


Quality of Protection 
Security Measurements and Metrics 



Advances in Information Security 

Sushil Jajodia 
Consulting Editor 

Center for Secure Information @stems 
George Mason University 
Fairfax, VA 22030-4444 
email: jajodia @ gmu. edu 

The goals of the Springer International Series on ADVANCES IN INFORMATION 
SECURITY are, one, to establish the state of the art of, and set the course for future research 
in information security and, two, to serve as a central reference source for advanced and 
timely topics in information security research and development. The scope of this series 
includes all aspects of computer and network security and related areas such as fault tolerance 
and software assurance. 

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive 
overviews of specific topics in information security, as well as works that are larger in scope 
or that contain more detailed background information than can be accommodated in shorter 
survey articles. The series also serves as a forum for topics that may not have reached a level 
of maturity to warrant a comprehensive textbook treatment. 

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with 
ideas for books under this series. 

A d d i t i o n a l  t i t les  in the ser ies :  
UNDERSTANDING INTRUSION DETECTION THROUGH VISUALIZATION by 
Stefan Axelsson; ISBN- 10:0-387-27634-3 
COMPUTER VIRUSES AND MALWARE by John Aycock; ISBN-10:0-387-30236-0 
HOP INTEGRITY IN THE INTERNET by Chin-Tser Huang and Mohamed G. Gouda; 
ISBN- 10:0-387-22426-3 
CRYPTOGRAPHICS: Exploiting Graphics Cards For Security by Debra Cook and 
Angelos Keromytis; ISBN: 0-387-34189-7 
PRIVACY PRESERVING DATA MINING by Jaideep Vaidya, Chris Clifton and Michael 
Zhu; ISBN-10: 0-387- 25886-8 
BIOMETRIC USER AUTHENTICATION FOR IT SECURITY: From Fundamentals to 
Handwriting by Claus Vielhauer; ISBN-10: 0-387-26194-X 
IMPACTS AND RISK ASSESSMENT OF TECHNOLOGY FOR INTERNET 
SECURITY:Enabled Information Small-Medium Enterprises (TEISMES) by Charles A. 
Shoniregun; ISBN-10:0-387-24343-7 
SECURITY IN E.LEARNING by Edgar R. Weippl; ISBN: 0-387-24341-0 
IMAGE AND VIDEO ENCRYPTION: From Digital Rights Management to Secured 
Personal Communication by Andreas Uhl and Andreas Pommer; ISBN: 0-387-23402-0 
INTRUSION DETECTION AND CORRELATION: Challenges and Solutions by 
Christopher Kruegel, Fredrik Valeur and Giovanni Vigna; ISBN: 0-387-23398-9 
THE AUSTIN PROTOCOL COMPILER by Tommy M. McGuire and Mohamed G. Gouda; 
ISBN: 0-387-23227-3 

Additional information about this series can be obtained from 
http: / /www.springer .com 



Quality of Protection 
Security Measurements and Metrics 

edited by 

Dieter Gollmann 
TU Hamburg-Harburg, Germany 

Fabio Massacci 
University of Trento, Italy 

Artsiom Yautsiukhin 
University of Trento, Italy 

Springer 



Dieter Gollmann 
TU Hamburg-Harburg 
Institute Security in Distributed 
Applications 
Harburger SchloBstraBe 20 
21079 Hamburg 
GERMANY 
diego @ tu- harbur g. de 

Fabio Massacci 
University of Trento 
Dipartimento Informatica e 
Telecomunicazioni (DIT) 
Via Sommarive, 14 
38050 TRENTO 
ITALY 
Fabio.Massacci @unitn.it 

Artsiom Yautsiukhin 
University of Trento 
Dipartimento Informatica e 
Telecomunicazioni (DIT) 
Via Sommarive, 14 
38050 TRENTO 
ITALY 
evtiukhi @dit.unitn.it 

Library of Congress Control Number: 

Quality of Protection: Security Measurements and Metrics 
edited by Dieter Gollmann, Fabio Massacci, and Artsiom Yautsiukhin 

ISBN- 10:0-387-29016-8 
ISBN-13:978-0-387-29016-4 
e-ISBN- ! 0: 0-387-36584-2 
e-ISBN-13:978-0-387-36584-8 

Printed on acid-free paper. 

© 2006 Springer Science+Business Media, LLC. 
All rights reserved. This work may not be translated or copied in whole or 
in part without the written permission of the publisher (Springer 
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, 
USA), except for brief excerpts in connection with reviews or scholarly 
analysis. Use in connection with any form of information storage and 
retrieval, electronic adaptation, computer software, or by similar or 
dissimilar methodology now know or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and 
similar terms, even if the are not identified as such, is not to be taken as 
an expression of opinion as to whether or not they are subject to 
proprietary rights. 

Printed in the United States of America. 

9 8 7 6 5 4 3 2 1  

springer.corn 



Table of Contents 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 
Dieter Gollmann, Fabio Massacci 

P a r t  1. M o t i v a t i o n s  

Why to adopt a security metric? A brief survey . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
Andrea Atzeni, Antonio Lioy 

Service-oriented Assurance - Comprehensive Security by Explicit Assurances . . .  13 
Giinter Karjoth, Birgit Pfitzmann, Matthias Schunter, Michael Waidner 

P a r t  2. M e a s u r e m e n t s :  Re l i ab i l i t y  vs S e c u r i t y  

Software Security Growth Modeling: Examining Vulnerabilities with Reliability 
Growth Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

Andy Ozment 

A Discrete Lognormal Model for Software Defects affecting QoP . . . . . . . . . . . . .  37 
Swapna Gokhale, Robert Mullen 

Time-to-compromise Model for Cyber Risk Reduction Estimation . . . . . . . . . . . . .  49 
Miles McQueen, Wayne Boyer, Mark Flynn, George Beitel 

Assessing the risk of using vulnerable components . . . . . . . . . . . . . . . . . . . . . . . . .  65 
Davide Balzarotti, Mattia Monga, Sabrina Sicari 

Collection and analysis of attack data based on honeypots deployed on the Internet 79 
Eric A lata, Marc Dacier, Yves Deswarte, Mohamed Kaaniche, Kostya Ko- 
rtchinsky, Vincente Nicomette, Van-Hau Pham, Fabien Pouget 

P a r t  3. Quan t i t a t i ve  S e c u r i t y  M o d e l s  

Multilevel Security and Quality of Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 
Simon Foley, Stefano Bistaelli, Barry 0 'Sullivan, John Herbert, Garret Swart 

A Conceptual Model for Service Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 
Judith E. Y. Rossebo, Mass Soldal Lund, Knut Eilif Husa, Atle Refsdal 

A SLA evaluation methodology in Service Oriented Architectures . . . . . . . . . . . . .  119 
Valentina Casola, Antonino Mazzeo, Nicola Mazzocca, Massimiliano Rak 

Towards a Notion of Quantitative Security Analysis . . . . . . . . . . . . . . . . . . . . . . . .  131 
lliano Cervesato 

P a r t  4. M e t r i c s  for  A n o n y m i t y  and  C o n f i d e n t i a l i t y  



The Lower Bound of Attacks on Anonymity Systems - A Unicity Distance Ap- 
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 

Dogan Kesdogan, Lexi Pimenidis 

Intersection Attacks on Web-Mixes: Bringing the Theory into Praxis . . . . . . . . . . .  159 
Dogan Kesdogan, Lexi Pimenidis, Tobias Kb'lsch 

Using Guesswork as a Measure for Confidentiality of Selectively Encrypted Mes- 
sages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 

Reine Lundin, Stefan Lindskog, Anna Brunstrom, Simone Fischer-Hiibner 

Measuring Inference Exposure in Outsourced Encrypted Databases . . . . . . . . . . . .  185 
Ernesto DamianL Sabrina De Capitani di Vimercati, Sara Foresti, Pierangela 
Samarati, Marco Viviani 

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197 



Preface 

Information Security in Industry has matured in the last few decades. Standards such as 
ISO17799, the Common Criteria, a number of industrial certification and risk analysis 
methodologies have raised the bar on what is considered a good security solution from 
a business perspective. 

Yet, if we compare Information Security with Networking or Empirical Software 
Engineering we find a major difference. Networking research has introduced concepts 
such as Quality of Service and Service Level Agreements. Conferences and Journals 
are frequently devoted to performance evaluation, QoS and SLAs. Empirical Software 
Engineering has made similar advances. Notions such as software metrics and measure- 
ments are well established. Processes to measure the quality and reliability of software 
exist and are appreciated in industry. 

Security looks different. Even a fairly sophisticated standard such as ISO17799 has 
an intrinsically qualitative nature. Notions such as Security Metrics, Quality of Protec- 
tion (QoP) or Protection Level Agreement (PLA) have surfaced in the literature but still 
have a qualitative flavor. The "QoP field" in WS-Security is just a data field to spec- 
ify a cryptographic algorithm. Indeed, neither ISO 17799 nor ISO 15408 (the Common 
Criteria) addresses QoP sufficiently. ISO17799 is a management standard, not directly 
concerned with the actual quality of protection achieved; ISO 15408 is instead a product 
assessment standard and yet does not answer the question of how a user of a product 
assessed by it can achieve a high QoP within his/her operational environment. Both 
standards cover just one aspect of an effective QoP and even the combination of both 
would not address the aspect sufficiently. "Best practice" standards, such as the base- 
line protection standard published by many governments agencies, also belong to the 
category of standards that are useful, but not sufficient, for achieving a good QoP. 

Security is different also in another respect. A very large proportion of recorded se- 
curity incidents has a non-IT cause. Hence, while the networking and software commu- 
nities may concentrate on technical features (networks and software), security requires 
a much wider notion of"system", including users, work processes, organizational struc- 
tures in addition to the IT infrastructure. 

This collection of essays is a first attempt to discuss how security research can 
progress towards a notion of Quality of Protection in Security comparable to the notion 
of Quality of Service in Networking, Software Reliability, or Software Measurements 
and Metrics in Empirical Software Engineering. They are first step towards the estab- 
lishment of scientific and technical methodologies for evaluating security solutions and 
security patterns in Security Engineering. 

The collection is started by a short survey by A. Atzeni and A. Lioy: Why should 
we adopt a security metric, and how can it be used to guarantee an high level Quality of 
Protection? G. Karjoth and his co-authors from IBM Research offers also a motivating 
scenario from industry based on the need of providing service-oriented assurance and 
claim that the only way to provide a comprehensive security is indeed to provide an 
explicitly assurance as a protection level agreement. 

The second part of the book is devoted to the issue of measurements and how one 
can use models and techniques from reliability and related fields to capture security 
issues. In the first paper A. Ozment discusses the adequacy of reliability statistics for 
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capturing the trends in software vulnerabilities, whereas S. Gokhale and R. Mullen ad- 
vocate the usage of a lognormal model that can explains the relations between software 
defects and the overall QoP of a product while M. McQueen and his co-authors sug- 
gest a variant of the well known Mean-Time-To-Failure reliability metric in the form of 
the Time-to-compromise model to estimate cyber risks related to QoP. Another model 
based on risk analysis is also proposed by D. Balzarotti, M. Monga, and S. Sicari. 
Finally E. Alata and his co-authors report the results of the analysis of a large data 
gathering experiment based on honeypots. 

Quantitative formal security models are discussed at length in the third part of the 
book. S. Foley and his co-authors presents a modification of the classical Multilevel 
Security model that allows for quantitative and not just qualitative notions of security 
levels. J. Rosseboe and her co-authors proposes a challenging conceptual model for 
service availability from a telecommunication perspective while V. Casola and her co- 
authors proposed a SLA methodology for service oriented architectures. The paper by 
I. Cervesato concludes the section with a carefully constructed model for quantitative 
security analysis based on logic. 

Metrics for anonymity and confidentiality are discussed in the last section of the 
book by D. Kesdogan, L. Pimenidis and T. Koelsh both from a theoretical and an ex- 
perimentaland perspective. R. Lundin and her co-authors suggest to use guesswork as 
a measure for confidentiality whereas E. Damiani and his co-authors discuss a com- 
prehensive model for measuring inference exposure in outsourced (yet encrypted) data- 
bases 

The essays collected in this paper were presented at the Quality of Protection Work- 
shop held in Milano and co-located with the European Symposium on research in se- 
curity and privacy (ESORICS'05) and the 1 l th IEEE International Software Metrics 
Symposium (METRICS'05), were Helmut Kurth from ATSEC gave a stimulating in- 
vited presentation. 

The papers were carefully selected by the program committee (only 15 out of 28 
submitted papers were accepted for presentation) and were further revised by the au- 
thors after the discussion at the workshop. 
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Why to adopt a security metric? A brief  survey * 

Andrea Atzeni and Antonio Lioy 

Politecnico di Torino 
Dip di Automatica ed lnformatica 

Torino(Italy) 
{shocked, lioy} @ polito.it 

Abstract. No doubt that computer security is a hot topic nowadays: given the im- 
portance of computer-assisted activities, protection of computer system is of the 
utmost importance. However we have insofar failed to evaluate the actual secu- 
rity level of a system and thus to justify (either in technical or economical terms) 
the investments in security. This paper highlights the motivations to improve se- 
curity measurement techniques, analyses the existing approaches, and discusses 
whether their are appropriate or some new directions should be explored. 

Keywords: security metric, computer system security 

! Introduction 

Intuitively, security evaluation of computer systems is an important task. But why is 
it so important? Why is it so urgent and why so many efforts are devoted to this aim? 
Obviously, it is so important because electronic machines surround us everytime and 
everywhere: for example, when we make a call, when we edit a document, when we 
write an e-mail, or when we schedule a meeting with our Personal Digital Assistant. So, 
in a certain way, computer systems bear on our life the same influence that atmospheric 
conditions and wild animals bore on our ancestors. Undeniably, computers surround us 
pervasively, and they will much more spread in the future, as last decades permit us to 
foresee. 

Measurement is the way by which humans understand with more precision the ra- 
tional world. We measure to reveal a condition and possibly alert the user. We also 
measure to quantify the magnitude o f  phenomena. Probably most importantly, we mea- 
sure to control processes [1]. Paraphrasing Lord Kelvin, when you can measure what 
you are speaking about and express it in numbers, you know something about it [2]. 
Starting from this base, we will explore the scientific literature to gain more insight to 
the motivation of measuring the security of a computer system, recalling that measure- 
ment and metric adoption is almost always a tool to improve and manage developing 
process [3]. The rest of the paper is organised in following manner. Section 2 briefly de- 
scribes general concepts related to metric and measurement systems, sections 3, 4 and 
5 examine three main motivations justifying the improvement of security measures, re- 
spectively efficiency, economical gain and social management. Section 6 explores some 

* This work is part of the POSITIF project, funded by the EC under contract IST-2002-002314. 



2 Atzeni and Lioy 

actual work developed on measurement tools in security. This topic permits to under- 
stand if spending an effort in the definition of a security metric is worthwhile or not. 
Conclusions follow in section 7. 

2 W h a t  i s  a m e a s u r e  

To understand the importance of measuring a system, it is first necessary to understand 
what a measure is. A measure is the result of a measurement, i.e. a process aiming to ac- 
quire quantitative or qualitative values of real world attributes. A "real-world attribute" 
is any property of an abstract or concrete existing entity. For example, my clock is an 
entity, and one attribute is its colour, which could be expressed in qualitative term (it is 
black) or in quantitative term (its Red-Green-Blue hexadecimal component values are 
06-03-03). 

A measurement system should exhibit some properties in order to be effective and 
useful: 

- Clar i ty  A measure should be easy to interpret, at least in its operative context. A 
measure without clear meaning will lead to discussions and different beliefs in the 
best case, to wrong conclusions in the worst. In both cases, the usefulness of the 
measure is reduced. 

- Objectiveness The measure should not be influenced by the measurer will, or be- 
liefs, or actual feeling. Otherwise, its value will retain the correct sense only for the 
original measurer, and the measure would lose in generality. 

- Repeatabil i ty If repeated in the same context, with exactly the same conditions, the 
measure should return the same result. If this is not the case, as the uncertainty in 
the value increases so the measurement's usefulness may decrease, and its treatment 
may become harder. 

- E a s i n e s s  The measure of an attribute should raise knowledge about the entity itself, 
sometimes with the purpose of improving the usefulness of the entity. However, if 
the measure is too difficult to be performed, or simply impossible to accomplish, 
the knowledge's gain is not sufficient to motivate the measurement. 

- Succinctness Only important parameters should be considered, letting aside as- 
pects not important to the definition and/or the comprehension of the entity under 
measurement. Such property aims to reduce both measure's complexity and uncer- 
tainty. In a few words, "don't  miss the forest for the trees". 

These properties are always desirable, but they are very difficult to achieve when 
dealing with measure of complex quantities - such as security (or goodness or any 
other not easily definable entity). Therefore, as the simple existence of statistics proves, 
many attempts successfully treat measures not clearly understood or prone to relevant 
uncertainty. 

After this brief discussion of the desirable properties, we may now face the paper's 
main question: why would the adoption of  a security metric be a profitable enhance- 
ment? 
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3 Efficiency 

A natural answer to the paper's question is because to work without measure is not ef- 
ficient, that is, the ratio of output to input of a system may be improved by employing 
better metrics. Blakley [4] claims that the traditional approach to information security 
has failed, and this is due to a number of reasons, that can be resumed by the tremen- 
dous complexity of large computer systems. Composing a large, secure system from 
little and simple secure components is a daunting purpose, due to the difficulty of the 
composition, rather than to building the single components, which may be easy. On 
the other hand, starting directly with the construction of huge secure system is worse. 
As previously stated, this is not surprising, because the complexity of general-purpose 
system permits billions of different operation types, hence it is quite difficult to foresee 
each of them in different possible scenarios. However, in spite of the problem diffi- 
culty, measurement systems can greatly help. As stated by Bush et al. [5] the better one 
understands a phenomenon, the more concisely the phenomenon can be described, so 
description's efficiency improves. In fact, the simple act to measure can improve the ef- 
ficiency, we could just recall the axiom, circulating in software engineering field, when 
performance is measured, it improves [6] 

A metric is not only important for its own sake, but as part of a more wide schema. 
The measures permit to acquire knowledge and improve the system. As in the concep- 
tual schema of Fig. 1, the acquisitors are means to gain knowledge of the external world, 
i.e. to measure some attributes. These acquisitors are the focus of the measurement's 
system definition, they are the ones that should exhibit properties of "good measure". 
The remaining part of the figure refers to the treatment system (for data manipulation to 
extract meaning) and feedback system (for the desirable feedback to the system under 
measurement, in terms of improving changes). It is noticeable that all the other system 
parts profit from a "good" measurement system. 

If embedded in an overall evaluation schema, the power of the measurement can 
inspire awe. In the ongoing European project POSITIF [7] a holistic approach is pro- 
posed to face the security concern, restricted to the computer network environment. 

Treatment system 

~"acquisitor' .... :] , ' ~ ' (  cleaner ) .... "'.. 

.............................................. i Real world system i .4 ...................................................... i 
t i 

Feedback system 

Fig. 1. The righteous improving schema 
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adm~ 
u ~  

a 

¢ 

Fig. 2. The Positif framework 

In the POSITIF framework (depicted in Fig. 2) the network will be described in for- 
mal terms by a formal system description language, the desired security level will be 
described by a formal policy description language and the security evaluation will be 
performed by a security checker, capable of evaluating the actual network security level. 

4 Economical motivations 

Without the conscious decision to agree on a way of  measuring, cooperative activity 
could hardly take place. With it, marketplaces and increasingly sophisticated economies 
can develop, matching barter, cash, or credit to whatever is owned by one person and 
desired by another [8] 

In our current society, economical reasons are the most common motivation for 
human actions:, thus, many researches approach the metric definition problem from 
an economical perspective. An issue in metric establishment is that security is not de- 
scribed in "comprehensible terms" with respect to a business expert [4], and even more 
for "normal computer users". This holds a great difference to other field, like medicine 
(for example, the effect of smoking on a human body is much more clear, also in "mon- 
etary" terms). This issue arises in security due to the difficulty of the evaluation of the 
benefits of adopting a security technology, which are hard to assess. It is difficult to 
know beforehand the impact of a security change, to compare alternative designs and 

: We are really afraid that many people would agree upon this statement ... Anyway we don't 
want to linger in moral judgements in this (scientific) paper (and, however, other wide motiva- 
tions, such as military supremacy, often are also worse). 
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to make the right choice with poorly-objective available data [9]. Furthermore, with- 
out an economical evaluation framework, the companies' tendency may be to not share 
security information, embracing a greedy strategy of short-period gain [ 10]. 

Another urgent point is the dramatical increment in the last few years of the attack 
frequency. Long ago, in the early lnternet stage, only universities and "good guys" 
shared information by wide area networks, so security concerns has been far remoted 
from Internet developer's minds for long time 2. When lnternet spread its influence and 
became commonplace to the majority of computer users, also "bad guys" came into 
play, and security threats multiplied as well. At the same time, the company's economic 
reliance on information and informatics grows more and more [ 11] and hence Internet 
(in)security has become an economic concern. 

Nowadays, cyber-attacks cause huge losses. For example, a survey [12] estimates 
that the stock price impact of  cyber-attacks show that identified target firms suffer losses 
of  1%-5% in the days after an attack. For the average New York Stock Exchange cor- 
poration, price drops of  these magnitudes translate into shareholder losses of  between 
$50 million and $200 million. The same survey also claims a worldwide overall loss, 
for all attack types, of about $226 billion 3. However, the fact remains: attacks on infor- 
mation systems influence the stock market, the extent of which depends on the firm's 
business type and on the attack type. Some partially contradictory studies exist on the 
topic, e.g. [13-16], summarized by [12]. The apparent trend is, in general, a loss in 
the short time period, and a smaller loss in the medium-long range. The extent of such 
losses is surely related to the type of company, for example B2C companies, such as 
Amazon and eBay, almost completely relying on Internet technology, can suffer very 
wide financial losses, as demonstrated in June 1999 when eBay's site was unavailable 
for 22 hours and the stock lost twenty-five percent of its value [ 17]. Possibly, the type 
of attack is an influencing factor, in particular attacks impacting confidentiality seem 
to cause a greater damage than others [14], but such result is probably related to the 
company type. 

Other researches and surveys highlight the overall financial impact of virus and 
worm diffusion, and general economic damage imputable to any kind of cyber-attack. 
Costs are always many billion dollars. Moreover, cyber attacks can influence cost in 
more subtle terms, for example diminishing the adoption of informative infrastructure, 
hence decreasing the achievable productivity. 

All these menaces are reduced by better security tools, and a meaningful and effec- 
tive measurement system is propaedeutic to any security improvement. 

5 National security motivations 

Domination and leadership are one of the earliest and strongest motivations for knowl- 
edge acquisition among human beings. The capability to measure security enables 
strategic plans and appropriate counteracts to enemy's actions. Computer system at- 
tacks, depending on motivations, may be a concern of national and international rel- 

2 But for availability issues, that were studied since the very beginning of Internet development. 
3 The survey also states that the reliability of these estimates is often challenged; the underlying 

methodology is basically anecdotal. 
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evance. Since metaphors and similitudes are a way to give maximum meaning with a 
minimum of words [18], they often illuminate on the real meaning of a concept in a 
particular context. Words like cyber-terrorism or cyber-war, used in many government 
and police documents, point out the great importance informatics attacks hold in such 
environments. We can just notice that rumours report that even the (in)famous head- 
terrorist Osama-Bin-Laden spread orders and informations to his followers by means 
of Internet and steganographic techniques [19]. Of course, a security measure able to 
measure both the attacking techniques and also the defending countermeasures, in a 
comparable fashion, would be of great help to understand if terrorists can by-pass the 
defences or if instead the situation is relatively safe. 

A series of yearly USA CSI-FBI surveys gather data by interviewing a large number 
of computer security practitioners in U.S. corporations, government agencies, finan- 
cial institutions, medical institutions and universities. Investigation concerns include, 
among others, the way organisations evaluate the performance of their investments in 
computer security, the portion of the IT budget devoted to computer security, the se- 
curity training needs of organisations, the level of organisational spending on security 
investments, the impact of outsourcing on computer security activities. The most recent 
surveys [20] exhibit some good news, such as the decrease of financial losses related 
to security breaches, and the extensive adoption of security audits. On the other hands, 
virus and denial of service attacks increase to a value of $55 million, and the sharing of 
intrusion information is in decline, due to the consequent bad publicity. However, the 
report does not highlight clear trends in computer crime and, by the way, its samples are 
probably not chosen in a statistically sound fashion [ 12]. These facts point out one more 
time the need of useful metrics to determine security and the consequence of security 
action. Such consequences should be determined both to analyse business interaction 
and to evaluate effectiveness of countermeasures. 

6 Proposed solutions 

The purpose of this section is to illustrate the proposes actually in the arena, in order to 
judge the opportunity to adopt or not a security metrics. 

First of all, an advice always valid when dealing with measures and metrics is to 
give meaning to measurement, that is, to follow the principles explained in section 2, 
and some other practical principles, like visibility of the measure (the results should be 
close to the end-user), tail-to-the-audience (the results should be adapted to the end- 
user, for example eliminating non-relevant data), traceability (the tools and measures 
employed should refer to an explaining base, for example, the needed knowledge base 
to calibrate a sensor) [21] 

The way to improve the world can be economic and/or technical, and it may come 
from one or more of the approaches considered in the next subsections. 

6.1 Technical solutions 

Several approaches to establish a technical security evaluation have been proposed. 
Maybe the most promising ones involve statistical research. The idea is the establish- 
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ment of a model capable of describing system behaviour. Starting from such a descrip- 
tion, the aspired result is the acquisition of further knowledge on the (simulated) system, 
and hopefully the forecast of the system security evolution. This modus operandi mainly 
stems from the dependability field, not surprisingly however, since dependability and 
security share many common points, and security or dependability are sometimes con- 
sidered one as a subset of the other, as expressed in [22]. An excellent paper [23] surveys 
many methodologies developed. 

Reliability block diagrams, usually adopted in large network analysis [24, 25], rep- 
resent a system as composed by many interconnected components. The components are 
modelled with statistical properties, like mean-time-between-failure, and the system 
behaviour is simulated starting from single-component characteristics and properties of 
the component linking connection. 

Fault trees are acyclic graphs (trees), in which the root is the system of interest, 
leaves are single component and inner nodes, that is nodes between the root and the 
leaves, are "logic gates", able to model the failure flow from the leaves to the root. If 
a flow from leaves to root is established, then a failure occurs. These systems are well 
understood and general enough to be applied in hardware, software and humanware in 
complex computer-based systems [26]. 

Attack trees are a natural security adaptation of fault trees, where a system failure 
(i.e. the root of the tree) is a security breach, the leaves are the menaces to which the 
system is exposed, and the flows between leaves and root are the possible ways of 
exploiting the basic weaknesses. The first mention of attack trees is in the Schneier's 
milestone book Secrets' and Lies: Digital Security in a Networked Worm [27]. 

Other modelling tools include model checking, in which the system is formally 
depicted by its possible operative states, and the evaluation is based on reachability 
analysis of the state space, and stochastic representation of the system evolution by 
Markov chains, as pointed out by Dacier's notable work during his PhD studies and 
later [28-31 ]. 

We believe that several of these approaches are very promising, as witnessed by 
their many successful applications to the dependability field. At the present time the 
problem is the lack of a formal and validated model of security behaviour, which in 
rough words could be resumed by a challenging issue of statistical analysis: the study 
of non-independent statistical variables. 

6 . 2  U S  G o v e r n m e n t  s o l u t i o n s  

Governments, first among all that of the United States of America, devote considerable 
efforts to analyse and implement efficient metrics and measurement systems. The Na- 
tional Institute of Standards and Technologies (NIST) [32] is the official standardisation 
organism in the USA, and its CSD division is devoted to computer security standardisa- 
tion [33]. Inside CSD, three sections are involved in system evaluation and certification, 
both mansions strictly related with measurement; these sections are: 

- Federal Information System Management Act (FISMA) implementation program 
- Security Testing 
- Security Management and Guidance 
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FISMA is the emanation of the US Congress that highlights the risks of aggressive 
cyber attacks at the heart of critical infrastructures, and that urges countermeasures in 
order to prevent such possibilities from becoming real. The FISMA implementation 
project is a NIST's CSD effort aiming at promoting standards and guidelines to reach 
goals like security categorisation of information and information systems, selection of 
appropriate security controls for information systems, verification of security control 
effectiveness and determination of information system vulnerabilities, operational au- 
thorisation for processing (security accreditation) of information systems, in order to 
make available more consistent, comparable, and repeatable evaluations of security con- 
trols applied to information systems, a better understanding of enterprise-wide mission 
risks resulting from the operation of information systems, more complete, reliable, and 
trustworthy information for authorising officials~ facilitating more informed security 
accreditation decisions, or, synthetically, more secure information systems within fed- 
eral agencies, which composes the critical computer infrastructure of the United States 
[34]. Roughly speaking, almost all activities relate to qualitative or quantitative mea- 
surements. 

The Security Testing Unit approaches the problem of developing, managing and 
promoting assessment tools as means of secure system development. Under this Unit 
fall partnerships promoting the dissemination and use of evaluated IT products and sys- 
tems and the growth of such products in U.S.A., like National Information Assurance 
Partnership [35] or Trust Technology Assessment Program [36]. Other aspects involve 
the development of an automatic testing toolset, in order to improve the economics of 
security functional testing [37], or the development and dissemination of cryptographic- 
modules validation program [38] against FIPS 140-2 Security Requirements for Cryp- 
tographic Modules [39]. 

The Security Management and Guidance Unit mainly gathers standards, best prac- 
tices and guidelines adopted inside federal US agencies [40] aiming to export virtuous 
behaviour or to discuss and improve possible weak practices. Moreover, this division 
emits or collects publications related to all system security aspects, from system evalu- 
ation to information acquisition by means of questionnaires [41 ]. 

Other CSD duties include guidance to embed security development into the system 
life-cycle [42], to adhere to federal security requirements for federal agencies, a.k.a 
policies [43], helping program for security management [44], and economical frame- 
work evaluation method for IT security investment [45]. Also a software tool helping 
towards automating security self-assessment is freely available from the web site [46] 

6.3 Economical solutions 

Blakley [4] proposes the "monetisation" of security actions. In such a way, information 
loss and product effectiveness will be available in monetary terms, and may possibly be- 
come a usual insurance and trade instruments. He remarks how the publication of such 
monetary information would create an effective information security market and permit 
to allocate capitals in the fight manner, and would stop the rewarding of ineffective so- 
lutions. However, such a solution appears really hard to achieve. Blakley's suggestion is 
to initially accept limited liabilities for security products, which will be adjusted by the 
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market with its usual demand-offer mechanism. Even if Blakley's position may make 
sense, a long and hard work appears essential to correctly price security. 

Butler proposed an intriguing cost-benefit analysis, called Security Attribute Eval- 
uation Method (SAEM) able to bridge the communication gap between security man- 
agers and information technology (IT) managers [9], that is, in simple term, to make 
clear the benefit and the cost of a security solution to a non-security adept. SAEM 
method involves four steps: 1) a security technology benefit assessment, 2) an evalua- 
tion of the effect of security technologies in mitigating risks, 3) a coverage assessment 
and 4) a cost analysis. Of course, the hard part is not to state but to accomplish such 
tasks. The first point is accomplished by supervised and extensive interviews of IT and 
security managers. The second point is achieved through statistical data, describing the 
frequency and the outcome of threats. The last two points can be developed in paral- 
lel, and relate to the evaluation of how large is the coverage of the countermeasure and 
what is its relative cost. Many problems arise with such evaluation systems. The initial 
data acquired in the first phase are not objective, so all the subsequent phases are poten- 
tially influenced by such errors. Moreover, the statistical data required for the second 
phase may be not available. With regard to this point, Butler proposes the multi-attribute 
analysis, a useful technique able to treat uncertainty when many attributes are involved. 
However, much of the multi-attribute approach is based on human subjective choices, 
hence the final result is often useful, but rarely objective. 

Gordon et al [10] studied the topic of sharing security-breach information. Based 
on previous literature and on the experience of Trade Associations (TAs), Information 
Sharing Analysis Centres (ISACs) 4 and Research Join Ventures (RJVs), they conduct 
a deep analysis of pros and cons for information sharing, stating that the combination 
of literature regarding TAs and RJVs provides theoretical underpinnings to develop a 
model for examining information sharing related to security breaches. The work is very 
interesting, but not conclusive, leading to suggest further research for the development 
of such a model. An investment security model was carried out in a more recent work 
[ 11 ]. Many are the simplifying assumptions, nevertheless the model retains a sound eco- 
nomical sense, capable of evaluating the best trade-off between cost of security breaches 
and benefit of threat reduction. 

7 Conclusion 

Security is a complex matter, neither deeply understood nor easily measurable, there- 
fore, in order to better understand and evaluate it, the actual measurement system has 
to improve and possibly new measurement schemes have to come into play. From the 
economical perspective, the huge amount of money loss is a natural engine towards 
improvement, therefore many economical researches are going toward some sort of 
econometric models, as shown by the last 5-6 years of literature. Unluckily, these stud- 
ies are not at the present time conclusive nor widely proven, hence further studies and 

4 ISACs are industrial based organisation, with federal participation and assistance, aiming to in- 
formation sharing, for example offering confidential venue for sharing security vuinerabilities 
and solutions 
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researches are welcome. In spite of this, we believe the scenario to be promising and 
fruits near to be borne. 

As said, security is a complex matter, but this seems to stimulate a vast enflower- 
ing of studies, improving the day-by-day knowledge on the topic and the capability of 
structured evaluation, as pointed out by the cited papers. This should not come as sur- 
prise, since security is both a matter of civilian concern and government concern; so, it 
is natural that stimulating action is taken by more sensitive states (like the USA). 

Perhaps, a problem of the past approaches was a too stringent focus on the evalu- 
ation issue. Instead, we believe that in order to work out practically usable solutions, 
the problem has to be approached in a more holistic way, formalising the goal to be 
achieved, formalising the properties of the system, and then using formal and auto- 
matic tools to evaluate the security. Positive side-effects, letting aside the automation of 
the evaluation, should be highly customisable results, precisely suitable for the actual 
evaluated system. 
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Abstract. Flexibility to adapt to changing business needs is a core requirement 
of today's enterprises. This is addressed by decomposing business processes into 
services that can be provided by scalable service-oriented architectures. Service- 
oriented architectures enable requesters to dynamically discover and use sub- 
services. Today, service selection does not consider security. In this paper, we 
introduce the concept of Service-Oriented Assurance (SOAS), in which services 
articulate their offered security assurances as well as assess the security of their 
sub-services. Products and services with well-specified and verifiable assurances 
provide guarantees about their security properties. Consequently, SOAS enables 
discovery of sub-services with the "right" level of security. Applied to business 
installations, it enables enterprises to perform a well-founded security/price trade- 
off for the services used in their business processes. 

I Introduction 

Enterprises struggle to increase their flexibility to adapt to changing business needs. 
Service-oriented architectures address this challenge by decomposing enterprises into 
loosely coupled services, which are hosted on platforms that can adapt to changing 
load and performance requirements [2]. This trend is reflected by the growth of value 
networks, in which enterprises specialize on their core competencies and interconnect 
these critical services to provide a better overall service to their customers. 

Whereas current research focuses on how to integrate the business processes of 
these value networks, security will be a major obstacle to their wide-spread adoption. 
Cross-enterprise security is still addressed by long-lasting trust relationships, contracts, 
and manual audits. Emerging service-oriented architectures and flexible usage patterns 
are slowly invalidating this static closed-world approach. There exists no approach that 
guarantees overall security while permitting the flexibility required today. 

In this paper, we propose a new concept called "Service-oriented Assurance" (SOAS) 
that enables providers to advertise their security, allows customers to monitor the ac- 
tual security of a service, and provides well-defined recourse for violations of promised 
security features. SOAS provides a framework to express and validate assurances. An 
a s s u r a n c e  is essentially a statement about the properties of a component or service, typ- 
ically made by the producer of the component or the provider of the service. Besides 
the specification of the security properties of the component, it adds a definition of how 
these properties are to be measured and by whom, and a recourse for the case that the 
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promised property does not hold. Assurance verification is done by determining the ex- 
istence or absence of the above properties. Enterprises can then link the required level 
of security of their IT systems and their business requirements, namely, the level of risk 
that the enterprise is willing to accept. In conclusion, SOAS empowers enterprises to 
provide security in dynamic service-oriented architectures while automatically procur- 
ing services that offer the right level of security. 

This paper first presents the taxonomy concepts of SOAS, the use of SOAS for Web 
Services, and a basic architecture for monitoring assurances (§2). Next, it describes the 
actual use of SOAS (§3) and illustrates the concept of assurances by means of some 
example scenarios, putting particular emphasis on the separation of the assurance from 
the security mechanisms that achieve the assured property (§4). Finally, it discusses 
related work (§5) and concludes (§6). 

2 S e r v i c e - o r i e n t e d  A s s u r a n c e  

SOAS is a new paradigm defining security as an integral part of service-oriented archi- 
tectures. It enables services to formalize and advertise their security assurances. Based 
on these declarations, services can address the core challenges of secure and flexible 
service composition: 

- What are the security properties of a given service? 
- How can the actual security be measured? 
- What are the assumptions, failure possibilities, and dependencies of a given ser- 

vice? 
- What evidence can be given that a service will or does indeed meet its security 

promise? 
- Which remedies will be taken if a service does not provide the promised security? 

In the remainder of this section, we outline the use of SOAS for Web Services, the 
taxonomy concepts of SOAS, and a basic architecture for monitoring SOAS assurances. 

2.1 F r o m  S e r v i c e  L e v e l  A g r e e m e n t s  to  S O A S  

Web Services are the preferred way of describing services in a service-oriented ar- 
chitecture. If a component needs a certain service, it discovers potential providers via 
directories and brokers, e.g., using UDDI, WSDL, and WS-Resource descriptions, and 
then engages with a specific service provider. In particular in cross-domain scenarios, 
this engagement is governed by a Service Level Agreement (SLA), e.g., expressed in 
WS-Agreement, which summarizes the requester's and provider's agreement on what 
the service is supposed to do. An SLA defines the quality of service, how and by whom 
that quality is measured, and what has to happen if the service quality is insufficient. 
Today SLAs are often implicit (in particular for services within one organization) and 
in most cases fairly static and pre-negotiated. But this is expected to change-  in the fu- 
ture service providers will be selected more dynamically and hence SLAs will be more 
pervasive and negotiated in real time. This negotiation will become part of the overall 
process and of the overall Web Services stack. 
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Service-oriented Assurance adds security to this picture: Before two components 
engage in a service, they provide each other with assurances, i.e., security guarantees, as 
part of the SLA negotiation process. Examples are promises to provide certain process 
or data isolation, to comply with a regulation, or to accept a certain risk, or also state- 
ments of identity, etc., together with arguments why these properties hold, such as cer- 
tificates for Common Criteria security evaluations, hardware-based integrity statements, 
or identity certificates and digital signatures. 

Depending on how the SLA defines the manner in which security quality is mea- 
sured, components may gather evidence during operation, i.e., information that docu- 
ments and maybe even proves the state of transactions or the security posture of the 
component. This information can be security alarms, entries in log files, authenticated 
messages received from other components, hardware-based integrity measurements, 
etc. If something goes wrong, this information becomes the basis for fault diagnosis 
and forensics. Once a problem has been identified, the assurances will point to the 
components responsible for solving the problem and for covering damages. This is par- 
ticularly important in a cross-domain scenario involving different organizations, where 
the result may be an actual financial recourse. 

I Domain I 1. SLAwith assurance 
I ~ I 2. Service with evidence 
I ~ ! 3. Diagnosis, recourse 
! I 

I I SOAS/ ~SOAS I 
I 

Compo- I n e ~ n t  Compo- I I i 
t 1 

..,J 

Fig. 1. Service-oriented Assurance 

Figure 1 summarizes the use of assurances. We mainly consider the gray component 
on the left, e.g., a business process. It uses the service of another component (process), 
which may be in another domain, and of local sub-components. In a service-oriented 
architecture, there is no great difference between these two uses, except that there is by 
necessity a stronger dependency on some local components, e.g., the underlying operat- 
ing system. In a first step, the processes negotiate an SLA with assurances. This is done 
in the context of the processes' own service assurances to their users. Secondly, during 
normal service, both processes may gather evidence of their own correct operation and 
of the operation of their partner; some of this evidence may be exchanged explicitly. 
In case of problems, diagnosis and forensics should be possible based on the evidence 
gathered, and the SLA will provide procedures for a potential cross-domain recourse. 
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2.2 High-level Model 

To enable the formalization of statements that express the security promised for a given 
service, SOAS defines a model as shown in Figure 2. In theoretical terms, this is in 
essence a meta-model of service descriptions. I Note that SOAS only formalizes the 
structure of security statements and that properties must not necessarily be expressed 
in a formal way; they may simply denote a certification such as a security label like 
EAL-4 or a privacy seal like TRUSTe having a precise meaning given from outside the 
SOAS model. The figure is drawn in UML, a widely used graphical design language. 

1 * P'r , I s,=es i 
I 

• [ * , 

I 
• I . i r 0 m i s e s  - o.. ,  defines o. 
~V 

. . . . . .  labOu~,,,j - 
Assurance I 1~ SOA component I 

~/assures 

I R~c°'r~ J I Evidence I I Property ] 
. . 

,onJl °'°"'°° 0°a 

i ! 
I .o~o, 'o~ !1 """~"n~ I 

Fig. 2. Assurances on SOA components 

The security of a SOA component is established by the properties it is expected to 
implement. Thus, declaring (security) properties is the foundation of the SOAS model. 
Properties of SOA components can be written texts (like contracts) but will often be 
machine-readable to enable automation and comparison beyond equality tests. Simple 
properties may define the 1/O syntax of a service by, e.g., promising to adhere to a 
WSDL schema. Properties may also make statements about the actual behavior of a 
service stating, for example, the privacy of personal data. More examples are given in 
§4. This can be done using formal specifications or textual descriptions of the expected 
services. 

Properties either hold unconditionally or are qualified. A qualifier augments or re- 
stricts a given property. In an augmenting qualifier such as availability or performance, 

I A meta model of SOA exists in [1], but it does not classify service descriptions or service 
properties. Given a meta model, corresponding models can be serialized either automatically, 
i.e., a "language" is defined implicitly by the UML model, or manually, e.g., into extensions 
of existing Web Services specification languages. 
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the resulting qualified property always implies the original property. Restricting qual- 
ifiers are key to modeling security. Typically they express environmental assumptions 
needed, e.g., a trust model specifying entities that are assumed to be correct, failure 
probabilities, or validation methods. 

An assurance is a statement about a property of a SOA component or service, made 
by a principal such as the producer of the component or the provider of the service. 
Assurances define the evidence the component has to deliver to show it indeed provides 
the desired properties, and a specification of recourse if the component fails to provide 
these properties. 

Evidence describes the information provided by the service to support the assurance, 
typically by enhancing the credibility of other elements. Mostly provided in the form 
of credentials, evidence may corroborate that the principal builds good components 
by customer references or a formal certification. Or it may corroborate the component 
properties, e.g., by supplying a certificate of a claimed Common Criteria evaluation or 
by describing the procedure used for determining the mean time between failures. Or 
it may corroborate a recourse, e.g., by showing that the principal has reserved funds. 
Evidence also defines how the property can be measured and by whom. For instance, 
it can be the retrieval of a log file by the service provider, a third-party audit, or a 
measurement signed by secure hardware included in the platform [ 11 ]. 

A recourse consists of a decision procedure and possible compensations. For dis- 
pute resolution, agreement on the interpretation of the measurement is essential to en- 
able the parties to agree whether a property is fulfilled. A decision procedure provides 
instructions on how to deal with cases where, for example, some properties are not 
immediately measurable because, for instance, probabilities depend on how long one 
measures, or secrecy violations may not be noticed at once. If neither party fully trusts 
the other's measurements, the decision procedure may require that both sides measure 
in parallel or may even state that in case of conflicts additional proofs are provided by 
third parties [5]. 

Whenever the stated security property does not hold or can no longer be guaran- 
teed, a compensation states a penalty, e.g., a sum of money, or defines a remediation 
process that re-instates security and is considered to be sufficient to satisfy the property. 
Whereas a penalty does not necessarily require the assurance to be re-established, re- 
mediation on the other hand is a well-defined process how a violation can be removed 
and how the system is guaranteed to reach a state that provides the given assurance. An 
example of the latter is the property of absence of viruses. The provider can guarantee 
that once a virus is discovered during a regular check, the virus is removed within 1 h 
and integrity of the installation is re-verified. 

2.3 Monitoring Security Properties 

Besides giving explicit security assurances as outlined above, SOAS must also support 
the verifiability of these assurances. Whereas the first challenge requires a language 
for specifying the assurances to be included into SLAs, verifiability of these assurances 
may be achieved by providing measurements supporting the evidence in the stated prop- 
erties. Figure 3 outlines possible interactions between measurement components of a 
SOAS-enabled service. The interactions are structured into two phases. Before actually 



18 G. Karjoth et. al. 

providing a service, the provider and requester agree on the Security SLA that describes 
the desired security. Once an agreement is reached, the service will be provided and its 
security can be monitored. Depending on the trust model, an optional observer can act 
as a referee to decide whether the properties are indeed met. 
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Fig. 3. Run-time monitoring of Service-oriented Assurance 

To enable security monitoring, both the service and the client are instrumented. 
This instrumentation measures the security parameters of the service, input to a SOAS 
Management component verifying the given security assurance. 

2.4 Types of S e c u r i t y  E v i d e n c e  

For assessing the security properties, data from various sources are needed. Both parties 
may evaluate system s t a t e s -  including security policies in p l a c e -  and events that are 
provided through instrumentation as well as certificates, and other context from third 
parties. Examples are certificates of acceptable software as well as events that represent 
newly discovered vulnerabilities of the installed code base. 

In principle, we distinguish three main types of security measurements depending 
on the time period addressed: 
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- An audit log makes it possible to verify whether a system has provided the assur- 
ance in the past. Examples include log files of past virus scans, an execution history 
listing the executables loaded in memory [l 1], and access records for confidential 
data. 

- The current state enables one to prove statements about a given moment in time. 
This can include ownership proofs about the provider implemented by certificates 
or the absence of a virus at this point by a virus scan. 

- Convincing a verifier that certain policies are enforced enables a system to indi- 
cate that a security property is likely to hold in the future. Examples are training 
programs, access-control policies, and policies for re-mediating specific failures. 

Depending on the trust model, additional evidence may be needed to convince the ver- 
ifier that the given data is accurate. In particular for policies, it is essential to convince 
the verifier that they will not be replaced with inappropriate ones. A similar challenge 
exists for state and audit logs. If the verifier does not trust the systems providing the ser- 
vice, additional evidence such as audits at random times may be needed. Furthermore, 
evidence of insecurity may turn up in various ways, e.g., by finding confidential data on 
the Internet or via whistle blowers. 

Properties and thus their measurements may be qualitative or quantitative. Whereas 
the former simply determine whether a property holds, the latter measurements deter- 
mine how strong the property is. Quantitative security is not yet common-place but 
there are example properties such as quantitative information flow or measures like the 
number of known vulnerabilities and k-anonymity. 

3 Applying S O A S  

To gain security addressed consistently and naturally at the right places, SOAS should 
be integrated in the overall software architectures and tooling. However, SOAS can to 
some extent also be retrofitted to legacy systems by documenting and exposing their 
known security properties and publishing corresponding security assurances. This ex- 
plicit expression of security enables service selectors to consider security as a criterion 
for service selection, which in turn creates a reward for security. This reward will enable 
appropriate economic mechanisms that lead to the highest levels of security where this 
is most beneficial, and allows security to increase in economically cost-effective steps. 

To implement fine-grained assurance statements, security assurances must be prop- 
agated and implemented along the software stack. As a consequence, software compo- 
nents would either implement their own security mechanisms (e.g., a banking applica- 
tion using one-time passwords), use security mechanisms from lower layers (e.g., SSL 
encryption), or use a security infrastructure for transparent protection (e.g., anti-virus 
or isolation services). 

Propagating explicit assurances of components requires explicit exposure of as- 
sumptions as well as a more active security management in each component. Accord- 
ingly, components need to identify their assurances based on the assurances offered 
by sub-components. Another important aspect is that in order to enable its use in an 
open environment where not all components trust each other, SOAS creates an incen- 
tive that components enable verifiability of their security properties. This means that 
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components can produce evidence that the claimed properties are actually true. A (sim- 
ple) example is ownership: A service can use attribute certificates to prove that it is 
owned by a certain entity. This enables higher-layer services to measure and validate 
the assurances provided by lower-layer services. More complex scenarios include com- 
ponents that guarantee to report their security status honestly based on a well-defined 
measurement method. 

Another important application of SOAS is to use security assurances to select ap- 
propriate services and to compose services. Once sub-components declare their service 
guarantees, services can factor security into the decision which sub-service to select. 
Loosely speaking, SOAS enables a service to discover the sub-service with the right 
level of security and the best cost/risk trade-off. Based on the assured security proper- 
ties including potential qualifiers, a service may decide which tasks to entrust to each 
particular service. If a sub-service does not provide the full guarantees that are needed, 
a service can decide to augment the guarantees, e.g., by running replicas or obtaining 
additional recourses that remedy the losses in case of failure. 

4 Example:  Security of an Outsourced Business Process 

In this section we illustrate the concept of assurances based on a larger example where a 
bank outsources a business process to an external provider. We first identify the overall 
assurances and then elaborate on two specific properties. 

4.1 Overall Security Agreement 

The overall goal is to manage the security of a business process by identifying and veri- 
fying the security properties of its sub-processes. In practice, this initial usage of SOAS 
is possible without automatic verifiability of the security properties. Instead, assurance 
can be achieved by signed statements of the service provider containing sufficient com- 
pensation in case well-defined security measurements indicate that the promised secu- 
rity cannot be or has not been achieved. 

Let us consider a bank that outsources a sub-process such as payment processing to 
an outsourcing company. As is currently done, the bank and the outsourcing provider 
establish a service-level agreement for the outsourced process. This SLA defines the 
actual service as well as key performance indicators such as availability and throughput. 
This SLA can be negotiated and fixed using WS-Agreement. It will also define the 
WSDL interfaces to the service. 

Because the sub-process is critical to the business of the bank, security requirements 
have to be added. Using SOAS, the bank and the outsourcing provider agree upon the 
actual security to be provided by the sub-process, how it is measured, and what compen- 
sation will be offered in case of failure. These security guarantees may cover different 
aspects of the outsourcing infrastructure and can be structured into distinct properties: 

Basic integrity properties. The provider assures integrity properties on the input and 
the output data. In addition, it may state that input data of any kind will not lead to 
buffer overflows. 
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User management. The provider defines how users are authenticated and how access 
to the sub-process is restricted to the appropriate applications in the bank. 

Basic infrastructure. The provider defines which availability is guaranteed and how 
it will be achieved, e.g., by replication, backups, and disaster recovery measures. 

Isolation. The provider guarantees that this business process is completely isolated 
from other business. In particular, isolation holds even if processes are executed on 
behalf of other banks. 

Application quality control. The provider defines how applications are tested and how 
quality is achieved. In particular, the provider guarantees that only applications that 
have passed a well-defined test-suite will be used to provide the service. 

Security policies. The provider guarantees that the process is managed according to 
well-defined security policies. These policies include staff education, proper se- 
curity zoning and boundary control, as well as emergency response for the corre- 
sponding services. The security policies also include virus protection and intrusion 
detection and response measurements. 

All these properties are declared using signed statements. Because they are difficult to 
be verified automatically, validation can still be achieved by external auditors or audit 
teams from the bank or from the provider. Once the provider fails to comply, appropriate 
recourses from the initial assurance are used to remedy or compensate a failure. 

4.2 Security Management-Customer Isolation 

In an outsourcing environment, data owned by different customers must be isolated; 
i.e., no information may flow between customers except through well-defined business 
processes. This causes no problem in today's outsourcing environment, where most 
resources and applications are dedicated to one customer. In the case of shared applica- 
tions or resources, however, they must be certified to provide appropriate isolation. As 
a consequence, a property promised may be that "there is no information flow between 
all services of this customer and any service provided to another customer". 

To securely implement above guarantees, the provider either has to provide ded- 
icated resources for each customer or to guarantee that no shared resource leaks any 
information between customers. This guarantee for shared applications can be done by 
means of an evaluation and certification. An alternative is the provision of virtualized 
resources (such as logical partitions) that are dedicated to each customer, enabling dif- 
ferent customers to share one machine but still providing guaranteed separation. How- 
ever, as it is hard to analyze whether a shared application allows information flow or 
not, both parties may have to accept some level of risk. 

Depending on the trust the bank puts into the provider, the actual mechanisms that 
are used as well as their verifiability will differ. One way to provide assurance is to pro- 
vide a signed statement of the provider or an auditor. If the trust in the provider or the 
auditor was unjustified, the customer may notice a violation only if the undesired infor- 
mation flow has visible effects, e.g., secret data clearly being used by competitors. For 
these cases, there must be compensation. The decision procedure may be aided by wa- 
termarking techniques. However, mechanisms where the service provider is trusted to 
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notify someone of security violations are known and can be effective, as the experience 
with the California Senate Bill No. 1386 shows. 2 

Property qualifiers can be used to define limitations of virtualization including the 
requirement that certain services be not virtualized, virtualized on,a dedicated resource, 
or hosted on machines satisfying certain criteria such as physical security protection or 
location [3]. An example of the latter are the concerns that Canadian personal data will 
fall under the US Patriot Act once they are hosted on machines that are physically in 
the USA [9]. 

4.3 Security Management- Virus Protection 

Service users require that machines hosting critical services follow basic security guide- 
lines. The property that is promised by a service is that the machine providing a service 
is managed according to well-known security guidelines. Such guidelines usually re- 
quire sound patch management, firewalls, and appropriate virus protection. 

Assurance of appropriate virus protection, for example, can be implemented in dif- 
ferent ways. Using certification and recourse, the service provider promises to manage 
the machines according to the guidelines and certifies this including recourse. As virus 
attacks are usually quite visible by loss of availability, the bank may not require spe- 
cific measurements in the assurance if the recourse is sufficient to cover potential losses. 
Alternatively, sound virus protection may be indicated by means of an audit trail of re- 
cent virus scans to convince a verifier that no virus activity was detected while a given 
service was being provided. Moreover, assurance for this property can be provided by 
means of integrity-based computing (IBC) mechanisms. For virus protection, IBC can 
prove at regular intervals that a virus scanner has been resident in memory and not been 
invalidated. 

5 Related Work 

Several models and languages formalize agreements (contracts) on electronic services 
[5, 12, 13], covering agreement specification as well as system architecture. However, 
they mainly focus on specific aspects of services. For example, WSLA is a language for 
the specification of quality-of-service agreements for Web services. Besides providing 
a type system for SLA artifacts, WSLA identifies the contractual parties, specifies the 
characteristics of the service and its observable parameters, and defines the guarantees 
and constraints that may be imposed on the SLA parameters [5]. 

WS-Agreement is a standardization effort defining an agreement format, an agree- 
ment establishment protocol, and a runtime agreement monitoring interface. Agree- 
ment terms represent contractual obligations, including specific guarantees given [6]. 
Guarantee terms specify service level objectives, a qualifying condition under which 
objectives are to be met, and a business value giving the importance of meeting these 
objectives. 

2 Summaries of incidents cataloged on PIPEDA and Canadian Privacy 
Law can be found at www. p r i v a c y l a w y e r ,  c a / b l o g / 2 0 0 5 / 0 2  / 
summaries - of - incidents - cataloged- on. html. 
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The Composite Assurance Mapping Language (CAML) provides a notation for 
claim trees for the assurance arguments related to enterprise security objectives, provid- 
ing causalities, relationships, vulnerabilities, threats, and other system- and environment- 
related issues [7]. A CAML specification hierarchically refines security claims about the 
system into sub-claims that, eventually, are linked with the evidence that a claim is sat- 
isfied. Refinement is supported by the general strategy, assumptions, and dependencies, 
justifying reasons, and contextual models. 

Security properties of components can be measured and verified by using products 
such as Symantec Enterprise Security Manager or IBM Tivoli Security Compliance 
Manager 3 (SCM). SCM gathers information from multiple computer systems, such as 
registry and application information, analyzes the data, and produces reports to reveal 
adherence to security policies. Collectors retrieve specific data by reading files or run- 
ning an executable program. Data collected on client systems is stored in a database 
on the server. Conditions are expressed as SQL statements that analyze data from the 
database tables to provide a list of client machines violating the conditions. 

Also trusted computing allows one to verify the integrity of a platform (attesta- 
tion), whereby secure boot and strong isolation guarantee integrity. Remote attestation 
authenticates software to remote parties. However, attestation based only on the con- 
figuration of software and hardware components entails the problem of managing the 
multitude of possible configurations, system updates, and backups [4, 8, 10]. A trusted 
virtual machine, as for example proposed by Haldar et al [4], can execute platform- 
independent code to attest programs, thus certifying various properties of code running 
under it by explicitly deriving or enforcing them. SOAS assurances may provide the 
language to express these properties and the way they should be verified. 

6 Conclusion 

Service-oriented Assurance enables products and services to provide well-specified 
security guarantees, which can be monitored and validated. These assurances enable 
enterprises to select services that offer the right level of security. Our example illus- 
trates that it is feasible to specify important security properties in a vendor-agnostic 
and platform-independent way. As a consequence, we believe that SOAS is the logical 
future of security in service-oriented architectures. 

Our proposal is only a first step in this direction. Further work is required in the for- 
malization of a broad range of specific security properties and on assurance verification 
as well as on service composition. There is still a long way to go before security risks 
are comprehensively managed and become normal economic factors on the business 
layer. Nevertheless, we have demonstrated a framework that shows how the objectives 
stated above can be achieved and that first meaningful ways exist to instantiate this 
framework based on current software and hardware capabilities. 

3 http://publib.boulder, ibm. com/tividd/td/IBMTivoliSecurity 
Compl ianceManager5.1, html 
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Abstract. The software engineering tools historically used to examine faults can 
also be used to examine vulnerabilities and the rate at which they are discovered. 
I discuss the challenges of the collection process and compare two sets of vul- 
nerability characterization criteria. I collected fifty-four months of vulnerability 
data for OpenBSD 2.2 and applied seven reliability growth models to the two 
data sets. These models only passed applicability tests for the data set that omits 
dependent data points. Musa's Logarithmic model has the best one-step-ahead 
predictive accuracy of the three acceptably accurate models for that data set. It 
estimated that fifty-four months after OpenBSD 2.2's release, the mean time to 
vulnerability discovery for OpenBSD 2.2 was 42.5 days and that 58.4% of the 
vulnerabilities it contains had been found. However, a trend analysis cannot rule 
out the possibility that there is no trend at all in the rate of vulnerability detection, 
and this result casts doubts on the accuracy of the reliability growth models. The 
lack of a clear decreasing trend in that analysis highlights one of the challenges of 
using reliability growth models on vulnerability data: it may be a true reflection 
of the system or it may be caused by the changes over time in the effort invested 
in vulnerability detection. 

I Introduction 

Most commercial software suffers from significant design and implementation security 
vulnerabilities. This lack of  security can be traced to two primary factors: complex- 
ity and motivation. Software developers push to create ever more complex products 
and work constantly on the boundary of  manageable complexity. However, even tak- 
ing this difficulty into account, most software contains security flaws that its creators 
were readily capable of  preventing. The second cause of  software insecurity is motiva- 
tion: although vendors are capable of  creating more secure software, the economics of  
the software industry provide them with little incentive. Consumers generally reward 
vendors for adding features and for being first to market. These two motivations are 
in direct tension with the goal of  writing more secure software, which requires time 
consuming testing and a focus on simplicity. Nonetheless, the problems of  software 

* This work was funded by a Marshall Scholarship and a United Kingdom Overseas Research 
Student Award. 
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insecurity, viruses, and worms are frequently in the headlines; why does the potential 
damage to vendors' reputations not motivate them to invest in more secure software? 

Vendors' lack of motivation is readily explained: the software market is a 'market 
for lemons' [1]. In a Nobel prize-winning work, economist George Akerlof employed 
the used car market as a metaphor for a market with asymmetric information [2]. In his 
model, buyers cannot ascertain the quality of the used cars on the market, and as a result 
they are unwilling to pay a premium to obtain a higher quality car. After all, why pay 
more for quality when you are uncertain of obtaining it? Owners of high quality cars 
thus become unwilling to sell them, because they cannot obtain a reasonable premium. 

The software market suffers from the same asymmetry of information. Vendors may 
have some intuition as to the security of their products, but buyers have no reason to 
trust the vendors' assertions. Worse, even the vendor is unlikely to have a truly accurate 
picture of its software's security. As a result, buyers have no reason to pay the pre- 
mium required to obtain more secure software, and vendors are disinclined to invest in 
securing their products. 

An effective means of measuring software security could decrease the asymmetry 
of information and ameliorate the 'market for lemons' effect. Unfortunately, the current 
measures of security are a consideration of the process by which the product was made, 
a superficial security review of the product, or a gross consideration of its vulnerability 
history. In addition to being imprecise, none of these techniques are consistently reliable 
or particularly useful in cross-product comparison. 

However, in a related domain, software engineers have invested a great deal of effort 
in the measurement and prediction of quality. These efforts have largely focused on 
three areas [3]: 

1. Estimating the total number of faults in a system 
2. Estimating the time-to-failure of the system 
3. Quantifying the impact of design and implementation methodologies 

This work has often utilized the study of faults (defects) identified during the testing 
and post-release lifespan of the software. 

There exists a security corollary to the study of faults: the study of vulnerabili- 
ties. This work examines the feasibility of applying software reliability growth models 
to vulnerability data, which I refer to as software security growth modeling. Security 
growth modeling has the potential to provide useful predictions or metrics of security. 
Security growth models can produce useful and readily understandable results like the 
mean time to the next failure or the total estimated number of vulnerabilities in that 
product. These results could be used as both relative measures (with respect to com- 
peting products) and absolute measures (with respect to a desired level of assurance). 
However, these models are necessarily applied to noisy data and are highly dependent 
upon the vulnerability hunting environment. Nonetheless, security growth modeling 
may provide useful quantitative insight to supplement the current approaches to assess- 
ing software security. 

The next section provides an overview of reliability growth modeling and previous 
work. Section 3 describes the data collection challenge that is the most significant bar- 
rier to the adoption of security growth modeling. It also describes the two perspectives 
on vulnerability characterization that are examined here: failure and flaw. Next, in Sect. 
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4, I apply traditional reliability growth models to both perspectives of the same data 
set, and I discuss the results of this effort. In Sect. 4.3, I emphasize the need for data 
normalization. Section 5 highlights areas of potential future work. 

2 Reliability Growth Modeling 

Reliability growth models are based upon the assumption that the reliability of a pro- 
gram is a function of the number of faults that it contains. Such models "apply statistical 
techniques to the observed failures during software testing and operation to forecast the 
product's reliability" [4, p. 6]. As faults are identified and removed, the system will fail 
less frequently and hence be more reliable. These models can thus be utilized to esti- 
mate characteristics about the number of faults remaining in the system and when those 
faults may cause failures. They are useful for scheduling testing and for ensuring that a 
product meets its reliability requirements. 

Unfortunately, applying reliability growth models to vulnerabilities rather than faults 
is impeded by a significant problem: the lack of high-quality data. The literature on reli- 
ability growth models generally assumes that they have been applied during pre-release 
testing and in settings where the collection of failure data was an integral part of the 
testing environment. Vulnerabilities are extremely unlikely to be identified as such in 
that stage of software development: if they are found at all, they will probably be per- 
ceived simply as faults. As a result, vulnerabilities are most often identified after the 
product is released--when the collection of precise data is much more difficult. 

In order to be effective, reliability growth models require that the environment from 
which the data is obtained (usually the testing environment) must be equivalent to the 
environment in which the software will be utilized after deployment [5]. However, many 
vulnerabilities rely upon the adversary intentionally inputting abnormal data---data out- 
side the bounds of a normal operational profile. Nonetheless, over a long period of time 
and the wide range of real world environments, it can be considered that the operational 
profile includes all possible input. This perspective justifies the application of these 
models to vulnerabilities, but it does imply that vulnerabilities may be identified more 
slowly than faults would be identified. 

These models also require that time be normalized for testing effort. If program 
execution time is utilized, this assumption is readily satisfied. However, if calendar time 
is used then it should be normalized for the number of testers participating, work days, 
holidays, etc. This assumption has strong implications for the usage of vulnerability 
data and is discussed in Sect. 4.3. 

2.1 Previous Work 

The ideal security metric would enable the measurement of both a product's changing 
security over time and its security relative to other products. Stuart Schechter noted that 
software producers can use a market for vulnerabilities to establish that a vulnerability 
in their own program is more expensive than one in a competitor's program; the vendor 
can thus credibly argue that its software is more secure than that of the competitor [6], 
[7]. I argued that a vulnerability market can be better designed as an auction; the large 
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body of work on auction theory can then be used to optimize it [8]. Several organiza- 
tions are now actively purchasing vulnerabilities, so these proposals are not unfeasible. 
Unfortunately, the current purchasers of vulnerabilities are not sharing pricing informa- 
tion, and there is no broad movement towards an open market or auction. Until such an 
entity or entities arise, other means of measuring software security are necessary. 

Eric Rescorla has previously applied reliability growth models to post-release vul- 
nerability data from the ICAT database [9]. In general, he found no clear trend of secu- 
rity growth, and he questions the social utility of publicly disclosing vulnerabilities. 

However, the ICAT database is not focused on vulnerability age; as a result, it may 
not report all of the out-of-date versions of a program to which a vulnerability applies. 
This aspect of the database limits the accuracy of Rescorla's work. In previous work, 
I utilized a data set with full vulnerability birth and death data to challenge Rescorla's 
results and argue that a trend towards security growth could not yet be ruled out [ 10]. 
However, that work focused on the social utility question posed by Rescorla and the 
data collection process used was not well described. In particular, this process requires 
decisions and utilizes assumptions that have a significant bearing on the results of the 
analysis. This work assess two different approaches to data characterization and consid- 
ers the more broad use of reliability growth models as one tool for evaluating software 
security. 

3 Collection Technique for this Data Set 

OpenBSD was selected for this study because its developers emphasize secure program- 
ming and code audit; furthermore, its entire source code and every change that has been 
made to it are readily accessible via internet CVS (a version control system). Version 
2.2 was selected as the starting point for the data set because vulnerabilities were fixed 
silently in the prior two versions; this analysis relies upon the careful documentation of 
all vulnerabilities identified. The data set was created through the following process: 

1. A list of vulnerabilities was compiled from the OpenBSD web page and the most 
prominent public vulnerability databases: ICAT, Bugtraq, OSVDB, and ISS X- 
Force. 

2. The source code was examined to identify the date on which the vulnerability was 
repaired (the vulnerability's 'death' date). ! 

3. Prior versions of the source code were then examined until the date on which the 
vulnerability was introduced into the software could be identified (the vulnerabil- 
ity's 'birth' date). 

4. Vulnerabilities were then grouped according to the version in which they were in- 
troduced. For this work, only vulnerabilities that were introduced prior to the re- 
lease of version 2.2 were considered. 

Although the process described above seems precise, the reality is that the data is 
complex and is not always readily categorizable. The most. significant challenges in 
characterizing the vulnerabilities dealt with inclusion and uniqueness. 

! If the fix was itself faulty, the date of the first effort is used rather than that of the last effort. This 
simplification is in accordance with most models' assumptions that flaws are fixed instantly 
and without introducing new flaws. 



QoP - Software Security Growth Modeling 29 

3.1 Inclusion 

The vulnerability sources listed above included vulnerabilities that affected only spe- 
cific hardware platforms or particular localizations. In the interest of universality and 
simplicity, vulnerabilities were included only if they were location and platform neutral 
(however, those specific to lntel 386 were also included, under the assumption that this 
platform is the most common). 

In addition, the OpenBSD security page lists vulnerabilities whose inclusion stretches 
the definition of a vulnerability. For example, the patch description for one vulnera- 
bility listed on the OpenBSD security page is: "Improve xlock(1)'s authentication by 
authenticating via a pipe in an early forked process. No known vulnerability exists, 
this is just a precautionary patch" [ 11 ]. Although the OpenBSD security philosophy is 
commendable (and was the motivation for its selection as the software to model), in- 
cluding vulnerabilities like these has a negative impact on the models' assessment of 
OpenBSD's security. One way of resolving this dilemma is to include only vulnerabili- 
ties of a clearly specified and easily tested severity: e.g. remote root vulnerabilities. Un- 
fortunately, assessing the risk of a potential vulnerability is enormously time consuming 
and risk prone. For the purposes of this analysis, no vulnerability was excluded for be- 
ing unlikely or debatable. The results are thus potentially negatively biased: OpenBSD 
2.2 will appear less secure than it actually is. 

A similar question is posed by vulnerabilities for which the default configuration 
of OpenBSD is not vulnerable. Should those be counted? A default configuration in 
which most services are disabled is another commendable aspect of OpenBSD's secu- 
rity policy; however, in practice, many of those services will be enabled by the users. As 
a result, such vulnerabilities were also included in this analysis. As with the previous 
decision, the results are thus potentially negatively biased. 

3.2 Uniqueness, or Flaw v s .  Failure 

The most difficult task was deciding upon uniqueness: whether a patch or group of 
patches repaired one vulnerability or multiple vulnerabilities. 

OpenBSD includes some software that is maintained by third parties (e.g. sendmail). 
Those third parties often released a new version of their software that contained fixes 
for multiple (previously secret) security flaws. One solution is to simply count such a 
'bundle' patch as repairing only one vulnerability and use the birth date of the youngest 
vulnerability. However, this solution will result in a positive bias and hence an inflated 
perception of security for the product: the models will indicate fewer vulnerabilities 
than actually exist and a more rapid trend towards depletion. Conversely, counting each 
individual security flaw in the bundle patch as a vulnerability will cause the death date 
of those vulnerabilities to be recorded as later than it should be: they were actually 
identified and repaired at some unknown date prior to the release of the bundle patch. 
That solution would thus bias the model away from depletion and result in an overly 
negative measure of security. 

Similarly, individuals may find multiple related security flaws at once: either by 
discovering a number of security flaws of one type or by discovering a poor quality 
section of the code base. Often these related security flaws are remediated in the same 
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patch; should they be considered as individual vulnerabilities or as a single, combined 
vulnerability? 

The question of whether to consider these bundled/related security flaws as unique 
vulnerabilities or as a single combined vulnerability has a significant impact on the 
analysis. In a theoretical sense, counting them as unique is equivalent to performing 
the security growth modeling on flaw discovery data: such a data set would include 
dependent data points. From this perspective, each flaw is considered to be a separate 
vulnerability. Counting them instead as a single vulnerability is the theoretical equiva- 
lent to performing security growth modeling on failure data, in which every data point 
is independent of the others. From this perspective, a single failure initiated the dis- 
covery of multiple related security flaws. Traditionally, reliability growth models have 
used the times of system failure as their input data and require that the data points be 
independent. 

The approach chosen has a significant impact on the analysis. In this work, the 
data were analyzed from both failure and flaw perspectives. Table 1 shows the differ- 
ing vulnerability counts when each approach is used. The first row shows the num- 
ber of vulnerabilities discovered per year when related and bundled vulnerabilities are 
grouped (the failure/independent perspective). The second row shows the number of 
vulnerabilities discovered per year when vulnerabilities are considered individually (the 
flaw/dependent perspective). For the flaw perspective, each of those unique-but possi- 
bly dependent-vulnerabilities was used as a data point, thus increasing the total number 
of data points considered. Note that the data for 2002 covers only the first five months 
of the year. 

Table 1. Vulnerabilities identified in OpenBSD 2.2 from 1998-01-2002-05t 

Perspective 11998 1999 2000 2001 2002~lTotal 

Treated as failures (only independent data points)l 19 
Treated as flaws (dependent data points included) 24 

tNo vulnerabiliti~ were found in l)ect,wnber 1997, the first month that version 2.2 was available. 
~111e first five months of 2002. 

17 17 13 2 68 
18 22 13 2 79 

4 Results 

4.1 Rate of Vulnerability Detection 

I analyzed both the failure- and flaw-perspective data sets with seven time-between- 
faults reliability growth models. 2 

The data indicate the number of days that elapsed between the identification of 
faults. The mean, median, and standard deviation for the failure-perspective data are: 

2 The SMERFS 3 reliability growth modeling tool was used to assess the models [ 12]. 
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23.7, 13.5, and 28.0. For the flaw-perspective data: 19.8, 7.0, and 26.54. For both data 
sets, the minimum was 0 and the maximum was 126. 

Three models were applied successfully to the failure-perspective data set; these 
three models had acceptable bias, noise, trend, and goodness-of-fit results. Table 2 
shows the pertinent applicability results. For each quantitative result, that model's rank- 
ing with respect to the other two models is shown in parentheses. The first row shows 
bias, as determined by a/z-plot; this measure assesses the absolute predictive accuracy 
of the models. The noise and trend results in the second and third rows are useful pri- 
marily to ensure that the predictive accuracy indicated by the/z-plot results was not 
due to opposing trends of inaccuracy canceling each other out on the average. The pre- 
quential likelihood values of the three models, shown in row four, are used to assess the 
relative accuracy of the models with respect to each other. Overall, Musa's Logarithmic 
model was the most accurate and was ranked first (1). 3 

Table 2. Applicability results for models applied to the failure-perspective data 

Statistic 

Bias (#-plot) 
Noise 
Trend (y-plot) 
Prequential Likelihood 
Overall Rank 

Successful Models 
Musa's Logarithmic Geometric Littlewood/Verrall (L) 

0.12 (1) 0.13 (2) 0.18 (3) 
0.31 (1) 2.39 (2) 2.44 (3) 
0.20 (3) 0.18 (2) 0.14 (1) 

148.35 (1) 150.23 (2) 150.50 (3) 
(1) (2) (3) 

None of the seven models were successfully applied to the flaw-perspective data. 
Each model applied to this data set failed one of four tests: bias, trend, noise, or goodness- 
of-fit. This failure is not surprising: reliability growth models require that their data 
points be independent: the flaw-perspective data included vulnerabilities whose discov- 
ery was clearly dependent upon the recent discovery of a similar vulnerability. As a re- 
suit, it seems likely that failure-perspective analysis is a superior method of considering 
vulnerabilities; it has a sound theoretical basis and the attempt to model the quantitative 
data was much more successful with this approach. However, data filtering, regardless 
of the theoretical justification, is always suspect. I am gathering three more years of 
data in order to verify the accuracy of these results. 

Table 3 displays the various estimates produced by the models successfully applied 
to the failure-perspective data. The intensity is the expected number of vulnerabili- 
ties per day. Rows one and two display the intensity at the first and last day of the 
analysis. The purification level, shown in row three, is a normalized estimate of how 
vulnerability-free the program is at the end of the period covered by the data set. A 
purification level of one would indicate a program entirely free of vulnerabilities. The 
purification level formula used here is undefined for infinite-failure models like Lit- 
tlewood/Verrall Linear; however, alternative formulations of purification level can be 

3 For a more detailed explanation of the acceptability tests, see [ 13] 
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used for these models [ 14]. The fourth row displays the current Mean Time To Failure 
(MTTF), the expected number of days before the next vulnerability is identified. 

Table 3. Estimates made by the successful models using the failure-perspective data set 

Statistic 

Initial Intensity 
Current Intensity 
Purification Level 
Current MTTF 

Successful Models 
Musa's Logarithmic Geometric Littlewood/Verrall (L) 

0.059 0.062 0.066 
0.031 0.030 0.030 
0.584 0.505 N/A 

42.5 33.1 33.8 

Figure 1 shows both the failure-perspective data set (left) and the flaw-perspective 
data set (fight). For the former, the successfully fitted Musa's Logarithmic model is 
shown superimposed over the data set; this model was ranked as most accurate of the 
three successful models. For the latter data set, no models were successfully applied, so 
the data points alone are displayed. 

Fig. 1. Time-between-fault data sets 
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(a) Failure-perspective data with fitted 
Musa's Logarithmic model 

(b) Flaw-perspective data 

4.2 Trend Analysis 

Reliability growth models assume an eventual trend in which the rate of vulnerability 
detection decreases over time. One way to test for such trends is through the use of 
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a Laplace test [5]. The calculated Laplace Factors for each data set are shown in Fig. 
2. Values below 0 indicate a trend towards decreasing rate of vulnerability detection. 
However, only values below -1 .96  indicate that trend within a 95% confidence level 
for a two-tailed test ( -1 .64  for a 90% confidence level). The null hypothesis, that the 
data exhibits no trend, cannot be rejected for the failure-perspective data set. The flaw- 
perspective data set shows a more clear trend towards decreasing rate of vulnerability 
detection. Again, however, the null hypothesis of no trend cannot be ruled out for large 
periods of time. Both data sets have an initial period in which the rate of vulnerability 
detection increased. This initial increase is likely caused by the sudden increase in users 
and environments of use after the software was released; it suggests that an S-shaped 
reliability growth model may be most appropriate. However, none of the models with 
acceptable predictive accuracy were of this category. 

Fig. 2. Trend Analysis 
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4.3 Data Normalization 

The results indicate that a decreasing rate of vulnerability detection cannot simply be as- 
sumed for this data set. Why would the rate of vulnerability detection have increased or 
stayed constant? One possible answer is that the effort invested in vulnerability discov- 
ery during the time period covered in this study increased: more individuals searched 
for vulnerabilities or those who searched grew more capable of finding vulnerabilities. 

As discussed in Sect. 2, one of the underlying assumptions of all reliability growth 
models is that the data is normalized for effort. The data for the time necessary to 
find a vulnerability should ideally be the execution time; if such data is not available, 
the time should be the skill-equivalent person hours. Unfortunately, the data available 
on vulnerabilities does not include the number of individuals examining that software, 
much less their relative skill. 

This data set thus cannot provide an accurate characterization of the 'true' security 
of the product (i.e. the number of unknown vulnerabilities in the product). The time pe- 
riod from which data was collected, 1997-12-01 to 2002-05-31, witnessed an explosion 
of interest in computer security and the identification of vulnerabilities. It thus seems 
likely that many more individuals were searching for vulnerabilities in 2002 than in 
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1997, but the data used here does not take this change into account. As a result, the the 
trend analysis and the estimate of the total number of vulnerabilities discussed below 
may not be an accurate characterization of the underlying product: they are probably 
conservative and thus characterizes the product as less secure than is actually the case. 

The three reliability growth models in Sect. 4.1 have demonstrated acceptable pre- 
dictive accuracy, but the analysis in Sect. 4.2 cannot rule out the possibility of no signif- 
icant change in the rate of vulnerability detection. The successfully applied reliability 
growth models may be accurately characterizing the decreasing rate that appeared in 
the trend analysis towards the end of the study. Although this data set lacks the nor- 
malization discussed above, reliability growth models can still provide insight into the 
changing rate of vulnerability detection over time. At the very least, these models can 
describe that rate given the current vulnerability hunting environment. However, the 
discrepancies between the reliability growth results and the trend analysis indicate that 
more data is needed before a confident assessment of the system can be made. 

5 Future Work 

This work highlights five interesting areas for further research: normalize the data for 
effort, examine the return on security investment, utilize more sophisticated modeling 
techniques, and combine vulnerability analysis with traditional 'software metrics.' 

As discussed in Sect. 4.3, the data set used is not normalized for effort: the skill of 
and number of individuals searching for vulnerabilities. Unfortunately, OpenBSD does 
not release usage figures; because it is often used as a server operating system, other 
available sources of usage data are also inadequate (e.g. the proportion of web browsing 
done from OpenBSD). Moreover, the number of users of a product is not necessarily a 
useful correlate to the number of individuals searching for vulnerabilities in the product. 
One area of future work is to find a proxy for effort, at least with respect to the number 
of individuals searching for vulnerabilities. One possible proxy is the relative numbers 
of individuals posting to 'full-disclosure' security lists like Bugtraq and Full Disclosure. 
Although finding an exact measure of effort would be prohibitively difficult, a relative 
measure would still be useful: e.g. there were twice as many individuals searching for 
vulnerabilities in 2000 as there were in 1998. 

Another direction for this research is to examine the return on investment for secure 
coding practices. Do models fitted to Microsoft's post-2002 secure coding initiative 
indicate that it is producing results? 

An additional path forward is to employ more sophisticated techniques for model- 
ing security growth. The reliability growth literature is rich with means of improving 
models' accuracy. Finally, vulnerability analysis can be combined with traditional 'soft- 
ware metrics:' metrics that attempt to measure the size, complexity, etc. of a program. 
This line of research might lead to other fruitful measurements or predictors of security. 

6 Conclusion 

Software engineering provides useful tools for the analysis and potential measurement 
of software vulnerabilities. In this work, 54 months of vulnerability data were gathered 
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for the OpenBSD operating system. The source code was examined to ascertain the 
exact dates when the vulnerability was first added to the code and when it was repaired. 

The data collection process was complex, and I struggled to find rules for data char- 
acterization that covered all possible situations. For OpenBSD, collection difficulties 
centered around inclusion (when is a defect considered a vulnerability) and uniqueness 
(when do a number of defects qualify as one vulnerability and when do they qualify as 
multiple vulnerabilities). Two different characterization criterion were analyzed here: 
as expected, the reliability growth modeling was only successful when considering the 
data set that excluded dependent data points. 

Three of the seven reliability growth models tested were found to have acceptable 
one-step-ahead predictive accuracy for the set of independent data points. Musa's Loga- 
rithmic model was the model ascertained to be most accurate of those three; it estimated 
that the mean time to failure at the end of the study is 42.5 days and 58.4% of the esti- 
mated total vulnerabilities in the product have been identified. Together, these estimates 
could serve as both a useful relative and absolute measure of the security of the product. 

However, a trend analysis cannot rule out the possibility that vulnerabilities are 
being detected at a constant overall rate, which casts doubt on the results produced 
by the reliability growth models. If these results are a more accurate reflection of the 
system, the lack of a decreasing vulnerability detection rate may be due to an increase 
in the amount of effort invested in finding vulnerabilities during the course of the study. 
Reliability growth models and trend analysis are designed for data in which the amount 
of effort invested in finding vulnerabilities is constant. Unfortunately, no information 
is available on the growth in the number of individuals searching for vulnerabilities 
and the effort they invested; as a result, the data set cannot be normalized to take this 
information into account. 

The results of this analysis are thus inconclusive. More data is needed before a de- 
finitive assessment can be made of the rate of vulnerability detection in OpenBSD. This 
problem highlights the main challenge in using software engineering tools to analyze 
vulnerabilities: the significant effort required in order to collect accurate data and the 
lack of availability of important information. 

Despite these difficulties, this analysis has shown that sottware engineering tools 
can provide useful insight into software vulnerabilities. Security growth modeling, the 
application of reliability growth models to vulnerabilities, can build upon a long tradi- 
tion of software engineering work, adapting that work as appropriate. If the technique 
increases in popularity, data collection could be readily incorporated into the vulnera- 
bility remediation process. Better data collection would, in turn, result in more accurate 
and more useful models. 
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Abstract. Many computer and network security crises arise because of the ex- 
ploitation of software defects and are remedied only by repair. The effect of se- 
curity related software defects and their occurrence rates is an important aspect 
of Quality of Protection (QoP). Existing arguments and evidence suggests that 
the distribution of occurrence rates of software defects is lognormal and that the 
first occurrence times of defects follows the Laplace transform of the lognor- 
mal. We extend this research to hypothesize that the distribution of occurrence 
counts of security related defects follows the Discrete Lognormal. We find that 
the observed occurrence counts for three sets of defect data relating specifically 
to network security are consistent with our hypothesis. This paper demonstrates 
how existing concepts and techniques in software reliability engineering can be 
applied to study the occurrence phenomenon of security related defects that im- 
pact QoP. 

I Introduction 

The growing reliance of our society on the services and protections provided by soft- 
ware applications places a high premium on the efficient, secure, and reliable operation 
of these applications. Although tools and techniques are available to analyze the perfor- 
mance and reliability of a software application in a quantitative manner, currently the 
assessment of QoP afforded by a security solution is predominantly qualitative. 

Many computer and network security crises arise when an existing defect in a soft- 
ware application is exploited. From a security perspective, software often may be the 
weakest link. In such situations, the only remedy is to repair the defect. In addition to 
being directly exploited for a security breach, a software defect may manifest itself as 
a field failure. In fact, the users of commercial software typically report the occurrence 
of field failures with the presumption of getting the underlying defects fixed so that the 
failures do not recur [ 17]. It has been reported in the literature [ 18], that a large number 
of defects encountered by customers are introduced in the process of fixing the detected 
defects. Repair of a defect that does not degrade QoP may lead to the introduction of a 
defect that does. Imperfect repair can be a major cause of unreliable software operation, 
reduction of QoP, and customer dissatisfaction. In summary, latent software defects that 
are released into the field have a two-fold impact on QoP. First, a defect may be directly 
exploited to cause a security breach. Second, in the process of repairing a defect that 
surfaces in the form of a field failure, another defect that might degrade QoP could be 
introduced. Because of this close relationship between security incidents and software 
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defects, it is natural that the occurrence rates of software defects will be an important 
component of QoP. Understanding and analyzing the occurrence rates of software de- 
fects in general and security defects in particular may provide the basis for quantifying 
QoP. 

In this paper we study the distribution of the occurrence counts of defects. A prelim- 
inary analysis of the field defect data collected from widely used networking software 
indicates that the number of occurrences of defects varies widely. Some defects man- 
ifest rarely, are never discovered, and can be considered to be corner cases, but others 
are pervasive and occur with high frequency. This suggests that the distribution of the 
occurrence counts of the defects may be highly skewed. A similar observation has been 
made by Adams [ 1 ] and used to devise a preventive maintenance strategy focused on 
the defects with the highest apparent rates. In addition to these preliminary observations 
made directly from the data, theoretical reasons and a variety of evidence [22] indicate 
that the distribution of the defect occurrence rates is lognormal. 

We hypothesize that the distribution of rates is lognormal and that the distribution of 
the number of defect occurrences follows the Discrete-Lognormal (D-LN), also known 
as the Poisson-Lognormal [ 16] (ch. 7.11). We further hypothesize that the distribution 
of the number of defect occurrences of security defects also follows the D-LN. We 
fit the D-LN distribution to the occurrence counts of three sets of defect data relating 
specifically to network security and find that the hypothesis is consistent with the data. 
We also fit the Pareto rate distribution, a heavy-tailed alternative distribution often used 
in the software and network literature [ 10], and find that the Discrete-Pareto distribution 
of occurrence counts of security defects is only insignificantly inferior to the D-LN. 

This paper uses the lognormal to link results from prior studies of software reli- 
ability growth, test coverage, defect failure rates, and code execution rates to the ob- 
servations of security defect occurrence counts affecting QoP. It demonstrates how an 
important aspect of QoP, the occurrence phenomenon of security defects, may be mod- 
eled using concepts and techniques from another software discipline; namely, software 
reliability engineering. In that sense, it relates the software-defect-based component of 
QoP and its testing, maintenance, and improvement over time to the mainstream of 
software engineering and takes the first step towards quantifying QoP. 

The layout of the paper is as follows: Section 2 provides insights as to why the 
occurrence count distribution is related to the lognormal. Section 3 describes the pro- 
cedures used to obtain empirical data. Section 4 describes the statistical analysis of the 
data and discusses the results. Section 5 briefly links our research to other evidence of 
the lognormal in network environments. Section 6 provides the conclusions and direc- 
tions for future research. 

2 Lognormal Hypothesis 

In this section we summarize the evidence for the lognormal distribution of event rates 
in software as well as its causes. We extend that research by deriving a model of the 
distribution of occurrence counts of software defects. 
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2.1 Origin of Lognormal Execution Rates 

Mullen [22] suggested that the branching nature of software programs tends to generate 
a logno~xnal distribution of event rates, whether considered from the point of view of 
execution path, operational profile [24], or state-space. 

For example, the probability of execution flowing to a given block in the code is the 
product of the probabilities of the conditional branches leading to that block. A large 
number of conditional statements guard the execution of typical code blocks; therefore. 
a large number of factors will be multiplied to determine the probability. The multi- 
plicative form of the central limit theorem tells us that under general conditions the 
distribution of the products of those factors is asymptotically lognormal. Faulty code 
blocks are a random sample from that rate distribution; therefore, faults have rates that 
are distributed according to the lognormal. (A similar argument may be made from the 
perspective of an operational profile: the probability of each complex action is deter- 
mined by multiplying the conditioned probabilities of its characteristics.) See [2, 9, 15] 
for information about the lognormal and [22] for references to alternative forms of the 
central limit theorem. 

Bishop et al. [4] provide a specific model of the processes that lead to the lognor- 
mal distribution of block execution rates. They provide reasons and evidence that the 
distribution of failure rates remains lognormal even in the presence of loops and other 
variations in program structure. 

2.2 Evidence of the Lognormai in Software 

The proposed lognormal failure rate distribution has been validated previously [22] by 
analyzing careful studies of failure rates of faults published by IBM [ 1 ] and Boeing [25]. 
Bishop et al. [4] measured both the distribution of execution rates of code blocks and 
the distribution of failure rates of faults in the 10,000 line PREPRO application of the 
European Space Agency. Both were well fit by the lognormal. 

Miller [20] pointed out that the mathematical transformation from a rate distribu- 
tion to a first occurrence time (discovery time) distribution is equivalent to the Laplace 
Transform of the rate distribution. Mullen [21 ] derived the Lognormal software relia- 
bility growth model by approximating the Laplace Transform of the lognormal. This 
model was validated using Stratus Computer data and data gathered by Musa. Gokhale 
et al. [13] showed that the model fits code coverage growth as a function of the number 
of tests. 

In short, key elements of the lognormal hypothesis have been confirmed in studies 
of more than 30 applications ranging from several thousand to several million lines of 
code in both test and production environments. 

2.3 D-LN Hypothesis 

We use the results described in Section 2.2 to motivate our derivation of an occurrence 
count model based on the lognormal. If the failure rates of defects follow the lognormal, 
the distribution of occurrence counts of those defects is the sum (integral) of Poisson 
distributions which in turn have a lognormal distribution of rates. 
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We make the following assumptions: Each defect, in a given product, against its 
overall operational profile, has a characteristic rate A. Each occurrence of that defect 
is an event in a Poisson process with rate A. The running time of the process is the 
cumulative exposure time over all users. The rate of a given defect remains unchanged 
until it is removed. From these assumptions it follows that the encountering of defects 
depends on the number of defects in the product, the distribution of those rates, the rate 
of use of the product over time, and the schedule of installing fixes after a defect is 
discovered. In our case, beyond Adams [ 1 ], we assume that fixes were not distributed 
and suppose that the distribution of rates of software faults is lognormal. 

To say the distribution of failure rates of software faults is lognormal is to say that 
the logarithms of the execution rates, log(A), follow the Gaussian or normal probability 
distribution function (pdf). For A > O: 

1 -0°g(~)-t")2/2~2 dA (1) dL(A) = Acrx/~.~c 

The two parameters are the mean of the log rates, p,, and the variance of the log 
rates, c~ 2. We represent the mixture of Poisson distributions with means that follow a 
lognormal distribution using the notation of [ 16]. 

Poisson(A) A Lognormal(#, or) (2) 
A 

The distribution of occurrences DLN(i) is the integral of Poisson distributions, the 
rates of which follow a lognormal distribution. For (i > = 0, integer): 

DLN(i) = Poisson(i, A)dL(A) (3) 

2.4 Interpretation of Parameters 

Conceptual advantages of the lognormal include the relative transparency of its para- 
meters and the way it links various observed properties of software defects. Here we 
provide a brief discussion of how the parameter values are related to the characteristics 
of software applications. 

The parameter a makes the greatest qualitative difference and allows the lognormal 
its flexibility, a, the standard deviation of the log rates, increases with increasing com- 
plexity of the software, in particular with greater depth of conditionals [4]. o" determines 
the ratio of the highest and the lowest occurrence rates of the defects. It determines the 
range over which the rates vary; the higher the a, the higher the range of variation. If cr is 
zero, all defects have the same occurrence rate, leading to the exponential model [23] of 
software reliability growth. Values from one to three are seen more commonly. Values 
of four or above are unusual and carry large uncertainties [ 13]. 

The parameter # has a simple interpretation: if rates are plotted on a log scale, 
changing # merely moves the distribution to the right or left. A change in # is obtained 
by changing the rates of all defects by a constant factor; for example, a system speedup 
or merely using different units of time. For/z -- - 2 ,  the median rate is exp ( - 2 )  or 0.14 
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per year, which implies that less than half have been found by T -- 1 year for all o-. In 
terms of occurrence counts, most of the defects have not occurred even once. 

Changing either # or or, both of which relate to log(rate), does not affect the other. 
However changing either # or cr affects both the mean and variance of the rates them- 
selves [2]. 

The final parameter is N,  the number of defects, which scales the pdf. In this paper, 
and in most situations, N is not a given but must be estimated in conjunction with 
the other parameters of the model. We can view N in a formal sense as only another 
number needed to fit the model, or we can view it more physically as the total number 
of defects, including both found and latent. If the number of latent defects is large, it is 
often the case that their average rate is low [3, 4]. This does not mean that they all will 
occur in the practical lifetime of the product - most will not - but it is possible to use 
a software reliability growth model to estimate how many will occur as a function of 
further exposure. 

We expect the implications of the parameters will require additional subtlety for 
correct use in QoP determinations. For example, the operational profile presented by 
a determined adversary may be uniform during a probing phase but selectively peaked 
during an exploit. The value of a used by an analyst might vary at different points in an 
overall calculation of risks to QoP. 

3 Data Description 

The data was collected in the ordinary course of recording the occurrence of software 
defects in two operational databases. The first is a defect tracking database that has 
one record for each defect. The second database uses trouble-tickets to track the occur- 
rence of incidents at customer sites. When a customer incident is caused by a defect, 
a bidirectional link is established between the incident and the appropriate defect. We 
studied defects for which there was at least one trouble-ticket and counted the initial 
discovery as well as rediscoveries. In each case our queries selected defects (with at 
least one ticket) written within a specific year against specific body of software. Our 
model assumes repairs are not put into service during the interval of measurement, in 
the body of software measured. We have bounded our defect selections to ensure that 
this is approximately true. We did not further restrict the queries except as will be noted 
in discussions of subsets below. Each defect contains the identifiers of all trouble-tickets 
associated with the defect and, implicitly, its count. Some defects are duplicates of oth- 
ers. It would be best for our analysis if tickets attached to the duplicate defects were 
reassigned to the original defects; but this does not happen for 15 percent of the tickets. 
The average number of defects per ticket, assuming at least one, is approximately 1.4 
and is not further studied here. 

Table 1 shows the percentage of defects having a given number of tickets for each 
individual count from one to ten. Due to space limitations, cumulative percentage for 
the occurrence counts from 11 to 40 is reported in Table 1. However, percentages for 
each individual counts in the range of 11 to 40 were used for the analysis. The data is 
shown for three sets of defects. The first set consists of the security related defects in 
a large body of general purpose networking software. Orthogonal Defect Classification 
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(ODC) [7, 5] provides a means for the finder of a defect to record the impact of the 
defect. This set included only those for which the ODC Impact value "Security" was 
selected by the person entering the defect. In this system, a small fraction of the defects 
are identified as affecting security. 

Table 1. Percentage of Defects with Specific Number otTickets per Defect 

Tickets ODC Security Security 
per defect Security Product Suite 

1 62.34 61.62 
2 15.58 18.38 
3 6.49 5.41 
4 5.19 6.49 
5 1.30 1.08 
6 3.90 1.08 
7 1.30 0.00 
8 1.30 0.00 
9 0.00 1.62 
10 0.00 1.62 

11 40 2.60 3.24 

58.95 
16.32 
10.00 
3.68 
4.21 
1.58 
1.05 
0.53 
1.05 
1.05 
2.12 

The second set included all software defects from a single platform that has the 
primary function of providing security. The third set includes all defects from a suite 
of security-related software products. For these last two sets, a prima facia case can be 
made that any defect may affect QoP. The three sets are fairly independent: an overlap 
of less than 10 percent occurs between the first and second sets and none with the third. 
Depending on perspective, defects in any of these sets could impact security directly 
and the QoP of a containing application. Although the defects counts are not high, the 
three data series provide distinct perspectives of how defects affect QoP. 

Referring to the first column in Table 1, approximately 62 percent of the defects had 
only one ticket/defect, and fewer than 3 percent of the defects had 11 to 40 tickets per 
defect. A preliminary analysis of the data in column one indicates that approximately 
84 percent of the defects have fewer than four tickets per defect. A relatively small per- 
centage of defects causes a large number of incidents per defect, and a large percentage 
of defects causes a small number of incidents per defect. 

To protect proprietary information, we did not normalize occurrence rates by the 
number of devices. Because some products have more than one million units, absolute 
error rates may be less than one millionth of what is presented here. Because log(10 -6) 
-14 ,  the value of lognormal # would be 14 lower but, cr does not change. 

4 Analysis and Discussion 

In this section we present the results of data analysis. We first present the alternative 
model, the Pareto model, which has been commonly used to fit heavy-tailed distribu- 
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tions. We then present the method used to fit the D-LN and Discrete-Pareto models, 
followed by a discussion of the comparison of the fits. We conclude the section with a 
discussion of how the product characteristics influence the parameters of the lognormal. 

4.1 Alternative Model: Pareto Rates 

The Pareto distribution is an alternative distribution that is heavy-tailed. Miller [20] 
noted the Pareto defect failure rate distribution, as a limit of the gamma distribution, is 
the basis of certain software reliability growth models. We modeled the Pareto cdf of 
rate A (for A _> k)as: 

N × ( 1 - (  ) ) (4) 

where a and k are parameters of the Pareto. 

4.2 Model Fitting 

To approximate the integral in Section 2.3 for any given value of # and or, we used 
the LOGNORMDIST function of Microsoft Excel to determine the fraction of defects 
with each of 44 geometrically spaced rates from approximately 0.0001 per year to more 
than 200 per year. These were used to generate 44 Poisson distributions of those rates 
as an approximation to a continuous distribution. We summed the lognormal-weighted 
contribution of each of the 44 Poissons to each occurrence bucket from 0 to 40. The 
SOLVER function of Excel was used to find the values of the parameters of the D-LN 
(/z, or, and N) that maximized the log-likelihood of the observed values. We do not have 
data for the number of defects with zero occurrences so we cannot use that in fitting. 
We constructed a defect occurrence rate distribution for the Discrete Pareto as we did 
for the Lognormal and fitted it in the same manner (44 weighted Poisson distributions, 
max log-likelihood). 

We evaluate the fits using chi-square, examining the one-tail significance of devi- 
ation from both models. This test requires a minimum of approximately five counts in 
most buckets. The data supported only six buckets, and both models have two parame- 
ters (besides N); therefore, we have three degrees of freedom. 

4.3 Model Comparison 

Table 2 summarizes information about the fitted D-LN and D-Pareto in the upper sec- 
tions, information relating to goodness of fit in the next, and other descriptive informa- 
tion at the end. We present both the actual ratio of tickets per defect and the same ratio 
for the fitted lognormal. 

For an objective comparison, we compare the chi-square values of the Pareto and 
lognormal. We can do this directly because both have three parameters. The data never 
rejects either the Lognormal or the Pareto at the .05 level. We conclude that the data is 
consistent with both the lognormal and the Pareto. 

In comparative terms, we see that the lognormal is a slightly better fit in one case. 
The differences are not significant in this data, which is unfortunately rather thin. Other 
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research on the lognormal distribution of event rates or failure rates of  software faults 
finds other models working well in some cases but the lognormal is a better fit in a 
higher number of  cases - sometimes significantly better but never significantly worse [21, 
22, 4, 13]. For the purposes of this paper, however, our objective is to demonstrate the 
applicability of  software reliability engineering concepts to security defects. 

4.4 Comparative Analysis of Defect Subsets 

Having established the applicability of  the D-LN to the distribution of occurrence counts 
of security defects, we want to understand how the parameters of the lognormal are af- 
fected by the nature of  the software and its use. Figure 1 graphically describes the three 
sets of  defects. According to Table 2, the ODC Impact Security defects that are embed- 
ded in the most mature product have the lowest average rate: exp(lz + a2). 

LN/z 
Pareto a 
Pareto k 

d.f 
LN 

Chi-square 0.81 

Table 2. Parameters Fit and Characteristics 

Parameter ODC Security Security 
Security Product Suite 

LN cr 2.63 2.40 1.75 
5.1 -4.27 -2.23 

0.832 0.943 1.045 
0'057 0,111 0.187 

3 3 3 

5.90 3.25 
LLH -24.09 -39.28 -31.33 

Pareto 
Chi-square 0.95 6.05 5.45 

LLH 24.11 -38.87 -32.50 

Defects 77 185 190 
studied 

Tic/Defect 2.60 2.48 2.31 
observed 

Tic/Defect 2.47 2.43 2.34 
LN calc. 

Mean Rate 0.193 0.249 0.497 

This rate is determined from the fitted lognormal and includes contributions of  all 
defects, not just those that have occurred. Software labeled "Security Suite" is new and 
has the highest number of  tickets per defect. In this case, defects with higher rates are 
recent and have not yet been completely eliminated. 
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Fig. 1. Fitted curves are roughly similar inspite of differences in sources and source definitions 

5 Related Research 

Heavy-tailed distributions (also known as power-law distributions) have been claimed 
in many phenomena related to networks and software. In the Internet, these distrib- 
utions have been claimed in the context of: transfer and interarrival times [26], burst 
sizes [6, 26], topological properties [11], sizes of files transferred over the Web [8], and 
Web session sizes [12]. Recently, error rates in Web servers have been observed to be 
heavy-tailed [14]. Statisticians have noted the lognormal can easily be confused with 
the Pareto [ 10] especially in the presence of truncated data [27]. 

In summary, the observation of lognormal within the operational profile of the In- 
temet is consistent with the genesis of the lognormal outlined in Section 2.1 and in 
[22]. Rates (whether observed in operational profiles, state-space, or code execution) 
are determined by a multiplicative process and generally are lognormal. Faults, being a 
subset of such events, have failure rates distributed the same way, which is the basis of 
this paper. 

We note that the lognormal is used not only for hardware reliability modeling but 
for risk analysis in general [ 19]. It arises easily in risk analysis, as in software, as the 
result of the multiplication of a number of random factors that may involve human 
decisions, technological failures, or natural or other catastrophes. Because QoP involves 
a considerable degree of risk analysis, we expect that the lognormal will be useful for 
more aspects of QoP than just modeling the effect of software security defects. 
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6 Summary and Future Research 

In this paper we identified security defects in software as an important component of 
QoP and demonstrated the application of software reliability engineering concepts and 
techniques to QoP. We hypothesized that software security defects are like other defects 
in following the lognormal distribution of failure rates and we provided three sets of data 
supporting this hypothesis. This paper takes a significant step in linking concepts from 
prior studies of software reliability growth, code execution rates, test coverage, and 
defect failure rates to observations of defect occurrence counts of security defects. In 
that sense, the paper relates the software-defect-based component of QoP and its testing, 
maintenance, and improvement over time, to the mainstream of software engineering. 

Although our security-related data is consistent with the D-LN, our present data 
does not rule out the Discrete Pareto. The acquisition of additional QoP-related data is 
the subject of future research. 
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Abstract. We propose a new model for estimating the time to compromise a 
system component that is visible to an attacker. The model provides an estimate 
of the expected value of the time-to-compromise as a function of known and 
visible vulnerabilities, and attacker skill level. The time-to-compromise random 
process model is a composite of three subprocesses associated with attacker 
actions aimed at the exploitation of vulnerabilities. In a case study, the model 
was used to aid in a risk reduction estimate between a baseline Supervisory 
Control and Data Acquisition (SCADA) system and the baseline system 
enhanced through a specific set of control system security remedial actions. For 
our case study, the total number of system vulnerabilities was reduced by 86% 
but the dominant attack path was through a component where the number of 
vulnerabilities was reduced by only 42% and the time-to-compromise of that 
component was increased by only 13% to 30% depending on attacker skill 
level. 

1 Introduct ion  

Control systems connected to public networks are at risk from cyber attack. Operators 
of these control systems need a measure of the risk associated with potential attacks 
to effectively manage their resources. Cyber security evaluations are traditionally 
qualitative in nature such that recommendations are given for remedial actions with 
no quantitative measure of how the recommended actions reduce the risk of a 
successful attack. 

In April 2005 our risk analysis team was asked to perform a quantitative estimate 
of the risk reduction on a partial Supervisory Control and Data Acquisition (SCADA) 
system referred to as CS60. The baseline system had already undergone a security 
review, been modified to enhance security, and then been retested. For this analysis, 
we developed a methodology [13] for obtaining a quantitative risk reduction 
estimation. The methodology applies a graph theoretical approach. The methodology 
is briefly described by the following steps: 

Step 1. Establish the system configuration. 
Step 2. Identify applicable portions of the quantitative risk model. 
Step 3. Identify and prioritize the security requirements of the primary target(s). 
Step 4. Identify system component vulnerabilities. 
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Step 5. Categorize vulnerabilities on each component by compromise type. 
Step 6. Estimate time-to-compromise each component. 
Step 7. Generate compromise graph(s) and attack paths. 
Step 8. Estimate dominant attack path(s). 
Step 9. Do Steps 3-8 for baseline and enhanced system. 
Step 10. Estimate risk reduction. 

One could argue that all vulnerabilities should be fixed, e.g. by applying patches, 
thus the enhanced system should have no known vulnerabilities. We assert that a 
system with no known vulnerabilities continues to be at risk because of 
vulnerabilities that exist but are currently unknown, and we would like to measure 
that risk. Also, many real world systems operate with known vulnerabilities even 
after security upgrades. The crux of our methodology is the estimation of the time-to- 
compromise for each component in the system. Time-to-compromise is a measure of 
the effort expended by an attacker for a successful attack assuming effort is expended 
uniformly. We believe that as the time-to-compromise is increased, the likelihood of 
successful attack, and therefore risk, tends to decrease. The rest of this paper 
discusses the specific methods we used for step 6 of the methodology, estimating the 
time-to-compromise. 

The estimation of time-to-compromise is particularly difficult because of the lack 
of reliable data. We recognize that some of the assumptions associated with our 
model have not been validated but we have attempted to provide justification with 
real data when data is available. We have used expert elicitation or have made simple 
assumptions when data is unavailable. 

2 Related work 

Researchers are testing the viability of different approaches for dealing with control 
system cyber security. Carlson et al. [8] describes a novel approach for applying 
Hidden Markov Models to an attack/defend scenario on an infrastructure system. The 
approach, based on sound statistical models, is flexible, but requires both detailed 
information about the system and significant set-up time. Madan et al. [11] apply a 
stochastic model to computer network system. It is used to determine steady-state 
availability of QoS attributes and also mean times to security failures based on 
probabilities of failure due to violations of different security attributes. The theory 
used is classic statistical stochastic modeling. Employing this type of model requires 
knowledge of the system in detail. Furthermore, Haimes [10] applied Hierarchical 
Holographic Models, event trees, and fault trees to a variety of applications, both 
models require specific details, are not dynamic, and rely on expert opinion. 

Taylor et al. [15] provide an interesting cyber security assessment process that 
combines techniques from Survivability System Analysis and Probability Risk 
Assessment. The proposed process has some significant advantages, but seems more 
suitable to complete and operational systems so that costs, attack scenarios, and 
critical system objectives may be fully explored. Further, the process is dependent on 
multiple iterations of expert elicitation, which are not available in many situations. 
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Dacier et al. [9] suggested the use of 'privilege graphs' to analyze security. 
Privilege graphs require modeling of vulnerabilities at a very low level, and, for a 
nontrivial sized system, would involve a graph of unmanageable size. Privilege 
graphs are transformed into Markov chains. But the assumptions underlying Markov 
chains are not necessarily applicable to an intelligent adversary. 

Sheyner et al. [14] describe an automated technique for generating and analyzing 
attack graphs. They use a model checker as the core engine to comprehensively 
generate every attack path sequence that could lead to an undesired system state. 
There is a question of scalability in using a model checker to generate the attack 
paths, and the level of attack and vulnerability abstraction may be at a lower level 
than optimal for a quick estimate of risk reduction. 

Byres et al. [7] describe how the attack tree methodology may be applied to the 
common SCADA protocol MODBUS/TCP with the goal of identifying security 
vulnerabilities inherent in the specification and in typical deployments. Attack trees 
are a promising technology but no method is provided for weighting the attack paths. 

While a number of the above methods and techniques seem promising and merit 
future research, none could provide a quantitative measure of time-to-compromise 
that was necessary for our risk reduction estimation case study. 

3. Estimate time-to-compromise 

The time-to-compromise (Tpi) is defined as the time needed for an attacker to gain 
some level of privilege p on some system component i. Tpi depends on the nature of 
the vulnerabilities and the attacker skill level. Tpi is modeled as a random process 
composed of the following three attacker subprocesses: 
• Process 1 is for the case where at least one vulnerability is known on component 

i that would achieve privilege level p, and the attacker has at least one exploit 
readily available that can be successfully used against one of the known 
vulnerabilities. 

• Process 2 is for the case where at least one vulnerability is known on component 
i that would achieve privilege level p, but the attacker does not have an exploit 
readily available that can be successfully used against any of the known 
vulnerabilities. 

• Process 3 is the identification of new vulnerabilities and exploits. Process 3 is a 
parallel process to processes 1 and 2, and is constantly running in the 
background. The attacker of a particular system may use the results of process 3 
or may be an active participant in process 3. That is, the attacker may wait for 
new vulnerabilities/exploits to be identified and announced, or probe for new 
ones. 

Each of the above processes has a different failure probability distribution. Process 
1 and 2 are mutually exclusive and Process 3 is ongoing and in parallel with the other 
two processes. 



52 Miles A. McQueen, Wayne F. Boyer, Mark A. Flynn, George A. Beitel 

3.1. Process 1 model 

The Process 1 activities are shown in flow chart form in Figure 1. Notice that Process 
1 always has a successful completion. The Process 1 model has two parts: 1) the 
probability estimate that the attacker 
has an exploit readily available to use 
against one of the component 's  
vulnerabilities, that is, the probability 
the attacker is in Process 1, and 2) 
the time estimation for Process 1. 

3.1.1. Probabi l i ty  the a t tacker  is in 
process 1 
The probability that the attacker is in 
Process 1 is calculated by using 
search theory in a similar fashion as 
has been applied to physical security 
systems by Major [12]. The 
following equation makes use of the | yes 
simplifying assumption that the 
available exploits are uniformly sue.eess 
distributed over all vulnerabilities: 

Fig. 1. Process 1 

Pl = l - e  .... /k. (1) 

where P~ is probability that the attacker has an exploit readily available that will 
compromise the component, v is number of vulnerabilities on the component of 
interest, m is the number of exploits readily available to the attacker, and k is the total 
number of vulnerabilities. The value of k is 9447 and is defined to be the total 
number of nonduplicate-known vulnerabilities found in the ICAT database. 

Table 1. Model parameters--number of readily available exploits b~, skill level. 

Skill Level 

novice 

beginner 

intermediate 

expert 

m (number of readily available exploits) 

50 

150 

250 

450 

The value of m is a function of the attacker skill level. The novice skill level is 
defined as m = 50 because there is a Web site (metasploit) that has 50 exploits that 
are trivial to use. The higher skill levels are defined by increasing the value of m for 
each increase in skill level as shown in Table 1. The specific choices in Table 1 are 
based on a postulated exponential growth in readily available exploits as a function of 
skill level. 
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3.1.2. Time estimation for process 1 
The probability density function (PDF) for Process 1 is expected to be zero at time 
zero, rise rapidly then decrease to zero for times greater than some maximum time 
value. The shape of the PDF for this process is anticipated to look something like the 
beta distribution [3] shown in Figure 2. 

The mean time for Process 1 was estimated as follows. Process 1 assumes that the 
attacker is familiar with at least one of the available vulnerabilities and has 
experience with at least one exploit to take advantage of the known vulnerabilities. 
Currently, the time it takes for an expert or novice to compromise a component under 
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Fig. 2. PDF for Process 1. Time-to-compromise a 
component for the case where the attacker has an exploit 
readily available. This PDF is a 'beta' distribution with 
shape parameters == 1.3, 5.2; range == 0..5; mean = 1: 

these conditions is 
considered to be roughly 
similar. Thus, the mean 
time-to-compromise for 
Process 1 is not modified 
based on skill or any 
other external factors. 
Cohen [2] states: "It takes 
a few days to program a 
few new attacks into 
systems, test them out, 
and prepare for a serious 
attack if you are already 
in the business of 
attacking other people." 
This suggests that the 
mean should be a few 
days. However, 
experiments conducted by 
Jonsson [4] suggest that a 
team of two 

nonprofessional attackers can execute a compromise in approximately 4 hours, on 
average. Based on the specification of time used by Jonsson, the 4 hours could 
represent the total time used for the attack or the time devoted by each team member, 
for a possible total of 8 hours. Somewhat arbitrarily, we decided to use 8 hours (one 
working day) as the mean time for a successful attack in Process 1, since it is at least 
marginally more in line with Cohen's comment. 

3.2. Process 2 Model 

The Process 2 activities are shown in flow chart form in Figure 3. Notice Process 
2 can have multiple tries and may end in failure or success. The Process 2 model has 
two parts: 1) the probability estimate that the attacker is in Process 2, and 2) the time 
estimation for Process 2. 
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Fig. 3.. Process 2 

3.2.1. Probability the attacker is in process 2 
Since Process 1 and Process 2 are mutually exclusive, when v > 0 the probability 

that the attacker is in Process 2 is the complement of the probability that Process 1 
applies. That is 

P2 = e-vm/k = 1- Pl- (2) 

where P2 is the probability that the attacker does not have an exploit readily available 
that will compromise the component and P~ is from Equation 1. 

3.2.2. Time estimation for process 2 
The PDF of Process 2 is expected to look similar to the gamma distribution [3] 

shown in Figure 4. A gamma distribution was chosen because the PDF is zero at time 
zero, and as time increases it peaks and then trends towards but never reaches zero. 
We chose a PDF that is non-zero at infinity because Process 2 has no guarantee of 
successful completion within any given time. The PDF in Figure 4 is a baseline PDF 
for process 2 and represents the case where the attacker is expected to find or write a 
usable exploit for the first vulnerability they try to exploit. As the expected number of 
vulnerabilities that an attacker must try to exploit before being successful increases, 
the PDF will be modified according to the number of "tries" needed as explained 
below. The average value of the baseline PDF for Process 2 was chosen as the 
average time from vulnerability announcement to exploit code availability, which 
according to [6] is 5.8 days. 
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The mean time estimation for Process 2 should be dependent on the number of 
known vulnerabilities and the probability the attacker will be able to find or write 

PDF for Process 2 
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Fig. 4. Baseline PDF for Process 2. Time-to-compromise expected value of the number 
for the case of at least one vulnerability but the attacker of tries times 5.8 days; that is: 
has no exploit readily available. The PDF is a gamma 
distribution. Shape parameters == 2, 2.9; Mean == 5.8. 

their own exploit code to take 
advantage of the weakness. 
This was modeled as a serial 
process in which the attacker 
randomly selects one of the 
known vulnerabilities and then 
tries to find or create an 
exploit for it. The average 
time it takes for each of these 
tries is considered constant 
and is the baseline mean of the 
hypothesized gamma PDF 
(5.8 days). The mean time of 
Process 2 is modeled as the 

t2 = 5.8 E T .  

where t2 is expected value of Process 2 and E T  is the expected number of tries. 

(3) 

The expected number of tries may be written as: 

E T  = A--M-M- * 1 + t r i e s  * 
V tries=2 i=2 V -  i + 1 

where AM is the average number of the vulnerabilities for which an exploit can be 
found or created by the attacker given their skill level, NM is the number of 
vulnerabilities that this skill level of attacker won't  be able to use (V-AM), and V is 
the number of vulnerabilities on the component of interest. See appendix for 
derivation of equation 4. 

Equation 4 was obtained by assuming each try is an independent sample from the 
list of vulnerabilities where the unusable vulnerabilities are randomly distributed 
among the list. 
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Table 2. Fraction of vulnerabilities exploitable by attacker as a function of skill level. 

Fraction of Vulnerabilities that 
are Exploitable (AM~V) 

Skill Level 

novice .15 

beginner .30 

intermediate .55 

expert 1.00 

20 vulnerabilities from ICAT 
database judged by expert to be 
exploitable by this and lower levels. 

CAN-2003-0004 
CAN-2001-1039 
CAN-2002-1048 
CAN-2004-1306 
CAN-1999-1457 
CVE-2000-0359 
CAN-2004-0893 
CAN-2005-0416 
CAN-2002-0053 
CAN-2003-0345 
CAN-2004-0206 
CAN-2003-0897 
CAN-2004-0117 
CAN-2004-0208 
CAN-2004-0575 
CAN-2003-0724 
CAN-2004-0118 
CAN-2004-0119 
CAN-2004-0123 
CAN-2004-0897 

To determine the values of AM/V as a function of skill level, we sampled 20 
vulnerabilities to assess the availability of corresponding exploits. See table 2 for list 

of vulnerabilities. If our team 
N r ~  s ~  2 

6~ 

m 0 

z 4 .  / 
O , 

~ : 

1, . . . . .  N o o  

expert assessed the 
vulnerability as requiring no 
code, or the code was available 
and trivial, it was then assumed 
a novice attacker could make 
use of the vulnerability/exploit 
pair. This criteria was met by 
three (15%) of the 20 
vulnerabilities that were 
assessed. If our team expert 
assessed the vulnerability as 
being available to the novice or 
that it required exploit code that 
was readily accessible (and 

Fig. 5. Average number of attempts to compromise a appeared easy to understand), it 
component for Process 2 as a function of number of was assumed a beginner 
known component vulnerabilities and the attacker skill attacker could execute the code 
level. (Equation 4) and take advantage of the 

vulnerability. Three additional 
vulnerability/exploit pairs also met this criteria, bringing the total to six pairs (30%) 
available to the beginner attacker. If, in addition to the above six vulnerability/exploit 
pairs, our team expert found the exploit code to be difficult to understand, found only 
example code conveying the essence of the exploit, or assessed from experience that 
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it was not easy to get the type of required exploit to work properly, it was assumed it 
would require an intermediate level attacker to take advantage of the 
vulnerability/exploit pair. Five additional pairs met this criteria so that 11 pairs (55%) 
were available to the intermediate attacker. If, in addition to the 11 exploits above, no 
exploit code was readily available or what code there was required significant 
modification to adapt, we assumed that it would require an expert attacker. All of the 
remaining vulnerabilities fit into this category for a total of 20 vulnerability/exploit 
pairs (100%) available to the expert. The results of this exercise are summarized in 
Table 2 and were used as part of the time-to-compromise model. 

The average number of tries as described by Equation 4 is plotted in Figure 5. For 
an expert, the average number of tries is one, because an expert is expected to have 
access to an exploit for every vulnerability. As the skill level decreases, the average 

number of tries increases as 
expected. 

s t a ~  ~ 

y e s  

Fig. 6. Process 3 

3.3. Time estimation for process 3 

The Process 3 activities are shown 
in flow chart form in Figure 6. 
Notice Process 3 continues until 
"success". The time to the 
discovery of a new usable 
vulnerability is modeled as a 
constant rate of new 
vulnerabilities/exploits occurring 
on a component. This model is the 
same form as the classic 
exponential distribution for 
constant failure rates as shown in 
Figure 7. 

This exponential distribution 
was chosen for its simplicity and 
because research by Rescorla [5] 
indicates that the hypothesis stating 
that the vulnerability discovery rate 
is constant over time could not be 
rejected for the operating systems 
he studied. Using data from the 
same source, it also appears that a 
reasonable estimate for the mean 

time between vulnerabilities (MTBV) is 30.42 days. In addition to a vulnerability, an 
exploit would be needed. The time between the announcement of a vulnerability and 
the release of a corresponding exploit is now approximately 5.8 days [6]. The 
vulnerability rate estimate will be scaled by V/AM according to the portion of 
vulnerability/exploit pairs each attacker level can use (see Table 2). For example, the 
beginner attacker will on average require 1/(0.3) vulnerability/exploit pair 
occurrences before one becomes usable. To determine the expected time-to- 
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Fig. 7. PDF for probability of discovery of a new 
usable vulnerability. (Process 3). 

compromise for Process 3, 
the MTBV was multiplied 
by the scaling factor then 
half the MTBV was 
subtracted because, on the 
average, the midpoint of the 
fault cycle is the start point, 
and the mean time to create 
an exploit (5.8 days) is 
added. Thus: 

t3 = ((V/AM)- 0.5) 30.42 + 5.8 (5) 

where t3 is the expected time-to-compromise of Process 3, and V/AM is the 
appropriate value from Table 2. 

One might assume that development and release of patches might be effective in 
mitigating the window of opportunity for an attacker, but as indicated by [1] the 
hypothesis of 'poor system administration' seems to be confirmed. In other words, it 
takes quite a long time for administrators to actually apply patches, and although 
there are some indications that the time between release of a patch and its application 
may be decreasing in the IT domain, control systems may be slower. 

3.4 Overall compromise time estimation 

Given the three attacker processes for compromising a component, their probabilities, 
and their time-to-compromise probability distributions we can now generate an 
overall time-to-compromise probability distribution for the component. For now, the 
analysis only uses the expected value of the time-to-compromise. The expected value 
of the overall distribution is approximated as a weighted sum of the expected values 
of each of the three attacker processes, where each weight is the probability that the 
respective process is operative. 
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Although Process 3 is a parallel process continually running in the background, 
we simplify the estimation of time-to-compromise and obtain a good first order 

\ i ..... :~ii 

i 

Fig. 8. Expected time-to-compromise a component for 
various numbers of vulnerabilities and attacker skill levels. 
(Equation 6 plotted) 

approximation by assuming 
that Process 3 only applies 
if Processes 1 and 2 do not 
apply or are unsuccessful. 
This approximation is valid 
because the PDF for 
Process 3 is much more 
dispersed than the other 
processes, therefore its 
contribution to the 
composite PDF is small 
when Processes 1 or 2 are 
active. The following 
formula is valid under the 
assumption that all three 
processes are approximately 
mutually exclusive. 

T = tl Pl + t2 (l-Pl)(l-u) + t3 u(l-Pl). 

where 

T is the expected value of time-to-compromise 
t~ is the expected value of Process 1 (1 day) 
t2 is the expected value of Process 2 (from Equation 3) 
t3 is the expected value of process 3 (from Equation 5) 
u = (1 - (AM/V))  v -  probability that Process 2 is unsuccessful ( u=l if V=0) 
V is number of vulnerabilities, PI from Equation 1, AM/V from Table 2. 

(6) 

Equation 6 is plotted in Figure 8 where the number of known vulnerabilities for a 
component range from zero to 30 and attacker skill levels range from novice to 
expert. The time-to-compromise the component increases as the skill level decreases. 
Time-to-compromise decreases as the number of vulnerabilities increases, but for 
skilled attackers the time-to-compromise is not a strong function of the number of 
vulnerabilities. The shape of the curves shown in Figure 8 is consistent with intuition, 
although the numerical values are only approximations. 

4. Case study 

Our risk reduction methodology was applied to a small SCADA system (CS60) 
consisting of 8 generic component types connected to a local Ethernet LAN. The only 
potential attack target component identified was the RTU because it controls the 
physical state of equipment in the field. The system was tested as delivered from the 
manufacturer and did not include a firewall. The only perimeter component for the 
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CS60 system is the Ethernet switch that connects the system to the internet. For the 
purposes of testing, this perimeter component was assumed to be a simple switch that 
prevents locally addressed packets from external observation and prevents flooding of 
the local network from external sources. 

Both the baseline and enhanced, more secure, versions of the CS60 system were 
tested with a variety of commercial and freeware scanning tools (including Nessus), 

password crackers and local 
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Attacker Skill Level 

Fig. 9. Estimated compromise time of the most 
vulnerable component of the CS60 baseline system, 
enhanced system, and for hypothetical case of no 
known vulnerabilities. 

tools. Tests of the baseline 
system revealed potential 
vulnerabilities in every 
component. The network 
scans found a total of 298 
open ports, and 79 unknown 
services. Nessus 
vulnerability scans found 
174 warnings and 154 holes. 
A 'hole' is a vulnerability 
that has the potential to 
allow an attacker to gain a 
foothold on the component. 
We were only concerned 
with holes that were noted 
by Nessus as high severity 
to increase confidence that 
they were significant 
vulnerabilities. High 
severity implies that the 
hole might allow one to run 

'arbitrary code' on the component to gain user or root access. The password testing 
found weak passwords on virtually all of the componentss. Network scans of the 
enhanced system found 95 open ports and nine unknown services. Nessus 
vulnerability scans of the enhanced system found a total of 101 warnings and 21 
holes. Some of the vulnerabilities identified by the tools were validated for the 
enhanced system. INL expertise was used for the identification and validation of 
additional vulnerabilities. The passwords in the enhanced system were found to be 
much stronger than for the baseline system. We identified additional potential 
vulnerabilities by searching vulnerability identification libraries. 

The time-to-compromise was calculated using Equation 6 and the number of 
vulnerabilities we identified that could be used to gain root access for each 
component in the CS60 system. Component APPS1 had the highest number of 
vulnerabilities in the baseline system (19) and in the enhanced system (11) for the 
type compromise that allows root access from a launch site, therefore the path 
through component APPS 1 is considered to be the dominant attack path. The time to 
compromise APPS1 for various attacker skill levels is shown in Figure 9 for the 
baseline system, the enhanced system and for the hypothetical case of no known 
vulnerabilities. The total number of CS60 system vulnerabilities was reduced by 86% 
but the number of vulnerabilities for the component APPS 1 was reduced by only 42% 
and the time-to-compromise APPS 1 was increased by only 13% to 30% depending on 
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attacker skill level. For the hypothetical case of 100% reduction in known 
vulnerabilities, the time-to-compromise is estimated to increase by 240% to 624% 
depending on attacker skill level. 

These estimates of time-to-compromise have not been validated but simply show 
how the model may be applied to a real system. The numbers can be interpreted as a 
measure of risk and therefore may be used to trade off the value of cyber security 
mitigation actions versus the cost. 

5. Alternative simplistic time-to-compromise models/metrics 

Consider some simplistic alternative time-to-compromise models/metrics. One 
such model is the binary open/closed door model in which any known vulnerability is 
considered an open door that a determined attacker will enter as easily as if there 
were many other open doors. The application of this model to the case study yields a 
time-to-compromise reduction of zero on the APPS1 component because there are 
known vulnerabilities (open doors) remaining that lead to a successful attack, even 
though many doors have been closed. This model has some merit, particularly if the 
attacker is highly skilled and is determined to attack that particular site, but is 
considered too pessimistic and too simplistic because it does not take into account the 
various types of potential attackers, and the difficulty associated with the attacker in 
exploiting different sets of vulnerabilities is not considered. 

Another alternative time-to-compromise metric for components may be obtained 
by counting the reduction in number of vulnerabilities. This can be done in several 
ways. For example: the total number of vulnerabilities for each component (before 
and after system enhancements) may be counted. An alternative view of 
vulnerabilities is the number of open TCP services rather than CVE entries. For this 
case study, the total holes found by Nessus (http://www.nessus.org) was reduced 
from 154 to 21 (86%), the number of vulnerabilities on the most vulnerable 
component was reduced from 19 to 11 (42%), and the total number of open TCP 
services was reduced from 298 to 95 (68%). This model is also believed to be too 
simplistic and too optimistic because it implies a linear relationship between number 
of vulnerabilities and the time-to-compromise a component, and ignores other 
important considerations such as skill of attacker. 

6. Conclusions 

We proposed a model for estimating the time-to-compromise a system component 
that is visible to an attacker. The model can be used as part of a risk reduction 
estimation methodology for control systems. Time-to-compromise was modeled as a 
function of known vulnerabilities and attacker skill level and was applied to a specific 
SCADA system and for a specific set of control system security remedial measures. 

The nature of the numerical results obtained show that time-to-compromise is 
related to system attributes in ways consistent with intuition, and reinforces the types 
of remedial actions that truly reduce risk. For example, the model emphasizes the 
dynamic nature of cyber security such that the time-to-compromise a component 
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decreases over time, unless there is constant effort to install patches or disable 
services as soon as new vulnerabilities are discovered. 

The model also suggests some new strategies for reducing the risk of cyber 
threats: the publication of false exploits or government restrictions on the publication 
of valid exploits could theoretically increase the time necessary for an attacker to 
compromise components. Software that spoofs vulnerability scanning tools could 
trick potential attackers into trying exploits that would not be successful, but would 
raise alarms. 

The time-to-compromise model has the following drawbacks. The model does not 
currently take into account dependencies between vulnerabilities on different 
components. For example, if two components are not identical but have some of the 
same vulnerabilities, compromising them are not independent events. Whether the 
number of available exploits is representative of the skill level of an attacker and 
estimates of the number of exploits available to various skill levels were not 
validated. The assumption that exploits are uniformly distributed over vulnerabilities 
is incorrect. It is our hypothesis that certain exploits are far more likely to be in the 
hands of an attacker, since the vulnerability is found on many more systems. The 
PDFs were not validated for Processes 1 and 2. 

The proposed model for estimating time-to-compromise provides a quantitative 
assessment mechanism that fits within an overall methodology of risk assessment. 
The level of abstraction is high enough to avoid detailed analysis of each known 
vulnerability but detailed enough to provide useful security and defensive information 
for guiding risk assessments and mitigation strategies. 

7. F u t u r e  W o r k  

The time-to-compromise model needs to be validated through experiments and 
measurement where possible. We plan to run realistic tests to collect information 
about attacker processes. We would like to perform a sensitivity analysis to determine 
how sensitive the model is to changes in our underlying assumptions. 

The kind of data needed to effectively estimate control system cyber security risk 
is currently lacking. For example: the industry needs a vulnerability library specific to 
control systems similar to the existing IT CVE vulnerability library. The existing 
CVE libraries do not always clearly identify where vulnerabilities apply, nor do they 
indicate how difficult it is to exploit a given vulnerability. Existing vulnerability 
scanning tools do not clearly identify which vulnerabilities are tested and which are 
not. We would like to nm experiments that measure the statistics associated with 
Processes 1 and 2. Validated statistical models may allow for a measure of the error 
bounds associated with future time-to-compromise estimates. 

When dealing with a system many components will have common vulnerabilities. 
A method should be developed to account for such dependencies. Also, many 
components may be of equal use to an attacker. In such a case it may be more 
appropriate to aggregate the appropriate components into a higher level meta- 
component with the union of all its components vulnerabilities. This needs to be 
assessed. 
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Appendix A 

Derivation of Equation 4. 
E(X) is expected value of X where X is a discrete random variable: 

V 

E ( X ) -  ~-'x~ * p, 
k=l 

where Xk are the possible values of X (outcomes) and Pk iS the probability of 
outcome k. 

V 

1-~-' p, 
k=l  

Pl = Probability of matching an available exploit to the first vulnerability chosen. 
Pl = AM/V, because of uniform distribution of exploits over vulnerabilities. AM is 

number of usable exploits available, V is number of vulnerabilities. 
P2 = Probability of matching an available exploit to the 2nd vulnerability chosen. 
PE = (probability of matching an available exploit to a vulnerability chosen from 

those remaining after first try) *(probability exploit not matched on the first try) 
P2 = (AM/(V-I))*((V-AM)/V) 
P2 = (AM/V) * (V-AM)/(V-I)  
P3 = (AM/(V-2))*(probability exploit not matched on the first two tries) 
Pk = (AM/(V-k+l))*(probabil i ty exploit not matched on the first k-I tries) 

p k = ( A M / V ) *  • 2 < k  < V-AM+I 
i--2 V - i + l  

Pk ---- 0; k > V-AM+I  (because there are AM usable exploits available, therefore 
there are no un t r i ed  vulnerabilities with exploits available to the attacker for these 
cases. Attacker is successful for some previous value of  k.) 

V-AM+I 

E T - E ( X ) -  Zk*pk 
k=l  

ET = A M  , 1 + t r i e s *  ' V - i  + 1 
g tries=2 i--2 
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Abstract. This paper discusses how information about the architecture and the 
vulnerabilities affecting a distributed system can be used to quantitatively assess 
the risk to which the system is exposed. Our approach to risk evaluation can be 
used to assess how much one should believe in system trustworthiness and to 
compare different solutions, providing a tool for deciding if the additional cost of 
a more secure component is worth to be afforded. 

1 I n t r o d u c t i o n  

The issue of software security is increasingly more relevant in a world where most of 
our life depends directly on several complex computer-based systems. Today Internet 
connects and enables a growing list of critical activities from which people expect ser- 
vices and revenues. In other words, they trust these systems to be able to provide data 
and elaborations with a degree of confidentiality, integrity, and availability compatible 
with their needs. Unfortunately, this trust is often not based on a rational assessment 
of the risk to which the system could be exposed. Users tipically know only the in- 
terface of the system and, for example, they have too little information for evaluating 
the confidentiality of their credit card number: it could be even transmitted on an SSL 
armored link, but this does not help if on the other side it will be stored on a publicly 
available database! Surprisingly, the designers of the system are often in a similar sit- 
uation. In fact, software systems are increasingly assembled from components that are 
developed by and purchased from third-parties and used as black boxes. Web services, 
for example, give to software engineers the ability of building complex applications by 
assembling third-parties components that expose a web interface[7], an extreme case of 
components o.ff the shelf (COTS) software. 

Thus, black box components make clear that nobody has enough information for 
evaluating how secure is every single computation. However, several public services 
exist (for example, BugTraq[ 1 ]) that publish known vulnerabilities of commercial com- 
ponents. The problem this paper wants to discuss is whatever this information can be 
used to assess how secure is a system built by assembling vulnerable components. In the 
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following we propose a quantitative approach to measuring risk based on the knowledge 
of: 

- the vulnerabilities of components and links and a measure of their "exploitability". 
- the logical dependencies that the architecture of the system induces among vulner- 

abilities, since it is often the case that a vulnerability can be exploited more easily 
by leveraging on another one. 

- the envisioned attacks against the system. 

Risk evaluation can be used to assess how much one should believe in system trust- 
worthiness, but also- more interestingly- to compare different solutions. In fact, de- 
signers have often the option of using different components and different architectural 
choices. A quantitative risk assessment is key in providing a tool for deciding if the 
additional cost of a more secure component is worth to be afforded. 

The paper is organized as follows: in Section 2 we describe our approach to evaluate 
the risk associated with a given architecture, in Section 3 we present an example of 
application, in Section 4 we discuss related work, and finally in Section 5 we draw 
some conclusions and sketch future work. 

2 O u r  a p p r o a c h  to  r i s k  a s s e s s m e n t  

The goal of risk assessment is to determine the likelihood that identifiable threats will 
harm, weighting their occurrence with the damage they may cause. An ideal risk assess- 
ment requires enumeration of all possible failure modes, their probability of happening 
and their consequences. Unfortunately, this information is rarely available in its gory 
detail and, when it is, it is very difficult to analyze it in order to draw sensible consider- 
ations. 

We aim at both (1) reducing the complexity of risk analysis and (2) using informa- 
tion that can be managed, discussed, and agreed by high-level designers of a distributed 
system. For this reason we consider a distributed system as a composition of black-box 
elements communicating through directed links. We call architecture of the system the 
directed graph < C, L > in which C is the set of all black-box components and L the 
set of all directed links. A link (Cl, c2) means that cl may send input to c2. 

Moreover, we consider each element E (C U L) as vulnerable. A vulnerability is a 
flaw or weakness in a system's design, implementation, or operation and management 
that could be exploited to violate the system's security policy [ 10]. The RFC definition 
adds also that 

"Most systems have vulnerabilities of some sort, but this does not mean that 
the systems are too flawed to use. Not every threat results in an attack, and 
not every attack succeeds. Success depends on the degree of vulnerability, the 
strength of attacks, and the effectiveness of any countermeasures in use. If the 
attacks needed to exploit a vulnerability are very difficult to carry out, then the 
vulnerability may be tolerable. If the perceived benefit to an attacker is small, 
then even an easily exploited vulnerability may be tolerable. However, if the 
attacks are well understood and easily made, and if the vulnerable system is 
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employed by a wide range of users, then it is likely that there will be enough 
benefit for someone to make an attack." 

As stated by Howard and Le Blanc[11 ]: "You cannot build a secure system until 
you understand your threats". Therefore, in order to assess the trustworthiness of a 
system (or, dually, its risks), one has to identify possible threats and how attacks could 
be performed. Obviously enough, the risk of an unforeseen threat cannot be positively 
assessed and unknown attacks fall outside a systematic analysis of risks. Similarly, in 
the following we consider only known vulnerabilities, however it is possible to apply 
our approach even to unknown vulnerabilities (or a mix of known and unknown ones) 
if their nature is predicted. 

Safety engineering has a long tradition of using fault trees or event trees to analyze 
hazards in complex systems[ 15]. A similar approach it is commonly used also in infor- 
mation technology. Attack trees[ 17, 6] provide a formal, methodical way of describing 
how an attack can possibly be performed against a system. Basically, one represents 
attacks in a tree structure, with the goal as the root node and different ways of achieving 
that goal as leaf nodes. There are a n d  nodes and o r  nodes, o r  nodes are alternatives; 
a n d  nodes represent different steps toward achieving the same goal. The ultimate ob- 
jective in building an attack tree is identifying how vulnerabilities can be exploited to 
harm a system, therefore the basic leaves represent system vulnerabilities. However, 
these are often dependent one on another, but this information is partially lost in attack 
tree representation. In fact, only structural dependencies are made explicit (i.e., the at- 
tack has a given structure and implies the exploitations of some vulnerabilities), while 
indirect dependencies (i.e., a vulnerability might ease an attack, even if the attack is 
possible without its presence) are neglected. Therefore, we propose to take into account 
all vulnerabilities dependencies and we devise an analytical approach for computing 
the risk associated to a specific threat (described by an attack tree) starting from the as- 
sessment of the exploitability of vulnerabilities. Moreover, our analysis starts from the 
architecture of the system, since we found that most (but not all) of the dependencies 
among vulnerabilities stem from the basic topology of the system. 

2.1 Measuring risk 

Risk is measured by means of a function of two variables: one is the damage potential 
of the hazard (H) and another one is the level of exploitability (E) by which we consider 
the difficulty to make an attack. Damage potential can be defined as the average loss 
of money an attack may cause, but any sensible numerical measure can be used in our 
approach. 

The meaning that we give to the term exploitability, E, is a general value that in- 
cludes both the exploitability and reproducibility of an attack, defined in the STRIDE/- 
DREAD theory[11 ]. At the same time we also attribute to damage potential (H) the 
meaning of total damage taking into account also the number of affected users. 

Risk  = f ( H , E )  (1) 

We want to evaluate the total risk of a threat described by an attack tree. 
Our approach consists of four steps: 
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- A t  s t ep  1: A threat to the system under examination is modelled by using an attack 
tree. The attack objective is the root node and children nodes represent different 
ways of achieving it. Children can be alternative (o r  subtrees) or needed jointly 
(and  subtree). The final leaves of the tree are potential vulnerabilities of the sys- 
tem that should be matched with the actual known vulnerabilities. To each vulner- 
ability v is associated a numerical index E, called exploitability, which measures 
how probable is that v will be exploited to perform a successful attack. Evaluation 
of E can be quite approximate: in order to apply our computation it is sufficient 
that the partial order of indexes among dependent vulnerabilities (see below) re- 
flects the relative difficulty of exploitation. In fact, further calculation are based 
only on maximum and minimum operations and no complex arithmetics will be 
applied. However, to compare two different risk evaluations (possibly with respect 
to two different systems), the same scale should be used and a total order among 
exploitability indices is needed. A meaningful assessment of E is a matter of both 
experience and ingenuity, but as far as a single analysis is concerned only relative 
ease of exploitability has to be estimated, a judgement on which people often agree. 

- A t  s tep  2: We introduce dependencies among identified vulnerabilities. A vulnera- 
bility A depends on a vulnerability B if and only if when B was already exploited, 
then A is easier to be exploited. Dependencies should be analyzed by taking into 
account context, architectural and topological information. 

- A t  s t e p  3: The index E of each vulnerability is updated taking into account mu- 
tual dependencies, according to the algorithm described in Section 2.2. since each 
vulnerability could be exploited thanks to the previous exploitation of one of  the 
vulnerabilities on which it depends. 

- At  s t ep  4: The risk associated to the threat under examination is finally computed 
by recursively aggregating exploitabilities along the attack tree. The exploitability 
of an o r  subtree is the easiest exploitability of children, and the exploitability of 
an a n d  subtree is the most difficult exploitability of children. The aggregated ex- 
ploitability measures the level of feasibility of the attack and can be combined with 
the damage potential (H) to assess the risk of the threat. 

2.2 E x p l o i t a b i l i t y  o f  d e p e n d e n t  v u l n e r a b i l i t i e s  

Consider the system depicted in Figure 1. We will use this simple example to show our 
approach to risk assessment. The system can be described as a graph S - <  C, L > 
where C - {P, Q, R} is the set of components and L -- {(/9, Q), (Q, R), (R, Q), 
(R, P)} is the set of links between components. A number of flaws affecting the soft- 
ware composing the system is known: let's them form the set F = {Pl, ql, q2, rl ,  Xl, Yl, 
Zl, z2}. Components are exposed to the set of vulnerabilities Vc -- { (P, pl),  (Q, ql), 
(Q, q2)(R, rl)}, where an element (v, u) means that the component v is susceptible 
to be subverted thanks to the flaw u. Links are exposed to the set of vulnerabilities 
V L  - -  {((P, Q), Xl), ((Q, R), Zl ), ((Q, R), z2), ((R, P), yl ) }, where an element (v, u) 
means that the link v is susceptible to be subverted thanks to the flaw u. Since link z is 
bidirectional, zl and z2 affect also (R, Q), however it is not useful to take into account 
them twice. The set of all vulnerabilities is V = Vc U VL. To ease notation, we denote 
element(u) E C U L the element of S to which the vulnerability u applies. 
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Fig. 1. System architecture 

Initially, one has to assess how easy and repeatable is to exploit every single vulner- 
ability to gain control of a component or a link in the given architecture. We call this 
the exploitability Eo(u) of the vulnerability u in the system S. 

W'I(~,-)EV assess Eo(t.,') 

E . V H N  

where N is a total ordered set of degrees of exploitability; we will use N --- {xl0 < 
x < 10} where 0 means "not exploitable at all". This evaluation will be driven by the 
knowledge we have about the vulnerability itself and the constraints the architecture 
imposes on its exploitability. In fact, when a component or a link is part of a complex 
system, its vulnerabilities are typically more difficult to be exploited compared to the 
case when one has the total control of it. 

However, the architecture of the system imposes dependencies among vulnerabil- 
ities. For example, we need to understand if it is easier to exploit a vulnerability of a 
component given that an input link attached to it was already compromised or a compo- 
nent attached to any of its input links was already compromised. Dependencies among 
vulnerabilities can be represented as a new graph G = <  V, D >. We denote with 
E(a[fl) the exploitability of a given that fl was already exploited. The edge (/3, a )  E D 
if E(a[f l )  >_ Eo(a) ,  i.e., if it is easier to compromise element(a) when one has com- 
promised element(fl) 

Vu, a E V A u # a • assess E ( u i a  ) 

1 (Complexity) 
The number of  the exploitabilities to assess is < IvI 2 In fact, every vulnerability needs 
an exploitability evaluation OV] figures needed). Moreover, the graph G has at most 
IVl. (IVl- 1)edges. 

Thus, in general one has to assess IV[ 2 exploitabilities. However, most of the vul- 
nerabilities are usually independent, and the numbers one has to guess is typically closer 
to IVI than ivi 2. Moreover, in the following it will be clear that only ordering is im- 
portant, i.e. absolute values of exploitabilities have no meaning: it is only a convenient 
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Fig. 2. Dependencies graph among vulnerabilities 

way to express the relative easiness of acquiring control of an element thanks to one 
of them. Figure 2 shows an exploitability assessment for the example system: the de- 
pendencies among IVl -- 8 vulnerabilities impose the assessment of 24 exploitabilities. 
The number associated to each node is E0, that is the initial measure of how difficult 
is to exploit the vulnerability. The conditional exploitabilities are represented by the 
numbers on the edges. The assessment depicted in Figure 2 does not take into account 
that each vulnerability could be exploited thanks to the previous exploitation of  one of  
the vulnerabilities on which it depends. Therefore, E0 should be iteratively updated by 
considering the easiest (i.e., the maximum) way of exploiting an incoming vulnerabil- 
ity in the dependencies graph. In turn each incoming vulnerability could be exploited 
by controlling the affected element or leveraging on the dependency itself: the most 
difficult (i.e., the minimum) constraints the value. 

Vv E V, (v,7) E D :  E ( v ) :  maz(Eo(v) ,min(E(ul '~) ,E(~/)))  (2) 

Our methodology consists in iteratively applying the previous formula for each vul- 
nerability, until the system converges to an equilibrium. Table 1 shows a possible se- 
quence of iteration and the corresponding equilibrium. 

2 (Convergence) At each iteration the exploitability can only be updated with a greater 
value. Moreover, it is upper bounded by the maximum value of  the incoming dependen- 
cies edges. Therefore no "oscillations" are possible and the algorithm always con- 
verges. 
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3 (Order)  Only the relative order o f  exploitability values is important." in fact, only 
m a x  and rain operators are used in our formula, and no arithmetical functions are 
ever applied. 

pl 

ql 
q2 
r l  

X l  

Yl 
Z1 

Z2 

E0 E1 E2 
6 7 7 
5 6 6 
2 6 6 
6 6 6 
2 2 2 
9 9 9 
3 3 3 
6 6 6 

Table 1. Exploitability update 

Risk assessment could be effectively used to evaluate design choices. For exam- 
ple, making links not exploitable at all (by protecting them with logical and physical 
defenses) would virtually change nothing. 

Our approach can also be used to evaluate the impact of adding a new vulnerable 
component to a preexisting system. In fact, due to the presence of new dependencies 
between vulnerabilities, the new component can affect the security of the whole system, 
increasing the exploitability of some of the old vulnerabilities. 

3 An example 

In this section we introduce a numerical example based on an hypothetical Insecure 
Airlines web site. For the sake of simplicity we maintain the same simple architecture 
represented in fig. 1. 

According with the new airline scenario, Node P represents the company web 
server, node Q represents the database containing the flights information, and node 
R is a web service that manages the frequent flier accounts. Links X and Z connect the 
web server to the database and the frequent flier services respectively. Link Y allows 
some automatic script on the database to update the mileage of a customer account. 

We associate the following vulnerabilities to the system components: 

V1 (node P) SQL injection. An authenticated user can submit a malicious query that 
allows him to read or modify any row in the database. 

V2 (node Q) Buffer Overflow. The CGI page that loads and displays the flight informa- 
tion copies the flight number into a small static buffer without checking for possible 
buffer overflow. 

V3 (node Q) A race condition in a local command allows an attacker to read any file in 
the web server machine. 

V4 (node R) Weak authentication. The access to each frequent flyer account is pro- 
tected by a numeric PIN of 4 digits. 



72 Davide Balzarotti, Mattia Monga, and Sabrina Sicari 

The threat that a malicious user could sniff I the traffic between two components is 
represented introducing three more vulnerabilities: V5 (for X link), V6 (for Y link) and 
V7 (for Z link). 

The airline company is interested in evaluating the risk that an external user (not a 
company employee) can add a fake flight reservation. The security analyst starts enu- 
merating all the possible attacks and combining them to form a large attack tree. Fig 3 
reports a piece of  the tree in outline form. 

Goal :  Fake R e s e r v a t i o n  
1. Convince  an employee  to add a r e s e r v a t i o n  

1.1 B lackma i l  an employee  
1.2 T h r e a t e n  an employee  

2. Access  and Modify the f l i g h t  d a t a b a s e  
2.1 SQL I n j e c t i o n  from the web page (VI)  
2.2 Log in to  the d a t a b a s e  

2 .2 .1  Guess the password  
2 .2 .2  S n i f f  the password  (V7) 
2 .2 .3  S t ea l  the password  from the W e b - S e r v e r  machine (AND) 

2 . 2 . 3 . 1  Get an accoun t  on the W e b - S e r v e r  
2 . 2 . 3 . 1 . 1  E x p l o i t  a b u f f e r  o v e r f l o w  (V2) 
2 . 2 . 3 . 1 . 2  Get a c c e s s  to an employee  accoun t  

2 . 2 . 3 . 2  E x p l o i t  a race  c o n d i t i o n  to acces s  a p r o t e c t e d  
fi I e (V3) 

Fig. 3. Attack Tree 

The next step consists in assigning the exploitability values of each vulnerability. 
The following table summarizes the values and the dependencies between each vulner- 
ability: 

Vuln. 
v~ 
½ 
½ 
¼ 
½ 
½ 
½ 

E o V 1 ½ ½ ¼ V s V 6 ½  
2 - 1 0 -  1 0 -  - 
6 5 . . . . .  
0 - 3 . . . .  
4 8 - 10 - 7 10 

. . . . . .  

. . . . . .  

. . . . . .  

We do not have enough space to justify the choice of every values in the table, but in 
order to provide an idea of  what is behind the numbers, we can consider the case of  V2. 
The second column represents Eo(V2), that is the exploitability of  V2 given that none 

J We do not consider spoofing and man-in-the-middle attacks in order to do not complicate the 
example. 
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of the other vulnerabilities have been previously exploited by the attacker. In our case 
the value is zero. In fact, it is not possible for a malicious user to directly exploit the 
buffer overflow since the input the attacker should manipulate comes directly from the 
flight repository. For this reason, if the attacker would be able to insert a malicious row 
into the database, he could then force the web server to display that information taking 
control of the machine. This dependence is shown in the third column: E(V21V~) - 5. 

Fig. 4. Vulnerabilities Dependence Graph 

Figure 4 shows the Vulnerability Dependence Graph representation of our system. 
Applying our algorithm to the graph, after a couple of iterations, the system converges 
to the following fixed point: 

S(Wl) -- 7 

z ( v 2 )  = 5 

E(V~) = 3 

E(V4)  = 7 

This result can seem obvious due to the simplicity of the example but in a real sce- 
nario that can involve dozen of components, also for a skilled user can be very difficult 
to figure out all the possibles chain of attacks just looking at the graph. Moreover, it is 
possible to see how the presence of a vulnerability in a branch of the attack tree can 
affect the exploitability values associated to leaves belonging to a different branch of 
the tree. 

Anyway, the evaluation of the risk in a distributed environment is just the first step 
in a more complicate and interesting process. In fact, one of the main purpose of our ap- 
proach is to allow user to locate, analyze, and compare the impact of security solutions 
on the whole system under analysis. 

In the case of Insecure Airlines, a security manager can propose different solutions 
in order to mitigate the total risk of the system. Since security solutions are usually 
expensive, it is very important to reduce any possible waste of money. For this reason 
the possibility to quickly simulate and explore the impact of multiple actions allows the 
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user to choose the right solution in order to guarantee a good security level according 
to business requirements. 

In our example, the only way to log into the database is by knowing the password 
(that is stored into the web server host). The file containing the password can be read 
thanks to the race condition vulnerability present in one of the programs installed on 
the host. Suppose the security manager proposes the following possible solutions: 

- S o l u t i o n  A:  Update the vulnerable program with a more secure one. 
- S o l u t i o n  B:  Fix the buffer overflow vulnerability. So, no one can have the chance to 

perform the race condition attack. 
- S o l u t i o n  C: Encrypt the communication between the web-server and the database 

to make a sniffing attack much more difficult. 

Translating these three solutions in numbers, the first is equivalent to setting V3 and 
its dependencies to zero, the second to setting V2 and its dependencies to zero, and the 
last one to setting V5 to one. 

Running again our algorithm in the three different scenarios, we obtain the follow- 
ing results: 

Scenario VI V2 V3 V4 
Base 7 5 3 7 

Solution A i 5 0 7 
Solution B 0 0 7 
Solution C 2 2 7 

The previous table shows that the first solution does not affect the rest of the system. 
The second solution makes the system more secure since it removes the possibility to 
exploit II3. Nevertheless, an attacker can still exploit V1 modifying the database at his 
will. The third solution seems the better one, since it makes very hard to exploit three 
of the four initial vulnerabilities. 

Of course, in order to decide if a solution is worthwhile or not, it is necessary to 
propagate the exploitability values from the leaves to the root of the attack tree. In such 
a way a security analyst can evaluate what is the real danger and which solution is more 
appropriate to mitigate it. 

4 Related work 

Risk, trust, security requirements mapping, and component interdependence are con- 
cepts that are linked together and have been widely discussed in literature. 

Baskerville [3] describes the evolution of different methods to measure risk that 
sometimes could be used together to improve the result accuracy. Even though soft- 
ware security risk is extensively discussed in risk management methodologies [20, 5, 
2], among information security experts there appears to be no agreement regarding the 
best or the most appropriate method to assess the probability of computer incidents 
[18]. 
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We started our investigation analyzing the STRIDE/DREAD theory [ 11 ] and propos- 
ing a simplified way to combine together the assessment values. We then took into ac- 
count the problem of risk aggregation that represents a key point to enable modular 
reasoning in distributed environments that involve multiple and heterogenous compo- 
nents. 

O.Sami Saydjari et al.[9]present a system security engineering methodology for dis- 
covering system vulnerabilities, and determining what countermeasures can best close 
those vulnerabilities.Their approach improves the process "analyzing IS through an ad- 
versary's eyes". 

Evaluation and analysis ofvulnerabilities in isolation is insufficient because it is im- 
portant to consider the effects of the interactions among vulnerabilities. There are many 
approaches for taking into account vulnerability dependencies [9, 13].Using a graph 
representation to model security-related concepts is not a new approach. For instance, 
attack graphs [ 19, 14] use state-transition diagrams to describe complex attacks that can 
involve multiple steps. Different techniques, such as model checking [19], can then be 
applied to attack graphs in order to evaluate security properties. The goal of our vulner- 
ability dependence graph is different since we only need to describe the relationships 
among vulnerabilities in order to improve information obtained by the attack tree model 
[6, 17]. 

Software components have received a great deal of interest from both industries 
and academia as the component based software development paradigm promises maxi- 
mum benefits of component reusability and distributed programming. A software com- 
ponent is independently developed and delivered as an autonomous unit that can be 
composed to become part of a lager application. The component interdependence is 
often ignored or overlooked [4] leading to incorrect or imprecise models. In order to 
avoid this problem, one must specify more complete models taking into account inter- 
connections among system components. In agreement with this point of view [8, 18, 4, 
9, 16] present models for assessing security risks taking into account interdependence 
between components. 

Even though there is no easy way to assess risks and choose the damage values, 
there are various approaches that provide methodologies by which the risk evaluation 
can be made more systematic. In particular, Sharp et al.[ 18] develop a scheme for prob- 
abilistic evaluation of the impact of the security threats and proposes a system for risk 
management with the goal of assessing the expected damages due to attacks also in 
terms of the cost. Z. Dwaikat et al.[8] define security requirements for transactions and 
provide mechanisms to measure likelihood of violation of these requirements. Unlike 
us, the authors base the evaluation of risk on transaction traces combining security re- 
quirements, context information and risks presented by various components. K.Khan et 
al [12] propose a framework to characterize compositional security contracts of soft- 
ware components. 

At the same time, there is a need to automate the modeling phase in the risk assess- 
ment and analysis process. G. Biswas, et al. [4] proposed the use of qualitative modeling 
techniques based on deriving behavior from structural descriptions and causal reason- 
ing to aid automating and enhancing the risk analysis. Hierarchical schemes are used 
for describing component structure and system functionality is derived from a set of 



76 Davide Balzarotti, Mattia Monga, and Sabrina Sicari 

primitive functions and parameters defined for the domain. The authors want to (1) 
incorporate uncertainty analysis using probabilistic schemes or belief functions for es- 
timating risk probabilities, and (2) use causal reasoning and qualitative modeling for 
consequence analysis. We introduced an automatic evaluation of the total exploitability 
of each vulnerability that will then influence the value of total risk. In agreement to [4, 
9, 16] the information computed by the model to calculate the risk could be used as 
effect analysis and decisional support. 

5 Conclusions 

Risk analysis of large distributed systems is still a hard problem for security managers 
since it requires a perfect balance of skills, experience, and "black magic" to be solved. 

This paper presents a quantitative approach to evaluate risk in a distributed environ- 
ments based on the knowledge of the system architecture and the list of vulnerabilities 
of links and components. 

The choice of dividing the analysis into four steps simplifies the study of the prob- 
lem allowing the security designer to acquire and manipulate risk information step by 
step in an incremental way. 

Starting from an attack tree we build a Vulnerability Dependencies Graph that em- 
phasizes the possible dependencies among vulnerabilities/leaves. In this way we point 
out the dependencies among system vulnerabilities that can be lost in an attack tree rep- 
resentation and that can make the system more vulnerable. We then propose an equi- 
librium condition that can be iteratively applied to propagate exploitability values from 
one node of the graph to the others. 

Even though the number of values that must be initially assigned to each vulnera- 
bility can be fairly high, we strongly belief that our system simplify the risk analysis 
process. In fact, since we never use any arithmetic operation to combine exploitabili- 
ties, we only requires (and preserve) that the initial values respect some kind of ordering 
criterion. 

Finally, our algorithm can be used to automatically evaluate different security solu- 
tions, enabling a security manager to perform a "what if" analysis in order to analyze 
the impact of a local modification on the security of the whole system. 

We are currently experimenting by applying our approach on real world examples, 
in particular focusing on systems based on web services. In principle, our approach is 
independent from the level of abstraction one uses to analyze a system, thus we are 
planning to extend our analysis to the relationship between hierarchical assessments. 
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Abstract. The CADHo project (Collection and Analysis of Data from Honey- 
pots) is an ongoing research action funded by the French ACI "Securit~ & In- 
formatique" [1]. It aims at building an environment to better understand threats 
on the Internet and also at providing models to analyze the observed phenomena. 
Our approach consists in deploying and sharing with the scientific community 
a distributed platform based on honeypots that gathers data suitable to analyze 
the attack processes targeting machines connected to the Internet. This distrib- 
uted platform, called LeurrO.com and administrated by Institut Eurrcom, offers 
each partner collaborating to this initiative access to all collected data in order 
to carry out statistical analyzes and modeling activities. So far, about thirty hon- 
eypots have been operational for several months in twenty countries of the five 
continents. This paper presents a brief overview of this distributed platform and 
examples of results derived from the data. It also outlines the approach investi- 
gated to model observed attack processes and to describe the intruders behaviors 
once they manage to get access to a target machine. 

1 Introduction 

Since the very first large distributed denial of service attacks launched in February 2000, 
an apparently increasing number of  major security problems have been reported. In par- 
ticular, a large number of  worms have been observed during the last years. Surprisingly, 
the number of observed attacks does not seem to be influenced by the ever increasing 
deployment of  efficient security protection tools, such as personal desktop firewalls. Is 
this apparent raise in the number of  attacks backed up by some undisputable data? If  
yes, what are the attack processes that lead to such phenomena? 

As of today, we are unfortunately unable to answer these questions because of  the 
lack of  precise and unbiased data to assess the seriousness of  the situation. A few qual- 
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itative indicators exist, such as, for instance, the yearly survey conducted by the Com- 
puter Security Institute (CSI) and the Federal Bureau of Investigations (FBI). However, 
these reports provide only high-level trends, based on statistical data obtained in various 
heterogeneous environments, without having a precise knowledge of the configuration 
of these environments. Also, the collected data is not rich enough to enable scientists 
to carry out rigorous analyses of the malicious behaviors at stake, and to model at- 
tack processes and their impact on the target systems security. Some companies, such 
as IBM, have access to a very large amount of security incident-related information 
collected from their customers, which, in theory, could be used to model and analyze 
the attack processes. In practice, however, all previous experience with such data has 
revealed that they are not suitable for that purpose. The main reasons lie in the complex- 
ity, diversity and dynamicity of the systems that are under scrutiny. Recently, various 
initiatives have been taken to monitor real world data related to malware and attacks 
propagation on the Internet. The Internet Telescopes, so-called blackholes/darknets and 
the DShield projects are among them. These projects provide valuable information for 
the identification and analysis of malicious activities on the lntemet [2-4]. Nevertheless, 
such information is not sufficient to model attack processes and analyze their impact on 
the security of the targeted machines. 

The CADHo project described in this paper is complementary to the above initia- 
tives. It intends to address these issues by means of the following actions: 

1. The project aims at deploying and sharing with the scientific community a dis- 
tributed platform of honeypots [5] that gathers data suitable to analyze the attack 
processes targeting a large number of machines connected to the Internet. 

2. The project aims at validating the usefulness of this platform by carrying out vari- 
ous analyses, based on the collected data, to characterize the observed attacks and 
model their impact on security. In particular, we will investigate how to use the 
modeling results to improve the design and validation of secure systems. Our ob- 
jective consist in providing solid rationales for those who need to validate the fault 
assumptions they make when designing, for instance, intrusion tolerant systems. 

3. Finally, the project aims at going beyond the study of the most frequent and auto- 
mated attacks. Our objective consists here in investigating and modeling the behav- 
ior of malicious attackers once they have managed to compromise and get access 
to a new host. Indeed, we are not interested in monitoring all kinds of attackers. 
Instead, we want to monitor only those that are representative of large classes of 
attackers so that the knowledge derived from their observation is symptomatic of a 
large amount of real attacks. To fulfill this objective, we need to develop and de- 
ploy a sophisticated environment that gives the attackers the "apparent" possibility 
of compromising a target system, under strict control and monitoring. This is a real 
challenge given the current the state of the art. 

The CADHo project started in September 2004. The honeypot platform we have 
built has been deployed in thirty sites, from academia and industry, in twenty countries 
over the five continents. In the following sections, we describe our honeypot based 
data collection platform (called Leurr~..com), and we present some examples of results 
obtained from the analysis of the data collected so far. In addition, the paper includes a 
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preliminary discussion of the problems and the directions investigated for the modeling 
activities. 

Section 2 presents the data collection environment Leurr~.com. Section 3 provides 
a summary of the various analyses carried out on the collected data. Section 4 focuses 
on the modeling of attacks observed on the various honeypots deployed so far. Finally, 
Section 5 discusses the future evolution of the current platform toward the development 
of high-interaction honeypots that will enable us to model the behavior of attackers 
once they manage to control a target system and try to progress to defeat some security 
objectives. 

2 The data collection environment Leurr~.com 

As mentioned in Section 1, one of the goals of the CADHo project is to share with the 
scientific community an open distributed platform to collect data from a large number 
ofhoneypots. This platform is deemed to evolve over the years, well beyond the end of 
the CADHo project. New partners are allowed to get access to the complete collected 
data set if and only if they agree to set up a honeypot on their premises, thus enriching 
the overall setup by their presence. Names of the partners are protected by a Non Dis- 
closure Agreement that each participating entity must sign. We have developed all the 
required software to automate the various regular maintenance tasks (new installation, 
reconfiguration, log collection, backups, etc.) to ensure the long term existence of this 
set up. 

A honeypot is a machine connected to a network but that no one is supposed to 
use. In theory, no connection to or from that machine should be observed. If a connec- 
tion occurs, it must be, at best an accidental error or, more likely, an attempt to attack 
the machine. Recently, several approaches have been proposed to build environments 
where several honeypots are deployed. The genetic term honeynet is used to represent 
them. The most visible honeynet project is the one carried out by the so called Honeynet 
Research Alliance [5, 6]. The Alliance is made of national entities. Some CADHo mem- 
bers are active members of the French one, the French Honeynet Project [7]. 

So far, most of the attention has been paid to implementation issues. Institut Eur~com 
has been working for more than a year on the definition of a low-interaction honeypot 
dedicated to the tasks explained here above. A first environment has been deployed, 
based on the VMware [8] technology. Based on the acquired expertise during a one- 
year use of this environment and on the analyses carried out on the collected data, we 
are now convinced that, for the specific objectives of our project, the freely available 
software called honeyd [9] can be used instead of VMware. Indeed, it is known that the 
major drawback of honeyd is that an environment using that software can be remotely 
identified by a skilled attacker. This is less easy with VMware. Fortunately, data col- 
lected so far indicate that the risk of seeing attackers fingerprinting the environment 
under attack is negligible. This justifies the choice of a honeyd based solution. 

Honeyd is a free software and it runs on various flavors of Linux and Windows. It 
does not consume a lot of resources and, therefore, old PCs can be used without any 
trouble. These are very interesting features since we are interested in building a large 
environment where many honeynets would run. The fact that we can add honeynets for 



82 E. Alata et al. 

almost no cost makes this solution very attractive. It is indeed unlikely that we could 
identify interested partners to join this platform on a voluntary basis otherwise. 

The distributed platform Leurr&com itself is made of a potentially large number of 
identical honeynets deployed at the sites of our partners. All the honeynets are centrally 
managed to ensure that they have exactly the same configuration. This is very important 
if we want to keep the experiment under control. The data gathered by each honeynet 
are securely uploaded to a centralized database administrated by Institut Eur~com. This 
database contains, in a highly structured and efficient way, the complete content, includ- 
ing payload, of all packets sent to or from these honeynets. Furthermore, the collected 
data are enriched by additional information to facilitate their analysis, such as the IP 
geographical localization of packets source addresses, the OS of the attacking machine, 
the local time of the source, etc. In our context, each IP address interacting with the hon- 
eynets identifies an attacking machine. It is noteworthy that for attack processes that go 
through a chain of systems to attack a target, the IP address recorded in our database 
corresponds to the previous hop in the chain before reaching our honeynets, which does 
not necessarily correspond to the machine initiating the attack process. 

Concretely, the distributed platform LeurrO.com is constituted of three main com- 
ponents: 

1. A set of computers connected to the Internet deployed at the partners sites, running 
honeyd with the same configuration. Each computer emulates three virtual ma- 
chines running various operating systems (Linux RedHat, Windows 98, Windows 
NT) and services (ftp, web, etc.). All traffic received by or sent from each computer 
is saved in tcpdump files. A firewall ensures that connections cannot be initiated 
from the computer, only answers to external solicitations are allowed. Every day, a 
secured communication is established from a trusted machine during a short period 
of time to copy the tcpdump files archived on each computer. Integrity checks are 
also performed to ensure that the platform has not been compromised. 

2. A centralized relational database where all the collected data are archived. All part- 
ners have the possibility to send queries to that database through a secure web 
interface. 

3. A set of software programs that are used to collect, process and enrich the data 
collected from each platform. For instance, three different software are used for 
passive fingerprinting the OS of the attacking machines: pOf [ 10], ettercap [ 11 ], 
and disco [12]. Maxmind [13] is used to identify the geographic location of the 
attacks. 

3 Data analysis: Summary of the main results 

Several analyses have been carried out on the data collected from VMware and the hon- 
eyd based platforms. The results obtained from these analyses have been published in 
intemational conferences in the course of 2004-2005. An up to date list of publications 
on this topic can be found in [ 14]. In the following, we provide a short summary of the 
main conclusions and lessons leamed from the data. 

- The analyses reported in [ 15, 16] were based on the data collected from the initial 
VMware platform during a 10 month observation period. In particular, we have 
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observed that the data exhibit a stable behavior from various perspectives, for in- 
stance with respect to the geographic location of the attacking machine, the target of 
the attack (virtual machine, port), etc. Such regularity suggests that there are some 
real values in using the data collected from honeypots to model attack processes 
and threats. Also, the data revealed the existence of two distinct sets of machines 
that targeted our honeypot platform. The first set of machines were only seeking to 
gather information on our environment, without really trying to perform an attack. 
Their activity mainly consisted in scanning our network in a systematic way con- 
sidering a limited number of ports. The second set of machines (about 25%) were 
attacking only specific open ports of our honeypot. This suggests that they have 
already acquired such information from other machines belonging to first set (the 
scanning machines). It is noteworthy that such observation has been also confirmed 
by the more recent data collected from the honeyd distributed platform. However, 
we observe a higher proportion of attach'ng machines than scanning machines. 

- A deep and thorough analysis of honeypots data is generally required to have a 
good understanding of malicious activity. In [ 17, 18], a new clustering algorithm 
is used to identify similar attack traces associated to attacking machines that are 
likely to use the same attack tool. The application of this algorithm to our honeypots 
data confirmed that it is very useful to highlight interesting phenomena that remain 
hidden if we analyze the data at a higher macroscopic level only (e.g., considering 
the number of attacks observed at the different ports without analyzing the root 
causes of the attacks). 

- In the study reported in [ 19], we present a methodology to analyze the potential bias 
introduced by the use a low interaction honeyd platform compared to the VMware 
based platform. We show that high interaction honeypots are useful to control the 
relevance of low interaction honeypot configurations, and that both interaction lev- 
els are required to build an efficient network of distributed honeypots. 

- Finally, in [20], we present a comparative analysis of the attack processes observed 
on various platforms deployed at different geographic locations. In particular, we 
can highlight the three following observations: 

1. Some attack processes have been observed on all the platforms 
2. Some attack processes have been observed only on a subset of platforms 
3. Some attack processes have been observed only on a single platform 

The results obtained suggest that the data observed from a single platform is not 
sufficient to characterize the malicious activity observed on the Intemet. Based on the 
data collected so far, it seems that this is only possible for a minority of observed attacks. 
This result highlights the necessity to have a largely deployed distributed platform to 
observe the malicious activity carried out on the Intemet in order to be able to derive 
meaningful and representative conclusions. 

The results summarized above are based on the qualitative analysis of the collected 
data. Additional useful insights can be obtained by using mathematical modeling tech- 
niques, in particular with respect to the definition of appropriate models that can be 
used for prediction purposes. In the next sections, we discuss the objectives and the 
main problems related to this topic and we outline some examples of preliminary re- 
sults to promote discussion. 
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4 Model ing based on the collected data 

Honeypots are generally attacked by different attackers from several geographic loca- 
tions all over the world. In other words, the time when the attacks are launched, their 
source and consequences are not known in advance. Also, the vulnerabilities exploited 
by the attackers and the attack scenarios might differ significantly. On the other hand, 
the attack results might depend on the state of the target system when the attack is ini- 
tiated. All these factors are uncertainty sources that have to be taken into account in 
the analysis and modeling tasks carried out on the data collected from the honeypots. 
Statistical and probabilistic analysis techniques are well suited to take into account such 
uncertainties in order to: i) characterize the attackers behavior and the attack scenarios, 
and ii) build stochastic models and evaluate quantitative measures reflecting targeted 
system capacity to resist to attacks. 

The data collected from the honeypots can be processed in various ways to charac- 
terize the attack processes and perform predictive analyses. For example, we can build 
stochastic models characterizing the frequency and the distribution of attacks taking 
into account the geographic location of the attackers, the IP addresses of the attacking 
machines, the vulnerabilities exploited, the severity of the consequences of the attacks 
on the target system and data, etc. In particular, modeling activities can be used to fulfill 
the following objectives: 

1. Identify the probability distributions that best characterize the attack occurrence 
and attack propagation processes. 

2. Analyze whether the data collected from different platforms exhibit similar or dif- 
ferent malicious attack activities. 

3. Model the time relationships that may exist between attacks coming from different 
sources (or to different destinations). 

4. Predict the occurrence of new waves of attacks on a given platform based on the 
history of attacks observed on this platform as well as on the other platforms. 

The approach adopted in the CADHo project to fulfill these objectives consists in 
exploring the application of statistical analysis and probabilistic modeling techniques 
that are traditionally used to model and evaluate the dependability of software and hard- 
ware based systems using data collected in operation, and extending their use to the data 
collected from the honeypots. 

For the sake of illustration, we present in the following simple preliminary models 
based on the data collected from our honeypots. The examples address: i) the time- 
evolution modeling of the number of attacks observed on different honeypot platforms 
deployed so far, and ii) the analysis of potential correlations for the attack processes 
observed on the different platforms taking into account the geographic location of the 
attacking machines and the relative contribution of each platform to the global attack 
activity. We remind that in our context, an attacking machine is identified by an IP 
address interacting with our honeypots, which does not necessarily correspond to the 
machine initiating the attack process (see Section 2). 

The data collection period considered for the examples corresponds to 46 weeks. We 
take into account the attacks observed on 14 honeypot platforms among those deployed 
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so far. The honeypots selected correspond to those that have been active for almost the 
whole considered period. The total number of attacks observed on these honeypots is 
816476. These attacks are not uniformly distributed among the platforms. In particular, 
the data collected from three platforms represent more than fifty percent of the total 
attack activity. 

Let us denote by: 

- Y(t) the function describing the evolution of the number of attacks per unit of time 
observed on all the honeypots during the observation period, 

- Xj (t) the function describing the evolution of the number of attacks per unit of 
time observed on all the honeypots during the observation period for which the IP 
address is located in country j. 

In a first stage, we have plotted, for various time periods, Y(t) and the curves Xj (t) 
corresponding to different countries j.  Visual inspection showed surprising similari- 
ties between Y(t) and some Xj(t). To confirm such empirical observations, we have 
then decided to rigorously analyze the phenomena using mathematical linear regression 
models. 

Considering a linear regression model, we have investigated if Y(t) can be esti- 
mated from the combination of the attacks described by Xj(t), taking into account a 
limited number of countries j.  Let us denote by Y* (t) the estimated model. 

Formally, Y* (t) is defined as follows: 

Y*(t) = E ~ j X j ( t )  +/3 j = 1, 2,..k (1) 

Constants c~j and/3 correspond to the parameters of the linear model that provide 
the best fit with the observed data, and k is the number of countries considered in the 
regression. 

The quality of fit of the model is measured by the statistics R 2 defined by: 

R2 E (y*( i )  - gay) 2 = (2) 
E (Y(~) - Yo~)~ 

Y (i) and Y* (i) correspond to the observed and estimated number of attacks for unit 
of time i, respectively. Yav is the average number of attacks per unit of time, taking into 
account the whole observation period. 

R 2 represents the proportion of total variation about the average explained by the 
regression. Indeed, R is the correlation factor between the estimated model and the 
observed values. The closer the R 2 value is to 1, the better the estimated model fits the 
collected data. 

We have applied this model considering linear regressions involving one, two or 
more countries. Surprisingly, the results reveal that a good fit can be obtained by con- 
sidering the attacks from one country only. For example, the models providing the best 
fit taking into account the total number of attacks from all the platforms are obtained 
by considering the attacks issued from UK, USA, Russia or Germany only. The corre- 
sponding R 2 values are of the same order of magnitude (0.944 for UK, 0.939 for USA, 
0.930 for Russia and 0.920 for Germany), denoting a very good fit of the estimated 
models to the collected data. This result is confirmed by several statistical tests that 
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provided significant p-values indicating that the data appear to be consistent with the 
linear regression model. For example, the estimated model obtained when considering 
the attacks from Russia only is defined by equation (3): 

Y* (t) = 44.568X1 (t) + 1555.67 (3) 

X1 (t) represents the evolution of the number of attacks from Russia. Figure 1 plots 
the evolution of the observed and estimated number of attacks per unit during the data 
collection period considered in this example. The unit of time corresponds to 4 days. It 
is noteworthy that, similar conclusions are obtained if we consider another granularity 
for the unit of time, for example one day, or one week. 
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Fig. 1. Evolution of the number of attacks per unit of time observed on all the platforms and 
estimated model considering attacks from Russia only 

These results are even more surprising that the attacks from Russia and UK repre- 
sent only a small proportion of the total number of attacks (1.9% and 3.7% respectively). 
Concerning the USA, although the proportion is higher (about 18%), it is not significant 
enough to explain the linear model. 

The fact that the linear regression models considering attacks originating only either 
from UK or USA, or Russia provide a good fit to the collected data, is related to the 
fact that the corresponding curves present similar trends. This is illustrated on Figure 
4 which represents the evolution of the Laplace factor considering the data collected 
from the honeypot platforms with all source countries included (Figure 2a), and the 
data corresponding to attacks from UK, USA or Russia only (Figures 2b, 2c and 2d). It 
clearly shows that there exists a striking similarity between all the curves. 
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As detailed in [21 ], the Laplace factor u(i) computed at unit of time i is based on 
all the data observed before i. This explains the smooth evolution of the Laplace curve 
compared for example to Figure 1. The global and the local trends exhibited by the data 
are identified respectively by analyzing the sign and the variation (increase or decrease) 
of the Laplace factor curve. From a practical point of view, the curves presented on 
Figure 4 can be analyzed as follows: 

- values oscillating between -2 and 2 indicate a stable behavior (i.e., there is no sig- 
nificant trend toward an increase or a decrease of the number of attacks per unit of 
time) 

- positive values > 2 (respectively, negative values < -2) suggest a global trend to- 
wards an increase (respectively a decrease) of the intensity of attacks. 

- decreasing or increasing values of the Laplace factor over a subinterval indicate a 
local decrease or increase of the intensity of attacks, respectively, for that subinter- 
val. 

It can be noticed that all the curves in Figure 4 present similar trends. In particular, 
significant trend changes occur almost around the same units of time (e.g., 15, 45, 54). 

We have applied similar analyses by respectively considering each honeypot plat- 
form in order to investigate if similar conclusions can be derived by comparing their 
attack activities per source country to their global attack activities. The results are sum- 
marized in Table 3. The second column identifies the source country that provides the 
best fit. The corresponding R 2 value is given in the third column. Finally, the last three 
columns give the R 2 values obtained when considering UK, USA, or Russia in the 
regression mode. 

It can be noticed that the quality of the regressions measured when considering 
attacks from Russia only is generally low for all platforms (R 2 less than 0.80). This 
indicates that the property observed at the global level is not visible when looking at the 
local activities observed on each platform. However, for the majority of the platforms, 
the best regression models often involve one of the three following countries: USA, 
Germany or UK, which also provide the best regressions when analyzing the global 
attack activity considering all the platforms together. Two exceptions are found with 
P6 and P8 for which the observed attack activities exhibit different characteristics with 
respect to the origin of the attacks (Taiwan, China), compared to the other platforms. 

The trends discussed above have been also observed when considering a different 
granularity for the unit of time (e.g., 1 day or 1 week) as well as different data observa- 
tion period. 

To summarize, two main observations can be derived from the results presented 
above: 

1. Some trends exhibited at the global level considering the attack processes on all 
the platforms together are not observed when analyzing each platform individually 
(this is the case for example of attacks from Russia). On the other hand, we have 
observed the other situation where the trends observed globally are also visible 
locally on the majority of the platforms (this is the case for example of attacks from 
USA, UK and Germany) 



88 E. Alata et al. 

350] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3001 ,t"~"~""v"'""', 
~o 1 / -  . 
~°°1 / 

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

observation period (unit of time -- 4 days) 

Fig. 2a. All countries 
170]  
1501 "" " " ' ° " %  
.o 1 . j . ' ' - ~ . . . J  . . . .  
zlo 1 

9ot . . /  

/' I :!!125! ............................................................. 
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

observation period (unit of lime = 4 days) 

Fig. 2c. USA 

70- 
60- 
50- 
4O- 
30- 
20- 

/ ....... " .... "..i , """x  . . . .  ,,- 
.,./" " 

° . /  

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 flO 
observation period (unit of lime = 4 days) 

Fig. 2b. UK 
50 "-"~x...,...,./"' ..... " ' \ . .  
40- / 

~ 30- 

,~ ~,o f . . I  

o 

-10 .......................... , .............................. 
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

observation period (unit of lime = 4 days) 

Fig. 2d. Russia 

Fig. 2. Laplace Factor evolution considering attacks from all platforms, all countries included 
(2a), or only attacks from UK (2b), USA (2c) or Russia (2d) 
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2. The attack processes observed locally on each platform are very often highly cor- 
related with the attack processes originating from a particular country. The country 
providing the best regressions locally, does not necessarily yield good regressions 
when considering other platforms or at the global level. These trends seem to result 
from specific factors that govern the attack processes observed from each platform. 

A thorough analysis of the collected data is currently carried out in order to find 
a sound justification of the observed trends, taking into account the different attributes 
characterizing the attacks. Moreover, a particular emphasis is put on the elaboration of 
stochastic models that can be used from a predictive point of view to forecast the attack 
activities to be observed on a given platform based on past observations on the same 
platform and on the other platforms. 

5 High-interaction honeypots 

The honeypots that we have already deployed in the context of this project belong to 
the family of so-called "low interaction honeypots". This means that their design is such 
that attackers have not the possibility, at any point in time, to actually get access to the 
machine they are attacking. This property is enforced by the fact that there is no real 
machine. Instead, targets are implemented by means of virtual machines without any 
real operating system or server to compromise. Thus, hackers can only scan ports and 
send requests to fake servers without ever succeeding in taking control over them. 

In the CADHo project, we are also interested in running experiments with "high 
interaction" honeypots where attackers can really compromise the targets. Collecting 
data from such honeypots would enable us to study the behaviors of attackers once 
they have managed to get access to a target. Obviously enough, we do not want to let 
them use these machines for launching attacks against third party machines. Instead, 
we will devise a simulated environment within which they could evolve. An important 
feature of the environment we are planning to build is that it will "select" the attackers 
that we will, or will not, let compromise our machines. Indeed, we are not interested 
in monitoring all kinds of attackers. On the contrary, we want to monitor only those 
that are representative of large classes of attackers so that the knowledge derived from 
their observation is symptomatic of a large amount of real attacks. Such high interaction 
honeypots will be deployed within a limited number of highly controlled environments. 

The experiments and the data that will be collected based on the high-interaction 
honeypots will enable us to address two distinct objectives. First, we are interested in 
better understanding the attack scenarios, in particular those carried out by skilled in- 
truders. This acquired knowledge will be useful to build concrete responses and to de- 
velop tools to counter this form of attack, which is known to be very costly, but which 
has received little attention up to now. Second, we want to propose concrete and efficient 
techniques to assess the impact of such ongoing attacks on the security of the targeted 
system. Along this line, we propose to use observations from this setup to validate a 
theoretical model initially developed in our previous work on quantitative analysis of 
operational security in the 90s [22, 23]. The original method is a probabilistic one that 
differs from classical qualitative approaches (red book, ITSEC, common criteria, etc.). 
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The core of the method lies in a so called privilege graph which highlights the various 
possibilities offered to an intruder to increase his privileges thanks to identified vulnera- 
bilities or features of the system he has access to. We have shown how to use this model 
to derive probabilistic estimations of the ability of a system to resist attacks. These esti- 
mations are expressed as a mean effort to security failure (METF, similar to the MTTF 
measure for reliability), assessing the effort necessary for an attacker to realize a viola- 
tion of a given security policy. The effort is considered as a multi-dimensional variable, 
taking into account the attacker competence and knowledge, the time needed to prepare 
and perform the attack, the efficiency of the protection mechanisms (e.g., the difficulty 
to guess a given password), etc. An automatic tool has been developed to compute these 
measures, and has been used for a campaign of more than one year on a relatively com- 
plex system (a network of several hundred workstations in an academic environment). 
The results have been analyzed in detail [23], giving convincing arguments on the in- 
terest of the method, and the significance of the quantitative measures. The limitations 
of that approach reside in the absence of real world validation of the assumptions made 
about the behaviors of the intruders. Common sense has dictated our design but a more 
rigorous approach requires running some experiments to validate our claims. Thanks to 
high-interaction honeypots, this is something that now becomes feasible and something 
that we aim to do within the CADHo project. 

6 Conclusion 

The distributed data collection platform LeurrO.com based on honeypots has been op- 
erational for many months. The data collected so far and our preliminary analyses have 
revealed that very interesting observations and conclusions can be derived from this 
data with respect to the attack activities observed on the Internet. Our objective is to de- 
ploy a large number ofhoneypots all around the world, in various places, in order to get 
comprehensive data that will allow to derive meaningful results reflecting the main phe- 
nomena that characterize the malicious activities on the Internet. It is our wish to share 
with the scientific community the data contained in our database. We invite all teams 
interested in using our data for analytical purposes to join us. All partners who accept 
to deploy one honeypot in their premises are allowed to have access to the database. 

As summarized in the paper, the data collected can be analyzed from several per- 
spectives, using qualitative as well as quantitative analysis and modeling techniques. 
Regarding modeling activities, there are several open issues that need to be addressed 
in future research in order to be able to build stochastic models that can be used to 
quantify security or to analyze from a predictive point of view the level of threat and 
the types of attack processes carried out on the lnternet. We believe that the data col- 
lected from our honeypots, in particular, high interaction honeypots, will be very useful 
to identify realistic assumptions and build models that reflect the observed activities. 
The preliminary models discussed in this paper and the experiments that we are plan- 
ning to carry out with high interaction honeypots constitute a starting point toward this 
objective. 
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Abstract. Constraining how information may flow within a system is at the heart 
of many protection mechanisms and many security policies have direct interpre- 
tations in terms of information flow and multilevel security style controls. How- 
ever, while conceptually simple, multilevel security controls have been difficult 
to achieve in practice. In this paper we explore how the traditional assurance mea- 
sures that are used in the network multilevel security model can be re-interpreted 
and generalised to provide the basis of a framework for reasoning about the qual- 
ity of protection provided by a secure system configuration. 

I I n t r o d u c t i o n  

Multilevel security is concerned with controlling the flow of information in systems. 
The traditional view of multilevel security is one of ensuring that information at a high 
security classification cannot flow down to a lower security classification [ 1-3]. How- 
ever, constraining how information may flow within a system is at the heart of many 
protection mechanisms and many security policies have direct interpretations in terms 
of nmltilevel security style controls. These include: Chinese Walls [4, 5]; separation of 
duties and well formed transactions [4, 6, 7]; Role-Based Access Control [8] and a vari- 
ety of policies where a degree of data separation is required, for instance, Digital Rights 
Management [9] and Multi-applicative Smart Cards [ 10]. 

Multilevel security, while conceptually simple, has been notoriously difficult to 
achieve in practice [11]. From the earliest efforts, there have been problems in rec- 
onciling multilevel security models with actual multilevel secure systems, leading to 
problems such as covert channels [12] and how to properly interpret the model [13]. 
This led to more abstract formal definitions such as [14-16] and more recently [17-20] 
that effectively attempted to capture the meaning of information flow in some possi- 
bilistic information-theoretic sense. These properties of non-interference, information 
flow and a great many variations have been extensively studied. Designing and verify- 
ing security mechanisms that uphold these classes of property is accepted to be difficult 
[21,22]. 

Using formal methods to analyse and verify information flow properties of secure 
systems requires considerable specification effort. The cost of such in-depth specifica- 
tion and subsequent analysis may be justified for small critical security mechanisms 
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such as authentication protocols and security kernels. However, such in-depth security 
analysis would not scale to the configuration of a large and/or complex application sys- 
tem. 

We are interested in developing shallow and pragmatic security analysis methods for 
systems. This is achieved through the analysis of how a system is configured, rather than 
an analysis of its underlying mechanisms and protocols. Instead of concentrating on 
detailed semantics and complete formal verification of components, we are concerned 
more with the ability to trace, at a practical level of abstraction, how component security 
requirements relate to each other and any overall security requirements. We believe that 
a complete security verification of a system is not achievable in practice; we seek some 
degree of useful feedback from an analysis that a particular system configuration is 
reasonable. 

We adopt this view when re-visiting the problem of multilevel security. Rather than 
seeking 'beyond AI '  multilevel security [3, 11,21], we seek to measure the degree 
and/or quality of the multilevel protection that is provided by a system configuration. 
Weaker, but reasoned, assurances of security are a pragmatic way of providing practi- 
cal multilevel systems, such as [23], that can be built from Commercial Off-The-Shelf 
(COTS) components. Systems may be configured from components in which we have 
varying degrees of confidence in their security. In [24], confidence-rated information 
flow policies are used to model interoperation between PDAs and Workstations: we 
have a higher degree of confidence in the flows that are constrained by the workstation 
security mechanism than we have in flows constrained by the PDA application. In [25] 
we considered how best to configure Storage Area Networks from components having 
varying security guarantees, while ensuring that mandatory security rules are enforced. 
These approaches do not consider covert-channels or in-depth formal analysis of pro- 
tection mechanisms. Rather, they seek useful feedback that a particular configuration is 
reasonable. 

In this paper we describe a general framework for measuring quality of protection 
for information flow and/or multilevel security. The model builds on earlier work on 
information flow security [4, 7, 24, 26] by considering the relative risks of configuring 
various components into multilevel systems. Risk measurement is used to characterise 
the quality of protection that is provided by a multilevel system configuration. This 
gives rise to a novel approach to describing multilevel security policies that combine 
both risk and information flow. The model that is developed in this paper is a consistent 
interpretation of multilevel security, allowing us to draw on a wide range of existing 
results from the area. 

The model that is proposed in this paper forms a part of our ongoing research in 
using constraint solving techniques as a practical approach for reasoning about se- 
curity [25,27-30]. Building on the results in [28] we demonstrate in this paper that 
determining whether a particular system configuration meets a quality of protection 
measure can be described as a constraint satisfaction problem. Constraint solving is an 
emerging software technology for modelling and solving large-scale optimisation prob- 
lems [27, 31 ] and there are many results on solving this problem for large systems of 
constraints in a fully mechanised manner. 



QoP - Multilevel Security and Quality of Protection 95 

Section 2 describes the underlying model of multilevel security. As with past secu- 
rity criteria, this model is extended in Section 3 to support assurance levels. However, 
our interpretation of assurance is more general: every system component has an as- 
surance level that reflects the degree of confidence that it cannot be compromised. In 
Section 4 we illustrate how configurations within our model can exhibit cascade vul- 
nerabilities [3, 32] and outline in Section 5 a soft constraint-based framework [28] that 
can be used in their detection and elimination. The advantage of taking a soft constraint 
approach is that assurance can be described in terms of a c-semiring [27] and Section 6 
explores how aggregate risk measurements can be made across configurations. Sec- 
tion 7 provides further discussion on how this framework provides a basis for quality of 
protection. 

2 Interpreting Multilevel Security 

An information flow policy is defined in terms o f  a lattice ordering (_ < _) over a set 
of security labels 12 . Given x, y • /2 then x < y means that information may flow 
from level x to level y. The simplest interpretation of an information flow policy is 
multilevel security [ 1 ] whereby the labels correspond to sensitivity levels, for example, 
unclass < secret < topsecret. A more general interpretation [7] is that a label repre- 
sents an abstract data type that is used to encode security relevant characteristics of enti- 
ties that are subject to flow constraints. With this interpretation a wide variety of access 
control policies can be represented within the multilevel security model. Techniques for 
specifying more general (non-lattice) information flow constraints and translating them 
into lattice-based policies are considered in [4, 7, 26]. 

Let the set of entities E represent the set of all components that can source and/or 
sink information. In addition to the conventional 'subject' and 'object' interpretation, 
entities are regarded as anything that can store, process and/or manage information 
[24, 26]. Examples include devices, workstations, controllers, sessions, datasets and ap- 
plications (examples can be found in [7, 24, 25]). An entity is anything that can have an 
associated security state (and to which the flow constraints must apply). 

Every entity, e, is bound to an interval of the policy lattice, where in t (e )  - [x, y] E 
12 ×/2,  and x _< y, is interpreted to mean that entity e may sink information at class y 
or lower and may source information at class x or higher [26]. We also write in t (e )  - 
[int_L (e), in tT(e)] .  If entity e is a 'subject' then in t (e )  = [x, y] corresponds to a par- 
tially trusted subject (in the sense of [33]) that may view/read information at class y and 
lower and may write/alter information at class x and higher; these are defined as v m a x  
and a m i n ,  respectively, in [33]. Conventional objects may be interpreted within this 
model as entities that are bound to a point interval [x, x] with a single level. Intuitively, 
we interpret [26], in t (e )  = [x, y] to mean that the entity can be trusted to properly 
manage multilevel information within the security interval Ix, y]. 

Let A ~ B represent information flow in our system from entity A to entity B. 
We do not consider a semantics for -~; it could be simply based on read-write access 
controls (effectively [1,33]), based on a non-interference interpretation, or even based 
on some informal characterisation of what flows are considered to be possible [24] in 
a system. Under this interpretation, a system is secure if for all entities, A, B, such 
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that A - ~  B then i n t ± ( A )  < i n t m ( B )  holds [26]. In this paper we use a variant of this 
definition to reflect the specific information that can flow. Let A s  ~,~ B u represent a flow 
of x information in entity A to y information in entity B. A system is secure, if for all 
entities A and B then, 

A~ .,~ By  ~ x < y A i n t ±  (A)  <_ x < i n t m ( A )  A i n t±  (B)  < y < i n t m ( B )  

Example  1 A multilevel secure network is composed of systems A and B. System A 
is a multilevel secure and configured to manage unc lass  and sec re t  information and 
is thus partially trusted with i n t ( A )  - [u, s]. Similarly, system B is trusted to manage 
sec re t  and topsec information, and i n t ( B )  = Is, t]. The systems communicate/share 
sec re t  information. The flows are defined as As ~ Bs and Bs "~ As, and by definition, 
the configuration is secure. Note that we may use the initial character(s) of a security 
level to represent it, if no ambiguity can arise. In general, a flow between entities need 
not necessarily be sourced and sunk at the same level. For example, the flow Fs ~ Pt 
might represent a secret file F that is read by a single level process P with i n t ( P )  = 
[t, t]. A 

3 Interpreting Assurance 

Define a lattice, A, of assurance levels with ordering <. Given x, y • ,A, then x < y 
means that a system evaluated at y is no less secure than a system evaluated at x, or 
alternatively, that an attacker that can compromise a system evaluated at y can com- 
promise a system evaluated at x. For example, the 'Orange' and 'Red'  Book security 
criteria [3, 34] define assurance levels A1 > B3 > B2 > 131 > . . . .  This conventional 
notion of assurance can be generalised to assurance for entities [24] if we regard assur- 
ance as reflecting our degree of confidence that an entity can be relied upon to properly 
manage the information that is entrusted to it. For example, we might have high con- 
fidence in a firewall-based email proxy (entity) managing multilevel information, but 
have low confidence in a s e n d m a  i i process (entity) managing the same information. 

We define r a t i n g  • $ ~ .A where ra t ing (e )  gives the assurance rating of entity 
e, and is also taken to represent the minimum effort that is required by an attacker to 
compromise entity e. 

Security evaluation criteria [3] also define a minimum required assurance function 
req • £ x £ ~ .A, such that req(l ,  l') defines the minimum required assurance for a sys- 
tem managing information at classes l, l' • £,. For example, req(unclass, topsec) = B3 
means that in order for an entity to manage information with labels between unclass and 
topsec, a B3 assurance rating is needed. In general a system must meet the minimum 
required assurance. 

Vc E $ " r e q ( i n t ± ( c ) ,  in tm(e) )  <__ ra t ing (e )  

This has a similar interpretation for the more general notion of an entity used in this 
paper. Entities represent anything that can source and/or sink information. For example, 
the rating of an entity may incorporate the methodology that was used to develop the 
entity, as in the conventional Orange/Red Book rating, the level of testing the entity 
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has received, or the level of complexity of the function the entity is implementing. A 
general purpose workstation, W, may be just fine for managing single level of infor- 
mation, like [secret, secret] but be unacceptable for managing multilevel data such as 
[secret, topsec]. In the model this is represented by setting ratin9(W) to FAIR, and 
setting req(secret, secret) to FAIR. But req(secret, topsec) must be set to a higher as- 
surance rating, say GOOD, to ensure that W, and other workstations like it, are not 
used for such information. Another example, rating(A) could represent how much we 
can rely on the user A (given their associated security interval); for example, one would 
presume that a CEO has a higher assurance rating than a clerk in the same organisation. 

A further example, ratin9(S) could represent the rating of application software S: 
a COTS product may have a low rating, while an in-house developed application may 
have a high rating, when handling multilevel information. While it may be acceptable to 
trust the high assurance email proxy process with multilevel information (for example, 
int(proxy) -- [u, t]), it may only be acceptable to trust s e n d m a  i 1 with single-level in- 
formation (for example, int(sendmail) = [s, s]). This could be reflected by requirement 
req(u, t) = hi and req(s, s) = lo, where lo < li, and so forth. 

Example 2 In the Chinese Wall policy a stock market analyst may not advise an organ- 
isation if he has insider knowledge of another competing organisation. Encoding this 
policy in terms of a multilevel security policy has been demonstrated elsewhere [4, 5, 7]. 
In this example we describe a new multilevel encoding of the Chinese Wall policy in 
terms of an assurance requirement. 

Let £ = 2 { i b m , h p , s u n , e l f , s h e l l  . . . .  } be the powerset of organisations. Define the assur- 
ance lattice as: audit < cons < over, where audit represents the degree of trust in 
an auditor, cons  represents the degree of trust in a consultant, and over represents the 
degree of trust in a stock exchange partner who is trusted to access everything for the 
purposes of oversight. Consultants are trusted to consult for multiple organisations so 
long as there is no conflict of interest. We define some minimum required assurance 
levels for intervals of trust as follows. 

req({},{hp}) = a u d  
req({}, {e l f } )  = aud 
req({ }, { ibm }) = aud 

req({}, { ibm, e l f } )  = cons 
req({ }, { hp, shell })  = cons 
req ( { } ,  {hp, e l f } )  = cons 

req({ }, { ibm, hp } ) = over 
req({ }, { ibm, hp, elf}) = over 
~ q ( { } ,  {ibm, hp}) = over 

Assume that any entity that is controlled by a consultant will never have an assurance 
rating higher than cons.  While a consultant may be trusted to simultaneously manage 
ibm and elf information (bound to interval [{ }, { ibm, elf]), the minimum assurance rule 
dictates that a consultant cannot be trusted to access conflicting ibm and hp data (bound 
to interval [{ }, {ibm, hp]). /~ 

Note that we assume that the execution system will properly classify entities. For 
example, a session entity corresponding to a consultant executing low assurance soft- 
ware would have an assurance level equal to the greatest lower bound of the consultant 
assurance and the software assurance level. Similar calculations are necessary to deter- 
mine the interval for the session (the greatest lower bound of the intervals of the entities 
involved). For reasons of space we do not consider the execution model in this paper, 
however models such as [7] are applicable in this case. 
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4 The Cascade Problem 

The cascade vulnerability problem [3, 32] is concerned with secure interoperation, and 
considers the assurance risk of composing multilevel secure systems that are evaluated 
to different levels of assurance according to the criteria specified in [3]. The transitivity 
of the multilevel security policy upheld across all secure systems ensures that their 
multilevel composition is secure; however, interoperability and data sharing between 
systems may increase the risk of compromise beyond that accepted by the assurance 
level. For example, it may be an acceptable risk to store only secret and top-secret data 
on a medium assurance system, and only classified and secret data on another medium 
assurance system; classified and top-secret data may be stored simultaneously only on 
'high' assurance systems. However, if these medium assurance systems interoperate at 
classification secret, then the acceptable risk of compromise is no longer adequate as 
there is an unacceptable cascading risk from top-secret across the network to classified. 

Example 3 Continuing the Chinese Wall example, consider two consultant sessions 
(entities) A and B, that are trusted to the following extent. 

rating(A) = cons int(A) = [{}, {ibm, elf}] 
rating(B) = cons int(B) = [{}, {hp, elf}] 

Suppose that the system permits these sessions to share information classified at {elf}, 
that is, we have A{elf} ~ B{elf} and B(etf } ~ A{~lf}. While the individual entities are 
secure based on the req assurance rule defined above, their interoperation is not. There 
is a cascading path from {ibm } on entity A to { hp} on entity B via shared channel { elf}. 
The assurance rules require an assurance level of at least over in order to be able to 
simultaneously access both {hp} and {ibm } information. However, with a configuration 
that allows A and B share elf information, entities with an assurance rating of just cons 
can obtain this access. 

This can be interpreted in two ways. The assurance level reflects how much we 
can rely on an entity to properly manage the different information. The configuration 
implies that we have cons level confidence that hp and ibm information is properly 
managed, which is contrary to the requirement. The second interpretation is when one 
regards assurance as representing the degree of confidence that one can have that an en- 
tity cannot be compromised. In this case the effort required by an attacker corresponds 
to the effort to compromise cons rated systems to effectively copy hp into ibm data. 
However, the requirement is that it must require at least the effort to compromise a level 
over  rated entity. A 

The above example illustrates that avoiding conflict of interest when entities share 
information corresponds to detecting and eliminating the cascade vulnerability prob- 
lem. Existing research has considered schemes for detecting these cascading security 
vulnerabilities and for eliminating them by reconfiguring system interoperation. While 
the detection of cascade vulnerabilities can be easily achieved [3,32], their optimal 
elimination is NP-complete [35]. 
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5 Soft Constraints and Semirings 

In [28], a soft constraint-based framework is described for modelling, detecting and 
eliminating the cascade vulnerability problem. A soft constraint may be seen as a con- 
straint where each instantiation of its variables has an associated value from a partially 
ordered set that can be interpreted as a set of preference values. Combining constraints 
will then have to take into account such additional values, and thus the formalism has 
also to provide suitable operations for combination (x)  and comparison (+) of tuples 
of values and constraints. This is why this formalisation is based on the concept of 
c-semiring, which is just a set plus two operations. 

The framework described in [28] is directly applicable to the information flow 
model described in this paper. A network (a system of entities) is modelled in terms 
of constraints, reflecting all possible flows as a result of the network configuration (the 
-,~ relation). This constraint network also considers the effective assurance along all 
possible communication paths in the network. The network is cascade free if these con- 
straints uphold the overall assurance criteria (the req relation). 

The security label ordering (12, <)  is modelled as a lattice and the assurance ordering 
(.,4, <)  in [28] is modelled as a more general c-semiring structure [27, 36]. While [28] 
only considered the cascade problem for conventional lattice-based assurance ordering, 
the framework is applicable for any c-semiring. A semiring is a tuple (S, +,  x, 0 ,1 )  
such that: S is a set and 0, 1 E S; + is commutative, associative and 0 is its unit 
element; x is associative, distributes over +,  I is its unit element and 0 is its absorbing 
element. A c-semiring is a semiring (S, +,  x, 0, 1) such that: + is idempotent, 1 is its 
absorbing element and x is commutative. 

Let us consider the relation < s  over S such that a < s  b iff a + b -- b. Then it 
is possible to prove that (see [36])" < s  is a partial order; + and x are monotone on 
< s ;  0 is its minimum and 1 its maximum. Informally, the relation < s  gives us a way 
to compare semiring values and constraints. In fact, when we have a _<s b, we will 
say that b is better than a. In the following, when the semiring will be clear from the 
context, a _<s b will be often indicated by a _< b. 

The classical Constraint Satisfaction Problem (CSP) is a Soft CSP (SCSP) where 
the chosen c-semiring is: Scs  e - -  ({false, true}, V, A, false,  true). Fuzzy CSPs 
(FCSP) can instead be modelled in the SCSP framework by choosing the c-semiring 
SFCSP = ([0, 1], max, min, O, 1). Many other soft CSPs (probabilistic, weighted . . . .  ) 
can be modelled by using a suitable semiring structure (Sp~ob = ([0, 1], max, x, O, 1), 
Sweight = (7~, rain, +, +c~, O) . . . .  ). Therefore, a wide range of 'soft '  ways to consider 
degree of assurance can be considered and can be effectively reasoned about within our 
model. 

6 Interpreting Risk 

While conventional assurance ratings are defined in terms of a lattice, the model pro- 
posed in this paper can use any measure that can be defined as a c-semiring. The as- 
surance rating, rating(A), of an entity A provides a measure of how much the entity 
can be relied upon not to be compromised. Whether we use numbers, enumerations 
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(A1, B3 . . . .  ), and so forth, in the c-semiring is not important; rather it is the ability to 
compare different rating which give a measure of how much we can rely on an entity. 

We can interpret an assurance rating as providing an indication of the minimum 
amount of effort that is required by an attacker to compromise an entity. By 'compro- 
mise' we mean that the attacker can force the entity to violate its interval of trust, that 
is, to violate the information flow ordering. For example, compromising the system 
B in Example 1 corresponds to the attacker breaking the protection mechanism, and 
outputting topsec labelled as secret  (copying topsec information to secret). This 
corresponds to the usual threat model used in [3]. In this paper we generalise this to any 
entity. An attacker could compromise another user by tricking them into revealing in- 
correctly labelled information; an attacker could compromise an application by a stack 
smashing attack, causing it to copy information from one file to another, violating the 
flow policy. 

The c-semiring provides a convenient way to measure aggregate threats across the 
collections of entities that make up a system. The minimum effort required to break a 
series of entities along a path is given by the combination (under the c-semiring) of the 
ratings of the individual broken entities. In this case, the weighted c-semiring Sw~ioht -- 
(~,  rain, +, +c~, 0) provides the appropriate measure. A path that can cause a flow 
of level x information to level y can start at any system that is trusted to manage x 
information and can end at any system trusted to manager y information. Given a series 
of possible compromising paths that facilitate a flow from level x to level y, where 
x ~ y, then the least effort required to create a compromise from x to y is the shortest 
path (using Sw~iaht) from x to y. There is a cascade vulnerability if the value calculated 
for this shortest path is more than req(x, y). 

This is effectively a characterisation of a cascading path from [3], but defined in 
terms of a c-semiring using the model [28]. It is the definition in terms of a c-semiring 
that allows the determination of effort along a cascading path as the combination of 
the efforts required to break individual systems along the path. Practical techniques for 
calculating shortest paths across weighted constraint networks are considered in [27]. 

Definition 1 Quality of Protection. Let constraint specification COAC~ZG represent 
the flows (and cascades) that are a consequence of entity interoperation constructed 
using the model [28]. The assurance requirements function req(x, y) provides an ac- 
ceptable lower bound on the quality of protection for this system configuration. Let 
constraint specification Q079 represent these ratings for all permitted flows. A con- 
figuration COA/'~ZG meets the quality of protection requirement QO79 if no path in 
COAC~ZG violates QOP. A 

The assurance requirements function req(x, y) provides an acceptable lower bound 
on the quality of protection for an overall system configuration. The sott constraint 
model described in [28] can be used to encode the quality of protection problem as a 
constraint satisfaction problem. For reasons of space we do not provide the details of 
the constraint model. 

Example 4 Figure 1 depicts a configuration of the consultant sessions A and B from 
Example 3. We introduce a third session entity C, that connects entity A and entity 
B, permitting controlled sharing of {elf} information. This is represented by the flows 
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/ 
A (5) 

{ibm,elf} C (10) | {elf, hp} B (5) 

{} , j ...... .o. .... • .......... o ..... ....,. ....... 

....... J I 

Fig. 1. Entity Information Flows with Weighted Cascading Path. 

A{elf} ~ C{elf} and C{esf} ~ B{elf}. Using the weighted c-semiring to define assur- 
ance ratings, the sessions are trusted to the following extent. 

rating(A) = 5 
rating(B) = 5 
rating(C) = 10 

int(A) = [{}, {ibm, elf}] 
int(B) = [{}, {hp, elf}] 
int(C) = [{}, {elf}] 

and some defined minimum required ratings are as follows. 

req({},{hp}) = 3  
req({}, {elf}) = 3 
req({},{ibm}) = 3  

req({}, {ibm, elf}) = 5 
req({ }, { hp, shell }) = 5 
req({}, {hp, elf}) --= 5, 

req({}, (ibm, hp}) = 15 
req({}, {ibm, hp, elf}) = 18 
req({}, {ibm, hp}) = 15 

This configuration has a cascading path vulnerability. The effort required to break entity 
A and copy {ibm} information to {elf}, copy this to entity C, and copy it again to a 
broken entity B which allows it to be copied to {hp} is 5+5=10, which is less than the 
minimum effort required, that is, req({ }, { ibm, hp}) = 15. Note that it is not necessary 
to break entity C as the attacker inputs and outputs {elf} information, and thus, the 
effort to carry out this copy is 0. This is dealt with within the cascade framework [28] 
by defining permitted flows as having minimum rating, the lowest level in the lattice. In 
the case of Sw~ight this is the value 0, that is, req({elf, elf}) - 0. The dashed arcs in 
Figure 1 represents the weighted cascading path calculated from {ibm} to {hp}. A 

In suggesting the use of the weighted c-semiring Sweight - -  ( T ~ , ,  min, +, +c~, 0) as 
one example of a risk measure, we are assuming that the effort required by an attacker to 
compromise one entity is independent of the effort to compromise any other entity. This 
means that having expended 'effort' rating(A) to compromise system A, an attacker 
must, in addition, expend 'effort' rating(B) to subsequently compromise system B, 
regardless of whether lessons learnt in compromising A can be subsequently used to 
attack B. This is quite a restrictive assumption; however, there are examples where 
this kind of measure is useful. For example, in practice, the more firewalls/subnets that 
have to be traversed to directly access a system, then the more 'secure' the system is 
considered to be. The notion of security distance is defined in [30] as the minumum 
number of servers and/or firewalls that an attacker on the Internet must compromise 
to obtain direct access to some protected service. We conjecture that security distance 
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in this case is equivalent to using a weighted c-semiring with each system having an 
equal rating o f '  1'. This can be generalized within our model to the weighted security 
distance, whereby, a weight is associated with each server and/or firewall to indicate 
the amount of effort that is required to compromise that component. 

An alternative measure to using the weighted c-semiring is to interpret the proba- 
bilistic c-semiring 8 p r o b  - -  ({X[ E [0, l]}, max, ×, 0, 1) [27] in terms of aggregation of 
risk along a path, which is calculated as combination (multiplication) of probabilities. 
As an attacker compromises systems along a cascading path, then overall, less and less 
'effort' is required to attack subsequent systems. 

These measures are unlike the lattice-based assurance measure used by the Or- 
ange/Red Book. This reflects an assumption that once one system rated at degree x 
(for example, B2) is compromised then all systems rated at this degree or lower (for 
example, B2, B 1 .... ) are considered compromised. In practice, we believe that a prac- 
tical risk measure will use a variety of such measures; exploring suitable c-semirings is 
a topic for future research. 

7 Discussion and Conclusion 

In this paper we describe how the network multilevel security model can be generalised 
to provide an approach to measuring the degree of confidence that one can have in the 
security of a system configuration. A system configuration is modelled as a collection 
of entities. These entities can represent system components, users, COTS components, 
and so forth, whose potential accesses and interoperation are articulated abstractly in 
terms of information flows. It is not necessary for these components to have an explicit 
access control mechanism; the flow relations represents the access limitations that we 
believe the entities effectively uphold. Thus, in the sense of [37], every entity in the 
system can be regarded as contributing to the overall Trusted Computing Base. In our 
framework we can distinguish the merit of each entity's contribution. 

While the results in this paper are presented in terms of a multilevel security model, 
we argue that they have wider application. Constraining how information may flow 
within a system is at the heart of many protection mechanisms. Many security policies 
have direct interpretations in terms of multilevel security style controls. Furthermore, 
modelling a configuration in terms of information flows provides a form of traceability 
on interoperation that can provide useful feedback on the quality of protection achieved. 

A multilevel security model for Storage Area Networks (SANs) is proposed in [25]. 
This SAN model also takes a measurement approach to achieving security. Hard (crisp) 
constraints are used to measure the risk associated with SAN configurations. However, 
the SAN model uses an ad-hoc adaptation of multilevel security, and does not have the 
same strict interpretation within the network security model as does the model proposed 
in this paper. As a consequence, the SAN model does not address the cascading channel 
problem. We are currently investigating how the risk framework in [25] can be re-coded 
in terms of the c-semiring-based framework proposed in this paper. The advantage of 
this is a simplification of the SAN model that solves the channel cascade problem, and 
provides access to a greater range of measures (c-semirings) for risk. A soft constraint 
encoding of the revised SAN model will also provide access to techniques for explor- 
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ing and manipulating SAN configurations. This will be especially useful when making 
tradeoffs of quality of protection against other attributes such as cost and performance 
[25, 30]. Exploring how our soft constraint framework can facilitate making such trade- 
offs is a topic for future research. 

Determining whether a system configuration provides quality of protection as re- 
quired by req(x, y) is easily achieved as it corresponds to the channel cascade detection 
problem. Any solution to the constraint model represents a cascading path, which pro- 
vides significantly more information regarding the vulnerabilities in the network than 
existing approaches for detecting cascading paths [32, 35]. The set of solutions to the 
constraint model provides a basis for removing the cascade vulnerability problem. 

Reconfiguring such a system by attempting to eliminate an optimal minimum num- 
ber of links (flows) between entities is NP-complete as it corresponds to the cascade 
elimination problem [35]. Previous approaches [32,35,38] detect a single cascading 
path in polynomial time, but eliminating the cascade in an optimal way is NP-complete. 
Detecting all paths in the constraint model is NP-hard, however elimination of a mini- 
mal number of links is polynomial. While constraint solving is NP-complete in general, 
this has not detracted from its uptake as a practical approach to solving many real-world 
problems [31 ]. Using a constraint model, we can rely on a significant body of successful 
techniques for finding the set of cascading paths, which once found, can be eliminated 
in polynomial time. 
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Abstract Traditionally, availability has been seen as an atomic property assert- 
ing the average time a system is "up" or "down". In order to model and analyse 
the availability of computerized systems in a world where the dependency on and 
complexity of such systems are increasing, this notion of availability is no longer 
sufficient. This paper presents a conceptual model for availability designed to 
handle these challenges. The core of this model is a characterization of avail- 
ability by means of accessibility properties and exclusivity properties, which is 
further specialized into measurable aspects of availability. We outline how this 
conceptual model may be refined to a framework for specifying and analysing 
availability requirements. 

I Introduction 

Availability is an important aspect of today's society. Vital functions as e.g. air traffic 
control and telecom systems, especially emergency telecommunications services, are 
totally dependent on available computer systems. The consequences are serious if even 
parts of such systems are unavailable when their services are needed. 

Traditionally, the notion of availability has been defined as the probability that a 
system is working at time t, and the availability metric has been given by the "uptime" 
ratio, representing the percentage of time that a system is "up" during its lifetime [ 1 ]. 
This system metric has been applied successfully worldwide for years in the PSTN/- 
ISDN telephony networks along with failure reporting methodologies [2]. 

With this traditional understanding, a web-based application such as a concert ticket 
sales service may have 99,999% availability, however if it is down for the 5 minutes 
when concert tickets to a popular artist are put out for online sale while at the same tick- 
ets can be purchase via competing distributors, this means a considerable loss of profit 
for the adversely affected ticket sales website even though the service is considered to 
be highly available along traditional lines. Service availability needs a more enhanced 
metric in order to measure availability in a way that meets the demands of today's ser- 
vices which have been shown to have much more bursty patterns of use than traditional 

* The research on which this paper reports has been funded by the Research Council of Norway 
project SARDAS (152952/431). Thanks to Manfred Broy, Rolv Brink, Oystein Haugen, Terje 
Jensen, Fabio Massacci, Birger Moller-Pedersen, Ina Schieferdecker, Ketil Stolen and Thomas 
Weigert for commenting on earlier versions of this paper 
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PSTN/ISDN services [3]. Such burstiness in usage pattems also affects the ability of 
the service to provide to all users requiring the use of a service at a given moment. 

Indeed, as the environment where services are deployed becomes more and more 
complex [4] a more "fine-grained" view on "what is availability" is needed. Several 
global virus attacks have recently showed that availability is indeed affected by security 
breaches, e.g., when e-mail servers are flooded by infected e-mails, the availability for 
"real" e-mails decreases. Another example is the so called denial of service attack, for 
which a service is overloaded with requests with the only purpose of making the service 
unavailable for other users. 

In this paper we motivate and introduce an augmented notion of availability. In the 
heart of the resulting conceptual model lies a characterization of availability as aspects 
of accessibility and exclusivity. Further, we seek to preserve well-established definitions 
from our main sources of inspiration: security, dependability, real-time systems, and 
quality of service (QoS). The paper shows how the conceptual model may be used as a 
basis for specifying service availability requirements in a practical setting. 

In Sect. 2 we provide the basis for our analysis of availability including our analysis 
of different viewpoints and approaches on availability and other aspects in the fields of 
security and dependability. Motivated by this discussion on related work in the fields of 
dependability and security research, we identify the requirements a conceptual model 
of availability should satisfy. In Sect. 3 the properties of availability are discussed, in 
Sect. 4 the means to achieve availability are classified, and in Sect. 5 we present some 
of the threats to availability. In Sect. 6 the overall conceptual model including an avail- 
ability measure is presented. Summary and conclusions are provided in Sect. 7. 

2 Requirements  to a Refined Notion of Availability 

The setting for our availability analysis is derived from the fields of dependability and 
security, and we therefore strive to conform to the well-established concepts and defini- 
tions from these fields where there is a consensus. We also look to different approaches 
and viewpoints in dependability and security research to motivate and derive a set of 
requirements for an availability concept model which enables an augmented treatment 
of availability that is more suited to securing availability in today's and future services. 

2.1 Classifying Availability 

Availability has been treated by the field of dependability and the field of security. The 
definitions of availability commonly used in these fields are: 

1. Readiness for correct service [5]. 
2. Ensuring that authorised users have access to information and associated assets 

when required [6]. 
3. The property of being accessible and usable on demand by an authorized entity 

[7,8]. 

We find the first of these definitions to be insufficiently constraining for practical 
application to design of systems and services with high availability requirements. An 
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integral part of securing availability is ensuring that that the service is provided to au- 
thorised users only; this is not addressed by the first definition. This aspect is addressed 
by the second, but neither of these two definitions captures the aspect of a service being 
usable. The third definition, however, does capture all of these aspects, and therefore is 
the basis for our analysis of  availability in more detail. 

We claim that there is a need to provide an enhanced classification of availability in 
order to thoroughly analyse and enable the rigorous treatment of availability throughout 
the design process depending on the requirements of the individual services. Our avail- 
ability model should therefore characterise the properties~attributes of  availability. 

2.2 Classification of Threats and Means 

The IFIP WG 10.4 view on dependability is elaborated by J. C. Laprie in [5]. This con- 
ceptual model of dependability consists of three parts: the attributes of, the threats to 
and the means by which dependability is attained [9]. This is a nice approach which mo- 
tivates us to use a similar approach in our classification of availability. Clearly, threats 
to availability such as denial of  service, and means to availability such as applying re- 
dundancy dimensioning techniques, have an important place in our availability model. 

However, in order to classify threats to availability and means to achieve availability 
in a security setting, we are also motivated by the approach used in the security field of 
risk analysis and risk management as in [ 10,11 ]. 

This is because, incidents resulting in loss of availability do not necessarily transpire 
due to faults and therefore classification of means in terms of faults as in [5,9] is, in our 
view, insufficient for availability analysis. An example is the hijacking of user sessions 
by an attacker or group of attackers, preventing the authorised user or group of users 
from accessing the service. This incident results in loss of service availability for a set 
of users, without incurring a fault in the system. An unwanted incident is defined in [ 12] 
as an incident such as loss of confidentiality, integrity and/or availability. A fault is an 
example of an unwanted incident. The availability model should therefore classify the 
means to achieve availability in terms of  countering unwanted incidents. 

In [5,9], the threats to dependability are defined as faults, errors and failures, and 
these are seen as a causal chain of threats to dependability: 

fault ~ error ~ failure 

This understanding of threats serves nicely in the dependability model, however, we use 
the definition of threat, as defined in [8]: a threat is a potential cause of an unwanted 
event, which may result in harm to a system or organisation and its assets. Unlike [9], 
we do not consider such a causal chain alone as the sole threats to availability, as service 
availability may be reduced by e.g. a denial of service (DOS) attack which reduces the 
service availability without causing a fault, error, or failure to the actual service itself. 
The conceptual model of  availability should classify known threats to availability while 
conforming to existing literature on the classification of  security threats. 
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2.3 Viewpoints for Analysing Availability 

For our availability analysis, it is appropriate to evaluate whether we should consider a 
system from a black box or white box perspective. In [ 13,14], Erland Jonsson provides 
a conceptual model for security/dependability with a black box view. 

In this system model view, Jonsson considers availability to be a purely behavioural 
aspect related to the outputs of the system, solely with respect to the users. Availability 
is defined as the ability of a system to deliver its service to the authorised user [ 13]. This 
viewpoint is valid and useful for some aspects of availability analysis; however, we see 
the need for evaluating availability from other viewpoints as well. Availability aspects 
of the internal components of the system must also be analysed. 

We claim that aspects of availability must indeed be observed from both the input 
and output sides as well as the internal components of the system. For example, denial 
of service attacks can be observed as malicious input to a system to either flood the 
system and render it unavailable, or in order to alter the integrity of the system, e.g., 
by deleting a group of users from the database of authorised users. In the latter case, 
the input messages of the intruder can be observed, and the changes to the intemal 
database, resulting in a loss of availability for those users that were deleted, will also be 
registered. 

With a black box view only, as in [13], only the externally observable behavioural 
aspects of availability can be studied. However, it is also important to observe and ana- 
lyze the internal behaviour in the system in order to analyze the availability aspects of 
components, in particular service components which collaborate to deliver the service. 
Motivated by a service-oriented system view, it is important to consider a whitebox 
view also, so that the intemal means to achieve availability can be specified and internal 
causes that affect availability can be examined. The conceptual model should therefore 
address internal and external concerns of  availability. 

2.4 Requirements of Different Services 

In the current and future telecommunications market, there are many different types 
of services each of which may have different requirements with respect to availability. 
Telephony services, and in particular, emergency services, are examples of services with 
stringent availability requirements. Internet-based services, however, have somewhat 
different requirements. Requirements for what may be tolerated of delays or timing out 
of services are rather lax currently for e.g., online newspaper services. Yet, a citizen who 
leaves the tax return to the last minute before the deadline for filing requires urgently 
that the online tax return submission service is available at that particular moment [ 15]. 

For traditional telecommunications services, the traditional availability requirement 
of 99,999% availability is still valid, however, it does not sufficiently address all of 
the differentiated requirements with respect to service availability. More precisely, as 
advocated by the Service Availability Forum (SAF) [ 16], there is also a need for a cus- 
tomer centric approach to defining availability requirements. The availability concern 
of the Service Availability Forum is readiness for correct service and in particular con- 
tinuity of service, with a focus on the demands of the customers. 
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We intend to incorporate the ideas of the SAF in our model, to enable customer 
oriented availability requirements, however, extending these to include the aspects of 
ensuring that unauthorised users cannot interrupt, hijack, or prevent the authorised users 
from accessing a service. The model must address the availability requirements in a 

flexible manner, in order to address the different aspects o f  availability. 

2.5 Measuring Availability 

As discussed in the introduction, we need a more fine grained measure of  availability 
than pure "up" or "down". Services can exist in numerous degraded but operational/- 
usable/functional states between "up" and "down" or "correct" and "incorrect". For 
example, an online newspaper may behave erratically with slow response times for 
displaying articles browsed without going down or becoming completely unavailable. 
It should be possible to describe various states of availability in order to specify just 
how much a reduction of service quality may be tolerated. 

While both the Common Criteria [17] and Johnson [ 14] define security measures 
and provide techniques for measuring security in general, there is a need for a more fine 
grained metric for measuring availability that takes into account, for example, meas- 
urement of how well user requirements are fulfilled, as well as a need for measuring 
the ability to adequately provision a service to all of the authorised users requiring the 
service at a given moment. Such a metric needs to take into account the appropriate set 
of parameters, not just the usual average based on the mean time to failure (MTTF) and 
the mean time to repair (MTTR). Our aim is to incorporate techniques from the exist- 
ing initiatives in the fields o f  security and dependability in order to arrive at a more 
complete composite measure o f  availability. 

3 Properties of Availability 

Availability encompasses both exclusivity, the property of being able to ensure access to 
authorised users only, and accessibility, the property of being at hand and useable when 
needed. As such, contrary to, e.g., the IFIP WG 10.4 [ 18], which treats availability as an 
atomic property, we see availability as a composite notion consisting of the following 
aspects: 

- Exclusivity 
- Accessibility 

We elaborate on these two properties in Sect. 3.1 and Sect. 3.2. 

3.1 Exclusivity 

By exclusivity we mean the ability to ensure access for authorised users only. More 
specifically, this involves ensuring that unauthorised users cannot interrupt, hijack, or 
prevent the authorised users from accessing a service. This aspect is essential to prevent 
the denial of legitimate access to systems and services. That is, to focus on prohibit- 
ing unauthorised users from interrupting, or preventing authorised users from accessing 
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services. Our definition of exclusivity involves both users and non-users, i.e., ensur- 
ing access to users while keeping unauthorised users out. This is in order to properly 
address means to achieve exclusivity. Some of these will address ensuring access for 
authorised users and others will address techniques for preventing unauthorised users 
from accessing or interrupting services. 

The goal with respect to exclusivity is to secure access to services for authorised 
users in the best possible way. Essentially this means: 

- Secure access to services for the authorised users. 
- Provide denial of service defence mechanisms. Here we focus on prohibiting unau- 

thorised users from interrupting, or preventing users from accessing services. 
- Ensure that unauthorised users do not gain access to services. 

Note that attacks via covert channels or by eavesdropping can lead to loss of con- 
fidentiality without loss of exclusivity as the attacker is not accessing the service, but 
passively listening in on service activity. Confidentiality, however, consists of exclusiv- 
ity and absence of unauthorised disclosure of information. 

3 . 2  A c c e s s i b i l i t y  

We define accessibility as the quality of being at hand and usable when needed. The 
notion of"service" is rather general, and what defines the correctness of a service may 
differ widely between different kinds of services. Accessibility is related to quality of 
service (QoS) [ 19,20,21 ], but what is considered relevant qualities vary from one do- 
main to another. Furthermore, QoS parameters tend to be technology dependent. An ex- 
ample of this is properties like video resolution and frame rates [20], which are clearly 
relevant for IP-based multimedia services and clearly not relevant in other service do- 
mains, such as SMS or instant messaging services. 

What all services do seem to have in common is the requirement of being timely; 
for a service to be accessible it must give the required response within reasonable time. 
In addition to being timely, a service will be required to perform with some quality to be 
usable. Hence, we divide accessibility properties into two major classes of properties: 
timeliness properties and quality properties. Timeliness is the ability of a service to 
perform its required functions and provide its required responses within specified time 
limits. A service's quality is a measure of  its correctness and/or how usable it is. 

Consider an online booking service. From the viewpoint of a user at a given point in 
time, we could say that the quality of the service is either 1 or 0 depending on whether 
the user gets a useful reply (e.g. confirmation) or unuseful reply (e.g. timeout). (Over 
time this can be aggregated to percentages expressing how often one of the two kinds 
of responses will be given.) 

In a multimedia service like video streaming, the frame rate may be seen as a timeli- 
ness property (each frame should be timely) while the resolution of each frame and the 
colour depth are quality properties. 

In both these examples we may see a dependency between timeliness and quality. 
In the first example (Fig. 1) we may assume a deadline t2 for the response to the user 
for the service to be accessible. However, we must also assume some processing time t 1 
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for the service to be able to produce an answer. This means that the quality requirement 
enforces a lower bound on the timeliness; if the deadline is too short the user will always 
receive the timeout message. In other words we must have that tl  < t2 for the service 
to be accessible. 

In the other example (Fig. 2) we may assume that higher quality requires more 
processing time per frame. This means that a required quality ql provides a lower limit 
tl  on the processing time of each frame. Further, to get the required frame rate there 
must be a deadline t2 for each frame, which provide an upper bound q2 on the quality. 
This means the service must stay between this lower and upper bound to be accessible. 
This approach may be seen as an elaboration of Meyer's concept of performability 
evaluation [22]. 

These considerations motivates a notion of service degradation. We define service 
degradation to be reduction of service accessibility. Analogous to accessibility we de- 
compose service degradation into timeliness degradation and quality degradation, and 
see that these are quantities mutually dependent on each other. For example, graceful 
degradation in timeliness may be a way of avoiding quality degradation if resources are 
limited, or the other way around. A combination of graceful degradation in timeliness 
and graceful degradation in quality may also be applied. Related to QoS, accessibility 
may actually be considered a QoS tolerance cut-off, i.e., the point at which the QoS 
deteriorates to a level where the service is deemed no longer usable, so that the service 
is considered unavailable. 

4 M e a n s  to Ensure  Avai labi l i ty  

Traditionally, the approach to meeting availability requirements has primarily focused 
on ensuring accessibility aspects of availability such as by introducing redundancy, and 
by service replication. This is a valid approach to availability, but it does not ensure, 
e.g., that the service is accessible to authorised users only. There are costs involved in 
introducing redundancy and replication, which need to be justified. The goal should be 
to obtain more comprehensive, more cost-effective means to achieve availability, and to 
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specify, design, and implement a set of measures that enable delivery of services and/or 
systems according to availability requirements. 

By means to ensure availability we address protection of the service from incidents 
leading to a loss of availability. Therefore, in our model, we categorise the means into 
the following three groups: incident prevention: how to prevent incidents causing loss 
of availability; incident detection: how to detect incidents leading to loss of availability; 
and recovery from incident: the means to recover after an incident has lead to a loss of 
availability. We do not attempt to create an exhaustive list of all such measures, but do 
provide examples that illustrate the different aspects of securing availability. 

4.1 Incident Prevention 

Preventative means are defined as the internal aspects of a system that are designed 
to prevent, stop or mitigate intrusions, faults, errors, or other incidents which have a 
negative effect on the availability of a system. 

Access control is an important preventative means for achieving the exclusivity as- 
pect of availability. Access control is the prevention of unauthorised use of a resource, 
including the prevention of use of a resource in an unauthorised manner [7]. 

Providing integrity protection mechanisms is important for example, in order to 
protect against manipulation and redirection of messages resulting in denial of service 
for the authorised user. 

It is also important to ensure that the required resources e.g. in the network that an 
authorised user has permission to use during a session are indeed allocated to the user 
to ensure that the service is delivered according to the user availability requirements. 

Another example of a means for avoiding loss of availabilty is graceful degradation 
[23], that is degradation of a system in such a manner that it continues to operate, but 
provides a reduced level of service rather than failing completely. By applying graceful 
degradation schemes a complete loss of availability can be prevented. 

4.2 Incident Detection 

Incident detection consists of means to discover incidents such as denial of service 
attacks, faults, errors or failures, which lead to a loss or reduction of availability. 

Detective measures will commonly be coordinated with recovery aspects of the sys- 
tem in order to adapt and restore system availability. Fault detection, traffic flow mon- 
itoring, intrusion detection systems (IDS), and accounting audits are all examples of 
detective measures. 

For an efficient approach to unwanted incident detection, it is wise to combine mon- 
itoring, fault detection and IDS techniques along with audit logs generated and process 
the information and data collected in real time or close to real time in order to detect 
and thwart attacks or incidents that have the potential to result in loss or reduction of 
availability. 

4.3 Recovery from Incident 

Recovery from incident consists of the means to recover from incidents leading to loss 
or reduction of availability. This includes techniques for adapting the service, e.g. in the 
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case that anomalies are detected by the IDS so that major unwanted incidents of loss 
of availability are avoided. Recovery means may entail, e.g., making changes to the 
internal aspects of the system, such as correction of faults or removal of system vulner- 
abilities. Additionally, external filters may be implemented to filter away the discovered 
cause of the incident such as malicious traffic or traffic from unauthorised users. Recov- 
ery addresses the adaptability, robustness, maintainability and redundancy aspects of 
the system. 

5 Threats to Availability 

The most explicit threat to availability is denial of service (DOS) attacks. Replay, mas- 
querade, modification of messages, man-in-the-middle and misuse of service are ex- 
amples of other kind of active threats that may affect availability. Threats may originate 
on the inside (inside attackers) or the outside (outside attackers) of the system. The 
impact of threats varies with the nature of the threats; some threats may result in de- 
gradation of the service, others in complete loss of service. Going into detail on this 
issue is outside the scope of this paper, but below we give some examples on how some 
of these threats may affect availability. 

Denial of service attacks may lead to loss of use due to unauthorised use of the 
service preventing authorised users from accessing the service. Unauthorised use may 
also create over-usage problems having an overload effect and in this way degrading 
the quality of the service for the authorised users. 

In a masquerade, an attacker steals the identity of a real user and obtains fraudulent 
access by masquerading as the real user while preventing the valid user from accessing 
services. Or, the other way around, an attacker replaying or masquerading as a service 
may deceive the user, and the service the user intended to access is then not available. 

6 Conceptual Model for Service Availability 

Based on the requirements from Sect. 2 and our discussion above we propose the over- 
all model presented in Fig. 3 (represented in UML 2.0) and further explained in the 
following text. 

In the figure the relationships between availability, threats and means are shown. 
Availability is affected by means and threats. Means ensures availability and protects 
against threats. Threats may cause reduction of availability. 

There are many different types of services, and they may have different require- 
ments with respect to availability. Availability requirements should be flexible enough 
to address the different services consistently. We propose that availability is specified 
by the means of availability policies and predicates over measurable properties of ser- 
vices, and that these policies and predicates are decomposed in accordance with the 
decomposition of availability in the conceptual model. An availability policy consists 
of an accessibility policy (e.g., required resources) and an exclusivity policy (e.g., which 
entities have permissions to use the service or system). 

The predicates place conditions on the allowed behaviour of the service. In order 
to express these predicates, there is a need to describe rules for allowed or prohibited 
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behaviour and to provide a means for measuring the availability properties of a service. 
Figure 4 illustrates how availability properties are related to services, i.e., as part of the 
relation between the service and the user entity using the service. 

! Se ce I * *1 Usor I "ql uses 
I 
I 

Property 
value 

Figure 4. Service availability 

Our conceptual model provides the foundation for an availability metric in that it 
provides decomposition of availability properties that may be mapped to measurable 
quantities. This metric includes behavioural measures, preventative measures, and cor- 
rectness measures such as the measurement of degree of degradation. 

The following is the mathematical representation of the availability metric for a 
service. Let A denote a service with an availability property for a user group U, and 
let X denote the availability metric for service A. We represent X as an n-tuple X = 
(Xl , . . . ,  xn) where xi is a measure of an aspect of availability. By this we mean that xi 
describes requirements for a particular availability aspect. The minimum requirement 
for each xi must be satisfied in order to fulfil the total availability requirement X. 

Using our conceptual model this idea can be refined as follows: We represent X as 
a tuple X -- (X1, X2) where X1 measures the exclusivity properties, and X2 measures 
the accessibility properties. 

Essentially, the requirement aims to describe the degree of accessibility and exclus- 
ivity that is sufficient for the user to be able to activate and use the service. Examples 
of measures of aspects of exclusivity may be illustrated by the following: For a meas- 
urement of exclusivity we need to be able to answer questions such as "how well does 
the system keep out unauthorised users while still granting access to authorised users?" 
This leads to the following examples of exclusivity requirements: 
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- The probability that an authorised user is denied access to the service at a given 
time t should be less than x. 

- The probability that an unauthorised user obtains access to the service at a given 
time t should be less than y 

- User u should be prohibited from accessing service s when user v is using the 
service. 

- The number of intrusions at a given time t (e.g. during a critical moment) should 
be less than z. 

Similar measures may be defined for accessibility. These may be defined with basis in 
measures for service degradation, timeliness, performance, and quality. 

In order to apply the model, the availability requirements must be determined. 
Threats must then be analysed to understand what affects availability and means for 
ensuring availability need to be identified to meet requirements and counter threats. 
Measurements of the different aspects are then used to evaluate how well the availabil- 
ity requirements are met. A more in depth discussion of how to apply the model is the 
subject of further work. We are currently applying the model to our work on ensuring 
availability in service composition. 

7 C o n c l u s i o n s  

The contribution of this paper is a conceptual model for availability that takes into ac- 
count a much broader spectrum of aspects that influence availability than previously 
addressed by work in this area. We have argued that exclusivity is an aspect of avail- 
ability that has been generally neglected in the literature, and shown where it fits in an 
enhanced notion of availability. Further we have shown how QoS, real time and de- 
pendability considerations may be integrated in the model and treated as accessibility 
properties. 

We have established that there is a need for a more fine grained metric for measuring 
availability and have provided a representation of the availability metric for a service 
that allows specification of the measurable requirements for exclusivity and accessibil- 
ity properties. 

Our conceptual model for availability embraces both a white box view as well as a 
black box view of availability and, hence, addresses both internal and external concerns 
of availability. The need for this is apparent in our current work on ensuring availability 
in service composition that encompasses a collaboration of roles, which are slices of 
behaviour across distributed systems. These must be composed correctly in order to 
achieve a service with the required availability. 

The model also contains a classification of threats to availability and means to en- 
sure availability, and establishes the relationship between threats, means and availabil- 
ity properties. Together these elements provide a framework in which all relevant views 
and considerations of availability may be integrated, and a complete picture of service 
availability may be drawn. 
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Abstract. Cooperative services in Service Oriented Architectures (SOA) inter- 
act and delegate jobs to each other; when they have to respect a Service Level 
Agreement (SLA) they need to explicitly manage it amongst each other. SLAs 
and, above all, security-SLAs, are usually expressed in ambiguous ways and this 
implies that they need to be manually evaluated both in a mutual agreement to 
"qualify a service" and in the monitoring process. Due to this approach, usually, 
service composition cannot be dynamically performed. In this paper we introduce 
a methodology which helps in security SLA automatic evaluation and compari- 
son. The methodology founds on the adoption of policies both for service behav- 
ior and SLA description and on the definition of a metric function for evaluation 
and comparison of policies. We will illustrate the applicability of the proposed 
methodology in different contexts of great interest for e-govemment projects. 

1 Introduction 

Large diffusion of Intemet has lead to the explosion of complex infrastructures distrib- 
uted all over the world. These infrastructures offer services for e-business, public ad- 
ministration, health care information (e.g. distributed medical case history), and other 
different services. At the state of the art all these infrastructures found on a Service ori- 
ented Architecture model (SOA). SOA is an architectural style whose goal is to achieve 
loose coupling among interacting software agents. A service is a unit of work done by 
a service provider to achieve desired end results for a service consumer. Both provider 
and consumer are roles played by software agents on behalf of their owners [ 19]. 

Cooperative services are capable of intelligent interaction and are able to discover 
and negotiate with each other, mediate on behalf of their users and compose themselves 
into more complex services. For example, Web Services technologies [1,2] and the 
emerging standards such as SOAP, UDDI, and WSDL allow a dynamic composition to 
offer advanced services. 
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In Service oriented architecture the problem of guaranteeing a given "quality" of 
services to final users, in terms of functional and non-functional requisites like per- 
formance or security, is one of the hot topic. In general, a service provider is able to 
guarantee a predefined service level and a certain security level (supposing you are able 
to measure it); in this context, an open issue needs to be addressed when the service is an 
aggregated one, i.e. it is offered thanks to the cooperation of different service providers 
which belong to different domains, each one characterized by different Service Levels 
[21]. 

Usually, these and other interoperability problems are faced by an explicit and ini- 
tial agreement among services which will be part of the same aggregated service, and 
these agreements will be periodically monitored to guarantee that all providers meet the 
promised levels. Cooperative services interact and delegate jobs to each other and they 
need to create and manage "'Service Level Agreements"' amongst each other. 

A Service Level Agreement (SLA) is a contract between a network service provider 
and a customer that specifies, usually in measurable terms, what services the network 
service provider will furnish. Many Internet service providers provide their customers 
with a SLA. More recently, enterprises have adopted the idea of writing a service level 
agreement too, so that services for their customers can be measured, justified, and per- 
haps compared with those of outsourcing network providers. 

Usually each service domain expresses the set of SLAs by means of free text doc- 
uments and, often, in ambiguous ways. A common problem that arises, is how to help 
different domains to reach an agreement in order to cooperate and offer advanced and 
integrated services, assuring at the same time a quantifiable Service Level. At the state 
of the art, the main solution focuses on manual evaluation of the proposed SLAs, ex- 
pressed is "some way" and on mutual agreement from experts of the two domains. 

At the state of the art SLAs are strictly related to the quality of service and not to 
security. The main reason why security has never been expressed through SLA is the 
lack of an objective mean to measure a security service; to date only few experimental 
security metrics have been proposed to classify, evaluate and compare security practices 
[14, 13, 11, 12]. In this paper, instead, we are interested in facing the problem of security 
in this context. 

In service oriented architectures we need to re-define the concept of trust between 
end-users and services and between services and services; in fact, providing and ac- 
cessing an applicative service needs the adoption and cooperation of third parties that 
offers infrastructural services needed to aggregate the services. It is necessary to ensure 
that the consumer perceives that the provider is adhering to its promised service level 
agreements; but the provider will use other services to perform its task. 

Some available approaches include the definition of a "network of trust" among 
services by previous agreements among actors [ 18, 10, 22, 20]; this is a static approach 
to face the problem as it requires that only a predefined set of services could cooperate; 
this unfortunately is a strong limitation. In a dynamic context, a service that needs 
some other service providers to complete its task, could locate them in the Intemet (for 
example trough a public registry) and decide to adopt the offered services. 
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So, how can the end-user trust in a cooperative service that claims a predefined 
security SLA? How can the end-user evaluate the real SLA of that service? In this 
paper we propose an evaluation methodology to face this problem. 

Our proposal founds on SLA dynamic management. SLA management involves the 
procedure of signing SLAs thus creating binding contracts, monitoring their compli- 
ance and taking control actions to enable compliance. SLA monitoring is difficult to 
automate as it would need precise and unambiguous specification and a customizable 
engine that collects the right measurement, models the data and evaluates the SLA at 
certain times or when certain events happen. In a cross-domains scenario like web ser- 
vices it will be important to obtain measurements at multiple sites and to guarantee 
SLAs on them. 

Automating SLA evaluation for agreements and monitoring involves minimizing 
human involvement in the over-all monitoring process and it is a very interesting re- 
search field. 

Within this context, the main research issue that we want to face in this paper is 
related to a quantitative evaluation of the system SLAs and, in particular, we will focus 
our attention on SLAs related to security aspects (security-SLA, for brevity) [14]. 

We will introduce a theoretical model to formalize SLAs by means of policies and 
we will illustrate a policy evaluation methodology that helps in both initial and run time 
agreement phases. The methodology we propose is based on security-SLA formaliza- 
tion through the use of standard policy languages and on the formalization of concepts 
like "security levels" against which we could measure the security of a system. In partic- 
ular, we will introduce a Reference Evaluation Model to evaluate and compare different 
policies by quantifying their security levels. 

The application of the methodology is very interesting especially if we think that, 
actually, there is a human Service Registration Authority that controls whether the en- 
tities respect SLAs and policies (service qualification). The applicability contexts we 
will refer, are untrusted domains where both parties that wish to inter-operate need to 
formally agree on SLAs and security policies; and trusted domains where an explicit 
security evaluation need to be continuously monitored. 

The reminder of this paper is structured as follows: in Section 2 we will illustrate 
our approach to express security SLAs by means of a standard policy language. Section 
3 introduces the Reference Evaluation Model, exploiting for each component of the 
model how to build correct and usable solutions. By examples we will show some solu- 
tions for policy formalization and evaluation techniques. Section 4 shows the method- 
ology applicability in different phases of the agreement for different contexts. Finally 
Section 5 contains some conclusions. 

2 Policies to express Service Level Agreements 

We need a formal way to express Service Levels and automate the Agreement process; 
to do this we will adopt a policy language for the formalization and an evaluation 
methodology for the automatic agreement. 

Policies can be expressed and formalized in many different ways, they could be 
informal (consider for example "some good practices to choose a password") or highly 
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mathematical. We could identify a type of policy by the way in which it is expressed; 
for example we could classify the following types of policies: 

F o r m a l  p o l i c i e s  are usually expressed by mathematical or machine-parsable statements 
and languages. 

S e m i  f o r m a l  p o l i c i e s  are partially expressed by machine-parsable languages. 
I n f o r m a l  p o l i c i e s  are usually expressed in a very informal language, with statements 

often ambiguous and or expressed in a free textual form. 

Notice that formal policies are typically expressed by technical staff-members who 
need to express in an unambiguous way technical procedures, while organizational 
members who often need to express practical and behavioral aspects of the organization 
of a secure site typically prefer informal policies. Both technical and organizational as- 
pects are very critical for security but often members of one part do not understand the 
criticality of the other ones. The more a policy is formalized, the more the evaluation 
process is easy when performed by an automatic machine; on the other side the evalu- 
ation process becomes very difficult for a non-technical member who needs to read the 
security statements. 

The classification is not exhaustive, it intends to make the reader more sensitive to 
the policy formalization problem in terms of what to express in a security policy and in 
which formalism to express it [4, 15, 16]. 

Recently, some proposals and standards to formalize policies for WS [23] and the 
related security provisions have been provided [14]; we think that they could help in 
expressing security-SLAs and allow systems to a u t o m a t e  the SLA evaluation process. 

Really, available policy frameworks present some limits; they certainly represent a 
valid means to develop a textual policy, but they do not resolve ambiguity problems, 
they are not sufficiently structured to be used as a valid mean to evaluate and compare 
policies. 

Policy ambiguity is often the primary reason for which a security expert is not able 
to completely trust a system declared secure and we are working on policy formaliza- 
tion at the aim of reducing such ambiguity to automatically evaluate the security level 
associated to the policy. 

A n  E x a m p l e  o f  F o r m a l i z a t i o n  Talking about Web Services architectures, we think 
to adopt WS-policy framework to express policies for security-SLA. The framework 
is structured as a hierarchical tree to express all macro provisions. We have started the 
formalization by considering the set of items proposed by [14]; the first level of the tree 
structure includes: 

- Security documentation, 
- Security Auditing, 
- Contingency Planning, 
- User Security Training, 
- Network Infrastructure Management, 
- Physical Security, 
- User Discretionary Access Control (DAC) Management, 
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- Password Management, 
- Digital Certificate Management, 
- Electronic Audit Trail Management, 
- Security Perimeter or Boundary Services, 
- Intrusion Detection and Monitoring, 
- Web Server Security, 
- Database Server Security, 
- Encryption Services, 
- Configuration Management. 

All these items represent general categories (both technical and organizational) and 
they are actually expressed in natural language. 

Second level provisions try to describe all the details about all macro-provisions 
and they express objects that are still complex but bring a more bounded security infor- 
mation; for example the Digital Certificate Management provision includes: Key Pair 
Generation, Key length, Private Key Protection, Activation Data, Key Controls and ver- 
ification, Network Security Control, Cryptographic module engineering controls. 

The provisions defined in the first two steps are very complex objects and this is the 
most important reason for ambiguity; to solve the ambiguities the proposed formaliza- 
tion supports a hierarchical structure which consists of several couples (element-type, 
value) representing topics and sub-topics, where the "value" itself is a complex object. 
A wide range of new data-structures has been defined to represent the values, and fi- 
nally a grammar has been created based on such data-structures to formalize a policy 
for security-SLA. The used data-structures are new atomic or enumerative types and 
total order relations among their values may be defined, so as to solve the ambigu- 
ity problem; we will associate a Local Security Level to each provision instance. For 
most critical topics we were able to build such a structure that could be automatically 
processed by a numeric algorithm. 

The proposed structure is a hierarchical tree represented by an XML document; 
tree nodes identify complex security provisions, leaves identify simple security provi- 
sions. Furthermore alternative representations can be easily derived; for example XML 
documents can be represented as trees and the set of leaves of the XML tree can be rep- 
resented as a vector. In the following we will use both these syntactical representations 
for policy evaluation. 

3 T h e  E v a l u a t i o n  m e t h o d o l o g y  

Having formalized and expressed SLAs by a policy language, we need an evaluation 
methodology to compare them and decide to extend trust to the new service or not. 

The methodology we propose is based on a Reference Evaluation Model (REM, 
for short) to evaluate and compare different security policies, quantifying their secu- 
rity level. The model will define how to express in a rigorous way the security policy 
(formalization), how to evaluate a formalized policy, and what is its security level. In 
particular the REM is made of three different components: 

1. The policy formalization, 
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2. The evaluation technique, 
3. The reference levels. 

T h e  p o l i c y  f o r m a l i z a t i o n  

A formalized policy instance expresses in a rigorous way, who, how and where 
security SLAs will be applied. The way in which we formalize a policy is strongly 
dependent by the technique we intend to adopt [6, 7]; at this aim, the adopted formal- 
ization will be presented with the technique. 

T h e  e v a l u a t i o n  t e c h n i q u e  

The REM we propose, includes the definition of a technique to compare and evaluate 
the policies; we have called this component the REM Evaluation technique. 

Different evaluation techniques represent and characterize the security level associ- 
ated to a policy in different ways, for example with a numerical value, a fuzzy number 
[8, 9] or a verbal judgment representing its security level. 

In the following we introduce the adoption of an evaluation technique based on 
an innovative definition of a metric policy space. The policy space allows to represent 
policies as an homogeneous space on which we could define a distance criteria and a 
metric function. 

For brevity sake we do not give details about how we have built the technique, but, 
in this paper we will give clear information on how it is able to represent and evaluate 
policies; further details are available in [5]. 

The main characteristic of the metrical space technique could be summarized as 
follows: 

- Given any tree-policy formalization, the evaluation process takes into account just 
the provisions of the policy which represent the leaves of the policy tree structure. 

- With the formalization, each provision is represented by an enumerative data-type; 
the policy space "P"  is defined as the vectorial product of all n provisions Ki i.e. 
P = K1 x K2 x .  x Kn. 

- The policy space "P"  has been transformed into an homogeneous one, denoted 
" P S "  thanks to a family of threshold functions (F-functions) which allow us to 
associate a Local Security Level (LSL for short) to each provision. 

- " P S "  is represented by a n x 4 matrix whose n rows represent the single provisions 
Ki and 4 is the chosen number of LSLs admissible for each provision. For example, 
if the LSL associated to a provision is/3, the vector corresponding to its row in the 
matrix is: (1,1,1,0). 

- The distance criteria for the definition of the metric space is the Euclidean distance 
among matrices, defined as: 
d(A, B) = V/(~r(A - B, A - B)) 
where a ( A -  B, A -  B) : T r ( ( A -  B ) ( A -  B) T) 

In Figure 1 an example of provision representation is reported. 
To show that the defined distance really represents the distance between policies, 

we will give two examples; the policy SLA-P is compared with two different policies 
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provision name 
Local Registration Authorities (LRAs) 1 1 1 1 

Repositories 1 1 10  
Policy applicability 1 1 0 0 

Notification of certificate issuance and revocation 1 1 1 0 
Time between certificate request and issuance 1 1 1 0 

Fig. 1. An example of Policy provisions 

SLA-X and SLA-Y; they both are globally stronger than SLA-P since they have a lot of 
provisions with a stronger Local Security Level. Each policy in the example has just 10 
provisions, this is just a simplification which does not affect the validity of the method. 

SLA-P = 

,11oo) 
1 1 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 1 0 0  

x l O 0 0 )  

SLA-X = 

Y l 1 1 0 )  
1 1 1 0  
1 1 0 0  
1 0 0 0  
1 0 0 0  
1 1 0 0  
1 0 0 0  
1 1 0 0  
1 0 0 0  

 loooj 

SLA-Y = 

/ l l l l h  
1 1 1 1  
1 1 1 0  
1 1 0 0  
1 1 1 0  
1 1 1 1  
1 1 1 1  
1 1 0 0  
1 1 0 0  

~ l l l l j  

Example  1: SLA-X is a policy that appears stronger than SLA-P, just looking at the 
levels of the single provisions; we first calculate the trace: 
Tr((X-P)(X-P) T) = 6 
The distance between SLA-X and SLA-P is: d - 2, 45 
That mirrors the fact that SLA-X is just a little stronger than SLA-P. 

Example  2: SLA-Y is a policy that appear stronger than SLA-X and much stronger 
than policy SLA-P, while SLA-P is the same as that of the example 1; the trace is: 
Tr((y_p)(y_p)T) = 19 
The distance between SLA-Y and SLA-P is: d - 4, 36 
This result mirrors the evident difference between the two cases. 

These examples show how it is very simple to evaluate the distance between poli- 
cies, once they have been represented as a matrix. The distance will be adopted to define 
the metric function. 

The reference levels 

The last component of the REM is the set of reference security SLAs levels that 
could be used as a reference scale for the numerical evaluation of security. When ref- 
erences are not available, the REM could be used for direct comparison among two or 
more policies. 
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To properly choose the references, we can proceed in two different ways: 

- when possible, if n different policy instances are available and they certainly cor- 
respond to n different security levels, then we could use those ones as reference 
levels. This is the typical case of an existing Platform which publishes a set of pre- 
defined security SLAs corresponding, for example, to a Gold, Silver and Bronze 
class of services. 

- when they are not available, we need to define an appropriate set of policy instances. 

At this point, to define the metric function, we represent the reference levels ac- 
cording to the same technique of the REM and we evaluate the target policy against 
them. 

So, we first evaluate the distances among the references (denoted as REFLi) and the 
origin of the metric space (denoted as 0), then define the metric function which gives 
the resulting level as follows: 

The references are: 

dl0 = d(REFL1,0) 
d2o = d(REFL2,0) 
d3o = d(REFL3,0) 
d4o = d(REFL4,0) 

Finally, the security metric function to evaluate the SLA associated to a target policy 
P~ is: 

Lo i f  fdxo <_ dlo 
L1 i f fd lo  < dxo < d20 

Lpx - L2 i f f d20 < dxo < d30 
L3 i f  f d30 < dxo < d40 
L4 i f f d40 <_ dxo 

where L px is the SLA Level associated to p~ 

4 M e t h o d o l o g y  A p p l i c a b i l i t y  

The SLA evaluation technique could be easily applied in SOA. When an end-user 
choose a platform for services, he also express his desired SLAs and could evaluate 
them by himself whether they have been published. Each service which is part of the 
platform is able, in general, to offer the declared SLAs but, the same it is not so obvious 
if the service offered has been aggregated with open external services. To guarantee 
that aggregated services respect the requested SLAs, it is necessary to apply an explicit 
process of"service qualification among requestors and providers". We will denote this 
process as "cross qualification". 

Cross qualification is needed when a new service (external or just developed) wants 
to cooperate with existing ones and it consists of two steps, applied in different times: 
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1. initial evaluation of service SLAs to verify that they respond to the platform expec- 
tation which has already publish its own SLS toward end-users; 

2. periodical monitoring of service SLA to verify ifthe service is still qualified (for ex- 
ample if the declared performance are still verified even if the number of requesters 
has considerably grown). 

This context is actually predominant (for example it is applied in numerous Italian 
e-government projects [20]) but it is very expensive as it is manually performed, and 
limited, especially when we think that having open standards and free service available, 
we could aggregate them by using public registry and public services with a very low 
cost. The main constraints in the application of such mechanisms are, above all, the 
impossibility to evaluate the open service SLAs at run time to decide to extend trust to 
them or not and decide to use them for aggregation or not by guaranteeing, at the same 
time, the user requested SLAs. 

Having SLA formalized and expressed by a policy language, we could apply the 
proposed methodology to evaluate them in both the following cases: 

a) CASE A: predefined cross-qualification among services. 
b) CASE B: run-time cross-qualification among open services. 
Adoption of the REM helps in all these approaches, giving a tool which helps in 

automating the evaluation process. We explicitly note that there are different actors in 
such kind of architectures and they need to adopt the same REM for the evaluation; the 
main constraints is not on the evaluation technique but on the policy formalization. In- 
deed, each one could decide to adopt different policies and include different provisions 
and we need to face all these aspects. 

In the following we will show the applicability of the evaluation techniques through 
the REM in these two cases of cross-qualification. 

4.1 Predefined cross-qualification 

When a new service (target service, TS for short) should be added to an existing plat- 
form, its security SLAs need to be evaluated against the SLA adopted by the platform 
itself. In other words, in this architecture there is a master which decides both the policy 
formalization (including the provisions) and the SLA reference levels. The evaluation 
of SLA-TS consists in assigning a security level evaluated against the platform SLA 
reference security levels. 

In this case the formalization step of the REM building phase will take place using 
the master policy as the policy template. The choice of the REM technique can be 
carried on taking into account that the rules of the master m u s t  be respected and flexible 
judgments are not useful and the result of the evaluation technique should be a yes/no 
or the resulting level to which the service is associated. 

Security reference levels are defined by the master, too. 
Once the REM is built, the TS evaluation is made up of the following steps: 

- the TS-SLAs are formalized according to the master policy template; 
- the TS-SLAs are evaluated with the chosen REM technique and a SLA Level is 

assigned to it according to the defined metric function (see Section 4). 
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The result of the methodology is the numerical SLA Level of TS. And the new 
service will be included in the architecture for aggregation with services of the same 
SLA-level. 

The same process is periodically (and automatically) repeated when the master 
needs to monitor all TSs. 

4.2 Run-time cross-qualification 

This model rests on peer-to-peer agreement between TSs couples. When a TS, retrieved 
in a public registry, asks to cooperate with an existing domain of services, it has to agree 
with one or more services of the group. 

In this case there is no external master that can be used as reference for policy for- 
malization; being a peer-to-peer agreement, the TSs have the same role. It is impossible 
to build the formalization on the basis of only one of the two parts so, in this case, each 
TS proceeds by building its own REM and evaluation phase. In this case each policy 
needs to be first formalized according to the other template and then the evaluation 
could begin. All this process is performed at run-time; the service that has found the TS 
retrieves its SLAs, formats them according to its template and evaluates the SLA level 
to decide to cooperate or not. 

The application of our methodology to this last context is very promising and we are 
actually working on the integration of an automatic tool to adopt the REM in a Regional 
project and apply this theoretical model on a very complex infrastructure. 

5 Conclusions and Future Works 

In this paper we have introduced a theoretical methodology to evaluate Service Level 
Agreement in SOA. The methodology is based on two fundamental features; the first 
one is the security-SLA formalization through the use of standard policy languages 
while the second one is the formalization of"qualifiable service levels" against which 
we could measure the SLA. In particular, we have adopted a Reference Evaluation 
Model, developed for different infrastructures, to evaluate and compare different poli- 
cies and quantifying their levels. The application of the methodology in different con- 
texts seems very promising and we intend to adopt it in the integration of an automatic 
tool in complex infrastructure in which aggregated services dynamically vary and, at 
the same time, are able to guarantee the same perceived service level to the end-user. 
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Abstract. The traditional Dolev-Yao model of security limits attacks to "com- 
putationally feasible" operations. We depart from this model by assigning a cost 
to protocol actions, both of the Dolev-Yao kind as well as non traditional forms 
such as computationally-hard operations, guessing, principal subversion, and fail- 
ure. This quantitative approach enables evaluating protocol resilience to various 
forms of denial of service, guessing attacks, and resource limitation. While the 
methodology is general, we demonstrate it through a low-level variant of the MSR 
specification language. 

I Introduction 

Security protocols have classically been analyzed with respect to the Dolev-Yao in- 
truder [8, 14], a model which gives the attacker complete access to the network, but 
limits its decryption capabilities to messages for which he possesses the appropriate 
keys. There is consensus among practitioners that the basic problems of protocol ver- 
ification, namely secrecy and authentication, are by now solved for this model, as the 
most recent tools sweep through the standard Clark-Jacob benchmark [6] in mere mil- 
liseconds. Recent research has moved in two directions: apply the current tools to the 
much larger protocols used in the real world, and investigate intruder models that rely 
on capabilities beyond Dolev-Yao gentlemen correctness. We follow the latter path. 

The three tenets of the Dolev-Yao model are (1) the symbolic representation of data, 
so that a key k is seen as an atomic object rather than a bit-string, (2) the unguessability 
of secret values such as nonces and keys, and (3) black-box cryptography, by which 
a message m encrypted with k can be recovered only by a principal in possession of 
k (-1). All three have been weakened in the last few years. Approaches have taken the 
bit length of messages and keys into account. Within the symbolic abstraction, effort has 
been undertaken to include guessing in the intruder's toolkit [ 11 ], and to let recurrent 
algebraic operations, in particular XOR and Diffie-Hellman exponentiation, out of the 
black box, allowing the intruder to use them to mount an attack (within the accepted 
computational bounds, e.g., taking a discrete logarithm is not permitted) [4, 7]. 

The present work takes a symbolic view of data, but allows the intruder to guess 
values and perform computationally hard operations. That is, if he is willing and able 
to pay the price. Indeed, we are not so much interested in a lucky intruder breaking 

* Partially supported by NRL under contract N00173-00-C-2086 and by ONR under contract 
number N000149910150. 
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the protocol, but in a t enac ious  one, who will spend Herculean effort in order to gain 
Alice's confidence or learn Bob's secret. The proposed methodology assigns a cost to 
both Dolev-Yao and non-standard intruder operations. Depending on the intended use, 
this cost can be a physical measurement, such as time, space or energy, a complexity 
class, or simply one of the two values 0 and ee in a purely Dolev-Yao model. This 
work directly extends Meadow's quantitative assessment of denial-of-service [13] and 
Lowe's analysis of verifiable guesses [ 11 ]. It is also related to [ 16]. 

Potential applications of this approach include: 

- Provide a way for standard analysis methodologies to take intruder effort levels 
into account. For example, weak secrets are usually modeled as either unguessable 
or public values. Assigning them an appropriate cost and estimating the resources 
(or the persistence) of the intruder may help decide whether this secret is too weak 
for practical purposes. Intruder cost thresholds can be easily integrated into many 
model checking tools for example. 

- Monitoring of network activity, by either an intruder or a law enforcement agency. 
This entity may then compute the cost of mounting an action against particular 
communicating agents, using the result to estimate the needed resources. 

- Gauge the resilience of a system against denial-of-service scenarios. Cost functions 
have been used for this purpose [13, 15], but mostly limited to legal Dolev-Yao 
intruder operations. 

- Assess the vulnerabilities of agents meant to operate in a potentially hostile envi- 
ronment with very limited resources in terms of computational power, bandwidth, 
battery life, etc [5], e .g . , ,  smart cards, PDAs and cellular phones. 

- When building a system, compare protocols providing desired functionalities, with 
respect to their resilience to particular forms of attacks. During the development 
phase of a protocol, compare alternative designs or parameter choices for optimal 
resistance to certain attacks. In particular, proposals for denial-of-service protec- 
tion, e.g., , Juels and Brainard's client puzzles [10] or even the network level pro- 
posal of Gunter et al. [9], are good application candidates for this methodology. 

As it allows asking "How secure is this protocol?", rather than "Is it secure or not?", the 
proposed methodology can also be seen as complementing performance and quality of 
service with an additional quantitative dimension on which to evaluate protocols. 

We rely on a Fine-Grained variant of the MSR rule-based specification formal- 
ism [1,2] as a vehicle to introduce this work. Fine-Grained MSR isolates individual 
verification operations and accounts for the possibility of failure. This is achieved by 
dividing rule application in a pre-screening phase that commits to a rule, and a more 
thorough check that fully assesses its applicability. Further details can be found in [3]. 

2 B a c k g r o u n d  

In MSR, a protocol is specified as a number of roles.  A role corresponds to the abstract 
sequence of actions executed by each participating principal. Roles are also used to de- 
scribe the intruder capabilities. A role itself is given as a sequence of mul t i se t  rewri te  
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rules, which describe each individual action. Each rule represents a local transforma- 
tion of the execution state. It has a left-hand side that describes what should be taken 
out of the state, and a right-hand side denoting what it should be replaced with. State 
objects are modeled using first-order atomic predicates. They include messages in tran- 
sit (N(m)),  public information (M.(m)) ,  private data of a principal (Mz(m)) ,  and a 
record of the status of every executing role (L v ( m )  - -  v acts as a program counter, and 
m is synchronization data). The right-hand side of a rule can additionally mention ex- 
istentially bound variables to model the creation of nonces and other fresh data. See [3] 
for details. Example of rules will be shown later in this document. 

Simplifying somewhat from [3], the execution semantics of MSR operates by trans- 
forming configurations of the form (S) R where the state S is a multiset of ground I3, 
predicates, the signature ~ keeps track of the symbols in use, and the active role set 
R - ( p ] , l , . . . ,  p,~n ) records the remaining actions of the currently executing roles (pi), 
and who is executing them (ai). In order to add costs to this framework, it is useful to 
take an even higher-level view of execution. This will also act as an abstract interface 
where other formalisms can experiment with the techniques in this paper. 

An abstract execution step is a quadruple C--~C' ,  where C and C' are consecutive 
configurations, r identifies the rule from 79, and c stands for the instantiating substitu- 
tion. An abstract execution step is just a compact yet precise way to denote rule appli- 
cation. It is reasonable to think about it as a partial function from C, r and c to C'. We 
say that r is applicable in C is there is are a substitution c and a configuration C' such 
that C ~'"~C' is defined. A trace 7- is then a sequence of applications 

Co r1,1.1 r2,L2 r,~,~.,~ > C1 , ' ' '  Cnq-1 

While we rely on the notion of sequence here, this definition could be generalized to 
a lattice with minimum Co and maximum Cn to account for action independence. We 
will however stick to sequences for simplicity. 

A protocol requirement for a safety property such as secrecy or authentication is 
simply given by a set Sz of initial configurations and a set S~t of attack configura- 
tions, or some finite abstraction of them. A verification procedure decides, for a given 
protocol, whether there exists a valid trace from an initial to an attack configuration. 

A script is a parametric sequence of actions (r l ,  f f l ) , . . . ,  ( r n ,  f i n ) ,  where the codo- 
main of the ai's may mention variables. A script is realizable if there are configurations 
Co, . . . . .  ., Cn+l ,  and grounding substitutions 71, , ~/,~ such that C0rl')} . . . . .  r,~,,n; Cn+I 
is a trace. Scripts describe patterns of execution. 

In general, there are two types of scripts of interest: the ones corresponding to the 
expected runs of the protocol (written TEn), and the scripts that an intruder devises to 
mount an attack. For our purposes, the latter are more interesting, and we shall extend 
their syntax for flexibility. An attack script is then given by the following grammar: 

.At . . . .  (Empty scripO 
[ A (r, a) (Extension with an action) 
[ !~ .A (Script iterated n times) 
[ A + .A (Alternative scripts) 

We are particularly interested in attack scripts that are realizable in an initial configura- 
tion and end in an attack configuration. We further distinguish any-time scripts, which 
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where honest principals are just responding to intruder solicitation, and opportunistic 
scripts, where the intruder takes advantage of moves initiated by honest principals. 

3 F i n e - G r a i n e d  M S R  

It is possible to use the definitions in Section 4 to endow MSR with a notion of cost. This 
would however not be a very precise model, in particular as far as rule application failure 
is concerned. Therefore, we dedicate this section to defining a finer-grained version 
of MSR. We isolate the verification operations implicit in an MSR left-hand side as 
separate rules. During execution, we split rule application into two steps: pre-screening 
commits to a rule, while left-hand side verification decides if it should succeed or fail 
(typically when messages have been tempered with). For space reasons, we describe 
the compilation of an MSR specification into fine-grained MSR only intuitively. 

Fine-grained MSR inherits its language of messages from MSR. However, it makes 
two changes to the set of available predicates. First, it extends the network predicate 
with a header h, giving it the template Nh(m). The header is meant to identify precisely 
a message within a protocol instance: it will typically contain the postulated sender and 
intended recipient, the name and version number of the protocol and a step locator. An 
attacker can alter the header at will. The second change is the introduction of predicates 
R v (m), which will act as local registers during a verification step. Similarly to the 
local state predicates L v (_), the dynamically created superscript v is intended to prevent 
confusion. 

An MSR rule application consists of two distinct phases: the left-hand side man- 
dates a number of verification operations on incoming and retrieved messages, while 
the fight-hand side prescribes how to construct out-going or archived messages. Both 
are represented succinctly in MSR, yet they can be very complex. Fine-Grained MSR 
replaces each MSR rule r -- (lhs --. rhs) with a number of verification rules, each 
corresponding to an individual verification step in lhs, and a single building rule, which 
produces rhs. Reducing rhs to atomic steps is not necessary since construction can- 
not fail once verification has succeeded. Registers are used to serialize these rules in a 
collection that we call rule target. 

In order to account for failure, we must split rule application into two stages. During 
the pre-screening phase, a rule is selected based uniquely on the predicate names (in- 
cluding headers and superscripts) appearing in its left-hand side and in the current con- 
figuration. In particular, the arguments are not considered. We commit to the selected 
rule. Then, the verification phase checks whether the arguments have the expected form. 
In case of success, the next configuration is computed as in MSR. In case of failure, the 
clean-up clause is invoked and the entire role this rule belonged to is removed. See [3] 
for a formalization of these ideas. 

The intruder capabilities traditionally considered for security protocol verification 
follow the well-known Dolev-Yao model [8, 14]: the intruder can intercept and generate 
network traffic, take apart and construct messages as long as it has all the elements to 
do so in a proper way (e.g., it should know the appropriate key in order to perform a 
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cryptographic operation). This model disallows guessing unknown values and perform- 
ing operations that are considered "hard" (e.g., recovering a key from a ciphertext). Let 
I be a memory predicate belonging to the intruder, so that I(m) indicates that it knows 
(or has intercepted) the message m (this most simplistic setting can be considerably 
refined). Then, the Dolev-Yao model can be expressed by the following rules: 

Nh(x) ~ I(x) 
M, (x) ---* I ( x ) ,  M, (x) 

I(u), X(op~(~)) ~ / ( ~ )  
i ( x )  --, I ( x ) ,  : ( x )  

I(x)----* Nh(x) 
• --, 3 x . I ( x )  

I ( , )  ~ I ( o p ( , ) )  
I(x) - ~ .  

The first line corresponds to network interception and injection. The second is access to 
public information and data generation (when allowed). The third abstractly expresses 
dismantling and constructing messages (of course, some combinations are disallowed). 
The fourth line contains administrative rules. Note that, unsurprisingly, these capabili- 
ties correspond very closely to the rules of the Fine-Grained MSR [3]. The correspon- 
dence would be even more exact if we had reduced the fight-hand side to atomic con- 
structions. 

The Dolev-Yao model allows the intruder to perform "easy" operations. Once we 
explicitly assign cost to actions, we can introduce and reason about intermediate de- 
grees between "easy" and "impossible", which is really what the Dolev-Yao restrictions 
boil down to. Indeed, we will allow attacks that involve performing "hard" operations, 
guessing values, and subverting principals. We will also be able to quantify "easy", 
"hard" and levels in between. 

The subversion of a principal is easily modeled by another intruder memory pred- 
icate, X(A). The first row of rules below represent subversion and rehabilitation of a 
principal A. The others stand for access to A's private data and for the intruder coveting 
its traces. 

• - - ,  X ( A )  

X(A),MA(x)  ~ X (A) , I ( x )  
X(A) --,. 

X(A),I(x)--- ,  X(A),MA(X) 

We model "hard" operations by simply extending the set of patterns allowed in 
rule template (I(Y), I(opu(x)) --* I (x) )  to represent non Dolev-Yao inferences. For 
example, taking a discrete logarithm is expressed as: 

I(g), z(g~) ~ I(x). 

Clearly there are limitations to this method as it applies only to the inversion of bi- 
jections. Other "hard" operations, such as finding hash collisions, can be modeled as 
guessing problems. 

The trivial guessing rule (. ~ I(x)) is unrealistic and hard to work with from a cost 
accounting point of view. Therefore, following the pioneering work of Lowe [ 11 ], we 
require that every guess be backed up by a verification procedure• We express both the 
guess and its verification as an MSR role of the following form: 
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3'/Z, V l ,  V2 . . . .  __..+ GU(x), . . .  } Guess 
% .  

• • " 1 

• .. ~ . . . ,  V1 vl (ml) / Verification 
, v ~ ( m ~ )  . - - .  

On the right, G, V1 and V2 are local state predicates (generically called L in Section 2) 
that hold the guess and two constructions (the verifiers) that should produce the same 
value if the guess is correct. See [11 ] for conditions required of acceptable verifiers. 
The exact format can vary, as illustrated below. Guessing roles are protocol specific, in 
general. 

As a concrete example, the following role expresses the guess of a Diffie-Hellman 
exponent: 

~ ,  ~. [ i(g~) ~ cu(~,) ,  v,,(g~, gx,) 
[ CU(x), v~(y, v) ~ z(x) 

Note that, although this role is functionally equivalent to the discrete logarithm specifi- 
cation above, the exponent is explicitly guessed here rather than reverse-engineered as 
above. 

Our final example describes the guess of the shared key k in A ~ B  • {na}k  
the toy protocol informally described to the right of this text. B ~  A : n,,, 

3u, v. [ . ----~ 3n.GU(k), Nh({n}k), VV(n) l 
GU(k),  Y~(n), N h' (n) ~ I ( k )  

Here, the intruder generates a nonce n, makes a guess for k and sends the expected 
message to/3 (we ignored header-formatting issues for simplicity). This copy of n is 
the first verifier and is memorized in the predicate V. The second verifier is simply the 
response from B: if the guess was correct, they will be equal, otherwise it will either 
come back as a different bit-string, or be dropped by B altogether if the forgery attempt 
is uncovered. 

4 Cost  Mode l  

Traditional approaches to protocol analysis are only interested on whether an action is 
applicable in a given state. Actions that are not applicable, either because they cannot 
succeed or because "computationally infeasible", are unobservable. In this paper, we 
are concemed with the cost of successful and failed applications. Cost will be mea- 
sured in terms of whatever resource of interest changes as a result of attempting the 
action. Primary focuses are time and storage, but other parameters, such as energy, or 
the lowered randomness of some quantity (that may be used for side-channel attacks, 
for example) can also be used. 

4.1 An Algebra of Cost 

We will now define a generic infrastructure for expressing cost. The details of the re- 
sulting algebra shall be application specific. 
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We want to associate a value to each type of cost incurred by a principal. A type, 
denoted with r ,  describes a resource of interest, time, space and energy are typical, but 
more refined types, e.g., verification vs. construction time, can also be expressed. A cost 
base relates a cost type r to a principal a. We write it as r '~. 

How much of a given cost type is incurred by a principal takes the form of a scalar 
value, which we will denote with s. Scalars can be abstract quantities (e.g., Meadow's 
"cheap", "medium", "expensive", etc. [13], or just 0 and oo in a Dolev-Yao setting), 
numbers (in N or ]l~ for example), or even complexity bounds in O-notation. It is useful 
that some form of addition (written +)  and a unit (0) be defined on scalars. These could 
be just free symbols, but + can also be an actual operation. It is also very useful to have 
a comparison relation (written <, with the usual variants) among scalars within a cost 
base. Note that some forms of cost never decrease and + should be monotonic with 
respect to < for them. Time or energy are examples. This is the only case considered 
in [ 13]. Other costs, in particular space, do not need to be monotonic, and this restriction 
does not apply. 

A cost item is a cost base r "  together with a scalar value s. We denote it as ST a. 
We extend the scalar comparison operators to cost items only when the base is the 
same. Such an extension rarely makes sense if the cost type is different, and should be 
evaluated on a case by case basis when the principals are not the same: one byte is one 
byte for everybody, but performing a decryption will generally take different amounts 
of time when hardware or implementation varies. 

At this point, a cost vector C is simply a collection of cost items 817"~'1,..., 8nT~.'~ n, 
which we write ~-]i si7~, ~. Given a cost vector C, we write C a, C~-, and C~ for its pro- 
jections relative to principal a, cost type T, and their combination, respectively. For 
example, C, °" - ~-~-oec 8Ta" It should be noted that a cost vector can be seen as a 
generalization of the notion of multiset. 

4.2 Cost Assignment for Protocol Operations 

In spite of their apparent simplicity, cryptographic protocols comprise a large number 
of operations and action classes. We will now examine them and comment on their 
characteristics in term of cost. Most of the issues are discussed relative to Fine-Grained 
MSR, and transpire also at the level of MSR. Needless to say, similar considerations 
apply to other specification languages. 

Network:  The network operations observable in MSR are receiving and sending a mes- 
sage. We denote their associated cost as/,6N= ~ and/.6:=~N , respectively. This gener- 
ally includes time and storage components. Accounting for other transmission costs 
such as network latency could be easily accommodated through a simple refinement 
of (Fine-Grained) MSR. 

Storage: Each of public (M,) ,  private (Ma) and local (L) storage has a temporal and 
a spatial component. Storage operations include allocating and recording data (e.g., 
IY,:_.~M,~) , disposal (/~MaA_) and look-up ( n M a ) .  Notice in particular that the spatial 
component of storage disposal is negative. Note also that some values may be easier 
to look-up than others, and so t~M~ depends on the actual predicate M.  

Registers: We do not associate any cost with register management, preferring to fold 
it into the operations they participate in. 



138 lliano Ccrvcsato 

Constructor operations: Each constructor op has a number of operations associated 
with it. We consider its use as a building block of a message (n~op) and during 
verification. In the latter case, we distinguish between the cost of success (nopx/) 
and failure (nop±). The cost of performing Dolev-Yao and non Dolev-Yao opera- 
tions is computed in the same way in our model. What will change is likely to be 
the magnitude of the scalar values. 

Data operations: Atomic values are subject to generation (using 3 in MSR), and generic 
values can be tested for equality. We write n¢~ and he= respectively, where ( rep- 
resents some notion of type of a value. 

Subversion: We write n.?,~ for the cost of subverting principal a and n!, for the cost of 
its rehabilitation. 

Guessing: The cost of a guessing attack can be modeled in two ways. At a high level of 
abstraction, we can associate a cost to a verification procedure pc as a whole, which 
accounts for the cost of the expected number of guesses and verifications until one 
is successful. We write npc for this omnibus, MSR-oriented, cost. Alternatively 
and at a much lower-level level of detail, we can compile the verification procedure 
to Fine-Grained MSR, obtaining a role t~, assign a cost to the individual guess itself 
(no), compute the cost of each guess and verification, C(/3), as outlined below, and 
estimate the number of attempts it may take until a successful guess is produced. In 
general, this type of accounting will have the form f (n)C(~),  where f is a function 
and n is a parameter such as the length of the data to be guessed. 

Each of these operations, with sometimes the exception of guessing, are executed by a 
single principal, say a (which may also be the intruder). Each will in general involve 
several cost components. Therefore, n_ corresponds to a cost vector relative to a. Guess 
verification can be performed locally by the intruder, or require exchange of messages 
with one or more principals. In the latter case, the cost vector will have appropriate 
components for each of the involved parties. 

In general, the accuracy of a cost-based analysis directly depends on the precision of 
the cost associated with each basic action. For example, a classification into "cheap" and 
"expensive" forms the basis for a Dolev-Yao investigation, while adding an intermediate 
"medium" value already provides a setting in which one can start analyzing denial- 
of-service situations [13]. Moving to numerical classes adds flexibility, but non-trivial 
problems quickly emerge as accurate physical measurements can be difficult to gather 
and work with when dependent on hardware, implementation and system load. In this 
paper, we provide a flexible framework for taking cost into consideration, but have little 
to say at this stage about how to best determine the granularity and magnitude of basic 
costs. 

4.3 Cost Calculation in MSR 

The notion of cost naturally extends from individual operations to traces. First, we de- 
fine the cost of a Fine-Grained MSR rule by simply adding up the cost of each operation 
occurring in it. There is little to do in the case of the verification rules, while building 
rules involve some work. Some rule have the option of failing, and therefore both a suc- 
cess and a failure cost is associated with them: we shall consider them as if they were 
different operations. 
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Consider now a trace T Co r1'~1 ~'"~ - -  > " " " : >Cn+ l. Let aj be the principal executing 
aj (rj,  cj), and Ca' (rj) = ~-]i sijr~j its cost. The cost of the trace is then given by 

a j  

j j i 

The cost calculation for a trace extends naturally to the cost of a script since substi- 
tutions do not play any role when computing a cost. The presence of alternatives in an 
attack script forces us to define cost for them over (multi-dimensional) intervals rather 
than points. We have the following definition: 

C(.) = Io 
C(A (~, ~)) - C(A) + c"ro~, (~) 
C(~n A) = ~ C(A) 
C(A~ + A2) = [min{A1,Az},max{A~,A2}]  

Here, Io is some fixed interval, typically [0, 0]. We extend scalar product and addition 
to intervals by applying these operations to its endpoint, i.e., n[a, b] -- [ha, nb] and 
[a, b] + [c, d] = [a + c, b + d]. 

Since most tools for security protocol analysis rely, often symbolically, on traces, 
the infrastructure we just outlined is compatible with their underlying methodology. 
Indeed, systems based on explicit model checking can immediately take costs into ac- 
count, while symbolic approaches need to have the cost model indirectly encoded as 
part of the problem description. Similar considerations applies to analysis based on 
theorem proving. In general, how easy it is to extend a tool with cost computation capa- 
bilities depends on how deeply the intruder model is ingrained in their implementation. 
The required modifications include tracking cost and allowing for non Dolev-Yao in- 
truder actions. 

Note that any tool natively supporting cost calculation (or even retrofitted to do so) 
can still perform traditional verification by assigning cost cxz to non Dolev-Yao intruder 
actions and abandoning any attack trace as soon as its cost reaches c~. 

5 Quantitative Security Analysis 

A first-class notion of cost leads to protocol analysis opportunities that lay far beyond 
the traditional Dolev-Yao feasibility studies. In this section, we will examine some of 
the possibilities related to time and space, well aware that many more lay out there, 
waiting for the imaginative mind to grab them. We elaborate on two non Dolev-Yao 
forms of verification: threshold analysis tries to determine what attacks are possible 
given a bound on the resources available to the intruder alone; comparative analysis 
studies attack opportunities when the resource bounds of all involved parties are taken 
into consideration. Denial-of-service attacks are a prime example. 

5.1 Threshold Analysis 

A rather trivial use of cost is to first ascertain that a protocol is secure relative to the 
Dolev-Yao model, and then compute the amount of resources it requires. This may 
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be useful already in situations characterized by limited capacities, such as protocols 
implemented on smart-cards. If n n w  is an inventory of the available resources, this 
problem is abstractly stated as "C(TER) < nnw?".  

Dually, an intruder can pre-compute the cost of mounting an attack on a discovered 
vulnerability. This is generally not very interesting in a Dolev-Yao setting where an at- 
tack uses the same kind of operations as the protocol itself, and the intruder is implicitly 
assumed to have access to resources similar to honest principals. This becomes crucial 
when the intruder experiments with "computationally infeasible" operations, princi- 
pal subversion, guessing, or a combination of these non Dolev-Yao operations. Indeed, 
some protocol analysis tools already allow principals to "lose keys" [12], but do not 
assign any special status to this operation. The intruder can then calculate the cost of a 
candidate attack and compare it with its available resources (dictionary attacks on pass- 
words are the simplest instance), in symbols "C(A) _< n1.9''. A protocol verification 
tool can similarly discard attack traces as soon as their cost exceeds a predetermined 
amount of intruder resources. 

A protocol designer can go one step further by keeping aspects of the cost calcula- 
tion as parameters. He can then determine value ranges that would require extravagant 
amounts of resources from an intruder in order to implement the attack (given fore- 
seeable technology): "minx.C(.A(x))  >> niT' .  This is how key lengths and other pa- 
rameters of cryptographic algorithms have traditionally been set. The approach we are 
promoting extends this form of safe parameter determination in that it takes into account 
the whole protocol rather than an isolated cryptographic primitives. This is particularly 
valuable as modem ciphers offer the option of variable key lengths. 

5.2 Comparative Analysis 

A cost infrastructure can be useful to a designer to choose a protocol among two candi- 
dates based on resource usage "C(T el ) > C(T  v~ )?", or on their resilience to a certain 
type of attacks: "C(JtI) > C(.A2)?". By the same token, an attacker or law enforcement 
agency can evaluate attack strategies based on their cost. 

Denial-of-service (DOS) attacks operate by having a possibly distributed intruder 
waste a server's resources with fake requests to the point where legitimate uses cannot 
be serviced in any useful time flame (or the server crashes). It stresses the bounds on 
the server's resources, typically time (or service rate) and storage capacity. A precise 
cost analysis, like the one proposed here, helps compute actual values for the resources 
used by both the intruder and the server at different stages of the protocol execution. 
The statement here is "C u (,,4) > C z (A)?". Given assumptions about performance and 
buffer sizes, it can help determine how many requests can be handled concurrently and 
in particular by how many compromised hosts. The same calculation can be used to 
determine the amount of resources needed to withstand a given target level of attack. 

Consider the abstract protocol below (left), where a client C initially contacts the 
server S with some message 17/,1, is given a challenge m2, and receives the requested 
service m4 only after it has provided an adequate response m3 to m2: 



QoP -Towards a Notion of Quantitative Security Analysis 141 

C S 

C _...+ S . T/%1 81G , tbC1 rrtl) ~;vS 1 S f  
<Tr~ 2 

s --, t.fl ,m, tf, d [= o] 
T 

The exchange on the right shows the time (t~i) and space (s~") cost incurred by each 
principal. Let us measure time in seconds and space in bytes. We wrote t~i for the time 

O, ! a spent building message mi and tvi for the time a' spent verifying it. For simplicity, we 
assume that the time incurred in a failed verification is also t~i. Our approach allows for 
a much more precise model. It is reasonable to assume that the server will not allocate 
any buffer space upon sending m4, hence s s -- 0 and that it releases any used buffer 
space as soon as it has verified m3, i.e., s s = - ( s  s + ssa). We further assume that the 
server will time-out after T seconds if it does not receive message m3 from C. In this 
case it will deallocate the space s s + s s. 

This simple protocol template is susceptible to three forms of time DoS, and one 
form of space DoS: 

- An attacker can induce the server to waste time unsuccessfully verifying a fake 
message ml .  This time is at most tSl . The server's verification rate is therefore at 
least 1/tvs1, which must be matched by the intruder in order to successfully attack S. 
While this is easily achieved as a fake m l can be an arbitrary string, tvSl will often 
be comparable to networking overhead in a protocol designed with DoS attacks in 
mind. 
As a concrete example, a simple initial request containing the client's name, a 
timestamp, a nonce and a checksum will take under 1 #s to verify on fast hardware. 
Therefore, the server can process at least 1,000,000 requests per second. Assuming 
that the server has a 1 Gbit/s network interface and that request packets are 50 bytes 
long (i.e., 400 bits), the network layer will be able to deliver 2,500,000 packets per 
second to the protocol. 
A dedicated attacker may match these numbers. He may also perform the attack 
through a number of compromised hosts, which will typically have more limited 
computing power and bandwidth. While an arbitrary string can be put together in 
l#s  on many home computers, typical outbound network speeds are less than 4 
Mbit/s. Therefore, the attacker will need to synchronize 250 compromised hosts to 
overwhelm the server with a simultaneous attack. 

- A time-out waiting for the reception of m3 leads to another potential point of DoS. 
In this case, the server has spent tvS1 + ts2 while the attacker has incurred a cost t~ .  
Again, this gives us a way to compare the attacker's and the server's rate. 
Continuing our example, tsl  + ts2 may amount to 100/zs as the server's response 
will generally involve the generation of a nonce or of cryptographic material. There- 
fore, the resulting rate may be 10,000 replies per second. 

- Another option for time DoS is the reception of a fake message rrt3 by S. Here S 
needs to spend tv s + tbS2 + tsa seconds, while the attacker's cost amounts to tbCl 
plus the minimal time it takes to produce the counterfeit m3 (the intruder is likely 
to ignore m2). This strategy wastes more server time, but it will release storage 
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earlier unless carefully timed. Moreover, the reception of a large number of garbled 
message may trigger countermeasures on the server. 
Looking at our example again, the verification of a fake message m3 will typically 
involves substantial use of cryptography, often expensive asymmetric cryptography. 
We can then take tvSl + t~2 + tvs3 to be 10 milliseconds, which results in a rate of 
just 100 exchanges per second. 

In all these situations, the resilience of the server is given by comparing the service rate 
as measured above, with the individual attack rate multiplied by the number of attackers. 
Our methodology can give useful ranges as it takes into account the exact structure of 
the messages involved, including that of the messages faked by the intruder. 

- A time-out on m3 is also the target of a space DoS. Let B be the size in bytes of the 
buffer where S stores received bits of m l and generated fragments of m2. Then, 
S can serve at most n(B)  - B/(SSl + ss2) concurrent requests: the larger B, the 
larger the number of parallel attacks the system can withstand. The space allocation 
rate is given by (SSl + s~)/( t~l  + tbS2) bytes per second relative to an individual 
attacker, while the space reclamation rate is at least (SSl + sS2)/(T + tvs3). 
Now, given B, we can calculate optimal values for the time-out T. First, T should 
be large enough for all legitimate usage pattern to complete: T > train. On the 
other hand, it should not be so large that an attacker coalition may file more than 
n(B)  - 1 fake service requests while waiting for time-out on any initial exchange: 
T < (tvs1 +tbs2) × ( n ( B ) -  1). We are looking for the maximum value o f T  satisfying 
these bounds. 
Concretely, if sis + s~ -- 128 bytes, t~l + tbS2 -- 10 milliseconds, tmi, -- 90s, 
and the maximum number of expected parallel attacks is 10,000, we deduce that 
B should be at least 1.28 Mb, and that T can be about 1 minute and 40 seconds. 
If this value is too low, then B should be increased (which would make the system 
resilient to more concurrent attacks). 
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Abstract. During the last years a couple of attacks on generic anonymity pro- 
tocols emerged, like e.g. the hitting-set attack. These attacks make use of infor- 
mations gained by passively monitoring anonymizing networks to disclose the 
communication profile of the users. 
It has been proven that the longer a person, we call her Alice, communicates 
over an anonymizing infrastructure using the same set of peers (i.e. following a 
prefixed profile), the more likely it gets that a link between her and her peers 
can be detected. On the other hand, if she changes her peers dynamically, this is 
getting harder. 
In this work we are going to present a method to calculate a lower bound of 
observations that is needed to identify all peer partners of Alice (i.e. total break) 
by assuming a prefixed personal profile of Alice. We claim in this work that this 
number is comparable to the well known measure 'unicity distance' in the area 
of cryptography. 

I Introduction 

Anonymity in networks has been a hot topic ever since David Chaum's publication 
about Mixes to guarantee anonymous communication [25]. A Mix forwards messages 
on behalf of the original senders to hide their true identity. To avoid traffic analysis 
attacks, the messages are encrypted, stored and tbrwarded in a random order. Further 
enhancements include the deployment of  multiple Mixes in a so called Mix network or 
Mix cascade, to avoid corrupted Mixes from learning sensitive information. 

There were several proposals made, to improve the security of  a basic Mix (see 
e.g. [2], [27], [29]). On the other hand, even the most elaborate system (e.g. pool mix) 
can be generalized to a simple threshold mix I by determining the effective size o f  an 
anonymity set as suggested in [ 15]. 

Never the less, the proposed protocols proved to leak informations. In the course of 
the time, more and more sophisticated attacks on these protocols were developed. Those 
allowed to recompute the sender/recipient relation which was meant to be hidden by the 

J Note, that this assumption is only approximately satisfied. However, the 'level of approxima- 
tion' can be determined by the user (see [15]). 
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anonymizing infrastructure. Attacks range from simple as the Sybil attack [30], which 
attacked the anonymizing infrastructure itself, to intersection attacks (e.g. the disclosure 
attack [ 1 ]). Note that the intersection attack is hard to thwart, since it assumes only a 
passive observing attacker. However, the attacker applying the disclosure attack has to 
solve an NP-complete problem. Thus, refinements were suggested in [3], [28] to avoid 
solving NP-complete problems (see also [24]). 

Intersection attacks and especially disclosure attacks in general use slight variations 
of the same model of abstraction: traffic of data is presented as single messages which 
are passed as a single piece of data, containing only a sender address, a recipient ad- 
dress and some encrypted data, padded to a unified length. While the attackers are not 
strong enough to break the encryption, such that the payloads content does not give him 
any information, the attacker is allowed to compromise some of the mix-nodes on the 
network and tap all lines. 

In this work we use information theory to determine the number of observations 
that an attacker needs to detect the profile of a victim (e.g. Alice). By determining 
this number we measure the anonymity independently of an attack and of a genetic 
anonymity system. 

1.1 Contributions 

Our contributions in this work is new 2 and are twofold: 

Anonymity Measurement We determine the number of observations by using infor- 
mation theory that is needed to identify the profile of Alice. We show that this 
number has similar features as the well known 'unicity distance' measure [ 16]. 

Risk Measurement The measurement of the anonymity is conservative 3. Thus, this 
number can be used as a risk value, e.g. if Alice communicates less than the iden- 
tified number or changes her profile (e.g. by using dummy messages) then she is 
safe. 

1.2 Roadmap 

Since the goal to measure anonymity is not new we present in the next section related 
works with the same goal and compare our approach to the others. In section 3 we give 
a detailed view on the used model of anonymizing networks. The main part of this work 
is the information theoretic investigation of the stated problem. In section we present 5 
some accompanying experiments. The results will be discussed in section 6. Finally we 
will conclude the paper with closing remarks in section 7. 

2 R e l a t e d  W o r k s  

It is fundamental that anonymity providing techniques can be described by the fact that a 
subject is only anonymous within a group of other subjects, the so called anonymity set. 
Consequently, the usage of anonymity set plays a key role in this area of investigation. 

2 We underpin our claim by an extensive literature research. 
3 Compare this to cryptography. 
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We classify the anonymity measurement approaches in two distinct classes: possi- 
bilistic and probabilistic approach. The possibilistic approach mainly define the anony- 
mity by its anonymity set size [2]. The probabilistic approach considers the likelihood 
of an element of the anonymity set, i.e. the elements of the anonymity set have dif- 
ferent probabilities. These different probabilities may be so small that some elements 
may be excluded from the anonymity set. If the attacker gains no information (i.e. the 
a priori probability is the same as the a posteriori probability) then it is defined as per- 
fect anonymity according to Shannon [ 16] else as ordinary anonymity (see for more 
information [ 12]). 

In the field of measuring and modelling the anonymity, following works are known 
to us: 

- In [12] a probabilistic model is suggested according to Shannon [16], i.e. consid- 
ering a priori and a posteriori probability. Unfortunately, the work gives only the 
formal definition, but does not demonstrates how to calculate the probabilities. 

- A clear possibilistic approach is given in [2]: in open environments like the Internet 
a user is a member of the anonymity set if the probability that the user has initi- 
ated the action is non-zero. Following their approach, the anonymity size can be 
determined according the given rule as a measure of anonymity (pure possibilistic 
view). 

- Formal languages and logics have been used to suggest metrics considering the 
anonymity set in [ 19] and [ 14]. However, they do not consider a probability distri- 
bution on the anonymity set. Thus, it is a possibilistic approach. 

- In [13] anonymity is defined as informal continuum. This model defines six degrees 
from absolute privacy to provably exposed. An extension to the model can be found 
in [ 17]. 

- A further possibilistic approach can be found in [9] that models the attacker's inabil- 
ity to distinguish between observational equivalences by using model equivalence 
relations. 

- [8] and [15] use information theory to measure the anonymity with the notion of en- 
tropy. The more evenly the probability distribution is distributed over the anonymity 
set the greater the uncertainty. They also define the a posteriori entropy to be the 
effective size of the anonymity probability distribution [15]. Hence, this approach 
combines the both approaches, i.e. probabilistic and possibilistic approach. 

- In [ 1 ] an attack is performed by considering the anonymous system as a black box 
and only analyzing the anonymity sets. It is shown that repeated communications 
disclose all hidden peers even if the anonymity system was otherwise perfect. En- 
hancements to this approach are suggested in [3], [5]. 

- In [4] the authors extend the work of [8], [15] by using the notion of unlinkabil- 
ity. Their model is capable only of measuring the anonymity of an actor within its 
anonymity set regarding to one specific action, but measure the anonymity by un- 
linkability of a subset of actions within a given system. However, it is an abstract 
extension of the prior works without showing any concrete applications of their 
theory. 

- In [7], [6] the approach uses covert channel analysis to measure the anonymity, 
i.e. how much information can be transformed to the attacker using an anonymity 
system. 
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In our approach we extend the work of [4], [8], [15], [1], [3], [5] in that sense that 
the point where the attacker has identified the peer partners of Alice. Hence, after this 
point the attacker can reconstruct all the past communications of Alice 4. And, if she 
keeps her profile, all future communications are not protected. We call this total break 
of the anonymity system or universal break. Consequently, we do not measure anymore 
the anonymity only by using the anonymity set (i.e. neither the size of the anonymity 
set nor the probability distribution on it or both). We use anonymity sets just to describe 
the anonymity system. By doing this, we assume that the anonymity of a system is also 
highly dependent on the users profile. In short, we measure the anonymity by relating 
the number of observations of effective anonymity sets and the likelihood of a successful 
attack. If the likelihood becomes one after a number of observations, then this number 
measures the anonymity. Note, that there are several attacks with this goal. Here, we 
want to investigate the general link between the observations and the likelihood of a 
successful attack. 

In our paper we use information theory to investigate the link between the number 
of observations and the likelihood of a successful attack. The reason for that is that 
we assume a strict behavior of Alice modelled by X (t). And furthermore, if we model 
the communication of the others as noise n(t) then we can ask ourselves what is the 
information leakage or information gain if the attacker observes X (t) + n(t), or where 
is the point when the attacker can identify X(t)  (compare this also with [3]). 

Our approach is highly related to the Shannons noisy channel model, which he has 
also used to model the information flow in a cryptographic system. He measured the 
secrecy of a cryptographic system by the so called unicity distance, i.e. the smallest 
amount of ciphertext needed to uniquely determine the key [ 16] (i.e. total break). The 
unicity distance has the following features (compare with [31 ]): 

- It gives a conservative estimate of the amount of ciphertext needed to break a cipher, 
i.e. real systems need more ciphertext. 

- It shows, that exhaustive key search will always find the key except if 
• always a randomly key is chosen for each letter. 
• the available cryptogram is shorter than the unicity distance. 

In section 6 we discuss and identify a similar structure in the field of anonymity. 

3 Mode l s  and Methods  

The purpose of this section is to introduce mixes as an example of an anonymity tech- 
nique and explain the general models of abstraction. 

3.1 Mixes 

As already mentioned in the introduction there are a number of anonymity techniques 
to prevent eavesdroppers from gaining information about a user's traffic. Since the con- 
tent is usually encrypted, our focus is restricted to the traffic layer. Anyone that can 

4 Except the case if several peer partners occur in the same anonymity set. In this case the 
uncertainty is limited to these peers. 
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read a packet can see the origin and the destination, even if its content is unreadable. 
Anonymity techniques strive to prevent this. 

As an example: Alice wants to post her political opinion to a web forum where op- 
positional members exchange information. Unfortunately she lives in a country where 
the government is suspected to track down oppositional members. If she would just send 
the encrypted message, e.g. using HTTPS, her Internet Service Provider (ISP) could no- 
tice this action and save this to a record. This could lead to a point where Alice herself 
could get suspected because she has exchanged data with some entity. 

To avoid this, Alice could use some service like JAP [23]. For this she installs a 
proxy on her computer that encrypts all of her traffic and sends it to a JAP proxy (i.e. 
Mixes [25]). Along with her there are several other, maybe several thousand, users doing 
likewise. The server decrypts those packets and forwards them on behalf of the users. 
Any returned data will be sent to the users on the same way. 

Thus, any primary evidence has now gone. What remains is that Alice sends out 
data to an anonymity server (e.g. Mixes) which itself does not provide any other service 
than untraceable packet forwarding. Because of this functionality a potential attacker is 
not able to link an incoming packet to an outgoing packet. Using this service, Alice is 
beyond any suspicion to have send any packets to the oppositional forum because any 
of the other users could have done it, i.e. Alice and the other persons build the so called 
anonymity set. 

/ 
R 

Fig. 1. Formal model of an anonymity set. In any anonymous communication (e.g. Mixes), a 
subset S' of all senders S sends a message to a subset R' of all recipients T~. 

Mixes collect a number of packets from distinct users (anonymity set) and process 
them so that no single participant, except the mix itself and the sender of the packet, 
can link an input packet to an output packet [25]. Therefore, the appearance (i.e. the bit 
pattern) and the order of the incoming packets have to be changed within the mix. The 
change of appearance is a cryptographic operation, which is combined with a manage- 
ment procedure and a universal agreement to achieve anonymity: 

User Protocol: All generated data packets including address information are padded 
to equal length (agreement), combined with a secret random number and encrypted 
with the public key of the mix node (see also [26]). A sequence of mixes is used to 
increase the reliability of the system. 
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M i x  P r o t o c o l :  A mix collects bo packets (called batch) from distinct users (identity 
verification), decrypts the packets with its private key, strips off the random num- 
bers, and outputs the packets in a different order (lexicographically sorted or ran- 
domly delayed). Furthermore, any incoming packet has to be compared with for- 
merly received packets (management: store in a local database) in order to reject 
any duplicates. Every mix (except the first) must include a functionality ensuring 
that each received packet is from a distinct user, because only the first mix can 
decide whether or not the packets are from distinct senders. 

Applying this protocol in closed environments where all subjects participate in all 
anonymity sets, the mix method provides full security. The relation between the sender 
and the recipient is hidden from an omnipresent attacker as long as: 

(a) One honest mix is in the line of the mixes which the packet passes, i.e. one that is 
not corrupted. 

(b) The (bo - 1) other senders do not all cooperate with the attacker. 

[ 12] states that the mix method provides information-theoretic deterministic anony- 
mity based on complexity-theoretic secure cryptography. 

3.2 M o d e l  

In this work we consider the model that has been considered by most of the papers 
referred to in the introduction [2, 27, 1,3,28,24]. It is generaly considered to be an 
abstraction from a specific type of anonymity service or implementation. 

In this model, we assume that a subset S' of all senders ,S sends a message to 
a subset R ~ of all recipients 7E, like shown in figure 1. Furthermore, in this model the 
adversary can easily determine anonymity sets, e.g. we assume that all network links are 
observable (see [25]). However, this can be assumed also in a real world scenario if the 
attacker is able to observe messages to and from an anonymity service. The following 
properties of an anonymity system are generally assumed: 

- In each anonymous communication, a subset S' of all senders S sends a message to 
a subset R ~ of all recipients ~ .  That is, S' c_ S and R' c_ T~, as Figure 1 illustrates. 
In a particular system, the set of all senders S can be the same as the set of all 
recipients ~ .  

- The size of the sender anonymity set is IS'l = bo, where 1 < bo << ISI. Note that a 
sender can even send multiple packets per batch. 

- The size of the recipient anonymity set is IR'I = bl, where 1 < bl << I~1 and 
bl < bo. That is, several senders can communicate with the same recipient. 

- The anonymity system provides provides perfect untraceability between incoming 
and outgoing packets for a single round of operation. 

The typical values for IS'l, IR'I, ISI, and I~1 vary from implementation to imple- 
mentation and with the environment in which they operate. In [23] an implementation 
is presented in which ISI is around 20,000. They don't give typical values for IS'l, but 
we generally expect IS'l < 100. 

For the sake of simplicity the following assumptions are added: 
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- Alice is a sender using the system to hide her m communication partners 79 -- 
{Pl, P2, . . .  Pro}. She sends t messages using the system, while the attacker notes 
down the observations O, the respective recipients sets O - {R~, R ~ , . . .  R~ }. Note 
that for all R~ E O there is 79 N R~ ¢- ~. 

This can be accomplished by restricting the attacker to observe only the anonymous 
communication of Alice. We will refer to the communication partners later on also 
as Alice's peers. 

- The anonymizing infrastructure uses a fixed threshold mix technique. Note that 
other anonymity techniques can easily be reduced to this generalized model by 
determining the respective anonymity sets 5. 

- the implementation is perfect, thus providing unlinkability in each single(!) round 
of the system, thwarting replay attacks, sybil attacks and other attacks trying to 
exploit weaknesses in the implementation and deployment. 

3.3 Attacker Model 

The attacker is defined to have full passive access to the network, i.e. he can read all 
data from the complete network. He may also corrupt all but one node and some of the 
participants, but may not gain full control over the network, such that he can trivially 
gain all required informations due to b0-1-at tack 6 or likewise methods, i.e. he is forced 
to use the informations he gained from wiretapping to break the system. Having access 
to O, the attacker wants to reveal 7 9. 

Note that this is consistent with the last paragraph of section 3.1. 

3.4 Putting all together 

Thus we consider the tupel A,MOA/" = (79, ~ ,  t, C, O) to be a complete description of 
a situation during an attack in this model: 

7 9 Alice's set o f m  peers (79 = {Pl,P2,... ,Pro}) 
is the complete set of possible recipients, i.e. peer partners (79 c_ 7?,,) 

t is the number of messages, Alice has sent 
C is the list of the t peers, Alice contacted 7 with her t messages, in the order, she 

contacted them (C = (e l ,  c 2 , . . .  , c t ) ,  where ci E 79) 

0 is the list of t observations, made by the attacker, in chronological order (69 - 
(R], R ~ , . . .  R~), where R~ E (,]~bo-1 X 79) and ci E R~) 

5 This might include bringing in some error probability, but this probability can be reduced 
below any value e > p(error) > O. 

6 The commonly known name is n - 1-attack, we use this term in accordance to the naming of 
our variables. 

7 Thus this string is abbreviated with a C. 



152 Dogan Kesdogan and Lexi Pimenidis 

4 Information Theoretical Approach 

In order to give a measurement of the degree of anonymity provided by a system, we 
determine the amount of informations gained by a passive observer. By calculating 
entropies of sets we determine the point in time, when there is no more uncertainty 
about the set of peers of Alice. This uncertainty is represented by a value of entropy. 
The entropy H(R) of the set R is defined as the uncertainty about a certain element 
rj E R, chosen from its set with the help of probability vector p(rj) .  It is generaly 
defined as 

H ( R )  - - ~ p(rj) logp(rj) (1) 
rj ER 

4.1 General equation 

Following the model from section 3.2 we calculate the lower bound of attacks on an 
anonymity system, using an approach similar to Shannon's approach in [ 16]. From the 
general equations, where H denotes the value of entropy: 

H(U, V, W) = H(UIV, W) + H(V, W) 
H(X, Y ) =  H(XIY ) + H(Y) 

(2) 
(3) 

it follows, with an appropriate change of variables, that 

n(c, p, o) = n(clp, o) + n(p,  o) 
n(o ,  p, c) = n(olp,  c) + n(p,  C) 

H(ClP, O)+ H(P, O) = H(OIP, C) + H(P,¢) 

(4) 

(5) 
(6) 

Remember that 79 is the set of Alice's peers, C is the list of Alice's peers in the order 
they were contacted and O is the list of observations made by an adversary. 

Due to equation 3 it follows that 

H(P,C) - H ( C I P ) +  H ( P )  

and: H(T', O) : H(P[O)+ H(O) 
(7) 
(8) 

Putting formulas 6, 7 and 8 together and resolving it to H(PIO), it follows that the 
entropy of the set of peer partners, given only the ability of a global observer, results in: 

H(P[O)  -- H(OIP, C) + H ( C I P ) +  H ( P )  - H(O) - H(CIP, O) (9) 

The entropies ofT', O and CIT" are easily calculated. H(OIT', C) equals the entropy 
of all possibilities a stream C can be disguised in a given setting A.AfON" and is slightly 
more complicated. H(CIP, O) quantifies the uncertainty that remains in decoding C 
given the attacker knows 7 9 . 
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H(7") is the entropy about all possible sets of Alice's peer partners. If [7' I -- m is 
known and all hosts in 7~ are equally likely, then H(7") = log 2 (IT~l)m 

H(O) equals the a priori entropy over all possible observations, that an attacker could 
possibly make, thus H(O) = t bo log2 [~[ 

H(C[7") is the entropy that is contained within the string C. Thus, if Alice chooses to 
contact her peers randomly one-by-one, it equals H(C) - t log 2 m, which is its 
maximum value. If Alice's traffic contains more detailed pattern, they reduce this 
value appropriately. 

H(O[7", C) is the a posteriori entropy of all possibilities to express the stream C, con- 
sisting of elements of P ,  in the attacker's observation stream O. To properly cal- 
culate this value, we need to know, for each peer partner p E 7" on which subset 
£ p  C ~bo we can map p E 7" H £p C T~ b°. 
We therefore need to determine the number of elements (xx, x 2 , . . .  Xa) E 7~ b'' that 
contain p at least once. The size of the sets/2p can be calculated by 

I ~ l -  17~1 b° -(17~1- 1) ~° (10) 

and does not depend on p. Thus: H(O[7",C) = t log 2 [/:pl 
H(CIT', O) An attacker, as defined in section 3.3, has access to O and is interested in 

learning 7 ). Note that the knowledge of C leads to the disclosure of 7 ), while the 
knowledge of 7" leaves some uncertainty about C. This is due to the fact that other 
people might communicate with Alice's peers as well, and do so even at the same 
time. So there might be observations that include more than one element of 7" and 
the attacker will not be able to tell, which of them was contacted by Alice in that 
specific observation s . 
For each single observation the remaining entropie equals the log of the average 
number of Alice's peers. We call the probability that there are a peers of Alice in 
the same batch, in addition to the one she contacted herself, p(a). In the case of a 
uniform probability distribution9: 

p(a) ( b - l )  ( m - 1 ) a ( N - m - 1 )  b-'-'-2 
-- a N N ( l l )  

¢~ p(a) ( b - l )  ( m - 1 ) a ( N - m - 1 ) b - ' ~ - 2  
- a g b - 2  (12) 

b-1 

--~ H(CIT', O) - t ~-~p(a) log(a + 1) (13) 
a=0 

To calculate the average number of observations needed to break the system, H (7"1 O) 
from formula 9 is set to zero, to describe the point in time t when there is no uncertainty 
about Alice's peers. It then needs to be resolved to t. The exact way depends on the de- 
tails of the model. 

8 The primary target of the attacker is 7 ) anyway, and we consider the knowledge of C to be 
optional information. 

9 In any case there would be no contribution to this value for a = 0 because there would be no 
doubt about Alice's peer partner. 
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For the example values from this section follows: 

log  (J l) 
t - -  b - 1  

bo log2 Inl - log~ m - ~og2 IC~I + E ~ - o  p(i)log(/+ 1) 
(14) 

5 E x p e r i m e n t s  

As can be seen in figure 2, we compare the resulting average lower bound with the 
average number of observations needed by some known attacks on a fix-threshold mix: 
the SHS-attack [24], the disclosure attack [ 1 ] and the statistical disclosure attack [3]. We 
chose as typical system parameters [~[ -- 20000, m = 20 and b0 -- 50 [23]. To show 
the impact on changes of these three critical variables, three series are displayed. In each 
series two variables were kept fix, while the third is varied along some interval. The 
lower bound of protection was calculated by assuming a maximum amount of entropy 
in H(C). This is the case, iff Alice chooses her contacts randomly out of her set of peers 
by a uniform probability distribution. The same applies for the other three data series, 
as well. 

Having higher order statistics about the peers of Alice, i.e. the victim's pattern of 
communication, the lower bound would be smaller than in figure 2 graphs. For certain 
activities, like surfing in the WWW there are already studies which offer very detailed 
statistics [22, 21,20]. 

Calculating the lower bound for more realistic scenarios, like sending emails or 
surfing the web is simple, using the formulas provided in section 4 and entering the 
respective values. 

6 Discussion 

Following the previous calculations we can use the derived measure twofold: as an 
eavesdropper we know the minimum amount of observations that are necessary to suc- 
cessfully break an anonymity system. Thus we can save our computational power until 
there is a reasonable probability of succeeding. 

On the other hand, as an user of an anonymizing network, we can now estimate 
the risk of our communication pattern getting revealed. A user can now e.g. compute 
the exact amount of dummy traffic to add into the regular communication to avoid 
successful traffic analysis. Thus a user could possibly maintain perfect anonymity even 
within an open environment. 

The large differences between the values for the average lower bound and the best 
attack in figure 2 does not necessarily mean that there are yet better attacks to be dis- 
covered. As discussed in [ 16], the information theoretical approach does result in very 
conservative estimations which are often way lower than practical bounds of systems. 

These results should not be applied to real systems without more detailed consider- 
ations. This is especially due to the abstraction of the model in this paper. Since mod- 
elling all details available in a deployed anonymizing network tends to be to tedious, 
there always remains a certain chance that some of the parameters not available to the 
model leak some information. 
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Fig. 2. Lower bound of protection of anonymity systems compared to the average number of 
observations needed by typical known attacks. 
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Finally, the lower bound of attacks have similar structure compared to the unicity 
distance: 

- The lower bound gives a conservative estimate of the amount of observations needed 
to break (i.e. total break) a given anonymity system, i.e. real anonymity systems 
need more observations. 

- It shows, that if there is a profile of a user (i.e. Alice) then this profile will always 
be identified except if 

• Alice changes randomly her behavior. 
• the available observations are less than the calculated lower bound. 

However, the word 'break' has different meaning in both areas. Even though the peer 
partners of Alice are identified, the attacker can not identify the concrete peer partner 
of Alice for an actual communication, if within the anonymity set other peer partners 
occur. 

7 Conclusion 

In this work we listed ways of measuring the anonymity of a system and described in 
detail the model of anonymizing networks that was used in the most important publica- 
tions on anonymity research of the last years. 

Our contribution to this area is a calculation to find the average lower-bound of 
attacks on this systems using information theoretic measures. Thus it provides a tool 
to measure anonymity that can be used to determine the risk of using an anonymizing 
network infrastructure. We also compared these values to the amount of information 
needed by real attacks and discussed further outcomings. Future work will include find- 
ing concrete values for the entropies for specific types of anonymity systems. 

We expect to get new results mostly from more detailed or refined models. Fu- 
ture research will thus focus on finding additional suitable parameters for modelling 
anonymizing infrastructures. For instance, we have focused here on total break, but one 
or two peer partners of Alice may be linked to her with high probability before the iden- 
tified lower bound (partial break). Thus, it will also be a future issue to provide a theory 
and calculate lower bound numbers for partial break. 
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Abstract. In the past, different intersection attacks on Chaum Mixes have been 
proposed and shown to work well in simulation environments. In this work we 
describe intersection attacks that have been performed on data from anonymized 
proxy log files. This approach creates all new problems that arise in real systems, 
where real-world users do not behave like those in the idealized model. E.g. the 
attack algorithm has to cope with a fixed number of observations. From the per- 
formed first experiments on the "dirty" real world data we get valuable insight 
into theory and practice of real anonymizers. 

I Introduction 

Today's networks do not protect the traffic information, i.e. addresses of the senders 
and recipients are open to an adversary. Having such information it is easy to build 
communication profiles, i.e. who has communicated with whom, when, how long, from 
which location etc. This is considered as an invasion of privacy. Therefore, a number of 
anonymity techniques were suggested to thwart such attacks. In this work we investigate 
protection strength of anonymity techniques, i.e. the ability of building profiles even 
though strong anonymity techniques are applied. 

The present work is one step on the way to develop a general anonymity system 
that serves all people and protects all their traffic against strong attackers. The goal 
is to find general weaknesses of presented techniques, to be able to circumvent them. 
Most practicable rerouting techniques can be represented by the model presented in 
Section 2.1. As a result the attacks performed on the model represent a upper bound of 
the security of those systems. 

Today we have the situation that a generally secure system does not exist. There 
are a number of anonymity techniques that might be able to generally protect a user's 
traffic, but most of them are theoretical concepts and only a few working systems can 
be found. To evaluate the strength of these anonymity techniques most works use theo- 
retical models and simulations based on a variety of assumptions. However, the results 
from these models can be generalized to the real world only to some extent, as we will 
show. 

In [MD04,KP04,KAP02] the anonymity systems security is analyzed in simulations 
that assume a uniform probability distribution of the communication partners. Poisson 
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distributed traffic is assumed in [Dan04]. Further works that analyze anonymity based 
on simulated traffic are [SS03,LRWW04]. 

In [DSD04] Diaz et al. analyze the security provided by two practical mix designs 
with the help of a simulation that is based on log files. As opposed to our work their 
work does measure the size of the anonymity set, whereas we try to give a probability 
of a successful compromise. Additional differences include that Diaz' work is focused 
on email messages, while we observe web surfing. 

Another publication that handles traffic analysis on more than simulated data is 
[MD05]. Murdoch and Danezis show how to reduce the anonymity provided by a real 
system, i.e. Tor. While our work doesn't break a specific existing anonymity system, 
we're attacking mixes instead of onion routers. We also make use of passive global 
adversary, while [MD05] uses an active local attacker. 

1.1 Contributions 

Our contributions in this work come from our first simulation results of experiments 
with real data (i.e. 80 Gigabyte squid logs). These contributions are: 

Experiments: Due to lack of real anonymity systems most investigations in this area use 
theoretic models to evaluate anonymity systems. In this work we show how to overcome 
this drawback by using today's traffic (squid logs). We emulate a "real" anonymity sys- 
tem by using Web data as good as possible. 

Protection limit: We investigate the protection limit of anonymity system in a real envi- 
ronment and compare it to the theoretical results. By this we also give an upper bound 
on the protection most systems can provide. 

Simulations versus "real" system: It is indeed a very difficult problem for the theory to 
model the users in a rigorous manner. So attack results on Simulated traffic do not have 
to reflect results on real traffic. By evaluating the "real" traffic we: 

- gain information on how the user behavior differs from typical model assumptions 
which enables us to refine the models for better theory; 

- deduce valuable insights on how to build practical anonymity systems that are better 
suited to real users needs. 

2 The Basic Setting: From Mix to Anonymi ty  Set 

The purpose of this section is to introduce mixes as an example of an anonymity tech- 
nique and explain the general model of abstraction we use for our attacks, i.e. the 
anonymity set. It is important to note, that the mixes are only an example. The pre- 
sented abstraction applies to most anonymity techniques, also independently of the kind 
of traffic being transmitted. Being an abstraction it does not take into account specific 
improvements that could result from regarding implementation specific characteristics 
of some special techniques. On the other hand, attacks performed at this level of ab- 
straction can be performed on any anonymity technique, that generates anonymity sets. 
So we investigate the maximum level of security any such system can provide. 
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2.1 M i x e s  

As mentioned in the introduction there are a number of anonymity techniques to prevent 
eavesdroppers from gaining information about a user's traffic. Since the content can be 
encrypted, our focus is restricted to the traffic layer. Anyone who can read a packet 
can see its origin and the destination, even if the content is unreadable. Anonymity 
techniques strive to prevent this. 

Mixes, as proposed in [Cha81 ], collect a number of packets from distinct users (the 
anonymity set) and process them so that no single participant, except the mix itself and 
the sender of the packet, can link an input packet to an output packet. To achieve this, 
the appearance (i.e. the bit pattern) and the order of the incoming packets have to be 
changed within the mix. To increase the security of the system, the packets can be sent 
through various mixes instead of through just one. The change of appearance of the 
packets is a cryptographic operation, which is combined with a universal agreement 
and a management procedure to achieve anonymity: 

- On the user side all generated data packets including address information are padded 
to equal length (the universal agreement), combined with a secret random number 
and encrypted with the public key of the mix node (see also [PP90]). If a sequence 
of mixes is used to increase the security of the system, the packets have to be en- 
crypted for each mix in the reverse order they go through them. Then the packets 
are sent to the first mix. 

- A mix collects bo packets (called batch) from users, decrypts the packets with its 
private key, strips off the random numbers, and outputs the packets in a different or- 
der. Furthermore, all incoming packets have to be compared with formerly received 
packets (management: store in a local database) in order to reject any duplicates. 

Applying this protocol in closed environments where all subjects participate in all 
anonymity sets, the mix method provides full protection. The relation between the 
sender and the recipient is hidden from an omnipresent attacker as long as: 

(a) One honest mix is in the line of the mixes which the packet passes. 
(b) The (b0 - 1) other senders do not all cooperate with the attacker. 

[Pfi90] states that the mix method provides information-theoretic deterministic ano- 
nymity based on complexity-theoretic secure cryptography. 

2 .2  M o d e l  

In this work we consider the model that has been considered by most publications (no- 
tably [KEB98,RP02,KAP02,Dan03,Dan04,KP04]). It is generally considered to be an 
abstraction from a specific type of anonymity service or implementation. 

In this model, we assume that a subset S' of all senders S sends a message to 
a subset R' of all recipients ~ ,  like shown in Figure 1. Furthermore, in this model 
the adversary can easily determine anonymity sets, e.g. we assume that all network 
links are observable (see [Cha81 ]). However, this can be assumed also in a real world 
scenario if the attacker is able to observe messages to and from an anonymity service. 
The following properties of an anonymity system are generally assumed: 
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Fig. 1. Formal model of the anonymity set. In any anonymous communication (e.g. mixes), a 
subset S' of all senders S sends a message to a subset R' of all recipients R. S" is then called the 
anonymity set. 

- In each anonymous communication, a subset S' of all senders S sends a message to 
a subset R t of all recipients 77,,. That is, S '  C_ S and R'  c_ ~ ,  as Figure 1 illustrates. 
In a particular system, the set of all senders $ can be the same as the set of all 
recipients R.  

- The size of the sender anonymity set is IS'l = b0, where 1 < bo << ISI. Note that 
in this model a sender can send multiple packets per batch. 

- The size of the recipient anonymity set is IR'I - hi, where 1 < bl <,( I~1 and 
bl <_ bo. That is, several senders can communicate with the same recipient. 

The anonymity system provides perfect untraceability between incoming and outgo- 
ing packets for a single round of operation. The typical values for IS'l, IR'I, ISI, and JT~ I 
vary from implementation to implementation and with the environment in which they 
operate. [BFK00] presents an implementation in which IS] is around 20,000. They do 
not give typical values for IS'l, but we generally expect IS'l _ 30. 

For the sake of simplicity the following assumptions are added: 

- Alice is a sender using the system to hide her m communication partners 79 = 
( P l , P 2 , . . .  Pro). During the attack, she sends t messages using the system. The 
attacker notes down the observations (.9, the respective recipients sets 
O -- {R~, R ~ , . . .  R~ }. We assume that for all R~ E O there is 79 N R~ -¢ ~. 
This can be accomplished by restricting the attacker to observe only the anonymous 
communication of Alice. We will refer to the communication partners later on also 
as Alice's peers. 

- The model anonymizing infrastructure uses a mix with a fixed size of the anonymity 
set b. Note that other anonymity techniques can easily be reduced to this generalized 
model by determining the respective anonymity sets I . 

3 Attacks 

Here we regard intersection attacks. They belong to the family of contextual attacks 
according to Raymond [Ray01]. The basic idea of the intersection attacks is that the 

i this might include bringing in some error probability, but this probability can be reduced below 
any arbitrary e > 0 
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attacker can determine the peer partners of a user through repeated observations. These 
attacks are based on the assumption that users typically communicate with only a small 
number of parties, i.e. the communication of the users is not random. 

The attacker is defined to have full passive access to the network, i.e. he can read all 
data from the complete network. He may also corrupt all but one mix node. However, 
he is forced to use the informations he gained from wiretapping to break the system. 

3.1 Disclosure Attack 

The disclosure attack [KAP02] is based on the concept of set intersections and consists 
of two phases: the learning and the attacking phase. If Alice has m peers, the attacker 
looks for m disjunct observations in the learning phase. Thus he can be sure that each 
observation contains exactly one of Alice's peers. Those sets are successively reduced 
in the attacking phase, until all other peers have been removed from these sets and only 
the peer partners remain. 

- Learn ing  Phase: The attacker tries to learn one observation for each peer of his 
victim. One precondition of this attack is for the attacker to know the number of 
his victim's peers, m. He can find this observations by noting down anonymity 
sets, which he can link to the user, until he has m mutual disjunctive observations 
(R1, . . . ,  Rm), i.e. Vi ~ j holds R~ N Rj -- (~. 

- A t tack ing  Phase: Once the attacker has completed the first stage, he can shrink the 
size of the sets Ri. Iff a new observation Rn~, ,  has a non-empty intersection with 
exactly one Ri, the attacker knows that this observation has to contain the same 
peer as Ri. He can thus replace Ri with Ri fq R . . . .  whose size is smaller or equal 
to the size of Ri and still contains the same peer partner. 
If all sets Ri consist of a single element only, the attacker found the peer partners 
of his victim. Iff an attacker does not have enough observations to complete the 
second phase, he isn't able to identify all peers. Only the peers from sets R~ with 
[Ri[ = 1 have been identified then. 

3.2 Statistical Disclosure Attack 

Danezis describes in [Dan03] a variation of the above disclosure attack. One of the 
main differences is that the statistical disclosure attack does not always identify the 
peer partners correctly, i.e. has a certain error probability. The concept bases on signal 
recognition, where the observer tries to reconstruct the target's peers with the help of 
the observations he made. 

The statistical disclosure attack has up to now only been simulated [MD04] or ana- 
lytically analyzed [DS04]. One of the preconditions of the original form is that the traf- 
fic pattern base on a uniform distribution. The longer an attacker observes this system, 
the clearer will it become that a certain set of elements appear with a higher frequency. 
This set is equal to the set of the victim's peer partners and can be found out by simple 
statistical means. 

An advantage of this attack is that the attacker doesn't necessarily need to know 
the number of his victim's peer partners. But it lacks some relevance in practice be- 
cause users don't tend to communicate according to uniform distributions. On the other 
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hand, an attacker can normalize other distributions and achieve again uniform probabil- 
ities [Rat04]. 

3.3 Statistical Hitting-Set Attack 

The statistical hitting set attack is based on set intersections, as the disclosure attack. 
In the Hitting Set attack the observations represent hyper-edges of a graph. To identify 
the user's peer partners is equivalent to determine a unique minimal hitting set of the 
hyper-graph. A detailed description can be found in [KP04]. 

The statistical variant of this attack makes heavy use of heuristics to cut down the 
searching space from an NP-complete space to some fixed constant. Given, the attacker 
knows the number of a user's peer partners, m, he can build a fixed set of most probable 
solutions to this problem and tests them for validity. If only a single solution suffices 
the condition, namely to be a hitting set for the observations made, it is most likely the 
set of peer partners. Note that due to the heuristic approach, the solution is also prone 
to some error probability. 

In our paper we use these attacks to show the probability that, given a passive ad- 
versary with the ability to observe the respective anonymity sets, an existing anonymity 
system can be broken. This applies to all implemented anonymity systems, as 
e.g. JAP[BFK00] or Mixminion[DDM03]. 

4 Experimental Environment 

To evaluate the attacks, presented in Section 3, under realistic conditions either traf- 
fic of real users or appropriate log-files of user traffic has to be used for the attacks. 
The data source for our experiments are log files from the RWTH Aachen web proxy 
server that relays large parts of the outgoing traffic. The proxy is used by CIP-pool 
terminals, researchers, student dormitories, dial-in users and even by other universities 
(e.g. University of Cologne). As many users are hidden behind different network ad- 
dress translation gateways, many source IPs do not identify a single person but rather 
an abstract entity accessing webpages. We call these compound users. 

The files contain nearly two million entries per day during the semester. To be usable 
for our experiments, these logs had to be preprocessed to emulate the behavior of a large 
scale anonymizing network. However, first we stripped off all information from the log 
entries except for the sender and the receiver of the log files, to simplify the further 
processing. 

A large problem that was encountered is that some popular websites have multiple 
names and IP-addresses for load-balancing purposes. E.g. wwwl.gmx.net and 
www2.gmx.net are both webservers of the same email service. This increases the num- 
ber of a user's peer hosts, but not the number of his peer partners. The mapping of 
different URLs back to one provider was done by comparing the server name with 
DNS entries. 

Another problem came from the large compound sources, as the University of 
Cologne, that hide many users behind one IP. To cast a more realistic image, we ex- 
cluded the largest of them in some experiments. It also showed that the results of the 
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experiments varied largely depending on the user. To get a better understanding of the 
results, the participating entities were classified. This was done using a hierarchical 
cluster analysis for the users in the two-dimensional space defined by the properties 
number of  requests and number of peer partners. The analysis was refined subsequently 
until the grouping that can be seen in Figure 2 was obtained. 
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Fig. 2. Grouping of Victims according to their access habits. 

In a further preprocessing step the operation of a mix was simulated using the log 
data. More precisely the anonymity sets that a global observer would see are generated. 
This is done by creating one batch for each user request and joining it with the b0 - 1 
requests that follow in the log file. The real peer partners for the specific target are saved 
in a separate file. 

For each user, we fixed the time of the attack to seven days and ran our analysis on 
the resulting set of observations. This was done for four different weeks to get more 
representative results. 

5 Identifying the Number of Peer Partners 

In this section we show how to determine the number of a user's peer partners. The 
knowledge of this is a precondition to a successful run of the Disclosure Attack and the 
Hitting Set Attack. To this end, we make use of results that are related to the hitting set 
attack as presented in [KP04]. As has been shown, the breaking of an anonymity system 
can be solved with the help of a minimal hitting set problem. 

An estimation of the number of a user's peer partners can be computed using a 
simple greedy algorithm on the associated minimal hitting set problem: the element 
with the highest frequency is repeatedly chosen. We call this set G - {91, g2 , . . .  9r~} 
with the size IG[ --- rh. Note that this value is larger or equal to the size of the true 
minimal hitting set in case the observations permit deanonymization. 

The experiment was performed by taking the logging information of one week for 
different users. The anonymization was performed as presented in Section 4. 
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Interesting enough, the estimations rh, were often a bit smaller than the real value 
m. This can be explained by the nature of the specific test procedure: we ran the tests on 
observations that partially did not qualify to reveal a user's peer partners to an attacker. 
This is because we took data from a fixed time frame, i.e. observations from the network 
of one week. It is thus possible that there were not enough observations to get the 
minimal hitting set of m. 

Calculating the differences from the estimation rh and the real value m, we found 
that the difference grew with larger values of b, the size of the anonymity set. Thus, we 
tried the following formula to compensate the difference of the estimated value rhu and 
the real value mu of each user u: 

m .  ~ m,  ,~b~ (1) 

. . . . . . . .  w . . . . . . . .  t , . q .  
estlmaUon 

• confidence Intervals ~ - - 4 - - ~  _ , : i ' "  I i ,  

real value . . . . . . . .  ! " 

. . . . . . . . . . . . . . . . .  

1 0  1 0 0  

aettml number of peers 

Fig. 3. Overall quality of estimating the number of a user's peer partners 

The value of c~(b) was calculated to fit best, depending on b. The resulting values 
can be seen in Table 1, where we show the value depending on the size of the anonymity 
set b. 

As we estimated the parameter o~(b) empirically on some reference data, we eval- 
uated the resulting parameters on an independent set of data to make sure the values 
are generally applicable. The results of the verification are presented in Figure 3, where 
we display the corrected average estimation of a user's peer partners depending on the 
number of of peers he contacted during the time of observation. The intervals shown 
represent the 95% confidence intervals. 

As can be clearly seen in Table 1, the corrected estimated value has an average error 
of less than 2.5% on all simulated systems. Still, the average deviation of the estimation 
can be as large as 20%. Note that the quality of the estimation, the size of the error and 
the deviation don't depend on the number of a user's peer partners m. 
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Size of anonymity set a(b) average error average deviation 
5 1.03 0.33% 7.3% 

10 1.06 0 . 3 5 %  11.5% 
15 1.09 1.10% 14.4% 
20 1.11 1.64% 17.0% 
25 1.13 1.27% 19.5% 
30 1.15 2.14% 21.7% 

Table 1. Average error on estimated number of peer partners 
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Given these numbers,  it is safe to assume for the next sections that an attacker either 
knows the number  of  a user 's  peer partners or can estimate it sufficiently well to apply 
further methods of  traffic analysis. 

6 Identifying the Peer Partners 

In this section we present the results that have been achieved with the three different 
attacks on the preprocessed proxy data. 

In a first experiment the targets were chosen equally distributed from all user groups, 
this includes the aforementioned compound users. About  300 targets were chosen rep- 
resentatively out o f  all groups. For each selected target the traffic o f  a one week period 
was taken. His traffic was anonymized as described earlier in Section 4. The experi- 
ments have been performed for different sizes of  anonymity sets b0 and using different 
attacks, notably the Disclosure Attack, the Statistical Disclosure Attack, and the Hit- 
ting Set Attack. The results are displayed in Figure 4. A maximal batch size of  30 was 
chosen, as real time traffic is handled and the delays of  the anonymizing infrastructure 
should not impose high delays. This would lead to users not using the system. 

ii!il :~ :::iiiiiiiiiiiii!! iiiiiiiiiiiiiiiiii~iiiiii!iii!iii i ii?: i iii ̧II ii '̧I i ~i~ii iii: ii ii ii ii ii ̧~̧~ iii i iii ii ii i ii~ili i ~ ii ii ii ii ii iil iii ii: ii ii ii ii ii iiii ii ii ii iii ii i~ iii iii iii i ̧~ i i i ii ii ii ii ~ii ili? ii ? iii: ii ?~iiii iiil/:!iiiiii 
ii? iii i Uiii! iiiiiii!iiiiiiLi iii/ii? i iU!ii i iiiiii! iiiiiiiiiiii iiiili ̧ iiii! ̧%1¸̧ ! ¸̧  iiiiiiiiiii ~ ii i iiiiii!il ii iiiiii iiiiii iii! %ii!iiiiiiiiiiiiiii!!iiiiiiiiiii% i %i i ̧iii ii!ii :i i ̧ i ̧  iiiii iiiiiiii 
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Fig. 4. Success of different attack techniques for different anonymity sets. 



168 Dogan Kesdogan, Lexi Pimenidis, and Tobias K61sch 

As can be seen the Disclosure Attack generally performs best. This is especially 
true for small batch sizes. However, its performance decreases rapidly with increasing 
batch sizes. The Statistical Disclosure Attack performs worse independent of the batch 
size. This shows that the approach is not that well suited for deanonymization of real 
data. The Statistical Hitting Set Attack performs significantly worse than the Disclosure 
Attack, especially for small batch sizes. But it is noteworthy that its performance does 
not decrease as much as the other attacks when the batch size increases. For b - 30 the 
results of the Disclosure Attack and the Hitting Set Attack are almost the same. This 
comes from the way the Disclosure Attack works. The training depends on m mutually 
disjunctive observations. However, this condition is hard to satisfy for large bo. This 
problem is also known as the clique problem and is NP-complete. 

In the next experiment the compound users have not been regarded as targets. This 
simplification is acceptable since a global observer as defined could resolve the different 
users who hide behind the one compound IP found in the proxy logs. In this experiment 
we examined, how the Disclosure Attack performs for the different user groups that 
have been shown in Figure 2. The anonymity sets are created as in the previous experi- 
ment. The attacks were performed on 3 different periods of the log files. Also the attack 
length has been varied randomly between one and four weeks. The results depending 
on the user category and on the batch size can be seen in Figure 5. 

~ o  

Fig. 5. Success on different types on users 

Note that the general results are better than those presented in the earlier graphic. 
This is because compound users, which are difficult to deanonymize, have not been 
regarded. It can be seen that at a batch sizes of 5 the results are similarly good for all 
user types. The linkability of sources and targets using the Disclosure Attack can be 
regarded as good. In fact they reflect the image given by the simulation results of earlier 
publications [KAP02,KP04]. However, when batch size increases, the linkability on the 
real data rapidly decreases. 

It is notable that the recognition rate does not decrease equally fast for all types 
of users. While users from the groups A, B, and D can be deanonymized moderately 
well at a batch size of 15, the anonymity of peers of the groups C, E, and F is pro- 
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tected well by the mix. As the batch size increases the members of group A are the 
only ones that can somewhat be deanonymized. The reason for this can be found when 
looking at aforementioned simulation results. In earlier simulative evaluations of Pi- 
menidis and Penz the number of necessary observations for deanonymization increased 
about quadratically with the number of peers m. If a target with many different peer 
partners is chosen, it is likely that there are not enough observations for a successful 
deanonymization. As can be seen in Figure 2, the groups C, E, and F are those with 
a large amount of different peer partners. The groups A, B, and D are those with few 
different peers. 

Regarding this, it still strikes that the actual results on real data are worse than 
those of the simulations from the initial publications [KAP02,Dan03,KP04]. As was 
presented earlier, the recognition errors come from the lack of observations. However, 
even if a high number of observations were present, the results would still stay behind 
those of the simulations. This is because the access frequencies to homepages vary 
highly. Where the experiments usually assume an equal distribution of peer frequen- 
cies, real users regularly visit some pages, while others are visited just a very few times. 
In the proxy logs about 60°-/o of the pages are accessed less then 10 times by one user. 
But as the experiments in [KP04] show that for an m of 20 an average of 35 obser- 
vations are necessary for successful deanonymization using the Disclosure Attack. So, 
if the last access by the user to one of those rare peers has occurred without this peer 
being identifiable, there will be no chance to identify him later on. To present the high 
variability of user access numbers, Table 2 presents the mean number of accesses for 
specific domains together with the average difference from these values. It can be seen 
that the mean difference is even larger than the mean number of accesses. This comes 
from the high amount of pages that are accessed very few times and from some few 
pages that are accessed often by a single user. 

Group A B C D E F 
Mean 35.2 72.8 1 7 . 6  67.5 32.5 20.3 
Mean Diff. 41.9 92.7 1 9 . 6  8 6 . 3  38.6 22.6 

Table 2. Mean and mean difference from mean of accesses to the web pages for the different 
types of users. 

This high variance constitutes a large obstacle for the performance of the presented 
passive attacks on mixes as can be seen in the experimental results. Some adaption of 
the existing algorithms will be necessary such that these methods cope better with the 
tasks, for which they are designed in realistic environments. 

7 Conclusions 

Results from attacks on mixed real world data have been presented. For this the logs of 
our university's main proxy have been used. As many attacks rely on the knowledge of 
the number of a target's peers, a method to approximate this number has been presented 
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and shown to work quite well. One of the results of this work is that attacks in real 
world environments are more difficult than in simulations. This is shown to come from 
the structure of real user behavior in the Internet. Real access patterns are far less regular 
than those usually assumed in simulations. To further analyze this, the users have been 
automatically clustered into different groups. It is shown that users with few different 
peers can be attacked relatively successfully. To provide this group with adequate pro- 
tection batch sizes significantly larger than 30 are necessary, whereas the identification 
of the other users peers was only successful in less than 1% of the experiments with a 
batch size of 30. 

In future we plan to refine our models of user behavior. From this more effective at- 
tack and protection mechanisms should be developed. One possibility for attacks could 
be approximative algorithms that are specifically designed for different kinds of IP traf- 
fic. Furthermore we plan to develop traffic models that imitate the user behavior the 
best possible. The results from Section 6 also suggest that low overhead dummy traf- 
fic methods can be created to effectively increase the protection of user against strong 
attackers. 

Acknowledgements: Thanks to Oliver Rattay for providing us with very useful 
feedback and information. This work took great advantage of his extensive analysis. 
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Abstract. In this paper, we start to investigate the security implications of se- 
lective encryption. We do this by using the measure guesswork, which gives us 
the expected number of guesses that an attacker must perform in an optimal brute 
force attack to reveal an encrypted message. The characteristics of the proposed 
measure are investigated for zero-order languages. We also introduce the concept 
of reduction chains to describe how the message (or rather search) space changes 
for an attacker with different levels of encryption. 

I I n t r o d u c t i o n  

Security has traditionally been thought of as a system or network attribute that is the re- 
sult of the joint endeavors of the designers, maintainers, and users, among others. Even 
though security would never reach a 100°-/o level, the aim was typically as much secu- 
rity as possible, given the actual boundary conditions. With the advent of, e.g., many 
low-power computing and communication devices it has become desirable to trade se- 
curity against other system parameters, such as performance and energy consumption. 
Thus, in many situations, tunable or selectable security, rather than maximum security, 
is desirable. 

Today's standard and widely used encryption algorithms (RSA and AES) are as- 
sumed to be almost impossible to break with the remark that we in the future could 
discover existing flaws in the algorithms. Hence the only (simple) way to attack mes- 
sages encrypted with those algorithms is to use a brute force attack on the key space. 
Furthermore, if the key space is larger than 128 bits for the AES encryption algorithm 
and 1024 bits for the RSA encryption algorithm, we today consider encrypted messages 
to be computationally secure. That is, the cost of breaking encrypted messages exceeds 
the value or the useful lifetime of the encrypted information. The question that now 
arises is: Using selective encryption, how much and which parts of a message can we 
leave unencrypted and still have a message space that is harder to perform a brute force 
attack on than the corresponding key space? If we can find an answer to the question 
above, then it is possible to find out how to selectively encrypt messages while still 
making them computationally secure. 

In this paper, we start to investigate the answer to the question above by adopting 
the measure guesswork, so that it can also be used for selective encryption. This is 
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done by using simple artificial languages and the concept of reduction chains, which 
describes how the message (search) space changes for the attacker with different levels 
of encryption. 

The remainder of the paper is organized as follows. In Section 2 we give a note on 
measures in computer security. In Section 3 we present the general model of selective 
encryption and give examples of previous work in the area and investigate application 
scenarios where selective encryption could be used to gain performance. In Section 4 
we investigate the measure guesswork, how it can be transformed for selective encryp- 
tion and introduce the concept of reduction chains. Finally, in Section 5 we discuss 
conclusions and future work. 

2 A Note on Security Measures 

Computer security is traditionally and most frequently defined by the three attributes: 
confidentiality, integrity, and availability. These are often collectively known as the 
"CIA" [22]. Confidentiality is the prevention of unauthorized disclosure of information, 
integrity is the prevention of unauthorized modification of information, and availability 
is the prevention of unauthorized withholding of information or resources. 

Recently, there has been an interest in using probabilistic methods for quantifying 
operational security. A promising attempt to quantify security is described in [14], in 
which game theory is used as a method for modeling and computing the probabilities 
of expected behaviors of attackers. A game theoretical method is also used in [8] to 
analyze the security of computer networks. Although not pursued in this paper, we also 
believe that it might be possible to use game theory as a confidentiality measure for 
selective encryption. 

A key problem with security is that it is hard to quantify. Today, neither security nor 
its attributes are easily measurable. An alternative is to define indirect measures that can 
be used as an approximation for security or one of its attributes. Examples of indirect 
measures for confidentiality of encrypted messages are entropy, unicity distance and 
guesswork. Entropy is the classical measure of uncertainty that originally was suggested 
by Shannon [16]. He defined it as the average amount of information from a random 
variable. The higher the entropy of a random variable is, the harder it is to guess or be 
certain about its value on the average. The highest value of the entropy is obtained when 
the variable has a uniform distribution. In [ 16] Shannon also used entropy to define the 
concept of unicity distance. The unicity distance approximates the minimum amount of 
cipher text needed for which it is reasonably likely that there is only one meaningful 
decryption. Hence, cipher texts that are (much) shorter than the unicity distance are 
assumed to have a higher level of confidentiality, since it is more likely that they could 
have several meaningful decryptions. Guesswork [ 12], on the other hand, measures the 
expected number of guesses that an attacker must perform in an optimal brute force 
attack to reveal an encrypted message. In [12], the author also show that entropy is 
inappropriate as a measure of work in cipher attacks, due to the asymptotic equipartition 
property. In this paper, we hence propose the use of guesswork as a confidentiality 
measure for selective encryption. 
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3 S e l e c t i v e  E n c r y p t i o n  
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In this section we describe the general model of selective encryption and define the en- 
cryption level, the amount of selectively encrypted data in a message. We also present 
examples of previous work in the area and give examples of two application scenarios 
where selective encryption can be used to gain performance or lower energy consump- 
tion. 

3.1 General  Model  

For selective encryption the idea is to only encrypt chosen units of a message while 
leaving the remaining units unencrypted or encrypted with a weaker encryption algo- 
rithm. We assume, in this paper, that the units are equally sized and that the remaining 
units are unencrypted. In Fig. 1, we show a selectively encrypted message M having 
five encrypted units (gray) and three unencrypted units (white). 

M=U 1 
1 2 3 4 5 6 7 8 

Fig. 1. Example of a selectively encrypted message. 

The fraction of encrypted units in a message naturally defines the encryption level, 
how much of the message is encrypted, as follows. 

Definition 1. Let M be a selectively encrypted message, consisting of  n equally sized 
units. Then the encryption level EL  of  M, is defined as the ratio 

n~ 
EL = -- (I) 

n 

where ne is the number of  encrypted units in M. 

Since the number of encrypted units satisfy the inequality 0 _< n~ _< n, we always have 
that 0 _< E L  < 1. Note that definition 1 also works for units of unequal size, if the 
number n~, (and n) is transformed to an appropriate smaller quantity, for example bytes 
or bits. 
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3.2 Previous Work on Selective Encryption 

The concept of selective encryption was independently introduced by Spanos and 
Maples [ 19], Li et al. [5], and Meyer and Gadegast [9] in 1995 and 1996 for the purpose 
of reducing the amount of encrypted MPEG data in a video sequence while at the same 
time providing an acceptable security level. Spanos and Maples proposed that only the 
I-frames in an MPEG video stream need to be encrypted. Li et al. proposed a protection 
hierarchy that allows the choice of encrypting (1) only I-frames, (2) I- and P-frames, or 
(3) all I-, B-, and P-frames in any video sequence. Meyer and Gadegast proposed four 
levels of encryption--from header only encryption to complete encryption. Selective 
encryption methods for MPEG video are presented and discussed in [ 1,4, 17, 21 ]. In 
addition, Sony recently announced that they use a scalable approach based on selective 
encryption in their Passage technology [ 18] aimed for digital CATV networks. 

Selective encryption has also been used to protect image data. In [13], a selective 
bit plane encryption is proposed for JPEG images. The authors claim that encrypting 
the most significant bit plane only is not sufficiently secure. However, they show that a 
sufficient confidentiality level could in many cases be achieved by encrypting only two 
bit planes, whereas encrypting four bit planes provides a high degree of confidential- 
ity. Two types of simple cipher-only attacks are used to assess this. The first attack is 
referred to as a replacement attack and the second to as a reconstruction attack. In the 
case of the replacement attack, a constant value was used to replace the encrypted data. 
The idea of the reconstruction attack, on the other hand, is to reconstruct data with the 
aid of the unencrypted remaining data. 

Van Droogenbroeck and Benedett [2] suggest two different methods for selectively 
encrypting compressed and uncompressed images. In [ 15], Servetti and De Martin pro- 
pose a selective encryption scheme for speech compressed with the ITU-T G.729 8 kb/s 
speech encoding standard. The authors claim that their scheme offers effective content 
protection and can also easily be adapted to other speech coding standards. Goodman 
and Chandrakasan [3] propose a scalable encryption scheme intended to maximize the 
battery lifetime of a wireless video camera. Their scheme is based on a stream cipher 
that allows varying levels of encryption for data streams with varying priorities. 

Recently, a generic SCTP-based tunable encryption service which uses a selective 
encryption approach that can be used on different contents and by various applications 
is suggested in [6]. The aim of the service is to protect data transfers in networking 
environments, by offering various encryption levels that can be tuned and controlled by 
applications. Support for selective encryption has also recently been integrated directly 
into several multimedia applications, e.g., Nautilus [ 11] and Speak Freely [20]. 

Note that all references given above are mainly focused on performance issues when 
using selective encryption. The security implications are either only briefly mentioned 
or analyzed in a very rudimentary way, such as in [13]. Our purpose with this paper is 
therefore to investigate the security implication of selectively encrypted messages using 
a generic approach. 

3.3 Application Scenarios 

A key issue for selective encryption is typically to reduce the computational overhead 
produced by encryption and decryption of messages. Selective encryption is thus es- 



QoP - Using Guesswork as a Measure for Confidentiality 177 

pecially suitable for multimedia applications in which a large amount of data is trans- 
ferred with soft real-time requirements, such as video on demand (VoD), video con- 
ferencing, and live pay-per-view (PPV) TV. Furthermore, in both current and future 
networking environments heterogeneous devices with varying computational resources 
are used. Some devices, such as servers and desktop computers, are often very power- 
ful, while others, such as various types of hand-held devices, have limited processing 
power and memory, limited batteries, etc. Thus, since encryption puts a heavy burden 
on the processor it has become desirable to trade security against other parameters such 
as latency, throughput, and energy consumption. 

As pointed out by Lookabaugh and Sicker [7], selective encryption can also be 
used to enable new system functionality. Imagine for example a live PPV event that 
should be accessible by heterogeneous terminals with two different encryption systems 
based on different encryption algorithms, e.g., DES and AES. Every piece of data must 
then be encrypted and transferred twice. However, encrypting only parts of the data, 
say 20°-/0, and leaving the rest unencrypted implies that 80% of the data is common 
for all devices independently of which encryption system they use. As compared to 
fully encrypting two streams, this will result in a 40% bandwidth reduction and an 
80% computational reduction for encryption at the sender. At the receiver side, an 80% 
computational reduction for decryption will be achieved at each receiver. 

4 G u e s s w o r k  as a Measure  of  Confidential i ty  

In this section, we first present the assumptions on the attacker's environment. Then we 
examine some properties of languages and describe the concept of guesswork, which is 
a measure telling us how many guesses an attacker, using an optimal strategy in a brute 
force attack must do on average to find the correct message. For a more comprehensive 
and detailed discussion on guesswork see [ 12]. Finally, we investigate how guesswork 
can be adopted to also include selective encryption and examine some of its properties 
and security implications for zero-order languages. 

4.1 Scope 

In the following we assume that the attacker performs an optimal brute force attack 
on the message space, and not on the key space as is usually done. An optimal brute 
force attack, in this context, means that the attacker is supposed to know the probability 
distribution of the message space and can hence guess at messages in nonincreasing 
probability order starting with the most probable message. We will later define this in a 
more formal way. It is also best to assume that the attacker has complete knowledge of 
the size of the encrypted part of the selectively encrypted message, since this restricts 
the size of the message space. Furthermore we assume that the attacker knows when the 
correct message is found in the guessing process of the attack. 

4.2 Languages 

Let Z' be our alphabet, which is a finite nonempty set of symbols. Then a message or 
string M over ~ is a finite sequence of symbols drawn from that alphabet, with size 
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[MI E N. The set of all messages over an alphabet ~ is called the transitive closure and 
is denoted ~*.  Every set L C ~* is called a language and hence, by definition ~* is 
also a language, the largest language with respect to the alphabet L'. 

When an attacker knows the language L of a message M E L he will reduce his 
message (search) space from S* to L, and we write this as S* ~ L. If he also knows 
the size of the message he will even further reduce his message space. To describe this 
reduction we will use the concept of n-languages, which are defined as follows. 

Definition 2. Let L be a language, then the set 

L n =  {M E L; [M[ = n} (2) 

is called a n-language. 

The transitive closure of an n-language will be denoted S n. From definition 2 we im- 
mediately see that L n C L since if M E L n then M E L, hence all n-languages are 
also languages. We also have that a language is the union of its n-kinguages 

k 

L =  U L  n (3) 
n--O 

where k is an arbitrary large nonnegative integer. Furthermore, since we have that L ~ N 
LJ = O if i :f j ,  the size of a language, which is the number of strings in the language, 
is the sum of the sizes of its n-languages. 

k 

ILl = ~ ILnl (4) 
n--0  

For example, suppose that we have the alphabet Y_L ~ - {A, B} and the language 
L = {e, A, B, A 2, B2, . . . ,  A k, B k } constructed from messages that only contain the 
same symbols, where e is the empty message. Then the n-languages are L ° = {e}, 
L 1 -- {A,B} ,  L 2 - {A2, B 2} . . . .  , L k = {Ak ,  B k} and hence we see that the n- 
languages are disjoint and that the union of them construct the entire language according 
to (3). From (4) we get that ILl = 1 + 2k. 

To describe in a formal way the reduction of the message space for the attacker, let 
u be the size of the equally sized units of a message. Then the size of the encrypted 
part of the message is n~u and the attacker's message space changes with the number 
of encrypted units I as LIMI -__, L ,~u.  From this, we can now define the reduction chain 
R of selectively encrypted messages as follows. 

Definition 3. Let L be a language, ne the number o f  encrypted units and u the size o f  
the equally sized units o f  a selectively encrypted message. Then a reduction chain R is 
defined as fo l lows 

R = L n~ -* L (n-1)u ---~. . . -- ,  L u -~ L ° (5) 

i Omitting the order of languages, which make it possible to penetrate into encrypted units and 
even more reduce the message space. 
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Note, that for a given message there often exist several reduction chains from LIMI 
L ° depending on the distribution of the encrypted units. For example, a message of 
size two units will give rise to two reduction chains since an encryption level of 50°-/o 
includes two possibilities, encrypting the first unit or encrypting the second unit. 

A language L (or L n) can be approximated by simpler artificial languages L~ [ 16], 
where a) denotes the order of the approximation. The basic idea is shown in the follow- 
ing list. 

1. L0, zero-order approximation, symbols are independent and equally probable. 

2. L1, first-order approximation, symbols are independent but with probabilities as in 
L. 

3. L2, second-order approximation, symbols are dependent on one preceding symbol 
(digrams) as in L. 

4. L3, third-order approximation, symbols are dependent on two preceding symbols 
(trigrams) as in L. 

The essential thing here is that symbols in a language normally have different probabil- 
ities and that they often depend on each other. Thus messages in a language will also 
occur with different probabilities, a property which we shall use in the next section. An 
exception occurs for the zero-order languages where all messages have equal probabil- 
ity. For example, the language ~U02 with S -- {A, B } consist of four strings AA, AB, 

1 BA and BB, each with probability 3" 

4.3 Guesswork and c~-work-factor 

Let x be an L-valued random variable with probability distribution p. That is, the vari- 
able x attains messages in L with probability 19(x). We may then arrange the messages 
in L in a nonincreasing order according to 19 as 

191 ~ t92 ~ . . .  ~ PILl (6) 

where pi = p(xi)  is the probability of message i. For example, if we have the language 
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Z '2 w i thp (A)  = 51 a n d p ( B ) =  2,, t h e n p ( A A ) =  ~ , p ( A B ) =  p ( B A ) =  -62 and 
4 Hence, the order of the messages will be BB, AB, BA and AA, where the v ( B B )  = -6" 

order of AB and BA is irrelevant. 
We order the messages in this way since it is best to assume that an attacker con- 

ducting a brute force attack has complete knowledge of the distribution p. This means 
that an attacker can arrange the messages according to (6) and start testing them in a 
nonincreasing order. The crack package [ 10] for UNIX passwords orders the passwords 
in a similar way. 

The expected number of guesses (work) an adversary must do to discover the value 
of an L-valued random variable x is called the guesswork of x (see [12]). 

Definition 4. Let x be an L-valued random variable whose probabilities are arranged 
according to (6). Then the guesswork is defined as 

ILl 

W(x)  -- Z ipi (7) 
i--1 

By using the fact that the guesswork can be seen as a sum of rectangular areas with 
base pi and height i, we now create a step function called the a-work-factor to describe 
how W(x)  changes with pi (see [12]). 

Definition 5. Let x be an L-valued random variable whose probabilities are arranged 
according to (6). Then the a-work-factor is defined as 

wfo,(x) -- min  k; E p i  >_ a (8) 
i--1 

That is, the a-work-factor tells us how many guesses or how much work an adversary 
must do to be certain within probability a to discover the value of x. Note that if a = 1 
then w.fo,(x) = ILl, the whole language (message space). 

Suppose we have the language Z 1, with p(A) -- 0.75 and p(B) = 0.25. Then the 
guesswork W(x) = p(A)+2p(B) = 1.25 and the corresponding a-work-factor is plotted 
in Fig. 2. Note that the guesswork is equal to the area below the a-work-factor function. 

wr.(x) 
2 

'o 
0 0,5 1 

Fig. 2. a-work-factor when p(A) -- 0.75 and p(B) : 0.25. 

Since wf,~(x) is by definition the step function to W(x)  we have 

W(x)  = wf,~(x)da (9) 
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4.4 Measure  for Confidential i ty  

To find a measure of confidentiality for selectively encrypted messages, we start by in- 
~ ( n -  1) vestigating how the guesswork changes for the reduction chain R = S ~  --+ ~o 

. . .  -+ L'~ --+ S °. That is, we examine how the guesswork changes with the number of 
encrypted units for the zero-order languages, when the unit size is one. 

In Fig. 3 we have plotted the o~-work-factor for the reducing chain Eo 2 + E 1 ---, £,o. 
Note that, since the area below the a-work-factor function represents the guesswork we 

5 also see how the guesswork changes with the number of encrypted units; W(x)  -- 
a when n~. - 1 and W(x )  - 1 when n,, - 0. when n~ - 2, W (x) = ~ 

wf.(x) wf.(x) wf.(x) 
4 e . 4 4 

3 

o _~ 2 o , • 

OT i ; ; - ' ~  . 1 , ; ; ~ a  O .  
0 1 0 1 0 a) b) 1 

e) 

Fig. 3. s-work-factor for reduction chain Go 2 ---, ~wol ~ Z'o °. 

To easily calculate the guesswork for the zero-order languages, note that the number 
of strings in S~ ~" are ISI n~ and that each string occur with probability I~1 -~o, thus we 
get 

wn~ (x) - ~ / I S I  -n~- (10) 
i = 1  

2 

We use the subscript n~ since it is a parameter affecting the guesswork. 
By simple calculus it is easy to show that the function 10 is an increasing function 

by the number of encrypted units. 

W n e + l  ( X )  - W n ~  " ( X )  - -  

Hence, since l S[ > 0 the statement holds. 

[~1 n~+l -I- 1 I~1 n~- + 1 

2 

IEI'~ ( I E I -  1) 

(11) 

To illustrate the asymptotic behaviour of (10), we have in Fig. 4 plotted the log 2 of 
the function as stars when ISI = 2. The base of the logarithm is taken to be two since 
this gives us the doubling rate between two adjacent integers. The two continuous lines, 
which in reality should be plotted as points, show the log z of the corresponding c~-work- 
factor functions wfo.5 (x), the lower line, and wfl  (x), the upper line. They represents 
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the number of trials an attacker must do to be certain within 50% and 100% to discover 
the correct message. More generally, the attacker must perform wf~(x)  - [-a[S[ '~- ] 
guesses to be certain within probability c~ to discover the correct message. 

l ° g 2  l(~Vo ~ ( X ) )  

9 

8 

7 

8 

5 

4 

2i 
1, i 

Fig. 4. log2(Wn ~ (x)) when IEI - 2, including log2(wfo.5(x)) and log2(wfl(x)). 

From Fig. 4 we also see that it looks like the function log2(Wn ~ (x)) asymptotically 
narrows the function log2(wfo.5(x)), as the number of encrypted units increases. To 
show the asymptotic behavior we calculate the limit of the difference between the two 
functions. 

lim Ilog2(Wn~(x))-log2(wL~(x))l  = lim [log 2 
n e ---~ (:x:) n e. ---+ o o  

1 
= l°g2 2---a 

[Z[ n~ + 1 I 
2 [o~ I SI n~ ] (12) 

Thus if a = 0.5 the limit is zero and hence log2(W,~ ~ (x)) ~ log2(wf0.5(x)) when 
n~ ~ c~. The interpretation of this, is that for zero-order languages the expected num- 
ber of guesses needed to discover the secret message tends to one half the size of the 
message space as the number of encrypted units increases, which is as expected. 

Since (10) is also dependent on the number of symbols in the language, we have 
in Fig. 5 plotted the log2 of it, when I s I  = 2, I s I  - 4 and ISI = 8. Two curves 

W n l e  ( x )  - -  [~'llnleq'-I and Wn2~ (x) = 1~:21'~2~+1 will thus end up with the same value 
- 2 2 

of the guesswork if IS1 [nl~ _ [Z2[n%. Hence, by comparing the value of the guess- 
work for the key space (uniform distribution) with key length k bits and the message 
spaces of zero-order, we get that the message spaces are harder to break according to 
the guesswork if 2 k < I S [  ne . 

5 C o n c l u s i o n s  and  F u t u r e  W o r k  

By using the measure guesswork, we have in this paper started to investigate the se- 
curity implications of using selective encryption. We have for zero-order languages 
investigated some properties of the measure and identified when the message space is 
harder to break than the key space, using an optimal brute force attack. 
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aog~(w~(x)) IXl--8 IXl~ 
1o 

o iXl=2 
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0 I 2 3 4 5 8 ? 8 9 10 n¢  

Fig.5. log2(Wn ~ (x)) when IZ:I = 2, I~UI = 4 and I~1 - 8. 

Until now we have only investigated how the guesswork behaves for selective en- 
cryption of zero-order languages. To understand the full impact of the security impli- 
cations of selective encryption, higher order languages must be studied. When using 
higher order languages the size and distribution of the encrypted units will also become 
important. The presented theory does not include entropy. The relation between entropy 
and guesswork for different orders of languages is something we will also investigate 
in our future work. 
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Abstract. Database outsourcing is becoming increasingly popular introducing 
a new paradigm, called database-as-a-service, where an encrypted client's data- 
base is stored at an external service provider. Existing proposals for querying 
encrypted databases are based on the association, with each encrypted tuple, of 
additional indexing information obtained from the plaintext values of attributes 
that can be used in the queries. However, the relationship between indexes and 
data should not open the door to inference and linking attacks that can compro- 
mise the protection granted by encryption. 
In this paper, we present a simple yet robust indexing technique and investigate 
quantitative measures to model inference exposure. We present different tech- 
niques to compute an aggregate measure from the inference exposure associated 
with each single index. Our approach can take into account the importance of 
plaintext attributes associated with indexes and/or can allow the user to weight 
the inference exposure values supplied in relation to their relative ordering. 

1 Introduction 

In most organizations databases hold sensitive information that has to be protected from 
unauthorized accesses. As the size of these databases is increasing very quickly, orga- 
nizations may choose to add data storage to their systems at a high rate or to outsource 
data to external providers. The main advantage of outsourcing is related to the costs of 
in-house versus outsourced hosting: outsourcing provides significant cost savings and 
service benefits, and promises higher availability and more effective disaster protection 
than in-house operations. However, database outsourcing is not free from problems: 
since sensitive data are not under the direct control of their owner, data confidentiality 
and even integrity may be put at risk. These problems are traditionally addressed by 
means of encryption [5]. By encrypting the information, the client is guaranteed that it 
alone can access the data. However, since decryption must be executed only client-side 
for security reasons, the remote DBMS cannot execute any query because it has not 
access to plaintext data. Therefore, the whole relation involved in a query would be sent 
back to the client for query execution, thus nullifying the advantages of outsourcing. 

A first proposal toward the solution of this problem was presented in [3, 4, 9-11] 
where the authors proposed storing, together with the encrypted database, additional 
indexing information. The scenario just described, called database-as-a-service (DAS), 
involves mainly three entities (see Figure 1): 
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Fig. 1. DAS Scenario 

- U s e r :  human entity that presents requests (queries) to the system (1); 
- C l i e n t :  front-end that transforms the user queries into queries on the encrypted data 

stored on the server (2) and decrypts the result of a query (4); 
- S e r v e r :  an organization that receives the encrypted data from a data owner, executes 

queries submitted by clients, and returns the encrypted results to them (3). 

Two conflicting requirements need to be taken into consideration in the index con- 
struction: on one side, the indexing information should be related with the data well 
enough to provide for an effective query execution mechanism; on the other side, the 
relationship between indexes and data should not open the door to inference and link- 
ing attacks that can compromise the protection granted by encryption [6]. To balance 
query execution efficiency and data protection from inference, it is important to provide 
indexing techniques able to balance these two requirements. 

In this paper, after a brief explanation of data organization in the DAS scenario, 
we investigate quantitative measures to model inference exposure. We present different 
techniques to compute an aggregate measure from the inference exposure associated 
with each single index. The proposed techniques allow us to compute the inference 
exposure associated with a whole relation. The remainder of this paper is organized as 
follows. Section 2 describes the DAS scenario. Section 3 describes the abstract models 
used to compute the exposure coefficient in different scenarios. Section 4 illustrates 
different aggregation operators that can be used to combine the exposure coefficients 
associated with single indexes. Finally, Section 5 concludes the paper. 

2 Data Organization 

We consider a relational DBMS where data are organized in relations (e.g., see relation 
E m p l o y e e s  in Figure 2(a)); the underlined attributes represent the primary key of the 
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Employees 
lid [NamelAgelMarital Status[Job ] 
AI Alice 30 Married Manager 
A2 Bob 26 Married Director 
BI Alice 30 Married Employee 
B3 Carol 26 Single Manager 
B2 David 21 Single Employee 
A3 Alice 40 Divorced Employee 
B4 Bob 30 Single Manager 

(a) 

Employees k 
[CountlEtuple 1,11,21131,41151 

1 [r*tso/yui+ 7r c~ 6 /L A 
2 hai4de-0ql 7r /3 e /z A 
3 nag+q8*L pot 6 /t 7 
4 K/ehim*13- cr o~ e r/ A 
5 3gia*ni+aL 7r /3 e r/ "7 
6 F0/rablDW* p c~ e tz q' 
7 Bid2*kl-10 cr /3 6 7/ A 

(b) 

Fig. 2. An example of plaintext (a) and encrypted (b) relation 
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relations. In principle, database encryption may be performed at different levels of  gran- 
ularity: relation level, attribute level, tuple level, and element level. Both relation level 
and attribute level imply the communication to the user of  the whole relation involved 
in a query. On the other hand, encrypting at element level would require an excessive 
workload for clients in encrypting/decrypting data. For balancing the client workload 
and query execution efficiency, we assume that the database is encrypted at tuple level. 
The main effort of  current research in this scenario is the design of  a mechanism that 
makes it possible to directly query an encrypted database [9]. The existing proposals 
are based on the use of  indexing information associated with each relation in the en- 
crypted database [4, 11 ]. Such indexes can be used by the server to select the data to be 
returned in response to a query. More precisely, the server stores an encrypted relation 
with an index for each attribute on which a query can include a condition. Each plain- 
text relation is represented in the encrypted database as a relation with an attribute for 
the encrypted tuple and as many attributes as indexes to be supported. Formally, each 
relation r i  over schema Ri(/kil, Ai2 , . . . , /k in)  in a plaintext database DB is mapped onto 

k a relation r i over schema R~(Coun t ,  E t u p l e ,  I1, I2, . . . ,  In) in the encrypted data- 
base DB k where, C o u n t  is the primary key; E t u p l e  is an attribute for the encrypted 
tuple whose value is obtained using an encryption function Ek (k is the key); I i is the 
index associated with the i - th  attribute. ~ For instance, given relation E m p l o y e e s  in 
Figure 2(a), the corresponding encrypted relation E m p l o y e e s  k is represented in Fig- 
ure 2(b). As it is visible from this figure, the encrypted relation has the same number 
of  rows as the original one. Let us now discuss how to represent indexing information. 
A trivial approach to indexing would be to use the plaintext value of  each cell. This 
approach is obviously not suitable as plaintext data would be disclosed. An alternative 
approach providing the same fine-grained selection capability without disclosing plain- 
text values is to use the individual encrypted values as index. Therefore, for each cell the 
outcome of  an invertible encryption function over the cell value is used. Formally, for 

k where, j = 1 . n, t ' [ I j ]  = Ek(t[Aij]) .  each tuple t in r i ,  there exists a tuple t '  in r i , . .  , 
This solution has the advantage of  preserving plaintext distinguishability, together with 
precision and efficiency in query execution, as all the tuples returned belong to the query 
set of  the original query. As a drawback, however, encrypted values reproduce exactly 

! For the sake of simplicity, we assume that each attribute of the original relation has an index 
in the encrypted one. 
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Fig. 3. Abstract models supporting computation of exposure in the four attack scenarios 

the plaintext values distribution with respect to values' cardinality (i.e., the number of 
distinct values of the attribute) and frequencies. 

A third alternative approach is to use as index the result of a secure hash function 
over the attribute values rather than straightforwardly encrypting the attribute values; 
this way, the attribute values' distribution can befiattened by the hash function. A flexi- 
ble characteristic of a hash function is the cardinality of its co-domain B, which allows 
us to adapt it to the granularity of the represented data. When B is small compared with 
the cardinality of the attribute, the hash function can be interpreted as a mechanism that 
distributes tuples in I BI buckets; a good hash function (and a secure hash has to be 
good) distributes uniformly the values in the buckets. For instance, the Employees 
relation in Figure 2(a) can be indexed considering two buckets, o~ and/3, for attribute 
Name, and A l i c e  and C a r o l  can be mapped onto o~ and Bob and D a v i d  cam be 
mapped onto/3 (see Figure 2(b)). 2 With respect to direct encryption, hash-based index- 
ing provides more protection as different plaintext values are mapped onto the same 
index (see Section 3). By contrast, when hashing is used, the query results will often 
include spurious tuples (all those belonging to the same bucket of the index) that will 
have to be removed by the front end receiving it. 

As indexes constructed using hash or encryption functions do not preserve the do- 
main order of the original attributes, they cannot support range queries. To this purpose, 
a fourth indexing approach based on B+-trees has been proposed in [4]. In the follow- 
ing sections, we will describe how to compute the inference exposure coefficient when 
a direct encryption method or an hash based method are used to compute the indexes. 

3 Exposure Coefficient Measures 

As discussed in Section 1, it is important to be able to evaluate quantitatively the level 
of exposure associated with the publication of certain indexes and to determine the 
proper balance between index efficiency and protection. To this purpose, two differ- 
ent scenarios can be considered that differ in the assumption about the attacker's prior 
knowledge [4]. In the first scenario, called Freq+DB k, the attacker is aware of the exact 
(or approximate) distribution of plaintext values in the original database in addition to 
knowing the encrypted database. In the second scenario, called DB+DB k, the attacker 
has both the encrypted and the plaintext database. Note however that the computation 
of the exposure coefficient S depends also on the method adopted for indexing the data- 
base, that is, direct encryption or hashing. Figure 3 summarizes the abstract models that 
we used to obtain an indication of the exposure that characterizes genetic databases. 

2 Here, the result of the hash function is represented as a Greek letter. 
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We now briefly describe the rationale behind these abstract models (we refer the reader 
to [2, 4] for a complete description of these models). 

3.1 Direct Encryption Exposure 
In the Freq+DB k scenario, although the attacker does not know which index corre- 
sponds to which plaintext attribute, she can determine the actual correspondence by 
comparing their occurrence profiles. Intuitively, values with the same number of oc- 
currences are indistinguishable to the attacker. The exposure of an encrypted relation 
to indexing inference can then be thought of in terms of an equivalence relation where 
indexes (and plaintext values) with the same number of occurrences belong to the same 
equivalence class. The measure of exposure for a single cell in the table is then equal to 
the inverse of the cardinality of the equivalence class to which it belongs. Consequently, 
the probability of disclosing a specific association (a tuple is a specific association) is 
the product of the inverse of the cardinalities of its cells. The exposure of the whole 
relation can then be estimated as the average exposure of each tuple as follows: 

g = - I ~ I I I C i ,  j 
n i=1 j=l 

Here, i ranges over the tuples and j ranges over the columns, and ICi,j denotes the 
exposure of value j in tuple i. The exposure coefficient can be computed in O ( n .  k), 
where n is the number of tuples and k is the number of attributes. 

In the DB+DB k scenario, the model of the attack is based on the definition of 
RCV-graphs. Given a relational table, the corresponding 3-colored undirected graph 
G -- (V, E), called the RCV-graph (i.e., the row-column-value-graph), is a graph where 
the set V of vertexes contains one vertex for each attribute, one vertex for each tuple, and 
one vertex for each distinct value in each of the attributes; if the same value appears in 
different attributes, a distinct vertex is introduced for every attribute in which the value 
appears. The set E of edges contains both edges connecting each vertex representing 
a value with the vertex representing the column in which the value appears and edges 
connecting each vertex representing a value with the vertexes representing tuples in 
which the value appears. This graph has an important property, that is, the RCV-graph 
built starting from a plaintext table is identical to the RCV-graph built starting from 
the corresponding encrypted table. The identification of the correspondence between 
plaintext and index values requires then to establish a correspondence between the en- 
crypted vertex labels and the plaintext values. This correspondence is strongly related 
to the presence of automorphisms in the RCV-graph. We used the Nauty algorithm [ 13] 
to produce a concise representation of all the automorphisms. The automorphisms over 
a graph constitutes a group that, for undirected graphs, can be described by the coars- 
est equitable partition [13] of the vertexes, where each element of the partition (each 
subset appearing in the partition) contains vertexes that can be considered interchange- 
able in an automorphism. The Nauty algorithm starts, for the group definition, from a 
partition on the vertexes that can be immediately derived grouping all the vertexes with 
the same color and connected by the same number of edges. This partition is then itera- 
tively refined. From the structure of the partition (C1 . . .  Ci), it derives that the vertexes 
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appearing in the generic partition element Cj are equivalently substitutable in all the 
automorphisms, as they have exactly the same characteristics. From this observation, it 
derives that the probability pi of a correct identification of a vertex vi E Cj is equal to 
the inverse of the cardinality of Cj. Then, given ICy[ vertexes in the partition element 
Cj, n elements in the equitable partition, and a total number m of vertexes, the exposure 
coefficient of the table is: 

?'r/, ?t ?Z 1~ 

E : ~ - ~ p i / m : Z  Z p i / m : Z  Z 1 / ( [CJ[  m ) :  y ~ l / m - n / m  
i = 1  j=lviECj j=lv~.ECj j = l  

The exposure coefficient can be computed in O(n 2 log n), where n is the number 
of vertexes in the RCV-graph. 

3.2 Hashing Exposure 

It is important to note that collisions due to hashing increase protection from inference. 
The hash function is then characterized by a collision factor denoting the number of 
attribute values that on average collide on the same index value. As an example, con- 
sider the relation in Figure 2. Here, A1 ± ce  and Caro  i are mapped on the same value 
a. The abstract models used for the computation of the inference exposure consider 
separately each attribute of the table; the inference exposure for the whole table can be 
obtained by aggregating the values associated with each single attribute (see Section 4). 
Note that while direct encryption indexing methods preserve the association of values 
of attributes within the tuples, the hash based methods do not preserve this association 
and therefore a potential intruder cannot use such information. Consequently, the ex- 
posure index computation is performed at attribute level and then each single value is 
aggregated to derive the exposure associated with the whole table. 

In the Freq+DB k scenario, the goal of the attacker is to find a mapping from plain- 
text values to indexing values that satisfies the constraints given by the attacker's prior 
knowledge which is represented by the occurrences of each plaintext value and each 
hashed one. The exposure coefficient is then computed as follows. We first enumerate 
the different mappings by using an adaptation of Pisinger's algorithm for the subset 
sum problem. We then compute the exposure coefficient for each mapping and we take 
the average of these exposure coefficients. The exposure coefficient can be computed in 
O(nk), where n and k are values related to the number of different items in the index 
domain and their frequency in the encrypted table. 

In the DB+DB k scenario, the exposure coefficient is computed by extending the 
RCV-graph described in the previous Section. As before, identifying the correct corre- 
spondence between plaintext and hash values requires finding a matching between each 
vertex of the plaintext RCV-graph and a vertex of the corresponding encrypted RCV- 
graph. When collisions occur, the two graphs are not identical, as different vertexes 
of the plaintext RCV-graph may collapse to the same encrypted RCV-graph vertex. 
We can observe that the number of edges connecting row vertexes to value vertexes 
in the plaintext and encrypted RCV-graph is the same. Therefore, the problem can be 
viewed as finding a correct matching between the edges of the plaintext RCV-graph 
and the edges of the encrypted RCV-graph. Following this observation, we compute the 
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exposure coefficient as the average of the exposure coefficients associated with an at- 
tribute in correspondence of each matching. The exposure coefficient can be computed 
in O ( n ! n ) ,  where n is the number of nodes in the graph. 

4 Exposure Coefficient Measures based on Aggregation Operators 

The aggregation operators are mathematical objects that have the function of combin- 
ing a set of numbers into a unique representative (or meaningful) number. As specified 
in the previous Section, we are interested in computing the exposure coefficient asso- 
ciated with a whole table when indexes have been obtained by applying an hash-based 
method. To this purpose, it is possible to use one of the many operators that satisfy the 
definition of aggregation operator [ 14]. Formally, an aggregation operator is defined as 
follows. 

Definition 1. An operator A : Une~[0, 1] n ~ [0, 1] is an aggregation operator on the 
unit interval ( f  the fo l lowing  conditions hold: 

identity property:  A ( x )  - -  x .  3 

boundary conditions: A(O, . . . , 0) -- 0 and A(1 ,  . . . , 1) = 1; 

monotonicity: A ( X l ,  . . .  ,Xn)  ~_ A ( y l , . . .  ,Yn)  i f ( x i  ~ Yi) Vi -- 1, . . .  ,n .  

Note that additional properties (mathematical  and behavioral) may also be added [7, 
8]. Although many aggregation operators satisfy these properties [18], we consider the 
Weighted Mean (WM) [ 1, 16] and the Ordered Weighted Averaging operator (OWA) [19]. 
These two operators combine the input values according to a single set of weights. 
Therefore, to apply these operators, we first need to associate a weight (or set of weights) 
with each attribute of a relational table. The determination of these weights is usually 
done in an heuristic way (after trial and error) or asking an expert to supply them. We 
now describe the use of these operators more in details. 

4.1 Weighted Mean 

The Weighted Mean allows the system to compute an aggregate value from the ones 
corresponding to the exposure coefficient associated with each single index of a given 
table. This operator can take into consideration the risk connected to the disclosure of 
an attribute due to the inference from the corresponding index. The formal definition of 
a Weighted Mean operator is as follows. 

Definition 2. Let p -- ~91 P2 ... Pn] be a weighting vector o f  dimension n such that 
n i -- 1 , . . . ,  n, Pi E [0, 1] and ~~i=1 Pi = 1. A mapping fWM " IR n --* IR is a Weighted 

Mean (WM) operator o f  dimension n if." 

7~ 

fwM(al ,  a 2 , . . . ,  an) -- Z p i a i "  
i - - 1  

(1) 

3 This property is required when the argument of the aggregation operator is an unary vector. 
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The weighting vector p is here used to reflect the sensitivity of the attributes in the 
original table. More precisely, an attribute is considered more "sensitive" than another 
attribute when its disclosure puts more at risk the outsourced database. As above- 
mentioned, there are several ways to choose the weights and we assume that a domain 
expert provides a vector depending on the context. This vector multiplied by the values 
of the exposure coefficients permits the evaluation of the robustness of the indexing 
method: a higher protection of the most sensitive attributes (a low exposure coeffi- 
cient for the connected index) leads to a lower global exposure coefficient value; on 
the contrary, a lower protection of the most sensitive attributes leads to a higher global 
exposure coefficient value. The main advantage of using a weighted mean with respect 
to the classical mean is that it allows to make a distinction among the attributes of a 
table. For instance, if the exposure coefficients associated with the indexes computed 
from the more sensitive attributes are low, we would expect a low global exposure co- 
efficient. Vice versa, if the exposure coefficients associated with the indexes computed 
from the more sensitive attributes are high, we would expect a high global exposure 
coefficient. If we use the classical mean operator, it is possible that a similar global 
exposure coefficient is obtained in both situations because it considers the attributes 
equivalent. 

Example  1. Consider the relations in Figure 2 and suppose that the most sensitive 
attribute is Name followed by Age, M a r i t a l  S t a t u s ,  Job ,  and Id.  A possible 
weighting vector reflecting the sensitivity of the attributes is, for example, p-- [.05.40 
.30 .15 .10] that represents the weights associated with attributes Id ,  Name, Age, 
M a r i t a l  S t a t u s ,  and Job ,  respectively. Suppose now that the exposure coefficient 
associated with each index is computed as discussed in Section 3.2: EI - [1/7! 1/36 
1/36 1/8 1/8]. According to the WM definition, the global exposure coefficient is: 

" 1 5 ) + ( 8 ) ( . 1 0 )  ~-- .0507 

If the exposure coefficients associated with the indexes are ,f~ -- [1/7! 1/8 1/8 
1/36 1/36], we would obtain E ~ .0944 and we can conclude that the protection is 
worse than the first case because sensitive attributes are less protected. 

It is important to note that the primary key of a table is always well protected because 
its values are indistinguishable. For this reason, in the above example, the weight asso- 
ciated with the primary key I d is very low. 

4.2 Ordered Weighted Averaging Operator 

The OWA operator allows the user to weight the input values in relation to their relative 
ordering. In this way, a system can give more importance to a subset of the input values 
than to another subset. The OWA operator is formally defined as follows. 

Definition 3. Let  w = [Wl w2 ... w,~] be a weighting vector o f  dimension n such that 
n i -- 1 , . . . , n ,  wi 6 [0, 1] and ~-~i=1 w i -  1. A mapping f o w A "  IR n --~ IR is an 
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Ordered Weighted Averaging (OWA) operator o f  dimension n if." 

?% 

fOWA (a l ,  a2, ..., an)  -- Z wiarr(i)' (2) 
i=1 

where {0.(1), 0"(2), ..., 0"(n)} is a permutation o f {  1, 2, ..., n} such that Vi - 2 , . . . ,  n, 
a~(i-a) > a~(i). 

The exposure coefficient associated with an index reflects how the corresponding at- 
tribute is protected. An higher exposure coefficient (always a value between 0 and 1) 
indicates that a particular attribute has a low protection and vice versa. Using an OWA 
operator, it is therefore possible to highlight this fact by choosing an appropriate weight- 
ing vector w. In particular, there are two strategies that the data owner may adopt: 

- maximal protection: a table is considered protected only if all attributes are well 
protected (low exposure coefficient). Even a single not well protected attribute may 
cause a poor evaluation of the hash function adopted. In this case, it is necessary 
that the highest exposure coefficients have an higher weight to amplify their contri- 
bution to the final result (w has to be decreasing). 

- minimal protection: a table is considered protected even if just one of its attributes 
is well protected. In this case, it is necessary that the lowest exposure coefficients 
have an higher weight (w has to be increasing). 

There are also many other intermediate strategies between these two ones, depending 
on the policy that the data owner has decided to adopt. 

In summary, by comparing these two aggregation operators (WM and OWA), it is 
easy to see that in the WM operator the weights measure the importance of the attributes 
independently from the corresponding exposure coefficients. On the other hand, in the 
OWA operator weights measure the importance of the exposure coefficients (in relation 
to other values), independently from the attributes with which they are associated. 

Example 2. Consider the relations in Figure 2 and the exposure coefficients £~ -- 
[1/7! 1/36 1/36 1/8 1/8] associated with attributes Id ,  Name, Age, M a r i t a l  
S t a t u s ,  and Job ,  respectively. We first order these coefficients thus obtaining the 
permutation: £i~ = { 1/8, 1/8, 1/36, 1/36, 1/7!}. If the data owner wants to apply the 
maximal protection strategy, she has to define a decreasing weighting vector such as 
w = [.30.30.20.15.05]. In this case the exposure coefficient for the whole table is: 

£ = (.30) + g (.30) + (.20) + (.15) + ~ . 

On the contrary, if the data owner wants to apply the minimal protection strategy she 
has to choose an increasing weighting vector such as w = [.05.15.20.30.30]. In this 
case, the exposure coefficient for the whole table is: g ~ .03894 and is lower than the 
previous one because the low values in g~,~ have high weights. 
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5 Conclusions and Future Work 

We presented different measures for evaluating the robustness of indexing techniques 
against inference attacks in the DAS scenario. Issues to be investigated will include the 
analysis of more complex operators for the computation of the exposure coefficient of 
a whole table such as non linear operators and the WOWA operator. 
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