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Finite Mixtures of Regression Models

8.1 Introduction

In applied statistics as well as in econometrics a tremendous amount of ap-
plications deal with relating a random variable Yi, which is observed on
several occasions i = 1, . . . , N , to a set of explanatory variables or co-
variates (zi1, . . . , zi,d−1) through a regression-type model, where the condi-
tional mean of Yi is assumed to depend on xi =

(
zi1 · · · zi,d−1 1

)
through

E(Yi|β,xi) = xiβ, where β is a vector of unknown regression coefficients of
dimension d.

In many circumstances, however, the assumption that the regression co-
efficient is fixed over all possible realizations of Y1, . . . , YN is inadequate, and
models where the regression coefficient changes are of great practical impor-
tance. The most general alternative is to assume a different regression coef-
ficient βs

i for each realization Yi, E(Yi|β,xi) = xiβ
s
i , however, only in rare

cases will it be possible to estimate βs
i without imposing further structure,

and modeling βs = (βs
1, . . . ,β

s
N ) becomes an important issue.

For identifying a sensible model for βs, it is helpful to understand why the
regression coefficients are different. For sequential observations the regression
coefficient may change over time, whereas for cross-sectional data the regres-
sion coefficient may change between subgroups of observations. In both cases
the model may be misspecified because of omitted variables and nonlinearities
or the sample may contain outliers. Whatever information is available about
the nature of heterogeneity for the problem at hand should be incorporated
in an appropriate manner. Within a Bayesian approach, this information is
included by choosing a specific probabilistic model for βs which is specified in
terms of the density p(βs) of the joint distribution of βs = (βs

1, . . . ,β
s
N ). p(βs)

plays the role of a prior distribution, imposing some model structure on the
individual regression coefficients that may be overruled by the information in
the data. Different such prior distributions defining different model structures
may be compared in a principled way by Bayesian model comparison.



242 8 Finite Mixtures of Regression Models

This chapter focuses on capturing parameter heterogeneity for cross-
sectional data through finite mixtures of regression models where changes
in βs

i are driven by a hidden discrete indicator Si, which is allowed to take
one out of K values for each observation Yi. This model is formulated in
Section 8.2, whereas statistical inference is discussed in Section 8.3.

Several useful extensions of this model are discussed in this chapter, such
as mixed-effects finite mixtures of regression models in Section 8.4, which com-
bine regression coefficients that are fixed across all realizations with regression
coefficients that are allowed to change, and finite mixtures of random-effects
models in Section 8.5, which are useful for longitudinal data and repeated
measurements.

8.2 Finite Mixture of Multiple Regression Models

In this section focus lies on extending the standard multiple regression model
with normally distributed errors by introducing a regression coefficient that
changes between groups of otherwise homogeneous observations.

8.2.1 Model Definition

Let (Yi, zi) be a pair of a random variable Yi and a set of explanatory variables
zi = (zi1, . . . , zi,d−1). Suppose that dependence of Yi on zi is modeled by a
multiple regression model:

Yi = xiβ + εi, εi ∼ N
(
0, σ2

ε

)
, (8.1)

where xi =
(
zi1 · · · zi,d−1 1

)
is a design point, and β and σ2

ε are unknown
parameters. Assume that background information suggests that the regression
coefficient β and the error variance σ2

ε are not homogeneous over all possible
pairs (Yi, zi). One way to capture such changes in the parameter of a regression
model is finite mixtures of regression models. A finite mixture regression model
assumes that a set of K regression models characterized by the parameters
(β1, σ

2
ε,1), . . . , (βK , σ2

ε,K) exists, and that for each observation pair (Yi, zi) a
hidden random indicator Si chooses one among these models to generate Yi:

Yi = xiβSi
+ εi, εi ∼ N

(
0, σ2

ε,Si

)
. (8.2)

β1, . . . ,βK as well as σ2
ε,1, . . . , σ

2
ε,K are unknown parameters that need to

be estimated from the data. The statistician applying a finite mixture of
regression models has to specify how the random mechanism Si works. In the
absence of any additional information it is usual to assume that Si and Si′

are pairwise independent, and each Si is distributed according to an unknown
probability distribution η = (η1, . . . , ηK). In what follows, ϑ summarizes all
unknown model parameters, including the parameters η appearing in the
definition of the distribution law of S = (S1, . . . , SN ).
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It is easy to verify that the marginal distribution of Yi, when holding the
design point xi as well as ϑ fixed, reads:

p(yi|xi, ϑ) =
K∑

k=1

p(yi|xi, Si, ϑ)Pr(Si = k|ϑ) =
K∑

k=1

ηkfN (yi;xiβk, σ2
ε,k).

Thus for each value of the design point xi, the marginal distribution of Yi is a
finite mixture of univariate normal distributions with mean µk,i = xiβk and
variance σ2

ε,k. Therefore a finite mixture of regression models may be seen as
an extension of a finite mixture of univariate normal distributions where the
mean in the mixture distribution depends on explanatory variables. On the
other hand, a finite mixture of univariate normal distributions may be seen
as that special case of finite mixtures of regression models where βk = µk and
xi = 1 for all i = 1, . . . , N .

Various extensions of model (8.2) are useful. The mixture regression model
defined in (8.2) is heteroscedastic because the variance of the error term εi

changes across the realizations. If the variance of the error term is unaffected
by Si, a homoscedastic finite mixture of regression models results:

Yi = xiβSi
+ εi, εi ∼ N

(
0, σ2

ε

)
. (8.3)

The distributional law of S may be substituted by other structures, if more
information about the nature of heterogeneity is available. As discussed in
Subsection 8.6.2, the probability of belonging to a certain state may depend
on a covariate. For random covariates, the covariate distribution may differ
between the clusters, in which case a multivariate finite normal mixture model
as discussed in Chapter 6 may be appropriate. Whenever data are collected se-
quentially, alternative probability structures on the hidden indicator turn out
to be useful. Goldfeld and Quandt (1973) introduced a hidden Markov chain
into a mixture regression model, in order to deal with time series data that
depend on exogenous variables. This issue is discussed in Subsection 10.3.2.

8.2.2 Identifiability

Like any finite mixture model, finite mixtures of regression models suffer from
nonidentifiability due to label switching and potential overfitting; see Sec-
tion 1.3 for a general discussion of these issues. More importantly, generic
identifiability of finite mixtures of regression models does not in general fol-
low from the generic identifiability of Gaussian mixtures as falsely claimed, for
instance, in DeSarbo and Cron (1988), despite the close relationship between
these two model classes.

A necessary condition for identifiability of a standard regression model is
that the matrix X

′
X, where

X =

⎛⎜⎝ x1
...

xN

⎞⎟⎠ ,
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is of full rank. For finite mixtures of regression models nonidentifiability may
occur, even if this condition is fulfilled. This was first noticed by Hennig
(2000) who showed that the regression parameters are identifiable, iff the
number K of clusters is smaller than the number of distinct (d−1)-dimensional
hyperplanes generated by the covariates (excluding the constant). Loosely
speaking, identifiability problems occur for finite mixtures of regression models
with covariates that show too little variability. Problems are to be expected,
in particular, if covariates are dummy variables or reflect a few categories as in
marketing research. In this section we provide more details on this important
issue.

Consider the set of different covariates {x1, . . . ,xp}. Assume that for each
covariate xi that the identity

K∑
k=1

ηkfN (y; µk,i, σ
2
ε,k) =

K∑
k=1

η�
kfN (y; µ�

k,i, σ
2,�
ε,k), (8.4)

where µk,i = xiβk and µ�
k,i = xiβ

�
k, holds for all y ∈ �. If the model param-

eters (β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K , η1, . . . , ηK) and (β�

1, . . . ,β
�
K , σ2,�

ε,1 , . . . , σ2,�
ε,K ,

η�
1 , . . . , η�

K) are related to each other by relabeling, then the finite mixture
regression model is generically identifiable.

For a fixed covariate xi, (8.4) reduces to a Gaussian mixture, and generic
identifiability of Gaussian mixtures implies the existence of a permutation
ρi(·) of {1, . . . , K} such that for all k = 1, . . . , K:

η�
k = ηρi(k), xiβ

�
k = xiβρi(k), σ2,�

ε,k = σ2
ε,ρi(k). (8.5)

A major cause for generic nonidentifiability is that the different permutations
ρi(·) appearing in (8.5) are not necessarily the same for all design points xi,
i = 1, . . . , p.

Nevertheless, let us assume for the moment that actually the same permu-
tation ρs(·) has been applied for all design points xi, i = 1, . . . , p. Then (8.5)
implies xiβ

�
k = xiβρs(k) for all i = 1, . . . , p and:

Xβ�
k = Xβρs(k),

where the rows of the design matrix X are equal to x1, . . . ,xp. If X
′
X has

full rank, then it follows immediately that the regression coefficients are de-
termined up to relabeling:

β�
k = βρs(k), (8.6)

ensuring generic identifiability. The problem with this derivation is, that with-
out further assumptions, the different permutations ρi(·) appearing in (8.5)
are not necessarily the same for all i = 1, . . . , p.

It is possible to show that these permutations are necessarily the same, if
any two regression models in the mixture differ at least in ηk or σ2

ε,k. Assume
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that (8.5) holds for two different permutations ρs(·) and ρt(·). Then ηk1 = ηk2

and σ2
ε,k1

= σ2
ε,k2

for regression model k1 = ρs(k) and k2 = ρt(k), which
contradicts the assumption made above.

If ηk and σ2
ε,k are the same for at least two regression models, then it

is possible that (8.5) holds for two different permutations ρs(·) and ρt(·).
Assume that ηk1 = ηk2 and σ2

ε,k1
= σ2

ε,k2
. Then any two permutations where

ρs(k1) = ρt(k2), ρs(k2) = ρt(k1), and ρs(l) = ρt(l), for l �= k1, k2, fulfill (8.5).
In this case generic nonidentifiability may occur, even if the matrix X

′
X has

full rank.
Consider, for instance, a mixture of two regression models, where η1 = η2

and σ2
ε,1 = σ2

ε,2. For each i = 1, . . . , p, the permutation ρi(·) appearing in
(8.5) is equal to one of the two possible permutations, namely the identity,
ρ1(1) = 1 and ρ1(2) = 2, or the permutation ρ2(1) = 2 and ρ2(2) = 1, which
interchanges the labeling. Reorder, for a given sequence of permutations, the
equations in (8.5) according to the permutation applied to k = 1. Then:

X1β
�
1 = X1β1, (8.7)

X2β
�
1 = X2β2, (8.8)

where the rows of the design matrix X1 are built from all design points xi,
where ρi(1) = 1, and the rows of the design matrix X2 are built from all
design points xi, where ρi(1) = 2. If in (8.7) and (8.8) either rg(X

′
1X1) = d

or rg(X
′
2X2) = d (or both), then (8.6) follows immediately.

Thus generic identifiability up to relabeling follows, if rg(X
′
1X1) = d

or rg(X
′
2X2) = d holds for any partition of the set of different covariates

{x1, . . . ,xp} into two sets. This is essentially the same condition as the one
given by Hennig (2000). Any partition that violates this condition defines an
alternative solution. It follows that for K = 2 the minimum number of different
design points is equal to 2 dim(βk)+1, which is sufficient to achieve identifia-
bility, iff all subsets of size dim(βk) define a design matrix of full rank. To give
an example, consider a mixture of two regression models where dim(βk) = 2
where there are only two linear independent design points x1 = (z1 1) and
x2 = (z2 1). A similar example appears in Hennig (2000). Evidently the par-
tition {x1} ∪ {x2} violates the rank condition. Only if the two permutations
in (8.5) are the same, do we obtain (8.6). However, if the two permutations
in (8.5) are different, then another solution exists, which is given by

X� =
(

x1
x2

)
, β�

1 = (X�)−1
(

x1β1
x2β2

)
, β�

2 = (X�)−1
(

x1β2
x2β1

)
.

Consequently, this finite mixture regression model is generically unidentifiable.
Whereas a single regression line is determined from two covariate points, for
a mixture of two regressions this is not the case. Identifiability is achieved by
adding a third design point x3 = (z3 1), with z3 �= z1, z2. Then any partition
of the design points into two groups contains at least two different design
points and the identifiability condition is fulfilled.
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Identifiability of Finite Mixtures of Regression Models

Consider a mixture of K regression models, where ηk and σ2
ε,k are the same

in all groups. For each k = 1, . . . , K, reorder the equations in (8.5) according
to the permutation applied to the label k. Then:

X1β
�
k = X1β1, (8.9)

X2β
�
k = X2β2,

...
XKβ�

k = XKβK , (8.10)

where the rows of the design matrix Xj are built from all design points xi,
where ρi(k) = j. If in (8.9) to (8.10) rg(X

′
jXj) = d for at least one j =

1, . . . , K, then (8.6) follows immediately. Thus generic identifiability up to
relabeling follows, if rg(X

′
jXj) = d holds for any partition of the set of different

covariates {x1, . . . ,xp} into K subsets. This is essentially the same condition
as the one given by Hennig (2000).

Any partition that violates this condition defines an alternative solution.
It follows that the minimum number of different design points is equal to
K(dim(βk) − 1) + 1. If p ≤ K(dim(βk) − 1), then evidently there exists a
partition of the different design points into K groups, where each set con-
tains at most dim(βk)− 1 design points and violates the rank condition. This
minimum number of design points is sufficient to achieve identifiability, iff all
subsets of size dim(βk) define a design matrix of full rank.

Grün and Leisch (2004) use bootstrap methods as a diagnostic tool for
revealing identifiability problems in finite mixtures of normal and nonnormal
regression models.

8.2.3 Statistical Modeling Based on Finite Mixture of
Regression Models

In statistical modeling finite mixtures of regression models are also known as
switching regression models in economics (Quandt, 1972), as latent class re-
gression models in marketing (DeSarbo and Cron, 1988), as mixture-of-expert
models in the machine-learning literature (Jacobs et al., 1991), and as mixed
models in biology (Wang et al., 1996).

The Switching Regression Model

For sequentially observed data, one source of heterogeneity is sudden changes
in regression coefficients due to a structural break. A simple model to capture
a sudden parameter change at a known breakpoint τ within the standard
multiple regression model is the following,
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Yi =
{

xiβ1 + εi, εi ∼ N
(
0, σ2

ε,1
)
, i < τ,

xiβ2 + εi, εi ∼ N
(
0, σ2

ε,2
)
, i ≥ τ.

(8.11)

It is useful to reparameterize model (8.11) as

Yi = xi(1 − Di)β1 + xiDiβ2 + εi, εi ∼ N
(
0, σ2

i

)
, (8.12)

where σ2
i = σ2

ε,1(1 − Di) + σ2
ε,2Di. Di is a dummy variable, taking the value

0 for i < τ and 1 otherwise. If the breakpoint τ is known, then Di is ex-
ogenous, and (8.12) is a regression model with heteroscedastic errors. If the
exact position of the break point τ is unknown, Di is not observable, but
a latent, discrete random variable, taking the values 0 and 1 according to
some unknown probability law, and (8.11) turns out to be a finite mixture of
regression models, also called a switching regression model.

An early example of a switching regression model with unknown break-
point is considered in Quandt (1958) who studies the consumption function
Y = βX + α, where X is the income and Y is the consumption, and as-
sumes that other factors, that are difficult to identify, affect the parameters
of the consumption function. If this critical factor is below a threshold, then
Y = β1X +α1, otherwise Y = β2X +α2. In general we are not able to identify
the critical variable, and what we observe is a mixture of these two regres-
sion lines. Quandt (1958) considers a single shift between the two regimes
at an unknown break point, mainly to make estimation feasible under the
computational limitations of the 1950s.

A particularly important extension of this work is Quandt (1972), where
for the first time a probability model is introduced, to model “that na-
ture chooses between regimes with probability η1 and 1 − η1”(Quandt, 1972,
p.306).1 Quandt (1972) starts directly from specifying the conditional density
p(yi|xi, β1, β2, σ

2
ε,1, σ

2
ε,2, η1) as a mixture of two normal distributions:

Yi ∼ η1N
(
xiβ1, σ

2
ε,1

)
+ (1 − η1)N

(
xiβ2, σ

2
ε,2

)
. (8.13)

In his summarizing remarks, Quandt (1972, p.310) concludes that “A notable
disadvantage of the method is that it does not allow individual observations
to be identified with particular regimes.” The latent variable interpretation of
his important contribution, which allows clustering observations into regimes,
was discovered only later.

Further applications of switching regression models in econometrics are
found in Fair and Jaffee (1972) and Quandt and Ramsey (1978), who consider
the relation between wage bargains and unemployment rate through a Phillips
curve which is expected to switch according to low and high changes on the
consumer price index.
1 Original notation of Quandt (1972) changed.
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Omitted Categorical Predictors

Mixtures of regression models arise whenever a categorical or dummy regressor
is omitted. Hosmer (1974), which is an early reference in this area, considered
a mixture of two regression lines with a nice application from fishery research.
In commercial catches of halibut only age and length are measured, whereas
the gender of the fish is unknown. For any particular age, the mean length of
female fish exceeds that of male fish, and this difference increases with age. If
gender were observed, length may be modeled in terms of gender gi and age
ai in the following way.

Yi = β1 + aiβ2 + giβ3 + giaiβ4 + εi, εi ∼ N
(
0, σ2

ε

)
.

When coding gender as a 0/1 variable, this model may be written as

Yi = βgi,1 + aiβgi,2 + εi, (8.14)

where βgi,1 = β1 + giβ3 and βgi,2 = β2 + giβ4. If gender is unobserved, then
(8.14) is equal to a mixture of two regression models. In a scatter plot of ai

versus the observed length yi, the observations cluster around two regression
lines, one corresponding to males, the other to females. When a switching
regression model is fitted to the data, then both unknown regression lines
have to be reconstructed from the data.

Note that the switching slope in (8.14) is caused by interaction between
the observed and the omitted categorical variable. If such an interaction is
not present, then β4 = 0 and (8.14) reduces to a regression model with a shift
in the intercept only:

Yi = βgi,1 + aiβ2 + εi.

Unknown Segments in the Population

Finite mixtures of regression models, introduced into marketing by DeSarbo
and Cron (1988), found numerous applications in marketing research; see
Wedel and DeSarbo (1993b) and Rossi et al. (2005) for a review. In mar-
keting, consumers rate the quality of products or events. A regression model
is built to describe the relation between the rating Yi of consumer i and cer-
tain features of the product summarized in the design matrix xi. If unknown
segments in the population are present, then the part-worths βs

i of a certain
consumer i depend on membership in a certain segment. If we introduce a
segment indicator Si, then the market segmentation regression model reads:

Yi = xiβSi
+ εi, εi ∼ N

(
0, σ2

ε

)
. (8.15)

Apart from estimating the regression coefficients in the different segments,
the indicator Si itself is of interest, as it allows us to assign each consumer to
a certain segment k.
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8.2.4 Outliers in a Regression Model

The finite mixture model discussed in Section 7.2 for dealing with outliers in
univariate data sets has been extended in several ways to deal with outliers in
a linear regression model; see the review article by Peña and Guttman (1993).

Box and Tiao (1968), for instance, extend the variance inflation model
(7.24) in the following way.

Yi ∼ (1 − η2)N
(
xiβ, σ2

ε

)
+ η2N

(
xiβ, kσ2

ε

)
. (8.16)

Model (8.16) is a regression model with switching variances, but a constant
regression parameter β. Abraham and Box (1978) extended the location shift
model (7.25) to allow for outliers in a linear regression model:

Yi ∼ (1 − η2)N
(
xiβ, σ2

ε

)
+ η2N

(
xiβ + k, σ2

ε

)
. (8.17)

Model (8.17) allows for a switching intercept, while holding the variance fixed.
Peña and Guttman (1993) show that these models are more effective in iden-
tifying outliers than methods which postulate a null model for the generation
of the data with no alternative to the null model being entertained.

Various extensions to models (8.16) and (8.17) are worth mentioning.
Guttman et al. (1978) combine a mixture of a normal regression models with
a random-effects model to allow for a different shift for each outlier. Out-
lier modeling in nonnormal mixture regression models is considered in Pregi-
bon (1981), Copas (1988), and Verdinelli and Wasserman (1991). West (1984,
1985) also studies more general scale mixtures of GLMs to deal with outliers.

8.3 Statistical Inference for Finite Mixtures of Multiple
Regression Models

Parameter estimation for finite mixtures of regression models is usually based
on ML estimation or Bayesian estimation, an exception being Quandt and
Ramsey (1978) who used a method of moments estimator based on the
moment-generating function.

8.3.1 Maximum Likelihood Estimation

Assume that N observation pairs (x1, y1), . . . , (xN , yN ) are available. The
appropriate likelihood function for parameter estimation for a finite mixture
of an arbitrary number K of regression models was derived for the first time
by Quandt (1972). This function turns out to be the following extension of
the mixture likelihood of a standard finite mixture model,

p(y|ϑ) =
N∏

i=1

(
K∑

k=1

fN (yi;xiβk, σ2
ε,k)ηk

)
, (8.18)
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where ϑ = (β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K , η). In contrast to this, Fair and Jaffee

(1972) consider maximization of the classification likelihood p(y|ϑ,S) with
respect to ϑ and S for jointly solving the problem of parameter estimation
and estimating the unknown allocations. However, Oberhofer (1980) showed
that this approach leads in general to inconsistent estimators of β1, . . . ,βK .

In Quandt (1972), the mixture regression likelihood function p(y|ϑ) is
maximized numerically, and considerable convergence failures are reported
for repeated experiments on artificially generated data. A mixture of two
regression models, for instance, where β1 = (1, 1), β2 = (0.5, 1.5), σ2

ε,1 = 2,
σ2

ε,2 = 2.5, η1 = η2 = 0.5, N = 60, and xi = (1xi), where xi ∼ U [0, 40], leads
to a failure rates of 53 percent in 30 replications, where xi was kept fixed over
the repetitions.

Later on, Hosmer (1974) realized that the problem of dealing with an
unbounded likelihood function is of relevance not only for finite mixtures of
normal distributions (see again Subsection 6.1.2), but also for heterogeneous
mixtures of regression models, which include heterogeneous mixtures of nor-
mal distributions as a special case. Hosmer (1974) noted that any observation
yi generates a singularity in the likelihood function if βk is chosen such that
yi = xiβk, and σ2

ε,k goes to 0. More generally, each subgroup of d observations
generates a singularity in the likelihood function if βk is chosen such that the
regression plane provides a perfect fit to this subgroup.

Thus if the variances of a finite mixture of regression models are uncon-
strained, a global maximizer of the likelihood function does not exist. Never-
theless, Kiefer (1978) shows that a root of the log likelihood equations cor-
responding to a local maximizer in the interior of the parameter space is
consistent, asymptotically normal, and efficient. In practice, however, it may
be difficult to find the ML estimator numerically. An EM-type algorithm for
finding the ML estimator was suggested by Hartigan (1977), whereas DeSarbo
and Cron (1988) use the EM algorithm directly for this purpose.

As for mixtures of normal distributions, it is complete ignorance about
the variance ratio σ2

ε,k/σ2
ε,l that causes problems with maximum likelihood

estimation, and again the Bayesian approach, discussed in the remaining sub-
sections, is helpful in this respect, as it allows us to bound this ratio through
choosing proper priors on σ2

ε,k, k = 1, . . . , K.

8.3.2 Bayesian Inference When the Allocations Are Known

If the allocations S are known, then Bayesian inference reduces to Bayesian
analysis of the standard regression model as discussed first in Zellner (1971);
see also Raftery et al. (1997) for a more recent review.

For each group, a separate regression model with parameters βk and σ2
ε,k

has to be estimated from all observations that fall into that group. In matrix
notation, in each group the regression model reads:

yk = Xkβk + εk, εk ∼ NNk

(
0, σ2

ε,kINk

)
, (8.19)
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where Nk = #{i : Si = k} is equal to the number of observations in group
k, yk is a vector containing all observations yi with Si = k, and Xk is the
corresponding design matrix, where each line contains the regressors xi cor-
responding to yi. The relevant group-specific data summaries are well known
from the normal equations leading to the standard OLS estimator in econo-
metrics:

X
′
kyk =

∑
i:Si=k

x
′
iyi,

X
′
kXk =

∑
i:Si=k

x
′
ixi.

Note that Nk as well as both group-specific data summaries depend on S,
however, as opposed to earlier chapters this dependence is not made explicit
in this chapter.

Assume that observation yi is assigned to group k, Si = k. Then the
contribution of yi to the complete-data likelihood function p(y|β, σ2,S) is
equal to

p(yi|βk, σ2
ε,k, Si) =

(
1

2πσ2
ε,k

)1/2

exp

(
− 1

2σ2
ε,k

(yi − xiβk)2
)

.

The complete-data likelihood function p(y|β, σ2,S) has K independent fac-
tors, each carrying all information about the parameters in a certain group:

p(y|β, σ2,S) =
K∏

k=1

(
1

2πσ2
ε,k

)Nk/2

(8.20)

× exp

(
− 1

2σ2
ε,k

∑
i:Si=k

(yi − xiβk)2
)

.

In a Bayesian analysis each of these factors is combined with a prior. When
holding the variance σ2

ε,k fixed, the complete-data likelihood function, re-
garded as a function of βk, is the kernel of a multivariate normal distribution.
Under the conjugate prior βk ∼ Nd (b0,B0), the posterior density of βk given
σ2

ε,k and all observations assigned to group k, is again a density from the nor-
mal distribution, βk|σ2

ε,k,S,y ∼ Nd (bk,Bk), where

Bk = (B−1
0 +

1
σ2

ε,k

X
′
kXk)−1, (8.21)

bk = Bk(B−1
0 b0 +

1
σ2

ε,k

X
′
kyk). (8.22)

When holding the regression parameter βk fixed, the complete-data likelihood
function, regarded as a function of σ2

ε,k, is the kernel of an inverted Gamma
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density. Under the conjugate inverted Gamma prior σ2
ε,k ∼ G−1 (c0, C0), the

posterior density of σ2
ε,k given βk and all observations assigned to this group,

is again a density from the inverted Gamma distribution, σ2
ε,k|βk,S,y ∼

G−1 (ck, Ck), where

ck = c0 +
Nk

2
, Ck = C0 +

1
2
ε

′
kεk, (8.23)

where εk = yk − Xkβk.
If both βk and σ2

ε,k are unknown, a closed-form solution for the joint
posterior p(βk, σ2

ε,k|S,y) exists only if the prior of βk is restricted by assuming
that the prior covariance matrix depends on σ2

ε,k through B0,k = σ2
ε,kB̃0. Then

the joint posterior factors as p(βk|σ2
ε,k,y,S)p(σ2

ε,k|y,S), where density of βk

given σ2
ε,k arises from an Nd (bk,Bk) distribution with

Bk = σ2
ε,kB̃k, B̃k = (B̃−1

0 + X
′
kXk)−1, (8.24)

bk = B̃k(B̃−1
0 b0 + X

′
kyk), (8.25)

whereas the marginal posterior of σ2
ε,k is a G−1 (ck, Ck)-distribution, where ck

is the same as in (8.23), however,

Ck = C0 +
1
2

(
y

′
kyk + b

′
0B̃

−1
0 b0 − b

′
kB̃

−1
k bk

)
. (8.26)

8.3.3 Choosing Prior Distributions

The investigations of the previous subsection suggest choosing the following
prior distributions for finite mixtures of regression models when the allocations
are unknown, which were applied, for instance, in Hurn et al. (2003).

As a prior for the regression coefficient βk one may use a conditionally
conjugate prior:

βk|σ2
ε,k ∼ Nd

(
b0, σ

2
ε,kB̃0

)
, (8.27)

which introduced prior dependence between βk and σ2
ε,k. Alternatively, a prior

may be used, where βk and σ2
ε,k are independent a priori:

βk ∼ Nd (b0,B0) . (8.28)

In both cases, the prior on σ2
ε,k is inverse Gamma, σ2

ε,k ∼ G−1 (c0, C0). As
with for finite mixtures of normal distributions, C0 may be considered as an
unknown hyperparameter with a prior of its own, C0 ∼ G (g0, G0), in which
case the resulting prior is called a hierarchical prior. The prior on the group
sizes is the standard Dirichlet prior, η ∼ D (e0, . . . , e0).
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8.3.4 Bayesian Inference When the Allocations Are Unknown

MCMC estimation is usually carried out using data augmentation and Gibbs
sampling, exceptions being Chen and Liu (1996) who discuss MCMC estima-
tion of the allocations S without parameter estimation and Hurn et al. (2003)
who discuss direct parameter estimation without data augmentation using the
Metropolis–Hastings algorithm.

Albert and Chib (1993) consider Bayesian estimation using data augmen-
tation and Gibbs sampling for the more general Markov mixture of regression
model, however, their algorithm is also relevant for finite mixtures of regres-
sion models. They show that MCMC estimation along the lines indicated by
Algorithm 3.4 is feasible after introducing the group indicator Si for each ob-
servation pair (xi, yi) as missing data. Justel and Peña (1996) use a similar
method and show that a false convergence of the Gibbs sampler may occur
when one of the groups has a much smaller variance than the other. Otter
et al. (2002) consider a Bayesian approach for more general finite mixtures
of multivariate regression models and discuss an application in marketing.
The following algorithm provides details for finite mixtures of heteroscedastic
regression models.

Algorithm 8.1: Unconstrained MCMC for a Multiple Normal Mixture Regres-
sion Model Full conditional Gibbs sampling is carried out in two steps.

(a) Parameter simulation conditional on the allocations S:
(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-

rithm 3.4.
(a2) Sample each regression coefficient βk, k = 1, . . . , K, from the posterior

distribution βk|σ2
ε,k,S,y ∼ Nd (bk,Bk).

(a3) Sample each variance σ2
ε,k, k = 1, . . . , K, from the posterior distribu-

tion σ2
ε,k|βk,S,y ∼ G−1 (ck, Ck).

(b) Classification of each observation pair (yi,xi) conditional on ϑ: sample
each element Si of S from the conditional posterior p(Si|ϑ,y) given by

Pr(Si = k|ϑ,y) ∝ ηkfN (yi;xiβk, σ2
ε,k). (8.29)

In step (a2), the posterior moments bk and Bk are given by (8.21) and
(8.22), whereas in step (a3) the posterior moments ck and Ck are available
from (8.23). These formulae could be applied for any prior. Under the con-
ditionally conjugate prior or the hierarchical conditionally conjugate prior,
computation of bk and Bk may be simplified as in (8.24) and (8.25). Further-
more, under this prior, sampling of σ2

ε,k is possible from the marginal inverted
Gamma posterior distribution p(σ2

ε,k|S,y), where ck is the same as in (8.23)
and Ck is given by (8.26).

Under a hierarchical prior, where C0 is a random hyperparameter with
a prior of its own, C0 ∼ G (g0, G0), an additional step has to be added in
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Algorithm 8.1 to sample C0 from p(C0|S,β, σ2,y), which is given by Bayes’
theorem as C0|S,β, σ2,y ∼ G (gN , GN ), where:

gN = g0 + Kc0, GN = G0 +
K∑

k=1

1
σ2

ε,k

.

MCMC for Homoscedastic Mixtures of Regression Models

Algorithm 8.1 could be applied for Bayesian estimation of a homoscedas-
tic finite mixture regression model, where σ2

ε,1 = · · · = σ2
ε,K = σ2

ε , how-
ever, step (a3) has to be modified by sampling σ2

ε from the appropri-
ate posterior distribution. Under the inverted Gamma prior distribution
σ2

ε ∼ G−1 (c0, C0), the posterior distribution is again inverted Gamma,
σ2

ε |β, σ2,S,y ∼ G−1 (cN , CN ), where

cN = c0 +
N

2
, CN = C0 +

1
2

N∑
i=1

(yi − xiβSi
)2. (8.30)

Under the conditionally conjugate prior (8.27) on β, it is possible to sample
σ2

ε from the marginal posterior p(σ2
ε |σ2,S,y), where β is integrated out, as

this density is available in closed form: σ2
ε |σ2,S,y ∼ G (cN , CN ), with cN

being the same as in (8.30), whereas CN is given by

CN = C0 +
1
2
b

′
0B̃

−1
0 b0 +

1
2

K∑
k=1

(
y

′
kyk − b

′
kB̃

−1
k bk

)
.

Starting Values

Justel and Peña (1996) realized that for a finite mixture of regression models
Gibbs sampling may be sensitive to choosing an appropriate initial classi-
fication. In particular under the presence of outliers that mask or swamp
other observations, an erroneous initial classification of the observations will
lead the algorithm to a wrong solution for thousands of iterations. As a rem-
edy, Justel and Peña (2001) avoid random initial classification and search for
a more sensible classification. They use an estimate of the covariance ma-
trix of the allocations S and show that the eigenvectors associated with the
nonzero eigenvalues provide information about which observations are pos-
sible outliers. The examples in Justel and Peña (2001) indicate considerable
improvement of the Gibbs sampler based on these elaborated starting values.

8.3.5 Bayesian Inference Using Posterior Draws

As for a standard finite mixture model, label switching as discussed in detail
in Subsection 3.5.5 is also an issue for finite mixtures of regression models.
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Hurn et al. (2003) use the approach of Celeux et al. (2000) to deal with the
labeling problem, by choosing that parameter for estimation which minimizes
the symmetrized Kullback–Leibler distance measure, which is invariant to
relabeling.

As noted by Hurn et al. (2003), a functional that is invariant to relabeling
is the estimated regression hyperplane,

E(Yi|xi) =
K∑

k=1

ηkxiβk,

which reduces to the regression line

E(Yi|xi) =
K∑

k=1

ηk(xiβk,1 + βk,2)

for simple regression problems. In the latter case, the regression line may be
visualized by showing for each MCMC draw several points from this regres-
sion line for selected values of xi (either sampled randomly from [xmin, xmax]
for continuous covariates, or sampled randomly from the set of observed co-
variates).

Finding identifiability constraints is not trivial, particularly in higher di-
mensions, however, producing scatter plots of βk,j against βk′,j′ for all pairs of
coefficients of β may be helpful, as shown, for instance, in Frühwirth-Schnatter
and Kaufmann (2006a). The predicted points on the regression line could
also help to identify groups. If for a certain xi, all simulated points obey
xiβ1 < · · · < xiβK , then this constraint could be used for identification.
Thus for a switching regression model constraints need not be simple order
constraints on the regression parameter, but could also be linear constraints
as applied, for instance, in Otter et al. (2002).

8.3.6 Dealing with Model Specification Uncertainty

Testing for the presence of switching regression parameters was already con-
sidered by Quandt (1958), who performed an F-Test involving the ratio of
variances under a switching and a nonswitching regression model, and by
Quandt (1960) who considered a likelihood ratio test.

Bayes factors for testing a switching regression model with K = 2 against
homogeneity are considered by Peña and Tiao (1992) who investigate the
relation between the Bayes factor and the Chow test introduced by Chow
(1960). Otter et al. (2002) and Frühwirth-Schnatter et al. (2004) use the bridge
sampling estimator of the marginal likelihoods (see also Subsection 5.4.6 for
more detail on this estimator) to select the number of groups in mixtures of
regression models.

Hurn et al. (2003) use the birth and death process method of Stephens
(2000a), discussed in Subsection 5.2.3 in detail, to select the number of groups
in a finite mixture regression model.
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8.4 Mixed-Effects Finite Mixtures of Regression Models

A mixed-effects model allows us to combine regression coefficients that are
fixed across all realizations (Yi,xi) with regression coefficients that are allowed
to change.

8.4.1 Model Definition

A mixed-effects finite mixture of regression models results if only some regres-
sion coefficients are different among the hidden groups:

Yi = xf
i α + xr

i βSi
+ εi, εi ∼ N

(
0, σ2

ε,Si

)
, (8.31)

where xf
i are the fixed effects, whereas xr

i are the random effects. A necessary
condition for identifiability is that the columns of the design matrix defined
by

X =

⎛⎜⎝ xf
1 xr

1
...

...
xf

N xr
N

⎞⎟⎠
are linearly independent.

Considering certain effects as being fixed may help to avoid generic identi-
fiability, in particular for categorical covariates. For a regression model, where
only the intercept is switching,

Yi = xiα + βSi + εi, εi ∼ N
(
0, σ2

ε,Si

)
, (8.32)

generic identifiability follows immediately from pointwise identifiability, given
by (8.5):

η�
k = ηρi(k), β�

k + xiα = βρi(k) + xiα, σ2,�
ε,k = σ2

ε,ρi(k),

hence β�
k = βρi(k). For the general mixed-effects model defined in (8.31) point-

wise identifiability, given by (8.5),

η�
k = ηρi(k), xf

i α + xr
i βk = xf

i α + xr
i βρi(k), σ2,�

ε,k = σ2
ε,ρi(k),(8.33)

implies xr
i βk = xr

i βρi(k), and generic identifiability holds if the identifiability
condition discussed in Section 8.2.2 is applied to the design points defining
only the random effects xr

i .

8.4.2 Choosing Priors for Bayesian Estimation

It is assumed that the priors of all parameters but α are the same as in
Subsection 8.3.3, whereas α ∼ Nr (a0,A0). If α and βk are pairwise inde-
pendent a priori, then the joint prior on α∗ = (α,β1, . . . ,βK) is a normal
prior, α∗ ∼ Nr∗ (a∗

0,A
∗
0), where r∗ = r +Kd and a∗

0 and A∗
0 are derived from

a0,A0, b0, and B0 in an obvious way.
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8.4.3 Bayesian Parameter Estimation When the Allocations
Are Known

In matrix notation, in each group the regression model reads:

yk = Xf
kα + Xr

kβk + εk, εk ∼ NNk

(
0, σ2

ε,kINk

)
,

where Nk = #{i : Si = k} is equal to the number of observations in group k,
yk is a vector containing all observations yi with Si = k, and Xf

k and Xr
k are

the corresponding design matrices, where each line contains the regressors xf
i

and xr
i corresponding to yi.

Due to the presence of the common regression parameter α in each group,
conditional independence across the groups as in Subsection 8.3.2 is lost, even
conditional on known allocations S, and inference is carried out simultaneously
for all regression coefficients α∗ = (α,β1, . . . ,βK). This inference problem is
closely related to Bayesian inference for a single regression model. By intro-
ducing a dummy coding for Si through K binary variables Dik, k = 1, . . . , K,
where Dik = 1, iff Si = k, and 0 otherwise, model (8.31) is written as a
heteroscedastic regression model with regression parameter α∗:

yi = xf
i α + xr

i Di1β1 + · · · + xr
i DiKβK + εi, (8.34)

εi ∼ N
(
0, σ2

i

)
, σ2

i = Di1σ
2
ε,1 + · · · + DiKσ2

ε,K .

Normalization yields a regression model with homoscedastic errors:

yi

σi
=

1
σi

xf
i α +

1
σi

xr
i Di1β1 + · · · +

1
σi

xr
i DiKβK + ε̃i, (8.35)

where ε̃i ∼ N (0, 1). Under a normal prior on the regression coefficients
α∗, α∗ ∼ Nr∗ (a∗

0,A
∗
0), the joint posterior of α∗, conditional on know-

ing the variance parameters σ2
ε,1, . . . , σ

2
ε,K , is again a normal distribution:

α∗|σ2
ε,1, . . . , σ

2
ε,K ,y,S ∼ Nr∗ (a∗

N ,A∗
N ). a∗

N and A∗
N are given by:

(A∗
N )−1 = (A∗

0)
−1 +

N∑
i=1

1
σ2

ε,Si

Z
′
iZi, (8.36)

a∗
N = A∗

N

(
(A∗

0)
−1a∗

0 +
N∑

i=1

1
σ2

ε,Si

Z
′
iyi

)
, (8.37)

where Zi = (xf
i xr

i Di1 · · · xr
i DiK). If N is not too large, these moments

could be determined from a single matrix manipulation:

(A∗
N )−1 = (A∗

0)
−1 + X

′
X

a∗
N = A∗

N

(
(A∗

0)
−1a∗

0 + X
′
ỹ
)

,

where
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X =

⎛⎜⎝ Z1/σε,S1

...
ZN/σε,SN

⎞⎟⎠ , ỹ =

⎛⎜⎝ y1/σε,S1

...
yN/σε,SN

⎞⎟⎠ .

In contrast to the regression parameters, the variance parameters σ2
ε,1, . . . , σ

2
ε,K

are independent, conditional on knowing α,β1, . . . ,βK . Under the conjugate
inverted Gamma prior σ2

ε,k ∼ G−1 (c0, C0), the posterior density of σ2
ε,k given

α, βk, and all observations assigned to this group, is again a density from the
inverted Gamma distribution, σ2

ε,k|α,βk,S,y ∼ G−1 (ck, Ck), where

ck = c0 +
Nk

2
, Ck = C0 +

1
2
ε

′
kεk, (8.38)

where εk = yk − Xf
kα − Xr

kβk.

8.4.4 Bayesian Parameter Estimation When the Allocations
Are Unknown

Bayesian parameter estimation using data augmentation and MCMC as in
Algorithm 8.1 is easily adapted to deal with mixed-effects finite mixtures of
regression models.

Algorithm 8.2: Unconstrained MCMC for a Mixed-Effects Normal Mixture
Regression Model Full conditional Gibbs sampling is carried out in two steps.

(a) Parameter simulation conditional on the allocations S:
(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-

rithm 3.4.
(a2) Sample all regression coefficients α∗ = (α,β1, . . . ,βK) jointly from

the posterior distribution α∗|σ2
ε,1, . . . , σ

2
ε,K ,y,S ∼ Nr� (a∗

N ,A∗
N ).

(a3) Sample each variance σ2
ε,k, k = 1, . . . , K, from the posterior distribu-

tion σ2
ε,k|α,βk,S,y ∼ G−1 (ck, Ck).

(b) Classification of each observation (yi,xi) conditional on ϑ: sample each
element Si of S from the conditional posterior p(Si|ϑ,y) given by

Pr(Si = k|ϑ,y) ∝ ηkfN (yi;x
f
i α + xr

i βk, σ2
ε,k). (8.39)

In step (a3), the posterior moments ck and Ck are available from (8.38). In
step (a2), joint sampling of all regression parameters (α,β1, . . . ,βK) is easily
carried out from the conditional posterior Nr� (a∗

N ,A∗
N ), where the moments

are given by (8.36) and (8.37). With increasing number K of groups joint
sampling may be rather timeconsuming, especially for regression models with
high-dimensional parameter vectors. Then one of the following variants may
be useful.
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Variants of Sampling the Regression Parameters for a
Mixed-Effects Model

As β1, . . . ,βK are independent conditional on α, sampling in step (a2) of
Algorithm 8.2 may be carried out in two subblocks as in Albert and Chib
(1993):

(a2-1) Conditional on α, sample β1, . . . ,βK independently for each group
from the regression model:

yk − Xf
kα = Xr

kβk + εk, εk ∼ NNk

(
0, σ2

ε,kINk

)
,

where only observations with Si = k are considered. This is exactly the
same situation as in Subsection 8.3.2, with a slight modification of the
left-hand side variable.
(a2-2) Conditional on β1, . . . ,βK , sample α from the posterior obtained
from the regression model:

yi − xr
i βSi

= xf
i α + εi, εi ∼ N

(
0, σ2

ε,Si

)
,

where i = 1, . . . , N .

This sampler may be less efficient than joint sampling of all regression coeffi-
cients as in step (a2) of Algorithm 8.2, in particular if posterior correlations
are high among parameters appearing in different blocks.

The following variant which has been suggested by Frühwirth-Schnatter
et al. (2004) is equivalent to joint sampling of all parameters as in step (a2)
of Algorithm 8.2 and is based on decomposing the joint posterior as

p(β1, . . . ,βK , α|S, σ2
ε,1, . . . , σ

2
ε,K ,y) =

K∏
k=1

p(βk|S, σ2
ε,k,y)p(α|S, σ2

ε,1, . . . , σ
2
ε,K ,y).

The group-specific parameters β1, . . . ,βK are sampled conditional on α as
in step (a2-1) above. To sample α, however, the marginal posterior density
p(α|S, σ2

ε,1, . . . , σ
2
ε,K ,y) is considered. The moments of this density are derived

in Frühwirth-Schnatter et al. (2004).

8.5 Finite Mixture Models for Repeated Measurements

An often occurring problem in applied statistics is simultaneous inference on a
set of parameters for similar units such as schools from a certain region, firms
from the same branch, or consumers in a market. In economics, for instance,
data may be available for many countries for several years, whereas in mar-
keting the purchase behavior of many consumers may be observed on several
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occasions. In econometrics such data are referred to as panel data (Baltagi,
1995), whereas in statistics they are more commonly called longitudinal data
(Verbeke and Molenberghs, 2000) or repeated measurements (Crowder and
Hand, 1990; Davidian and Giltinan, 1998). In this section we discuss some
finite mixture models that are useful for such data.

8.5.1 Pooling Information Across Similar Units

Assume that for N units i, i = 1, . . . , N , outcomes yit are observed on several
occasions t = 1, . . . Ti where Ti may vary between units. In each unit i, the
outcomes yit are assumed to be generated by a probability law p(yit|βs

i ) that is
governed by a unit-specific parameter βs

i of dimension d. It is to be expected
that the parameters βs

1, . . . ,β
s
N albeit being different across the units are

related to each other. One way to model such a relation is to assume that βs
i

is drawn from some distribution p(βs
i |ϑ) which may depend on some unknown

hyperparameter ϑ. Note, however, that the distribution p(βs
i |ϑ) is unknown

and needs to be estimated from the data. This problem is known as unobserved
heterogeneity in marketing and economics, as residual heterogeneity in the
social sciences, and as frailty in medical statistics.

One way to capture unobserved heterogeneity is to assume the existence
of K subpopulations of size η1, . . . , ηK with βs

i being equal to a group-
specific parameter βk within subpopulation k. The distribution p(βs

i |ϑ) is
a discrete distribution with K unknown support points β1, . . . ,βK , where
Pr(βs

i = βk) = ηk. Alternatively, it is common to assume random deviation of
βs

i from a population mean β following a normal distribution, βs
i ∼ Nd (β,Q),

with β and Q being unknown parameters. Without much thought the normal-
ity assumption is almost automatically taken for granted, however, as shown
by Heckman and Singer (1984), the distribution of heterogeneity is rather
influential and quite small changes may lead to substantial changes in the
estimated parameters. The effect of misspecifying the distribution of hetero-
geneity is also discussed in Verbeke and Lesaffre (1997).

To achieve some robustness against the misspecification of this distribu-
tion, West (1985) chooses Student-t distributions of heterogeneity instead of
normal ones, whereas Verbeke and Lesaffre (1996) choose a mixture of multi-
variate normal distributions to capture unobserved heterogeneity:

βs
i ∼

K∑
k=1

ηkNd (βk,Qk) .

This distribution of heterogeneity has been called shrinkage within clusters
by Frühwirth-Schnatter and Kaufmann (2006b).

8.5.2 Finite Mixtures of Random-Effects Models

The linear mixed-effects model for modeling longitudinal data was introduced
by Laird and Ware (1982) and reads for each unit i:



8.5 Finite Mixture Models for Repeated Measurements 261

yit = xf
itα + xr

itβ
s
i + εit, εit ∼ N

(
0, σ2

ε

)
, (8.40)

for t = 1, . . . , Ti. x
f
it is the (1×r) design matrix for the unknown coefficient α,

where r = dim(α). xr
it is a (1 × d) design matrix for the unknown coefficient

βs
i , where d = dim(βs

i ). xf
it are called the fixed effects, because changing xf

it

by the same (1 × r) vector ∆ changes the mean of yit by the same constant
∆α for all units i. xr

it are called the random effects, because changing xr
it by

the same (1 × d) vector ∆ changes the mean of yit by ∆βs
i , which is different

across units. Textbooks dealing with this model are Baltagi (1995), Verbeke
and Molenberghs (2000), and Diggle et al. (2002).

In the standard mixed-effects model the errors εit are assumed to be ho-
mogeneous across the units. To deal with unit-specific variance heterogeneity,
model (8.40) has been extended in the following way,

yit = xf
itα + xr

itβ
s
i + εit, εit ∼ N

(
0, σ2

ε/ωi

)
, (8.41)

which reduces to (8.40), if ωi ≡ 1 for all i = 1, . . . , N . Unit-specific scaling fac-
tors ωi different from 1 are included to capture variance heterogeneity across
the units. Like the unit-specific regression coefficients βs

i , the scaling factors
are also assumed to arise from some distribution of variance heterogeneity, a
common choice being a Gamma distribution:

ωi ∼ G (ν/2, ν/2) . (8.42)

For a fixed unit i, model (8.41) could be written as a multivariate regression
model,

yi = Xf
i α + Xr

i β
s
i + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
, (8.43)

with regression parameter (α,βs
i ) using the matrix notation

yi =

⎛⎜⎝ yi1
...

yi,Ti

⎞⎟⎠ , Xf
i =

⎛⎜⎝ xf
i1
...

xf
i,Ti

⎞⎟⎠ , Xr
i =

⎛⎜⎝ xr
i1
...

xr
i,Ti

⎞⎟⎠ .

Note that unit-specific variances introduced through the variance model (8.42)
imply the following marginal distribution for yi,

yi = Xf
i α + Xr

i β
s
i + εi, εi ∼ tν

(
0, σ2

εITi

)
. (8.44)

Unobserved heterogeneity caused by omitted variables may be summarized
by a regression intercept αi that varies between the units:

yi = 1Tiαi + Xiβ + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
;

in other cases it will make sense to assume that all effects are random, in
which case the random coefficient model results:
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yi = Xiβ
s
i + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
.

If Ti ≥ d and
∑

Ti ≥ r+Kd, then it would be possible to combine the informa-
tion from all units to estimate one large regression vector α,βs

1, . . . ,β
s
N with-

out imposing further assumptions. This so-called fixed-effects approach es-
timates α,βs

1, . . . ,β
s
N from the complete-data likelihood p(y|α,βs

1, . . . ,β
s
N ),

which reduces to estimating βs
i separately for each unit, if no common co-

efficient α is present. The fixed-effects approach leads to estimates that are
more dispersed than the set of parameters one is estimating. Think, for in-
stance, of the extreme case that all βs

i s are actually equal. Nevertheless the
individual ML estimators of βs

1, . . . ,β
s
N will be dispersed, with the dispersion

disappearing only for Ti going to infinity.
Thus even for a likelihood-based approach it has been long recommended

to consider the so-called random-effects approach where it is assumed that
βs

1, . . . ,β
s
N are drawn independently from an underlying distribution p(βs

i |ϑ),
which may depend on some hyperparameter ϑ, therefore:

p(βs
1, . . . ,β

s
N |ϑ) =

N∏
i=1

p(βs
i |ϑ).

By combining model (8.43) with one the distributions p(βs
i |ϑ) discussed earlier

in Subsection 8.5.1 different useful models emerge. An early reference that
shows how pooling helps in problems of simultaneous inference on a set of
related parameters βs

1, . . . ,β
s
N is Rao (1975); see also Efron and Morris (1977)

for some enlightening discussion.
In a Bayesian approach, the distribution p(βs

1, . . . ,β
s
N |ϑ) takes the role of

a prior distribution which is combined with observations arising from model
(8.43) through Bayes’ theorem; see Lindley and Smith (1972).

The Hierarchical Bayes Model

The standard mixed-effects model introduced in Laird and Ware (1982), and
applied in many subsequent papers, results from combining model (8.43) with
the normal distribution of heterogeneity

βs
i ∼ Nd (β,Q) , (8.45)

where β and Q are unknown parameters. Morris (1983) discusses that such a
prior allows borrowing strength from the ensemble, when estimating βs

i which
is shrunken toward the population mean β. In marketing research this model
is also known as the hierarchical Bayes model; see, for instance, Rossi et al.
(2005, Chapter 5). If we rewrite (8.45) as βs

i = β + wi, wi ∼ Nd (0,Q), and
substitute into (8.43), we obtain:

yi = Xf
i α + Xr

i β + Xr
i wi + εi.
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Under the common assumption that wi and εi are independent, the hierarchi-
cal Bayes model corresponds to the following multivariate regression model,

yi = Xf
i α + Xr

i β + ε̃i, ε̃i ∼ NTi
(0,Vi) , (8.46)

with constrained error variance–covariance matrix

Vi = Xr
i Q(Xr

i )
′
+ σ2

ε/ωiITi
.

Subsequently, model (8.46) is referred to as the marginal model, because the
random coefficients βs

i no longer appear in this specification. The marginal
model clearly indicates that despite allowing for heterogeneity the hierarchical
Bayes model implies the rather inflexible normal distribution as a marginal
distribution for yi. Further issues, in particular estimation of this widely used
model, are well discussed in the many excellent monographs mentioned at the
beginning of this section.

Verbeke and Lesaffre (1997) study the effect of misspecifying the random
effect distribution in the linear mixed-effects model. They show that the nor-
mal shrinkage prior (8.45) yields consistent estimates of α,β,Q, and σ2

ε even
if the random effects are not normal, however, standard errors need to be
corrected.

The Latent Class Regression Model

More flexibility in the marginal distribution of yi is achieved by assuming
that the distribution p(βs

i |ϑ) is a discrete distribution with K unknown sup-
port points β1, . . . ,βK with Pr(βs

i = βk) = ηk. In this case, the marginal
distribution of yi is the following finite mixture distribution,

p(yi|ωi, ϑ) =
K∑

k=1

ηkfN (yi;X
f
i α + Xr

i βk, σ2
ε/ωiITi).

By introducing the hidden allocation variable Si, which takes the value k,
iff βs

i = βk, the model may be written as the following finite mixture of
multivariate mixed-effects regression models,

yi = Xf
i α + Xr

i βSi
+ εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
, (8.47)

which is an extension of the finite mixture regression model discussed in Sec-
tion 8.4 to multivariate observations yi. This model is also called the latent
class regression model, as conditional on knowing Si and ωi the observations
yi1, . . . , yi,Tt are independent.

Many interesting applications of this model are found in marketing re-
search; see, for instance, DeSarbo et al. (1992) for metric conjoint analysis,
Ramaswamy et al. (1993) for latent pooling of marketing mix elasticities, as
well as Wedel and Steenkamp (1991) and the review in Wedel and DeSarbo
(1993b).
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The Heterogeneity Model

A very general model results if the observation model (8.43) is combined with
a heterogeneity distribution assumed to be a mixture of multivariate normal
distributions:

βs
i ∼

K∑
k=1

ηkNd (βk,Qk) , (8.48)

with unknown component means β1, . . . ,βK , unknown component variance–
covariance matrices Q1, . . . , QK , and unknown weight distribution η =
(η1, . . . , ηK). A constrained version of this model with Q1, . . . ,QK being the
same for all components was introduced by Verbeke and Lesaffre (1996) for
homogeneous error variances. A similar model is discussed in Allenby et al.
(1998), however, without considering fixed effects. Lenk and DeSarbo (2000)
extend this model to observations from distributions from general exponential
families; see also Section 9.6.2. Verbeke and Molenberghs (2000) introduced
the terminology heterogeneity model for this model.

The heterogeneity model encompasses the other models discussed above. If
Qk is equal to a null matrix in all groups, the latent class regression model re-
sults, whereas the hierarchical Bayes model results as that special case where
K = 1. After introducing the allocation variable Si in the finite mixture dis-
tribution (8.48), the following distribution of heterogeneity results conditional
on holding Si fixed,

βs
i |Si ∼ Nd

(
βSi

,QSi

)
.

Because the N units form K groups, where within each group heterogeneity
is described by a group-specific normal distribution, the heterogeneity model
may be regarded as a mixture of random-effects models.

The marginal model where the random effects are integrated out, while
still conditioning on Si and ωi, reads:

yi = Xf
i α + Xr

i βSi
+ ε̃i, ε̃i ∼ NTi (0,Vi) , (8.49)

where
Vi = Xr

i QSi
(Xr

i )
′
+ σ2

ε/ωiITi
. (8.50)

Therefore the heterogeneity model may also be regarded as a finite mixture
of multivariate mixed-effects regression models, where the errors within each
unit are correlated, as opposed to the latent class regression model, where
these errors are uncorrelated.

The model found applications in marketing to deal with preference hetero-
geneity of consumers (Allenby et al., 1998; Otter et al., 2004), in economics to
analyze individual records of work and life history data (Oskrochi and Davies,
1997) and to find convergence clubs in a macroeconomic panel (Canova, 2004;
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Frühwirth-Schnatter and Kaufmann, 2006b), and in biology to analyze micro-
array data (Lopes et al., 2003). An extension of this model which includes a
dynamic linear trend model is studied in Gamerman and Smith (1996). Nobile
and Green (2000) apply a modification of this model with separate random
effects, each following a mixture of normal distributions, to estimate main and
interaction effects in a factorial experiment.

8.5.3 Choosing the Prior for Bayesian Estimation

For Bayesian estimation, a prior on ϑ = (β1, . . . ,βK ,Q1, . . . ,QK , η, α, σ2
ε)

has to be chosen. Because (β1, . . . ,βK ,Q1, . . . ,QK , η) are unknown param-
eters in a finite mixture of multivariate normal distributions, the same priors
as in Subsection 6.3.2 may be applied.

One could choose a conditionally conjugate prior for βk where the prior
variance depends on Qk, B0,k = Qk/N0. On the other hand, in the marginal
model (8.49), where the random effects are integrated out, βk appears as
a regression coefficient in a finite mixture of regression models, where no
conditionally conjugate prior variance exists due to the correlation in the
errors. This suggests choosing B0 independent of Qk.

α and σ2
ε have a similar meaning as for a finite mixture of mixed-effects

regression models, therefore the prior is chosen as in Subsection 8.4.2. The
joint prior reads:

βk ∼ Nd (b0,B0) , Q−1
k ∼ Wd

(
cQ
0 ,CQ

0

)
,

α ∼ Nr (a0,A0) , σ2
ε ∼ G−1 (cε

0, C
ε
0) ,

η ∼ D (e0, . . . , e0) . (8.51)

8.5.4 Bayesian Parameter Estimation When the Allocations
Are Known

For a general Bayesian analysis of the heterogeneity model it is helpful to start
with parameter estimation, when the allocations S = (S1, . . . , SN ) as well as
the variance parameters Q1, . . . ,QK , σ2

ε and ω are known.
Then the joint posterior of the regression parameters α∗ = (α,β1, . . . ,βK)

and the random coefficients βs = (βs
1, . . . ,β

s
N ) partitions as follows,

p(α∗, βs|y,Q1, . . . ,QK , σ2
ε , ω,S)

= p(α∗|y,Q1, . . . ,QK , σ2
ε , ω,S)

N∏
i=1

p(βs
i |yi, α,βSi

,QSi , ωi) .

Conditional on knowing the fixed effects, the random coefficients βs
i are inde-

pendent. Because the allocations S are known, the prior of βs
i is normal,

βs
i ∼ Nd

(
βSi

,QSi

)
,
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whereas the complete-data likelihood results from:

yi − Xf
i α = Xr

i β
s
i + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
.

Combining these two sources of information yields the following posterior of
βs

i ,

βs
i |yi, α,βSi

,QSi
, ωi ∼ Nd (bs

i ,B
s
i ) ,

where the moments are given in terms of an information filter:

Bs
i = (Q−1

Si
+ (Xr

i )
′
Xr

i ωi/σ2
ε)−1, (8.52)

bs
i = Bs

i (Q
−1
Si

βSi
+ (Xr

i )
′
(yi − Xf

i α)ωi/σ2
ε).

If Ti < d, it is more efficient to work with the following filter form which is
derived in Subsection 13.3.2,

bs
i = βSi

+ Ki(yi − Xf
i α − Xr

i βSi
), (8.53)

Bs
i = (ITi − KiXr

i )QSi ,

Ki = QSi
(Xr

i )
′
V−1

i ,

with Vi being the error variance–covariance matrix of the marginal model
defined in (8.50).

The posterior p(α∗|y,Q1, . . . ,QK , σ2
ε , ω,S) is a conditional distribution,

where the allocations are known, whereas the random coefficients βs
1, . . . ,β

s
N

are unknown. The prior of α∗ is a normal distribution, α∗ ∼ Nr∗ (a∗
0,A

∗
0),

where r∗ = r + Kd and a∗
0 and A∗

0 are derived in an obvious way from the
parameters a0,A0, b0, and B0 of the prior defined in (8.51). This prior is
combined with the likelihood function p(y|α∗,y,Q1, . . . ,QK , σ2

ε , ω,S) of the
marginal model (8.49), where the random effects are integrated out.

The posterior distribution p(α∗|y,Q1, . . . ,QK , σ2
ε , ω,S) is derived in a

similar way as in Subsection 8.4.3, which concerned finite mixtures of multi-
ple mixed-effects models, whereas in the present case we are dealing with a
multivariate one. By introducing a dummy coding for Si through K binary
variables Dik, k = 1, . . . , K, where Dik = 1, iff Si = k, and 0 otherwise, we
rewrite the marginal model (8.49) as

yi = Z∗
i α

∗ + ε̃i, ε̃i ∼ NTi (0,Vi) , (8.54)

where the design matrix Z∗
i is defined as

Z∗
i =

(
Xf

i Xr
i Di1 . . . Xr

i DiK

)
.

Because model (8.54) is a multivariate regression model, the posterior of α∗

arises from a normal distribution:

α∗|y,Q1, . . . ,QK , σ2
ε , ω,S ∼ Nr∗ (a∗

N ,A∗
N ) ,
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where

(A∗
N )−1 =

N∑
i=1

(Z∗
i )

′
V −1

i Z∗
i + (A∗

0)
−1,

a∗
N = (A∗

N )−1

(
N∑

i=1

(Z∗
i )

′
V −1

i yi + (A∗
0)

−1a∗
0

)
.

8.5.5 Practical Bayesian Estimation Using MCMC

Empirical Bayesian estimation of the heterogeneity model, including classifi-
cation, is discussed in Verbeke and Lesaffre (1996). A fully Bayesian analysis
of the heterogeneity model for a fixed number K of groups via MCMC meth-
ods is discussed by Allenby et al. (1998), Lenk and DeSarbo (2000), and
Frühwirth-Schnatter et al. (2004).

Let y = (y1, . . . ,yN ) denote all observations. MCMC estimation of the
most general model is based on three levels of data augmentation. First, one
introduces the discrete latent group indicators S = (S1, . . . , SN ), with Si

taking values in {1, . . . , K} and thereby indicating to which group unit i
belongs. Second, the vector of unknowns is augmented by the random effects
βs = (βs

1, . . . ,β
s
N ). And finally, under heterogeneous error variances the scale

factors ω = (ω1, . . . , ωN ) are added in a third data augmentation step. The
joint posterior distribution of all unknowns reads:

p(ϑ, βs,S, ω|y) ∝ p(y|ω, βs, α, σ2
ε)p(ω)p(α, σ2

ε)
×p(βs|S,β1, . . . ,βK ,Q1, . . . ,QK)p(β1, . . . ,βK ,Q1, . . . ,QK)p(S|η)p(η).

A straightforward way of Bayesian estimation of the heterogeneity model via
MCMC methods is Gibbs sampling from full conditional distributions. The
sampler is discussed in Allenby et al. (1998) and Lenk and DeSarbo (2000) for
a heterogeneity model with homogeneous error variances and draws in turn
α, σ2

ε , η, βk, and Qk for k = 1, . . . , K, and Si and βs
i for i = 1, . . . , N , from

the appropriate full conditional distributions given the remaining parameters
and the data y.

It has been demonstrated in Frühwirth-Schnatter et al. (2004) that the
full conditional Gibbs sampler is sensitive to the way model (8.43) is parame-
terized, depending on whether Xf

i and Xr
i have common columns. Sensitivity

of Gibbs sampling with respect to parameterizing the standard mixed-effects
model was noted earlier by Gelfand et al. (1995), and several papers show that
marginalization helps in improving the performance of the Gibbs sampler; see,
for instance, Meng and Van Dyk (1997, 1999), Chib and Carlin (1999), and
van Dyk and Meng (2001).

The partly marginalized Gibbs sampler suggested in Frühwirth-Schnatter
et al. (2004) for homogeneous error variances draws S, α, and β1, . . . ,βK from
conditional distributions where the random effects βs are integrated out. This
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sampler is shown to be less sensitive to the parameterization and has been
extended in Frühwirth-Schnatter et al. (2005) to deal with heterogeneous error
variances. It is summarized in the following algorithm.

Algorithm 8.3: MCMC Estimation of the Heterogeneity Model

(a) Parameter simulation conditional on the allocations S, the random effects
βs and the scaling factors ω.

(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-
rithm 3.4.

(a2) Sample all regression coefficients α∗ = (α,β1, . . . ,βK) jointly from
the posterior distribution α∗ ∼ Nr� (a∗

N ,A∗
N ), derived conditional on

y,S, Q1, . . . ,QK , σ2
ε , and ω.

(a3) Sample each variance–covariance matrix Qk, k = 1, . . . , K, from the
posterior distribution Q−1

k ∼ Wd

(
cQ
k ,CQ

k

)
, derived conditional on

β1, . . . ,βK , βs, and S.
(a4) Sample σ2

ε from G−1 (cε
N , Cε

N ), derived conditional on y, α,βs, and ω.
(b) Classification of each unit based on yi, ω, and ϑ: sample each element Si

of S from the conditional posterior p(Si|ϑ,yi, ωi) given by

Pr(Si = k|ϑ,yi, ωi) ∝ ηkfN (yi;X
f
i α + Xr

i βk,Vi), (8.55)

where Vi has been defined in (8.50).
(c) Dealing with parameter heterogeneity: sample each random coefficient βs

i

for i = 1, . . . , N from the Nd (bs
i ,B

s
i )-distribution, derived conditional on

y, α,β1, . . . ,βK ,S, Q1, . . . ,QK , σ2
ε , and ω.

(d) Dealing with variance heterogeneity: sample each scaling factor ωi from
the G (cω

i , Cω
i ) distribution, derived conditional on y, α,βs, and σ2

ε .

Estimation of the regression coefficients α∗ = (α,β1, . . . ,βK) in step (a2)
is based on the marginal model (8.49) where the random effects are integrated
out in order to improve the mixing properties of the sampler. The appropriate
moments were derived in Subsection 8.5.4.

Sampling of the covariance matrices Q1, . . . ,QK in step (a3) follows im-
mediately from Algorithm 6.2, dealing with mixtures of normal distributions,
because the random effects βs

i are assumed to be known in this step. The
precise form of cQ

k and CQ
k depends upon the chosen prior covariance matrix

B0. If B0 is independent of Qk, then

cQ
k = cQ

0 +
Nk

2
,

CQ
k = CQ

0 +
1
2

∑
i:Si=k

(βs
i − βk)(βs

i − βk)
′
,

where Nk = #{Si = k}.
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The appropriate posterior distribution in step (a4) is easily derived from
the complete-data likelihood function, which reads:

p(y|α,βs, ω) =
N∏

i=1

(
ωi

2πσ2
ε

)Ti/2

(8.56)

× exp

(
− 1

2σ2
ε

N∑
i=1

ωi‖yi − Xf
i α − Xr

i β
s
i ‖2

2

)
.

Therefore:

cε
N = cε

0 +
1
2

(
N∑

i=1

Ti

)
,

Cε
N = Cε

0 +
1
2

(
N∑

i=1

ωi‖yi − Xf
i α − Xr

i β
s
i ‖2

2

)
.

In step (b), the indicators S1, . . . , SN are conditionally independent given
y, ω, and ϑ, as it is assumed that the units are drawn randomly from the
underlying population. The classification rule (8.55) is based on the marginal
model (8.49), where the random effects are integrated out, in order to improve
the mixing properties of the sampler.

In step (c), the moments of the Nd (bs
i ,B

s
i ) distribution to sample the

random effects are given by (8.52) or (8.53).
Finally, the posterior in step (d) follows immediately from the complete-

data likelihood given in (8.56) in combination with the prior (8.42):

cω
i =

ν

2
+

Ti

2
, Cω

i =
ν

2
+

1
2σ2

ε

‖yi − Xf
i α − Xr

i β
s
i ‖2

2.

8.5.6 Dealing with Model Specification Uncertainty

BIC or Schwarz criterion is quite popular for model selection in random-effect
models, however, problems are reported in Stone (1974) and McCulloch and
Rossi (1992) for few repeated measurements with large heterogeneity, where
the number of parameters actually grows with N .

Watier et al. (1999) and Nobile and Green (2000) extend the reversible
jump MCMC method of Richardson and Green (1997) to select the unknown
number of components in a finite mixture of random-effects models.

Marginal likelihoods for selecting between the different models were con-
sidered by Lenk and DeSarbo (2000) and Frühwirth-Schnatter et al. (2004,
2005). Marginal likelihoods allow not only choosing the number of compo-
nents, but also a comparison between the different types of heterogeneity
distributions; see also the case study in Subsection 8.5.7.
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Table 8.1. Marketing Data, logarithm of marginal likelihoods p(y|K, ν) (from
Frühwirth-Schnatter et al. (2005) with permission granted by Springer-Verlag, Wien)

log p(y|K, ν = ∞) log p(y|K, ν = 4)

K Qk �= O Qk = O Qk �= O Qk = O
1 –9222.36 –10077.31 –9101.52 –9980.21

2 –9165.66 –9881.49 –9028.81 –9727.13

3 –9161.27 –9733.98 –9043.96 –9576.97

4 –9165.73 –9669.98 –9045.86 –9522.18

5 — –9596.61 — –9453.22
...

12 — — — –9332.96

13 — — — –9329.49

14 — — — –9326.26
15 — — — –9327.27

16 — –9464.77 — —

17 — –9460.61 — —

18 — –9465.79 — —

8.5.7 Application to the Marketing Data

This application concerns conjoint analysis in marketing, a procedure that is
focused on obtaining the importance of certain product attributes and their
significance in motivating a consumer toward purchase from a holistic ap-
praisal of attribute combinations.

The Marketing Data come from a brand–price trade-off study in the
mineral water market. Each of 213 Austrian consumers evaluated their likeli-
hood of purchasing 15 different product-profiles offering five different brands
of mineral water at different prices on 20-point rating scales. The goal of
the modeling exercise is to find a model describing consumers’ heterogeneous
preferences toward the different brands of mineral water and their brand–
price trade-offs. These data were analyzed in several studies based on homo-
geneous errors using a random coefficient model (Frühwirth-Schnatter and
Otter, 1999), the latent class regression model (Otter et al., 2002), and the
heterogeneity model (Otter et al., 2004). The material in this subsection is
based on Frühwirth-Schnatter et al. (2005), where these models are compared
to models based on unit-specific variance heterogeneity.

The design matrix consists of 15 columns corresponding to the con-
stant, the four brands Römerquelle (RQ), Vöslauer (VOE), Juvina (JU), and
Waldquelle (WA), a linear and a quadratic price effect, and four brand by
linear price and four brand by quadratic price interaction effects. A dummy
coding is used for the brands, hence the fifth brand Kronsteiner (KR) was
chosen as the baseline. The smallest price is subtracted from the linear price
column; the quadratic price is a contrast from the centered linear price. There-
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fore, the constant corresponds to the purchase likelihood of Kronsteiner at the
lowest price level, if quadratic price effects are not present. The investigations
of these data in Otter et al. (2002) indicated that a specification with fixed
brand by quadratic price interactions is preferable, therefore the dimension of
βk is equal to d = 11, whereas the dimension of α is equal to r = 4.

The prior is chosen as in Subsection 8.5.3. a0 and b0 are equal to the popu-
lation mean of the random coefficient model reported in Frühwirth-Schnatter
and Otter (1999), whereas A−1

0 = 0.04 × I4 and B−1
0 = 0.04 × I11. In the

prior of Qk, cQ
0 = 10 whereas CQ

0 is derived by matching the prior mean,
E(Qk) = (cQ

0 − (d + 1)/2)−1CQ
0 , to a sample estimate computed from indi-

vidual OLS estimation. In the prior of σ2
ε , cε

0 = Cε
0 = 0, whereas the prior on

η is a D (1, . . . , 1) distribution.
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Fig. 8.1. Marketing Data; heterogeneity model with K = 2 and heterogeneous
variances with ν = 4, scatter plot of price against brand RQ (left-hand side) and pos-
terior distribution of individual variances σ2

ε/ωi for 15 randomly selected consumers
(from Frühwirth-Schnatter et al. (2005) with permission granted by Springer-Verlag,
Wien)

The following finite mixture models with K > 1 were fitted to these data
with varying the number K of groups: the general heterogeneity model, where
Qk �= O for all k = 1, . . . , K and the latent class regression model, where
Qk = O for all k = 1, . . . , K. These models were compared to the hierarchical
Bayes model, which formally corresponds to a heterogeneity model with K = 1
and Q1 �= O. Each of these models was fitted with heterogeneous variances
with ν = 4 as well as with homogeneous variances that correspond to ν = ∞.
Estimation was carried through 30,000 MCMC iterations, with the last 6000
draws being kept for inference.

Table 8.1 shows estimates of the logarithm of the marginal likelihood
p(y|K, ν) for various models obtained by bridge sampling. The hierarchical
Bayes model (column Qk �= O, line K = 1) is clearly preferred to all la-
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tent class regression models (column Qk = O), but is outperformed by the
heterogeneity model (column Qk �= O, lines with K > 1), regardless of the
assumption made concerning the variances.

The specification chosen for the variance exercises a considerable influence
on the number of optimal classes. Under the assumption of homogeneous vari-
ances the optimal latent class regression model has seventeen classes, whereas
the number reduces to fourteen under heterogeneous errors. Also the hetero-
geneity model has a different number of optimal classes, namely two under
heterogeneous errors and three under homogeneous errors. The optimal model
of all models under consideration is a heterogeneity model with heterogeneous
error variances and K = 2 classes. The preference of a model with heteroge-
neous variances is also supported by Figure 8.1, which shows considerable
differences in the posterior distribution of the individual variances σ2

ε/ωi for
15 randomly selected consumers.

Table 8.2. Marketing Data, heterogeneity model with K = 2 and heterogeneous
variances with ν = 4; posterior expectation of the group-specific parameters βk and
the group-specific weights ηk; posterior standard deviations in parentheses (from
Frühwirth-Schnatter et al. (2005) with permission granted by Springer-Verlag, Wien)

βk,j βk,j

k = 1 k = 2 k = 1 k = 2

const 14.78 12.43 RQ × p –0.71 –0.04
(0.67) (0.75) (0.16) (0.15)

RQ 5.44 5.65 V OE × p –0.85 –0.02
(0.65) (0.84) (0.16) (0.16)

V OE 5.30 5.17 JU × p –0.38 0.07
(0.65) (0.97) (0.16) (0.16)

JU 1.28 0.38 WA × p –0.58 –0.10
(0.66) (0.97) (0.15) (0.13)

WA 2.24 1.10
(0.68) (0.78)

p –2.72 –0.82 ηk

(0.15) (0.15) k = 1 k = 2

p2 –0.03 0 0.58 0.42
(0.07) (0.06) (0.04) (0.04)

We proceed with estimating the group-specific parameters for this model.
The posterior draws in Figure 8.1 are the point process representation of
the projection onto the coefficients βk,2 and βk,6 which correspond to the
effect of the brand RQ and the price effect. We find two clearly separated
simulation clusters, with one group collecting very price-sensitive consumers
whereas the consumers of the other group are less price sensitive. Therefore
it is possible to identify the model through putting the constraint β1,6 < β2,6
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on the group-specific price coefficient. Table 8.2 gives the resulting estimates
for the group-specific parameters and the group weights.

8.6 Further Issues

8.6.1 Regression Modeling Based on Multivariate Mixtures
of Normals

Müller et al. (1996) show that for stochastic regressor variables finite mix-
tures of multivariate normal distributions could be used as an alternative tool
for flexible regression modeling. Consider, for example, a bivariate random
variable (X, Y ), modeled by a mixture of bivariate normal distributions with
component means µk, component covariance matrices Σk, and weight distri-
bution η = (η1, . . . , ηK).

The conditional density p(y|X = xi, ϑ) of Y given X = xi is easily found
to be equal to the following univariate mixture of normal distributions,

p(y|X = xi, ϑ) = (8.57)
K∑

k=1

wk(xi, ϑ)fN (y; βk,1xi + βk,2, Σk,22(1 − ρ2
k)),

where

βk,1 = ρk

√
Σk,11

Σk,22
, βk,2 = µk,2 − βk,1µk,1,

with ρk being the group-specific correlation coefficient

ρk =
Σk,12√

Σk,11Σk,22
,

and

wk(xi, ϑ) ∝ ηkfN (xi; µk,1, Σk,11).

Density (8.57) is closely related to the density of a finite mixture of regression
models, where the slope, the intercept, and the error variance of the regres-
sion model switch among the different components. The component weights
wk(xi, ϑ), however, are not fixed, but vary with xi, and will be higher for
components that are closer to xi than others.

The dependence of the weights on observations is implicit in this appli-
cation of a multivariate mixture distribution to a regression type analysis.
Several extensions of standard finite mixture models and finite mixtures of a
regression model that are based on explicitly modeling such a dependence of
the weights on observations are discussed in Subsections 8.6.2 and 8.6.3.
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8.6.2 Modeling the Weight Distribution

For a standard finite mixture regression model the joint distribution p(yi, Si|ϑ)
factors as p(yi, Si|ϑ) = p(yi|Si, β1, . . . ,βK)p(Si|η), where the prior classifi-
cation probabilities Pr(Si = k|η) = ηk are modeled as being independent of
any data. In the marginal mixture distribution of yi this leads to mixture
density with fixed weight distribution η = (η1, . . . , ηK).

Various authors suggested modeling the prior classification probabilities
Pr(Si = k|η) in terms of covariates zi; see Fair and Jaffee (1972) for an early
application. This is sensible whenever the span of the covariates is different
between the different clusters. A typical example is a change-point regression,
where the covariate zi = i is likely to determine cluster membership.

To include covariate information, Pr(Si = k|η) is first reparameterized for
k = 1, . . . , K − 1 in terms of an unconstrained parameter α = (α1, . . . , αK−1)
using the logistic transformation:

log
Pr(Si = k|α)
Pr(Si = K|α)

= log
ηk

1 −
∑K−1

j=1 ηj

= αk. (8.58)

If for each unit i a subject-specific variable zi is observed additionally to
yi, that might help to classify the subjects, then this information could be
included through a multinomial logistic regression model:

log
Pr(Si = k|α,γ)
Pr(Si = K|α,γ)

= αk + ziγk, (8.59)

where γ = (γ1, . . . ,γK−1) is an unknown regression parameter. If zi fails to
improve the resulting classification, then all components of γ are zero and
model (8.59) reduces to (8.58). Frühwirth-Schnatter and Kaufmann (2006b)
assume dependence of Pr(Si = k|α) on the initial income in an economic study
involving panels of income data and use marginal likelihoods to test the more
general model against a model where ηk is fixed. Scaccia and Green (2003)
use time and age in a growth curve analysis to model the weight distribution
in a mixture of normal distributions.

8.6.3 Mixtures-of-Experts Models

Mixtures-of-experts models have been proposed in the neural network litera-
ture by Jacobs et al. (1991), and have found widespread application for mod-
eling relationships among variables. They are defined as the following mixture
distribution,

p(yi) =
K∑

k=1

ηk,ifN (yi;xiβk, σ2
ε,k),

where



8.6 Further Issues 275

logit ηk,i = αk + xiγk.

From a statistical point of view, such a model is a finite mixture of regres-
sion model with observation-dependent weight distribution; see again Subsec-
tion 8.6.2. Note that the mixture weights may depend on the same covariates
as the mean of the regression model. This may lead to identifiability problems
(Jiang and Tanner, 1999).

Jacobs et al. (1996) and Peng et al. (1996) consider Bayesian parameter
estimation using MCMC. Jacobs et al. (1997) discuss Bayesian methods for
model selection in mixtures-of-experts models.

Hierarchical mixtures-of-experts result if the component densities them-
selves are mixtures-of-experts models; see Jordan and Jacobs (1994) for es-
timation based on the EM algorithm and Peng et al. (1996) for a Bayesian
approach.




