
INDUSTRIAL APPLICATION
INTEGRATION USING AGENT-ENABLED
SEMANTIC SOA: CAPNET CASE STUDY

Leonid Sheremetov and Miguel Contreras
Mexican Petroleum Institute, Eje Central Lazaro Cardenas U152,

07730, Mexico, D.F. Mexico
{sher, mcontrer}@imp.mx

The paper addresses the Issues of industrial application integration in business
processes using agent-enabled Service Oriented Architectures (SOA). In this
paper, we show that agent-enabled SOA can play an important role for set-vice
integration. Our architecture combines Web services and intelligent agent
technologies orchestrated by a business process management system. This
architecture is grounded in a semantic service integration model and
supported by the CAPNET agent platform tools. We describe the architecture
and illustrate the approach by an industrial application scenario from
petroleum wells' drilling.

1. INTRODUCTION

An important aspect of software in industry lies in its ever-increasing complexity.
The often need to integrate heterogeneous applications composing business
processes into corporate-wide computing systems, aiid even to extend that beyond
company boundaries into the Internet, introduces new levels of complexity. In recent
years Enterprise Application Integration (EAI) systems have evolved towards
Service Oriented Architectures (SOA) (Haller et al., 2005). The SOA model is based
on the principle that business functionality is separated and published as self-
contained components, called services. Though Web Services (WS) as the most
commonly used implementation of traditional SOA reduces the number of point-to-
point adapters because every interface is based on WS Description Language
(WSDL), it still leaves open the question of semantic interoperability of these
interfaces. That is why recently a major effort has been invested in semantic
extensions of SOA known as Semantic SOA allowing for scalable and controlled
EAI (Sycara et al., 2003; Preist, 2004, Ackland et al. 2005).

Multiagent systems (MAS) are ideally suited for open and dynamic
environments, where automatic group formation, multiagent adaptation, agent
coordination, etc. could likely be fruitfully adapted for EAI (Jennings, 2001;
Tesauro et al., 2004). Therefore there is a great opportunity to join the Web Services
and Agent Services (AS) technologies under the SOA paradigm, exploring several

Please use the foUmring format when citing this chapter:

Sheremetov, L., Contreras, M., 2006, in IFIP International Federation for Information Processing, Volume 220, Informa­
tion Technology for Balanced Manufactimng Systems, ed. Shen, W., (Boston: Springer), pp. 109-118.

110 Information Technology for Balanced Manufacturing Systems

open topics such as business processes modeling, interaction of AS and WS,
semantic description of services, and dynamic service negotiation and composition.

Motivated by the above considerations, we have developed an extension to the
CAPNET agent platform (AP) permitting to make a step ahead towards the
development of industrial applications for open environments (Contreras et al.,
2004). The specific software engineering objectives of CAPNET are: to enable a
distributed system to self-eonfigure at runtime initialization; to develop agent
templates that enable rapid application development through service composition
within the system; to improve the efficiency of businesses through automation of
business processes in accordance with the system's overall business objectives. We
have developed several prototype systems as a concrete testbed to pursue these
objectives. One of them, multiagent hybrid intelligent system (HIS) for Lost
Circulation Problem (LCP) is described in the case study section of the paper.

The rest of the paper is organized as follows. First we describe briefly the
application requirements that motivated the research and analyze the current trends
of EAT architectures in order to formulate the basic requirements to agent-enabled
SOA. Further we describe the extensions to the architecture of the CAPNET
enabling the integration of services provided by agents in a SOA. Finally we
illustrate the developed architecture by example of multiagent HIS called SMART-
Drill followed by conclusions.

2. MOTIVATION FOR RESEARCH

An oil company is a multi-business organization, which produces, manufactures,
markets and transports crude oil, natural gas and petroleum products. The interest in
information technology (IT) for decision support of the operational activities lays in
the fact that in oil companies like the Mexican Petroleos Mexicanos (PEMEX),
senior personnel daily have to solve problems based on extensive data analysis and
their experience gained through years of field work. Operation of the oilfield is
composed of many complex industrial processes, drilling is one of them. LCP - also
known as lost returns - stands for the absence or reduction of drilling mud pumped
through the driilstring, which filtrates into the formation instead of flowing up to the
surface. It is one of the most common problems: drilling fluid may flow freely into
the shallow unconsolidated formations because of high permeability or just because
of a broken tube. Drilling may continue, or the mud can be thickened and lost
circulation material (LCM) added, in an attempt to cure the problem. Sometimes, the
LCP is cured easily. But in most cases, the intervention of experienced petroleum
engineers is required to find the most appropriate and efficient solution.

2.1 Application Requirements

Expert systems technology is a feasible option to support drilling operations
(Garrouch and Lababidi, 2001). In (Sheremetov et al, 2005), a first desktop version
of the HIS for LCP diagnostics was described. During the field-testing phase with
the PEMEX Company, the following requirements were identified:
• The need for a real time system's feeding with data from distributed information

Industrial application integration using agent-enabled semantic SOA 111

sources; locating and typing data manually was "a torture" for the operators.
• The need to standardize input data description in order to exchange information

with other drilling applications. Data should be described in XML-based
Wellsite Information Transfer Standard Markup Language (WITSML)
(WITSML, 2006) and be available in a server-based repository.

• The need to contact third parties in order to select the most appropriate solution.
• The need to enable a collaborative interaction between the well operator,

petroleum and chemical engineers and project manager, since decision-making
process is distributed.

• The need to operate over different oil & gas assets (North, South and Marine
zones in the case of PEMEX) and over a common case-base.

Therefore, while developing a second version of the HIS, we considered a
distributed architecture to overcome the limitations of the stand-alone approach.
This new version was implemented over an agent platform and legacy WS,
orchestrated by a business process management system. Even though there was no
need for automatic discovery and dynamic service composition (but the need for
dynamic instantiation), this solution implied several changes to the CAPNET AP
allowing its agents to work within a heterogeneous IT environment in a service-
oriented fashion.

2.2 Enterprise Application Integration Using Semantic SOA

Integration of IT is crucial for companies as only integrated information systems can
deliver business values, such as efficient decision-making support, instant access to
information, data integrity, along with decreased cost of software development and
maintenance. Traditional EAI systems provided three types of integration levels
(Ruh, 2000): process, transformation and transportation layers. Migration of EAI
towards SOA changes these layers in order to provide: (i) a standardized way to
expose and access the functionality of applications as services, (ii) an enterprise bus
infrastructure for communication and management of services, including message
interception, routing, transformation, etc, (iii) an integration architecture between the
various services and existing and newly developed applications used in business
processes and (iv) a specialized language (like the Business Process Execution
Language for Web Services -BPEL4WS-) for composition of exposed
functionalities of applications into business processes (Juric et al., 2006).

Semantics should be included as the fifth layer of the integration scheme since
adding semantics to the service description, firstly, provides a formal description of
the fimctionality of a service. This description allows the developer to base the
manual integration on the knowledge about the meaning of the data. Secondly, the
model permits decentralizing of semantics of different systems overcoming one of
the principal drawbacks (centralized semantics) of traditional EAI. Finally,
semantics bring closer the possibility of composing services dynamically by
discovering them at runtime.

The centerpiece of semantic integration is an ontology that conceptualizes and
codifies knowledge that can be mapped as a knowledge domain. In the context of
this paper all the agents share an ontology of their domain of expertise - their
domain model - that establishes the terminology for interacting with the agent and its
services.

112 Information Technology for Balanced Manufacturing Systems

3. SEMANTIC SERVICE ORIENTED ARCHITECTURE OF
THE CAPNET

The main objective of CAPNET is to bring an integrated infrastructure for MAS that
covers the programming, deployment, administration and integration of agents with
enterprise applications within the semantic SOA. In this section we present how this
integration was achieved. Due to the space limitations, the integration details are
covered at the architectural level only and not at the implementation level.

3.1 Making the Agent Platform Service Oriented

The requirement of integration of services provided by agents in a SOA where
service composition can be achieved requires an AP to communicate effectively
with agent service requestors and providers. However the current notion of services
in the agent community is unstructured and does not provide the required elements
for service composition which is crucial for expressing service relationships and
defining service flows. Additionally agents do not expose standard interfaces that
are consumable by the majority of non-agent software and as a result agent
technology is not widely adopted in industrial applications, mainly because of its
lack of support for integration with business processes. However even with these
limitations, agents are ideally suited to representing problems that have multiple
problem solving methods, multiple perspectives and/or multiple problem solving
entities and incorporate semantics and knowledge management in a natural way.

An AP is a software architecture that controls and manages an agent community
allowing the survival of an agent in a distributed and heterogeneous environment
(FIPA, 2005). Based on the FIPA specifications that considers an AP as a set of four
components - Agents, Directory Facilitator (DF), Agent Management System
(AMS), and Message Transport System (MTS) - representing a set of logical
capacities or services, it is possible to make a mapping between the concepts in APs
and the features required for an architecture to be considered as Service Oriented.
These concepts are: services provided by agents, service provider - the agents
implementing services, service consumer (or requestor) - end-user application or
another agent, and service locator - the DF that acts as a registry and allows for the
lookup of service provider interfaces (agents) and service locations.

In order to implement this mapping and be able to establish relations, cross
invocation and composition of agent and Web services, several extensions to a basic
FIPA compliant AP should be addressed that include:
1. An agent service model compatible with the current standards for SOA.
2. A common model and related language for the semantic description of services.
3. A mechanism for publishing agent provided services in UDDI registries.
4. A mechanism for finding services published in UDDI registries.
5. A common transport protocol for communication.
6. A mechanism for exposing the functionality of agent provided services to Web

service clients.
7. A mechanism that enables agents to consume Web services.

The architecture implementing these mechanisms within the CAPNET agent
platform is addressed in the following section.

Industrial application integration using agent-enabled semantic SOA 113

3.2 CAPNET Agent Service Model

The first requirement for tlie integration, to provide AS model compatibility with the
current standards for WS, and its implementation implied the design of a new class
of agent for CAPNET that was heavily based on the WS architecture for its
specification. The architecture of the "component agent" (Figure 1) was designed as
a .NET component that can be easily hosted either by the application that will use its
services or by a CAPNET container that can provide it with mobility services.

Agent Idenlity -, Ufe.Cycie Management

Service Execution ~

Descn'piioR ComposHJoii

KRowEadfls Management -'̂

KnDwiedge Esse Inference Engme T

Conversallon Manager > -̂

Jnleractran ProtGcofs Conlent Uafsguages

Ev«nt 9ase£! Mess& îng bus

Scnsof Bus Actuator Uu% ' '

Figure 1 - CAPNET Agent's Architecture.

The "component agent" is composed of the following parts:
An event based messaging bus that is connected to several components, which
constitute the agent's sensors and actuators for the "outside world". Those
sensors currently include (but are not limited to) one for receiving Agent
Communication Language (ACL) encoded messages, a sensor for time
awareness and a sensor for perceiving events generated by the user interface (UI)
of the system where the agent resides. Currently, only two actuators are available
but more can be implemented and plugged in: an ACL actuator that sends ACL
encoded messages to the AP and an actuator that communicates changes in the
agent and/or the system state to the UI of the system that contains the agent.
A Conversation Manager that is capable of handling complex structured
conversations based on FIPA Interaction protocols and the common patterns of
service invocation (both synchronous and asynchronous) and using a content
language for negotiation of services. The currently supported languages include:
FIPA-SLO, FIPA-SLl and propriety CAPNET-ICRF.
A Knowledge Management component that uses a Knowledge Base for
representing the agent's domain (based on CAPNET-KRF) and an inference
engine to handle this internal knowledge representation.

114 Information Technology for Balanced Manufacturing Systems

• A Service Description, Composition and Execution component that enables the
specification of the services and their model (both syntactically and
semantically) along with its particular implementation. This component allows
for basic composition of services inside the agent by providing a specification
language (a subset of BPEL) that handles sequence, parallel and loop service
execution to form composed services. For the semantic description of services
OWL-S is used to define the service profile, process and groundings.

• A component that handles the lifecycle of the agent in terms of the state
transitions specified by FIPA and also in terms of its particular functionality.
This component tracks the state of the agent and conducts its behavior based on
the transitions of a finite state automaton fired by the inputs perceived by the
sensors, the internal knowledge and the results of its services.

• A component that handles the agent identity and capabilities.
The second requirement deals with the semantic description of services and it is

implemented by adopting the OWL-S ontology model and language allowing
service description in terms of profdes, models, and groundings, where the service
profile tells "what the service does", the service model tells "how the service works",
and the service grounding specifies the details of how a client can access a service.
In the case of the CAPNET AP it is a common practice to specify at least two
service groundings for a particular service, where one maps to the SOAP interface of
the platform and is meant to be used by external clients and another one intended for
intra-platform use, maps directly to the agent identity and home address. This
adoption of the OWL-S language required changes to be made to the agents' internal
representation of services and to the DF service, which should be able to handle this
extra information for storage and matching/retrieval operations.

Requirements 3 and 4 for the integration were also addressed by modifying the
basic functionality of the DF agent that is now capable of storing service
descriptions fully compatible/transformable with that of WS. If an agent requests to
publish its service as a WS, the DF handles its registration with one or several UDDI
directories. The DF is also capable of performing federated search for services on
UDDI directories on behalf of the agents, providing them with service descriptions
to enable direct service invocation by these agents using the platform's MTS.

The requirements 5, 6 and 7 are handled directly by the MTS, by the addition of
a SOAP transport manager that implements the necessary mechanisms for SOAP
based communication. It is implemented as a server extension for MS Internet
Information Services (IIS) responsible for providing the access point for the services
provided by agents, and to translate between AS and WS descriptions. For more
details on the MTS description and the transport manager factory mechanism see
(Contreras et al., 2004). The functionality of this transport manager includes ACL
to/from SOAP encoding and transformation, service description and invocation
conversion to/from WSDL and session handling for service invocation from the
platform to external WS.

3.3 Domain Model

The primal intention of the CAPNET knowledge representation model is to provide
a common and consistent symbolic representation for the agent domain. CAPNET
Knowledge Representation Format (KRF) is based on the FIPA-RDF (FIPA, 2005).

Industrial application integration using agent-enabled semantic SOA 115

This model solves the ambiguity in defining relationships among entities and
introduces the possibility of expressing rules. KRF is used to specify the domain
model; the service model is based on OWL-S descriptions.

The CAPNET KRF represents entities from the application domain by using
structures known as Objects. Objects instantiate Resources. Properties set the value
of some feature or attribute that belongs to the Object/Resource. A Property is
composed of: a name, data type and value. If values for some property are restricted
to a Ust of possibilities or valid ranges, then it is said that it has Constraints.

In CAPNET KRF the rules define relationships between known information
(antecedents or premises) and information that can be concluded (consequents or
conclusions). Antecedents and consequents are propositions that relate properties
from resources to some value by one of the following operators: equal to, greater
than, greater than or equal to, lower than, lower than or equal to and not equal.

CAPNET Knowledge Acquisition Tool (KAT) and CAPNET Expert System
Shell (ESS) are complementary tools enabling knowledge acquisition and encoding
in CAPNET KRF and fuzzy reasoning capabilities. CAPNET ESS can be used by
the CAPNET agents as an internal (as in the "component agent") or external
component. It implements conjunctive, disjunctive and additive algebras of strict
monotonic operations on finite ordinal scales represented as multi-sets over the
CAPNET KRF (Sheremetov et al., 2005). This representation gives the possibility to
take into account the change of plausibility of premises in the rules and to
differentiate and refine the uncertainties of conclusions.

4. CASE STUDY DESCRIPTION

The general solution scheme for the LCP consists of several stages. Once the
problem is detected, the data stored in daily perforation reports (DPR), laboratory
deposits and perforation program (PP) are analyzed in order to determine loss
severity. In the case of a total loss severity, the action to perform is placing LCM;
else, the solution consists of lowering pump rate and rate of penetration. If the
problem persists, additional data from lab tests and the drill log are to be analyzed
regarding the viability of lowering density as the next measure. In case of failure,
two remaining measures could be applied: placing LCM or squeezing cement plugs.
Finally, if none of these controlled the problem, critical measures must be applied.

The business process model developed for the orchestration of the Web and
agent services follows the diagnostic LCP process model described above according
to the business process scheme shown in Figure 2. The first step in the process is the
specification of a user requests for the solution of a LCP problem. An iterative
process takes place producing a possible diagnostics and a set of proposed measures
at each iteration corresponding to one of the five phases of the problem solution.
This diagnostic process involves the use of the IMP_SmartDrilLHIS service, which
is actually an orchestration of several services provided by "normal programs" and
agents, specified in BPEL4WS and implemented using MS Biztalk Server.

In the case study we modeled three main distribttted information sources: DPR,
PP and laboratory results. To get information from these sources we developed three
agents that expose their functionality as Web services using the CAPNET AS-WS
integration mechanism. Each asset has instances of these agents associated with it.

116 Information Technology for Balanced Manufacturing Systems

Business Process Orchestration

1 ;

6 6 6
-4—j - - f - -

f̂ 1 ^ i h • 1 ^

<m ici *Q' 1 ^if

1

•

•

-1

Figure 2 - Business process implementation scheme

The Reports Agent provides the DPR_WITSML_service responsible for
converting a DPR format into WITSML objects. The Program Agent implements the
PP WITSMLservice responsible for converting a PP format into WITSML objects
and the Lab Agent implements the LR_WITSML_Service.

The WITSML Server is a legacy WS implementation of the API that is able to
store, manage and retrieve WITSML objects from a central repository. This
repository is used as the knowledge source for the inference process that would lead
to a diagnostics.

Expert system module is implemented as a service provided by a single agent
(SmartDrill Agent) that uses the CAPNET ESS as its engine, a set of knowledge
bases as reasoning base and the knowledge from the WITSML Server as the source
of facts for the inference. At each phase the agent may propose different measure for
solving the problem: lowering pump rate and rate of penetration, lowering density,
LCM, squeezing cement plugs or eventually taking extreme measures.

If the proposed measure involves the use of LCM or cement plugs, the Quotation
Agent will attend a virtual marketplace for quotations of the required materials. The
marketplace is implemented entirely by agents that represent different vendors of the
materials that may be needed in an LCP problem. CAPNET agents that behave
according to the FIPA-Contract-Net-Protocol and make proposals based on private
catalogs currently are only simulating this marketplace. However no actual contracts
are made, since the quotation agent only "collects" the proposals and reports the
results to the LCP Portal.

When the system completes the iteration it would keep the state and ask the user
if the problem has been solved. If this is not the case, it will proceed to the next
iteration where the SmartDrill Agent will shift knowledge base and infer from a
different set of rules, up to the fifth phase where the process ends. The application is
developed as LCP Portal implemented as a set of MS Sharepoint WebParts
indicating the current situation of the well, the relevant LCP data, and diagnostics
and solution details (Figure 3).

From the server side the following tools were used:

Industrial application integration using agent-enabled semantic SOA 117

4 » p,„-

m

Figure 3 - LCP portal interface

MS .Net Framework 1.1.
MS SQL Server 2000.
MS Biztalk Server 2004 for orchestration and choreography of BP.
CAPNET Agent Platform.
MS IIS Web server used as WS container for CAPNET and Sharepoint.
MS Sharepoint Portal server.
CAPNET Expert System Shell as the inference component for HIS agents.

5. CONCLUSIONS

In this paper, we descried a CAPNET service model featuring some innovative
elements like seamless integration with the model of WS, the most widely adopted
implementation of SOA. This integration allows taking advantage of the capabilities
of WS-related standards such as service composition while maintaining the MASs'
advantages for organization and dynamic coordination enabling easy integration of
agent services in industrial applications. Compared to SOA kernel of the JADE
(Bellifemine, 2001), CAPNET service model permits a transparent integration
mechanism between AS and WS that does not require agents inside the platform to
request the service from a local "gateway agent", instead a virtual agent reference is
created by the DF when a search is performed and instantiated by the MTS for each
invocation of an external WS.

The SMART-Drill application developed using the proposed approach has
benefited from the agent technology for working with distributed knowledge
sources, for fuzzy reasoning to get LCP diagnostics and for negotiation of services
(using FIPA-CNP) by solution provider agents organized in marketplaces.
Marketplaces also permitted to take advantage of role assignment techniques

118 Information Technology for Balanced Manufacturing Systems

managed within agent organizations. Semantic capabilities of agents (domain model,
KRF content language and ACL) were used mainly for the application description,
while OWL-S extended Agent Service Description permitted agents to discover
particular agent instances at the DF (data access agents for the assets). For the
application at hand there was no need in automatic WS discovery mechanism and
dynamic service composition.

Therefore a key contribution of this paper is twofold: (i) semantic SOA of an
agent platform and (ii) a working demonstration of agent-enabled semantic SOA
operating in real-life context of industrial applications. Several months ago, the
second version of the SMART-Drill was also installed in PEMEX for field-testing.

6. ACKNOWLEDGMENTS

Partial support for this research work has been provided by the IMP within the
projects D.00006 and D.00322. The last author would also like to acknowledge the
support provided to him by the IMP Postgraduate Studies Program. Special thanks
to I. Martinez for his invaluable contribution to the SMART-Drill programming.

7. REFERENCES

I. Ackland, R., Taylor, K., Lefort, L., Cameron, M. and Rahman, J. "Semantic Service Integration for
Water Resource Management". In Proc. of the 4''' International Semantic Web Conference, Gil, Y.;
Motta, E.; Benjamins, V.R.; Miisen, M. (Eds.), LNCS 3729, Springer, 2005.
Bellifemine F., Poggi A., Rimassa G., Developing multi-agent systems with a FIPA-compliant
agent framework. Software - Practice And Experience, 2001 no. 31, pp. 103-128.
Contreras, M., German, E., Chi, M. and Sheremetov, L. Design and implementation of a FIPA
coinpliant Agent Platform in .NET. J. of Object Technology, ETH Zurich, 3(3), March-April, 2004
Foundation for Intelligent Physical Agents - FIPA Specifications, (2005), http://www.fipa.org.

5. Garrouch A. and Lababidi H., "Development of an expert system for underbalanced drilling using
fuzzy logic", .1. of Petroleum Science and Engineering, vol. 31, pp. 23-39, 2001.

6. Jennings, N. An Agent-based Approach for Building Complex. Software Systems. Comm. ACM,
44, No. 4(2001)35-41.

7. Juric M., Sarang P. and Mathew B., Business Process Execution Language for Web Services
Second Edition, Packt Publishing, pages 6-30, 2006.
Haller A., Gomez J. M., Bussler C. "Exposing Semantic Web Service principles in SOA to solve
EAI scenarios". In Proc. of the WWW2005, May 10-14, 2005, Chiba, Japan.
Oberle D., Lamparter S., Eberhart A., Staab S., Grimm S., Hitzler P., Agarwal S., and Studer R.
"Semantic Management of Web Services using the Core Ontology of Services", tn Proc. of the
W3C Workshop on Frameworks for Semantics in Web Services. 2005.

10. Preist C. "A Conceptual Architecture for Semantic Web Services". In Proc. of the International
Semantic Web Conference (ISWC), 2004.

II. Ruh W. A., Maginnis F. X., and Brown W. J. Enterprise Application Integration: A Wiley Tech
Brief Wiley, 2000.

12. Sheremetov L., Batyrshin I., Martinez J., Rodriguez H., and Filatov D. "Fuzzy Expert System for
Solving Lost Circulation Problem". In Proc. of the 5"' IEEE Int. Conf on Hybrid Intelligent
Systeins, Rio de Janeiro, Brasil, Nov. 6-9, pp. 92-97. IEEE, 2005.

13. Sycara, K. et al. Automated discovery, interaction and composition of semantic Web services. J. of
Web Semantics. l(l):27-46. 2003.

14. Tesauro G., Chess D., Walsh W., Das R., Whalley 1., Kephart J. and White S., "A multiagent
systems approach to autonomic computing", In Proc. AAMAS, 2004.

15. WITSML Web Site, http://www.witsml.org/, 2006.

