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Finite Mixture Models with Nonnormal
Components

9.1 Finite Mixtures of Exponential Distributions

9.1.1 Model Formulation and Parameter Estimation

It is often assumed that nonnegative observations are realizations of a random
variable Y arising from a finite mixture of exponential distributions:

Y ∼ η1E (λ1) + · · · + ηKE (λK) , (9.1)

where E (λk) is parameterized as in Appendix A.1.4. This mixture distribution
is parameterized in terms of ϑ = (λ1, . . . , λK , η). Teicher (1963) showed that
mixtures of exponential distributions are identifiable.

Following Farewell (1982), various mixture survival models, based on the
exponential or more general distributions, were suggested and studied by many
authors; see, for instance, Morbiducci et al. (2003), who studied such models
with special focus on cure-rate models, to estimate the unknown rate of cured
patients and the survival function of uncured patients in a clinical trial. The
popularity of these models in duration or survival analysis is explained by
their ability to explain the frequently observed fact that hazards decline with
the length of spells (Heckman et al., 1990). Another interesting application of
mixtures of exponential distributions appears in failure analysis, where failure
often occurs for more than one reason (Everitt and Hand, 1981; Taylor, 1995).
Slud (1997) proposes a two-component exponential mixture model to test
imperfect debugging in software reliability.

Heckman et al. (1990) consider a consistent method of moments estimator
and present Bayesian and classical tests for testing the hypothesis of dealing
with mixtures of exponential distributions. Taylor (1995) uses the EM algo-
rithm. Gruet et al. (1999) use MCMC methods for Bayesian estimation and
apply reversible jump MCMC to select the number of components.
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9.1.2 Bayesian Inference

Bayesian estimation using data augmentation and MCMC as in Algorithm 3.4
is easily implemented for a mixture of exponential distributions. Based on
the prior λk ∼ G (a0, b0), the complete-data posterior p(λk|y,S) is given by
λk|y,S ∼ G (ak(S), bk(S)), where:

ak(S) = a0 + Nk(S),

bk(S) = b0 +
∑

i:Si=k

yi.

Gruet et al. (1999) show how a reparameterization of the exponential mixture
model (9.1) can allow for noninformative priors. They count the mixture com-
ponents starting from k = 0, rather than k = 1. They leave λ0 and η0 = ω0
unchanged, whereas each λk and ηk is expressed for k = 1, . . . , K − 1 as

λk = λ0

k∏
j=1

τj ,

ηk = (1 − ω0) · · · (1 − ωk−1)ωk.

This parameterization allows us to select a partially proper prior distribution,
based on the improper G (0, 0)-prior for λ0, whereas τ1, . . . , τK−1 are assumed
to be uniform on [0,1]. As λ0 appears as a common parameter in all component
densities, this leads to a proper posterior density, as shown in the appendix of
Gruet et al. (1999). This prior implies the order constraint λ0 > · · · > λK−1
on the component parameters, leading to an automatic identification of the
model.

Casella et al. (2002) illustrate how perfect slice sampling may be imple-
mented for mixtures of exponential distributions.

Reversible Jump MCMC

Gruet et al. (1999) apply reversible jump MCMC to select the number of
components for an exponential mixture. Their parameterization introduces
quite a natural strategy for carrying out split and merge moves, because in
a mixture with K − 1 components, the last component E (λ0τ1 · · · τK−2) is
replaced by a two-component exponential mixture:

ωK−2E (λ0τ1 · · · τK−2) + (1 − ωK−2)E (λ0τ1 · · · τK−1)

to obtain a mixture with K components.
To perform a split move in a mixture with K components, first a compo-

nent k is chosen randomly. The index of all components from k +1, . . . , K −1
is shifted by one. To split the old component k into the two new components
k and k + 1, the new parameters τnew

k and τnew
k+1 satisfy:
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τnew
k τnew

k+1 = τk,

whereas the weights satisfy:

(1 − ωnew
k )(1 − ωnew

k+1) = (1 − ωk).

To perform the split move, two random numbers u1 and u2 are introduced:

τnew
k = u1 + τk(1 − u1),

τnew
k+1 =

τk

τnew
k

=
τk

u1 + τk(1 − u1)
,

ωnew
k = u2ωk,

ωnew
k+1 =

ωk(1 − u2)
1 − ωku2

.

If k > 0, then u1, u2 ∼ U [0, 1], whereas u1 ∼ U [0, .5] for k = 0, in which case

λnew
0 = λ0/u1, τnew

1 = u1.

The determinant of the Jacobian is given by

|Jacobian| =

⎧⎪⎨⎪⎩
ω0(1 − τk)

(1 − ωnew
k )(τnew

k )2
, if k > 0,

ω0

(1 − ωnew
0 )u1

, if k = 0.

Gruet et al. (1999) report no improvement in refining reversible jumps by
adding a move that introduces empty components.

9.2 Finite Mixtures of Poisson Distributions

9.2.1 Model Formulation and Estimation

A popular model for describing the distribution of count data is the Poisson
mixture model, where it is assumed that y1, . . . , yN are independent realiza-
tion of a random variable Y arising from a mixture of Poisson distributions:

Y ∼ η1P (µ1) + · · · + ηKP (µK) ,

with P (µk) being a Poisson distribution with mean µk; see Appendix A.1.11.
This distribution is parameterized in terms of 2K − 1 distinct model param-
eters ϑ = (µ1, . . . , µK , η). Mixtures of Poisson distributions are identifiable;
see Feller (1943) and Teicher (1960).

Applications of mixtures of Poisson distributions appear in particular in
biology and medicine; see, for example, Farewell and Sprott (1988) and Pauler
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et al. (1996). Applications to disease mapping are briefly discussed in Sub-
section 9.4.1. Karlis and Xekalaki (2005) provide a recent review of Poisson
mixtures.

Mixtures of Poisson distributions served to illustrate statistical inference
for finite mixtures throughout Chapter 2 to Chapter 5. Reversible jump
MCMC has been used for finite mixtures of Poisson distributions by Del-
laportas et al. (2002) and Viallefont et al. (2002); see also Subsection 5.2.2.

For Bayesian estimation, we add only comments on choosing the hyperpa-
rameters a0 and b0 of the prior of the group means, µk ∼ G (a0, b0). Viallefont
et al. (2002) suggest fixing a0 around 1 and choosing b0 in such a way that
the prior mean E(Y |ϑ) = a0/b0 is matched to the midrange of the data, for
example, the mean:

b0 =
a0

y
. (9.2)

For data where overdispersion is actually present, meaning that s2
y−y > 0, it is

possible to choose a0 in such a way that the expectation of the second factorial
moment with respect to the G (a0, b0)-prior, which is by E(Y (Y − 1)|ϑ) =
a0/b2

0(1 + 1/a0), is matched to the second factorial moment of the data, v2,
defined earlier in (2.26):

a0 =
y2

v2 − y2 , (9.3)

where due to (9.6) v2 − y2 could be substituted by s2
y − y. Thus the larger the

overdispersion in the data is, the smaller a0 should be chosen.
If overdispersion is small, then a0 is large and µk is strongly shrunken

toward a0/b0. In this case it useful to assume a hierarchical prior as defined
in Subsection 3.2.4, where b0 ∼ G (g0, G0). Estimation and model selection
are rather insensitive to the parameter g0 and could be chosen as g0 = 0.5,
whereas matching E(b0) = g0/G0 to a0/y yields:

G0 =
g0y

a0
.

9.2.2 Capturing Overdispersion in Count Data

Overdispersion occurs for a random variable Y , if the variance is bigger than
the mean, whereas mean and variance are identical for a Poisson distribution.
Overdispersion is present in many data sets involving counts. For illustration,
consider the Eye Tracking Data counting eye anomalies in 101 schizophre-
nic patients studied by Pauler et al. (1996) and Escobar and West (1998),
where the sample variance s2

y = 35.89 shows overdispersion in comparison to
the sample mean y = 3.5248; see also the histogram of the data in Figure 9.1.
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Fig. 9.1. Eye Tracking Data, empirical distribution of the observations

Many authors have studied the effect of overdispersion; see Wang et al.
(1996) for some review. One possible reason for overdispersion is unobserved
heterogeneity in the sample, causing the mean to be different among the
observed subjects. A model commonly used in this context and discussed
already in Feller (1943), is the Poisson–Gamma model which is a continuous
mixture of Poisson distributions:

Y ∼ P (µs
i ) , µs

i ∼ G (α, α/µ) . (9.4)

Marginally, Y arises from the NegBin (α, α/µ)-distribution, with E(Y |ϑ) = µ
and

Var(Y |ϑ) = E(Y |ϑ)
α + E(Y |ϑ)

α
≥ E(Y |ϑ),

where ϑ = (α, µ). As long as α is not too large, this distribution actually
captures overdispersion.

Overdispersion of a random variable Y drawn from a Poisson mixture is
evident from the first two moments of this mixture given by (1.19):

E(Y |ϑ) =
K∑

k=1

µkηk,

Var(Y |ϑ) =
K∑

k=1

µk(1 + µk)ηk − E(Y |ϑ)2 = E(Y |ϑ) + B(ϑ),
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where B(ϑ) is the between-group heterogeneity:

B(ϑ) =
K∑

k=1

(µk − µ(ϑ))2ηk, (9.5)

with µ(ϑ) = E(Y |ϑ). As Var(Y |ϑ) − E(Y |ϑ) = B(ϑ), finite mixtures of
Poisson distributions explain overdispersion through unobserved heterogene-
ity in the sample, causing the mean to be different among the observed
subjects. For K = 2, for instance, B(ϑ) = 2η1η2(µ2 − µ1)2. Overdisper-
sion occurs as long as the means of at least two components are different.
Overdispersion could also be determined from the difference of the second
factorial moment of the Poisson mixture, E(Y (Y − 1)|ϑ), and E(Y |ϑ)2, as
E(Y (Y − 1)|ϑ) = E(Y 2|ϑ) − E(Y |ϑ), and therefore:

E(Y (Y − 1)|ϑ) − E(Y |ϑ)2 = B(ϑ). (9.6)

The use of finite mixtures of Poisson distributions, rather than the more
commonly used Poisson–Gamma model, to account for overdispersion has at-
tracted several researchers, among them Simar (1976), Manton et al. (1981),
Lawless (1987), Leroux (1992a), Leroux and Puterman (1992), Wang et al.
(1996), and Viallefont et al. (2002).

It is possible to include observed covariates to explain part of the unob-
served heterogeneity as discussed in Subsection 9.4.1, dealing with mixtures
of Poisson regression models.

9.2.3 Modeling Excess Zeros

Count data often contain more zeros than expected under the Poisson distribu-
tion. In medical data excess zeros occur if the zero-class is inflated by the inclu-
sion of observations that belong to a noninfected group. The Eye Tracking
Data, for instance, contain 46 zeros, whereas under the P (µ)-distribution, the
number of zeros in a sample of size N follows a BiNom (N, e−µ)-distribution.
For N = 101 and µ = y = 3.5248, the expected number of zero counts is
roughly equal to 3, whereas the probability to observe at least 46 zero counts
in a sample from the P (3.5248)-distribution is as small as 1.9 · 10−14, clearly
indicating the presence of excess zeros.

Analyzing count data with excess zeros, sometimes also called inflated ze-
ros, has a long tradition in applied statistics; see Meng (1997) for an interesting
review. Feller (1943) proves that the number of zeros in a Poisson mixture is
always larger than the number of zeros in a single Poisson distribution P (µ)
with the same mean µ = E(Y |ϑ) as the mixture distribution. This follows
immediately from:
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Pr(Y = 0|ϑ) =
K∑

k=1

ηke−µk = e−µ
K∑

k=1

ηkeµ−µk (9.7)

≥ e−µ
K∑

k=1

ηk(1 + µ − µk) ≥ e−µ.

Cohen (1966) considers the following two-component mixture:

Y ∼ η1I{0}(yi) + η2P (µ2) , (9.8)

where I{0}(yi) is 1 iff yi = 0. A limitation of (9.8) is that the second group
is assumed to be homogeneous. To capture overdispersion among nonzero
individuals, it is sensible to substitute the Poisson distribution by a more
general distribution, such as a finite mixture of K −1 Poisson distributions as
in Cohen (1960) or a negative binomial distribution as in Cohen (1966). Such
models are known as hurdle models; see, for instance, Cameron and Trivedi
(1998) and Dalrymple et al. (2003) for an application to sudden infant death
syndrome.

9.2.4 Application to the Eye Tracking Data

For illustration, consider the count data on eye tracking anomalies in 101
schizophrenic patients studied by Escobar and West (1998). To capture
overdispersion and excess zeros for this data set, diagnosed in Subsection 9.2.2,
we model the data by a finite mixture of K Poisson distributions as in Congdon
(2001), with increasing number K of potential groups. We use the hierarchical
prior (3.12) with a0 = 0.1, g0 = 0.5, and G0 = g0y/a0, and a D (4, . . . , 4)-prior
for η. We use Algorithm 3.3 for MCMC estimation, and store 8000 MCMC
draws after a burn-in-phase of 3000.

Figure 9.2 shows, for an increasing number of components K = 1, . . . , 7,
the posterior distribution of the probability p0(ϑ) to observe 0, which is given
by (9.7), of the overdispersion B(ϑ) defined in (9.5), and of the lth factorial
moment,

∑K
k=1 ηkµl

k for l = 3 and l = 4. A comparison of these posterior
distributions to the corresponding sample moments indicates that either four
or five components are sufficient to capture the moments under investigation.
Adding additional components hardly changes the posterior distribution of
these moments.

Formal model selection, either using marginal likelihoods or reversible
jump MCMC, is not really conclusive. Table 9.1 shows the log of the marginal
likelihood for an increasing number of components, estimated through various
simulation-based approximations, that were discussed in Section 5.4, namely
bridge sampling, importance sampling, and reciprocal importance sampling.
The importance density is constructed from the MCMC draws as in (5.36)
with S = min(50K!, 5000), and the estimators are based on M = 5000 MCMC
draws and L = 5000 draws from the importance density. Up to K = 4, these
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Fig. 9.2. Eye Tracking Data, finite Poisson mixtures with increasing numbers
K of potential groups; posterior distribution of the probability p0(ϑ) to observe 0
(top left), of the overdispersion B(ϑ) (top right), the third (bottom left), and the
fourth (bottom right) factorial moment in comparison to the corresponding sample
moments (black horizontal line) for K = 1, . . . , 7

Table 9.1. Eye Tracking Data, various estimators of the marginal likelihood
p(y|K) for finite mixtures of Poisson distributions with K = 1 to K = 7 components

p(y|K) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

log p̂BS(y|K) –472.02 –252.61 –237.29 –232.81 –232.55 –234.07 –235.68
log p̂IS(y|K) –472.02 –252.62 –237.28 –232.67 –231.08 –230.37 –231.53
log p̂RI(y|K) –472.02 –252.61 –237.32 –233.40 –234.44 –236.74 –238.28
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estimators are rather similar, but from K = 5 onwards, the estimators tend
to be rather unstable. This leads to quite different estimators for the model
posterior probabilities Pr(K|y), displayed in Table 9.2, which were computed
under the truncated Poisson prior p(K) ∝ fP (K; 1). Although all estima-
tors suggest choosing K = 4, the estimated posterior probabilities are quite
different, and differ substantially from the posterior probabilities obtained
from reversible jump MCMC, which are given in the same table. By consider-
ing a different importance density, namely a full permutation of single draw
S�, we obtained estimators of the model probabilities that are rather close
to the estimators obtained from reversible jump MCMC. This suggests that
simulation-based approximations to the marginal likelihood are sensitive for
K larger than 3 or 4, and reversible jump MCMC is preferable for mixtures
with a medium to large number of components.

The same table shows that AIC and BIC also lead to the conclusion to
choose K = 4, however, again evidence in favor of this model is very fragile,
as AIC for K = 4 is only slightly larger than AIC for K = 5, whereas BIC for
K = 4 is only slightly larger than BIC for K = 3.

Table 9.2. Eye Tracking Data, posterior probabilities Pr(K|y) based on the
prior p(K) ∝ fP (K; 1), obtained from log p̂BS(y|K) and reversible jump MCMC
(RJMCM), AIC and BIC for K = 1 to K = 7 number of components

Pr(K|y) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Based on p̂BS(y|K) 0.00 0.00 0.03 0.76 0.20 0.01 0.00

Based on p̂IS(y|K) 0.00 0.00 0.02 0.42 0.41 0.14 0.01

Based on p̂RI(y|K) 0.00 0.00 0.07 0.87 0.06 0.00 0.00

RJMCMC 0.00 0.00 0.01 0.33 0.40 0.20 0.06

Based on p̂BS,2(y|K) 0.00 0.00 0.02 0.36 0.32 0.22 0.09

AIC –472.02 –247.48 –230.22 –227.60 –227.94 –229.94 –231.94

BIC –472.02 –251.40 –236.76 –236.76 –239.71 –244.32 –248.94

To obtain estimates of the group means and group sizes for a mixture
of K = 4 groups, we need to identify a unique labeling among the MCMC
draws. We first ran Gibbs sampling for an unconstrained mixture model with
K = 4, and found that label switching took place between the two groups
with the smallest means. For this data set, we could not achieve a unique
labeling through unsupervised clustering. Next we imposed the constraint
µ1 < · · · < µK using the permutation sampler. Whenever the constraint was
violated, we reordered the MCMC output in such a way that the constraint is
fulfilled. Imposing the constraint eliminated label switching. Table 9.3 sum-
marizes estimates of all group means and group sizes for K = 4, respectively.
Evidently, the first group is practically a zero-movement group.
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Table 9.3. Eye Tracking Data, posterior inference based on a Poisson mixture
with K = 4 groups (hierarchical prior with a0 = 0.1, g0 = 0.5, and G0 = g0y/a0);
identification obtained through imposing the constraint µ1 < · · · < µ4

k E(µk|y) (95% Confidence Region) E(ηk|y) (95% Confidence Region)

1 0.09 (0.00,0.38) 0.36 (0.19,0.55)
2 1.38 (0.61,2.89) 0.33 (0.17,0.49)
3 7.95 (5.07,10.83) 0.20 (0.12,0.30)
4 20.17 (15.16,27.55) 0.10 (0.04,0.18)

9.3 Finite Mixture Models for Binary and
Categorical Data

9.3.1 Finite Mixtures of Binomial Distributions

For binomial mixtures the component densities arise from BiNom (T, π)-
distributions, where T is commonly assumed to be known, whereas the
component-specific probabilities π are unknown and heterogeneous:

Y ∼ η1BiNom (T, π1) + · · · + ηKBiNom (T, πK) .

The density of this mixture is given by

p(y|ϑ) =
K∑

k=1

ηk

(
T
y

)
πy

k(1 − πk)T−y, (9.9)

with ϑ = (π1, . . . , πK , η1, . . . , ηK). Binomial mixtures are not necessarily iden-
tifiable, as discussed already in Subsection 1.3.4. A necessary and sufficient
condition is T ≥ 2K − 1; see Teicher (1961).

Ever since Pearson (1915) employed a mixture of two binomial distribu-
tions to model yeast cell count data, discrete as well as continuous binomial
mixtures have been suggested as overdispersed alternatives to the binomial
distribution. Farewell and Sprott (1988), for instance, discuss an application
in medicine to model the effect of a drug on patients who experience fre-
quent premature ventricular contraction, whereas Brooks et al. (1997) and
Brooks (2001) apply finite mixtures of binomials to dominant-lethal testing
in a biological experiment.

Finite mixtures of binomial distributions may be extended to the case
where Ti varies between the realizations y1, . . . , yN :

p(yi|ϑ) =
K∑

k=1

ηk

(
Ti

yi

)
πyi

k (1 − πk)Ti−yi .

For identifiability of the corresponding mixture we refer to Teicher (1963,
p.1268). Böhning et al. (1998) discuss an application of this model to a preva-
lence study in veterinary science.
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Unobserved Heterogeneity in Occurrence Probabilities

Assume that K hidden groups are present in a population with heterogeneity
in the occurrence probability of a certain event, such as the choice probability
for a certain product. Let π1, . . . , πK denote the different probabilities. As-
sume that for N randomly selected subjects it is observed if the event under
investigation has occurred or not, with Yi = 1 indicating occurrence.

The identifiability condition discussed above becomes essential if we want
to use this information to estimate the unknown probabilities π1, . . . , πK as
well as the unknown group sizes η1, . . . , ηK . Evidently Pr(Yi = 1|ϑ) = πk,
if subject i belongs to class k. As we observed for each subject only once
whether the event has occurred, the marginal distribution of Yi is a mixture
of binomial distributions with T = 1, which is not identified. Hence it is not
possible to estimate ϑ.

To this aim, it is necessary to observe the event under investigation more
than once, thus we need repeated measurements Yit, t = 1, . . . , T for each sub-
ject. In this case, the distribution of the number of successes, Yi =

∑T
t=1 Yit,

is a realization from a mixture of binomial distributions BiNom (T, πk), which
is identifiable only if T ≥ 2K − 1. Thus even two repeated measurements are
not sufficient to estimate the unknown parameter ϑ. For K = 2, for instance,
the identifiability condition implies that we need for each subject i at least
T = 3 repeated measurements on occurrence/nonoccurrence of the event in
order to identify the group sizes and the probabilities. With increasing number
of hidden groups, the number of repeated measurement increases.

It is possible to include observed covariates to explain part of the het-
erogeneity in the occurrence probabilities π1, . . . , πK , as discussed in Subsec-
tion 9.4.2.

Extra-Binomial Variation

Extra-binomial variation, meaning that Var(Y |ϑ) > E(Y |ϑ)(1 − E(Y |ϑ)/T ),
is present in many data sets involving binary data. Extra-binomial variation
is often due to unobserved heterogeneity in the population, for example, if an
important covariate is omitted.

A common way of dealing with extra-binomial variation is the Beta-
binomial model, which is a continuous mixture of binomial distributions,
where Y ∼ BiNom (T, πs

i ) and πs
i ∼ B (α, β). Marginally, this leads to the

Beta-binomial distribution:

p(y|ϑ) =
(

T
y

)
B(α + y, β + T − y)

B(α, β)
,

with ϑ = (α, β). The first two moments of this distribution read with π = α/β:

E(Y |ϑ) = Tπ,

Var(Y |ϑ) = Tπ(1 − π) + (T − 1)T
π(1 − π)
α + β + 1

.
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A finite mixture of binomial distributions is an interesting alternative to the
Beta-binomial distribution. Overdispersion of a random variable Y , drawn
from the binomial mixture (9.9) is evident from the first two moments of this
mixture, which are easily derived from (1.19):

E(Y |ϑ) = Tπ, π =
K∑

k=1

ηkπk,

Var(Y |ϑ) = Tπ(1 − π) + (T − 1)T

(
K∑

k=1

ηkπ2
k − π2

)
. (9.10)

For T > 1 extra variation due to the second term in (9.10) is present for any
mixture with at least two different occurrence probabilities.

Bayesian Estimation of Binomial Finite Mixture Models

Bayesian inference for mixtures of binomial distributions is considered in
Brooks (2001), who applied a Metropolis–Hastings algorithm. Bayesian es-
timation using data augmentation and MCMC as in Algorithm 3.4 is easily
implemented for a mixture of binomial distributions; see again Brooks (2001).
Based on the conjugate Beta prior πk ∼ B (a0, b0), the posterior p(πk|y,S) is
again a Beta distribution, πk|y,S ∼ B (ak(S), bk(S)), where:

ak(S) = a0 +
∑

i:Si=k

yi,

bk(S) = b0 +
∑

i:Si=k

(T − yi).

Brooks (2001) applies the reversible jump MCMC method to jump between
mixtures with different number of components and between mixtures of bi-
nomial distributions and mixtures of Beta-binomial distributions, where the
number of components is left unchanged.

9.3.2 Finite Mixtures of Multinomial Distributions

Consider a categorical variable of more than two categories {1, . . . , D}. Let
Yl, for l = 1, . . . , D, be the number of occurrences of category l among T
trials. If the occurrence probability distribution π = (π1, . . . , πD) of each cat-
egory is homogeneous among the observed subjects, then Y = (Y1, . . . , YD) ∼
MulNom (T, π); see also Appendix A.1.8 for a definition of the multinomial
distribution.

To deal with unobserved heterogeneity in the occurrence probability of the
various categories, Y = (Y1, . . . , YD) is assumed to follow a finite mixture of
multinomial distributions,
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Y ∼ η1MulNom (T, π1) + · · · + ηKMulNom (T, πK) ,

with πk = (πk,1, . . . , πk,D) being the unknown occurrence probability in group
k. The density is given by

p(y|ϑ) =
K∑

k=1

ηk

(
T

y1 . . . yD

) D∏
l=1

πyl

k,l, (9.11)

where ϑ = (π1, . . . ,πK , η),
Morel and Nagaraj (1993) use such a model for capturing multinomial

extra variation. In this respect, the finite mixture distribution (9.11) is an
interesting alternative to the more commonly applied Dirichlet-multinomial
distribution, where Y ∼ MulNom (T, πs) and πs ∼ D (α1, . . . , αD); see, for
instance, Paul et al. (1989) and Kim and Margolin (1992).

Further applications are found in clustering Internet traffic (Jorgensen,
2004) and developmental psychology (Cruz-Medina et al., 2004). Banjeree and
Paul (1999) extend (9.11) to deal with multinomial clustered data. Further
extensions are finite mixtures of multinomial logit models that are discussed
in Subsection 9.4.1.

Bayesian Estimation of Multinomial Finite Mixture Models

Let yi = (yi1, . . . , yiD), i = 1, . . . , N , be N observations, where each yil, l =
1, . . . , D, counts the number of occurrences of category l in a series of T
independent Bernoulli trials. Assume that a finite mixture of multinomial
distributions should be fitted to these data.

Bayesian estimation using data augmentation and MCMC as in Algo-
rithm 3.4 is easily implemented for a mixture of multinomial distributions.
Let πk = (πk,1, . . . , πk,D) be the unknown discrete probability distribution in
group k. Based on the Dirichlet prior πk ∼ D (a0,1, . . . , a0,D), the posterior
p(πk|y,S) is again a Dirichlet distribution πk|y,S ∼ D (ak,1(S), . . . , ak,D(S)),
where:

ak,l(S) = a0,l +
∑

i:Si=k

yil, l = 1, . . . , D.

9.4 Finite Mixtures of Generalized Linear Models

Any of the finite mixture models discussed earlier in this chapter may be ex-
tended by assuming that in each group the underlying discrete distribution
depends on some covariates. A common way to accommodate dependence of
a nonnormal distribution on covariates is the generalized linear model (Nelder
and Wedderburn, 1972; McCullagh and Nelder, 1999). Finite mixtures of gen-
eralized linear models extend the finite mixture of regression models discussed
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in Chapter 8 to nonnormal data and find numerous applications in particu-
lar in biology, medicine, and marketing. A very useful taxonomical review of
numerous applications of mixture regression models for various types of data
may be found in Wedel and DeSarbo (1993b, Table 10.1), which includes a
lot of additional references.

After reviewing in Subsections 9.4.1 and 9.4.2 some specific examples for
count, binary, and multinomial data, estimation of such models is discussed
in detail in Subsection 9.4.3.

9.4.1 Finite Mixture Regression Models for Count Data

Finite mixture regression models for count data are either based on the Poisson
or the negative binomial distribution.

Finite Mixtures of Poisson Regression Models

Let Yi denote the ith response variable, observed in reaction to a covariate xi,
where the last element of xi is 1, corresponding to an intercept. It is assumed
that the marginal distribution of Yi follows a mixture of Poisson distributions,

Yi ∼
K∑

k=1

ηkP (µk,i) , (9.12)

where µk,i = exp(xiβk). If exposure data ei are available for each subject,
then µk,i = ei exp(xiβk). If xi = 1, a finite mixture of Poisson distributions
with µk = exp(βk) results; if K = 1, the standard Poisson regression model
results.

For a standard Poisson regression model, conditional on a given covari-
ate, the data often exhibit overdispersion. Wang et al. (1996) showed that a
mixture of Poisson regression models is able to capture overdispersion. For a
fixed covariate, the mean and variance of Yi are easily obtained as in Subsec-
tion 9.2.2:

E(Yi|ϑ) =
K∑

k=1

ηkµk,i,

Var(Yi|ϑ) = E(Yi|ϑ) +

(
K∑

k=1

ηkµ2
k,i − E(Yi|ϑ)2

)
.

Wang et al. (1996) falsely claim that a mixture of Poisson regression models
is identifiable if the regressor matrix is of full rank. However, as discussed in
Subsection 8.2.2 for mixtures of normal regression models, this condition is in
general not sufficient.

Pointwise identifiability for a fixed covariate xi follows from the generic
identifiability of Poisson mixtures. Thus
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K∑
k=1

ηkfP (y; µk,i) =
K∑

k=1

η�
kfP (y; µ�

k,i),

where log µk,i = xiβk and log µ�
k,i = xiβ

�
k, implies that the condition

η�
k = ηρi(k), xiβ

�
k = xiβρi(k), (9.13)

holds for some permutation ρi(·). This is exactly what resulted for finite mix-
tures of the standard regression model studied earlier in Section 8.2.2. It
follows immediately that a mixture of Poisson regressions, where only the
intercept is switching, is identifiable. In all other cases, evidently the same
conditions as for a Gaussian mixture of regression models hold.

Many applications of this model appear in medicine such as modeling
epileptic seizure frequency data in a clinical trial (Wang et al., 1996; Wang
and Puterman, 1999) or modeling the length of hospital stay (Lu et al., 2003).
Wedel et al. (1993) and Wedel and DeSarbo (1995) discuss applications in
marketing, such as modeling the number of coupons used by a household and
evaluating direct marketing strategies. Applications in road safety appear in
Viallefont et al. (2002) and Hurn et al. (2003), who relate the number of
accidents to covariates.

Disease Mapping

An area where mixtures of Poisson regression models are applied frequently
is the study of disease distributions. The analysis of the geographic variation
of disease and the representation of a disease distribution on a map is one
of the oldest applications of statistics in epidemiology; see Schlattmann and
Böhning (1993) for a review. Simple probabilistic models are based on the
assumption that the number Yi of cases observed in region i follows a P (λei)-
distribution, where λ is the relative risk and ei are the exposures. Rather than
assuming that the risk is the same in all areas, Schlattmann and Böhning
(1993) consider the case where the relative risk differs among the different
areas, and takes one out of K values λ1, . . . , λK ; see also Viallefont et al.
(2002). This model is extended in Schlattmann et al. (1996) to accommodate
dependence of covariates xi =

(
zi1 · · · zi,d

)
measured in each area:

Yi|Si ∼ P (λSi
exp(xiβ)ei) ,

whereas Viallefont et al. (2002) also consider heterogeneous covariate effects
βSi

. Marginally, these models are finite mixtures of regression models that
allow the detection of disease clusters, that is, areas of high or low risk. It
provides an alternative to hierarchical Bayesian models for disease mapping;
see, for instance, Bernardinelli et al. (1995).

Extensions of these models which substitute the unrealistic independence
assumption among the indicators S1, . . . , SN by a spatial dependence model
are discussed, among others, by Fernández and Green (2002) and Green and
Richardson (2002).
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Zero-Inflated Poisson Regressions

Lambert (1992) proposed the zero-inflated Poisson mixture regression model
for dealing with zero-inflated count data with covariates and discussed an ap-
plication where a production system switches between a perfect state where
defects are extremely rare and an imperfect state where defects are possible.
Both η1, the probability of the perfect state as well as µ2, the mean of the
imperfect state depend on covariates through a logit-type model. Further ap-
plications are disease mapping (Böhning, 1998) and the analysis of sudden
infant death syndrome in relation to climate (Dalrymple et al., 2003).

Finite Mixtures of Negative Binomial Regression Models

Ramaswamy et al. (1994) apply a finite mixture of negative binomial regres-
sion models in marketing research to model the purchase behavior of con-
sumers.

9.4.2 Finite Mixtures of Logit and Probit Regression Models

Finite Mixture Regression Models for Binary Data

Let Yi,t denote a binary variable, observed for Ti times in reaction to a covari-
ate xi, where the last element of xi is 1 corresponding to an intercept. Define
Yi =

∑Ti

t=1 Yi,t. It is assumed that the marginal distribution of Yi follows a
mixture of binomial distributions,

Yi ∼
K∑

k=1

ηkBiNom (Ti, πk,i) , (9.14)

where logit πk,i = xiβk in finite mixtures of logit regression models, whereas
πk,i = Φ(xiβk) in finite mixtures of probit regression models.

Both models capture extra-binomial variation due to unobserved hetero-
geneity in the population, for example, if an important covariate is omitted.
It follows

E(Yi|ϑ) = πi =
K∑

k=1

ηkπk,i,

Var(Yi|ϑ) = Tiπi(1 − πi) +
(Ti − 1)T 2

i

Ti

(
K∑

k=1

ηkπ2
k,i − π2

i

)
. (9.15)

For Ti > 1, extra-binomial variation due to the second term in (9.15) is
present.

Identifiability is rather evolved for mixtures of logistic and probit regres-
sion models, the reason being that for xi = 1 such a mixture reduces to a
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finite mixture of binomial distributions, which is not necessarily identifiable;
see Subsection 9.3.1.

Pointwise identifiability for a fixed covariate xi follows from the identifia-
bility of a binomial mixture only, if Ti ≥ 2K − 1. In this case

K∑
k=1

ηkfBN (y; Ti, πk,i) =
K∑

k=1

η�
kfBN (y; Ti, π

�
k,i),

where logit πk,i = xiβk and logit π�
k,i = xiβ

�
k, implies

η�
k = ηρi(k), xiβ

�
k = xiβρi(k), (9.16)

which is exactly what resulted for a Gaussian mixture of regression models.
It follows immediately that a mixture of logistic regressions where only the
intercept is switching is identifiable, if Ti ≥ 2K − 1 for at least one covariate
xi; see also Follmann and Lambert (1991).

Applications of finite mixtures of logistic regression models appear in bi-
ology to analyze the effect of a drug on the death rate of a protozoan try-
panosome and to study the effect of salinity and temperature on the hatch
rate of English sole eggs (Follmann and Lambert, 1989), in medicine to deter-
mine the risk factors of preterm delivery (Zhu and Zhang, 2004), in genetics
to detect inheritance patterns of a binary trait such as alcoholism (Zhang
and Merikangas, 2000), in marketing research to deal with the analysis of
paired comparison choice data (Wedel and DeSarbo, 1993a), and in agricul-
ture (Wang and Puterman, 1998).

Finite mixtures of probit regression models are applied in medical research
to analyze the resistance to treatment of parasites in sheep (Lwin and Mar-
tin, 1989), in marketing research to analyze pick and/N data (De Soete and
DeSarbo, 1991), and in the economics of labor markets (Geweke and Keane,
1999).

Finite Mixture Regression Models for Categorical Data

Extensions to multinomial mixtures are considered by Paul et al. (1989), Kim
and Margolin (1992), and Morel and Nagaraj (1993). Kamakura and Rus-
sell (1989) applied a multinomial logit mixture regression model in marketing
research to model consumers’ choices among a set of brands and identified
segments of consumers that differ in price sensitivity. Kamakura (1991) pro-
posed a multinomial probit finite mixture regression model. Identifiability for
multinomial mixture regression models is investigated in Grün (2002).

9.4.3 Parameter Estimation for Finite Mixtures of GLMs

ML estimation for finite mixtures of generalized linear models is considered,
for instance, by Jansen (1993), Wedel and DeSarbo (1995), and Aitkin (1996).
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Wedel et al. (1993), Lambert (1992), and Wang et al. (1996) use the EM
algorithm for the estimation of mixtures of Poisson regression models, whereas
Wedel and DeSarbo (1995) consider more general mixtures of GLMs.

For Bayesian estimation of mixtures of GLMs, Hurn et al. (2003) use
the same prior as for a normal regression model, namely βk ∼ Nd (b0,B0).
Various suggestions have been put forward of how to estimate mixtures of
nonnormal regression models using MCMC. Viallefont et al. (2002) use a
single-move random walk Metropolis–Hastings algorithm, whereas Hurn et al.
(2003) use a multivariate random walk Metropolis–Hastings algorithm for
sampling directly from the marginal posterior distribution p(ϑ|y) for mixtures
of logistic and Poisson regressions; see also Algorithm 3.6. This is feasible, as
the likelihood p(y|ϑ) is available in closed form.

Alternatively, one could use data augmentation by introducing a group
indicator Si for each observation pair (xi,yi) as missing data to obtain a
sampling scheme comparable to Algorithm 8.1, which was derived in the con-
text of finite mixtures of standard regression models. The resulting scheme,
however, is not a Gibbs sampling scheme. Difficulties arise when drawing the
group-specific parameters βk in group k, because the conditional posterior
distribution p(βk|y,S) has to be derived from a nonnormal regression model
and does not belong to a well-known distribution family. To sample from this
distribution, usually a Metropolis–Hastings step is applied; alternatively Hurn
et al. (2003) mention the possibility of using the slice sampler (Damien et al.,
1999). Classification, however, does not cause any problem, as it is sufficient
to know the conditional distribution p(yi|βk) for each k = 1, . . . , K for each
observation yi.

9.4.4 Model Selection for Finite Mixtures of GLMs

Wang et al. (1996) use AIC and BIC for model selection of the number of
mixture regressions, while including all possible covariates. Covariates are
selected in a second step, after having chosen the number of components. In
their simulation study BIC always selected the correct model.

Viallefont et al. (2002) use the reversible jump MCMC for mixtures of Pois-
son regression models to determine the number of mixture regressions, whereas
Hurn et al. (2003) use the birth and death MCMC of Stephens (2000a). Both
papers illustrate that the prior on K, which is usually assumed to be P (λ0),
is not without effects on the resulting inference.

9.5 Finite Mixture Models for Multivariate Binary and
Categorical Data

In this section we consider finite mixture modeling of multivariate binary or
categorical data {y1, . . . ,yN}, where yi = (yi1, . . . , yir) is the realization of
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an r-dimensional discrete random variable Y = (Y1, . . . , Yr). Mixture mod-
els for multivariate discrete data, usually called latent class models, or latent
structure analysis, have long been recognized as a useful tool in the behav-
ioral and biomedical sciences, as exemplified by Lazarsfeld and Henry (1968),
Goodman (1974b, 1978), Clogg and Goodman (1984), among many others;
see Formann and Kohlmann (1996) and Clogg (1995) for a review.

In latent structure analysis the correlation between the elements Y1, . . . , Yr

of Y is assumed to be caused by a discrete latent variable Si, also called the
latent class. It is then assumed that the variables Y1, . . . , Yr, which are also
called manifest variables, are stochastically independent conditional on the la-
tent variable. Latent structure analysis is closely related to multivariate mix-
ture modeling, as marginally the distribution of Y is a multivariate discrete
mixture with density:

p(yi|ϑ) =
K∑

k=1

ηk

r∏
j=1

p(yij |πk,j),

where πk,j is a parameter modeling the discrete probability distribution of Yj

in class k.

9.5.1 The Basic Latent Class Model

In this section we consider a collection of multivariate binary observations
y1, . . . ,yN , where yi = (yi1, . . . , yir)

′
is an r-dimensional vector of 0s and

1s, assumed to be the realization of a binary multivariate random variable
Y = (Y1, . . . , Yr). The latent class model assumes that associations between
the manifest variables Yj are caused by the presence of “latent classes” within
which the features are independent. These latent classes may be seen as aris-
ing from an unobserved categorical variable Si, which causes differences in
occurrence probabilities πk,j = Pr(Yj = 1|Si = k) of the manifest variable Yj

in the different classes k.
The marginal distribution of Y is equal to a mixture of r independent

Bernoulli distributions, with density:

p(yi|ϑ) =
K∑

k=1

ηk

r∏
j=1

π
yij

k,j (1 − πk,j)1−yij , (9.17)

where the K components of the mixture correspond to the K latent classes.
It is possible to verify that differences in the occurrence probabilities πk,j

between the latent classes cause associations between the components of Y
in the corresponding cell with respect to the marginal distribution, where the
latent class is integrated out. For K = 2 and r = 2, for instance, Gilula (1979)
shows that the marginal probability Pr(Y1 = 1, Y2 = 1|ϑ) may be expressed
as
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Pr(Y1 = 1, Y2 = 1|ϑ) =
Pr(Y1 = 1|ϑ)Pr(Y2 = 1|ϑ) + η1(1 − η1)(π1,1 − π2,1)(π1,2 − π2,2).

Thus associations between the components of Y will be observed, whenever
both occurrence probabilities are different. Bartholomew (1980) regards the
latent class models as factor analysis for categorical data.

Historically seen, model (9.17) was originated by psychometricians and
sociologists, and goes back to Lazarsfeld (1950). The main purpose was to
study hypothetical constructs such as “intelligence” or “attitude.” There is a
large body of literature with many applications of these models to problems in
behavioral, medical, and social sciences, such as finding associations between
teaching style and pupil performance (Aitkin et al., 1981), tumor diagnostics
based on a sequence of binary test results (Albert and Dodd, 2004), analyzing
historical household data (Liao, 2004), and texture analysis (Grim and Haindl,
2003), just to mention a few.

Celeux and Govaert (1991) discuss the application of latent class models
for clustering discrete data and, using the classification likelihood approach
discussed earlier in Subsection 7.1.3, show that clustering based on the latent
class model is closely related to clustering based on minimizing entropy-type
criteria.

9.5.2 Identification and Parameter Estimation

A difficult problem with the latent class model is verifying if the model is
identifiable for a given number of classes, given a certain collection of the
data; see Goodman (1974b) and Clogg (1995). If πk,1 = · · · = πk,r = πk,
then a binomial finite mixture with component density BiNom (r, πk) results;
consequently the more general latent class models could be applied only to at
least three manifest variables (r ≥ 3). As outlined by Formann and Kohlmann
(1996, p.194), “In general it is not possible to say a priori whether these models
may be identifiable or not.” Statements about identifiability are usually made
after having estimated the parameters under a certain model by considering
the rank of the observed information matrix evaluated at the ML estimator
as in Catchpole and Morgan (1997) to prove local identifiability (Rothenberg,
1971); see also Carreira-Perpiñán and Renals (2000).

In (9.17), the Kr unknown probabilities (π1,1, . . . , πK,r) as well as the
weight distribution η are unknown parameters that need to be estimated
from the data. Pioneering work on ML estimation for the latent class model
is found in Wolfe (1970). The basic latent class model is usually formulated as
a generalized linear model and fitted by some iterative method, for instance,
the proportional fitting algorithm of Goodman (1974a, 1974b), which later on
turned out to be a variant of the EM algorithm.

An early reference on Bayesian estimation of latent class models is Evans
et al. (1989), where the practical implementation was carried out using adap-
tive importance sampling. Again it is surprising to see how easily the marginal
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posterior density p(π1,1, . . . , πK,r, η|y), which is quite complicated, is ob-
tained, using data augmentation and MCMC as in Algorithm 3.4. Assume that
all probabilities πk,j are independent a priori, with πk,j ∼ B (a0,j , b0,j). Con-
ditional on the class indicator Si, the conditional posterior p(π1, . . . ,πK |S,y)
is the product of Kr independent Beta distributions with

πk,j |S,y ∼ B (a0,j + Nk,j(S), b0,j + Nk(S) − Nk,j(S)) ,

where Nk,j(S) is the number of ones observed for feature Yj in latent class k,
and Nk(S) is the total number of observations in latent class k:

Nk,j(S) =
∑

i:Si=k

yij , Nk(S) = #{i : Si = k}.

9.5.3 Extensions of the Basic Latent Class Model

Over the years, many variants and extensions of the basic latent class model
have been considered. One particularly useful extension deals with multivari-
ate categorical data y1, . . . ,yN , where yi = (yi1, . . . , yir) is the realization of
an r-dimensional categorical random variable Y = (Y1, . . . , Yr), with each el-
ement Yj taking one value out of Dj categories {1, . . . , Dj}. Again, a mixture
density results:

p(yi|ϑ) =
K∑

k=1

ηk

r∏
j=1

Dj∏
l=1

π
I{yij=l}
k,jl , (9.18)

where πk,jl = Pr(Yj = l|Si = k) is the probability of category l for feature Yj

in class k.
The unknown parameter ϑ appearing in (9.18) contains the unknown

weight distribution η as well as the Kr unknown probability distributions
πk,j = (πk,j1, · · · , πk,jDj ) of feature Yj in class k. Again Bayesian estima-
tion is easy implemented, by sampling from the marginal posterior density
p(π1,1, . . . ,πK,r|y), using data augmentation and MCMC as in Algorithm 3.4.
Assume that all probability distributions πk,j are independent a priori, with
πk,j ∼ D (e0,j , . . . , e0,j). Conditional on the class indicator Si, the conditional
posterior p(π1,1, . . . ,πK,r|S,y) is the product of Kr independent Dirichlet
distributions with

πk,j |S,y ∼ D
(
e0,j + Nk,j1(S), . . . , e0,j + Nk,jDj (S)

)
,

where, for each class k, Nk,jl(S) counts how often category l is observed for
feature j:

Nk,jl(S) =
∑

i:Si=k

I{yij=l}.
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In a series of papers, Formann (1982, 1992, 1993, 1994a, 1994b) considered
further extensions of (9.18) such as linear logistic latent class analysis, where
both ηk as well as the probabilities πk,jl depend on some covariates through
a linear logistic model; see also Formann and Kohlmann (1996) for a review.

Clogg and Goodman (1984) consider simultaneously a latent structure
analysis of a whole set of multinomial contingency tables and discuss methods
for testing complete or partial homogeneity across tables.

9.6 Further Issues

9.6.1 Finite Mixture Modeling of Mixed-Mode Data

Often data are realizations of a mixed random variable Y = (YC ,YD) with
YC containing metric features and YD containing categorical features. Within
a latent class analysis of such mixed-mode data, it is assumed that the dis-
tribution of Y depends on a latent unknown variable, which again leads to a
finite mixture model.

Everitt (1988) and Everitt and Merette (1990) deal with mixed-mode data
by incorporating the use of thresholds for the categorical data, however, the
resulting model is difficult to estimate. Muthén and Shedden (1999) sug-
gest combining features of Gaussian multivariate mixtures with a latent class
model. The density of this mixture model reads:

p(yi|ϑ) =
K∑

k=1

ηkfN (yC
i ; µk,Σk)p(yD

i |θD
k ), (9.19)

p(yD
i |θD

k ) =
r∏

j=1

Dj∏
l=1

π
I{yD

ij
=l}

k,jl .

Bacher (2000) discusses an application of this model in sociology. Clustering
multivariate data through probabilistic models based on finite mixtures is
particularly useful for mixed continuous and categorical data; see Bock (1996)
for some review.

Muthén and Shedden (1999) use the EM algorithm for estimation. Bayesian
estimation of model (9.19) using data augmentation and MCMC as in Algo-
rithm 3.4 is easily implemented, as conditionally on a known classification we
only need to combine the sampling step for multivariate mixtures of normals
discussed in Subsection 6.3.3 with those obtained for the latent class model
in Subsection 9.5.3.

A disadvantage of model (9.19) is stochastic independence of the categor-
ical and the continuous variables within each class; more refined models, that
allow for association between both types of variables are discussed in Lawrence
and Krzanowski (1996). The idea is to replace the multivariate categorical
variable YD = (Y D

1 , . . . , Y D
r ), each of which is assumed to have Dj different
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categories by a single multinomial variable YM , which has DM =
∏r

j=1 Dj

different cells, corresponding to the number of distinct patterns produced by
YD. Furthermore the group-specific mean µk,l of the continuous variable is
allowed to be different for all patterns l = 1, . . . , DM .

Willse and Boik (1999) show that the model in its unrestricted form is not
identifiable. There exist (K!)DM −1 distinct parameters that define the same
mixture distribution. Identifiability is achieved by imposing the restrictions
µk,l = µk + βl on the group-specific mean of the continuous variable.

Hunt and Jorgensen (2003) extended model (9.19) to mixed-mode data
with missing observations. The modeling of mixed-mode data in a time series
context is discussed in Cosslett and Lee (1985).

9.6.2 Finite Mixtures of GLMs with Random Effects

As discussed in Section 9.4, finite mixtures of GLMs are able to deal with
overdispersion and extra-binomial or multinomial variation in regression mod-
els for discrete valued data. An alternative popular approach is based on GLMs
with random-effects models (Schall, 1991; Breslow and Clayton, 1993; Aitkin,
1996), which regard overdispersion and extra-binomial or multinomial varia-
tion as a nuisance factor that needs to be accounted for in order to obtain
consistent estimates of the other parameters. GLMs with random effects are
also applied to pool information across similar units as in Section 8.5 for re-
peated measurements where the dependent variable is a discrete rather than
a normally distributed random variable.

Usually the distribution of the random effects is chosen to be normal.
Neuhaus et al. (1992) studied the effect of misspecifying the distribution of
the random effects for logistic mixed-effects models and found cases of in-
consistency both for the fixed and the random effects. Much more flexibility
is achieved by assuming that the random effects follow a mixture of normal
distributions as in Section 8.5, in which case a finite mixture of GLMs with
random effects results. Such a model has been applied by Lenk and DeSarbo
(2000) in marketing research, who discuss Bayesian estimation using data aug-
mentation and MCMC. Yau et al. (2003) apply a two-component mixture of
binary logit models with random effects to the analysis of hospital length of
stay. Bottolo et al. (2003) apply a mixture of Poisson models with random
effects to modeling extreme values in a data set of large insurance claims,
using reversible jump MCMC.




