
7
Feature Extraction and Selection

Methods

This Chapter provides background and algorithms for feature extraction and feature selection
from numerical data. Both methods are performed to reduce the dimensionality of the original
data. Feature extraction methods do it by generating new transformed features and selecting the
informative ones while feature selection methods choose a subset of original features.

1. Introduction

Nowadays, we deal with large datasets that include up to billions of objects (examples, patterns)
and up to several thousands of features. This Chapter provides an introduction to data prepro-
cessing methods, which are concerned with the extraction and selection of features to reduce
the dimensionality and improve the data for subsequent data mining analysis. Feature selection
selects a subset of features among the set of all features from the original dataset. On the other
hand, feature extraction generates new features based on the original dataset.

This Chapter describes both supervised and unsupervised feature extraction methods. These
include dimensionality reduction and feature extraction via unsupervised Principal Component
Analysis, unsupervised Independent Component Analysis, and supervised Fisher’s linear
discriminant analysis. The first two methods are linear transformations that optimally reduce
dimensionality, in terms of the number of features, of the original unsupervised dataset. The
Fisher’s method also implements a linear transformation that optimally converts supervised
datasets into a new space that includes fewer features, which are more suitable for classifi-
cation. While the above methods are mainly used with numerical (time-independent) data, we
also describe two groups of methods for preprocessing of time-series data. These include Fourier
transform and Wavelets and their two-dimensional versions. We also discuss Zernike moments
and Singular Value Decomposition.

The second part of the Chapter describes a wide variety of feature selection methods. The
design of these methods is based on two components, namely, selection criteria and search
methods.

2. Feature Extraction

Data preprocessing may include transformation (projection) of the original patterns (also called
examples or objects) into the transformed pattern space, frequently along with reduction of

133

134 2. Feature Extraction

dimensionality of a pattern by extraction of only the most informative features. The transfor-
mation and reduction of pattern dimensionality may improve the recognition process through a
consideration of only the most important data representation, possibly with uncorrelated-pattern
elements retaining maximum information about the original data. These approaches may also lead
to better generalization abilities of a subsequently designed model, such as a classifier.

Reduction of the original pattern dimensionality refers to a transformation of original
n-dimensional patterns into other m-dimensional feature patterns (m ≤ n). The pattern transfor-
mation and dimensionality reduction can be considered as a nonlinear transformation (mapping)

y = F�x� (1)

of n-dimensional original patterns x (vectors in the n-dimensional pattern space) into
m-dimensional transformed patterns y (vectors in the m-dimensional transformed pattern space).
The m-dimensional transforming function F�x� may be designed based on the available knowledge
about a domain and data statistics. Elements yi (i= 1�2� · · · �m) of the transformed patterns y are
called features and the m-dimensional transformed patterns y are called feature vectors. Feature
vectors represent data objects in the feature space. However, the general name pattern is also
adequate in this context.

The projection and reduction of a pattern space may depend on the goal of processing. The
purpose of transformation is to obtain a pattern representing data in the best form for a given
processing goal. For example, one can choose features in order to characterize (model) a natural
phenomenon that generates patterns. Another goal may be finding the best features for the
classification (recognition) of objects.

Below we present an optimal linear transformation that guarantees the preservation of maximum
information by the extracted feature vector.

The reasons for performing data transformation and dimensionality reduction of patterns are as
follows:

– Removing redundancy in data
– Compression of data sets
– Obtaining transformed and reduced patterns containing only a relevant set of features that help

to design classifiers with better generalization capabilities
– Discovering the intrinsic variables of data that help design a data model, and improving under-

standing of phenomena that generate patterns
– Projecting high-dimensional data (preserving intrinsic data topology) onto low-dimensional

space in order to visually discover clusters and other relationships in data

2.1. Principal Component Analysis

Probably the most popular statistical method of linear pattern transformation and feature extraction
is Principal Component Analysis (PCA). This linear transformation is based on the statistical
characteristics of a given data set represented by the covariance matrix of data patterns, its
eigenvalues, and the corresponding eigenvectors.

Principal Component Analysis (PCA) is a technique, developed in a biological context, to
represent a linear regression analysis as fitting planes to data in the sense of least-squares error.

PCA determines an optimal linear transformation

y = Wx (2)

of a real-valued n-dimensional random data pattern x ∈ R
n into another m-dimensional (m ≤ n)

transformed vector y ∈ R
m. The m×n linear transformation matrix W ∈ R

m×n is optimal from the

Chapter 7 Feature Extraction and Selection Methods 135

point of view of obtaining the maximal information retention. PCA is realized through exploring
statistical correlations among elements of the original patterns and finding (possibly reduced) data
representation that retains the maximum nonredundant and uncorrelated intrinsic information of
the original data. Exploration of the original data set, represented by the original n-dimensional
patterns xi, is based on computing and analyzing a data covariance matrix, its eigenvalues, and the
corresponding eigenvectors arranged in descending order. The arrangement of subsequent rows
of a transformation matrix W as the normalized eigenvectors, corresponding to the subsequent
largest eigenvalues of the data covariance matrix, will result in an optimal linear transformation
matrix Ŵ. The elements of the m-dimensional transformed feature vector y will be uncorrelated
and arranged in decreasing order according to decreasing information content. This allows for
a straightforward reduction of dimensionality (and thus data compression) by discarding trailing
feature elements with the lowest information content. Depending on the nature of an original
data pattern, one can obtain a substantial reduction of feature vector dimensionality m << n
compared with the dimensionality of original data patterns. First, having determined the optimal
transformation matrix Ŵ, one can reduce the decorrelated feature vector dimension and use
reduced feature vectors for classification. Second, all original n-dimensional data patterns can be
optimally transformed to data patterns in the feature space with lower dimensionality. This means
that the original data will be compressed with the minimal information loss when the data are
reconstructed (preserving the maximal information content of the original data).

A PCA-based linear transformation of an original data pattern can also be interpreted as a
projection of original patterns into m-dimensional feature space with orthonormal bases (guaran-
teeing that one obtains decorrelation of feature vector elements).

We can think of a PCA as an unsupervised learning from data. Indeed, PCA does not use
knowledge about a class associated with a pattern, but only discovers correlation among patterns
and their elements, as well as ordered intrinsic directions where the data patterns change most
(with maximum variance), as shown in Figure 7.1.

Despite the fact that PCA is an unsupervised method, it can also be used in classifier design for
the projection and reduction of feature patterns. Here, PCA is applied solely to patterns in order
to determine an optimal transformation of original patterns into a principal component space and
possibly to reduce the dimensionality of the projected pattern. Once an optimal transformation

x1

x2

First principal
component

Second principal
component

Figure 7.1. Principal components.

136 2. Feature Extraction

has been completed, the projected patterns will have the same class assignments as those in the
original data set.

2.1.1. Statistical Characteristics of Data Required by PCA
Let us consider data objects characterized by n-dimensional column patterns x ∈ R

n in
n-dimensional pattern space whose elements take real values xi ∈ R. We assume that our
knowledge about a domain is represented as a limited size sample (from a certain domain) of N
random patterns xi gathered as an unlabeled training data set Ttra:

Ttra = �x1�x2� · · · �xN � (3)

The entire training set data will be represented as an N ×n data pattern matrix:

X =

⎡
⎢⎢⎢⎣

�x1�T

�x2�T

���
�xN �T

⎤
⎥⎥⎥⎦ (4)

One row of the data matrix contains one transposed pattern. If a data set contains patterns labeled
by classes, for unsupervised PCA analysis we need to extract only patterns from this data set.

The data can be characterized by second-order statistics, namely, by the n-dimensional mean
vector

� = E�x	= [
E�x1	�E�x2	� · · · �E�xn	

]T
(5)

and the square n×n-dimensional covariance matrix

Rxx = � = E
[
�x −���x −��T

]
(6)

where E�·	 denotes the expectation operator and � is the mean vector of a pattern vector x. The
square, semipositive definite, symmetric (rij = rji), real-valued covariance matrix Rxx describes
correlations between elements of pattern vectors (treated as random variables). The PCA technique
assumes that the original data patterns are zero-mean random vectors

� = E�x	= 0 (7)

If this condition is not satisfied, one can convert an original pattern x to the zero mean repre-
sentation by the operation x − �. For zero mean patterns, the covariance matrix (equal to the
correlation matrix) is defined as

Rxx = � = E�xxT 	 (8)

The true values � and Rxx for the mean vectors and the covariance matrix are in practice not
available, since we usually do not know the exact probabilistic characteristics of patterns generated
by nature. Our knowledge about a pattern-generation mechanism is included in a given data set
Ttra containing a finite number of N patterns �x1�x2� · · · �xN �. Under these circumstances, we
find estimates for the mean

�̂ = 1
N

N∑
i=1

xi (9)

Chapter 7 Feature Extraction and Selection Methods 137

and the covariance matrix (unbiased estimate)

R̂xx = 1
N −1

N∑
i=1

�xi −���xi −��T (10)

based on a given limited sample. For zero-mean data, the covariance estimate becomes

R̂xx = 1
N −1

N∑
i

xi�xi�T = 1
N −1

XTX (11)

where X is a whole N ×n original data pattern matrix (data set).
The intrinsic characteristic of given data X can be found as a set of n eigenvalues
i and the

corresponding eigenvectors ei by solving the eigenvalue problem

Rxxe
i =
ie

i� i = 1�2� · · · � n (12)

We consider the orthonormal eigenvectors, which is a legitimate approach since a covariance
matrix Rxx is symmetric and real valued. This means that the eigenvectors are orthogonal �ei�Tej =
0�i� j = 1�2� · · · � n� i �= j� with unit length �ei� =√

�ei�Tei = 1�i = 1�2� · · ·n�.
In the PCA analysis, it is essential that the eigenvalues of the matrix Rxx are arranged in the

decreasing order

1 ≥
2 ≥ · · ·
n ≥ 0 (13)

with
1 =
max. The corresponding orthonormal eigenvectors ei will be composed as the square
n×n matrix

E = �e1� e2� · · · � en	 (14)

with the ith column representing one eigenvector ei corresponding to the eigenvalue
i. The most
dominant first eigenvector e1 in the first column of the matrix E corresponds to the first most
dominant eigenvalue
1 of the covariance matrix Rxx. The second most dominant eigenvector e2

in the second column corresponds to the second most dominant eigenvalue
2, etc.
The arrangement of eigenvalues and corresponding eigenvectors in descending order is essential

for data dimensionality reduction. Only the first m principal components of projected feature
vectors (those carrying the most information) and corresponding to the first m dominant eigen-
values should be considered.

The eigenvalue problem equation can be written in the matrix form

RxxE = E� (15)

where � = diag�
1�
1� · · · �
n	.
We can observe that for the orthonormal matrix E we have

ETE = I (16)

where I is the n×n unit matrix. Consequently, we have

E−1 = ET (17)

In light of the above equality, we can write formulas for the so-called orthogonal similarity
transformation

E−1RxxE = ETRxxE = � (18)

and consequently the spectral factorization of the covariance matrix Rxx,

Rxx = E�ET (19)

138 2. Feature Extraction

2.1.2. The Optimization Criterion of PCA
The goal of PCA is to find the optimal linear transformation y = Wx of the original n-dimensional
data patterns x into m-dimensional feature vectors y, possibly with lower dimensionality �m< n�.
More formally, PCA can be considered as a static optimization problem, with a specifically defined
optimization criterion, which will guarantee obtaining (through optimal projection) a transformed
feature vector possessing the desired characteristics. In PCA, it is required that:

– optimal transformation is orthogonal (with orthonormal basis)
– elements of the transformed feature vector y are uncorrelated
– orthonormal basis of the linear projections shows, in decreasing order, the orthogonal intrinsic

directions in data along which the data changes (variances) are maximal
– pattern reconstruction error will be minimal in the least-squares sense

For the orthonormal linear transformation y = Wx, with the m× n-dimensional orthonormal
tranformation matrix W, an estimate of the reconstructed pattern is x̂ = W−1y. Since for the
orthonormal matrices we have W−1 = WT , thus

x̂ = W−1y = WTy = WTWx (20)

The criterion for the optimal, PCA-based, linear transformation is selected in order to guarantee
obtaining a minimum of the reconstruction error metric. The reconstruction error-based criterion
has the form

Jlse�W�= E
[�x − x̂�2

]
(21)

where �x− x̂�2 = �x− x̂�2
2 denotes the square of the Euclidean distance, denoted by the subscript

lse indicating that the criterion used in optimization is based on the mean least squares error
criterion. For practical computations, one can use the criterion

Jlse�W�= 1
2

N∑
i

�xi − x̂i�2 = 1
2

N∑
i

n∑
j

�xij − x̂ij�
2 (22)

PCA seeks the optimal transformation matrix W that guarantees minimization of the mean squares
reconstruction error (criterion Jlse�W�) for a given data set Ttra.

In order to better understand the goal of PCA, we provide a more detailed interpretation of the
PCA criterion:

J�W�= E
[�x − x̂�2

]

= E
{
trace

[
�x − x̂��x − x̂�T

]}

= trace�Rxx�− trace�WRxxW
T � (23)

In the above equations, we used the facts that trace�W� = trace�WT � and WWT = WW−1 = I,
along with the following equalities:

�x − x̂�2 = trace��x − x̂��x − x̂�T �

trace�E�WTWxxTWTW	�= trace�WWTWRxxW
T �

= trace�WRxxW
T � (24)

Chapter 7 Feature Extraction and Selection Methods 139

We can observe that in the PCA criterion given in Equation (23), the second term
trace�WRxxW

T � = Jvariance�W� and is equal to the variance of the projected feature vector y, or
consequently, equal to to the variance of the reconstructed pattern vector x̂:

Jvariance�W�= trace�WRxxW
T �= E

[
trace�yyT �

]=
m∑
i=1

y2
i (25)

Jlse�W�= trace�WTWRxxW
TW�= E�trace�x̂x̂T �	=

n∑
i=1

x̂2
i

The conclusion from the above criterion analysis is that minimization of the mean square error
criterion Jlse�W� is in fact equivalent to maximization of the projected feature vector y variance
(with the criterion Jvariance). One can interpret PCA as minimization of the reconstruction error
in the mean least squares sense, or equivalently as maximization of the resulting projection
(feature vector) variance. We see that the optimal PCA-based linear transformation will result in
a projection of the original patterns into the feature vectors, with elements located in the feature
space in the directions with maximal variances (maximal variabilities).

2.1.3. PCA Theorem
For a given data set (a training set), let Ttra = �x1�x2� · · · �xN �, containing N n-dimensional
zero-mean randomly generated patterns x ∈ R

n with real-valued elements and the symmetric, real-
valued n×n covariance matrix Rxx ∈ R

n×n. Let the eigenvalues of the covariance matrix Rxx be
arranged in decreasing order
1 ≥
2 ≥ · · ·
n ≥ 0 (with
1 =
max). Assume that the corresponding
orthonormal eigenvectors (orthogonal with unit length ��e�� = 1) e1� e2� · · · � en compose the n×n
orthonormal matrix

E = �e1� e2� · · · � en	 (26)

with columns being orthonormal eigenvectors. Then the optimal linear transformation

ŷ = Ŵx (27)

transforms the original n-dimensional patterns x into m-dimensional �m≤ n� feature patterns,
minimizing the mean least squares reconstruction error criterion Jlse�W� given by Equation (25) (or
maximizing the variance of projected patterns) and provides for the m×n optimal transformation
matrix Ŵ, denoted also by WKL (under the constraints WWT = I), as

Ŵ =

⎡
⎢⎢⎢⎣

�e1�T

�e2�T

���
�em�T

⎤
⎥⎥⎥⎦ (28)

composed with m rows that are the first m orthonormal eigenvectors of the original data covariance
matrix Rxx.

The resulting optimal linear transformation y = Ŵx, with the optimal transformation matrix
Ŵ, is called the Karhunen-Loéve (KLT) or Hotelling transformation.

2.1.4. Properties of the Karhunen-Loéve Transformation
The optimal KLT transformation guarantees the minimum reconstruction error in the least squares
sense, with the minimal value

min Jlse�W�=
n∑

i=m+1

i (29)

140 2. Feature Extraction

The minimum value of the reconstruction error is equal to the sum of the trailing n−m eigenvalues

m+1�
m+2� · · · �
n (from the ordered eigenvalues) of the covariance matrix Rxx, where m is the
possibly reduced length of the projected feature vector y (m≤ n).

Simultaneously, the transformation guarantees the maximum of the projected feature vector
variance, with the maximum value

max Jvariance�W�=
m∑
i=1

i (30)

equal to the sum of the first m eigenvalues of Rxx. The orthonormal eigenvectors e1, e2, · · · , en

(rows of the optimal transformation matrix Ŵ), corresponding to the descending-order eigenvalues

1�
2� · · · �
n of the data covariance matrix Rxx, are called the principal eigenvectors. They
show orthogonal directions (in descending order, corresponding to the principal eigenvectors and
eigenvalues) in the pattern space where data change maximally (with maximal variance). The m
principal eigenvectors (arranged as rows) compose the optimal transformation matrix Ŵ.

For a given n-dimensional random pattern x, the optimal transformation y = Ŵx will
produce the optimally projected m-dimensional feature vector y = �y1� y2� · · · � ym	T . The elements
y1� y2� · · · � ym of the feature vector are called the principal components of a pattern x. The
principal components are statistically uncorrelated with covariances

E�yiyj	= eTi Rxxej = 0 (31)

and with variances equal to the corresponding eigenvalues

E�yiyi	= E�y2
i 	= �ei�TRxxe

i =
i (32)

The covariance matrix Ryy =E�yyT 	 of the projected feature vectors y is diagonal, with eigenvalues
of the original pattern covariance matrix Rxx on the main diagonal given in descending value
order. The variances are arranged in descending variance value order E�y2

1	≤E�y2
2	≤ · · · ≤E�y2

m	.
The ith principal component yi of the original pattern x, corresponding to the ith largest eigen-

value
i of the covariance matrix Rxx, is obtained as an inner product

yi = �ei�Tx = ei1x1 + ei2x2 +· · ·+ einxn (33)

of the ith orthonormal eigenvector ei (ith row of Ŵ) and a given pattern x. It is just a linear
combination of the elements of pattern vector x.

The first principal component y1 = �e1�Tx, corresponding to the first most dominant eigenvalue

1 (and first eigenvector e1) of the covariance matrix, is such that its variance

variance�y1�= E�y2
1	= E��e1x�2	= e1E�xxT 	�e1�T = e1Rxx�e

1�T =
1 (34)

is maximal. The first most dominant principal component y1 is along the first eigenvector direction
e1, with maximum variance equal to the most dominant eigenvalue
1 of the covariance matrix.

Subsequently, the second principal component y2 = �e2�Tx, corresponding to the second
dominant eigenvalue
2 (and the second eigenvector e2), is such that its variance

variance�y2�= E�y2
2	=
2 (35)

is maximal. The second dominant principal component y2 is along the second eigenvector direction
e2, with the second maximum variance equal to the second dominant eigenvalue
2 of the
covariance matrix. The direction of the second principal component is perpendicular to the
direction of the first most dominant principal component. Similarly, the third dominant principal

Chapter 7 Feature Extraction and Selection Methods 141

component y3 = �e3�Tx is along the third eigenvector direction e3, with the third maximum
variance equal to the third dominant eigenvalue
3 of the covariance matrix. The direction of the
third principal component is perpendicular (orthogonal) to the direction of the first and second
dominant principal component. Generally, the ith principal component will be in the direction
orthogonal to all prior principal components y1� y2� · · · � yi−1, with the maximal value of variance
in this direction equal to
i. The m principal components form principal component space into
which patterns x are optimally projected. Most information is contained along the first principal
component.

2.1.5. Optimal KLT Transformation of the Original Patterns
Once we have defined the optimal KLT transformation matrix Ŵ, the optimal transformation of a
given n-dimensional original pattern x into the m-dimensional optimal feature pattern y is given
by y = Ŵx. The inverse transformation can be obtained from

x̂ = Ŵ−1y = ŴTy =
m∑
i=1

yie
i (36)

The optimal transformation of the entire original data set X is given by the formula

Y = �ŴXT �T = XŴT (37)

The m×m covariance matrix Ryy = E�yyT 	 for the projected patterns y can be estimated as

Ry = 1
N −1

YTY = ŴRxxŴ
T = diag�
i	 (38)

The entire reconstructed pattern set is given by

X̂ = YŴ (39)

2.1.6. Dimensionality Reduction
PCA can be effectively used for feature extraction and dimensionality reduction. Instead of the
entire n-dimensional original data pattern x, one can form the m-dimensional �m ≤ n� feature
vector y = �y1� y2� · · · � ym	T containing only the first m most dominant principal components of
x, corresponding to the first m most dominant eigenvalues
1�
2� · · · �
m of the original data
pattern covariance matrix. PCA is the best technique for linear feature extraction from the original
set of patterns, in the sense of minimization of the reconstruction error. Projection of patterns
from highly dimensional pattern space �x ∈ R

n� onto reduced principal component space (with
dimension m<< n) will result in the square of the approximation error

e2 =
n∑

i=m+1

i (40)

which is equal to the sum of n−m discarded eigenvalues. We also can say that the m principal
components yi are the most expressive features of a data set. PCA provides a way to reduce
(compress) data representation by choosing the feature vector with lower dimensionality. The
reduced-size feature vectors represent data in a new feature space, where the feature vector
elements are uncorrelated and placed along the orthogonal directions of principal components
with maximal variances. This characteristic might be desirable in classifier design for some
types of data. However, PCA does not consider the improvement of classification in principal
component space, as a transformation criterion. This mean that most expressive features obtained

142 2. Feature Extraction

through principal components are well suited for data representation (the model) and compression.
However, they might not be good for classification. The data in the feature space will be an
approximation (a model) of the original data patterns.

The approximation error vector e is orthogonal to the reconstructed data pattern x̂. The least
squares error between x and x̂ is

��e�� = ��x − x̂�� =
[

n∑
i=1

�xi − x̂i�
2

]1/2

(41)

The least mean squares error is equal to

E���x − x̂��2	=
n∑

i=m+1

i (42)

and it is also equal to the sum of n−m eigenvalues not used.
One method (criterion) for (data representation oriented) selection of a dimension of a reduced

feature vector y is to choose a minimal number of the first m most dominant principal components
y1� y2� · · · � ym of x for which the mean square reconstruction error is less than the heuristically
set error threshold �. Another, more practical method may be to select the minimal number of
the first m most dominant principal components for which a percentage V of a sum of unused
eigenvalues of a sum of all eigenvalues

V =
∑n

i=m+1
i∑n
i=1
i

100% (43)

and is less than a defined threshold �: P < � .
One can try to use principal components for classification. Selection of the best principal

components for classification purposes is outside the scope of this Chapter. In such a case, Fisher’s
Linear Discriminant Analysis (described in Section 2.2) should be used.

Example: Let us consider a data set (shown in Table 7.1) containing 10 two-feature patterns
x ∈ R

2 from two classes c1 = 0 and c2 = 1 (five patterns in each class) drawn according to the
Gaussian normal density distribution.

The patterns x ∈ R
2 from both classes of the original data set can be composed as a 10 ×

2�n=2�N = 10� data pattern matrix Xorig (Table 7.2). The mean vector for the original patterns x

Table 7.1. Two-class
data set.

x1 x2 class

1 2 1
2 2 1
2 3 1
3 1 1
3 2 1
6 8 2
7 8 2
8 7 2
8 8 2
7 9 2

Chapter 7 Feature Extraction and Selection Methods 143

Table 7.2. Data pattern matrix

Xorig =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
2 2
2 3
3 1
3 2
6 8
7 8
8 7
8 8
7 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is � = �4�7� 5�0	T , and the zero mean data pattern can be obtained by extraction x −�, yielding
the zero mean data pattern matrix X:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3�7 −3�0
−2�7 −3�0
−2�7 −2�0
−1�7 −4�0
−1�7 −3�0

1�3 3�0
2�3 3�0
3�3 2�0
3�3 3�0
2�3 4�0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The 2×2 covariance matrix Rxx of the data patterns X is

Rxx =
[

7�5667 8�1111
8�1111 10�4444

]

1 = 0�7678,
2 = 17�2433, and �0�6424 0�7624	T . Arranged in decreasing order, the eigenvalues
and corresponding orthogonal eigenvectors of matrix Rxx are
1 = 17�2433,
2 = 0�7678, and
e1 = �0�6424 0�7664	T , e2 = �−0�7664 0�6424	T . Matrix E, composed with eigenvectors e1 and
e2 as columns, is

E =
[

0�6424 −0�7664
0�7664 0�6424

]

We can easily see that the eigenvectors are orthonormal: orthogonal ��e�1�Te2 = 0 with unit
length ��ei�� = 1. Finally, the optimal KLT transformation matrix Ŵ, with rows of eigenvectors
corresponding to the decreasing-order eigenvalues of a covariance matrix, is

Ŵ =
[

0�6424 0�7664
−0�7664 0�6424

]

The projected first vector x1 = �−3�7� −3�0	T from X gives, as a feature vector in the principal
component space, y1 = �−4�6760� 0�9084	T . Here, y1

1 = −4�6760 is the first principal component
of the pattern x1 along the direction of the first eigenvector e1. The data have maximal variance

1 = 17�2433 in this direction. Consequently, y1

2 = 0�9084 is the second principal component of

144 2. Feature Extraction

the pattern x1 along the direction of the second eigenvector e2 orthogonal to e1. The projection
of all vectors from X onto principal components are Y = XŴT :

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4�6760 0�9084
−4�0336 0�1421
−3�2672 0�7844
−4�1576 −1�2667
−3�3912 −0�6243

3�1342 0�9309
3�7766 0�1645
3�6526 −1�2443
4�4190 −0�6019
4�5430 0�8069

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The covariance matrix of Y is diagonal, with elements equal to
1 and
2:
[

17�2433 0�0000
0�0000 0�7678

]

The first original pattern vector x1 = �−3�7� −3�0	T can be reconstructed, by the inverse operation
x̂ = ŴTy, from the principal component space vectors y1 = �−4�6760� 0�9084	T :

x̂1 =
[

0�6424 −0�7664
0�7664 0�6424

][−4�6760
0�9084

]
=
[−3�7
−3�0

]

The reconstruction is exact, since the dimension of the original pattern and the feature patterns are
equal �m = n�, and consequently we used all eigenvectors in the optimal transformation matrix
Ŵ. Reconstruction of all the original pattern space vectors X̂, by the inverse operation X̂ = YW,
gives

X̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3�7 −3�0
−2�7 −3�0
−2�7 −2�0
−1�7 −4�0
−1�7 −3�0

1�3 3�0
2�3 3�0
3�3 2�0
3�3 3�0
2�3 4�0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The fully reconstructed original pattern vectors, with the mean vector x̂orig = x̂ + � added, are
equal to the original patterns Xorig:

X̂orig =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
2 2
2 3
3 1
3 2
6 8
7 8
8 7
8 8
7 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 7 Feature Extraction and Selection Methods 145

Let us consider now how we can model considered zero mean data patterns X by only one latent
variable y = �y1	 ∈ R�m = 1� being the first principal component of two dimensional patterns
x. Here, we form the 1 × 2 optimal KLT transformation matrix Ŵ by choosing as its sole row
the first eigenvector e1 of the covariance matrix Rxx, corresponding to the first most dominant
eigenvalue
1:

Ŵ = �e1	= �0�6424 0�7664	

The projected first vector x1 = �−3�7� −3�0	T from X gives, as the feature vector in the principal
component space, y1 = �−4�6760	. Here, y1

1 = −4�6760 is the first principal component of the
pattern x1 along the direction of the first eigenvector e1. The data have maximal variance
1

in this direction. The projection of all vectors from X onto the first principal component gives
�Y = XŴT �

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4�6760
−4�0336
−3�2672
−4�1576
−3�3912

3�1342
3�7766
3�6526
4�4190
4�5430

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The covariance of Y = �17�2433	 for
1. The first original pattern vector, x1 = �−3�7� −3�0	T ,
can be reconstructed, by the inverse operation x̂ = ŴTy, from the principal component space
vectors y1 = �−4�6760	:

x̂1 =
[

0�6424
0�7664

][−4�6760
]=

[−3�0038
−3�5836

]

The reconstructed error vector is x1 − x̂1 = �−0�6962� 0�5836	T . Reconstruction of all original
pattern space vectors X̂, by the inverse operation X̂ = YW, gives

X̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3�0038 −3�5836
−2�5911 −3�0913
−2�0988 −2�5039
−2�6708 −3�1863
−2�1785 −2�5989

2�0134 2�4020
2�4261 2�8943
2�3464 2�7993
2�8387 3�3866
2�9184 3�4817

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

146 2. Feature Extraction

The reconstructed error vectors are

X − X̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0�6962 0�5836
−0�1089 0�0913
−0�6012 0�5039

0�9708 −0�8137
0�4785 −0�4011

−0�7134 0�5980
−0�1261 0�1057

0�9536 −0�7993
0�4613 −0�3866

−0�6184 0�5183

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The least mean squares error is equal to
2 = 0�7678 (its numerical estimate as the mean of the
pattern error equals 0�7478).

2.2. Supervised Feature Extraction Based on Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant method, with a linear transformation of the original patterns, is
the classic method of real-valued feature extraction and pattern dimensionality reduction. This
linear transformation is obtained based on statistical characteristics extracted from a given data
set represented by data pattern scatter matrices (proportional to covariance matrices). Fisher’s
linear transformation is constructed based on a given limited-size data set Ttra, containing N
examples. Each example �xi� citarget� �i = 1�2� · · · �N�, representing one object of recognition, is
constituted with an n-dimensional real-valued pattern x ∈ R

n with corresponding target class citarget.
We assume that a data set Ttra contains Ni �

∑l
i Ni = N� examples from each categorical class ci,

with the total number of classes denoted by l.
Fisher’s linear discriminant analysis is a method of supervised learning from data, since it

considers patterns labeled by target classes and reveals and uses measures of pattern scatter through
the total data set, as well as within and between classes. A linear transformation of an original data
pattern can also be interpreted as a projection of original patterns into a reduced m-dimensional
feature space. Here, feature space reduction and feature extraction via transformation are included
in one transformation.

Fisher’s linear discriminant analysis, based on statistical data-analysis techniques, determines
an optimal linear transformation

y = Wx (44)

of a real-valued n-dimensional data pattern x into another m-dimensional �m ≤ n� transformed
pattern y. The m×n transformation matrix W is designed optimally from the point of view of
maximal interclass separability of projected patterns. This design allows us to find a reduced
compact data representation, in lower-dimensionality pattern space, with maximal separability
between classes, thereby allowing us to design a better classifier.

Designing Fisher’s linear transformation as a static optimization problem with specifically
defined optimization criterion leads to obtaining an optimal transformation. The criterion JFisher is
selected for the optimal Fisher linear transformation in order to ensure that we obtain a minimum
interclass separability of transformed patterns. The evaluation of interclass separability is based
on scatter matrices (proportional to covariance matrices) estimated for a given data set for each
class and between classes. It is constructed to choose new features, by the transformation of
original features to fewer new features, which will ensure a small within-class scatter and a large
between-class scatter.

Chapter 7 Feature Extraction and Selection Methods 147

2.2.1. Two-class Data and Fisher’s Projection onto a Line
First, we assume a two-class data set and analyze a linear transformation of n-dimensional patterns
x ∈ R

n into a one-dimensional feature space, with patterns y ∈ R containing one feature. This
transformation has the linear form

y = wTx (45)

where w = �w1�w2� · · · � xn	T is an n-dimensional transformation vector (containing n adjustable
coefficients). We see that this is a linear projection of multidimensional patterns in the
n-dimensional pattern space onto a line in the one-dimensional reduced feature space y. Here, y
is an extracted and reduced data feature. Even for well-clustered and separated patterns from two
classes in the original n-dimensional pattern space, such linear projection onto a line may result
in a large loss of information and a confusing overlap of patterns from both classes. However,
by rotating a line of projection (by changing a transformation coefficient wi), we can find a line
position that will give maximal separability of projected patterns from the two classes. This obser-
vation sets the foundation for Fisher’s linear transformation (projection), which can be generalized
also for multiclass data sets.

We will discuss Fisher’s linear transformation as constructed based on a given limited-size data
set Ttra. The set Ttra contains N examples (containing patterns labeled by classes). Each example
�xi� citarget��i = 1�2� · · · �N� is constituted with an n-dimensional real-valued pattern x ∈ R

n with
corresponding target class citarget �i= 1�2�. We assume that a data set Ttra (a training set) contains
Ni �N1 +N2 = N� examples from each of two categorical classes c1, c2, with the total number of
classes denoted by l= 2.

2.2.2. Statistical Characteristics of Patterns from an Original n-feature Data Set Ttra

First, we should provide measures of the statistical characteristics of patterns from an original
n-feature data set Ttra. The mean for each class, which shows a separation of patterns from each
class, can be estimated by

�i =
1
Ni

∑
x ∈ xci

x� �i = 1�2� (46)

where x ∈ xci denotes a set of patterns from the class ci. In order to calculate the scatter of
patterns within one class ci around this class mean, the n×n-dimensional within-class ci scatter
matrix is defined as

Si =
∑

x ∈ xci

�x −�i��x −�i�
T � �i = 1�2� (47)

This matrix is proportional to the covariance matrix; it is symmetric and positive semidefinite
(and, for Ni > n, usually nonsingular). The summarizing measure for the scatter of patterns around
means for all l classes, the so-called within-class scatter matrix, can be defined as

Sw = S1 +S2 (48)

The total scatter matrix (for all Nall patterns from Ttra)

St =
N∑
j=1

�xj −���xj −��T (49)

illustrates a between-class scatter. The total data mean can be estimated by

� = 1
N

N∑
j=1

xj = 1
N
�N1�1 +N2�2� (50)

148 2. Feature Extraction

We find that the total scatter matrix can be decomposed into two matrices

St = Sw +Sb (51)

where Sw is the within-class scatter matrix, and the n×n square matrix Sb is the between-class
scatter matrix, defined as

Sb = N1��1 −����1 −��T +N2��2 −����2 −��T (52)

2.2.3. Statistical Characteristics of the Projected Original Data Set Patterns onto a Single
Feature y Pattern Space
Similar statistical characteristics can be provided for projected original data set patterns onto a
single feature y pattern space (with linear transformation y = wTx). All projected patterns y form
a projected data set Ttra� proj with N cases �yi� citarget� containing labeled single feature patterns
y ∈ R. The mean of projected patterns y in Ttra� proj for each class c1 and c2 can be estimated from

i�p = 1
Ni

∑
y ∈ yci

y = 1
Ni

∑
x ∈ xci

wTx = wT�i �i = 1�2� (53)

and the scatter of a feature y (from projected original data) for each class is

s2
i�p = 1

Ni

∑
y ∈ yci

�y−
i�p�
2� �i = 1�2� (54)

Note that the estimate of variance of the projected patterns for each class is �1/Ni�s
2
i�p. The total

within-class scatter of y in an entire data set Ttra� proj is defined by

s2
t�p = s2

1�p + s2
2�p (55)

We can see that the distance between projected means can be found to be �
1�p −
2�p� =
�wT ��1 −�2��.

The design criterion for optimal interclass separability

JFisher�W�= ��
1�p −
2�p�
2�

s2
1�p + s2

2�p

(56)

guarantees a large value either for larger between-class scatter or for smaller within-class scatter.
The above criterion for a single feature, based on interclass separability, is called the Fisher

F-ratio. It guarantees finding an optimal linear transformation y = wTx of n-feature patterns into
one feature pattern y, maximizing the between-class variance while simultaneously minimizing
the within-class variance.

Let us sketch a solution for an optimal linear transformation. We try to find an optimal
transformation vector ŵ providing maximization of a criterion JFisher�W�. Derivations show that
�
1�p −
2�p�

2 = wTSbw, with

Sb = ��1 −�2���1 −�2�
T (57)

and s2
t�p = s2

1�p+s2
2�p = wTSww. Thus, the criterion J for interclass separability of projected patterns

y as a function of w is given by

JFisher�w�= wTSbw
wTSww

(58)

Chapter 7 Feature Extraction and Selection Methods 149

It is known that the optimal transform vector w that minimizes the criterion functional J�w� must
be a solution of the generalized eigenvalue problem

Sbw =
Sww (59)

or, written in another form (after multiplying both sides of the criterion by S−1),

S−1
w Sbw =
w (60)

For a nonsingular Sw, we have a final solution for the optimal value of Fisher’s linear transfor-
mation vector ŵ (Fukunaga, 1990):

ŵ = S−1
w ��1 −�2� (61)

2.2.4. Fisher Linear Discriminant – Classification
The main purpose of Fisher’s linear transformation is to optimally convert patterns into a pattern
space with a reduced dimensionality of projected pattern more suitable for the classification.
However, we can design a classifier based on Fisher’s linear transformation by using an optimal
pattern projection formula that acts like a discriminant:

y = d�x�= ŵTx (62)

If we choose a threshold value ythreshold for the projected pattern y, a new pattern x could be
classified as belonging to class ci = 1 if y = d�x�= ŵTx�≥ ythreshold, and otherwise as belonging
to class ci = 2.

Let us consider the original l-class data set Ttra with n-dimensional class labeled patterns. We
assume that for the class data set Ttra with n dimensions, the dimensionality of the original patterns
is smaller than a number of classes n > l. We will discuss how to transform n-dimensional
patterns from an original data set Ttra into reduced-size m-dimensional feature patterns (with
m > 1), thereby ensuring maximal interclass separability in the projected space. Later we will
show that m> l.

Here we have m linear transformations (discriminants)

yi = wT
i x� �i = 1�2� · · · �m� (63)

for all features yi of projected patterns, with wi being the transformation column vectors (for
yi discriminant). All m features of projected patterns form an m-dimensional projected feature
pattern y = �y1� y2� · · · � ym	T ∈ R

m. The linear transformation has the form

y = Wx (64)

where W is an m×n-dimensional transformation matrix, with each row wi being a transformation
vector for a corresponding feature yi �i = 1�2� · · · �m�.

One can generalize definitions for the statistical characteristics for both data sets, the original
Ttra and the projected Ttra� proj, needed to find an optimal transform matrix Ŵ.

The n×n within-class ci scatter matrix is defined as

Si =
∑

x∈xci
�x −�i��x −�i�

T � �i = 1�2� · · · � l� (65)

where �i is the mean

�i =
1
Ni

∑
x∈xci

x� i = 1�2� · · · � l (66)

150 2. Feature Extraction

for patterns within each class. The within-class scatter matrix is defined as

Sw =
l∑

i=1

Si (67)

The total scatter matrix for all patterns is defined as

St =
N∑
j=1

�xj −���xj −��T (68)

where � is the estimate of the total data mean

� = 1
N

N∑
j=1

xj = 1
N

l∑
i=1

Ni�i (69)

We can find the decomposition

St = Sw +Sb (70)

where Sw is the within-class scatter matrix, and the n×n between-class scatter matrix Sb is
defined as

Sb =
l∑

i=1

Ni��i −����i −��T (71)

Now, the projection of an n-dimensional pattern space into an �l− 1�-dimensional discriminant
space is given by �l−1� functions

yi = wT
i x� i = 1� · · · � l−1 (72)

We can also write the matrix version of above equation, assuming that y ∈ R
�l−1� and that W is

the n× �l−1� matrix containing, as rows, the transpose of the transformation weigh vectors wi:

y = WTx (73)

Projections of all the original patterns �x1� · · · �xN � will result in the set of corresponding projected
patterns �y1� · · · �yN �. One can find similar statistical characteristics (denoted by p) for the
projected data set Ttra� proj with m-dimensional projected patterns y:

�i�p = 1
Ni

∑
y ∈ yci

y� �i = 1�2� · · · � l� (74)

�p = 1
N

N∑
j=1

yj = 1
N

l∑
i=1

Ni�i�p (75)

Si�p = ∑
y ∈ yci

�y −�i�p��y −�i�p�
T � �i = 1�2� · · · � l� (76)

Sw�p =
l∑

i=1

Si�p� St�p =
N∑
j=1

�yj −�p��y
j −�p�

T (77)

It can be seen that

Sw�p = WTSwW (78)

Chapter 7 Feature Extraction and Selection Methods 151

and

Sb�p = WTSbW (79)

For multiple classes and multifeature patterns, the following scalar between-class separability
criterion may be defined:

J�W�= �Sb�p�
�Sw�p�

= �WTSbW�
�WTSwW� (80)

Here, �Sb�p� denotes a scalar representation of the between-class scatter matrix, and similarly,
�Sw�p� denotes a scalar representation of the within-class scatter matrix for projected patterns.

An optimal transformation matrix Ŵ can be found as a solution to the general eigenvalue
problem

Sbw
T
i =
iSwwT

i � �i = 1�2� · · · � n� (81)

Multiplying both sides by S−1
w gives

S−1
w Sbw

T
i =
iw

T
i � �i = 1�2� · · · � n� (82)

The solution of this problem is based on computing, and rearranging in decreased order, the
eigenvalues and corresponding eigenvectors for the matrix S−1

w Sb. Let us assume that the eigen-
values of the matrix S−1

w Sb are arranged in decreasing order
1 ≥
2 ≥ · · ·
n ≥ 0 (with
1 =
max).
Consequently, assume that the corresponding eigenvectors e1, e2, · · · , en compose the n×n matrix

E = �e1� e2� · · · � en	 (83)

with columns being eigenvectors. Then the optimal linear transformation matrix Ŵ is composed
with rows being the first m columns of matrix E:

Ŵ = ET =

⎡
⎢⎢⎢⎣

�e1�T

�e2�T

���
�em�T

⎤
⎥⎥⎥⎦ (84)

Thus, an optimal Fisher transformation matrix Ŵ (denoted also by WF) is composed with m rows
being the first m eigenvectors of the matrix S−1

w Sb.
The linear Fisher transformation faces problems when the within-class scatter matrix Sw

becomes degenerate (noninvertible). This can happen when the number of cases (objects) is
smaller than the dimension of a pattern.

2.3. Sequence of PCA and Fisher’s Linear Discriminant Projection

The PCA, with its resulting linear Karhunen-Loéve projection, provides feature extraction and
reduction that are optimal from the point of view of minimizing the reconstruction error. However,
PCA does not guarantee that selecting (reduced) principal components as a feature vector will
be adequate for classification (will have discriminatory power). Nevertheless, the projection of
high-dimensional patterns into lower-dimensional orthogonal principal-component feature vectors
might ensure better classification for some data types.

On the other hand, the linear Fisher transformation is designed optimally from the point of view
of maximal interclass separability of projected patterns. This transformation is a linear projection
of the original patterns into a reduced discriminative feature space (suitable for classification).

152 2. Feature Extraction

However, we recall that the linear Fisher transformation faces problems when the within-class
scatter matrix Sw becomes degenerate (noninvertible). This can happen when the number of cases
(objects) in a data set is smaller than the pattern dimension. One solution to this problem is first
to transform a data set with high-dimensional patterns into a lower dimensional feature space, for
example by using a KLT transform, and then to apply a discriminative linear Fisher projection to
the lower-dimensional patterns. This approach may lead to feature vectors that are more suitable
for classification (and with better discriminatory power than the original patterns).

The entire projection procedure of the original high dimensional (n-dimensional) patterns x into
the lower-dimensional (c-dimensional), more discriminative feature vectors can be decomposed
into two subsequent linear transformations:

– PCA with the resulting Karhunen-Loéve projection into the m-dimensional principal component
feature vectors y

– A linear Fisher projection of m-dimensional principal component vectors y into c-dimensional
Fisher discriminative feature vectors z

Let us consider a given limited size data set T containing N cases labeled by associated classes.
Each case �xi� citarget��i= 1�2� · · · �N � is composed of an n-dimensional real-valued pattern x ∈ R

n

and a corresponding target class citarget. The total number of classes is l.
The selection of the projection dimensions m and c can be done in the following way. One can

choose m such that for a number N of cases in a data set we have m+ l≤ N . We know that it is
impossible for m to be greater than N −1 (since there is a maximum of N −1 nonzero eigenvalues
in the Karhunen-Loéve projection). We further constrain the final dimension of the reduced PCA
feature vector to be less than the rank of the within-class scatter matrix Sw in order to make Sw

nondegenerate (invertible). However, m cannot be smaller than the number of classes l. Since
there are at most l− 1 nonzero eigenvalues of the matrix S−1

w Sb (where Sb is the between-class
scatter matrix), one can choose c ≤ l− 1 as a resulting dimension in the discriminative Fisher
feature space. This will be the final dimension of a sequence of two projections. The relations
between the dimensions of each projection are c+1 ≤ l≤m≤ N − l.

The algorithm for the Karhunen-Loéve-Fisher transformations is as follows.
Given: A data set T , containing N cases �xi, citarget� labeled by associated categorical classes (with
a total of l classes)

1. Extract from data set T only the pattern portion represented by the n×N matrix X with
n-dimensional patterns x as rows.

2. Select a dimension m for the feature vectors containing principal components (already projected
by the Karhunen-Loéve transformation), satisfying the inequalities l≤m≤ N − l.

3. Compute, for the data in matrix X, the m× n-dimensional optimal linear Karhunen-Loéve
transformation matrix WKL.

4. Transform (project) each original pattern x onto a reduced-size m-dimensional pattern y by
using the formula y = WKLx (or, for all projected patterns, by using the formula Y = XWT

KL).
5. Select a dimension c for the final reduced feature vectors z (projected by Fisher’s transfor-

mation), satisfying the inequality c+1 ≤ l.
6. Compute, for the projected data in matrix Y, the c×m-dimensional optimal linear Fisher

transformation matrix WF .
7. Transform (project) each projected pattern y from Y into the reduced-size c-dimensional pattern

z by using the formula z = WFy (or, for all projected patterns, by the formula Z = YWT
F).

Result: The m× n-dimensional optimal linear Karhunen-Loéve transformation matrix is WKL.
The c×m dimensional optimal linear Fisher’s transformation matrix is WF . The projected pattern
matrix is Z.

Chapter 7 Feature Extraction and Selection Methods 153

2.4. Singular Value Decomposition as a Method of Feature Extraction

One of the most important matrix decompositions is the Singular Value Decomposition (SVD).
SVD can be used both as a powerful method of extracting features from images and as a method
of image compression. We know from linear algebra theory that any symmetric matrix can
be transformed into a diagonal matrix by means of orthogonal transformation. Similarly, any
rectangular n×m real image represented by an n×m matrix A, where m≤ n, can be transformed
into a diagonal matrix by singular value decomposition. SVD decomposes a rectangular matrix
A ∈ R

m×n into two orthogonal matrices � r of dimension n×n and �r of dimension m×m, a
pseudodiagonal matrix � of dimension r× r, and a pseudodiagonal matrix containing singular
values of the transposed matrix. Here, � = diag��1��2� � � � ��p�, where p = min�m�n�. The real
nonnegative numbers �1 ≥ �2 ≥ · · · ≥ �p are called the singular values of matrix A.

The following equalities hold:

�T
r �r = �r�

T
r = I and �T

r �r = �r�
T
r = I (85)

Now, assume that the rank of matrix A is r ≤m. The matrices AAT and ATA are nonnegative
and symmetric and have identical eigenvalues
i. For m ≤ n, there are at most r ≤ m nonzero
eigenvalues. The SVD transform decomposes matrix A into the product of two orthogonal matrices
� of dimension n× r, and � of dimension m× r and a diagonal matrix �1/2 of dimension r× r.
The SVD of a matrix A (for example, representing an image) is given by

A = ��1/2�T =
r∑
i=1

√

i�i�

T
i � (86)

where the matrices � and � have r orthogonal columns �i ∈ R
n, �i ∈ R

m �i= 1� · · · � r�, respec-
tively (representing the orthogonal eigenvectors of AAT and ATA, respectively). The square
matrix �1/2 has diagonal entries defined by

�1/2 = diag�
√

1�

√

2� · · · �

√

r� (87)

where �i =
√

i�i= 1�2� · · · � r� are the singular values of the matrix A. Each
i, �i= 1�2� · · · � r�

is the nonzero eigenvalue of AAT (and of ATA). Since the columns of � and � are the eigenvectors
of AAT and ATA, respectively, the following equations must therefore be satisfied:

�AAT −
iIn×n��i = 0� i = 1�2� · · · � n (88)

�ATA−
iIm×m��i = 0� i = 1�2� · · · �m (89)

Note that in both cases, we assume
i = 0 if i > r. We also include additional �i such that
AT�i = 0, for i = r + 1� · · · � n, and additional �i such that A�i = 0, for i = r + 1� · · · �m. The
above equations are also defined for i = 1�2� · · · � r. In this case the SVD transform is unitary,
with unitary matrices � and �.

Having decomposed matrix A (an image) as A = ��1/2�T , and since � and � have orthogonal
columns, the singular value decomposition transform (SVD transform) of the image A is
defined as

�1/2 = �TA� (90)

The r singular values
√

i�i= 1�2� · · · � r� from the main diagonal of the matrix �1/2 represent in

condensed form the matrix A. If the matrix A represents an n×m image, then r singular values
can be considered as extracted features from an image.

154 2. Feature Extraction

Unlike the PCA, the SVD is purely a matrix processing technique and not a statistical technique.
However, SVD may relate to statistics if we consider processing a matrix related to statistical
observations. If the singular values
i are arranged in decreasing order of magnitude, i.e.,
1 >

2 > · · · >
r , the error in approximation of the image is minimized in the least squares error
sense. The nonzero diagonal singular values are unique for a given image. They can be used
as features for textural image modeling, compression, and possibly classification purposes. The
SVD features have many excellent characteristics, such as stability and rotational and translation
invariances.

The SVD transform provides a means of extraction of the most expressive features for
minimization of reconstruction error. Let us assume that, for the n×m�m≤ n� image represented
by the matrix A of rank r ≤m, we find the SVD decomposition A = ��1/2�T , corresponding to
r eigenvalues
i of AAT . Now, assume that we will represent the original image A by the reduced
number k ≤ r of features

√

i�i = 1�2� · · · � k�. Assume that eigenvalues
i�i = 1�2� · · · � r� are

arranged in decreasing order. The reconstructed n×m image Ak based on k eigenvalues of AAT

can be obtained by

Ak =
k∑
i=1

√

i�i�

T
i � k≤ r (91)

The reconstruction matrix Ak of rank k ≤ r is the best approximation, in the least squares error
sense, of the original matrix A. The reconstruction least squares error is computed by

e2
k =

n∑
i=1

m∑
j=1

�aij −ak�ij�2 (92)

or equivalently by

e2
k =

r∑
i=k+1

i (93)

We see that the least squares reconstruction error is equal to the sum of r−k trailing eigenvalues
of AAT .

Despite the expressive power of the SVD transform image features, it is difficult to say
arbitrarily how powerful the SVD features could be for the classification of images.

2.5. Independent Component Analysis

Independent component analysis (ICA) is a computational and statistical method for discovering
intrinsic independent factors in the data (sets of random variables, measurements, or signals).
ICA is an unsupervised data processing method that exploits higher-order statistical dependencies
among data. It discovers a generative model for the observed multidimensional data (given as a
database). In the ICA model, the observed data variables xi are assumed to be linear mixtures of
some unknown independent sources si (latent variables, intrinsic variables) xi = h1s1 +· · ·+hmsm.
A mixing system is assumed to be unknown.

Independent variables are assumed to be nongaussian and mutually statistically independent.
Latent variables are called the independent components or sources of the observed data. ICA tries
to estimate unknown mixing matrix and independent components representing processed data.

2.5.1. The Cocktail-party Problem
One interesting example of independent component analysis is the blind source separation problem
known as “the cocktail party.” Let us consider a room where two people are speaking simul-
taneously. Two microphones in different locations record speech signals x1�t� and x2�t�. Each

Chapter 7 Feature Extraction and Selection Methods 155

recorded signal is a weighted sum of speech signals generated by the two speakers s1�t� and s2�t�.
The mixing of speech signals can be expressed as a linear equation:

x1�t�= a11s1�t�+a12s2�t�

x2�t�= a21s1�t�+a22s2�t� (94)

where a11, a12, a21, and s22 are parameters. The estimation of two original speech signals s1�t�
and s2�t� using only the recorded signals x1�t� and x2�t� is called the cocktail-party problem.
For known parameters aij , one could solve the linear mixing equation using classical linear
algebra methods. However, the cocktail-party problem is more difficult, since the parameters aij
are unknown. Independent component analysis can be used to estimate the mixing parameters
aij based on information about their independence. This, in turn, allows us to separate the two
original source signals s1�t� and s2�t� from their recorded mixtures x1�t� and x2�t�.

Figure 7.2 shows an example of two original source signals and their linear mixtures.

2.5.2. ICA: Data and Model
ICA can be considered as an extension of Principal Component Analysis (PCA). We know
that PCA finds the linear transformation of data patterns such that transformed patterns will
have uncorrelated elements. The transformation matrix is formed with the ordered eigenvectors
(corresponding to ordered eigenvalues in descending order) of the patterns covariance matrix.
Discovered uncorrelated orthogonal principal components are optimal in the sense of minimizing
mean-squares reconstruction error, and they show the directions in which data change the most.
PCA decorrelates patterns but does not assure that uncorrelated patterns will be statistically
independent.

ICA provides data representation (through the linear transformation) based on discovered
statistically independent latent variables (independent components). The observed data signal can

0 10 20 30 40
−1

−0.5

0

0.5

1
Source s1

0 10 20 30 40
−1

−0.5

0

0.5

1
Source s2

0 10 20 30 40
−1

−0.5

0

0.5

1
Mixed (observed) signal x1

0 10 20 30 40
−1

−0.5

0

0.5

1
Mixed (observed) x2

Figure 7.2. Mixing and unmixing.

156 2. Feature Extraction

be expressed as a linear mixture of statistically independent components (with highly nongaussian
distributions). ICA is optimal in the sense of maximal statistical independence of sources.

The ICA model assumes that the n observed sensory signals xi are given as the n-dimensional
column pattern vectors x = �x1� x2� · · · � xn	T ∈ R

n. ICA is applied based on a sample from
the given domain of observed patterns. This sample is given as a set T of N pattern vectors
T = �x1�x2� · · · �xN �, which can be represented as an n×N data matrix X of measured N data
patterns xi�i = 1� · · · �N�. Columns of matrix X are composed with patterns xi. Generally, data
pattern elements are considered to be random variables.

The ICA model for the xi is given as linear mixtures of m source-independent variables sj ,

xi =
m∑
j=1

hi�jsj = hi1s1 +hi2s2 +· · ·+himsm� i = 1�2� · · · � n (95)

where xi is the observed variable, sj is the jth independent component (source signal), and
hi�j are mixing coefficients. The source variable constitutes the m-dimensional column source
vector (source pattern, independent component pattern) s = �s1� s2� · · · � sm	T ∈ R

m. Without loss
of generality, we can assume that both the observable variables and the independent components
have zero mean. The observed variables xi can always be centered by subtracting the sample
mean.

The ICA model can be presented in the matrix form

x = Hs (96)

where H ∈ R
n×m is the n×m unknown mixing matrix whose row vector �hi�1� hi�2� · · · � hi�m	

represents the mixing coefficients for observed signal xi. We can also write

x =
m∑
i=1

hisi (97)

where hi denotes the ith column of the mixing matrix H.
In statistical independent component analysis, a data model is a generative type of model. This

model expresses how the observed data are generated by a process of mixing of the independent
components si. The independent components (sources) are latent variables that are not directly
observable. The mixing matrix H is also assumed to be unknown.

The task of ICA is to estimate both the mixing matrix H and the sources s (independent
components) based on the set of observed pattern vectors x (see Figure 7.3).

The ICA model can be discovered based on the n×N data matrix X. The ICA model for the
set of patterns from matrix X can be written as

X = H S (98)

Mixing

Estimates of
sources Sources

s1

sm

s1

sm

x1

xn

Unmixing

Figure 7.3. Mixing and unmixing.

Chapter 7 Feature Extraction and Selection Methods 157

where S is the m×N matrix whose columns contain m-dimensional independent component
vectors si = �si�1� si�2� · · · � si�m	T discovered from the observation vectors. We can also write

XT = ST HT (99)

ICA seems to be an underdetermined system. However, despite some constraints and ambiguities,
one can discover independent components based on the principles of statistical independence of
sources.

The following ambiguities are associated with ICA:

– Energies (variances) of independent components cannot be discovered because a scalar multiplier
in si results in the same vector x as a scaling of the ith column in matrix H.

– It is not possible to determine the order of independent components because exchanging two
sources results in the same x as swapping the corresponding columns in H.

These ambiguities arise from the fact that both s and H are unknown. The ICA assumes that
the components si are statistically independent and have nongaussian distributions. Once the
n×m mixing matrix H has been estimated, we can compute its m×n inverse matrix (demixing,
separation matrix) B = H−1 (for m = n), or pseudo-inverse B = H+ (for m ≤ n), then the
independent component vector for the observation vector x can be computed by

s = Bx (100)

The inverse ICA model for the set of patterns T (matrix X) can be written as

S = B X (101)

where S is the m×N matrix in which columns contain m-dimensional independent component
vectors discovered from the observation vectors. We can also write

ST = XT BT (102)

The extracted independent components si are as independent as possible, but can be evaluated by
an information-theoretic cost criterion such as minimum Kulback-Leibler divergence.

ICA closely relates to the technique of blind source separation (BSS) or blind signal separation.
In BSS, source signals (i.e., unknown independent components) are extracted from the observed
patterns with very little knowledge about the mixing matrix or the statistics of the source signals.

2.5.3. Preprocessing
ICA can be preceded by necessary preprocessing, including centering and whitening, in order to
simplify operations and make them better conditioned.

Centering of x is the process of subtracting its mean vector � = E�x�:

x = x −E�x� (103)

This process makes x (and consequently also s) a zero-mean variable.
Once the mixing matrix H has been estimated for the centered data, then we can compute the

final estimation by adding the mean vector of s back to the centered estimates of s. The mean
vector of s is given by H−1�, where � is the mean that has been computed in preprocessing.

The second frequent preprocessing step in ICA (provided for centered signals) is whitening.
The whitening is a linear transformation of measured patterns x that produces decorrelated white

158 2. Feature Extraction

patterns y, possibly with reduced dimensionality compared with n. Speaking more formally,
whitening of the sensor signal vector x is a linear transformation

y = Wx so E�yyT �= Il (104)

where y ∈ R
l is the l-dimensional �l≤ n� whitened vector, W is the l×n whitening matrix and

Il is the l× l identity matrix.
First, let us assume that l = n (the dimension of whitened signal equals dimension of the

original pattern x).
Generally, the observed sensor signals xi are mutually correlated, and their covariance matrices

Rxx = E�xxT � are of full rank (not diagonal). The purpose of whitening is to transform the
observed vector x linearly to a new vector y (which is white) whose elements are uncorrelated
and whose variances equal unity. This mean that the covariance matrix of y is equal to the identity
matrix:

Ryy = E�yyT �= E�WxxTWT �= WRx xWT = Il (105)

This transformation (which is always possible) is called sphering. We can notice that the matrix
W ∈ R

l×n is not unique. Whitening also allows dimensionality reduction because it considers
only the l ≤ n largest eigenvalues and the corresponding l eigenvectors of the covariance matrix
of x. Since the covariance matrix of observed vectors x is usually symmetric positive definite,
whitening can therefore be realized using, for example, the eigenvalue decomposition of the
covariance matrix E�xxT �= Rxx ∈ R

n×n of the observed vector x:

Rxx = E�xxT �= Ex�xET
x (106)

Here, Ex ∈ R
n×n is the orthogonal matrix of eigenvectors of Rxx = E�xxT � and � is the n×n

diagonal matrix of the corresponding eigenvalues

�x = diag�
1�
2� · · · �
n� (107)

Note that E�xxT � can be estimated from the available sample x1� · · · �xN of the observed
vector x. For l= n, we consider all l= n eigenvalues
1�
2� · · · �
n (and all l= n corresponding
eigenvectors of the covariance matrix Rxx).

The whitening matrix can be computed as

W = Ex�
−1/2
x ET

x (108)

Thus, the whitening operation can be realized using the formula

y = Ex�
−1/2
x ET

x x = Wx (109)

here the matrix �−1/2 is computed as �−1/2 = diag�
−1/2
1 � · · · �
−1/2

n �. One can now find that for
whitened vectors we have E�yyT �= Il.

Recalling that y = Wx and x = H s, we can find from the above equation that

y = Ex�
−1/2
x ET

x H s = Hws (110)

We can see that whitening transforms the original mixing matrix H into a new one, Hw:

Hw = Ex�
−1/2
x ExH (111)

Chapter 7 Feature Extraction and Selection Methods 159

An important feature of whitening is producing the new mixing matrix Hw, which is orthogonal
�H−1

w = HT
w�:

E�yyT �= HwE�ssT �HT
w = HwHT

w = Il (112)

If during the whitening process l = n we consider all l = n eigenvalues
1�
2� · · · �
n (and all
l = n corresponding eigenvectors of the covariance matrix Rxx), the dimension of the matrix W
is n× n, and there is no reduction of the size of the observed transformed vector y. For the
fully dimensional matrix W ∈ R

n×n, whitening provides only decorrelation of observed vectors
and orthogonalization of the mixing matrix. We can see that whitening for l = n can reduce the
number of parameters to be estimated by ICA processing. Instead of having to estimate the n2

parameters that are the elements of the original mixing matrix H, we only need to estimate the
new, orthogonal mixing matrix Hw. In this orthogonal matrix, we have to estimate only n�n−1�/2
parameters.

Whitening allows us to reduce the dimensionality of the whitened vector by considering only
the l�l ≤ n� largest eigenvalues and the corresponding l eigenvectors of the covariance matrix
Exx = Rxx. This will result in obtaining a reduced whitening matrix W of dimension l×n and a
reduced l-dimensional whitened vector y ∈ R

l. Consequently, the dimension of the new mixing
matrix Hw will be reduced to l×n. This is similar to the dimensionality reduction of patterns in
PCA. Then the resulting dimension of the matrix W is l×n, and there is a reduction of the size
of the observed transformed vector y from n to l.

For the set of N original patterns arranged in matrix X, whose columns are patterns x, the
whitening is given by

Y = W X (113)

where Y is the N × l matrix, whose columns are constituted by prewhitened vectors y. The
dewhitening operation is given by

X̃ = DY (114)

where the dewhitening matrix is defined as D = W−1 for l = n and as D = W+ for l = n (where
W+ denotes the pseudoinverse of the rectangular matrix).

The output vector of the whitening process y can be considered as an input to the ICA algorithm:
an input to the unmixing operation (separation, finding an independent components vector).

We can see that instead of estimating the mixing matrix H, we can just estimate the orthogonal
matrix Ww, which simplifies the computation.

Whitening results in a new mixing matrix Hw (and in the ICA model y = Hws) being found,
as well as a set of N whitened patterns Y. Assume that the mixing matrix Hw and Y have been
found. Recall that y = Hws; therefore, the unmixing operation for one vector y is given by

s = Bwy (115)

Mixing Whitening

Sources
Estimates of

sources

Unmixing
s1

sm

s1

sm

x1

xn

y1

yn

Figure 7.4. Whitening and unmixing.

160 2. Feature Extraction

where the demixing matrix is computed as inverse Bw = H−1
w (for l = n) or as pseudo-inverse

B = H+
w (for l≤ n) of Hw.

For a set of N whitened patterns Y, we can compute a set of N corresponding independent
component vectors arranged as the m × N matrix S whose columns are constituted by
m-dimensional independent component vectors si = �si�1� si�2� · · · � si�m	T :

S = BwY (116)

Since Y = WX, therefore we can also write

S = BwWX (117)

Discovered independent components s are only estimates. Thus, inverse operations will also
be just estimates. Once the mixing matrix Hw has been estimated, one can estimate the original
mixing matrix H, denoted by Hesty, by applying the inverse (for l= n) (or pseudo-inverse) of the
whitening operation on the new mixing matrix (Hw = W H):

Hesty = W−1Hw (118)

An approximation (reconstruction) of the original observed vector x from a given s can be
computed as

x̃ = Hestys (119)

For the set of N independent component vectors arranged as columns of the m×N matrix S, we
can provide an estimation of the ICA model:

X̃ = HestyS (120)

Whitening can be realized using the PCA transformation. Here, the eigenvalues of the pattern
covariance matrix Rxx are arranged in decreasing order
1 ≥
2 ≥ · · · ≥
n, and the corresponding
eigenvectors, arranged in decreasing order, constitute rows of the whitening transformation
matrix W.

The dimensionality reduction of whitened patterns can be realized by considering only the first
l eigenvectors in constructing the whitening matrix.

The ICA estimates of the demixing (separation) matrix B and independent component vectors
S are based on a set of patterns X�S = BX�. Estimations can be realized using different criteria
and algorithms. In a computationally efficient algorithm, the following maximization criterion has
been used:

J�s̃�=
m∑
i=1

∣∣∣E�s̃4
i �−3�E�s̃2

i �	
2
∣∣∣ (121)

where m is number of independent and m-dimensional principal component vectors. The above
equation corresponds to Fourth-order cumulant kurtosis. Based on the gradient operation of J , the
independent component separation matrix guarantees that the independency characteristic will be
preserved:

p�s1� s2� · · · � sm�=�m
i=1pi�si	 (122)

where p�	 is the probability density function.
Let us consider two scalar-valued random variables y1 and y2. The variables y1 and y2 are

independent if information about the value of y1 does not provide any information about the

Chapter 7 Feature Extraction and Selection Methods 161

value of y2 (and vice versa). Practically, independence can be explained by probability densities.
Let us denote by p�y1� y2� the joint probability density function (pdf) of y1 and y2. Additionally,
let us denote by p1�y1� the pdf of y1 when it is considered alone:

p1�y1�=
∫
p�y1� y2�dy2 (123)

and similarly for y2. Now, one can state that y1 and y2 are independent if and only if the joint pdf
can be expressed as

p�y1� y2�= p1�y1�p2�y2� (124)

This definition can be generalized for n random variables (the joint probability density must be a
product of n pdfs).

By virtue of that definition, for two functions, h1 and h2, we have

E�h1�y1�h2�y2��= E�h1�y1��E�h2�y2�� (125)

We can write generally for n independent random variables that

p�y1� y2� · · · � yn�= p1�y1�p2�y2� � � � pn�yn� (126)

Consequently, we can write, for any functions fi,

E�f1�y1�� · · · � fn�yn��= E�f1�y1�� · · ·E�fn�yn�� (127)

It is known that uncorrelated variables are only partly independent. A weaker definition of
variable independence is uncorrelatedness. Two random variables v1 and v2 are uncorrelated, if
their covariance is zero:

E�y1y2�−E�y1�E�y2�= 0 (128)

Independent variables are uncorrelated (independency implies uncorrelatedness); however,
uncorrelated variables do not have to be independent. The majority of ICA methods provide
uncorrelated estimates of the independent components.

ICA assumes that independent components must be nongaussian. The basis for estimating the
ICA model is this assumption about nongaussianity.

The most natural measure of nongaussianity is kurtosis or the fourth-order cumulant. The
kurtosis of random variable y defined as

kurt�y�= E�y4�−3�E�y2��2 (129)

Assuming that y has unit variance, the above equation simplifies to kurt�y� = E�y4�− 3. We
see that kurtosis is a normalized version of the fourth moment E�y4�. Since for a Gaussian
variable y, the fourth moment is 3�E�y2��, therefore the kurtosis value is zero for a Gaussian
random variable. For most nongaussian random variables, kurtosis is nonzero. Random variables
that have a negative kurtosis are called subgaussian, and those with positive kurtosis are called
supergaussian.

Usually nongaussianity is measured by the absolute (or square) value of kurtosis. This measure
is equal to zero for a Gaussian variable, and greater than zero for most nongaussian random
variables.

Kurtosis has been frequently used as a measure of nongaussianity in ICA and related fields. In
practical computations, kurtosis can be estimated by using the fourth moment of the sample data.

162 2. Feature Extraction

The linearity property helps in the simplification of kurtosis:

kurt�x1 +x2�= kurt�x1�+kurt�x2�

kurt��x1�= �4kurt�x1� (130)

where x1 and x2 are two independent random variables, and � is a coefficient. Kurtosis values
can be very sensitive to outliers, and thus they may be not robust measures of nongaussianity. As
a remedy for this weakness, negentropy can be used for robust approximations of kurtosis.

A negentropy (which is based on the information-theoretic quantity of differential entropy)
can be considered as a robust measure of nongaussianity. Thus, it can be used as a performance
criterion in the optimal solution (estimation) of the ICA model.

We recall that entropy of a random variable can be considered as the degree of information
given by observation of the variable. For more unpredicted, “random” (unstructured, disarrayed)
variables, the entropy is larger. Formally, entropy is expressed as the coding length of the random
variable. Entropy Hentr for a discrete random variable Y , with ei as the possible values of Y , is
defined as

Eentr�Y�= −∑
i

P�Y = ei� logP�Y = ei� (131)

For a continuous-valued random variable y with known probability density f�y�, the entropy
(called differential entropy) Hdentr is defined as

Hdentr�y�= −
∫
f�y� logf�y� dy (132)

Information theory shows that a Gaussian variable has the largest entropy among all random
variables of equal variance. This property predisposes entropy to be a good measure of
nongaussianity. The Gaussian distribution is the “most random” (the least structured) among all
distributions.

A good measure of nongaussianity is differential entropy, called negentropy:

J�y�=Hentr�ygauss�−Hdentr�y� (133)

where ygauss is a Gaussian random variable with the same covariance matrix as y. Negentropy has
nonnegative values, and it is zero for the Gaussian distribution of y. Furthermore, negentropy is
invariant for invertible linear transformations. Computation of negentropy requires an estimation
of the probability density of y, which makes the use of pure definition impractical.

For the random variable y (zero mean with unit variance), a computationally feasible approxi-
mation of negentropy using higher-order moments can be expressed as

J�y�≈ 1
12
E�y3�2 + 1

48
kurt�y�2 (134)

The applicability of this approximation may be limited due to the nonrobustness associated
with kurtosis. Better approximations of negentropy are given by

J�y�≈
r∑
i=1

ai

[
E�Gi�y��−E�Gi����

]2
(135)

where Gi�i= 1� · · · � r� are chosen r nonquadratic functions. Here ai are positive constants and �
is a zero mean and unit variance Gaussian variable. Variable y is assumed to be of zero mean and

Chapter 7 Feature Extraction and Selection Methods 163

unit variance. The above measure can be used to test nongaussianity. It is always nonnegative
and is equal to zero if y has a Gaussian distribution.

If we use only one nonquadratic function G, the approximation results in

J�y�≈
[
E�G�y��−E�G����

]2
(136)

for practically any nonquadratic function G. For G�y�= y4, one can obtain exactly a kurtosis-based
approximation. The following choices of G are recommended:

G1�u�= 1
a1

log�cosh a1u�� G2�u�= − exp�−u2/2� (137)

where 1 ≤ a1 ≤ 2 is a constant.
Measures of nongaussianity can be used as performance criteria for ICA estimation.
Two fundamental applications of ICA are blind source separation and feature extraction.
In blind source separation, the observed values of x correspond to the realization of an

m-dimensional discrete-time signal x�t�, �t = 1�2� · · · �. The components si�t� are called source
signals, which are usually original, uncorrupted signals or noise sources. Frequently such sources
are statistically independent from each other, and thus the signals can be recovered from linear
mixtures xi by finding a transformation in which the transformed signals are as independent as
possible, as in ICA.

In feature extraction based on ICA, the ithsi independent component represents the ith feature
in the observed data pattern vector x.

2.5.4. Feature Extraction using ICA
In feature extraction, which is based on independent component analysis, one can consider an ith

independent component si as the ith feature of the recognized object represented by the observed
pattern x. The feature pattern can be formed from m independent components of the observed
data pattern. A procedure of pattern formation using ICA follows:

1. Extract n-element original feature patterns x from the recognized objects. Compose the original
data set T containing N cases �xTi � ci� that contain patterns and the corresponding class ci.
The original patterns are represented as the n×N pattern matrix X (composed with patterns as
columns) and the corresponding categorical classes (represented as column c).

2. Subtract a mean vector from each pattern.
3. Perform linear feature extraction by projection (and reduction) of the original patterns x from

matrix X through ICA.

(a) Whiten the data set X, including dimensionality reduction. Obtain l-element decorrelated
whitened patterns xw gathered in an l×N matrix Xw.

(b) Estimate (for whitened patterns) the m×n unmixing matrix B.
(c) Estimate m independent components forming an m-element independent component pattern

xs for each pattern xw. This result can be realized through projections of patterns xw into an
m-element pattern xs (in independent component space). This projection can be realized using
the discovered unmixing matrix B. The independent component patterns will have decorrelated
and independent elements.

(d) Form the final m×N pattern set Xs with N ICA patterns xs as columns.

4. Construct the final class-labeled data set as the matrix Xsf which is formed by adding class
column vector c to matrix Xs.

164 2. Feature Extraction

ICA does not guarantee that the independent components selected first, as a feature vector, will
be the most relevant for classification. In contrast to PCA, ICA does not provide an intrinsic order
for the representation features of a recognized object (for example, an image). Thus, one cannot
reduce an ICA pattern just by removing its trailing elements (which is possible for PCA patterns).
Selecting features from independent components is possible through the application of rough
set theory (see Chapter 5). Specifically, defined in rough sets, the computation of a reduct can
be used to select some independent components-based features (attributes) constituting a reduct.
These reduct-based independent component features will describe all concepts in a data set. The
rough set method is used for finding reducts from discretized ICA patterns. The final pattern is
formed from ICA patterns based on the selected reduct.

2.6. Vector Quantization and Compression

Data compression is particularly important for images, time series and speech, where the amount of
data to be handled and stored is very large. When data sets contain a lot of redundant information,
or when specific applications do not require high precision of data representation, then lossy
compression might be a viable option among techniques of data storing or transmitting. Vector
quantization is a powerful technique of lossy data representation (approximation) that is widely
used in data compression and in classification.

Vector quantization(VQ) is a technique of representing (encoding) input data patterns by
using a smaller finite set of codevectors (template vectors, reference vectors) that is a good
approximation of the input pattern space. When an input data pattern is processed, it can be
encoded (approximated) by the nearest codevector.

The objective of vector quantization for a given training data set T is to design (discover) the
optimal codebook, containing a predetermined number of reference code vectors, which guarantee
minimization of the chosen distortion metric for all encoded patterns from the data set. Each code
vector in the codebook has an associated integer index used for referencing.

Once the optimal set of codevectors in the codebook has been computed, then it can be used
for the encoding and decoding of input patterns (for example in data transmission). This process
may result in substantial data compression.

Vector quantization belongs to unsupervised learning techniques. It uses an unlabeled training
set in the design phase. The fundamental role played by unsupervised quantization involves
distortion measures. Vector quantization approximates data and naturally will cause some infor-
mation loss. One distortion metric is used to measure a distance (similarity) between an input
pattern x and the codevector w. It can also be used for the selection, for a given x, of the nearest
codevector wj from a codebook. The other metric is used to determine the average distortion
measure for all training patterns and a given codebook. This metric measures the quality of the
entire codebook with respect to a given data set T , and it is instrumental in the design of an optimal
(“best”) codebook. The optimal codebook depends on the distortion metrics used. Examples of
distortion metrics are discussed in the next sections.

The design process for vector quantization comprises the discovery of an optimal set of
codevectors (a codebook) that best approximates a given training set of patterns. An optimal
vector quantizer yields the minimum of the average distortion for a given data set. The processing
of an input pattern using VQ relates to finding the reference vector that is closest to a pattern,
according to the selected similarity metric.

2.6.1. Vector Quantization as a Clustering Process
Vector quantization, which is based on the optimal design of a codebook, can be seen as
clustering (see Chapter 9). It corresponds to a partition of the input pattern space into encoding
regions/clusters. Here, for each discovered cluster (encoding region), one can find the vector that

Chapter 7 Feature Extraction and Selection Methods 165

is a representation of the cluster. For example, the mean vector of a cluster (a cluster centroid) can
be selected as a representation of the entire cluster. Such a centroid vector can be considered as the
codevector associated with a given cluster. This codevector can be added as one entry (codevector)
in the codebook. A set of all indexed cluster centroids is treated as the codebook of codevectors.
A codebook represents, in an approximate way, a given training set. Based on a given codebook,
a training set of patterns, and selected distortion measures, one can find the optimal partition of
the input pattern space into a number of encoding regions (clusters) with codevectors representing
entire regions. For an optimal partition and an optimal codebook, the average distortion measure
as an optimization criterion will be minimal. This means that a distortion measure between any
input pattern x and its quantized representation as codevector w is minimal.

The procedure of deciding to which cluster an input pattern belongs can be realized by using
selected distortion measures between a pattern and codevector. Here, a specific role is played by
the Euclidean distance (or the squared Euclidean distance)

d�x�y�=� x −y �2=
√

n∑
i=1

�xi −yi�
2 (138)

The optimal partition, which uses the Euclidean distance as a similarity measure (a distortion
measure between x and w) in order to find the closest codevector to the input pattern, produces a
special vector quantizer called the Voronoi quantizer. The Voronoi quantizer partitions the input
pattern space into Voronoi cells (clusters, encoding regions). One Voronoi cell is represented by
one corresponding codevector in a codebook. A cell contains all those input patterns x that are
closer to the codevector wj (in the sense of Euclidean distance) than to any other codevector. The
data set patterns that fall inside a Voronoi cell will be assigned to one corresponding codevector.

This partition of the input pattern space is called Voronoi tessellation. The “rigid” bound-
aries between Voronoi cells are perpendicular bisector planes of lines that join codevectors in
neighboring cells. Topologically, the Voronoi partition resembles a honeycomb.

A codebook contains all the codevectors representing a data set. The set of all encoding regions
is called the partition of the input pattern space.

2.6.2. Vector Quantization – Design and Processing
Design of an optimal codebook is a minimization process. Let us consider a given data set
T (training set) containing N n-dimensional continuous-valued input patterns x ∈ R

n. Vector
quantization is the process of categorization of input patterns x into M distinct encoding regions
(cells, clusters) C1�C2� · · · �CM . Each encoding region Ci is represented by one n-dimensional
real-valued codevector wi ∈ R

n�i = 1�2� · · · �M�. A set of codevectors will be denoted by
W = �w1�w2� · · · �wM� or, in M×n matrix form, as

W =

⎡
⎢⎢⎢⎣

wT
1

wT
2
���

wT
M

⎤
⎥⎥⎥⎦ (139)

The indexed set of M codevectors wi �i = 1�2� · · · �M� is called the codebook Wc = ��i�wi��
M
1

of the quantization. Table 7.3 shows the form of the codebook.
The vector quantization for a given data set contains two steps:

1. Designing the optimal (i.e., having minimum average distortion) codebook Wc = ��i� wi��
M
i=1,

which is an indexed set of M reference codevectors representing M entirely distinct cells in
the input pattern space. A codebook of codevectors is designed for a given training set T of
n-dimensional patterns x ∈ R

n.

166 2. Feature Extraction

Table 7.3. The code book.

Index Reference codevector w

1 w1
2 w2
���

���
M wM

2. Processing input patterns: encoding/decoding.

Vector quantization can also be seen as a combination of two functions: vector encoding and
vector decoding. During the encoding process, every input pattern vector x is compared with each
of theM codevectors in a codebook, according to some distortion measure d�x�wi��i=1�2� � � � �M�.
The codevector wj that yields the minimum distortion is selected as a quantized representation
of the input pattern, and the index j associated with this codevector is generated for transmission
or storage. In other words, the representative codevector for the pattern x (an encoding vector)
is determined to be the closest codevector wj in the sense of a given pattern distortion metric
(for example, the Euclidean distance). This codevector is a unique representation of all input
patterns from the encoding region represented by the considered codevector.

If indexed codevectors (a codebook) are known in advance, then instead of representing the
pattern x by the whole corresponding codevector wj , one can provide only the the codevector
index j (the encoding region number j into which the pattern falls). This encoding region number
can then be stored or transmitted instead of the pattern (as the compressed representation of the
pattern).

In the decoding phase, a decoder has a copy of the codebook and uses the received index to
find the corresponding codeword. The decoder then outputs the codevector wj as a substitute for
the original vector x. Figure 7.5 shows the basic quantization model.

In other words, determining an encoding region for a given input pattern x is provided by
choosing the “winning” codebook vector wj , representing the jth encoding region Cj , which has
the smallest value of the distortion metric used to determine the distance of the input pattern x to
the codevector w:

winning jth codevector � wj min
i=1�2�··· �M

d�x�wi� (140)

The pattern x thus belongs to the same region Cj as the “winning” closest codebook vector wj .
One of the most important applications of competitive learning is data compression through

vector quantization. The idea of applying competitive learning for vector quantization, which is
based on a winner selection determined by the distortion (distance) measure, is quite natural and
straightforward.

Vector quantization is understood as the process of dividing the original input pattern space into
a number of distinct regions (Voronoi cells). To each region, a codevector wi �i = 1�2� · · · �M�)

wj

VQ(x) wj

Original
vector

(index

Decoder

Codebook WcTransmission
channel

ReconstructionSignal

Encoder

x

Codebook Wc

Codevector xj and index j

j (index)

(xj)
wj estimates of x

x
~

j

codevector)

Figure 7.5. Encoding and decoding.

Chapter 7 Feature Extraction and Selection Methods 167

Figure 7.6. Voronoi cells and Voronoi tesselation.

is assigned. This codevector represents all the patterns from the entire region (cell), as indicated
in Figure 7.6.

In other words, a vector quantization maps N n-dimensional patterns x from the input pattern
space R

n into a finite set of M codevectors wi ∈ R
n belonging to a codebook. The nearest-

neighbors region (Voronoi cell) is associated with each wi codevector. A region is defined as

Ci = �x ∈ R
n � d�x�wi�≤ d�x�wj�� for all i �= j� (141)

The set of Voronoi regions partitions the entire space R
n such that

⋃
i

Ci = Rn and Ci ∩Cj = ∅ for i �= j (142)

Vector quantization is a technique that partitions the input pattern space into M distinct regions
(cells), each with a codevector representing the entire region. Vector quantization maps any
input pattern vector x ∈ R

n from an n-dimensional input pattern space R
n into a finite set of

M n-dimensional codevectors wi ∈ R
n �i = 1�2� · · · �M�:

VQ � x ∈ R
n →W (143)

where W = �wi�
M
1 is the set of M codevectors. The set of indexed codevectors wc = �i�wi�

M
1

constitutes a codebook of vector quantization.
Since the codebook has M entries, the quantity R, called the rate of the quantizer, is defined as

R= log2 M (144)

measured in bits per input pattern vector. Since the input pattern has n components, it follows that

r = R

n
(145)

is the rate in bits per vector component.
In the topological interpretation, the knowledge of the mapping function VQ determines a

partition of input patterns into M subsets (cells):

Ci = �x ∈ R
n � VQ�x�= wi�� �i = 1� · · · �M� (146)

A cell Ci in R
n is associated with each codevector wi of the vector quantizer, that is,

Ci = �x ∈ R
n � VQ�x� = wi�. It is sometime called the inverse image of a codevector wi under

mapping VQ and is denoted by Ci = VQ−1�wi�.

168 2. Feature Extraction

From the definition of a cell, it follows that

⋃
i

Ci = R
n and Ci ∩Cj = ∅ for i �= j (147)

which indicates that the cells form a partition of R
n.

When the input pattern x is quantized and represented as a codevector w �w = VQ�x��, a
quantization error results and a distortion measure can be defined between x and w. As with the
measurement of a distance between two vectors (see Appendix A), several distortion measures have
been proposed for vector quantization algorithms, including Euclidean distance, the Minkowski
norm, the weighted-squares distortion

d�x�y�=
n∑
i=1

ai�xi −yi�2� ai ≥ 0 (148)

the Mahalanobis distortion, and the general quadratic distortion, defined as

d�x�y�= �x −y� B�x −y�T =
n∑
i=1

n∑
j=1

bij �xi −yi��xj −yj� (149)

where B is an n×n positive definite symmetric matrix.
These distortion measures are computed for two vectors, and they depend on the error vector

�x −y�. They are called difference distortion measures.
It is also possible to define the following average distortion measure for a given set T = �xi�

N
i=1

of N input pattern vectors, a given set of M codevectors W = �w1�w2� · · · �wM�, and a given
partition P�W� of the input vector space on cells:

da = da
(
W�P�W�

)= 1
N

N∑
j=1

min
w∈W

d�xj�w� (150)

where d�xj�w� is the distortion measure for two vectors.
One can also define an average distortion measure as

Da = 1
N

N∑
i=1

d
(
xi� VQ�xi�

)= 1
N

N∑
i=1

� xi −VQ�xi� �2
2 (151)

or as

Da = 1
M
Di (152)

where Di is the total distortion for cell Ci:

Di =
∑
x∈Ci

d�x�wi� (153)

where VQ�xi� denotes a mapping of the input pattern xi into a codevector w = VQ�xi�.
The goal of designing an optimal quantizer is to find a codebook of M codevectors such that

the average distortion measure in encoding all patterns from the training set is minimal. To design
an M-level codebook, the n-dimensional input pattern space is partitioned into M distinct regions
or cells �Ci � i = 1�2� · · · �M� and a codevector wi is associated with each cell Ci. Figure 7.7
shows the partition.

Chapter 7 Feature Extraction and Selection Methods 169

Figure 7.7. Partition of a pattern space into encoding regions (cells).

The quantizer then assigns the wi if an input vector x belongs to Ci. Two necessary conditions
(criteria) must be fulfilled in order to obtain an optimal codebook: the nearest neighbor condition
and the centroid condition.

The first condition is that the partition of the input pattern space should be obtained by using
a minimum-distortion or nearest-neighbor selection rule:

VQ�x�= wi iff d�x�wi�≤ d�x�wj�� j �= i� 1 ≤ j ≤M (154)

Here, the quantizer selects for x the codevector wj that results in the minimum distortion with
respect to x. In other words, a cell Ci should consist of all patterns that are closer to wi than any
of the other codevectors:

�x ∈ T � � x −wi �2
2 ≤ � x −wj �2

2�� j = 1� · · ·M (155)

The nearest neighbor conditions permits the realization of an optimal partition.
The second necessary condition to achieve an optimal codebook is that each codevector wi is

chosen to minimize the average distortion in cell Ci. That is, for each cell there exists a minimum
distortion codevector for which

E
[
d�x�w� � x ∈ Ci

]= min
j

(
E
[
d�x�wj�

] � x ∈ Ci

)
(156)

where E denotes the expectation with respect to the underlying probability distribution

E
[
d�x�w� � x ∈ Ci

]=
∫

x∈Ci
d�x�w� p�x� dx (157)

The codevector wi is called the centroid of the cell Ci:

wi = cent�Ci� (158)

One can also say that codevector wi should be the average of all those training patterns that are
in the encoding region (a cell):

wi =
∑

x∈Ci x∑
x∈Ci 1

� i = 1� · · · �M (159)

Computing the centroid for a particular region or cell depends mainly on the definition of the
distortion measure. The cells are known as nearest neighbor cells or Voronoi cells. Generally,
the design of an optimal codebook requires knowledge of the probability distribution of the

170 2. Feature Extraction

source pattern vectors. However, in most cases the distribution is not known and the codebook
determination usually involves training from examples. Usually, a set of N training vectors
T = �xj�

N
j=1 is given that is representative of the data the quantizer is more likely to encounter in

practice.
We briefly describe two vector quantization (clustering) algorithms:

– the generalized Lloyd algorithm (LBG centroid algorithm), and
– the iterative cluster splitting algorithm.

The idea of the LBG centroid algorithm is as follows. The algorithm starts with an initial
codebook selected. For the given codebook (with its set of codevectors) the minimum distortion is
iteratively improved until a local minimum is reached. In each iteration, a partition is realized, and
then for a given partition the optimal set of codevectors is found. This can be done in two steps.
In the first step, for each iteration, each pattern is mapped to the nearest codevector (according to
the defined distortion measure between the two patterns) in the current codebook. In the second
step, all the codevectors of the code book are recalculated as the centroids of new encoding
regions of the new partitions. The algorithm continues as long as improvement is achieved. For
a given set of codevectors and a data set of patterns, the partition of the input pattern space that
minimizes the average distortion measure is achieved by mapping each pattern xi �i = 1� · · · �N�
to the codevector wj �j = 1� · · · �M�, for which the distortion d�xi�wj� is the minimum over
all wj . The centroid vector quantization clustering algorithm (which uses a squared Euclidean
distortion metric) can be described as follows:

Algorithm:
Given: A training set T = �xi�

N
1 of N unlabeled pattern vectors, given number M of codebook

reference vectors (quantization levels), and distortion measure threshold � ≥ 0.

1. Select randomly an initial setting of the M-level codebook containing a set of M codevectors
Ŵ 0 = �ŵ0

i �
M
i=1.

2. Select a distortion measure threshold � ≥ 0.
3. Set the previous average distortion measure d0

a = 0.
4. Set the iteration step number k= 1.
5. Given Ŵ k = �ŵk

i �
M
i=1, find the minimum distortion partition P�Ŵ k�= �Ci�

M
i=1 of the training set

patterns (based on the nearest-neighbor condition)

xj ∈ Ci if d�xj�wi� ≤ d�xj�wl� for all l= 1�2� · · · �M (160)

where d�x�w� is considered to be the distortion measure. If the distortion measures are the
same for a few codevectors, then the assigning of patterns to cells is random.

6. Compute the average distortion for a given codebook of codevectors Ŵ k and partition P�Wk�
at step k:

dka = dka
[
Ŵ k�P�Ŵ k�

]= 1
N

N∑
i=1

d
(
xi� VQ�xi�

)= 1
N

N∑
i=1

∥∥xi −VQ�xi�
∥∥2

2
(161)

7. If the average distortion measure dka at iteration step k relative to dk−1
a is below a certain

threshold
∣∣dk−1

a −dka
∣∣

dka
≤ � (162)

then stop the iteration, with Ŵ k being the final codebook of the codevector set. Otherwise,
proceed to the next step.

Chapter 7 Feature Extraction and Selection Methods 171

8. Find the optimal codebook (codevectors) (based on the centroid condition) Ŵ k+1
(
P�Ŵ k�

) =
�ŵk+1�Ci� � i = 1�2� · · · �M� for P�Ŵ k�. For the squared-error distortion measure, ŵk+1�Ci�
is the Euclidean center of gravity (or centroid) for a cell Ci and given by the equation

ŵk+1�Ci�= 1
�Ci�

∑
xj∈Ci

xj (163)

Here ŵk+1�Ci� is averaged in a componentwise manner, where �Ci� denotes the number of
training vectors in the cell Ci. If �Ci� = 0, set ŵk+1�Ci�= wk

i (the previous codevector).

Set k= k+1. Continue the iteration from step 5.

In the above algorithm, the initial codebook vector set Ŵ 0 must be guessed. Frequently, the M
vectors randomly chosen from the training set T are selected as initial values for the codevectors.

Alternatively, an initial codebook vector set can be obtained by computing the centroid of the
training set vectors and dividing this vector into two vectors. Each of these two vectors is then
split into two new codevectors, and this process continues until the initial M level codebook
vector set has been created. Each vector wi is split by adding a fixed perturbation vector �, thereby
producing two new codevectors wi + � and wi − �.

The top-down cluster (region) splitting algorithm starts with a single cluster including all
patterns of the training set T , with one codevector w1 computed as a mean of all patterns belonging
to the first cluster. Then new clusters are created (one at a time) by splitting the existing clusters.
This can be done by “splitting” the codevector w1 into two close codevectors w1 +� and w1 −�,
where � is an n-dimensional vector with small values � of all elements. Such new codevectors are
considered in the following iterations. For a given codevectors, a two-step procedure is realized:
finding the minimum average distortion partitions, and finding the optimal set of code vectors
(codebook) for a given partition. The cluster splitting process continues until the required number
of clusters is reached.

The performance of VQ is frequently measured as the signal-to-distortion ratio (SDR):

SDR= 10 log10

�2

Daverage

�db	 (164)

computed in dB. Here �2 is the source variance and Daverage is the average squared-error
distortion. Larger values correspond to better performance.

Example: We provided vector quantization of the black and white version of the Halinka image
(Figure 7.8(a)) composed with I × J = 720 × 680 pixels of 256 gray levels. All gray levels are
represented by an integer value included in [0, 255].

The image shown in Figure 7.8(a) was divided into N = I/�nb�×J/�nb�= 180×170 = 30600
blocks, each of nb ×nb = 4 × 4 pixels, where nb = 4 is the number of rows in a block (equal
to the number of columns). Each block has been unfolded (row by row) into the resulting
n = nb ×nb = 4 × 4 = 16-element block vector xb (a column vector). A sequence of n-element
�n = 16� block vectors, constituted with a sequence of considered image blocks (from left to
right, row by row) forms the unsupervised training set Ttra containing N = 30600 block vectors.
The number of codevectors in the codebook was set to M = 64.

For the training set Ttra and a codebook size equal to M = 64, the optimal codebook was found
using the generalized Lloyd algorithm. Figure 7.8(b) shows the reconstructed black and white
version of the Halinka image.

172 2. Feature Extraction

(a) (b)

Figure 7.8. Original (a) and reconstructed (b) Halinka images.

In image compression, the so-called peak signal-to-noise ratio (PSNR) is frequently used to
evaluate the quality of the resulting images after the quantization process. The PSNR is defined as

PSNR= 10 log10

MAX2

1
IJ

∑i=I−1
i=0

∑i=J−1
j=0

(
f�i� j�− f̃ �i� j�

)2 (165)

where f�i� j� and f̃ �i� j� are, respectively, the gray level of the original image and of the recon-
structed one and I and J are the number of rows and columns of an image. Here, MAX denotes
the maximum value of an image intensity. For example, for an 8-bit image, MAX = 28 −1 = 255.

2.6.3. Complexity Issues
The computational and storage costs impose a very real and practical limitation on the applicability
of vector quantization. The computational cost refers to the amount of computation needed per
unit of time, and the storage cost refers to the memory size required to store the codebook for a
particular application.

With a basic vector quantizer designed, each n-dimensional input vector x can be encoded by
computing the distortion measure between the vector x and each of the codebook codevectors,
keeping track of the one with minimum distortion and continuing until every codevector has
been tested. For a quantizer with a codebook of size M , the number of distortion computations
is M , and for a training set containing N patterns, each distortion computation requires N
multiply-add operations for the squared-error distortion (other distortion measures can have higher
computational demands). Therefore, the computational cost � for encoding each input vector x is

�=M N (166)

If we encode each codevector into R = log2 M bits, since R = rn (where r = R
n

is a rate in bits
per vector component) then

�= N2rn (167)

The computational cost grows exponentially with the number of pattern dimensions and the
number of bits per dimension. The storage cost can be measured assuming one storage location
per vector component

= n2rn (168)

Again, the storage cost grows exponentially in the number of dimensions and the number of bits
per dimension.

Chapter 7 Feature Extraction and Selection Methods 173

2.7. Learning Vector Quantization

Kohonen proposed the so-called Learning Vector quantization (LVQ) algorithm (and its neural
network implementation), which combines supervised learning and vector quantization. The
algorithm guarantees the performance of vector quantization, but in addition uses the idea of
competitive learning to select the winning neuron, whose weights will be adjusted and punish-
reward learning utilized for the direction of weight adjustment. In a nutshell, assuming that
Euclidean distance is used for pattern similarity measures, LVQ provides fine tuning (moving)
of the rigid boundaries of the Voronoi tessellation regions. This technique utilizes additional
information about regions, which comes from the class labels associated with data set patterns.
The learning vector quantization algorithm assumes that the training set T = ��xi� Ci��

N
i=1 of

N n-element input pattern vectors x ∈ R
n labeled by corresponding l categorical classes Ci is

available for supervised learning. Generally, it is also assumed that the probability of classes is
known as well as the probability density of patterns p�x�.

From this perspective, the LVQ algorithm can be seen as a classifier design based on a given
supervised training set. However, the LVQ algorithm with Kohonen learning also provides vector
quantization of input patterns from the population represented by a given, representative, labeled
training set. This means that the LVQ algorithm guarantees the mapping of input patterns from
the input pattern space R

n into one of the reference code vectors from the limited-size codebook(
Wc = ��i� wi��

M
i=1

)
. This is an approximation of input pattern vectors by their quantized values.

In the LVQ algorithm, for the purpose of precise vector quantization approximation, usually
several reference code vectors of the codebook are assigned to represent the labeling patterns of
each class Ci from the training set

WCi
= �wj� for all j� wj representing class Ci (169)

The pattern x is considered to belong to the same class to which the nearest reference code vector
from the codebook wj belongs. For vector x and for the Euclidean distance metric, we can write

jth nearest reference vector wj min
i=1�2�··· �M

��x −wi�� (170)

Kohonen proposed a competitive supervised learning algorithm that approximately minimizes
misclassification errors of vector quantization, stated as the nearest-neighbors classification.

During proposed supervised learning with a punish-reward idea of weights adjustment, the
optimal reference vectors wi �i = 1�2� · · · �M� of the codebook may be found as the asymptotic
values of the following competitive learning technique.

First, for a given input pattern x belonging to the class Cl and a previous value �wk
j �

M
i=1 of the

codebook reference code vectors, the code vector that is nearest to the input pattern x is selected
as the winner of the competition:

jth nearest code vector wj min
i=1�2�··· �M

��x −wi�� (171)

This reference code vector belongs to a certain class Cr . Then only that jth code vector wj nearest
to x will be adjusted in the following way:

wk+1
j =wk

j +��k��x −wj	 if Cl = Cr

wk+1
j =wk

j −��k��x −wj	 if Cl �= Cr

wk+1
i = wk

i if i �= j (172)

where 0 < ��k� < 1 is the learning rate. The above weights adjustment is based on the “winner-
take-all” and the punish-reward idea. Only the reference code vector wj nearest to the pattern x

174 2. Feature Extraction

is adjusted. If the class Cr of the reference code vector wj is the same as the class Cl of the input
pattern x, then this winning reference code vector is rewarded by a positive adjustment in the
direction of improving the match with vector x:

wk+1
j = wk

j +��k��x −wj	 (173)

If the class of the winning reference code vector and the class of the input pattern are different,
than the reference code vector is punished:

wk+1
j = wk

j −��k��x −wj	 (174)

Reference code vectors other than the jth reference code vectors nearest to the pattern x remain
unchanged. This learning scheme for vector quantization, which adjusts only the reference vector
nearest to x, is called LVQ1.

The main reason for the punish-reward learning scheme is to minimize the number of misclas-
sifications. This scheme also ensures that the reference code vectors will be pulled away from the
pattern overlap areas when misclassifications persist.

Vector quantization through supervised learning allows more fine tuning of the decision surfaces
between classes (the borders between Voronoi cells represented by reference vectors). This
outcome is understandable in the light of the idea of pattern classification, where the decision
surface between pattern classes is most important and not the precision of the pattern distribution
within classes.

In the above learning rule, an ��k� is a learning rate. The learning rate values are not critical
for learning (as long as the number of learning steps is sufficiently large). The value may be
set as a small constant or as a decreasing function with learning time (with a starting value for
examples smaller than 0�1). Frequently a linear decreasing function of learning time is chosen
−��k�= �max

(
1− k

Nl

)
− where Nl is the maximal number of learning steps.

2.7.1. Learning Vector Quantization Neural Network
The feedforward static competitive learning vector quantization neural network LVQ1 consists
of an input and an output layer fully connected through weights (see Figure 7.9). The weightless
input layer is connected via weights with the output layer. The weightless n neurons of the input
layer receive only the n-dimensional input pattern x ∈ R

n. The number of input layer neurons
equals the size of the input pattern x ∈ R

n. The subsequent output layer with M neurons is fully
connected with the input layer neurons via weights. The number of output layer neurons is equal

x1

xn
wmn

mth xsm

. .
.

...
.

class 1

class 2

class l

w11 y1

y2

ym

yi

yj

()⋅fn

x2

w21

wi1

wj1

wm1

2nd

1st

ith

jth

xs1

xs2

xsi

xsj

()⋅fn

..

Figure 7.9. LVQ neural network.

Chapter 7 Feature Extraction and Selection Methods 175

to the size (or number of reference code vectors) of codebook M . The connection weights are
described by the n×M weights matrix

W = �wi	� i = 1�2� · · · �M (175)

where wi = �wi1�wi2� · · · �wiM	 gives the vector weights of the ith output neuron. The weights
vectors wi of each ith output neuron represent the reference code vector of the codebook. Each
output neuron represents a certain class of the training set.

The type of output activation function of the output neurons is not critically important and
may be assumed to be an identity function y = fh�xs� = xs, where xs is the intermediate value
of an output neuron. Each ith �i = 1�2� · · · �M� output neuron, with value yi, has a known class
Cyi

∈ �C1�C2� · · · �Cl� that represents it.
Several output neurons i� j� · · · � s representing the distinct reference vectors �wi�wj� · · · �ws�

may be assigned to the same class Cg. Generally, we have M ≥ M in order to provide a better
approximation of the input pattern space by reference vectors.

The processing model for immediate outputs xs and outputs y of the output neurons can be
written as

xs = Wx

y = F�xs� (176)

or written in the scalar form

xsi = wix =
n∑
l=1

wilxl� i = 1�2� � � � �M

yi = fh�xsi�= xsi i = 1�2� · · · �M (177)

where W is the M×n weights matrix.

2.7.2. Learning Algorithm for LVQ1 Neural Network
Vector quantization by the LVQ1 neural network requires

– Supervised learning from the class-labeled patterns of training set T . This learning is in the
design of the optimal codebook Wc = ��i� w��Mi=1 composed of reference code vectors indexed
by i, that is, W = �wi�

M
i=1, which are the asymptotic values of the learned vector weights of the

output neurons.
– Processing of the input patterns by the already-designed neural network. For a given input

pattern x, the most responsive output neurons will be declared as the winners and will denote
the reference vector, which will represent input pattern.

Given: The training set T = �xi�Cxi
�Li=1 containing N class-labeled patterns x ∈ R

n, the number

of learning steps Nl, and the learning rate function ��k� (for example, ��k�= �max

(
1− k

Nl

)
).

1. Select randomly M input patterns from the training set T and assign them as the starting values
of the codebook reference vectors

w0
i = xi� i = 1�2� · · · �M (178)

The remaining patterns of the training sets will be used for learning.
2. Present a randomly selected input pattern x to the network. This pattern will represent a known

class Cl.

176 2. Feature Extraction

3. Adjust the learning rate ��k� for the kth learning steps.
4. Select the jth winning neuron. The winner is the neuron whose weights vector (representing

the current codebook reference vector wj = xc�j) best matches (is nearest) the input vector xi
according to the minimal Euclidean distance:

jth nearest reference vector wj min
i=1�2�����M

��x −wi�� (179)

This reference vector wj belongs to a certain class Cr .
5. Adjust only the jth winning neuron’s weights wj , related to the jth reference vector of the

codebook, by an amount depending on whether the class Cl of input pattern x is in the same
as the class Cr of the jth winning neuron:

(a)

wk+1
j = wk

j +��k��x −wj	 if Cl = Cr

wk+1
j = wk

j −��k��x −wj	 if Cl �= Cr

(b)

wk+1
i = wk

i if i �= j (180)

where 0 < ��k� < 1 is the learning rate. The above weights adjustments is based on the
“Winner-Take-All” and punish-reward ideas.

6. Test stopping condition. This condition may be specified by reaching a fixed maximal number
of iterations k ≤ Nl or by the learning rate reaching a minimal value �min. If the stopping
condition is not met, then continue iterations from step 2. If the stopping condition is satisfied,
stop the iterations.

Result: A weight vector wi�i= 1�2� · · · �M� that constitutes the reference vectors of the codebook.
Modification of the learning rate is frequently realized after all the patterns from the training

sets have been learned (after learning of one epoch).
During the learning computation of the network output neurons, intermediate outputs xsi

�i = 1�2� · · · �M� are not required.
The inputs are processed using the following algorithm.

Given: The network architecture with an n-neuron input layer fully connected via weights with
M neurons of the output layer. The weights vectors of the output neurons represent M stored
reference code vectors of the codebook. The learned weights matrix W = �wi	�i = 1�2� · · · �M�
whose vectors wi represent the reference vectors of a codebook is also given.

For the given input pattern x, the LVQ1 neural network provides the following forward
computations.

1. The input-layer neurons receive the input pattern x.
2. The intermediate values xs of the output neurons are computed by the matrix equations

xs = Wx (181)

where

xsi =
n∑

j=1

wijxj� i = 1�2� · · · �M (182)

Chapter 7 Feature Extraction and Selection Methods 177

3. The final values of the output neurons are computed through the output activation functions fh

yi = fh�xsi� (183)

or in the vector form

y = Fh�xs� (184)

where Fh�·� = �fh�xs1�� fh�xs2�� · · · � fh�xsM�	T is the M-dimensional output activation vector
function.

As a result of processing, many output neurons may have nonzero values, depending on the
distance from the input pattern to the neuron’s weight vector. However, an output neuron may
have the dominating value. This neuron can be considered as indicating the input vector class
(the cluster to which the input vector belong). To specify the reference vector best representing
an input vector, one can identify the neuron with the most responsive output value:

jth code vector yj = max
i=1�2�����M

yi� (185)

2.7.3. Practical Design Issues for LVQ Vector Quantizers
There is no existing rigorous proven design method for optimal LVQ vector quantizers. Good
design still relies on heuristics and simulation-based findings. The goal of LVQ-type vector
quantization is not to best approximate the probability density function of the class pattern
samples but to directly define between-class borders based on the nearest-neighbor technique. The
performance and accuracy of an LVQ quantizer can be evaluated based on its ability to perform
accurate and generalized classification or to quantize input patterns for reduction purposes with
minimal distortion. The accuracy of an LVQ may depend in the design phase on the following:

– An optimal number of reference vectors assigned to each class defined by training set
– Initial values of the codebook reference vectors
– Concrete, detailed implementation of a learning algorithm: an appropriate learning rate and its

decreasing rule, an appropriate stopping criterion, and an order of selecting the input pattern
from the training set, as well as a mix of different LVQ types of algorithms in the multistep
hybrid sequence of learning

– A stopping rule and generalization through crossvalidation

2.8. The Fourier Transform

Fourier analysis is one of the most important data processing methods. This section focuses on
the role of Fourier transform in feature extraction and pattern formation in timeseries.

An appropriate transform of data or functions into another space may result in better
understanding and representation, with simpler and computationally more efficient processing
algorithms. The Fourier transform maps a function, or a signal, into the frequency domain,
providing information about the periodic frequency components of a function or of a signal
(generated by a function).

The Fourier transform decomposes a function into a spectrum of its frequency components,
and the inverse transform synthesizes a function from its spectrum of frequency components.
In experimental domains, the transform of a signal can be thought of as that signal in the
“frequency domain.” In other words, the Fourier transform decomposes a function or a signal into
sine waves with different frequencies. The Fourier transform localizes a function or a signal in

178 2. Feature Extraction

frequency space. However, it does not localize such frequencies in time. The results of the Fourier
transform are Fourier coefficients F�u� (a spectrum) related to different frequencies. Multiplication
of spectral coefficients by a sinusoid of corresponding frequency results in reconstruction (an
inverse transform) of the sinusoidal component of the original function or signal.

The Fourier transform allows us to form patterns of timeseries or of images in frequency
domain. Fourier transform processing comes from the observation that a periodic continuous
function f�t� with period 2� can be represented by the infinite sum of sine and cosine functions

a0 +
�∑
k=1

�ak cos�kt�+bk sin�kt�� (186)

where parameters a0� ak� bk are defined as

a0 = 1
2�

∫ 2�

0
f�t�dt

ak = 1
�

∫ 2�

0
f�kt� sin�kt�dt

bk = 1
�

∫ 2�

0
f�kt� cos�kt�dt (187)

Fourier transform is a linear mapping of functions to other functions (in a frequency domain).
In other words, the Fourier transform decomposes a function into a continuous spectrum of its
frequency components. The inverse Fourier transform reconstructs (synthesizes) a function from
its spectrum of frequency components back into the original domain. In empirical domains, the
Fourier transform provides representation of a signal in the time domain into the “frequency
domain.”

For a continuous function f�t� of a real variable t, the continuous Fourier transform FT�f�t��=
F�u� is defined as

FT�f�t��= F�u�=
∫ �

−�
f�t�e−j 2�ut dt (188)

where j = √−1 is the imaginary unit and u is the frequency variable. Given F�u�, we can obtain
an original function f�t� by using the inverse Fourier transform:

f�t�=
∫ �

−�
F�u�ej2�ut du (189)

We can also write

F�j��=
∫ �

−�
f�t�e−j � t dt (190)

where � = 2�u is the angular frequency (in radians) and u is the oscillatory frequency (in HZ).
Here, the inverse Fourier transform is given by

f�t�= 1
2�

∫ �

−�
F�j��ej�t d� (191)

The term frequency variable comes from the fact that, using Euler’s formula, the exponential term
e−j 2�ut may be written in the form

e−j2�ut = cos 2�ut− j sin 2�ut (192)

Chapter 7 Feature Extraction and Selection Methods 179

F�u� is composed of an infinite sum of sine and cosine terms, and each value of u determines the
frequency of its corresponding sine-cosine pairs.

We can also write

F�u�=
∫ �

−�
f�t��cos 2�ut− j sin 2�ut�dt (193)

The Fourier transform (even for a real function) is generally complex, that is

F�u�= R�u�+ j I�u� (194)

where R�u� and I�u� are, respectively, the real and imaginary components of F�u�. The above
equation is often more convenient to express in the exponential form

F�u�=� F�u� � ej��u� (195)

where

� F�u� �= �R2�u�+ I2�u�	1/2 (196)

The �F�u�� (magnitude) is called the Fourier spectrum (frequency spectrum) of function f�t�.
The term

��u�= tan−1

[
I�u�

R�u�

]
(197)

is called the phase angle of the Fourier transform. The square of Fourier spectrum values

P�u�=� F�u� �2= R2�u�+ I2�u� (198)

is called the power spectrum (spectral density) of function f�t�.

2.8.1. Basic Properties of the Fourier Transform

Time – Frequency Duality.

F�t�⇔ f�−u� (199)

Linearity.

F�af�t�+bg�t��= aF�f�t��+bF�g�t�� (200)

Symmetry. The Fourier transform is symmetric, since F�u� = FT�f�t�� implies F�−u� =
FT�f�−t��:

if f�x� is real� thenF�−u�= F�u�∗

if f�x� is imaginary� thenF�−u�= −F�u�∗
if f�x� is even� thenF�−u�= F�u�

if f�x� is odd� then −F�−u�= −F�u� (201)

where ∗ indicates a complex conjugate operation.

180 2. Feature Extraction

Orthogonality. Functions 1√
2�
ej�t form an orthogonal basis

∫ �

−�

(
1√
2�

ejat
)(

1√
2�

e−jbt
)
dt = ��a−b� (202)

where � is Kronecker delta. The Fourier transform can be considered as a transformation of
coordinate bases in this space.

Scaling.

f�at�⇔ 1
�a�F

(u
a

)
(203)

Time Shift.

f�t− t0�⇔ e−j2�ut0F�u� (204)

Convolution.

f�t�⊗g�t�⇔ Ff �u�Fg�u� (205)

where ⊗ denotes the convolution operation. Here, we have

f�t�⊗g�t�=
∫ �

−�
f���g�t− ��d� (206)

Releigh Property.

∫ +�

−�
�f�t��2dt =

∫ +�

−�
�F�u��2du (207)

2.8.2. Discrete Data and the Discrete Fourier Transform
In real life processing we deal mostly with discrete data and we apply Discrete Fourier Transform.

The sampling rate or sampling frequency determines the number of samples per second taken
from a continuous signal in order to create a discrete signal. The inverse of the sampling frequency
is the sampling period or sampling time, which is the time between samples.

The sampling frequency is measured in Hertz. The Hertz (denoted by Hz) is the unit of
frequency. One Hz denotes one sample of signal per second, 50 Hz means 50 samples per second,
etc. The unit may be applied to any periodic event.

2.8.3. The Discrete Fourier Transform
Frequently a continuous function f�t� is given as a finite discrete set of N uniformly spaced
samples of the function values

�f�t0�� f�t0 +�t�� f�t0 +2�t�� · · · � f�t0 + �N −1��t�� (208)

denoted also as

�f�k�� k= 0�1� · · · �N −1�� �f�k��N−1
k=0 (209)

in N sampling points of variable t in the range of values �t0� t0 + �N −1��t	. Here, �t is the time
increment between samples.

Chapter 7 Feature Extraction and Selection Methods 181

For the discrete sampled function f�k�, the discrete Fourier transform (DTF) is defined as

F�u�=
N−1∑
k=0

f�k�e−j 2�uk/N � for u= 0�1�2� · · · �N −1 (210)

and the inverse of the discrete Fourier transform is given by

f�k�= 1
N

N−1∑
u=0

F�u�ej 2�uk/N � for k= 0�1�2� · · · �N −1 (211)

The discrete values of samples u= 0�1� · · · �N −1 in the discrete Fourier transform correspond to
the samples of the continuous Fourier transform given for the values 0, �u, 2�u, · · · , �N −1��u.
Hence, F�u� represents F�u�u�. The relation between �t and �u is given by

�u= 1
N �t

= 1
T

(212)

We can see that the following equalities hold in the time and frequency domains.

Time Domain.

– T : total sampling time (sampling interval, total sampling length of a time signal)
– N : total number of discrete samples taken (sample size)
– �t : time increment between samples (time spacing) �t = T

N

– length : T = �N −1��t
– period : T = N�t

Frequency Domain.

– N : number of components in the spectrum
– fs : the sampling frequency (sampling rate) fs = 1

�t
= N

T

– �u= �f : the frequency increment (frequency resolution) �u= 1
T

= fs/N = 1
N �t

– fp : the frequency period (spectrum period) fp = Nfs = N
�t

in Hz.
– fmax : the maximum frequency fmax = 1

2fs

The time domain values are measured in seconds, and the frequency domain values in Hz.
Both FT and DFT deal with discrete functions in time and frequency. The DFT transforms a
series of N values in time f�ti�, �i = 0�1� · · · �N − 1�, into a series of N components F�fi�,
�i = 0�1� · · · �N − 1�, in the frequency space, where fi is a discrete frequency in the spectrum.
For samples equally spaced in time, with total sampling time T [seconds] and time increment
between samples �t (signal sampled every �t seconds for �N − 1��t seconds), the N discrete
samples taken create a time signal of length

T = �N −1��t (213)

which is equal to the total sampling period T in seconds. For a signal with N samples, the
frequency spectrum has N components. The numbers of samples N in time is usually taken to be
a power of 2�N = 2r �.

The sampling frequency is

fs = 1
�t

= N

T
(214)

182 2. Feature Extraction

The spacing interval for frequencies (the frequency resolution)

�f=
1

N�t
= 1
T

(215)

is determined for given N and �t. The highest frequency is determined as

fmax = N

2
�f = 1

2
fs�Hz� (216)

In DFT, a computing aliasing situation might happen when false spectral lines appear in a
spectrum from frequencies above the measured bandwidth. Application of the Nyquist frequency
criterion helps to prevent such situations. The Nyquist frequency (critical frequency) is half the
sampling frequency for a signal. In principle, a Nyquist frequency equal to the signal bandwidth
is sufficient to allow perfect reconstruction of the signal from the samples. The critical 1/2fs
frequency point is known as the Nyquist frequency. The Nyquist criterion states that for signal
sampling at some sampling frequency fs, it is possible to obtain proper (without aliasing) frequency
information only for frequencies less than fs/2. In other words, only half of the N outputs of
DFT can be used.

Example: Assume that we sample a signal for T = 2 seconds, at a sampling rate of fs = 100 Hz.
The number of samples taken in 2 seconds is N = Tfs = 2 × 100 = 200. The time interval
between samples is �t = 1/fs = 1/100 = 0�01 seconds. The number of useful samples that has
been obtained is N/2 = 100. The frequency resolution is �f = 1

T
= 0�5Hz. The maximum

frequency for which the DFT output is reliable is fmax = fs/2 = �100Hz�/2 = 50Hz (or
fmax = N

2 �f = 50Hz�.
The real part of the transform is even whenever the signal is real. Hence, the values for k<N/2

are negative frequency results. Negative frequency values are mirror images of the positive values
around the middle frequency fp/2 called the folding frequency. For N points in time space,
there are N points in the frequency domain. For real signals, there are N complex values in the
transform with N real and complex parts. Around the folding frequency, the real part is even and
the imaginary part is odd. Including the component for frequency f = 0, there are in fact only
N/2+1 points in the frequency domain.

For the signal f�t�, with N samples, with sampling time �t and corresponding spacing interval
for frequencies �u= 1

N�t
, the frequency components of the spectrum in HZ are

f = −N �u

2
� · · · �0��u� � · · · �

(N
2

−1
)
�u (217)

The Fourier spectrum of the signal f�t� is periodic, and the spectrum period is fp = N/�t = Nfs
in Hz. Since the signal spectrum is symmetric in pattern formation, one can only consider spectral
values for N/2+1 frequencies:

f = 0��u�2�u� · · · �
(N

2
−1

)
�u (218)

2.8.4. Fast Fourier Transform
A fast Fourier transform (FFT) is a computationally efficient algorithm to compute the discrete
Fourier transform (DFT) and its inverse. Due to reduced computation costs FFT plays an important
role in digital signal processing and its applications.

For a sequence of discrete complex values x0� · · · � xN−1, a DFT is defined by the formula

F�u�=
N−1∑
k=0

xke
−j2�
N ku u= 0� · · · �N −1 (219)

Chapter 7 Feature Extraction and Selection Methods 183

A direct evaluation of the Fourier transform for this sequence would requires O�N 2� arithmetical
operations. An FFT algorithm computes the same result in only O�n logn� operations (where log
is the base-2 logarithm). The FFT algorithm can also be easily adapted for computation of an
inverse Fourier transform.

2.8.5. Properties of the Discrete Fourier Transform
The basic properties of the DFT are similar to that for the continuous Fourier transform. We can
list some specific properties of the DFT:

– Orthogonality. Vectors ej2�ku/N form an orthogonal basis over the set of N -dimensional
complex vectors:

N−1∑
k=0

ej2�ku/N e−j2�k′u/N =
{
N if k= k′

0 otherwise
(220)

– Autocorrelation from the Fourier transform. It can be shown that the Fourier transform of the
power spectrum is the autocorrelation function. In applications where the full autocorrelation
function is needed, it may be faster to use this method than the direct computation.

2.8.6. Short Fourier Transform
The discrete short-term Fourier transform (SDFT) is the DFT performed for the short
N -elements frame (usually windowed) of discrete complex (or just real) values x�k�N−1

k=0 . The
result is an N -element array of complex values that is the discrete frequency spectrum of a signal
spaced at interval fs = 1/�N�t�, where �t is the spacing between time samples.

The SFT is widely used in speech processing, where a speech signal is divided into overlapping
short sliding frames (containing 64, 128, 256, or 512 samples). It is believed that the parameters
of the spectral model of the speech frame are stationary within a frame, and a sequence of frames
represents variability and the natural sequential character of the speech signal. The SFT spectral
components are extracted from windowed frame signals xw�k�:

xw�k�= x�k� ·w�k� (221)

The popular Hamming window is defined as w�k� = 0�54 − 0�46 cos �2�k/�nw − 1��, where nw
is the window size.

2.8.7. Spectrogram
In order to grasp the sequential character of longer signals (for example, speech signals), the
subsequent windows from a sliding frame along the speech signal are arranged in a so-called
spectrogram. A spectrogram shows the sequential character of a speech signal in the time-
frequency coordinate system on a plane. Time runs along the horizontal axis, while frequency runs
along the vertical axis. The amount of energy (the power spectrum of the window’s short Fourier
transform) in any region in the time-frequency plane is depicted by the darkness of shading.
This spectrogram image is composed with subsequent power spectrum vectors (as subsequent
columns) obtained by taking discrete short Fourier transforms of short subsequent windows of
the original signal in the time domain. A spectrogram is a signal representation in the time
domain that captures the sequential nature of processed signals. A spectrogram might be further
processed, for example, by using image processing transforms. We can also compose a pattern
vector representing a sequence of frames as a concatenation of spectrogram columns.

184 2. Feature Extraction

2.8.8. Pattern Forming for a Spectral DFT Signal
Since spectrum of signal is symmetric in pattern forming, one can only consider spectral values
for ndft = N/2+1 frequencies

f = �0� fs�2fs� · · · �
(N

2
−1

)
fs� (222)

which corresponds to the following indices of DFT values

ndft� ndft +1� · · · � ndft +N/2+1 (223)

1. The spectral patterns xsdft.
The spectral DFT pattern can be formed as

xsdft =
[
�F�ndft��� �F�ndft +1��� · · · � �F�ndft +N/2+1��

]T
(224)

where �F�i�� is an amplitude of DFT transform value for frequency related to index i of DFT.
2. The power spectrum patterns xpdft.

The power spectrum pattern can be formed as

xpdft =
[
PF�ndft��PF�ndft +1�� · · · �PF�ndft +N/2+1�

]T
(225)

where PF�i� is the power spectrum value for frequency related to index i of DFT.

2.9. Two-dimensional Fourier Transform and 2D Spectral Features

One of the most powerful feature extraction methods from images or sub-windows of images is
based on the two-dimensional Fourier transform. The Fourier transform allows us to represent
and interpret an image in the frequency domain. Let us begin with the general continuous two-
dimensional Fourier transform.

2.9.1. The Continuous 2D Fourier Transform
The two-dimensional continuous Fourier transform (2DFT) for the two-dimensional continuous
function f�x� y� is defined as

F�u� v�=
∫ �

−�

∫ �

−�
f�x� y�e−j2��ux+vy� dxdy (226)

and the inverse of the Fourier transform is defined as

f�x� y�=
∫ �

−�

∫ �

−�
F�u� v�ej2��ux+vy� dudv (227)

The Fourier transform F�u� v� (even for a real function) is generally complex. From Euler’s
formula, we have

e−j�ux+vy� = cos�ux+vy�− j sin�ux+vy�

Here, x and y are spatial coordinates, u and v are the spatial frequencies, and F�u� v� is the
frequency spectrum.

For the continuous transform, �x� y� and �u� v� take on a real continuum of values. The spectrum
F�u� v� is complex and periodic.

Chapter 7 Feature Extraction and Selection Methods 185

2.9.2. The Discrete 2D Fourier Transform
For the two-dimensional continuous function sampled in the 2D grid of M ×N points, with
divisions of width �x and �y for the x- and y-axis, respectively, we can define the two-
dimensional discrete Fourier transform. Here, the discrete function f�x� y� represents discrete
samples of the function f�x0 + x�x� y0 + y�y� for x = 0�1� · · · �M − 1 and y = 0�1� · · · �N-1.
Similarly, the discrete function F�u� v� represents samples of the function F�u�u�v�v� at
u = 0�1� · · · �M−1 and v = 0�1� · · · �N −1. The sampling increments in the frequency domain
are given by

�u= 1
M�x

�v = 1
N�y

(228)

The two-dimensional discrete Fourier transform is given by the formula

F�u� v�= 1
MN

M−1∑
x=0

N−1∑
y=0

f�x� y�e−j2�� uxM + vy
N �

= 1
M

M−1∑
x=0

[
1
N

N−1∑
y=0

f�x� y�e−j2�� vyN �

]
e−j2�� uxM ��

u= 0�1� · · · �M−1� v = 0�1� · · · �N −1 (229)

The term in square brackets �	 is the one-dimensional discrete Fourier transform of the xth

line (row) and can be computed using standard Fourier transform procedures (usually assuming
N = 2k). Each line is replaced by its Fourier transform, and the one-dimensional discrete Fourier
transform of each column is computed.

The inverse 2D discrete Fourier transform is given by the equation

f�x� y�=
M−1∑
u=0

N−1∑
v=0

F�u� v�ej2��
ux
M + vy

N ��

x = 0�1� · · · �M−1� y = 0�1� · · · �N −1 (230)

The kernel function for the 2D discrete Fourier transform is

e−j2�� ux
M + vy

N � (231)

The Fourier transform F�u� v� (even for a real function) is generally complex and consists of real
and imaginary parts. Using Euler’s formula, it can be expressed as

F�u� v�= Re�u� v�+ j Im�u� v�� u= 0� · · · �M−1� v = 0� · · · �N −1 (232)

where

Re�u� v�= 1
MN

M−1∑
x=0

[
N−1∑
y=0

f�x� y� cos
(

2�
(ux
M

+ vy

N

))]
(233)

is the real part, and

Im�u� v�= 1
MN

M−1∑
x=0

[
N−1∑
y=0

−f�x� y� sin
(

2�
(ux
M

+ vy

N

))]
(234)

186 2. Feature Extraction

is the imaginary part of the transform. We can also express F�u� v� in the exponential form

F�u� v�= �F�u� v��ei��u�v� (235)

where the norm of magnitude (amplitude) �F�u� v��

�F�u� v�� =√
Re2�u�u�+ Im2�u� v� (236)

is called the Fourier spectrum (frequency spectrum) of f�x� y� and the term

��u� v�= tan−1

[
Im�u� v�

Re�u� v�

]
(237)

is the phase spectrum (phase angle). The square of the amplitude

P�u� v�= �F�u� v��2 = Re2�u� v�+ Im2�u� v� (238)

is called the power spectrum P�u� v� of f�x� y�. The power spectrum P�u� v� is also called the
spectral density.

Let us consider the Fourier transform for images, which are defined on a finite support. In
computing the Fourier transform of an image, we will consider an image as an M ×N matrix,
where M is a number of rows and N is a number of columns:

⎡
⎢⎢⎢⎣

f�0�0� f�0�1� · · · f�0�N −1�
f�1�0� f�1�1� · · · f�1�N −1�

���
���

� � �
���

f�M−1�0� f�M−1�0� · · · f�M−1�N −1�

⎤
⎥⎥⎥⎦ (239)

where f�x� y� denotes pixel brightness at the integer coordinates �x� y� of an image. If an image
has width N and height M with the origin in a center, then

F�u� v�=
M/2∑

−M/2

N/2∑
−N/2

f�x� y�e−j2��ux+vy� (240)

Here, we assume that f�x� y� is extended, with f�x� y�= 0 outside the image frame.
The 2D discrete Fourier transform is an important image processing tool that is used to

decompose an image into its sine and cosine components. The input to 2DDFT is an image in
the real domain, whereas output of the transformation represents the image in the Fourier or
frequency space. In the Fourier space image, each point represents a specific frequency contained
in the real domain image.

The Fourier transform is used in a wide range of applications, such as image analysis, filtering,
recognition, compression, and image reconstruction.

2.9.3. Basic Properties of 2DDFT
There are several properties associated with the two-dimensional Fourier transform and the 2D
inverse Fourier transform. Generally, the properties of 2DDFT are the same as those for one-
dimensional DFT. These properties have an interesting interpretation when 2DDFT is applied to
images. We can list some of the most important properties of 2DDT as applied to digital image
processing. The Fourier transform is, in general, a complex function of real frequency variables.
As such, the transform can be written in terms of its magnitude and phase.

Chapter 7 Feature Extraction and Selection Methods 187

The Fourier transform is linear. For 2DDFT of images, this means, that

– adding two images together results in adding the two Fourier transforms together
– multiplying an image by a constant multiplies the image’s Fourier + transform by the same

constant

Separability means that the Fourier transform of a two-dimensional function is the Fourier
transform in one dimension of the Fourier transform in the other direction. This means that
we can compute the two-dimensional Fourier transform by providing a one-dimensional Fourier
transform of the rows and then taking a one-dimensional Fourier transform of the columns of the
result.

Rotational Invariance. Rotation of an image results in the rotation of its Fourier transform.

Translation and Phase. Translation of an image does not change the magnitude of the Fourier
transform but does change its phase.

Scaling. Changing the spatial unit of distance changes the Fourier transform. If the 2D
signal f�x� y� is scaled �Mx x�My y� in its spatial coordinates �x� y�, then F�u� v� becomes
F�u/Mx� v/My�/�MxMy�.

Periodicity and Conjugate Symmetry. The Fourier transform in discrete space is periodic in
both space and in frequency. The periodicity of the Fourier transform can be explained by

F�u�−v�= F�u�Np −v� � F�−u� v�= F�Mp −u� v�

F�aMp +u�bNp +v�= F�u� v� � F�−x� y�= F�Mp −x� y�

f�x�−y�= f�x�Np −y� � f�aMp +x�bNp +y�= f�x� y� (241)

where Np and Mp are periods. If a 2D signal f�x� y� is real, then the Fourier transform possess
certain symmetries:

F�u� v�= ∗F�−u�−v� (242)

The symbol (∗) indicates complex conjugation of F�u� v�. For real signals,

�F�u� v�� = �F�−u�−v�� (243)

If a 2D signal is real and even, then the Fourier transform is real and even.

Energy. According to Parseval’s theorem, the energy in a 2D signal can be computed either in
the spatial domain or in the frequency domain. For a continuous 2D signal with finite energy,

E =
∫ +�

−�

∫ +�

−�
�f�x� y��2 dxdy = 1

4�2

∫ +�

−�

∫ +�

−�
�F�u� v��2 dudv (244)

For a discrete 2D signal with finite energy,

E =
+�∑
−�

+�∑
−�

�f�x� y��2 = 1
4�2

∫ +�

−�

∫ +�

−�
�F�u� v��2 dudv (245)

188 2. Feature Extraction

Convolution. For three given two-dimensional signals a�b, and c and their Fourier transforms
Fa, Fb, and Fc,

c = a⊗b → Fa ·Fb (246)

c = a ·b → Fc = 1
4�2

Fa ⊗Fb (247)

where ⊗ denotes convolution operation. Convolution in the spatial domain is equivalent to
multiplication in the Fourier (frequency) domain and vice versa. This property provides a method
for the implementation of a convolution.

2.9.4. 2DDFT Patterns
A power spectrum of 2DDFT of an image can be used to form an image spectral pattern. In
the first phase of feature extraction from an image, the 2DDFT can be used in order to convert
the gray-scale image pixels into the corresponding spatial frequency representation. The 2DDFT
complex features are extracted from an M×N pixel image by formulas:

F�u� v�= Re�u� v�+ j Im�u� v�� u= 0� · · · �M−1� v = 1� · · · �N −1 (248)

where

Re�u� v�= 1
MN

M
2 −1∑

x=−M
2

⎡
⎣

N
2 −1∑

y=− N
2

f�x� y� cos
(

2�
(ux
M

+ vy

N

))⎤⎦

Im�u� v�= 1
MN

M
2 −1∑

x=−M
2

⎡
⎣

N
2 −1∑

y=− N
2

−f�x� y� sin
(

2�
(ux
M

+ vy

N

))⎤⎦ (249)

and �x� y� and �u� v� denote the image pixel integer-valued coordinates.
In the above equation, Re�u� v� denotes the real component and Im�u� v� the imaginary

component of the discrete Fourier transform of an image. For each pixel f�u� v� of an original
image, we can compute the real and imaginary part of Re�u� v� and Im�u� v� and then the
real-valued power spectrum

P�u� v�= �F�u� v��2 = Re2�u� v�+ Im2�u� v� (250)

This power spectrum can be represented as an m× n image (a power spectrum map). In the
most general situation, a two-dimensional transform takes a complex array. The most common
application is for image processing, where each value in the array represents a pixel; the real
value is the pixel value, and the imaginary value is 0. Two-dimensional Fourier transforms simply
involve a number of one-dimensional Fourier transforms. More precisely, a two-dimensional
transform is achieved by first transforming each row, replacing each row with its transform, and
then transforming each column and replacing each column with its transform. Thus a 2D transform
of a 1000 ×1000 image requires 2000 1D transforms. This conclusion follows directly from the
definition of the Fourier transform of a continuous variable or the discrete Fourier transform of a
discrete system.

2.9.5. Constructed Spatial 2DDFT Power Spectrum Features and Patterns
One of the natural ways of constructing a pattern from 2DDFT of 2D data (for example an
image) is forming a column vector containing concatenated subsequent column of the power

Chapter 7 Feature Extraction and Selection Methods 189

spectrum image (map) of the 2DDFT of 2D data. For m×n2D data the resulting pattern will
have m×m elements.

In order to capture the spatial relation (a shape) of the components of the “power spectrum
image” (map), a number of spatial features can be computed from the power spectrum array
treated as an image.

We have assumed that the numerical characteristics (measures) of the shape of the spatial
frequency spectrum, such as location, size, and orientation of peaks and entropy of the normalized
spectrum in regions of spatial frequency, can be used as object features (pattern elements) suitable
for recognition of an image. Some spatial features of the normalized “power spectrum” image
require the computation for such an image of the covariance matrix and its eigenvalues and
eigenvectors as well as principal components. Numerous subsequent spatial spectral features
(computed in the frequency domain) can be extracted or created from the normalized “power
spectrum image” P�u� v�:

P�u� v�= P�u� v�∑
u�v �=0 P�u� v�

(251)

Energy of the major peak

f1 = p�u1� v1�×100 (252)

where u1, v1 are the frequency coordinates of the maximum peak of the normalized power
spectrum. Here, f is a percentage of the total energy.

Laplacian of the major peak

f2 = �2P�u1� v1�

= P�u1 +1� v1�+P�u1 −1� v1�+P�u1� v1 +1�+P�u1� v1 −1�−4P�u1� v1� (253)

Laplacian of the secondary peak

f3 = �2P�u2� v2� (254)

where u2, v2 are the coordinates of the second largest peak in the P�u� v� map.

Spread of the major peak
f4 is the number of adjacent neighbors of u1, v1 with

P�u� v�≥ 1
2
kP�u1� v1� (255)

where the neighbors are u1 ±1, v1, and u1, v1 ±1.

Squared frequency of the major peak in P�u� v�

f5 = u2
1 +v2

1 (256)

Relative orientation of the major and secondary peaks

f6 =
∣∣∣∣tan−1 v1

u1

− tan−1 v2

u2

∣∣∣∣ (257)

190 2. Feature Extraction

Isotropy of the normalized power spectrum P�u� v�

f7 = ��u −�v�[
��u −�v�

2 −4�2
uv

] 1
2

(258)

where

�u =∑
u

∑
v
u2p�u� v�

�v =∑
u

∑
v
v2p�u� v�

�uv =∑
u

∑
v
uvp�u� v�

Here, f7 measures the elongation of the normalized power spectrum and is maximum for parallel
line faces.

Circularity of the normalized power spectrum

f8 = AD

AC

(259)

where

AD = number of nonzero frequency components within a circle of radius
√

1

AC = number of distinct frequency components within a circle of radius
√

1

1 = maximum eigenvalue of the covariance matrix of p�u� v�

Major peak horizontal frequency

f9 = u1 (260)

Major peak vertical frequency

f10 = v1 (261)

Secondary peak horizontal frequency

f11 = u2 (262)

Secondary peak vertical frequency

f12 = v2 (263)

Squared distance between the major and secondary peak

f13 = �u1 −u2�
2 + �v1 −v2�

2 (264)

Principal component magnitude (squared)

f14 =
1 (265)

Chapter 7 Feature Extraction and Selection Methods 191

Principal component direction

f15 = cos−1��1� (266)

where 	 =
[
�1

�2

]
is a normalized eigenvector for eigenvalue
1

Ratio of the minor to major principal axis

f16 =
(

2

1

) 1
2

(267)

where
2 is the minimum eigenvalue of the covariance matrix of p�u� v�

Moment of inertia, quadrant I

f17 =∑
u>0

∑
v>0

�u2 −v2�
1
2 p�u� v� (268)

Moment of inertia, quadrant II

f18 =∑
u<0

∑
v>0

�u2 −v2�
1
2 p�u� v� (269)

Here, in f17 and f18, the power spectrum is normalized within quadrants I and II, respectively.

Moment ratio

f19 = f18

f17

(270)

Percentage energy, quadrant I

f20 =∑
u>0

∑
v>0

p�u� v� (271)

Percentage energy, quadrant II

f21 =∑
u<0

∑
v>0

p�u� v� (272)

Ratio of nonzero components

f22 = n1

n2

(273)

where ni denotes a number of nonzero frequency components in quadrant i

Laplacian of the major peak phase

f23 = �2��u1� v1� (274)

Laplacian of the secondary peak phase

f24 = �2��u2� v2� (275)

192 2. Feature Extraction

Relative entropy of the normalized power spectrum �R1�

f25 =
[−∑u�v∈R1

P1�u� v� logP1�u� v�
]

logK1

(276)

where

P1�u� v�= P�u�v�∑
u�v∈Ri P�u�v�

Ki = number of distinct frequencies in Ri

Ri =
{
u� v �

i−1
4

um < �u�< i

4
um and

i−1
4

vm < �v�< i

4
vm

}

where um, vm are the maximum frequency components for the local spectrum

Relative entropy �R2�

f26 =
[−∑u�v∈R2

P2�u� v� logP2�u� v�
]

logK2

(277)

Relative entropy �R3�

f27 =
[−∑u�v∈R3

P3�u� v� logP3�u� v�
]

logK3

(278)

Relative entropy �R4�

f28 =
[−∑u�v∈R4

P4�u� v� logP4�u� v�
]

logK4

(279)

Histogram subpattern xh:

f29� · · · � f29 +nh ×N�

For an M×N “image” of normalized P�u� v�, the following histogram features can be extracted
and presented as the nh ×N -element vector xh:

(a) For each column of an image (treated as a matrix), the column elements are binned into nh
equally spaced containers and the number of elements in each container is computed. The
result forms a histogram matrix Hp of dimension nh ×N .

(b) Now we can consider the histogram subpattern as an nh ×N -element vector xh, obtained
through columnwise concatenation of the matrix Hp.

Magnitude of complex Zernike moments (defined later in the Chapter) of order from �1�1�
through �p� q� for normalized P�u� v�.

The 2DDFT provides a powerful spectral representation of images in the frequency domain,
with significant predispositions toward features of image patterns used in image recognition. A
spectral pattern of an image can be formed as concatenated columns of a “normalized power
spectrum image.” One can also form a spectral pattern as any subset of the spatial spectral features
defined above.

Chapter 7 Feature Extraction and Selection Methods 193

2.10. Wavelets

Wavelets are another powerful technique for processing timeseries and images. The foundation of
wavelets comes from orthogonality, function decomposition, and multiresolution approximation.
Wavelets (wavelet analysis, the wavelet transform) provide representation (approximation) of a
function (or a signal) by a fast-decaying oscillating waveform (known as the mother wavelet).
This waveform can be scaled and translated in order to best match the function or input signal.

A wavelet is a special kind of oscillating waveform of substantially limited duration with an
average value equal to zero. Wavelets can be considered to be one step ahead of the Fourier
transform.

The Fourier transform decomposes a function or signal into sine waves with different
frequencies (or, in other words, is the sum over all time of the signal f�t� multiplied by a complex
exponential). However, it does not localize these frequencies in time. The results of the Fourier
transform are Fourier coefficients F���:

FT f�t� = F���= �2��−
1
2

∫ +�

−�
f�t�e−j�t dt (280)

(a spectrum) related to different frequencies. Multiplication of spectral coefficients by a sinusoid
of corresponding frequency results in the reconstruction (an inverse transform) of the sinusoidal
component of the original function or signal.

Wavelets break up a function or a signal into a shifted and scaled instance of the mother
wavelet. The continuous wavelet transform is the sum over all time of a function or a signal
multiplied by the shifted, scaled instance of the wavelet function. The results of the wavelet
transform are coefficients C:

C�position� scale�=
∫ +�

−�
f�t���position� scale� t�dt (281)

which are a function of position and scale. In the inverse wavelet transform, multiplication of
each coefficient by the corresponding shifted and scaled wavelet results in constituent wavelets of
the original function or signal. Wavelets provide localization both in frequency and in time (or in
space). A function f�t� (or signal x�k�) can be more easily analyzed or described when expressed
as a linear decomposition

f�t�=∑
r

ar�r�t� (282)

where r is an integer index (for a finite or infinite sum). The ar ∈ R are expansion coefficients,
and the �r�t� are real-valued functions of t (the expansion set). For a unique expansion, the set
of functions �r�t� is called a basis. Especially important expansions of a function can be obtained
for the orthogonal basis when we have

< �r�t���l�t� >=
∫
�r�t��l�t�dt = 0� r �= l (283)

ar =< f�t���r�t� >=
∫
f�t��r�t�dt (284)

For the best-known Fourier transform, the orthogonal basis functions �k�t� are sin�k�t� and
cos�k�t� function of k�t. This transformation maps a one-dimensional function of the continuous
variable into one-dimensional sequence of coefficients.

The main difference between wavelets and the Fourier transform is that wavelets are localized
in both time and frequency, whereas the Fourier transform is localized in frequency space. The
Short-time Fourier Transform (STFT) could be called a prelude to wavelets, since it is also time

194 2. Feature Extraction

and frequency localized. However, wavelets provide better tools for muliresolution in frequency
and in time. For two-parameter wavelet transformation, with the wavelet expansion function
�j�k�t� forming the orthogonal basis, we have

f�t�=D−1
�

∫ ∫ 1
j2

< f�t���j�k > �j�kdj dk (285)

and the corresponding discrete version

f�t�=∑
k

∑
j

aj�k�j�k�t� (286)

where j and k are integer indices and D−j
� is the scaling factor. The set of coefficients aj�k�j� k∈ Z�

is the discrete wavelet transform DW f�t� of a function f�t�.
The wavelet expansion maps a one-dimensional function into a two-dimensional array of

coefficients (discrete wavelets transform), allowing localization of the signal in both time and
frequency simultaneously.

Wavelets are defined by the wavelet function ��t� (wavelet) and the scaling function ��t� (also
called the father wavelet) in the time domain. The wavelet function acts as a band-pass filter,
and scaling it for each level halves its bandwidth, whereas scaling the function filters the lowest
level of the transform and ensures that the entire spectrum is covered.

2.10.1. A Wavelet Function
The wavelet transform is a method of approximating a given function f�t� ∈ L2�R� or a signal
(as a sequence of values) using the functions ��t� and ��t�. The function ��t� is a scalable
approximation curve localized on a definite time (or space) interval. The function ��t� is called
a mother function (wavelet function, or generating wavelet). The mother wavelet must satisfy
the following admissibility conditions:

c� =
∫ �

0

������2
��� d� <�

or
∫ �

−�
��t�dt = 0 (287)

where ����= �2��−
1
2
∫ �

−���t�e
−j�t dt is the Fourier transform of ��t�.

The second derivative of the Gaussian function is an example of the wavelet function:

��t�= �1− t2�e− t2
2 (288)

Two-dimensional parametrization, with a dilation parameter a and a translation parameter b,
yields the possibility of scaling and shifting the wavelet function over a certain time (or space)
domain. Wavelets constitute a family of functions designed from dilations and translations of
a single function – the mother wavelet. For signal expansion, the mother wavelet is a band-pass
filter. Incorporating continuous variation of the dilation parameter a and the translation parameter
b, we can find a family of continuous wavelets

�a�b�t�= �a�− 1
2�

(
t−b

a

)
� a� b ∈ R� a≥ 0 (289)

where a and b may vary over R. This is a band-pass filter with two parameters: the dilation
and translation parameters a and b. The dilation parameter a determinates the frequency of

Chapter 7 Feature Extraction and Selection Methods 195

information (interpreted as changing the bandwidth of the filter). Varying the dilation parameter a
generates different spectra of �a�b�t�. For a smaller dilation parameter a, the wavelet is narrowed;
for increased a, the wavelet stretches in time. The translation parameter b determinates the time
information (location in time) or space information (location in space). It localizes the wavelet
curve on a specific time interval with center at t = b. For this reason, wavelets are time (or space)
and frequency localized. These properties are essential for wavelets. Wavelets functions have
finite energy, and they are locally concentrated.

2.10.2. Continous Wavelet Transform
For a given function f�t�, the continuous wavelet transform is defined as

WT f�a�b�= �a�− 1
2

∫ �

−�
f�t��

(
t−b

a

)
dt (290)

where a and b are dilation and translation parameters, and ��·� is a wavelet function. One can see
that the wavelet transform is the scalar product of two functions, namely, f�t� and �a�b in L2�R�:

WT f�a�b�=< f�t���a�b�t� > (291)

A function can be characterized by its wavelet coefficients < f�t���a�b�t� >. A function f�t� can
be reconstructed from its wavelet transform WT f�a�b� by the inverse transform

f�t�= 1
D�

∫ �

−�

∫ �

−�
1
a2
WT f�a�b��a�b�t�dadb (292)

where D� is a scaling factor representing an average energy of the wavelet function

D� = 2�
∫ �

−�
������2

��� d� (293)

2.10.3. Discrete Wavelet Transform
In the discrete case, parameters a and b take only discrete values. The discrete wavelets are
obtained, after sampling parameters a and b as a = a

j
0 and b = kab0 = ka

j
0b0 (where j� k ∈ Z,

i� j =−+ 1�
−+ 2� · · · �), as

�j�k�t�= �a0�−
j
2��a

−j
0 t−kb0�� j� k ∈ Z (294)

where �j�k�t� constitutes basis for L2�R�. The selection of a0 and b0 depends on an application.
The discrete wavelet transform is defined for sampled parameters by the equation

DWT f�j� k�= �a0�−
j
2

∫ �

−�
f�t���a

−j
0 t−kb0�dt (295)

For a0 = 2 �a= 2j� and b0 = 1 �b = 2jk�, functions �j�k�t� form an orthogonal wavelet base for
L2�R�:

�j�k�t�= 2− j
2��2−jt−k� (296)

For a function f�t� ∈ L2�R�, the discrete wavelet expansion of f�t� is represented by

f�t�=∑
j

∑
k

bj�k�j�k�t� (297)

where the expansion coefficients bj�k are the inner product of f�t� and �j�k�t�, i.e.,

bj�k =< �j�k�t�� f�t� > (298)

196 2. Feature Extraction

2.10.4. Multiresolution Analysis of a Function
A continuous wavelet transform is redundant. This redundancy can be avoided in a discrete
transform by using the fast wavelet transform. The idea of multiresolution analysis of a function
f�t� is to construct a ladder of close subspaces of Z, �Vn � n ∈ Z� (nested subspaces), for repre-
senting functions with successive resolution. This result can be realized with a basis scaling
function ��t� in L2�R� (low pass or smoothing function):

�k�t�= ��t−k�� k ∈ Z (299)

with a spanned subspace V0 of L2�R� for this function for all integers from −� to �, and with

f�t�=∑
k

ak�k�t� forany f�t� ∈ V0 (300)

Subspaces in L2�R� are

�0�⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2�R� (301)

These representations satisfy the following conditions:

1. A subspace Vn is contained in Vn+1:

Vn ⊂ Vn+1� n ∈ Z (302)

A space containing high resolution signals will also contain lower resolution signals.
2. An intersection of all subspaces Vn for all n ∈ Z is null

⋂
Vn = �0�, and the union of subspaces

is
⋃
Vn is dense in L2�R�.

3. A subspace Vn is invariant under integral translations

f�t� ∈ Vn ⇔ f�t−k� ∈ Vn� k ∈ Z (303)

4. There exists a scaling function ��t� ∈ V0 that, with its translated version ��t− k�, forms an
orthonormal basis in V0 so that following conditions hold:

∫
��t�dt = 1� normalization

∫
��t���t−k�dt = ��k�� orthogonality (304)

The subspaces satisfy the natural scaling condition

f�t� ∈ Vn ⇔ f�2t� ∈ Vn+1 (305)

which means that elements in a space Vn+1 are scaled version of elements in the next subspace.
The scaling function can also be dilated and translated (similarly to the wavelet function):

�j�k = �a�− 1
2��a−1 −k�� a= 2 (306)

However, the scaling function is not orthogonal to its dilation. Nesting conditions show that ��t�
can be expressed in terms of the weighted sum of shifted ��·�:

��t�=∑
k

hk�−1�k�t� (307)

where hk �k = 0�1� · · · �K − 1� is a set of scaling coefficients hk =< ��t���−1�k�t� >, and∑
k∈Z

�hk�2 = 1:

�−1�k = 2− 1
2��2−1t−k� (308)

Chapter 7 Feature Extraction and Selection Methods 197

2.10.5. Construction of the Wavelet Function from the Scaling Function
Based on an idea of multiresolution and the property of the orthonormal complement Wi of
subspaces Vi (contained in Vi−1), we find that wavelet function ��t� can be expressed as a linear
combination of the basis scaling functions �−1�k�t�:

��t�=∑
k

gk�−1�k�t� (309)

where gk = �−1�kh−k+1 or, in matrix notation,

��t�= 	−1g (310)

with g = ��−1�K−1h−K+2� · · · � h−1� h0� h1	
T .

The coefficients hk satisfy the orthonormality condition
∑K−1

k=0 hkhk+2n = ��n� and

K−1∑
k=0

hk = √
2�

∑
k

�−1�khk = 0 (311)

A function f�t� ∈ L2�R� can be analyzed using multiresolution idea with scaling and wavelet
functions �j�k�t� and �j�k�t� �j� k = −1�0�1�2� · · · �, respectively. These functions constitute the
orthonormal bases of the approximation spaces Wj and Vj . Based on functions �−1�k�k� and �−1�k,
one can decompose a space V−1 into two subspaces V0 and W0. Similarly, the subspace V0 can be
decomposed into V1 and W1, and so forth. In general, we have the following decomposition:

�j�k�t� Vj → Vj+1

�j�k�t� Vj →Wj+1 (312)

Each expanded subspace has a different resolution specified by index j. Thus, we may have the
multiresolution expansion of a given space, with the resulting wavelet expansion of a function
f�t� in this space.

For signals, scaling functions encode the low spatial (or time) frequency information, whereas
wavelets encode signals in different frequency bands to a certain level of frequency.

Let us consider a function uniquely determined by N discrete samples

�f�1�� f�2�� · · · � f�N��
It can be shown that it is possible to expand this function as a series of N orthogonal basis
functions.

2.10.6. Discrete Wavelet Transform: Wavelet and Scaling Functions
For discrete parameters a and b, a discrete wavelets transformation decomposes a function into
an expansion (using dilations and translations) of two functions: a scaling function ��t� and a
wavelet function ��t�. The basis sets for a scaling function (nonnormalized) are

�L�k�t�= ��2Lt−k�� k= 1�2� · · · �KL� KL = N2−L (313)

where L is an expansion level, and for the wavelet function

�j�k�t�= ��2jt−k�� j = 1�2� · · · �L� k= 1�2� · · · �K� K = N2−j (314)

where the level of expansion L satisfies 0 < L≤ log2�N�.

198 2. Feature Extraction

An L-level discrete wavelet transform of function f�t� described by N samples contains:

1. a set of parameters �aL�k� defined by the inner products of f�t� with N2−j translations of the
scaling function ��t� at L different widths

�aL�k�t��= �< f�t���L�k�t� >� k= 1�2� · · · �KL� KL = N2−L� (315)

2. a set of parameters �bj�k� defined by the inner products of f�t� with N2−L translations of the
wavelet function �j�k�t� at a single width

�bj�k�t��= �< f�t���j�k�2
jt−k� >� j = 1�2� · · · �L�

k= 1�2� · · · �K� K = N2−j�

The reconstruction of a function f�t� based on wavelet transform coefficients can be obtained by
the inverse transform

f�t�=
KL∑
k

aL�k�L�k�t�+
L∑
j

K∑
k

bj�k�j�k�t� (316)

The number of parameters of L-level wavelet transform is equal to

L∑
j

2−j +N2−L = N�1−2L +2L�= N (317)

which is the same as the corresponding number of coefficients of a Fourier transform.

2.10.7. Haar Wavelets
One of the simplest orthogonal wavelets is generated from the Haar scaling function and wavelet.
The Haar transform uses square pulses to approximate the original function. The basis functions
for Haar wavelets at some level all look like a unit pulse, shifted along the x-axis. Haar scales
are all of unit pulses.

The Haar wavelet is defined as follows

��t�=

⎧
⎪⎨
⎪⎩

1� if t ∈ �0�0�5�

−1� if t ∈ �0�5�1�

0� otherwise

(318)

The dilations and translations of the Haar wavelet function form an orthogonal wavelet base for
L2�R�. The mother Haar wavelets are defined as

�j�k�t�= ��2jt−k�� j� k ∈ Z (319)

The Haar scaling function ��t� is the unit-width function ��t�

��t�=
{

1� if 0 ≤ t ≤ 1�

0� otherwise
(320)

Figure 7.10 shows the Haar scaling and wavelet functions.
We can easily see that the Haar scaling function ��t� can be constructed using ��2t�:

��t�= ��2t�−��2t−1� (321)

Chapter 7 Feature Extraction and Selection Methods 199

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a)
−0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

Figure 7.10. Haar scaling (a) and Haar wavelet (b) functions.

The Haar decomposition of a function f�t� ∈ L2�R� or finite-dimensional vector for a signal in
the time domain can be expressed as

f�t�= a0�0�0�0�t�+
d∑
j=1

2j−1∑
k=0

bj�k�j�k�t� (322)

where f�t� ∈ L2�0�1�, a0�0 is the parameter, �0�0�t� is a scale function on the interval [0,1), and
�j�k�t� is a set of wavelets with different resolutions. Due to the property of local analysis, the time
interval of a function is not [0,1); the desired interval can be shifted to [0,1) to get the expected
results. For the function f�t� ∈ L2�R�, the discrete wavelet expansion of f�t� is represented as

f�t�= a0�0�0�0�t�+
d∑
j=1

2j−1∑
k=0

bj�k�j�k�t�= a0�0�0�0�t�+b
�j��t� (323)

where �0�0�t� is a scale function on interval [0,1), �j�k�t� is the set of wavelets with different
resolution, b is the Haar wavelet coefficient vector, and
j is a set of Haar wavelets, �j�k�t�,
which is chosen according to necessity. The two vectors b and
j are defined by

b = �b0� b1� · · · � bj−1	
T

j = ��0��1� · · · ��j−1	
T (324)

where �i� �i = 0�1� · · · � j−1�, is some �j�k�t�.
The Haar integral operational matrix P is given as

∫ t

t0

�j��t�dt = P
�j��t� (325)

The coefficients p�i� j� of P can be found numerically as the discrete wavelet expansion

P�i� j�=<
∫ t

t0

�idt� �j > (326)

200 2. Feature Extraction

2.10.8. Two-dimensional Wavelets
In general, the two-dimensional wavelet transform can be realized by successively applying the
one-dimensional wavelet transform to data in every dimension. First, the rows are transformed
by using a one-dimensional transform, and a similar transformation is provided for all columns
of the intermediate results.

For a two-dimensional wavelet expansion of the two-dimensional function f�t1� t2�, we have
to define a wavelet function of two variables t1 and t2 ��t1� t2�. This function should satisfy the
following condition:

C� =
∫ �

−�
���vt1� vt2��2

�v� dv <� (327)

where � denotes the Fourier transform of �.
The two-variable wavelet function can be defined as a product of two one-dimensional mother

(generating) wavelets ��t1� and ��t2�:

��t1� t2�= ��t1���t2� (328)

With dilation and translation parameters, the two-dimensional wavelet function is defined as

��a1�a2���b1�b2�
�t1� t2�= ��a1�b1�

�t1���a2�b2�
�t2� (329)

where �a�b�t�= �a�− 1
2�� t−b

a
�. We can also write

��a1�a2���b1�b2�
�t1� t2�= 1√�a1a2�

��a1�b1�

(
t1 −b1

a1

)
��a2�b2�

(
t2 −b2

a2

)
(330)

Assuming that a1 = a2 the two-dimensional continuous wavelet expansion of the two-variable
function f�t1� t2� can be expressed as

TWT f��a�� �b1� b2��= �a�−1
∫ �

−�

∫ �

−�
f�t1� t2���a���b1�b2�

�t1� t2�dt1 dt2 (331)

The inverse of the continuous wavelet transform is defined as

f�t1� t2�= 1
C�

∫ �

−�

∫ �

−�

∫ �

−�
1
a4

TWT f��a�� �b1� b2����a���b1�b2�
�t1� t2�dadb1 db2 (332)

For the discretized parameters a, b1, and b2,

a= a
j
0� b1 = k1ab1�0� b2 = k2ab2�0 (333)

the two-dimensional discrete wavelet expansion can be written as

f�t1� t2�=∑
k1

∑
k2

aL�k1�k2
�L�k1�k2

�t1� t2�+
∑

i=H�D�V

L∑
j=1

∑
k1

∑
k2

bj�k1�k2
�i
j�k1�k2

�t1� t2� (334)

For a two-dimensional grid of 2n × 2n values (for example, image pixels) and for discrete
parameters a1 = 2n−j1 , a2 = 2n−j2 , b1 = 2n−j1k1, b2 = 2n−j2k2, with integer values for j1� j2� k1, and
k2, the 2D discrete wavelet function can be defined as

�j1�j2�k1�k2
�t1� t2�= 2

�j1+j2�
2 −n��2j1−nt1 −k1���2

j2−nt2 −k2� (335)

Chapter 7 Feature Extraction and Selection Methods 201

where j1� j2� k1, and k2 are the dilation and the translation coefficients for each variable, satisfying
the conditions

0 ≤ j1� j2 ≤ n−1� 0 ≤ k1 ≤ 2j1 −1� 0 ≤ k2 ≤ 2j2 −1 (336)

The resolution level is j = j1+k1
2 and corresponds to 2n−j .

Additionally, defining the scaling function

�j1�j2�k1�k2
�t1� t2�= 2

j1+j2
2 −n��2j1−nt1 −k1���2

j2−nt2 −k2� (337)

allows us to define a complete basis to reconstruct a discrete function f�t1� t2� (for example, a
discrete image):

�0�0�0�0�t1� t2�= 2−n��2−nt1���2
−nt2�

 H
0�j2�0�k2

�t1� t2�= 2
j2
2 −n��2−nt1���2

j2−nt2 −k2�

 V
j1�0�k1�0

�t1� t2�= 2
j1
2 −n��2j1−nt1 −k1���2

−nt2� (338)

The discrete bases satisfy orthonormality conditions

<
j1�j2�k1�k2
�
j′1�j′2�k′

1�k
′
2
>= �j1�j′1�j2�j′2�k1�k

′
1
�k2�k

′
2

(339)

where
·�·�·�· denotes any of the previous orthonormal bases. The 2D discrete wavelet coefficients
are defined as

2DWT wj1�j2�k1�k2
=
∫ ∫

f�t1� t2�
j1�j2�k1�k2
dt1 dt2 (340)

where
j1�j2�k1�k2
denotes any of the previously defined orthonormal bases. These coefficients can

be formed as the Haar wavelet coefficient matrix P.
An inverse discrete wavelet reconstruction (an image reconstruction) can be described by the

following expression:

f�t1� t2�=∑
j1

∑
j2

∑
k1

∑
k2

wj1�j2�k1�k2

j1�j2�k1�k2

�t1� t2� (341)

Wavelet Patterns. Patterns, representing recognition objects (time-series or images), can be
formed based on the coefficient matrices of certain level of wavelets transform. One can constitute
a pattern through concatenation of subsequent parameter matrices rows as one pattern.

2.11. Zernike Moments

A robust pattern recognition system must be able to recognize an image (or an object within
an image) regardless of its orientation, size, or position. In other words, rotation-, scale-, and
translation-invariance are desired properties for extracted features. For example, as shown in
Figure 7.11, all the images should be recognized as “8.” In this section, we will introduce moments
and complex Zernike moments for robust feature extraction from images. In statistics, the concept
of moments is used extensively. Moments were first introduced for two-dimensional pattern
recognition in the early 1960s. However, the recovery of an image from these moments is quite
difficult and computationally expensive.

Major extension of moments has been provided through introduction of Zernike moments by
using the idea of orthogonal moment invariants and the theory of orthogonal polynomials. This

202 2. Feature Extraction

(a) (b) (c) (d)

Figure 7.11. The image of character “8” (a) and its translated (b), scaled (c), and rotated (d) versions.

approach allows moment invariants to be constructed to an arbitrarily high order. In addition,
Zernike moments are also rotation – invariant. Rotating the image does not change the magnitudes
of the moments. Another property of Zernike moments is the simplicity of image reconstruction.

Studies have shown that orthogonal moments including Zernike moments are better than other
types of moments in terms of information redundancy and image representation. Since Zernike
moments are only rotation invariant, to obtain scale and translation invariance, an image must be
normalized via image normalization. In order to understand the image normalization process, in
the next section we briefly describe three basic image processing operations: translation, scaling,
and rotation.

2.11.1. An Image Description
A computer image is a collection of pixels in 2D coordinate space, with the horizontal axis
usually labeled x and the vertical axis usually labeled y. A gray-scale spatial domain image can
be defined as

�f�x� y� ∈ �0�1� · · · �255� � x = 0�1� · · · �M−1� y = 0�1� · · · �N −1� (342)

and a binary spatial domain image as

�f�x� y� ∈ �0�1� � x = 0�1� · · · �M−1� y = 0�1� · · · �N −1� (343)

where x is the column index, y is the row index, M is the number of columns, N is the number
of rows, and f�x� y� is the pixel value at location �x� y�.

2.11.2. Basic Image Transformations
Let f denote the original image and f t the transformed image. Translation,

f t�x+x′� y+y′�= f�x� y� (344)

is a transformation that allows an image to be changed in position the along x-axis by x′ and
along the y-axis by y′.

The operation of scaling,

f s�x� y�= f�x/ax� y/ay� (345)

where ax and ay are scaling factors and ax, ay > 0, allows an image to be changed in size. If
ax/ay < 1, the image is shrunk along the x-axis / y-axis. Similarly, if ax/ay > 1, the image is
enlarged along x-axis / y-axis.

The rotation operation,

f r�x� y�= f r�!� "�= f�!� "−�� (346)

Chapter 7 Feature Extraction and Selection Methods 203

allows an image to be rotated about its center point through any arbitrarily specified angle. The
angle of rotation is counterclockwise. Let f r denote a rotated image and f the original image.
The relationship between the rotated and original image can be explained as follows: ! is the
length of the vector from the origin to the �x� y� pixel, " is the angle between ! and the x-axis in
the counterclockwise direction, and � is the angle of rotation in the counterclockwise direction.

2.11.3. Image Normalization
Zernike moments are only rotationally invariant, but the images might have scale and trans-
lation differences. Therefore, prior to the extraction of Zernike moments, the images should be
normalized with respect to scaling and translation.

Translation invariance can be achieved by moving the origin to the center (centroid) of an
image. To obtain the centroid location of an image, general moments (or regular moments) can
be used. General moments are defined as

mpq =
∫ �

−�

∫ �

−�
xpyqf�x� y�dxdy (347)

where mpq is the �p+ q�th order moment of the continuous image function f�x� y�. For digital
images, the integrals can be replaced by summations. Given a two-dimensional M×N image, the
moment mpq is given by

mpq =
M−1∑
x=0

N−1∑
y=0

xpyqf�x� y� (348)

To keep the dynamic range of mpq consistent for any size of image, the M×N image plane should
be first mapped onto a square defined by x ∈ �−1�+1	, y ∈ �−1�+1	. This mapping implies that
grid locations will no longer be integers but will have real values in the �−1�+1	 range. This
changes the definition of mpq to

mpq =
+1∑

x=−1

+1∑
y=−1

xpyqf�x� y� (349)

Hence, we can find the centroid location of an image by the general moment. According to
Zernike, the coordinates of the image centroid �x̄� ȳ� are

x̄ = m10

m00

� ȳ = m01

m00

(350)

To achieve translation invariance, one can transform the image into a new one whose first-order
moments, m01 and m10, are both equal to zero. This can be done by transforming the original image
into the f�x+ x̄� y+ ȳ� image, where x̄ and ȳ are centroid locations of an original image computed as
in Equation (350). In other words, we need to move the origin of the coordinates to the image centroid.
Let g�x� y� represent the translated image; then the new image function becomes

g�x� y�= f�x+ x̄� y+ ȳ� (351)

Scale invariance is accomplished by enlarging or reducing each image such that its zero-order
moment, m00, is set equal to a predetermined value #. That is, we can achieve this outcome by
transforming the original image function f�x� y� into a new function f�x/a� y/a�, with scaling
factor a, where

a=
√

#

m00

(352)

204 2. Feature Extraction

Note that in the case of binary images, m00 is equal to the total number of object pixels in the
image. # is chosen based on the size of the image and the object in the image. For example,
one can choose # = 800 for 64 × 64 binary images of characters “A” to “Z”; consequently, the
lower case “a” to “z” might need a lower value of # than that of upper case “A” to “Z”. Another
choice – for example, for 32×32 images of digits “0” to “9” – could be #= 256.

Let g�x� y� be the scaled image. After scale normalization, we will obtain

g�x� y�= f
(x
a
�
y

a

)
(353)

2.11.4. Translation and Scale Normalization
In summary, an image function can be normalized with respect to scale and translation by
transforming it into g�x� y�, where

g�x� y�= f
(x
a

+ x̄�
y

a
+ ȳ

)
(354)

with �x̄� ȳ� being the centroid of f�x� y� and a=
√

#

m00
, with # a predetermined value. However,

�x/a+ x̄� y/a+ ȳ� might not correspond to a grid location. To solve this problem, an interpolation
method known as nearest neighborhood approximation can be used. In this technique, four
nearest pixels are used and the fractional address of a pixel is truncated to the nearest integer
pixel address.

2.11.5. Zernike Moments
As a result of image normalization, an image has obtained translation and scale invariance. To
achieve rotational invariance, complex Zernike moments are used.

Zernike introduced a set of complex polynomials that form a complete orthogonal set over the
interior of a unit circle, i.e., x2 +y2 = 1. Let the set of these polynomials be denoted by Vnl�x� y�.
The form of these polynomials is

Vnl�x� y�= Vnl�! sin "�! cos"�= Vnl�!� "�= Rnl�!� exp�il"�� (355)

where n is a positive integer or zero; l is a positive or negative integer, subject to the constraints
n−�l� = even; �l� ≤ n, i is the complex number i = √−1; ! is the length of the vector from the
origin to the �x� y� pixel; and " is the angle between vector ! and the x-axis in the counterclockwise
direction.

In the following, we assume that the notations �Vnl�x� y�	
∗ and V ∗

nl�x� y� are equivalent where
the symbol * denotes the complex conjugate. Radial polynomials Rnl�!� are defined as

Rnl�!�=
n−�l�

2∑
s=0

�−1�s��n− s�!	!n−2s

s!� n+�l�
2 − s�!� n−�l�

2 − s�! (356)

Chapter 7 Feature Extraction and Selection Methods 205

We note that Rn�−l�!�= Rnm�!�. These polynomials are orthogonal and satisfy the equality

∫ ∫
x2+y2≤1

�Vnl�x� y�	
∗Vjk�x� y�dxdy = �

n+1
�nj�lk

where the meaning of Kronecker delta is as follows:

�ab =
{

1 a= b
0 otherwise

(357)

where the symbol ∗ denotes the complex conjugate. Zernike moments are projection of the image
function onto these orthogonal basis functions. The Zernike moments of order n, with repetition
l for a continuous image function f�x� y�, are

Anl =
n+1
�

∫ ∫
x2+y2≤1

f�x� y��Vnl�!� "�	
∗ dxdy = �An�−l�

∗ (358)

For a digital image,

Anl =
n+1
�

∑
x

∑
y

f�x� y�V ∗
nl�!� "�� x2 +y2 ≤ 1 (359)

The real Zernike moments for l �= 0 are
[
Cnl

Snl

]
= 2n+2

�

∫ ∫
x2+y2≤1

f�x� y�Rnl�!�

[
cos l"

− sin l"

]
dxdy (360)

or

Cnl = 2 Re �Anl�

= 2n+2
�

∫ ∫
x2+y2≤1

f�x� y�Rnl�!� cos l" dxdy (361)

Snl = −2 Im�Anl�

= −2n−2
�

∫ ∫
x2+y2≤1

f�x� y�Rnl�!� sin l" dxdy (362)

and for l= 0

Cn0 = An0 = 1
�

∫ ∫
x2+y2≤1

f�x� y�Rn0�!�dxdy

Sn0 = 0 (363)

For a digital image, when l �= 0,

[
Cnl

Snl

]
= 2n+2

�

+1∑
x=−1

+1∑
y=−1

f�x� y�Rnl�!�

[
cos l"

− sin l"

]
(364)

and when l= 0,

Cn0 = An0 = 1
�

+1∑
x=−1

+1∑
x=−1

f�x� y�Rn0�!�

Sn0 = 0 (365)

206 2. Feature Extraction

The connection between real and complex Zernike moments is �l > 0�

– Cnl = 2Re�Anl�
– Snl = −2Im�Anl�
– Anl = �Cnl−iSnl�

2 = �An�−l�∗

To compute the Zernike moments of a given image, the center of the image is taken as the origin,
and pixel coordinates are mapped to the range of the unit circle, i.e., x2 + y2 ≤ 1. Those pixels
that fall outside the unit circle are not used in the computation.

The image translation and scale normalization processes affect two of the Zernike features;
namely, �A00� and �A11�, the magnitude of Zernike moments A00 and A11.

1. �A00� is going to be the same for all images.

C00 = 2
�

∫ ∫
x2+y2≤1

g�x� y�R00�!�dxdy = 2
�
m00� S00 = 0 (366)

Since m00 = #,

�A00� =
∣∣∣∣
(
C00

2

)
− i

(
S00

2

)∣∣∣∣=
#

�
(367)

2. �A11� is equal to zero.

C11 = 4
�

∫ ∫
x2+y2≤1

g�x� y�R11�!� cos"dxdy

= 4
�

∫ ∫
x2+y2≤1

g�x� y� ! cos"dxdy

= 4
�

∫ ∫
x2+y2≤1

g�x� y�xdxdy

= 4
�
m10 (368)

and

S11 = 4
�

∫ ∫
x2+y2≤1

g�x� y�R11�!� sin "dxdy

= 4
�

∫ ∫
x2+y2≤1

g�x� y�! sin "dxdy

= 4
�

∫ ∫
x2+y2≤1

g�x� y� y dxdy

= 4
�
m01� (369)

Since m10 =m01 = 0 for all normalized images, then

�A11� =
∣∣∣∣
(
C11

2

)
− i

(
S11

2

)∣∣∣∣= 0 (370)

Therefore, �A00� and �A11� are not taken as features utilized in the classification.

Chapter 7 Feature Extraction and Selection Methods 207

Image reconstruction (inverse transform) from Zernike moments can be done in a simple way.
Suppose we know all moments Anl (Cnl and Snl) of an image f�x� y� up to a given order nmax.
We can reconstruct an image f̂ by

f̂ �x� y�=
nmax∑
n=0

∑
l

AnlVnl�!� "� (371)

where n−�l� = even and �l� ≤ n.
Since it is easier to work with real-valued functions, we can expand Equation (371) to

f̂ �x� y�=
nmax∑
n=0

∑
l

�Cnl cos l"+Snl sin l"�Rnl�!� (372)

where n−�l� = even and �l� ≤ n.
The reconstructed image can be generated by mapping f�x� y� to the �0�255	 range. To generate

a binary image, we can use a threshold of 128. One can choose the values of # and order as 256
and 12, respectively. After image normalization, the input image would turn out to be close to
the original.

2.11.6. Pattern Formation from Zernike Moments
Let us assume that nf = �p+1��q+1� subsequent Zernike moments, of orders from m00 to mpq,
have been extracted from a given normalized image. One can form the Zernike moment-based
pattern representing an image. Each Zernike moment of a given order is a complex number with
real part C and imaginary part S. In the pattern-forming phase, we represent a given ith moment
by its real-valued magnitude

√
C2 +S2, and we set this value as the ith element of the Zernike

pattern xzer.
The translation and scale normalization processes affect two of the Zernike features, namely,

�A00� and �A11�. The magnitude of the Zernike moments A00 is the same for all images, and the
moment �A11� is equal to zero. Therefore, �A00� and �A11� are not considered as pattern features
utilized in the classification. Consequently, the length of the Zernike pattern is equal nz = nf −2.

Values of mpq (and the resulting value nf) are found heuristically.

Example: Zernike moments have been successfully applied to handwritten character recognition.
Here, Zernike moments from (2,0) through (12,12) are extracted from binarized, thinned, and
normalized 32×32 pixel images of characters. From the initial number 169−2 = 167 of Zernike
moments, the final (reduced) 6 element patterns are selected by the rough sets methods and used
in recognition. The back-propagation neural network-based classifier yielded 92% accuracy in
this application.

3. Feature Selection

Pattern dimensionality reduction (and thus data set compression), via feature extraction and
feature selection, belongs to the most fundamental steps in data processing. Feature selection can
be an inherent part of feature extraction (for example, using principal component analysis) or
even a processing algorithm design (as in decision tree design). However, feature selection is
often isolated as a separate step in processing sequence.

We can define feature selection as a process of finding a subset of features, from the original
set of features forming patterns in a given data set, according to the defined criterion of feature
selection (a feature goodness criterion). Here, we consider feature selection as a process of
finding the best feature subset Xopt from the original set of pattern features, according to the

208 3. Feature Selection

defined feature goodness criterion Jfeature�Xfeature_subset�, without additional feature transformation
or construction. Feature selection should be stated in terms of the optimal solution of the selection
problem (according to the defined goal and criterion) and with the resulting algorithm of such
optimal selection.

3.1. Optimal Feature Selection

Assume that a limited-size data set Tall is given (consisting of Nall cases), constituted with n-feature
patterns x (labeled or unlabeled by target values), sometimes accompanied by a priori knowledge
about domain. Let all n features of the pattern (the pattern vector elements xi �i = 1�2� · · · � n�)
form the entire original feature set Xall = �x1� x2� · · · � xn�. The optimal feature selection is the
process of finding, for a given type of predictor, a subset Xopt = �x1�opt� x2�opt� · · · � xm�opt� containing
m ≤ n features from the set of all original features Xopt ⊆ Xall that guarantee accomplishment
of a processing goal while minimizing a defined feature selection criterion (a feature goodness
criterion) Jfeature�Xfeature_subset�. The optimal feature set will depend on the type of predictor designed.
More precisely, optimal feature selection will depend on the overall processing goal and its
performance evaluation criterion, type of predictor designed, existing data set, a priori domain
knowledge, original set of pattern features, overall processing algorithm applied, and defined
criterion of feature subset goodness Jfeature (feature selection criterion). A solution for the optimal
feature selection may not be unique. Different subsets of original features may result in the same
performance.

The goals of data processing, roles of features, and performance evaluation criteria of processing
algorithms may be different. Feature selection algorithms, based on defined feature selection
(feature goodness) criteria and the resulting optimal features, will depend on these conditions. For
example, for the same data set from the same domain, optimal features found for the classification
task, with minimum average classification error probability criterion, might be different that those
found for the data compression task with the minimum sum squares error criterion. Similarly, an
optimal feature set found for a Bayesian quadratic discriminant-based classifier could be different
that that found for a back-propagation neural network classifier.

Generally, the criterion J of performance evaluation for an overall processing algorithm and
the criterion Jfeature of feature goodness are different, although one can design optimal feature
selection where these criteria can be the same.

3.1.1. Paradigms of Optimal Feature Selection
We will shortly discuss two paradigms in optimal feature selection: minimal representation and
maximal class separability.

The general goal of feature selection typically includes the key ability of the processing
algorithm (using an optimal feature subset) to best process novel instances of domain data that
were not seen or used during the design (generalization problem).

Since the processing algorithm (for example, a classifier) is a data model, and since optimal
feature selection influences processing algorithm complexity, we can state that optimal feature
selection should have much in common with finding an optimal data model. This similarity implies
that optimal feature selection might possibly be supported by some general paradigms of data
model building. Even though these paradigms have mostly theoretical value, experience shows
that they may have also practical implications. The most prominent paradigms in data model
building, and potentially in optimal feature selection, are the so-called minimum construction
paradigms: Occam’s razor, minimum description length, and minimum message length
(see Chapter 15).

In the light of minimum construction, a straightforward technique of best feature selection
could be to choose a minimal feature subset that fully describes all concepts (for example, classes

Chapter 7 Feature Extraction and Selection Methods 209

in prediction-classification) in a given data set. However, this approach, while applicable for a
given (possibly limited) data set, may not be useful for processing unseen patterns, since these
methods might not provide good generalization.

Methods based on minimum construction paradigms for limited-size data sets should take into
account generalization problem. This kind of approach relates to the general solution of the
bias-variance dilemma in data processing design based on limited-size data sets.

Informally, let us transform these somewhat overlapping minimum construction paradigms
into the terms of optimal feature selection. The paradigms deal with generalization versus the
complexity of a processing algorithm (a data model complexity) and are influenced by the size
of the feature set. They indicate that in order to obtain the best generalization, we should find
the processing algorithm that has minimal complexity guaranteed by the minimal feature set and
that well represents the available data set. Such a paradigm sheds some light on the design of
the generalizing algorithm for optimal feature selection. However, it does not provide a rigorous
design procedure.

Designers of algorithms based on optimal feature selection face the bias/variance dilemma
(see Chapter 15). This dilemma underlines the controversy related to the selection of a processing
algorithm and optimal feature set complexity: namely, the need to find the best process for a
given data set and simultaneously to provide the best generalization for future patterns. Given this
dilemma, designers divide the generalization error criteria into the sum of two parts: squared bias
and variance. If the designer too precisely fits the complex processing algorithm to given data in
a large feature set, then the algorithm’s ability to generalize for unseen patterns may deteriorate.
By increasing the complexity of the processing algorithm and feature set, we can reduce the bias
and increase the variance. On the other hand, a processing algorithm with a small feature set may
not be able to process a given data set satisfactorily. A processing algorithm that is too simple and
thus inflexible (with too small a number of parameters), influenced by its small feature set, may
have too big a bias and too small a variance. The robust processing algorithm, with its associated
set of features (reflecting complexity), implements a tradeoff between its best ability to process
a given data set and its generalization capability. This problem is also called the bias/variance
tradeoff. Despite the theoretical power of design paradigms with minimal structures (for example,
with a minimal set of features), in practice, for limited size data sets, the optimal solution is not
always a minimal one.

The second general paradigm of optimal feature selection, mainly used in classifier design, relates
to selecting the feature subset that guarantees maximal between-class separability for a reduced data
set and thus helps design a better predictor-classifier. This paradigm relates to discriminatory power
of features, i.e., their ability to distinguish patterns from different classes.

Selection of the best feature subset for a given prediction task corresponds to feature relevancy.
The relevance of a feature can be understood as its ability to contribute to improving the predictor’s
performance. For a predictor-classifier, relevance would mean the ability to improve classification
accuracy.

A few attempts (both deterministic and probabilistic) have been made in machine learning to
define feature relevancy. Let us assume a labeled data set T with N cases (x, target), containing
n-feature patterns x and associated targets. For classification, a target is a categorical class target
ctarget (a concept c) with values from the set of l discrete classes �c1� c2� · · · � cl�. For regression,
a target is the desired output (scalar or vector) of a real valued predictor (see Chapter 4).

The following definition of deterministic relevancy was proposed for Boolean features in
noise-free data sets for the classification task.

Definition 1. A feature xi is relevant to a class c (a concept c) if xi appears in every Boolean
formula that represents c, and is irrelevant otherwise.

210 3. Feature Selection

Definition 2. A feature xi is relevant if there exists some value of that feature axi and a predictor
output y value ay (generally a vector) for which P�xi = axi� > 0 such that

P�y = ay�xi = axi� �= P�y = ay� (373)

According to this definition, a feature xi is relevant if knowledge of its value can change the
estimates of y, or in another words, if an output vector y is conditionally dependent on xi. Since the
above definitions do not deal with the relevance of features in the parity concept, a modification
was proposed. Let us denote a vector of features vi = �x1� x2� · · · � xi−1� xi+1� · · · � xn�T (with its
values denoted by avi

) obtained from an original feature vector x by removing the xi feature.

Definition 3. A feature xi is relevant if there exists some value of that feature axi and a predictor
output y value ay (generally a vector) for which P�xi = axi� > 0 such that

P�y = ay�vi = avi
�xi = axi� �= P�y = ay�vi = avi

� (374)

According to this definition, a feature xi is relevant if the probability of a target (given all
features) can change if we remove knowledge about a value of that feature. Since the above
definitions are quite general and may provide unexpected relevancy judgments for a specific data
set (for example, one with the nominal features numerically encoded by indicators), more precise
definitions of so-called strong and weak relevance were introduced.

Definition 4. A feature xi is strongly relevant if there exists some value of that feature axi , a
predictor output y value ay, and a value avi

of a vector vi for which P�xi = axi �vi = avi
� > 0

such that

P�y = ay�vi = avi
� xi = axi� �= P�y = ay�vi = avi

� (375)

Strong relevance indicates that a feature is indispensable, which means that its removal from a
feature vector will decrease prediction accuracy.

Definition 5. A feature xi is weakly relevant if it is not strongly relevant, and there exists some
subset of features (forming a vector zi) from a set of features forming patterns vi for which there
exist some value of that feature axi , a predictor output value ay, and a value azi

of a vector zi, for
which P�xi = axi � zi = azi

� > 0 such that

P�y = ay�zi = azi
� xi = axi� �= P�y = ay�zi = azi

� (376)

Weak relevance indicates that a feature might be dispensable but sometimes (in the company of
some other features) may improve prediction accuracy.

In the light of the above definitions, a feature is relevant if it is either strongly relevant
or weakly relevant; otherwise, it is irrelevant. By definition an irrelevant feature will never
contribute to prediction accuracy and thus can be removed.

The theory of rough sets defines deterministic strong and weak relevance for discrete features
and discrete targets. For a given data set, a set of all strongly relevant features forms a core. A
minimal set of features satisfactory to describe concepts in a given data set, including a core and
possibly some weakly relevant features, form a reduct. A core is an intersection of reducts.

It has been shown that, for some predictor designs, feature relevancy (even strong relevancy)
does not imply that the feature must be in an optimal feature subset. Relevancy, although helpful in
feature assessment, does not necessarily contribute to optimal predictor design with generalization
ability.

Since an optimal feature set depends on the type of predictor used, definitions of absolute
irrelevant, conditionally irrelevant, and conditionally relevant are suggested. Absolute irrelevant
features, equivalent to irrelevant features as defined above, are those that cannot contribute to

Chapter 7 Feature Extraction and Selection Methods 211

prediction performance, and thus can be removed. The remaining features are either conditionally
irrelevant or relevant, depending on the designed predictor type. For a given type of predictor,
conditionally irrelevant features are these not included in an optimal set of features (for which a
predictor achieves maximal performance). Conditionally irrelevant features are not included in
the optimal set for a given predictor and thus can be removed. However, conditionally irrelevant
features for one type of a predictor could be conditionally relevant for another types. The condi-
tional relevance depends not only on the type of predictor used but also on the applied feature
optimality criterion.

3.1.2. Feature Selection Methods and Algorithms
Although optimal feature selection, related to data model discovery and processing algorithm
design, is a rather general problem, so far the statistical, machine learning, and automatic control
communities have developed slightly different methods of solution. The existing feature selection
methods, depending on the feature selection criterion used, include two main streams:

– open loop methods (filter, preset bias, front end)
– closed loop methods (wrapper, classifier feedback)

Open loop methods, also called filter, preset bias, or the front end methods (Figure 7.12), are
based mostly on selecting features through the use of between-class separability criteria. These
methods do not consider the effect of selected features on the performance of an entire processing
algorithm (for example, a classifier), since the feature selection criterion does not involve predictor
evaluation for reduced data sets containing patterns with selected feature subsets only. Instead,
these methods select, for example, those features for which the resulting reduced data set has
maximal between-class separability, usually defined based on between-class and between-class
covariances (or scatter matrices) and their combinations. The ignoring of the effect of a selected
feature subset on the performance of the predictor (lack of feedback from predictor performance)
is a weak side of open-loop methods. However, these methods are computationally less expensive.

Closed loop methods, also called wrapper, performance bias, or classifier feedback methods
(Figure 7.13), are based on feature selection using predictor performance (and thus providing
processing feedback) as a criterion of feature subset selection. The goodness of a selected feature
subset is evaluated using as a criterion Jfeature = Jpredictor, where Jpredictor is the performance evalu-
ation of a whole prediction algorithm for a reduced data set containing patterns with the selected
features as pattern elements. Here, the selection algorithm is a “wrapper” around the prediction
algorithm.

Closed loop methods generally provide better selection of a feature subset, since they fulfill
the ultimate goal and criterion of optimal feature selection, i.e., they provide best prediction. The

Feature
selection

search

Predictor
PR

design

Feature
subset X

feature The best feature
subset X

opt

T
Xopt

J

Reduced data set

Data set
Tall

Evaluation
of feature

subset

Predictor
performance
evaluation

n-dimensional
patterns

Figure 7.12. An open loop feature selection method.

212 3. Feature Selection

Tall

Feature
selection

search

Predictor
PR

design

The best feature

subset Xopt

T
Xopt

J

Design a
predictor PR

Performance
evaluation

feature

Feature
subset

of PR featur Loop for feature selection

Data set

n-dimensional
patterns

Reduced data set

Predictor
performsnce
evaluation

Figure 7.13. A closed loop feature selection method.

prediction algorithm used in closed-loop feature selection may be the final predictor PR (which
provides best selection, Jfeature = J), or a simpler predictor PRfeature may be used for reasons of
computational feasibility.

A procedure for optimal feature selection contains

– feature selection criterion Jfeature that allows us to judge whether one subset of features is
better than another (evaluation method)

– systematic search procedure that allows us to search through candidate subsets of features and
includes the initial state of the search and stopping criteria

A search procedure selects a feature subset from among possible subsets of features, and the
goodness of this subset is evaluated using the feature selection (optimality judgement) criterion.

Some feature selection criteria do not obey the monotonicity property, which limits the appli-
cation of the dynamic programming type of search. Ideally, a feature selection criterion should be
the same as the criterion for evaluating an entire predictor algorithm (a prediction quality evalu-
ation). This is the ideal approach for closed-loop type (wrapper) feature selection. In practice,
simplified selection criteria could be used with simpler predictors that are used exclusively for
feature selection.

An ideal search procedure would implement an exhaustive search through all possible subsets
of features. This approach is, in fact, the only method that ensures finding an optimal solution.
In practice, for large number of features, an exhaustive search is not feasible. Thus, in order to
reduce computational complexity, simplified nonexhaustive search methods are used. However,
these methods usually provide only a suboptimal solution for feature subset selection.

3.1.3. Feature Selection Criteria
Depending on the criterion used, feature selection, like other optimization problems, can be
described in two ways: either as the maximization of a criterion or as the minimization of the
reversed criterion. Here, we will consider criteria based on maximization, where a better subset
of features always gives a bigger value of a criterion, and the optimal feature subset gives the
maximum value of the criterion.

A feature selection algorithm is based on defined criteria for feature selection (goodness),
which ideally should be the same as the criteria for the design of a generalizing prediction.

Chapter 7 Feature Extraction and Selection Methods 213

In other words, the general goal of feature selection typically takes into account the ability of
the processing algorithm to best process new data patterns. This constitutes a tradeoff between
predictor generalization capability and the dimension and type of features used for pattern
formation.

In the light of the generalization goal, we may expect specific behavior of the feature selection
criteria during an optimal search process. Reduction of feature dimensionality initially improves
the generalization ability of an entire predictor (with increasing values of the feature goodness
criterion). However, when a particular reduction of pattern dimensionality is reached, the gener-
alization ability starts to degrade. This change may correspond to the point when the best gener-
alizing feature subset is obtained, when the selection criterion reaches its maximum. Surprisingly,
however, many feature selection criteria do not behave in this way. The monotonicity property
is defined as

Jfeature�X
+
feature�≥ Jfeature�Xfeature� (377)

where Xfeature denotes a feature subset, and X+
feature denotes a larger feature subset that contains

Xfeature as a subset. This definition means that adding a feature to a given feature set results in a
criterion value that stays the same or increases:

Jfeature��x1��≤ Jfeature��x1� x2��≤ Jfeature��x1� x2� x3��≤ · · ·
≤ Jfeature��x1� x2� · · · � xn�� (378)

On the other hand, deleting a feature does not improve performance. Several criteria, such as
the class separability (based on covariance computations), the Bayes average probability of error,
and some distance measures such as the Mahalanobis or Bhattacharyya distance satisfy the
monotonicity condition. However, some criteria used in machine learning (such as inconsistency
rate) do not obey the monotonicity condition.

Criteria that include monotonicity properties cannot be used to compare the goodness of
different size feature subsets when a large subset contains a smaller one. However, such criteria
can still be used to compare feature subsets of equal size. In practice, for a limited-size data set
and performance estimation based on that data set, removing a feature may improve performance.
Thus, by using estimates of ideal performance as criteria, we still can seek an optimal reduced
subset of features.

Ideally, the feature selection criterion should be the same as the criterion for evaluating an
entire predictor algorithm (a prediction quality evaluation), i.e., Jfeature = J . For example, for
prediction-regression the criterion could be a sum of squares error, and for prediction-classification
a classification error rate. In an ideal closed-loop type (wrapper) feature selection approach, the
entire predictor is used in order to evaluate the goodness of a feature subset, and this predictor’s
performance criterion should be the same as the feature selection criterion. In practice, simplified
closed-loop feature selection criteria could be used, based on a simpler predictor PRfeature and
only for feature evaluation, with a performance evaluation criterion equal to the feature extraction
criterion, i.e., Jfeature = JPRfeature

. For example, instead of evaluating feature goodness by training
and testing a complex neural network-type predictor, a simpler predictor, such as k-nearest
neighbors, along with its performance evaluation, for example the error rate, can be used for
feature evaluation.

Open-loop feature selection criteria are frequently designed differently for real-valued features
and prediction-regression and for discrete features for prediction-classification, whereas closed
loop criteria are usually adequate for both real-valued and discrete features. Some criteria may
include penalty terms that favor lower dimensionality of optimal feature subsets.

214 3. Feature Selection

3.1.4. Open Loop Feature Selection Criteria
Open loop feature selection criteria are usually based on information (such as interclass
separability) contained in the data set alone. They do not consider the direct influence of the
selected feature subset on the performance of an entire predictor. They do not provide feedback
from the predictor quality assessment to the feature selection process.

3.1.5. Criteria Based on Minimum Concept Description
Feature selection criteria based on the minimum concept description paradigm have been studied
in machine learning and in statistics for discrete features of noise-free data sets. One technique
for best feature selection is to choose a minimal feature subset that fully describes all the concepts
in a given data set. Here, a criterion of feature selection could be defined as a Boolean function
Jfeature�Xfeature� with value 1 if the feature subset Xfeature is satisfactory in describing all concepts
in a data set, and otherwise having a value 0. The final selection would be based on choosing a
minimal subset for which the criterion gives value 1.

3.1.6. Criteria Based on Mutual Information
Based on information theory analysis, the mutual information (MI) measure of data sets (based
on entropy) can be used as a criterion for feature selection. For two variables, mutual information
can be considered to provide a reduction of uncertainty about one variable given the other one. Let
us consider mutual information for classification for a given data set T containing n-dimensional
pattern vectors x labeled by l classes ctarget ∈ �c1� c2� · · · � cl� in feature pattern vector x. The entire
set of original features is a collection of pattern vector elements: X = �x1� x2� · · · � xl�. The mutual
information for the classification problem is the reduction of uncertainty about classification given
a subset of features X forming a feature pattern x. It can be understand as the suitability of the
feature subset X for classification. If we consider initially only probabilistic knowledge about
classes, the uncertainty is measured by entropy as

E�c�= −
l∑

i=1

P�ci� log2 P�ci� (379)

where P�ci� is the a priori probability of a class ci occurrence (which may be estimated based on
the data set). Entropy E�c� is the expected amount of information needed for class prediction.
The entropy is maximal when a priori probabilities P�ci� are equal. The uncertainty about class
prediction can be reduced by knowledge abut feature patterns x formed with features from a
subset X, characterizing recognized objects and their class membership. The conditional entropy
E�c�x� (a measure of uncertainty), given pattern x, is defined as

E�c�x�=
l∑

i=1

P�ci�x� log2 P�ci�x� (380)

The conditional entropy, given the subset of features X, is defined for discrete features as

E�c�X�= −∑
all x

P�x�

(
l∑

i=1

P�ci�x� log2 P�ci�x�
)

(381)

The outer sum considers all feature vectors x in a feature space. Using equality P�ci�x� = P�ci�x�
P�x� ,

we can obtain

E�c�X�= −∑
all x

P�x�

(
l∑

i=1

P�ci�x�
P�x�

log2

P�ci�x�
P�x�

)

= −∑
all x

l∑
i=1

P�ci�x� log2

P�ci�x�
P�x�

(382)

Chapter 7 Feature Extraction and Selection Methods 215

For patterns with continuous features, the outer sum should be replaced by an integral and the
probabilities P�x� by the probability density function p�x�:

E�c�X�= −
∫

all x
p�x�

(
l∑

i=1

P�ci�x� log2 P�ci�x�
)

(383)

Using Bayes’s rule,

P�ci�x�= p�x�ci�P�ci�
p�x�

(384)

The probabilities P�c�x� that are difficult to estimate can be replaced by p�x� and P�x�ci�. The
initial uncertainty (based on a priori probabilities P�ci� only), might decrease given knowledge
about feature pattern x. The mutual information MI�c�X� between the classification and the
feature subset X is measured by a decrease in uncertainty about the prediction of classes, given
knowledge about patterns x formed from features X:

Jfeature�X�=MI�c�X�= E�c�−E�c�X� (385)

Since for discrete features we can derive the equation

Jfeature�X�=MI�c�X�= ∑
all x

l∑
i=1

P�ci�x� log2

P�ci�x�
P�x�P�ci�

(386)

the mutual information is a function of c and x; if they are independent, the mutual information
is equal to zero (knowledge of x does not improve class prediction).

Mutual information is the unbiased information about the ability of feature subset X to predict
classes. The criterion MI�c�X� is a theoretical limit for feature goodness (similarly, a classifier
design based on the Bayes optimal decision is a theoretical limit of accuracy for predictors).
The informative power of a feature subset X is never larger than its mutual information with a
predicted class. Features from a subset X are absolutely irrelevant for the classification task if
their mutual information is equal to zero.

The mutual information criterion is difficult to use in practice due to the difficulties and
inaccuracy of estimating conditional probabilities for limited-size data sets. These problems
surface when the dimensionality of feature patterns is high and the number of cases small. For
low-dimensional data patterns, application of the mutual information criterion (with probability
density estimations) can be used to choose the best feature subset from all possible feature subsets.
In the simplified application of the mutual information criterion for feature selection, a greedy
algorithm adds one most-informative feature at a time. The added feature is chosen as that which
has the maximal mutual information with a class and minimal mutual information with already
selected features. This method does not solve the redundancy problem between groups of features.

3.1.7. Criteria Based on Inconsistency Count
Another criterion for feature subset evaluation for discrete feature data sets is the inconsistency
measure. Let us consider a given feature subset Xfeature and a reduced data set TXfeature

, with all
Nall cases �xf � ctarget�. Each case contains a pattern xf constituted with m features from a subset
Xfeature and labeled by classes ctarget. The inconsistency criterion Jinc�TXfeature

� for a data set TXfeature

can be defined as the ratio of all inconsistency counts divided by the number of cases. Two cases
�xjf � c

i
target� and �xkf � c

k
target� are inconsistent if both have the same patterns xjf = xkf but different

associated classes cjtarget �= cktarget. We can find the inconsistency count of a given set of the same
patterns xif for which cases are inconsistent. Here, for the same matching patterns xif we compute

216 3. Feature Selection

the inconsistency count as a number ninc�i of all inconsistent cases for the matching pattern minus
the largest number of cases in one of the classes from this set of inconsistent cases. For example,
let us assume that we have, in a reduced data set TXfeature

, v inconsistent cases for a pattern xif , with
q1 cases from a class c1, q2 cases from a class c2, and q3 cases from a class c3�v= q1 +q2 +q3�.
If q2 is the largest number among the three, then the inconsistency count for matching pattern xif
is Ii = n−q2. The inconsistency rate criterion is defined for a reduced data set TXfeature

as a ratio
of sum of all inconsistency counts and a number of all cases Nall in the data set

Jinc�TXfeature
�=

∑
all inconsistent patterns Ii

Nall

(387)

3.1.8. Criteria Based on Rough Sets’ Quality of Classification
For prediction-classification, feature subset goodness can be measured by its ability to classify
concepts (family of classes) in a given data set. This idea comes from rough sets theory. Let us
consider a data set represented by the information system S with the close universe U (object
sets with card U = N) and a full set of attributes X. Consider a subset of attributes A ⊆ X. Let
$ = �Y1� Y2� � � � � Ym� for every Yi ⊆ U�1 ≤ i ≤ m� be a classification (a partition, a family of
subsets) of U . The family of sets $ = �Y1� Y2� · · · � Ym� is a classification in U in S, if Yi ∩Yj = ∅
for every i� j ≤ m� i �= j and

⋃m
i=1 Xi = U . Xi are called classes of $. Here, we will consider a

classification based on a subset of attributes A. The quality of classification $ by A, imposed
by the set of attributes A, is defined as follows:

!A�$�= %m
i=1card �AYi�

card �U�
(388)

which represents the ratio of all A correctly classified objects to all objects in the information
system S. The term AYi denotes the lower approximation of class Yi by the set of attributes A.

This measure can be considered as a feature selection criterion if we assume Xfeature = A:

Jfeature�Xfeature�= !A�$�= !Xfeature
= %m

i=1card �XfeatureYi�

card �U�
(389)

The above criterion is an open-closed loop type from the point of view of a given data set (the
training set), since it considers selection of a feature subset (a reduct) that guarantees correct
classification for a given data set. However, this criterion provides no assurances about how well
this feature subset will perform for new unseen cases.

3.1.9. Criteria Based on Interclass Separability
Prediction-classification open loop criteria for feature selection are frequently based on interclass
separability, computed based on covariances (or scatter matrices) estimated for given data sets
for each class and between classes. They are constructed based on an evaluation paradigm such
that a good feature (with high discernibility power) will cause a small within-class scatter and a
large between-class scatter.

Let us first study a given original data set Tall containing Nall cases �xi� citarget� with patterns x
constituted with n features and labeled by one target class citarget from all possible l classes. For a
data set Tall, we denote a number of cases in each class ci�i= 1�2� · · · � l� by Ni�

∑l
i=1 Ni = Ntotal�.

Recalling Fisher’s analysis, one can estimate the expected value (a mean) for patterns within each
class by

�i =
1
Ni

Ni∑
j=1�xj in ci

xj� �i = 1�2� · · · � l� (390)

Chapter 7 Feature Extraction and Selection Methods 217

In order to present a scatter of patterns around a mean and within patterns of one class ci, one
ideally would consider an unbiased estimate of a squared covariance matrix of class n×n,

%i =
1

Ni −1

Ni∑
j=1�xj in ci

�xj −�i��x
j −�i�

T � �i = 1�2� · · · � l� (391)

However, instead of a covariance matrix, a squared n× n within-class ci scatter matrix is
considered instead:

Si =
Ni∑

j=1�xj in ci

�xj −�i��x
j −�i�

T � �i = 1�2� · · · � l� (392)

This matrix is proportional to the covariance matrix, symmetric, and positive semidefinite (and,
for Nall > n, usually nonsingular). In order to provide a summarizing measure for scatter patterns
around means for all l classes, the so-called within-class scatter matrix is defined:

Sw =
l∑

i=1

Si (393)

To illustrate between-class scatter, first we define estimates of the total data mean and the total
scatter matrix (for all Nall patterns from Tall) as a proportional representation of a covariance
estimate. The total data mean can be estimated by

� = 1
N

N∑
j=1

xj = 1
N

l∑
i=1

Ni�i (394)

and the total scatter matrix for all patterns as

St =
Nall∑
j=1

�xj −���xj −��T (395)

We find that the total scatter matrix can be decomposed into two matrices

St = Sw +Sb (396)

where Sw is the within-class scatter matrix and the n× n square matrix Sb is the so-called
between-class scatter matrix, defined as

Sb =
l∑

i=1

Ni��i −����i −��T (397)

To form a final scalar feature selection criterion involving interclass separability, we need to define
a function that gives a larger value when within-class scatter is smaller or between-class scatter
is larger. Generally, this function gives a larger value when interclass separability is larger. For
one feature, one can say that a feature is “good” (has a large discriminatory or predictive power)
if its within-class variance is small and its between-class variance is large. For multiple classes
and multifeature patterns, the following feature selection criteria, based on interclass separability,
are defined:

218 3. Feature Selection

1. Ratio of determinants for between-class and within-class scatter matrices:

Jfeature = �Sb�
�Sw� = det�Sb�

det�Sw�
(398)

where the determinant �Sb� denotes a scalar representation of the between-class scatter matrix,
and similarly the determinant �Sw� denotes a scalar representation of the within-class scatter
matrix.

2. Ratio of determinants for between-class and total scatter matrices:

Jfeature = �Sb�
�St�

= �Sb�
�Sb +Sw� (399)

which in older literature is referred to as Wilks’ lambda.
3. Trace of S−1

w Sb:

Jfeature = trace�S−1
w Sb� (400)

where trace denotes a matrix trace.
4. Logarithm of S−1

w Sb:

Jfeature = ln
(
S−1
w Sb

)
(401)

For single feature patterns x, and for two-class classification, the following version of the
interclass separation criterion can be used:

Jfeature = FFisher = �
1 −
2�
2

s2
1 + s2

2

(402)

Here, data patterns mean, for each class,

i =
1
Ni

Ni∑
j=1�xj in ci

xj� �i = 1�2� (403)

and the scatter of a feature x for each class is

s2
i = 1

Ni

Ni∑
j=1�xj in ci

�
i −xj�2� �i = 1�2� (404)

Finally, the total scatter of feature x in an entire data set is

s2
t = s2

1 + s2
2 (405)

The above single feature selection criterion, which is based on the Fisher linear discriminant
analysis and on interclass separability, is called the Fisher F-ratio. It allows us to find a feature
guaranteeing maximization of the between-class variance while simultaneously minimizing the
within-class variance.

Chapter 7 Feature Extraction and Selection Methods 219

3.1.10. Closed Loop Feature Selection Criteria
The closed-loop-type feature selection criteria and their estimations are similar both for
classification and for regression type predictors.

Let us consider a feature selection criterion for a prediction task based on the original data
set Tall that includes Nall cases �x� target� consisting of n-dimensional input patterns x (whose
elements represent all features X) and a target value. Let us assume that the m-feature subset
Xfeature ⊆ X ought to be evaluated based on the closed-loop-type criterion. First, a reduced data
set Tfeature, with patterns containing only m features from the subset Xfeature, should be constructed.
Then a type of predictor PRfeature (for example, k-nearest neighbors or a neural network), used
for feature goodness evaluation, should be chosen. This predictor ideally should be the same
as the final predictor PR for an entire design; however, in a simplified suboptimal solution, a
computationally less expensive predictor can be used only for feature selection purposes. After a
reduced data set Xfeature has been constructed and a predictor algorithm PRfeature has been decided
for the considered feature subset Xfeature, then evaluation of feature goodness, equivalent to the
predictor evaluation criterion, can be performed. Doing so will require defining a performance
criterion JPRfeature

, of a predictor PRfeature, and an error counting method showing how to estimate
a performance and how to grasp its statistical character through averaging of results. Consider
as an example a holdout error-counting method for predictor performance evaluation. In order to
evaluate the performance of a predictor PRfeature, an extracted feature data set Tfeature is split into
a Ntra-case training set Tfeature�tra, and a Ntest-case test set Tfeature�test (the holdout for testing). Each
case �xif � targeti� of both sets contains a feature pattern xf labeled by a target.

The criteria for evaluating the performance of predictor PRfeature should be considered separately
for regression and classification.

In prediction-regression, the predicted output variables are continuous. Prediction-regression
performance criteria are based on the counting error between target and guessed real values. Let us
consider defining a feature selection criterion for a prediction-regression task, with a q-dimensional
output vector y ∈ R

q whose elements take real values. Here, the design is based on a reduced
feature data set Tfeature (with Nall cases). This data set’s case �xif �yitarget� includes m-dimensional
feature input patterns xf and associated real-valued ytarget ∈ R

q target vectors for outputs. Elements
of patterns xf are features from the subset Xfeature. One example of the predictor performance
criterion JPRfeature

, being here equivalent to the feature selection criterion Jfeature = JPRfeature
, could be

Jfeature = JPRfeature
= Ĵsquared =

Nall∑
i=1

�yitarget −yi�T �yitarget −yi�

=
Nall∑
i=1

m∑
j=1

�yij�target −yij�
2 (406)

which boils down to the sum of squares errors. This criterion is evaluated based on a limited-size
test set Tfeature�test obtained from the example by splitting the entire set Tfeature into subsets Tfeature�tra

for training (design) and Tfeature�test for testing.
In prediction-classification, cases in the feature subset Tfeature are pairs �xf � ctarget� that include

the feature input pattern xf and a categorical-type target ctarget being one of the possible l classes
ci. The quality of classifier PRfeature, computed, for example (for holdout error counting), based
on the limited-size test set Tfeature�test with Ntest patterns, can be measured using the performance
criterion JPRfeature

below (here equal to the feature selection criteria Jfeature), which estimate the
probabilities of errors (expressed in percent) by relative frequencies of errors:

JPRfeature
= Ĵall miscl = nall miscl

Ntest

·100% (407)

220 3. Feature Selection

where nall miscl is the number of all misclassified patterns, and Ntest is the number of all tested
patterns. This measure is an estimate of the probability of error P(assigned class different than
target class), expressed in percent (percentage of all misclassified patterns, an error rate, or the
relative frequency of errors).

3.1.11. Computing Feature Selection Criteria
Let us consider a given m-feature subset Xfeature, created from a n-feature set of original features
X = �x1� x2� · · · � xn�. Computing a feature selection criterion Jfeature�Xfeature�, for a given m-feature
subset Xfeature, first requires the creation of a reduced data set Tfeature extracted from the original
total data set Tall. This reduced data set Tfeature contains Nall cases with m-dimensional feature
pattern vectors xf , containing, as elements, features from the considered subset Xfeature, and the
same targets as in the original entire data set. Other n−m “columns” of the entire data set are
discarded. For this reduced data set Tfeature, a feature selection criterion could be computed.

The computing of closed-loop-type feature selection criteria, which is based on the evaluation of
feature goodness by testing the performance of an entire predictor, is computationally expensive.
It involves design (training) of a predictor PRfeature and its performance evaluation, both based on a
reduced data set Tfeature. First, for a given m-feature subset Xfeature, a reduced m-feature pattern data
set Tfeature is constructed (with Nall cases). Then, based on this reduced data set, a chosen predictor
PRfeature is designed. Finally, the performance of this designed predictor is evaluated, according to
its defined evaluation criterion JPRfeature

, which is equal to feature selection criterion Jfeature. Design
and performance evaluation of a predictor used for feature selection can be realized using one of
the methods of predictor design-evaluation. Such a method splits the reduced data set Tfeature into
training and test sets and then uses a statistical error counting method. For example, the average
holdout, leave-one-out, or leave-k-out method of predictor design/performance evaluation could
be used.

For open-loop-type feature selection criteria, which are based on interclass separability, first the
within-class Sw and between-class Sb scatter matrices are computed for a reduced data set Xfeature,
and then the final value of criterion Jfeature is computed as a function of these scatter matrices. No
predictor performance evaluation is considered for the tested features.

3.1.12. Search Methods
Given the large number of features constituting a pattern, the number of possible feature subsets
evaluated by using exhaustive search-based feature selection could be too high to be computa-
tionally feasible. For n features, a total of 2n subsets (including an empty subset) can be formed.
For n = 12 features, the number of possible subsets is 4096; however, for n = 100, the number
of possible subset is larger than 1030, which makes exhaustive search unrealizable. If, for some
design reason, we are searching for a feature subset containing exactly m features, then for n
feature patterns, the total number of possible m-feature subsets is(

n
m

)
= n!
�n−m�!m! (408)

This number (which can be much smaller than 2n) can be, from a computational perspective, too
high.

Generally, feature selection is an NP-hard problem, and for highly dimensional patterns, an
exhaustive search can be impractical and suboptimal selection methods should be used. Next,
we discuss an exhaustive search technique and the optimal branch and bound method. Then
we consider two suboptimal greedy search methods: forward and backward search. We also
discuss random search, and finally we give pointers suboptimal search methods such as simulated
annealing and genetic programming.

For a small number of pattern features, the exhaustive search could be acceptable and could
guarantee an optimal solution.

Chapter 7 Feature Extraction and Selection Methods 221

Algorithm: Feature selection based on exhaustive search

Given: A data set Tall with Nall labeled patterns constituted with n features X = �x1� x2, · · · � xn�.
A feature selection criterion Jfeature with a defined computation procedure based on a limited-size
data set TXfeature

.

1. Set j = 1 (a counter of the feature subset number).
2. Select a distinct subset of features Xj ⊆ X (with the number of elements 1 ≤ NXj ≤ n).
3. For a selected feature subset Xj , compute a feature selection criterion Jfeature�X

j�.
4. If j ≤ 2n, continue from step 2; otherwise, go to the next step.
5. Chose an optimal subset X̂opt with a maximal value of the selection criterion

Jfeature�X̂opt�≥ Jfeature�X̂
j�� j = 1�2� · · · �2n (409)

A sequence of generated distinct feature subsets Xj is not important for the above algorithm. For
example, for the three feature patterns X = �x1� x2� x3�, one can generate the following exhaustive
collection of 23 = 8 feature subsets (including an empty subset):

� �� �x1�� �x2�� �x3�� �x1� x2�� �x1� x3�� �x2� x3�� �x1� x2� x3� (410)

The algorithm guarantees finding an optimal feature subset. Depending on the feature selection
criterion (and the procedure for its estimation), either an open loop or a closed loop feature
selection scheme is consequently employed.

3.1.13. Branch and Bound Method for Optimal Feature Selection
In combinatorial optimization, in order to avoid a costly exhaustive search, branch and bound
methods were developed and adapted to optimal feature selection. The branch and bound
search can be used for feature selection, assuming that a feature selection criterion satisfies the
monotonicity relation. This method allows us to find an optimal set of features without needing
to test all possible feature subsets. Using a tree representation for the exhaustive subset search,
the branch and bound methods with monotonic performance criterion are based on the idea of
discarding some subtrees from the exhaustive search. The removed subtrees contain subsets of
feature that would not improve performance in the search procedure. To explain the method, we
consider an attempt to construct a fully exhausted search tree (containing all possible subsets
of features) designed in a way that allows reduction of a search by employing the idea of
monotonicity of a feature selection criterion.

We start with pattern feature of all n-elements, represented in this algorithm as a sequence
x1� x2� · · · � xn, and search for the best subset containing a known number of m features. Let
us denote the indices of the d = n−m discarded features (from all sets of n features X) by
z1� z2� · · · � zd. Here, each variable zi can take an integer number (the index number of the feature
from the sequence of features taken from X) from the set of indices �1�2� · · · � n�. We note that
each variable zi has a distinct index number, since each feature can be discarded only one time.
The order of variables zi is not important, since any permutation of the sequence z1� z2� · · · � zd
gives an identical value for the feature selection criteria. In order to better design a search tree,
we consider sequences of variables zi that satisfy the relation

z1 < z2 < · · ·< zd (411)

and that determine a convenient way to design a search tree. By definition, a feature selection
criterion Jfeature�Xfeature� is a function of the m = n− d feature subset Xfeature remaining after
discarding d features from the set of all features. For convenience, we will also use the notation

222 3. Feature Selection

Jfeature�z1� z2� · · · � zd� for the same criterion. The goal of the optimal search is to find the best
m-feature subset Xopt, with discarded d= n−m features (from the original sequence of n features)
indicated by an “optimal” sequence of indices ẑ1� ẑ2� · · · � ẑd. Searching for an optimal feature
subset is then equivalent to searching for the “optimal” set of discarded features:

Jfeature�ẑ1� ẑ2� · · · � ẑd�= max
z1�z2�··· �zd

Jfeature�z1� z2� · · · � zd� (412)

Using the defined convention, we can now design a specific search tree starting from all sets of n
features at the root (level 0). At each subsequent level, we attempt to generate a limited number
of subtrees by deleting, from the ancestor node’s pool of features, one specific feature at a time
(limited by convention). In the search tree, each node at the jth level is labeled by a value of the
variable zj , which is equal to the index of a feature discarded from the sequence of features in the
ancestor node at the previous level j−1. Each node at the jth level can be identified by a sequence
of already-discarded j features starting from the root. Here, according to defined convention, at
each jth level the largest value of a variable zi must be m− j. This method allows the design of a
search tree containing all possible n!

�n−m�!m! subsets with m features out of all n. However, in the
branch and bound search, not all subtrees need to be searched.

Assume that a feature selection criterion satisfies monotonicity:

Jfeature�z1�≥ Jfeature�z1� z2�≥ Jfeature�z1� z2� z3�≥ · · · ≥ Jfeature�z1� z2� · · · � zd� (413)

Let as assume that at a certain level of the search, the best feature set identified so far has been
found by deleting d features indexed by a sequence z1� z2� · · · � zd, with maximal performance
criterion value Jfeature�z1� z2� · · · � zd� = # (set as a current threshold). Then, for a new feature
subset obtained by deleting r features �r < d� indexed by z1� z2� · · · � zr , if

Jfeature�z1� z2� · · · � zr�≤ # (414)

then the monotonicity property yields

Jfeature�z1� z2� · · · � zr� zr+1� · · · zd�≤ Jfeature�z1� z2� · · · � zr�≤ # (415)

for all possible sequences zr� zr+1� · · · zd. This new feature subset, obtained by deleting r features
�r < d�, cannot be optimal, nor can its successors in the search tree. If the described technique of
designing a search tree has been applied, then the above observation reveals the main idea of the
branch and bound search, namely, if the value of a selection criterion evaluated at any node of
a search tree (for corresponding feature subset) is smaller than the current value of a threshold
(corresponding to the best subset found so far by using best evaluation criterion value), then
all nodes in the tree, including successors of that node, have a selection criterion value less
than the threshold #. Consequently, this node cannot be optimal (nor can all its successors), and
consequently this subtree can be removed from the search. This is why, in branch and bound
feature selection, we obtain an optimal solution without needing to evaluate all possible feature
subsets.

Algorithm: Feature selection by branch and bound search.

Given: A data set Tall with Nall labeled patterns constituted with n features X = �x1� x2� · · · � xn�.
A number m of features in the resulting subset of best features. A feature subset selection criterion
Jfeature (satisfying the monotonicity property) with a defined procedure for its computation based
on a limited-size data set TXfeature

.

Chapter 7 Feature Extraction and Selection Methods 223

1. Set a level number j = 0, z0 = 0 (the notation of a node at level j), and an initial value of the
threshold #= −�.

2. Create successors by generating a list Sj ,

Sj = �zj−1 +1� zj−1 +2� · · · �m+ j�� �j = 1�2� · · · �m� (416)

of all possible values that zj at level j can take (assuming given values from previous levels
z1� z2� · · · � zj−1), with a maximal index m+ j. The successor nodes contains feature subsets
with one feature deleted from the list of the previous level.

3. Select a new node. If a list Sj is empty, then go to step 5. Otherwise, find a value k (with
maximal value of the criterion) for which

Jfeature�z1� z2� · · · � zj−1� k�= max
i∈Sj

Jfeature�z1� z2� · · · � zj−1� i� (417)

Set zj = k, and delete k from the list Sj .
4. Test a bound. If Jfeature�z1� z2� · · · � zj� < #, then go to the step 5. If the last level has been

reached, go to step 6; otherwise, advance to a new level by setting j = j+ 1 and continuing
from step 2.

5. Return (backtrack) to a lower level. For j = 0, terminate; otherwise, continue from step 3.
6. The last level: Set #= Jfeature�z1� z2� · · · � zd� and ẑ1� ẑ2� · · · � ẑd = z1� z2� · · · � zd. Continue from

step 5.

Result: An optimal subset of features with the largest value of the criterion.
Figure 7.14 shows an example of the branch and bound algorithm for selecting two features

�m= 2� from the total number of n= 5 features.
The black nodes show examples of subtrees that do not need to be searched for optimal subsets

because they will not provide better solutions. The number next to each node shows the index
of the feature deleted from a list of ancestor features. A node at level j is labeled with the
value zj . The set of all possible subsets of two features out of five is represented by nodes
of the last level (each node represents one feature subset obtained by deleting corresponding
features). According to the defined convention, the maximal value of zj is m+ j; thus at the
first level it equals 3, at the next level it equals 4, etc. To show how the algorithm work, we
assume that so far the node marked by A has given the best value of the criterion set as a current
threshold #. Then, according to criterion monotonicity, if at any step of the algorithm an inter-
mediate node is considered (such as that marked by B) for which the criterion value is less

B

Subtree excluded from
a search

1 3 Level 1

A

2 4 4

1 5 5

4 Level 2

5 Level 3

z2 = 0

z1 = 1

z 2 = 2

z3 = 3

n = 5, m = 2, d = n - m = 3

Feature x 3 deleted

2

33

4 4 4 5 5

Figure 7.14. Illustration of the branch and bound algorithm.

224 3. Feature Selection

than the current threshold, then all subtrees starting from that node can be excluded from the
search. If for any node in the final level a selection criterion has a larger value than the current
threshold, this criterion value becomes a new threshold. The algorithm terminates when each final
level node has been evaluated or excluded based on the monotonicity property.

3.1.14. Feature Selection with Individual Feature Ranking
One of the simplest feature selection procedures is based on first evaluating the individual
predictive power of each feature alone, then ranking such evaluated features, and eventually
choosing the best first m features. The criterion for the individual feature could be of either open
loop or closed loop type. This algorithm assumes that features are independent and that the final
selection criterion can be obtained as a sum or product of criteria evaluated for each feature
independently. Since these conditions are rarely satisfied, the algorithm does not guarantee an
optimal selection. A single feature alone may have very low predictive power. However, this
feature in combination with another feature may provide substantial predictive power. A decision
concerning how many best m-ranked features should be chosen for the final feature set could
be made based on experience from using another search procedure. Here, one could select the
minimal number m̂ of best-ranked features that guarantee a performance better than or equal to a
predefined threshold according to a defined criterion Jfeature�ranked.

Algorithm: Feature selection with individual feature ranking

Given: A data set Tall with Nall labeled patterns consisting of n features X = �x1� x2� · · · � xn�;
a feature evaluation criterion Jfeature�single with a defined procedure for its computation based on
a limited-size data set TXfeature

; and an evaluation criterion Jfeature�ranked for a final collection of m
ranked features.

1. Set j = 1, and choose a feature xj .
2. Evaluate the predictive power of a single feature xj alone by computing the criterion
Jfeature�single�xj�.

3. If j ≤ n, continue from step 1; otherwise, go to the next step.
4. Rank all n features according to the value of the computed criterion Jfeature�single:

xa� xb� · · · � xm� · · · � xr� Jfeature�single�xa�≥ Jfeature�single�xb�� etc� (418)

5. Find the minimal number of first-ranked m̂ features according to the criterion Jfeature�ranked.
6. Select the first m̂ best-ranked features as a final subset of selected features.

Result: An optimal subset of features.

3.1.15. Sequential Suboptimal Forward and Backward Feature Selection
In order to reduce the computational burden associated with an exhaustive search, several subop-
timal feature selection methods have been proposed. Let us present two suboptimal sequential
(stepwise) methods of feature selection: forward and backward feature selection.

Let us consider selecting the best m-feature subset from n�m < n� features constituting an
original pattern. Figure 7.15 shows an example of finding an m= 3 feature subset from an n= 4
feature pattern.

A forward selection search starts with individual evaluation of each feature. For each feature,
a feature selection criterion, Jfeature, is evaluated, and the feature with the best score (maximal
value of the performance criterion) is selected for the next step of the search (a “winner” – an
ancestor of the subtree). Then, in the second step, one additional feature is added to the selected
“winner” feature (having the best value of the criterion) from previous step, forming all possible

Chapter 7 Feature Extraction and Selection Methods 225

{ x2, x3}

{x1, x2, x3}

{x2 }

{x1, x2}

{x1, x2, x3}

{x1} {x2} {x3} {x4} Step 1

winner

Step 3

winner

Step 2

winner

{x2 , x3, x4}

{x2, x4}{x2, x3}

Figure 7.15. Sequential forward feature selection search.

two-feature subsets containing a “winner.” Each subset with its pair of features is evaluated, and
those presenting the maximal increase of the performance criterion are selected as a winner and
successor of the next step. The procedure continues until the best m-feature subset (the “winner”
of the mth step) has been processed.

Algorithm: Feature selection by stepwise forward search.

Given: A data set Tall with Nall labeled patterns consisting of n features X = �x1� x2� · · · � xn�;
a number m of features in the resulting subset of best features; and a feature subset evaluation
criterion Jfeature with a defined procedure for its computation based on a limited-size data set
TXfeature

.

1. Set an initial “winner” feature subset as an empty set Xwinner�0 = � �.
2. Set a step number j = 1.
3. Form all possible n− j+ 1 subsets, with a total of j features, that contain a winning j− 1

feature subset Xwinner�j−1 from the previous step, with one new feature added.
4. Evaluate the feature selection criterion for each feature subset formed in step j. Select as a

winner a subset Xwinner�j with a larger increase � of the performance criterion Jfeature as compared
with the maximal criterion value (for the winner subset Xwinner�j−1) from the previous step.

5. If j = m, then stop. The winner Xwinner�j subset in step j is the final selected subset of m
features. Otherwise, set j = j+1 and continue from step 3.

The forward selection algorithm provides a suboptimal solution, since it does not examine all
possible subsets of features.

The basic forward selection procedure assumes that the number of features m in a resulting
subset is known. This procedure will require exactly m steps. In some cases, the proper number of
features m has to be found. This situation defines another search process with stopping criterion
Jfeature�length. Here, a possible stopping criterion for finding the proper number m of features in
a final selected feature subset could be, for example, a defined threshold �length of maximal
performance increase for two consecutive steps. In other words, the stopping point is reached
when the increase in the feature selection criterion for the jth-step winning feature subset Xwinner�j ,
as compared with the corresponding performance for a winner feature subset from the previous
step j−1, is less than the defined threshold �length:

Jfeature�length = Jfeature�Xwinner�j�− Jfeature�Xwinner�j−1� < �length (419)

226 3. Feature Selection

Backward selection is similar to forward selection, but it applies a reversed procedure of
feature selection, starting with the entire feature set and eliminating features one at a time. In
backward selection, assuming a known number m of final features, the search starts with the
evaluation of the entire set of n features. For the entire feature set, a selection criterion Jfeature is
evaluated. Then, in the next step, all possible subsets containing features from the previous step
with one feature discarded are formed and their performance criteria are evaluated. At each step,
one feature, which gives the smallest decrease in the value the feature selection criterion included
in the previous step, is discarded. The procedure continues until the best m-feature subset is
found. Figure 7.16 depicts an example of finding an m= 2 optimal feature subset from an n= 4
feature pattern.

Algorithm: Feature selection by stepwise backward search.

Given: A data set Tall with Nall labeled patterns consisting of n features X = �x1� x2� · · · � xn�;
a number m of features in the resulting subset of best features; and a feature subset evaluation
criterion Jfeature with a defined procedure for its computation based on a limited-size data set TXfeature

.

1. Evaluate a feature selection criterion Jfeature�X� for a set X of all n features.
2. Set a step number j = 1 with a list X of all n features.
3. Form all n− j+1 possible subsets with n− j features by discarding one feature at a time from

the list of features of the previous step.
4. Evaluate a feature selection criterion for each feature subset formed in step j. Select as a

“winner” a subset Xwinner�j with the smallest decrease of a performance criterion Jfeature�Xwinner�j�
as compared with the criterion value from the previous step (which corresponds to its biggest
value for this step from a pool of all subsets). The discarded feature from the previous step,
which caused the creation of the winning subset Xwinner�j , is then discarded from a pool of
features used in the next step, and winning subset becomes an ancestor of a deeper subtree.

5. If j = m, then stop: the winner subset in step j is the final selected subset of m features.
Otherwise, set j = j+1 and continue from step 3.

The forward selection algorithm provides a suboptimal solution, since it does not examine all
possible subsets of features. The backward selection algorithm requires more intensive compu-
tations than the forward selection. Despite of similarities, both algorithms may provide different
results for the same conditions.

{x1, x2, x3, x4}

{x2, x3, x4} {x1, x3, x4} {x1, x3, x2} {x1, x2, x4}

Step 0

Step 1

{x1, x3} {x3, x4} {x1, x4}

{x1, x4, x3}

Step 2

{x, x} winner

winner

x discarded

Figure 7.16. A sequential backward search.

Chapter 7 Feature Extraction and Selection Methods 227

If the number m of final features is a unknown a priori, then another optimal search should be
employed. Finding the proper number m of features in the final selected feature subset could be
realized in a manner similar to the method described earlier for forward selection.

The forward and backward search methods can be combined in several ways, allowing them to
cover more feature subsets through increased computations, and thereby to find better suboptimal
feature sets. For example, in the so-called full stepwise search, operations at each step start as
in the backward search. All subsets created by removing one variable from the previous-step
pool are evaluated. If the feature selection criterion decrease is below a defined threshold, then
a variable is removed. If none of the variables provide a decrease below the threshold, then a
variable is added, as in the forward search method.

Based on the concept of Monte Carlo techniques, several feature selection methods have
been developed using probabilistic search. These methods make probabilistic choices of feature
subsets in search of the best subset in a feature space. These random search methods can be used
both for open loop and closed loop feature selection algorithms. In general, they do not require
that a feature selection criterion must obey the monotonicity condition. Probabilistic algorithms
use the inconsistency rate in open loop selection, as a feature goodness criterion and select the
feature subset with the minimal number of features that has an inconsistency rate smaller than the
predefined threshold. Allowing for features to have some degree of inconsistency opens a way to
define the robust feature subset that is not only the best for a given data set but also potentially
good for unseen cases (i.e., with generalization ability). The closed loop feature selection scheme
has also been proposed for random searches with the ID3 algorithm as classifier.

These probabilistic methods are simple to implement and guarantee finding the best subset
of features, if a required number of random trials for subset selection will be performed. These
algorithms provide satisfactory results for highly correlated features.

Algorithm: Probabilistic (Monte Carlo) method of feature selection

Given: A data set Tall with Nall patterns labeled by classes and consisting of n features
X = �x1� x2� · · · � xn�; a feature subset selection criterion Jfeature with a defined procedure for its
computation based on a limited-size data set TXfeature

; and a maximum number of random subset
search trials max_runs.

1. Set initially the best-feature subset as equal to an original n-feature set Xopt = X. Compute the
value of the criterion Jfeature�Xfeature�0�= Jfeature�Tall� for a data set Tall.

2. Set j = 1 (a search trial number).
3. From all possible 2n feature subsets, select randomly a distinct subset of features Xfeature�j (with

number of features 1 ≤mj ≤ n).
4. Create a reduced data set TXfeature�j

with all Nall cases with patterns constituted with mj features
from a subset Xfeature�j .

5. Compute the value of the criterion Jfeature�TXfeature�j
� for the data set TXfeature�j

.
6. If Jfeature�Xfeature�j� > Jfeature�Xfeature�j−1�, then set Xbest = Xfeature�j and continue from step 7.

Otherwise, continue from step 7.
7. Set j = j+1. If j ≤max_runs, then stop; otherwise, continue from step 3.

The version of the probabilistic algorithm with the open loop inconsistency criterion defined
earlier may be formed as follows.

Algorithm: Probabilistic (Monte Carlo) method of open loop feature selection with incon-
sistency criterion

Given: A data set Tall with Nall patterns labeled by classes and consisting of n features
X = �x1� x2� · · · � xn�; a feature subset selection criterion Jfeature = Jinc with a defined procedure for

228 4. Summary and Bibliographical Notes

its computation based on a limited-size data set TXfeature
; a rejection threshold # of feature subset

inconsistency; and a maximum number of random subset search trials max_runs.

1. Set an initial value for the best (minimal) feature number as equal to the number n of all
original features mbest = n. Set initially the best feature subset as equal to an original n-feature
set Xopt = X.

2. Set j = 1 (a search trial number).
3. From all possible 2n feature subsets, select randomly a distinct subset of features Xfeature�j

(with the number of features 1 ≤mj ≤ n).
4. Compute the number of features in the subset

Xfeature�j� mj = cardinality�Xfeature�j� (420)

5. Create a reduced data set TXfeature�j
with all Nall cases with patterns consisting of mj features

from a subset Xfeature�j .
6. Compute a value of the inconsistency criterion Jinc�TXfeature�j

� for a data set TXfeature�j

7. If mj <mbest and Jinc��Xfeature�j� < #, then set Xbest =Xfeature�j and mbest =mj , and continue from
step 8. Otherwise, continue from step 8.

8. Set j = j+1. If j ≤max_runs, then stop; otherwise, continue from step 3.

Random selection of the feature subset Xfeature from an original set of all ordered features
x1� x2� · · · � xn can be realized, for example, as follows. First, a random number generator uniformly
distributed in [0,1] is executed n times. Each generated number ri corresponds to one feature xi.
Then, if ri > 0�5, a feature xi is selected for a subset Xfeature�j; otherwise, it is not selected.

3.1.16. Feature Scaling
Feature scaling (weighting) is used in feature selection. If we consider different discriminatory
power of pattern features, feature scaling can be described as assigning continuous weight values
from the range [0, 1] to each feature, depending on its impact on prediction. Given an original
set of features X forming an n-dimensional pattern x, feature scaling is the transformation of x
into xs using the n-dimensional weights vector w �wi ∈ �0�1	�:

xs�i = wixi� �i = 1�2� · · · � n� (421)

In the extreme situation of weight taken only to binary values wi ∈ �0�1�, feature scaling becomes
feature selection. For wi = 1, feature xi is selected for the final pattern; otherwise, for wi = 0,
the feature is removed. Choosing the best feature weights is an optimization problem, which can
be as difficult as optimal feature selection. Feature scaling also faces a feature dimensionality
problem.

4. Summary and Bibliographical Notes

In this Chapter we have introduced feature selection and feature extraction methods. The most
important topics discussed were the unsupervised Principal Component Analysis (PCA) and
supervised Fisher’s linear discriminant technique. These can be used for pattern projection,
feature extraction, and dimensionality reduction. The other unsupervised method covered was
the Independent component analysis (ICA) used for discovering unknown intrinsic independent
variables in the data. ICA estimates unknown mixing matrix and independent components
representing given data. It can be used for blind source separation and linear feature extraction
and reduction. The Singular Value Decomposition method is used often used for extracting

Chapter 7 Feature Extraction and Selection Methods 229

features from images and image compression. Feature extraction and compression can be also
achieved by using vector quantization, Fourier transform and wavelets. Vector quantization is
the technique of representing (encoding) input data patterns by a smaller finite set of code vectors
that approximate the input pattern space. Learning vector quantization technique combines
supervised learning and vector quantization. Fourier analysis can be used to preprocess time-
series data and images. Fourier transform (both one- and two-dimensional) converts input data
into frequency domain that provides better understanding and representation of the data. A fast
Fourier transform is a computationally efficient algorithm for computing a discrete Fourier
transform. One-dimensional Fourier transform is a fundamental technique in processing feature
extraction for time-series and speech data, whereas two-dimensional Fourier transform is
widely used in image processing, including feature extraction. Wavelets analysis provides multi-
resolution approximation of a time-series signal and images using a fast-decaying oscillating
waveform. Wavelets provide localization in time and in a space and a powerful technique for
feature extraction from data. Zernike moments are used to extract rotation-invariant robust
features from images using orthogonal moment invariants and orthogonal polynomials.

In feature selection, features are divided into strongly relevant, weakly relevant, and irrel-
evant. Feature selection methods are divided into open loop and closed loop (wrapper) methods.
All feature selection methods depend on the selection criteria and search method. The selection
criteria include minimum concept description, mutual information, inconsistency count, rough
sets, and interclass separability. In the Chapter we have described exhaustive search, branch
and bound, feature ranking, and forward and backward feature selection methods.

Feature selection and extraction methods, including PCA and Fisher’s transformations are
well presented in [6, 7, 12, 14, 16, 17, 26]. Independent component analysis is nicely
described in [11], while the blind source separation problem is described in [4], and appli-
cations of ICA are presented in [24, 25]. A description of vector quantization can be found
in [9, 15, 18]. Fourier transform and Wavelets are covered in [1, 5, 8, 21]. The Zernike
moments were introduced in [28] and later extended in [13, 23]. The open loop feature
selection methods include Focus [2] and Relief algorithms [16] and their extensions [3, 6,
12, 17, 22, 26]. The closed loop (wrapper) feature selection methods are described in [3, 6,
10, 12, 22, 23]. The sequential backward selection was introduced in [19], and the forward
selection and stepwise methods were presented in [14]. The branch and bound search for feature
selection (based on the idea of dynamic programming) is covered in [20, 27].

References

1. Ainsworth, W.A. 1988. Speech Recognition by Machine, Peter Peregrinus Ltd., London, UK
2. Almuallim, H., and Dietterich, T.G. 1992. Efficient algorithms for identifying relevant features.

Proceedings of the Ninth Canadian Conference on Artificial Intelligence, 38–45. Vancouver, Canada
3. Bazan, J.G., Skowron, A., and Swiniarski, R. 2006. Rough sets and vague concept approximation: From

sample approximation to adaptive learning, Transactions on Rough Sets V; Journal Subline, Lecture
Notes in Computer Science 4100, Springer, Heidelberg, 39–62

4. Bell, A.J., and Sejnowski, T.J. 1995. An information-maximization approach to blind separation and
blind deconvolution. Neural Computation, 7:1129–1159

5. Burrus, C., Gopinath, R., and Guo, H. 1998. Introduction to Wavelets and Wavelet Transformations:
A Primer, Prentice Hall

6. Cios, K.J., Pedrycz, W., and Swiniarski, R. 1998. Data Mining Methods for Knowledge Discovery,
Kluwer

7. Duda, R.O., and Hart, P.E. 2001. Pattern Recognition and Scene Analysis, Wiley
8. Fant, C.G. 1973. Speech Sounds and Features, MIT Press
9. Gersho, A., and Gray, R. 1992. Vector Quantization and Signal Compression, Boston, Kluwer

230 5. Exercises

10. Grzymala-Busse, J.W, Kostek, B., Swiniarski, R., and Szczuka, M. 2004. (Editors-in Chief of a special
I volume) Transaction on Rough Sets I. In (Editors-in-Chief Peters, J., and Skowron, A.), Lecture Notes
in Computer Sciences on Rough Sets, 3100, Springer, Berlin, New York, pp. 1–404

11. Hyvarinen, A., Karhunen, J., and Oja, E. 2001. Independent Component Analysis, John Wiley, New
York

12. John, G., Kohavi, R., and Pfleger, K. 1994. Irrelevant features and the subset selection problem.
Proceedings of the Eleventh International Conference on Machine Learning (ICML-94), 121–129, New
Brunswick, NJ

13. Khotanzad, A., Hong, Y.H. 1990. Invariant image recognition by Zernike moments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(5):489–497

14. Kittler, J. 1986. Feature selection and extraction. In Young, T.Y., and Fu, K.S. (Eds.), Handbook of
Pattern Recognition and Image Processing, Academic Press, 59–83

15. Kohonen, T. 1997. Self-Organizing Maps, Springer
16. Kononenko, I. 1994. Estimating attributes: Analysis and extension of Relief. Proceedings of European

Conference on Machine Learning, 171–182, Catania, Italy
17. Langley, P. 1994. Selection of relevant features in machine learning. Proceedings of the AAAI Fall

Symposium on Relevance, 140–144, Orlando, FL
18. Linde, Y., Buzo, A., and Gray, R. 1980. An algorithm for vector quantizer design. IEEE Transaction

on Communications, 28(1):84–94
19. Marill, T., and Green, D. 1963. On the effectiveness of receptors in recognition systems. IEEE Trans-

actions on Information Theory, 9:11–17
20. Narendra, P.M., and Fukunaga, K. 1977. A branch and bound algorithm for feature subset selection.

IEEE Transactions on Computers, C–26:917–922
21. Rabiner, L.R., and Juang, B.H. 1993. Fundamentals of Speech Recognition, Prentice Hall, Englewood

Cliffs, N.J.
22. Skowron, A., Swiniarski, R., Synak, P., and Peters, J.F. 2004. Approximation Spaces and Information

Granulation. Tsumoto, S., Slowinski, R., and Komorowski, J. (Eds.) Rough Sets and Current Trends
in Computing, Proceedings of 4th International Conference, RSCTC 2004, Uppsala, Sweden, Springer,
pp. 116–126

23. Swiniarski, R. 2004. Application of Zernike Moments, Independent Component Analysis, and Rough
and Fuzzy Classifier for Hand-Written Character Recognition. In Klopotek, M.K., Wierzchon, S.,
and Trojanowski, K. (Eds.), Intelligent Information Processing and Web Mining. Proceedings of the
International IIS:IIPWM’04 Conference. Zakopane, Poland, May 17–20, Springer, pp. 623–632

24. Swiniarski, R., Lim Hun Ki, Shin Joo Heon and Skowron, A. 2006. Independent Component Analysis,
Principal Component Analysis and Rough Sets in Hybrid Mammogram Classification. Proceedings of
the 2006 International Conference on Image Processing, Computer Vision, & Pattern Recognition,
volume II, 640–645, Las Vegas

25. Swiniarski, R., and Skowron, A. 2004. Independent Component Analysis and Rough Sets in Face
Recognition. In Grzymala-Busse, J., Kostek, B., Swiniarski, R., and Szczuka, M. (Editors-in Chief of
a special I volume) Transaction on Rough Sets I. In (Editors-in-Chief Peters, J., and Skowron, A.),
Lecture Notes in Computer Sciences on Rough Sets, 3100, Springer, Berlin, New York, pp. 392–404

26. Swiniarski, R. and Skowron, A. 2003. Rough sets methods in feature selection and recognition. Pattern
Recognition Letters, 24(6):883–849

27. Yu, B., and Yuan, B. 1993. A more efficient branch and bound algorithm for feature selection. Pattern
Recognition, 26(6):883–889

28. Zernike, F. 1934. Beugungstheorie des schneidenverfahrens und seimer verbesserten form, der
phasenkontrastmethode, Physica, 1:689–706

5. Exercises

1. Let us consider the data set containing patterns with three nominal attributes �MONITOR,
OS, CPU� labeled by two categorical classes c1 = Poor, c2 = Good (Table 7.4). For this data
set (decision table):

Chapter 7 Feature Extraction and Selection Methods 231

(a) Compute a set of strongly relevant attributes (for the entire pattern x) with respect to a
class attribute d, using the idea of core defined by rough sets theory.

(b) Compute sets of weakly relevant attributes (for a whole pattern x) with respect to a class
attribute d using the idea of reduct defined by rough sets theory.

(c) For selected minimal reduct, design decision rules using the rough sets method.
(d) Find a minimal set of attributes describing all concepts in the data set using exhaustive

search.

2. For a data set from Table 7.4, find an optimal set of attributes, using the open loop scheme
with individual feature ranking, using the criteria of

(a) mutual information
(b) inconsistency count

3. Let us consider a data set containing 20 cases (Table 7.5). Each case is composed of the four
feature patterns x ∈ R

4 labeled by categorical classes c1 = 1 and c2 = 2 (10 patterns in each
class). A pattern’s attributes take on real values.
For the considered data set, find the best feature subset, using the open loop feature selection
method, with the following feature selection criteria:

(a) mutual information
(b) inconsistency count
(c) interclass separability

while applying

(a) exhaustive search
(b) branch and bound search
(c) sequential forward search

4. For a data set from Table 7.5, find the best feature subset, using the closed loop feature
selection method, with the relative frequency of classification errors as a feature selection
criterion. Use the k-nearest neighbors classifier for feature evaluation and also as a final
classifier. For performance evaluation of classifiers, use the holdout error counting method
(with partion of the data set used for design and the other portion held out for testing).

5. For a data set from Table 7.5, the provide principal component analysis (PCA) (global for all
patterns for all classes):

Table 7.4. Example of the decision table PC.

Object Condition attributes Decision attributes

U C D

PC MONITOR OS CPU d

x1 Color DOS 486 Good
x2 Color Windows Pentium Good
x3 Monochrome DOS Pentium Poor
x4 Color Windows 486 Good
x5 Color DOS 386 Poor
x6 Monochrome Windows 486 Good
x7 Monochrome Windows Pentium Good
x8 Color Windows 386 Good

232 5. Exercises

Table 7.5. A data set with real-valued attributes.

x1 x2 x3 x4 Class

0�8 0�7 1�1 0�5 1
1�3 0�6 0�9 1�3 1
1�9 1�7 0�3 0�6 1
2�0 0�1 0�3 1�8 1
1�1 1�6 0�1 1�9 1
0�1 0�2 2�1 2�3 1
2�2 2�4 0�3 1�3 1
2�1 1�9 0�5 2�9 1
1�3 2�7 0�3 2�2 1
2�9 3�2 0�8 0�1 1
5�2 2�5 10�6 5�5 2
7�8 9�5 12�2 6�5 2
4�5 7�6 3�9 2�3 2
8�9 6�2 2�9 8�3 2
4�2 5�4 11�3 9�3 2
3�2 8�7 2�5 15�9 2
6�6 6�3 10�3 12�2 2
9�9 2�2 6�8 15�1 2

12�8 4�2 9�8 4�1 2
4�9 9�2 4�8 7�9 2

(a) Compute the covariance matrix
(b) Find an optimal Karhunen-Loéve transform
(c) Transform the original patterns to full-size principal component space. Compute the inverse

transform
(d) Transform the original patterns to the reduced principal component space (consider

m= 1�2�3). Compute the inverse transform. Compute the reconstruction error: a)
numerically (as a sum of squared errors); b) as a sum of trailing eigenvalues (remove the
least significant principal components).

6. For a data set from Table 7.5,

(a) Provide principal component analysis (PCA) with transformation of data into the full-size
principal component space. For the full-size PCA feature vector, compute and evaluate
the k-nearest neighbors classifier.

(b) Select the first m principal components (m = 4�3�2�1) as a reduced feature vector. For
this feature pattern, design and evaluate the k-nearest neighbors classifier.

7. Generate samples for two time signals sin�0�2 ∗x� and sin�2 ∗x�, for x from 0 to 10� with
the step �/100. Mix the signals linearly using the mixing matrix

x = 0 � �/100 � 10∗�� H =
[

0�1 0�9
0�9 0�1

]

Separate sources using ICA method. Solve the problems

(a) Without whitening.
(b) With whitening and with reduction of the dimension to 1.
(c) With whitening implemented as PCA, and with reduction of the dimension to 1.

Chapter 7 Feature Extraction and Selection Methods 233

8. Design a Matlab program to perform vector quantization on a gray-scale image using a 4×4
pixel block as a quantization unit. Unfold the pixel block as a 16-element block vector x
by concatenating the subsequent rows of the block. Form the training set Ttra containing
subsequent block vectors for all blocks of an image (for example, considering the sequence
of blocks for an image from the left to the right, etc.), design your optimal codebook using
all block vectors from the training data set. Use the generalized Lloyd algorithm to find the
optimal codebook. Select the size of codebook (say, M = 128). Then quantize the image
represented by the training set Ttra using your codebook. Find the quantization quality using
a PSNR measure. Provide quantization of the image for codebook size equal to 32, 64, and
256. Reconstruct an image from the compressed representation. Compare the results. Provide
quantization experiments and compare the resulting quality of quantization.
As a result of quantization of an image, we obtain the codebook with M codevectors labeled
by M indices. The quantization result of the considered image is the vector of encoding indices
Tind, which entry contains an index of encoding codevector representing the corresponding
block vector in the set Ttra. In order to find the reconstructed image from Tind each encoding
codevector for a given block is folded into an image block (through row-by-row folding).

9. Synthesize (or get from the Internet) a data set of gray-scale images of handwritten digits
�0�1� · · · �9� (at least 10 instances per digit).

(a) Write in MatLab language (or in another language) a program implementing the compu-
tation of complex Zernike moments.

(b) Extract from each image the Zernike moments with maximal order (6,6) and (12, 12).
Design Zernike patterns and construct supervised training and testing sets (with 10 classes).

(c) Design and test the following classifiers: k-nearest neighbors, error back-propagation
neural networks, and learning vector quantization.

(d) Apply principal component analysis (PCA) to obtained supervised data sets. Project all
patterns into principal component space, and reduce the projected patterns to a heuristically
selected number. Design and test the classifiers listed in the previous question.

(e) Form the training and test sets containing raw patterns composed from digit images as concate-
nated columns. Apply principal component analysis (PCA) to such raw data sets. Project all
patterns into the principal component space, and reduce the length of the projected patterns
to a heuristically selected number. Design and test the handwritten digit recognitions using
classifiers listed in the previous question.

10. Get (from the Internet) a data set of gray-scale images of human faces (with at least 10
classes, and at least 10 instances of face for a class). Extract the face image features and
form a pattern. Compare different methods of feature extraction and pattern forming and their
impact on classifier accuracy. Write the required operations in Matlab language. Consider the
following methods of feature extraction:

(a) Principal Component Analysis (PCA)
(b) Independent Component Analysis (ICA)
(c) Singular Values Decomposition (SVD)
(d) Zernike Moments
(e) Two-dimensional Fourier transform (power spectrum features)
(f) Synthetic features (see previous Chapters) derived from the normalized power spectrum

map of two-dimensional Fourier transform (power spectrum features)
(g) Haar wavelets
(h) Morlet wavelets

	Feature Extraction and Selection Methods
	
	Introduction
	Feature Extraction
	Feature Selection
	Summary and Bibliographical Notes
	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

