic details (SOM does
not require a priori specification of the number of clusters, but its interpretation could be fairly
complicated)

The choice of a similarity measure plays a primordial role in the search in the data space.
We have discussed many types of such measures. We indicated that each distance measure used
implies a certain geometry in the data space. As a consequence, the clustering technique endowed
with specific distance is searching for structure in data that conforms to this specific geometry
(such as hyperspheres in the case of using Euclidean distance). In the latter example, regardless
of the “real” structure (shape) of clusters (and we never know it), an algorithm would searches for
spherical clusters only. In short, we predispose the clustering right up front to search for clusters
of some specific shape. This shortcoming is very much problem dependent. First, one could
envision that due to the normality of data distribution, it is very likely that the structure could
quite well conform to this geometric model of the clusters. In the case when a more complicated
geometry of the clusters is encountered, we can envision that clustering with more clusters may
take care of this problem (see Figure @.13). In essence, one could adopt Euclidean distance as
a fairly general and reasonable model of real shape in the data. The price is a larger number of
clusters when there is a higher geometric diversity that could be resolved by asking for more
clusters to be generated. The advantage is in the numeric treatment, since the Euclidean distance
facilitates the optimization aspects of the clustering techniques.

The weighted Euclidean distance is an example of modified distance, which takes into consid-
eration substantial differences in the ranges of the variables. Some other distances such as the
Mahalanobis, come with an increased geometric flexibility but are associated with a high price of
computing inverse of the corresponding covariance matrices (and thus are often quite prohibitive).



Chapter 9 Unsupervised Learning: Clustering 281

Figure 9.13. Diverse structure/shape of data in which clustering using the Euclidean distance can result in
a larger number of spherical clusters (three clusters are required to represent the elongated cluster).

The number of clusters (c) that must be specified by users a priori (except when using SOM) is
an extremely important parameter affecting the clustering outcome, since it explicitly determines
a level of detail of the overall search for structure. On the one hand, we focus on the ensuing
analysis and thus may anticipate that a certain range of the number of clusters (say between
3 and 8) does exist in the data. For example, in doing market analysis, we can easily guess
the approximate number of categories of customers or at least contemplate a range of possible
numbers of valid clusters.

In general, however, users must guess a priori the number of clusters that a given algorithm
will be asked to generate. Normally, the user would guess the range of the number of clusters and
then use cluster validity measures to assess which particular number of clusters best reveals the
true structure in the data.

Two categories of tasks fall under the umbrella of what is referred to as cluster validity —
a suite of methodologies and algorithms that offer us some mechanisms to validate clustering
results.

There are many measures, called cluster validity indices, whose values relate to the number
of clusters generated, and thus are used to judge the clusters detected in the data and to assess
the quality of the structure revealed in this manner. In what follows, we present some of these
measures and explain their motivation and computational details. In any case, we must always
remember that the success of the clustering validity index depends upon the characteristics of the
data and the clustering algorithm being used.

In spite of the diversity of clustering algorithms, we can spell out two fundamental and
intuitively appealing requirements to which clusters should adhere.

Compactness. This property expresses how close the elements in a cluster are. For instance,
consider a variance of the elements: the lower the value of the variance, the higher the compactness
of the cluster. Since we are interested in compact clusters, low values of compactness are desirable.
Likewise, we can calculate distances between the elements belonging to a cluster (intra cluster
distances).

Separability. For this property, we evaluate how distinct the clusters are. An intuitive way of
expressing separability is to compute inter cluster distances. Since we strive for high compactness
and high separability, a structure should be characterized by small values of intra cluster distances
and large values of inter cluster distances.

The realization of this observation comes in the form of the Davies-Bouldin index. To determine
its value, we compute the within scatter distance for the i™ cluster:

1 >
Si=m2||x—%|| (33)

xel);



282 9. Cluster Validity

with ||.|| being some distance function. Here €2, denotes the i™ cluster. We introduce the following
distance between the prototypes of the clusters:

d"=||vi_vj||2 (34)

1

which can serve as the inter cluster distance between the two clusters. Now, we define the ratio

S;+s i
I = MaX; (35)
ij
and sum its values over the clusters arriving at the following sum:

1 c

r=- Z r; (36)
!
i=1

The “optimal” (“correct”) number of clusters (¢) is the number for which the value of r attains
its minimum. Note that the minimum of r favors minimal values of the nominator of r; and
maximal values of the denominator in this expression. This is really what makes the clusters
compact and well separated.

In the same vein of the minimization of scattering with a cluster or the maximization of inter
cluster distances comes the Dunn separation index. In this construct, we first define a diameter
of the cluster:

A(Q) = maXy yeo, l[x =yl (37)
Then the inter cluster distance is expressed as
8(Y;, ) = minyeq yeq, [IX =yl (38)

The Dunn separation index is formed as follows:

5(0, Q)

max, A(Q,) (39)

r = minmin;
The values of r are maximized with respect to the number of the clusters.

The Xie-Benie index relates to fuzzy clustering and realizes the same concept as described above.
Here we arrive at the following expression:

N ¢ )
kZI_ZluiTIIXk—ViII
—li=
r= - (40)
N{mlni;éj ||V1_Vj||2}

Note that the “optimal” number of clusters will result in the lowest values of r yet the index may
show some monotonicity when the number of clusters is quite close to the number of the data.

The concepts of scattering and compactness of clusters could be realized in different ways. One
quite commonly encountered approach relies on forming a sound compromise between these two
concepts. Let us introduce the average scattering

1 & s
av_scatter = — y il (41)

Ci:ls



Chapter 9 Unsupervised Learning: Clustering 283

where s, denotes a measure of scattering for the i cluster while s stands for the scattering reported
for the entire data set. The expression for the separation between clusters reads as follows

-1
D . c c
separation = D—mm > (Z |[v; — vl |> (42)

max j=1 \j=1

where D,;, =min, ;_;, . ||[v;=v,[| and D,,,, =max, ;_;, .||V, —v,||. The validity index (SD)
is taken as a weighted combination of the average scattering and separation, that is

SD = a av_scatter + separation (43)

where « is used to strike a sound balance between the two components of the index. By monitoring
the values of SD treated as a function of ¢ and determining its lowest value, we arrive at the
plausible (or “optimal”) number of clusters.

With reference to fuzzy clustering, there are several interesting cluster validity indicators. The
first of these are based exclusively on the values of the partition matrix, while the third one takes
into consideration the data as well as the prototypes. The partition coefficient P, is built upon
the entries of the partition matrix:

a=ii@ (44)

i=1 k=1

The values assumed by this index are in [1/c, 1]. At the extreme, if the data belong to a single
cluster, viz. u;, equals 1 for some i, then P, is equal to 1. On the other hand, if we encounter
an equal distribution of membership grades (so it is likely that the data set does not exhibit any
evident strongly manifested structure), u;, = 1/c then P, is equal to 0. When searching for the
number of clusters, we look at the plot of P, versus ¢ and choose the number of clusters for
which this plot exhibits some “knee” — a place where a substantial change in the values of the
index occurs.
The partition entropy is defined as:

1 c N
P, = N Z Z uy log, uy (45)

i=1 k=1

where a > 0. The values of P, are confined to the interval [0, log, c]. Again, the most suitable
number of clusters is determined by inspecting the character of the relationship P, treated as a
function of c.

The third validity index not only takes into account the partition matrix but also involves the
data as well as the prototypes,

c N
Py =323 u (s = Vil = [1v; = vI[*) (46)

i=1 k=1

The first component of P; expresses a level of compactness of the clusters (dispersion around
the prototypes) while the second one is concerned with the distances between the clusters (more
specifically, their prototypes) and the mean of all data (v).



284 10. Random Sampling and Clustering as a Mechanism of Dealing with Large Datasets

In general, while these validity indexes are useful, in many cases they may produce inconclusive
results. Given this effect, one should treat them with a big grain of salt by understanding that
they offer only some guidelines and do not decisively point at the unique “correct” number of
clusters. Also remember that when the number of clusters approaches the number of data points
the usefulness of these indices is limited. Hopefully, in practice the number of clusters will always
be a small fraction of the size of the dataset. In many cases, the user (decision-maker) could also
provide some general hints in this regard.

10. Random Sampling and Clustering as a Mechanism
of Dealing with Large Datasets

Large data sets require very careful treatment. No matter what clustering technique one might
envision, it may be impractical due to the size of the data set. The communication overhead could
be enormous, and the computing itself could be quite prohibitive. However, a suitable solution to
the problem can be identified trough the use of sampling. There are two fundamental conceptual
and design issues in this respect. First, we should know what a random sample means and how
large it should be to become representative of the dataset and the structure we are interested in
revealing. Second, once sampling has been completed, one has to know how to perform further
clustering. Let us note that some of these mechanisms have been already mentioned in the context
of clustering algorithms, such as CURE.

10.1. Random Sampling of Datasets

In a nutshell, we are concerned with a random draw of data from a huge dataset so that the
clustering completed for this subset (samples) leads to meaningful results (that could be “similar”
to those obtained when we run the clustering algorithm on the entire dataset). Given the clustering,
we could rephrase the question about size of the random sample so that the probability of
deforming the structure in the sample (for example, by missing some clusters) is low. Let us
note that the probability of missing some cluster () is low if the sample includes a fraction of
the data belonging to this cluster, say f*card({)) with f € [0, 1]. Recall that card({}) stands for
the number of data in ). The value of f is dependent on the geometry of the clusters and their
separability. In essence, we can envision that if the structure of data is well defined, the clusters
will be condensed and well-separated and then the required fraction f could be made substantially
lower. Let us determine the size s of the sample such that that the probability that the sample
contains fewer than fcard((2) is less than 3. Let Z; be a binary variable of value 1 if the jo
data belongs to the cluster ) and O otherwise. Assume that Z; are 0-1 random variables treated
as independent Bernoulli trials such that P(Z; = 1) = card(Q2)/N, j = 1,2, ...s. The number of

s
data in the sample that belong to cluster () is then expressed as the sum Z = )" Z,. Its expected

i=1
value is p = E(Z) = scard(Q)/N. If we use the Chernoff bounds for the independent Poisson
trials Z,, Z,, ..., Z, we find the following probability bounds:

P[Z < (1-#)p] < exp(—pe’/2) (47)

In other words, the probability that the number of data falls below the expected count m by
more than g is lower than the right-hand expression (47). We require that the probability that
this number falls below fcard({2) should be no more than d. In other words, we require that the
following holds:

P(Z < fcard(Q))) < d (48)



Chapter 9 Unsupervised Learning: Clustering 285

Let us rewrite the expression in the following equivalent format:
PlZ<(1—(1— fcard(Q)/n))] <8 (49)
With the use of the Chernoff bound, the above inequality for the probability holds if:

" <1 _ fcard(Q))2
N v
exp 5 <39 (50)

Given that p. = scard({)) /N, we solve the above equation with respect to s we obtain the following
inequality:

sz (L) e (L)) oo (1)

In other words (&I)) holds if the sample size is not lower than the number provided above. If we
neglect some very small clusters (which may not have played any significant role), it has been
shown that the sample size is independent from the original number of data points.

Clustering based on the random samples of the data

The sampling of data is a viable alternative to the dimensionality problem. A random sample is
drawn and, on that basis, we discover a structure of the data. To enhance the reliability of the
results, another option is to cluster the prototypes developed for each sample. This overall scheme
is illustrated in Figure

We draw a random sample, complete clustering and return a collection of the prototypes.
Denote these by v,[ii] with the index ii denoting the #i™ random sample. Then all the prototypes
are again clustered in this way, reconciling the structures developed at the lower level. Since the
number of elements to cluster at this level is far lower than in the sample itself, the clustering at
the higher level of the structure does not require any substantial computing.

T prototypes

sampling

I:I clustering

Figure 9.14. A two-level (double) clustering: random sampling followed by clustering of the prototypes.




286 11. Summary and Biographical Notes

11. Summary and Biographical Notes

In this Chapter, we have covered clustering, which occupies a predominant position in unsuper-
vised learning and data mining. There are several compelling reasons. For this first, clustering
techniques play an important role in revealing structure in data, basically without supervision. This
feature of clustering is valuable given the fact that we do not know the structure in data and thus
any mechanism that could help develop some insights into it is highly desirable. We presented
a spectrum of clustering methods and elaborated on their conceptual properties, computational
aspects and scalability. We addressed the issue of validity of clustering, stressing that although
several cluster validity indexes are available, their outcomes should be treated with caution. The
treatment of huge databases through mechanisms of sampling and distributed clustering was
discussed as well. The latter two approaches are essential for dealing with huge datasets.
Clustering has been an area of very intensive research for several decades; the reader may
consult classic texts in this area such as ﬂIl, E, m, @, |ﬂ, E, E, E] The literature on fuzzy
clustering is also abundant starting with the book by Bezdek [E], interesting and useful references

are [EI, ,, E, E, E, Iﬁl, Iﬁ] Cluster validity issues are presented ilnﬂ[% E, @, E] The

concept of self-organizing feature maps is well presented by Kohonen [E, @] Hierarchical
clustering is covered in &l]

References

1. Anderberg, M.R. 1973. Cluster Analysis for Applications, Academic Press
2. Babu, G.P., and Murthy, M.N. 1994. Clustering with evolutionary strategies. Pattern Recognition, 27,
321-329
3. Bezdek, J.C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press
4. Bezdek, J.C, Coray, C.R., Guderson, R., and Watson, J. 1981. Detection and characterization of cluster
substructure, SIAM Journal of Applied Mathematics, 40: 339-372
5. Bezdek, J.C., Keller, J., Krishnampuram, R., and Pal, N.R. 1999. Fuzzy Models and Algorithms for
Pattern Recognition and Image Processing, Kluwer Academic Publishers
6. Dave, R.N. 1990. Fuzzy shell clustering and application to circle detection in digital images,
International Journal of General Systems, 16: 343-355
7. Dave, R.N. 1991.Characterization and detection of noise in clustering. Pattern Recognition Letters, 12,
657-664
8. Dave, R.N., and Bhaswan, K. 1992. Adaptive c-shells clustering and detection of ellipses, IEEE
Transactions on Neural Networks, 3: 643-662
9. Devijver, P.A., and Kittler, J. (Eds.). 1987. Pattern Recognition Theory and Applications, Springer-
Verlag
10. Dubes, R. 1987. How many clusters are the best? — an experiment. Pattern Recognition, 20(6): 645-663
11. Duda, R.O., Hart, P.E., and Stork, D.G. 2001. Pattern Classification, 2nd edition, John Wiley
12. Dunn, J.C. 1974. A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters, Journal of Cybernetics, 3(3): 32-57
13. Frigui, H., and Krishnapuram, R. 1996. A comparison of fuzzy shell clustering methods for the detection
of ellipses, IEEE Transactions on Fuzzy Systems, 4: 193-199
14. Fukunaga, K. 1990. Introduction to Statistical Pattern Recognition, 2nd edition, Academic Press
15. Girolami, M. 2002. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural
Networks, 13[@): 780-784
16. Hoppner, F., Klawonn, F., Kruse, R., and Runkler, T. 1999. Fuzzy Cluster Analysis, John Wiley
17. Jain, A.K., Murthy, M.N., and Flynn, P.J. 1999. Data clustering: A review, ACM Computing Survey,
31@): 264-323
18. Jain, A.K., Duin, R.P.W., and Mao, J. 2000. Statistical Pattern recognition: a review, I[EEE Transactions
on Pattern Analysis and Machine Intelligence, 22(1): 4-37



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.
34.
35.
36.
37.

38.
39.

Chapter 9 Unsupervised Learning: Clustering 287

Jarvis, R.A., and Patrick, E.A. 1973. Clustering using a similarity measure based on shared near
neighbors, IEEE Transactions on Computers, C22(11): 1025-1034

Kaufmann, L., and Rousseeuw, P.J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis,
John Wiley

Kersten, P.R. 1999. Fuzzy order statistics and their applications to fuzzy clustering, I[EEE Transactions
on Fuzzy Systems, T0): 708-712

Klawonn, F., and Keller, A. 1998. Fuzzy clustering with evolutionary algorithms, International Journal
of Intelligent Systems, 13: 975-991

Kohonen, T. 1982. Self-organized formation of topologically correct feature maps, Biological Cyber-
netics, 43: 59-69

Kohonen, T. 1989. Self-organization and Associative Memory, Springer Verlag

Kohonen, T. 1995. Self-organizing Maps, Springer Verlag

Kohonen, T., Kaski, S., Lagus, K., and Honkela, T. 1996. Very large two-level SOM for the browsing
of newsgroups, In: Proceedings of ICANNY6, Lecture Notes in Computer Science, 1112, Springer,
269-274.

Krishnapuram, R., and Keller, J. 1993. A possibilistic approach to clustering, IEEE Transactions on
Fuzzy Systems, 1(1993): 98-110

Krishnapuram, R., and Keller, J. 1996. The possibilistic C-Means algorithm: insights and recommen-
dations, IEEE Transactions on Fuzzy Systems, 4: 385-393

Mali, K., and Mitra, S. 2002. Clustering of symbolic data and its validation, In: Pal, N.R., and
Sugeno, M. (Eds.), Advances in Soft Computing — AFSS 2002, Springer Verlag, 339-344
Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution Programs, Springer Verlag
Pedrycz, A., and Reformat, M. 2006. Hierarchical FCM in a stepwise discovery of structure in data,
Soft Computing, 10: 244-256

Roth, V., and Steinhage, V. 1999. Nonlinear discriminant analysis using kernel functions, In: Solla, S.,
Leen, T.K., and Muller, K.R. (Eds.), Advances in Neural Information Processing Systems, MIT Press,
568-574.

Sammon, J.W. Jr. 1969. A nonlinear mapping for data structure analysis. /[EEE Transactions on
Computers, 5: 401-409

Xie, X.L., and Beni, G. 1991. A validity measure for fuzzy clustering, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13: 841-847

Webb, A. 2002. Statistical Pattern Recognition, 2nd edition, John Wiley

Windham, M.P. 1980. Cluster validity for fuzzy clustering algorithms, Fuzzy Sets & Systems, 3: 1-9
Windham, M.P. 1982. Cluster validity for the fuzzy C-Means clustering algorithms, /EEE Transactions
on Pattern Analysis and Machine Intelligence, 11: 357-363

Vapnik, V.N. 1998. Statistical Learning Theory, John Wiley

Vesanto, J., and Alhoniemi, A. 2000. Clustering of the self-organizing map, /[EEE Transactions on
Neural Networks, 11: 586-600

12. Exercises

. In grid-based clustering, form a grid along each variable of d intervals. If we are concerned

with n dimensional data, how may hyperboxes are needed in total? If the data set consists of
N data points, elaborate on the use of grid-based clustering vis-a-vis the ratio of the number
of hyperboxes and the size of the data set. What conclusions could be derived? Based on your
findings, offer some design guidelines.

. Think of possible advantages of using the Tchebyschev distance in clustering versus some

other distance functions (hint: think about the interpretability of the clusters by referring to the
geometry of this distance).

. In hierarchical clustering, we use different ways of expressing distance between clusters, which

lead to various dendrograms. Elaborate on the impact of this approach on the shape of the
resulting clusters.



288 12. Exercises

4. Calculate the similarity between the two binary strings [1 100 1 1 0 0] and [00 11 11 1 0O].
Compare differences between the results.

5. Run a few iterations of the K-Means for the toy dataset (1.0, 0.2) (0.9, 0.5) (2.0, 5.0) (2.1, 4.5)
(3.1, 3.2) (0.9, 1.3). Select the number of clusters and justify your choice. Interpret the results.

6. Elaborate on the main differences between clustering and vector quantization.

7. Consider the same data set clustered by two different clustering algorithms and thus yielding
two different partition matrices. How could you describe the clusters obtained by one method
by using the clusters formed by another one?

8. The weights of a small 2 x 2 SOM developed for some three-dimensional data are as follows:

(1,1): (0.3 -1.5 2.0) (1,2): (0.0 0.5 0.9)
(2,1): (4.0 2.1 -1.5) (2.2): (0.8 -4.0 -1.0).

Where would you locate the inputs a = [0.20.61.1] and b= [2.2 — 1.5 —1.2]?
If you were to assess confidence of this mapping, what could you say about a and b?

9. In the hierarchical buildup of clusters governed by some objective function, we split the data
into a very limited number of clusters and then proceed with a series of successive refinements.
Consider that you allow for p phases of usage of the algorithm while using “c” clusters at
each level. Compare computing costs of this clustering method with the clustering realized at

a single level when using cp clusters.



	Part4 Data Mining: Methods for Constructing Data Models
	Unsupervised Learning: Clustering
	
	From Data to Information Granules or Clusters
	Categories of Clustering Algorithms
	Similarity Measures
	Hierarchical Clustering
	Objective Function-Based Clustering
	Grid - Based Clustering
	Self-Organizing Feature Maps
	Clustering and Vector Quantization
	Cluster Validity
	Random Sampling and Clustering as a Mechanism of Dealing with Large Datasets
	Summary and Biographical Notes
	Exercises





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




