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Abstract
Contribution of hysteretic mechanical elements to the stress/strain relationship of microin-
homogeneous material is analyzed within the framework of the Preisach–Arrhenius model
where the transitions between the different mechanical states of the individual elements in
addition to acoustic loading can be induced by thermal fluctuations. The model provides an
explanation of why with increasing wave amplitude a transition from a behavior, which is
quasi-independent of wave amplitude, to another, characterized by the dominance of nonclassi-
cal hysteretic quadratic nonlinearity, takes place in microinhomogeneous materials. Analytical
evaluation of the Preisach–Arrhenius model for the acoustic hysteresis confirms the expecta-
tion that thermal relaxation effects are capable of recovering the dependence of the nonlinear
acoustic properties of the material on acoustic wave frequency. The theory predicts the bound-
aries for an intermediate interval of frequencies where hysteretic quadratic nonlinearity domi-
nates in microinhomogeneous materials. Outside this interval (at sufficiently low or sufficiently
high frequencies) the nonlinearity significantly diminishes. However the width of the frequency
interval for the hysteretic quadratic nonlinearity depends on the acoustic wave amplitude and
increases with the increasing wave amplitude. The low-frequency cutoff of the interval dimin-
ishes with increasing wave amplitude and the high-frequency cutoff increases. As a result, if
the system manifests linearity or quasinonhysteretic nonlinearity at sufficiently low acoustic
amplitudes, sooner or later with increasing wave amplitude it will manifest hysteretic quadratic
nonlinearity.

Keywords: Dispersion of nonlinearity, hysteretic nonlinearity, microinhomogeneous mate-
rials, nonclassical nonlinearity, Preisach–Arrhenius model, rate-dependent hysteresis, thermal
relaxation

1. Introduction

The objective of nonlinear acoustics is the evaluation of material nonlinearity, that
is to say, of a deviation of the material mechanical behavior from the Hooke’s law,
by application of low-amplitude (acoustic) strain waves. Typical amplitude values of
periodic strain waves do not exceed 10−5 and the nonlinear contribution to the material
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stress/strain relationship is small. Currently there exists a consensus, according to
which the nonlinear mechanical properties of microinhomogeneous materials (such as
rocks, polycrystalline metals, and ceramics, e.g.) are dominated by nonclassical hys-
teretic nonlinearity,1–4 as opposed to the nonlinearity of the interatomic interactions
and the kinematic nonlinearity.5, 6 Hysteretic nonlinearity is understood phenomeno-
logically in terms of the nonlinear hysteretic motion of the mesoscopic mechanical
elements such as dislocations, intergrain contacts, or defects, for example, with the
dimensions exceeding interatomic distances but significantly smaller than the acoustic
wavelength.1, 2 As a mathematical tool for the description of hysteresis in nonlinear
mechanical properties, the Preisach–Mayergoyz (PM) model of hysteresis7–10 can be
applied. Even in its simplest formulation the PM model explains what is, perhaps, the
best known and the most common manifestation of the hysteretic nonlinearity, that is
to say, the shift of the resonance frequency of a solid microinhomogeneous bar pro-
portional to the wave amplitude in the bar.1–4, 11 However, the PM model does not
explain either experimentally observed dependence of the nonlinear phenomena on
frequency12, 13 or the absence of the hysteretic quadratic nonlinearity at very low am-
plitudes of the acoustic loading.14–16

We note here that the Preisach (Preisach–Mayergoyz) formalism7–10 attributes
hysteresis in the nonlinear stress/strain relationship to combined behavior of indi-
vidual bistable (two-level) hysteretic mechanical units, sometimes referred to as hys-
terons.17, 18 The transitions (Barkhausen jumps10) between two possible states (i.e.,
energy levels) are assumed to take place instantaneously and exactly at some critical
levels of varying stress (strain). For different individual mechanical elements, the lev-
els are different. This model of the hysteretic nonlinearity is essentially dispersionless,
that is to say, it is frequency-independent, because there are no characteristic scales of
either time or length in the model. The PM model does not take into account that hys-
teresis is always a dynamic phenomenon. If thermal fluctuations are taken into account
in the description of the mesoscopic elements, then there will be no hysteresis in the
static limit because the thermal fluctuations are always pushing the system to a unique
equilibrium state. In quasistatic experiments, hysteresis will appear at frequencies for
which thermal fluctuations have insufficient time to force the system during a wave
period in a state having free energy at its absolute minimum value. Instead, the system
will be in a state in which its free energy is in a local minimum, that is to say, in a
metastable state. Consequently, the nonlinear mesoscopic mechanical elements, in re-
ality, are nonhysteretic in the static limit and hysteretic only in their dynamic behavior.
In the theory of magnetism, the Preisach–Mayergoyz model is considered as a zero-
temperature limit for rate-independent hysteresis,10 because the thermal fluctuations
are not included and because the stress/strain relation depends only on the sign of the
strain rate but not on its magnitude.

The Preisach–Arrhenius (PA) model for the description of thermally activated relax-
ation, or “after-effect,” in magnetic materials10, 18 takes into account that the transitions
between the energy levels of the system can be thermally activated and that the prob-
ability of the transition is controlled by the Boltzmann factor exp(−�E/kB T ), where
�E is the difference in energy levels, or some activation energy, kB is the Boltzmann
constant, and T is the absolute temperature. The thermally controlled transition is not
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instantaneous statistically. Rather, there is a characteristic time scale for each indivi-
dual mechanical element that can be estimated by τ0 exp(�E/kB T ) as defined by the
Arrhenius formula for the transition time, where τ0 is some characteristic attempt time
associated with the Barkhausen jump between the energy levels.10 Consequently, dis-
persion in the acoustic nonlinearity is expected in the Preisach–Arrhenius model. In the
rate-independent approximation assumed by the PM model the external action on the
system remains nearly unchanged during the time needed to complete the Barkhausen
jump. Thus, the external field creates the conditions for the system instability and spon-
taneous (or thermally initiated) Barkhausen jumps from one local energy minimum to
the next. Therefore, when appreciable variations of an external action take place dur-
ing individual Barkhausen jumps, then rate-independence no longer applies. At high
frequency and weak acoustic wave amplitude the characteristic time for a thermally
stimulated transition to occur can significantly exceed the acoustic wave period. Thus,
the individual elements have insufficient time to modify their state even when loading
makes it for some time allowed by energy considerations.10

The acoustic wave affects the system through the modulation of the difference �E
between the energy levels, and in doing so, renders the thermally activated relaxation
processes amplitude dependent. Qualitatively speaking, the Preisach–Arrhenius model
describes nonlinear temperature-dependent relaxation of the hysteretic mechanical el-
ements. Consequently it might be expected that the nonlinearity of the system is due
not only to the intrinsic nonlinearity of the bistable hysteretic elements but also due to
the nonlinearity of the relaxation process.

2. Preisach–Arrhenius Model for Acoustic Response of
Microinhomogeneous Media

There exists a consensus that microinhomogeneous materials may contain some me-
chanical elements that are mesoscopic (with the dimensions exceeding the atomic
scale but significantly smaller than the acoustic wavelength) and hysteretic (such as
reversible Griffith cracks8 or contacts with adhesion, e.g.). The hysteresis in the be-
havior of an individual mechanical element might be imagined in the simplest way as
being related to the possibility for the element to be in different states under the same
mechanical loading. In which state the mechanical element is actually a function of
the acoustic loading history. Both in the Preisach–Mayergoyz7–10 and the Preisach–
Arrhenius10, 18, 19 models it is assumed that the mechanical elements have two states
(two energy levels) and that the contribution σ ′ of an element to the macroscopic stress
in material depends on its state. This phenomenological description assumes that the
free-energy of the material, which possesses multiple local minima reflecting the com-
plexity of the mutual interactions among the system’s components, can be represented
as a linear superposition of two-level bi-stable contributions.10 In the PM theory the
transition of an element from state 1 to state 2 takes place when ∂ε/∂t > 0, ε = ε2,
and the inverse transition takes place when ∂ε/∂t < 0, ε = ε1 < ε2 (Figure 21.1).
The difference between the critical switching strains ε2 and ε1 (ε2 �= ε1) is at the ori-
gin of the hysteretic nature of these elements. If the notation f (ε1, ε2) is introduced
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Fig. 21.1. Contribution σ ′ of an individual mechanical element to stress in the framework of the Preisach–
Mayergoyz model. Arrowheads indicate direction of strain variation in time.
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Fig. 21.2. Presentation of mechanical element distribution at Preisach–Mayergoyz plane (ε2, ε1), where
ε2 and ε1 are the critical strain values for switching the elements between the levels. A distribution, limited
in PM plane by ε⊥ ≡ (ε2 − ε1)/2 ≤ εmax⊥ and εmin

// ≤ ε// ≡ (ε2 + ε1)/2 ≤ εmax
// , is presented in gray as an

example.

to represent the distribution function of the elements in the plane (ε2, ε1) then the
contribution of all the elements to the stress is given as

σ =
∫ ε2

−∞
dε1

∫ ∞

ε1

dε2σ
′(ε1, ε2, ε) f (ε1, ε2). (21.1)

Here f (ε1, ε2)dε1dε2 is the number of the elements with critical strains belonging to
the intervals (ε1, ε1 + dε1) and (ε2, ε2 + dε2) of the PM plane (ε2, ε1). Due to the
assumed condition ε2 > ε1 the integration in the PM plane is in the sector to the right
of the diagonal ε2 = ε1 (Figure 21.2). The arguments of the function σ ′(ε1, ε2, ε)

indicate that, in general, the contribution of an element to the total stress depends on
its position in the PM plane and the loading history as it is presented in Figure 21.1. An
important feature of the PM model is that hysteresis in the mechanical behavior of the
individual elements exists independently of the magnitude of the strain rate, because
the transitions at critical levels ε2 and ε1 are assumed to be instantaneous. It is assumed
that the transition 1 ⇒ 2 always happens when the strain ε(∂ε/∂t > 0) exceeds ε2

independently of how fast ε returns back to the region ε < ε2. From a physics point
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of view, in the PM model the acoustic loading not only creates the conditions for the
transition but also induces the change of the state.

The physical nature of σ ′(ε1, ε2, ε) in the Preisach–Arrhenius model is very dif-
ferent. In fact, the acoustic field is no longer the only physical actor that can induce
transitions between the states 1 and 2. There are also thermal fluctuations that statis-
tically can cause the same transitions. In the PA model, the transition from state 1 to
state 2, for example, can occur during a finite time interval and at values of ε that do
not strictly satisfy the conditions ε = ε2 (∂ε/∂t > 0). At finite values of the tem-
perature, the elements can overcome the energy barrier by thermal activation at lower
strains as long as there is a second (local) energy minimum in which they can jump.
Qualitatively speaking, thermal fluctuations accelerate the transitions below the criti-
cal level of strain ε2. At the same time, above the critical strain ε2, thermal fluctuations
induce inverse transitions (from state 2 to state 1), which are completely forbidden in
the zero-temperature model. The picture of the inverse transitions 2 → 1 near the
critical strain ε1 is similar.

In the Arrhenius model for thermally initiated transitions, the transition time τ12

from level 1 to level 2 is equal to τ12 = τ0 exp [d(ε2 − ε)/kB T ], where d measures
the variation of energy difference �E12 between states 1 and 2 caused by an applied
unit strain (deformation potential). Accordingly the transition time τ12 diminishes ex-
ponentially with increasing strain when the applied strain exceeds the critical level ε2.
Similarly, the time τ21 of the inverse transition is τ21 = τ0 exp [d(ε − ε1)/kB T ]. The
transition times τ12 and τ21 control the probabilities W1 and W2 to find the element in
states 1 and 2, respectively,

∂W1/∂t = −W1/τ12 + W2/τ21,

∂W2/∂t = W1/τ12 − W2/τ21, (21.2)

W1 + W2 = 1.

These equations are sufficient to describe the variation of stress in response to
acoustical loading. Actually the average level of σ ′(ε1, ε2, ε) in the absence of the
acoustic wave does not contribute to dynamic stress in Eq. (21.1). Thus it is useful
to evaluate the variations of σ ′(ε1, ε2, ε) relative to the average level (σ ′

1 + σ ′
2)/2,

where σ ′
1 and σ ′

2 are the contributions to stress when the element is in positions 1
and 2, respectively. Then the contributions of states 1 and 2 to stress that can be
modified by acoustic excitation are described as (σ ′

1 − σ ′
2)/2 = �σ ′(ε1, ε2) and

(σ ′
2 − σ ′

1)/2 = −�σ ′(ε1, ε2), respectively. Taking into account the probabilities
of finding the element in the corresponding states, the wave-dependent contribution
σ ′′(ε1, ε2, ε) to σ ′(ε1, ε2, ε) can be presented as

σ ′′(ε1, ε2, ε) = �σ ′(ε1, ε2)W1 − �σ ′(ε1, ε2)W2

= �σ ′(ε1, ε2)(W1 − W2) ≡ �σ ′(ε1, ε2)Q. (21.3)

The relations (21.2) lead to a single equation describing the dynamics of the func-
tion Q, which has been introduced in Eq. (21.3) to characterize the asymmetry of the
element distribution between the two levels,

∂ Q/∂t + (1/τ21 + 1/τ12)Q = (1/τ21 − 1/τ12). (21.4)
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An obvious but important conclusion based on Eq. (21.4) is the absence of the
hysteresis in the contribution of an element to stress under the static conditions. For
∂/∂t → 0 (zero frequency of the acoustic action) the solution of Eq. (21.4) is

Q0 = − tanh

[
d

(
ε − ε1 + ε2

2

)
/kB T

]
. (21.5)

Thus, in contrast to the PM model the hysteresis in the PA model is a dynamic
phenomenon due to the finite rate of acoustic loading (compare the solutions in
Figure 21.1 and in Figure 21.3).

For the following analysis the characteristic strain ε0 = kB T/d, which provides a
scale for the amplitude of acoustic loading necessary for significant (e times) modifi-
cation of the relaxation times τ12 and τ21, is introduced. All the strains are normalized
to this level (ε/ε0 ≡ ε, ε1,2/ε0 ≡ ε1,2). Two new variables ε// = (ε2 + ε1)/2 and
ε⊥ = (ε2 − ε1)/2 are then introduced. Qualitatively speaking

∣∣ε//

∣∣ characterizes the
average energy of the mechanical element (from the acoustics point of view), and ε⊥
characterizes the separation of the energy levels 1 and 2 in the absence of acoustic
loading. On the other hand, ε// and ε⊥ have a clear geometrical interpretation: with
reference to the diagonal ε2 = ε1 in the PM plane, they are proportional to the co-
ordinates measured along that line and the direction orthogonal to it, respectively10

(Figure 21.2).
In the introduced notations, Eq. (21.4) takes the form

∂ Q/∂θ + (2/F) exp(−ε⊥) cosh(ε(t) − ε//)Q = −(2/F) exp(−ε⊥) sinh(ε(t) − ε//).

(21.6)
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Fig. 21.3. Contribution σ ′′ of an individual mechanical element to stress in the framework of the
Preisach–Arrhenius model in the case of infinitely low frequency of acoustic action. In accordance with
Eqs. (21.3) and (21.5) the element behaves in response to strain variation as a two-level but a nonhysteretic
unit.
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Here the time is normalized to the period TA of acoustic loading (θ = t/TA), and the
parameter F = τ0/TA is the normalized frequency of the acoustic action. The integral
relation (21.1) for the evaluation of the stress becomes

σ = −ε2
0

∞∫

0

dε⊥
∞∫

−∞
dε//�σ ′(ε⊥, ε//) f (ε⊥, ε//)Q(ε⊥, ε//, ε(t)). (21.7)

To investigate the acoustic properties of the Preisach–Arrhenius model, Eq. (21.6) is
integrated. The exact solution subjected to the conditions of periodicity (Q(θ + 1) =
Q(θ)) is

Q = −
∫ θ+1
θ dθ ′gs(θ

′) exp
[
− ∫ θ+1

θ ′ gc(θ
′′)dθ ′′

]

1 − exp
[
− ∫ θ+1

θ gc(θ ′′)dθ ′′
] , (21.8)

where gs = (2/F) exp(−ε⊥) sinh(ε(θ)−ε//), gc = (2/F) exp(−ε⊥) cosh(ε(θ)−ε//).
The formulae (21.7) and (21.8) with an appropriate modeling of the distributions

�σ ′(ε⊥, ε//) and f (ε⊥, ε//) are sufficient for the description of the acoustic response
of materials in the frame of the PA model. Here the results of the analysis are pre-
sented for the simplest variation of �σ ′(ε⊥, ε//) and f (ε⊥, ε//) in the PM plane
(ε⊥, ε//). For this purpose the product �σ ′(ε⊥, ε//) f (ε⊥, ε//) is estimated by its
characteristic value (�σ ′ f )0 and the extent of the element distribution in the PM
plane is assumed to be limited by the boundaries 0 ≤ ε⊥ ≤ εmax⊥ , εmin

// ≤ ε// ≤
εmax
// (εmin

// < 0, εmax
// > 0) (Figure 21.2). It is worth mentioning that the assump-

tion �σ ′(ε⊥, ε//) f (ε⊥, ε//) ≈ const is rather common in the applications of the
Preisach–Mayergoyz model to acoustics, because only a small area of the PM plane
with the dimensions ∝ εAεA/2 (where εA is the amplitude of the acoustic wave) inter-
acts with sound in the PM model.2, 3, 9 In this case the details of the �σ ′ f distribution
outside this small area play no role. In the Preisach–Arrhenius model the situation
is different because the acoustic wave perturbs the relaxation of all the elements of
the PM plane and it may appear of considerable relevance (in particular, for the case
of low-frequency acoustic loading) that the distribution of the elements is somehow
limited (i.e.,

∣∣�σ ′ f
∣∣ diminishes when ε⊥ → ∞ and

∣∣ε//

∣∣ → ∞).
In Figure 21.4 the results of the numerical evaluation of the hysteresis stress/strain

loops predicted by Eq. (21.7) and Eq. (21.8) are presented19 for the particular case of
a sinusoidal strain variation and a homogeneous element distribution inside the rec-
tangular area ε⊥ ≤ εmax⊥ = 10, −10 = εmin

// ≤ ε// ≤ εmax
// = 10. Modification of

the hysteresis loop with increasing wave amplitude at intermediate nondimensional
frequency F = 1 is demonstrated in Figure 21.4a. The transformation of an elliptical
loop, which is typical for linear hysteresis in a stress/strain relationship, to a nonel-
liptical loop, which is typical of nonlinear hysteresis, with increasing wave amplitude,
is clearly seen. Figure 21.4b demonstrates the opening of the hysteresis loop with
increasing frequency, indicating the dynamic nature of hysteresis phenomena captured
by the Preisach–Arrhenius model.
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Fig. 21.4. Numerically obtained normalized stress/strain hysteretic dependences in the case of homoge-
neous element distribution inside the rectangular ε⊥ ≤ 10, −10 ≤ ε// ≤ 10. The path of the material state
variation is directed clockwise along the loops. Modification of the hysteresis loop with increasing wave
amplitude at fixed frequency F = 1 (a). Modification of the hysteresis loop with increasing frequency for
the fixed wave amplitude εA = 1 (b).

3. Transition from Rate-Dependent to Rate-Independent Hysteresis

From the qualitative analysis of the validity limits of the Preisach–Mayergoyz model
(presented in Section 1) it could be concluded that the PM regime should be located
between the quasiequilibrium and the quasifrozen limits of the Preisach–Arrhenius
model. From physical considerations, the PM regime is absent at very low frequencies,
because there are nearly no hysteresis phenomena. In fact, an element has sufficient



21 Thermally Induced Rate-Dependence 345

time both during loading and unloading to assume the same equilibrium configura-
tion (see Figure 21.4b). At very high frequencies, the role of hysteresis is expected
to be nearly negligible because the elements have no time to switch from one level
to another. The numerical analysis of Section II has also confirmed that the transi-
tion from linear to nonlinear hysteresis tends to occur with increasing wave amplitude
(see Figure 21.4a). These qualitative arguments are supported by the analytical esti-
mates of the nonlinear contribution to the elastic modulus, which can be obtained19

in the frame of the mathematical formalism presented in Eqs. (21.7) and (21.8). The
so-called secant modulus20 〈E〉 ≡ σ(ε = εA)/εA, which is one of the possible forms
of presenting the modulus defect, was estimated analytically under the assumption of
the infinite extension of the homogeneous distribution of the elements in the PM plane
(in other words, εmax⊥ → ∞, εmax

// → ∞, εmin
// → −∞), and by approximating the

sinusoidal strain variation in the acoustic wave by a sawtooth profile.
The analysis has demonstrated that the linear decrease of the modulus defect with

the acoustic wave amplitude 〈E〉 ∝ −εA, which is characteristic of rate-independent
hysteresis in the frame of the PM model, can be realized only at high amplitudes of
the acoustic loading (εA 
 1). However, the latter should be in the region of the
homogeneity of the elements’ distribution (formally εmax⊥ → ∞, εmax

// → ∞, εmin
// →

−∞, when εA 
 1). Three different frequency regimes can be identified.
In the high-frequency regime, determined by the inequality F 
 FH ≡ exp(2εA)/

(4εA), the contribution to the modulus (which, in the following, is normalized by
(�σ ′ f )0ε

2
0) is very small

|〈E〉| ≈
[
1/(4Fε2

A)
]

[ln(F/FH )/(F/FH )] � 1. (21.9)

The significant values of 〈E〉 with the dominant contribution, which is linear in
strain, have been found only in the intermediate frequency regimes exp(εA)/(4εA) ≡
FI � F � FH ≡ exp(2εA)/(4εA) and exp(−εA/2)/(4εA) ≡ FL � F � FI ≡
exp(εA)/(4εA), where the secant modulus varies as 〈E〉 ≈ −4εA + [ln(4FεA)]2 /εA

and 〈E〉 ≈ −εA + 2 ln(4FεA), respectively. Linear dependence of the modulus on
strain amplitude disappears in the low-frequency regime defined by the inequality
F � FL ≡ exp(−εA/2)/(4εA), where the dependence of the modulus on the strain
amplitude is logarithmically weak

〈E〉 ≈ −2 ln [1/(4FεA)] . (21.10)

The obtained estimates correlate with the qualitative expectations. First, the
Preisach–Mayergoyz regime, in which 〈E〉 ∝ −εA, has been recovered as a partic-
ular case of the Preisach–Arrhenius model. It is predicted that the PM regime can be
obtained for εA 
 1 in a wide frequency interval

exp(−εA/2)/(4εA) ≡ FL � F � FH ≡ exp(2εA)/(4εA). (21.11)

Note that for εA 
 1 we have FL � 1, whereas FH 
 1. The theory predicts that
acoustic nonlinearity grows with increasing frequency of a high-amplitude excitation
(εA 
 1) in the low-frequency domain F � FL , that it weakly (logarithmically)
depends on the frequency in the intermediate domain FL � F � FH of quadratic
hysteretic nonlinearity, and that it falls in the high-frequency domain F 
 FH .
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Second, in accordance with the derived formulae in transition from the low-
frequency regime F � FL to the intermediate-frequency regime FL � F � FH ,
the dominant contribution to the secant modulus changes from being nearly strain
independent to having a linear dependence on the strain. So, for a material loaded
by high-amplitude acoustic waves, the critical frequency FL can be identified as a
transition frequency from the regime where its elements behave as if they were in
quasiequilibrium (Figure 21.3), to the regime where they behave as bi-stable units
(Figure 21.1).

Third, in accordance with the derived formulae, in the transition from the
intermediate-frequency regime FL � F � FH to the high-frequency regime F 
 FH ,
there is a significant diminishing in secant modulus magnitude that is accompanied by
the disappearance of the contribution which is linear in strain amplitude. Consequently,
the critical frequency FH can be identified as a transition frequency from the regime
where the mesoscopic mechanical elements behave as bi-stable units, to the regime
where they behave as quasifrozen ones.

In accordance with the obtained results, if the dominant contribution to the modulus
defect in experiment is linear in wave amplitude, this necessitates the strong inequality
sA 
 1. In other words, the dimensional acoustic strain amplitude should significantly
exceed the characteristic strain s0 = kB T/d of the material. In this limiting case,
the theory predicts that the dispersion of the nonlinearity, which is accompanied by
the deviation from the 〈E〉 ∝ −εA law, might be expected in the frequency ranges
F ≤ FL and F ≥ FH .

It should be also noted that the obtained results correlate well with the experimen-
tally observed dependence of the modulus defect on the wave amplitude.14 For the
comparison it should be taken into account that in the high-amplitude regime the de-
pendence of the critical frequencies on the wave amplitude is exponentially strong [see
Eq. (21.11)]. For example, if for the initial amplitude of the acoustic excitation with
εA 
 1 the system is in the low-frequency regime F � FL , then with increasing εA

the characteristic frequency FL ≡ exp(−εA/2)/(4εA) diminishes and sooner or later
the opposite condition FL � F will be fulfilled. This corresponds to the transition of
the system with increasing wave amplitude from the low-frequency quasilinear regime
(21.10) to the intermediate-frequency regime characterized by 〈E〉 ∝ −εA typical of
PM model.

If for the initial amplitude of the acoustic excitation with εA 
 1 the system is in the
high-frequency regime F 
 FH , then with increasing εA the characteristic frequency
FH ≡ exp(2εA)/(4εA) increases and sooner or later the opposite condition F �
FH will be fulfilled. This corresponds to the transition of the system with increasing
wave amplitude from the high-frequency quasifrozen regime (21.9) to the intermediate
frequency regime characterized by 〈E〉 ∝ −εA typical of PM model.

Taking into account that the PA model naturally describes quasilinear behavior of the
microinhomogeneous material at weak amplitudes of acoustic loading (εA � 1; see
Figure 21.4a), it can be also concluded that the developed theory predicts the transition
from the amplitude-independent modulus defect to the law 〈E〉 ∝ −εA (typical of
hysteretic quadratic nonlinearity) with acoustic amplitude increasing from εA � 1 to
εA 
 1.
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4. Discussion

Prior to drawing any conclusion from the work presented above,it should be clearly
stated that the thermal relaxation Preisach–Arrhenius model does not include all the
effects producing rate-dependence of the hysteresis. See, for comparison, the descrip-
tion of rate-dependent hysteretic phenomena in magnetism.10 The rate-dependence
may also appear due to the fact that the acoustic field cannot, in principle, transform
the state of a mechanical element infinitely fast.10, 21 In other words, an individual me-
chanical element cannot change its configuration instantaneously either due to direct
effect of the acoustic field or due to thermal fluctuations. In the Preisach–Arrhenius
model, the finite transition time appears only statistically in averaging over all the
elements, whereas each of the elements still exhibits instantaneous transitions as in
the zero-temperature (PM) model. To introduce finite transition times for the individ-
ual elements, either a micromechanical model of the transition between the different
states should be formulated,10, 22 or the finite transition times could be introduced phe-
nomenologically as a temperature-independent relaxation process.21 Surely, the gen-
eralized theoretical model of hysteresis should include a correct description of the
time evolution of both the transitions caused by thermal fluctuations and of those di-
rectly induced by the acoustic forces. The development of a generalized model would
be highly desirable for the quantitative interpretation of the experiments,12, 13, 15, 16, 23

where the dependence of the acoustic nonlinearity of the microinhomogeneous mate-
rials on frequency has been observed.

5. Conclusions

The evaluation of the Preisach–Arrhenius model for the acoustic hysteresis demon-
strates that thermal effects are capable of inducing a dependence on wave frequency of
the nonlinear acoustic properties of microinhomogeneous materials. Thermal effects
can also lead to an amplitude-dependent behavior of the material which differs from
that predicted by the Preisach–Mayergoyz model in several important aspects. The
Preisach–Arrhenius model of rate-dependent acoustic hysteresis also explains the pos-
sible transition in acoustic behavior of microinhomogeneous materials with increasing
wave amplitude from a linear one to another characterized by dominance of the hys-
teretic quadratic nonlinearity. From the physics point of view this is due to the fact that
the higher the amplitude of the material mechanical loading, the more difficult for the
thermal fluctuations to retain the system in a unique quasiequilibrium state.
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