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Practical Bayesian Inference for a Finite
Mixture Model with Known Number of
Components

3.1 Introduction

Assume as in Chapter 2 that N observations y = (y1, . . . ,yN ), drawn ran-
domly from a finite mixture of T (θ) distributions with density p(y|θ) indexed
by a parameter θ ∈ Θ, are available, which should be used to make inferences
about the underlying mixture structure. In this chapter we outline in detail
Bayesian inference for the standard finite mixture model,

p(yi|ϑ) =
K∑

k=1

ηkp(yi|θk), (3.1)

when the number of components is known.
If ϑ = (θ1, . . . ,θK , η) are unknown parameters that need to be estimated

from the data then, as noted earlier, from a Bayesian perspective all informa-
tion contained in the data y about ϑ is summarized in terms of the posterior
density p(ϑ|y), which is derived using Bayes’ theorem:

p(ϑ|y) ∝ p(y|ϑ)p(ϑ). (3.2)

By Bayes’ theorem, the data-dependent mixture likelihood function p(y|ϑ),
defined earlier, is combined with a prior density p(ϑ) in order to obtain the
mixture posterior density p(ϑ|y). For Bayesian estimation, we have to assume
that such a prior distribution p(ϑ) is available. For finite mixture models it
is not possible to choose an improper prior such as p(ϑ) ∝ constant, because
this leads to an improper mixture posterior density p(ϑ|y). This problem and
choosing proper priors are discussed in Section 3.2.

Within a Bayesian analysis of a finite mixture model we are interested in
the entire mixture posterior density p(ϑ|y), which to a large extent is dom-
inated by the mixture likelihood function p(y|ϑ), and, as discussed in Sec-
tion 3.3, inherits all of its properties, in particular the invariance to relabeling
the mixture components.
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In Section 3.4 we discuss inference for the group indicators S without
parameter estimation which is interesting in its own right and provides an
opportunity to introduce recent concepts of computational Bayesian statistics
such as Gibbs sampling and the Metropolis–Hastings algorithm. Gibbs sam-
pling, together with data augmentation, is also useful for drawing Bayesian
inference about the parameters of a mixture model (reviewed in detail in Sec-
tion 3.5) and is the most commonly used approach for obtaining draws from
the mixture posterior p(ϑ|y); other sampling-based approaches such as the
Metropolis–Hastings algorithm are briefly discussed in Section 3.6. Finally,
it is discussed in Section 3.7 how draws from the mixture posterior density
p(ϑ|y) could be used within a Bayesian approach to obtain inference on quan-
tities of interest such as the unknown component parameters.

3.2 Choosing the Prior for the Parameters of a
Mixture Model

3.2.1 Objective and Subjective Priors

For Bayesian estimation of a finite mixture model a prior p(ϑ) has to be
selected for the unknown parameters ϑ = (θ1, . . . ,θK , η). As in Press (2003,
Chapter 5), one may distinguish between objective and subjective priors.

Objective priors should reflect the notion of having no prior information,
however, there exists no general agreement about how knowing little about
a parameter ϑ should be expressed in terms of a probability distribution
p(ϑ). Very often improper priors, which are not integrable over the parame-
ter space, are used to express complete ignorance, in the hope that the data
are informative enough to turn the improper prior p(ϑ) into a proper poste-
rior distribution p(ϑ|y). The choice of objective priors is particularly difficult
for finite mixture models, as common improper priors will lead to improper
posteriors; see Subsection 3.2.2.

Subjective priors bring prior knowledge into the analysis, and offer the
advantage of being proper. For finite mixture models, such priors are usu-
ally obtained by choosing priors that are conjugate for the complete-data
likelihood function; see Subsection 3.2.3. It is common to assume that the
parameters θ1, . . . ,θK are independent of the weight distribution η:

p(ϑ) = p(θ1, . . . ,θK)p(η). (3.3)

For finite mixture models, the standard prior for the weight distribution η is
the D (e0, . . . , e0)-distribution, which arises from the same prior distribution
family as for complete-data Bayesian inference considered in Subsection 2.3.4,
however, the hyperparameters of the prior are assumed to be the same, in
order to obtain an invariant prior. The precise prior on the component param-
eters θ1, . . . ,θK depends on the distribution family underlying the mixture
distribution.
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It is not always easy to assess the parameters of a subjective prior, also
called hyperparameters. Results from a Bayesian analysis of finite mixture
models using subjective prior information is often highly dependent on par-
ticular choices of hyperparameters. To reduce this sensitivity, it is common
practice in the context of finite mixture modeling to use hierarchical priors
where the hyperparameter is equipped with a prior of its own; see Subsec-
tions 3.2.4.

In any case, for a Bayesian analysis of finite mixture models the prior
distribution has to be selected with some care.

3.2.2 Improper Priors May Cause Improper Mixture Posteriors

Assume that in (3.3), complete ignorance about θ1, . . . ,θK is expressed in
terms of the product of independent improper priors:

p(θ1, . . . ,θK) ∝
K∏

k=1

p�(θk), (3.4)

with
∫

p�(θk)dθk = ∞. Roeder and Wasserman (1997b) show that the mix-
ture posterior p(ϑ|y) is improper under prior (3.4), by rewriting the mixture
likelihood p(y|ϑ) as a sum over complete-data likelihoods:

p(y|ϑ) =
∑

S∈SK

p(y|S,θ1, . . . ,θK)p(S|η), (3.5)

where summation runs over all KN possible classifications S. Under prior
(3.4), the mixture posterior is proportional to

p(ϑ|y) ∝
∑

S∈SK

p(y|S,θ1, . . . ,θK)
K∏

k=1

p�(θk)p(S|η)p(η), (3.6)

and is proper, if the integral over the right-hand side is finite. The normalizing
constant turns out to be∑

S∈SK

c1(S)c2(S), (3.7)

c1(S) =
K∏

k=1

∫ ( ∏
i:Si=k

p(yi|θk)

)
p�(θk)dθk,

c2(S) =
∫

p(S|η)p(η)dη.

To obtain a proper posterior distribution, c1(S) and c2(S) have to be finite
for all classifications S. Note that the hidden multinomial prior on S assigns
positive probability to partitions S, where one component, say j, is empty.
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In this case, the complete-data likelihood does not contain any information
about θj and c1(S) is not finite under the improper prior (3.4) because

∫ ⎛⎝ ∏
i:Si=j

p(yi|θj)

⎞⎠ p�(θj)dθj =
∫

p�(θj)dθj = ∞.

To obtain proper posterior distributions under the prior (3.4), Wasserman
(2000) modifies the prior distribution p(S) of the allocations S, by restricting
SK to allocations with nonempty components.

3.2.3 Conditionally Conjugate Priors

Whereas it is not possible to choose simple conjugate priors for the mixture
likelihood p(y|ϑ), a conjugate analysis is possible for the complete-data like-
lihood p(y,S|ϑ), if the component densities in the mixture come from the
exponential family as in (1.11),

p(yi|θk) = exp
{

φ(θk)
′
u(yi) − g(θk) + c(yi)

}
;

see also Subsection 2.3.3. To formulate a joint prior for θ1, . . . ,θK , the com-
ponent parameters are assumed to be independent a priori, given a hyperpa-
rameter δ:

p(θ1, . . . ,θK |δ) =
K∏

k=1

p(θk|δ). (3.8)

If for each component the prior p(θk|δ) takes the form

p(θk|δ) ∝ exp
{

φ(θk)
′
a0 − g(θk)b0

}
, (3.9)

with hyperparameter δ = (a0, b0), then the conditional posterior p(θk|S,y) is
given by:

p(θk|S,y) ∝ exp
{

φ(θk)
′
ak − g(θk)bk

}
, (3.10)

which is again a density from the chosen exponential family with

ak = a0 +
∑

i:Si=k

u(yi), bk = b0 + Nk(S),

where Nk(S) = #{Si = k}. For mixtures of Poisson distributions, for instance,
Bayesian inference for the complete data problem, already studied in Subsec-
tion 2.3.3, leads to the conditionally conjugate prior µk ∼ G (a0, b0), where a0
as well as b0 have to be positive to obtain a proper posterior distribution.
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3.2.4 Hierarchical Priors and Partially Proper Priors

For practical Bayesian inference, prior (3.8) is assessed by choosing the hy-
perparameter δ. Prior (3.8) acts as a kind of shrinkage prior, pulling all com-
ponent parameters θk toward a common center defined by E(θk|δ), where
both the center of the prior as well as the amount of shrinkage may crucially
depend on δ. For illustration, consider a mixture of Poisson distributions,
and rewrite the conditionally conjugate G (a0, b0)-prior introduced in Subsec-
tion 3.2.3 as µk ∼ (a0/b0)Wk, Wk ∼ G (a0, a0). Evidently, this prior induces
shrinkage of µk toward the prior mean E(µk) = a0/b0,, with shrinkage being
more pronounced the larger a0.

In particular for mixtures with small components, the posterior distribu-
tion may be sensitive to specific choices of δ. To reduce sensitivity to specific
choices of δ, it is common practice to use hierarchical priors, which treat δ as
an unknown quantity with a prior p(δ):

p(θ1, . . . ,θK , δ) = p(δ)
K∏

k=1

p(θk|δ). (3.11)

As a result, θ1, . . . ,θK are dependent a priori:

p(θ1, . . . ,θK) =
∫

p(θ1, . . . ,θK |δ)p(δ)dδ �=
K∏

k=1

p(θk).

Such priors have been applied to finite mixtures of normal distributions in
Mengersen and Robert (1996), Richardson and Green (1997), and Roeder
and Wasserman (1997b).

Partially proper priors (Roeder and Wasserman, 1997b) are hierarchical
priors where the prior p(δ) of the hyperparameter δ is improper. Although,
marginally, the prior p(θk) is improper, the posterior distribution is proper.

A Hierarchical Prior for Poisson Mixtures

For a mixture of Poisson distributions, a hierarchical prior is obtained by
assuming that b0 is a random parameter with a prior of its own:

µk|b0 ∼ G (a0, b0) , b0 ∼ G (g0, G0) . (3.12)

Then the component means µ1, . . . , µK are dependent a priori, and the joint
prior p(µ1, . . . , µK), where b0 is integrated out, is available in closed form, if
the G (g0, G0)-prior is proper:
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p(µ1, . . . , µK) =
∫

p(µ1, . . . , µK |b0)p(b0)db0 (3.13)

=

Gg0
0 Γ (g0 + Ka0)

(
K∏

k=1

µk

)a0−1

Γ (a0)KΓ (g0)

(
G0 +

K∑
k=1

µk

)g0+Ka0
.

A partially proper prior results if the G (g0, G0)-prior is improper, for example,
if g0 = 0.5 and G0 = 0.

3.2.5 Other Priors

Reference priors were suggested by Bernardo (1979) as prior distributions hav-
ing a minimal effect on the final inference, relative to the data. The derivation
of such a reference prior, however, is less than obvious for mixture models.
Reference priors depend on the asymptotic behavior of the relevant posterior
distributions. Although several papers have established the limiting proper-
ties of maximum likelihood estimators in finite mixture models (see Subsec-
tion 2.4.4), the derivation of reference priors for general finite mixture models
still seems infeasible.

Some investigations appear in Bernardo and Girón (1988) for a mixture
model where only the weight distribution η is unknown. For a mixture of two
known densities, the reference prior for η1 is virtually Jeffrey’s B

( 1
2 , 1

2

)
-prior,

when the two densities are well separated, whereas the uniform B (1, 1) would
approximate the reference prior when the two densities are very close. For a
mixture of more than two known densities Bernardo and Girón (1988) suggest
that a Dirichlet distribution with parameters ranging in the interval [12 , 1] is
a reasonable approximation to the reference prior.

3.2.6 Invariant Prior Distributions

Because the components in a mixture density may be arbitrarily arranged, it
is usual to choose priors that reflect this information, by being invariant to
relabeling the components. Consider all s = 1, . . . , K! different permutations
ρs:{1, . . . , K} → {1, . . . , K}, where the value ρs(k) is assigned to each value
k ∈ {1, . . . , K}. Let ϑ = (θ1, . . . ,θK , η1, . . . , ηK) be an arbitrary parameter
in ΘK = ΘK × EK , and define for each permutation ρs the parameter ϑ̃s by

ϑ̃s = (θρs(1), . . . ,θρs(K), ηρs(1), . . . , ηρs(K)). (3.14)

A prior density p(ϑ) is invariant to relabeling the components of the mixture
model, if the following identity holds for all ϑ ∈ ΘK , for any of the K!
permutations ρs(·);
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p(ϑ̃s) = p(ϑ). (3.15)

Any of the prior distributions discussed so far in this section is invariant by
construction.

Nonsymmetric priors have been applied in the hope that this eliminates
all modes of the mixture likelihood function but one and Bayesian inference
leads to a unimodal posterior distribution. Because this is not necessarily the
case (see, for instance, Chib, 1995), the recommendation is to use an invariant
prior unless there is a structural asymmetry in the mixture distribution. One
example is Bayesian outlier modeling based on finite mixture, where it is
sensible to choose priors that are not invariant, because the outlier component
is much smaller than the other components by definition; see Section 7.2 for
more detail.

3.3 Some Properties of the Mixture Posterior Density

3.3.1 Invariance of the Posterior Distribution

The mixture posterior density p(ϑ|y) defined in (3.2) is to a large extent
dominated by the mixture likelihood function p(y|ϑ), which is invariant to
relabeling the components of the mixture distribution. Under an invariant
prior, the mixture posterior distribution inherits the invariance of the mixture
likelihood to relabeling the components of the mixture, and the following
identity holds for all ϑ ∈ ΘK , for any of the K! permutations ρs(·);

p(ϑ̃s|y) = p(ϑ|y). (3.16)

It is quite illuminating to study the behavior of the posterior density as N
increases. The following considerations are purely heuristic, without providing
a formal proof.

Let ϑtrue = (θtrue
1 , . . . ,θtrue

K , ηtrue
1 , . . . , ηtrue

K ) denote the true value of ϑ.
Assume that ϑtrue fulfills the formal identifiability constraints of Subsec-
tion 1.3.3, with ηtrue

k > 0, and θtrue
k �= θtrue

l , for all k �= l, where in a multi-
parameter setting not all components of all parameters need to be different.
Let UP (ϑtrue) be the set defined in (1.27). Due to the formal identifiability
constraints the mixture model is not overfitting and the set UP (ϑtrue) contains
K! distinct points, obtained from relabeling all components of ϑtrue through
all possible permutations of {1, . . . , K}.

Then with increasing number of observations, the posterior density has
K! equivalent modes and becomes proportional to an invariant mixture of
asymptotic normal distributions, with the modes lying in the set UP (ϑtrue):

p(ϑ|y) ≈ 1
K!

K!∑
s=1

fN (ϑ̃s; ϑtrue, I(ϑtrue)).
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3.3.2 Invariance of Seemingly Component-Specific Functionals

The invariance property of the mixture posterior density p(ϑ|y), discussed
in the previous subsection, causes state independence of many functionals de-
rived from the posterior distribution, which are seemingly component specific,
like the posterior mean E(θk|y).

Marginal Distributions of Component-Specific Parameters

Consider, as an example the marginal distribution of the component param-
eter θk, which is defined in the usual way as

p(θk|y) =
∫

ΘK−1×EK

p(ϑ|y)d(θ1, . . . ,θk−1, θk+1, . . . ,θK , η1, . . . , ηK).

Consider an arbitrary permutation ρs(1), . . . , ρs(K) of {1, . . . , K}, which is
different from the identity, to transform the parameter in this integration.
The Jacobian of the transformation being 1, the area of integration being
unchanged, one obtains:

p(θk|y) =
∫

ΘK−1×EK

p(ϑ̃s|y)

d(θρs(1), . . . ,θρs(k−1), θρs(k+1), . . . ,θρs(K), ηρs(1), . . . , ηρs(K)).

By the invariance property (3.16) this is equal to:

p(θk|y) =
∫

ΘK−1×EK

p(ϑ|y)

d(θρs(1), . . . ,θρs(k−1), θρs(k+1), . . . ,θρs(K), ηρs(1), . . . , ηρs(K)).

Marginalization is with respect to all unknown parameters except θρs(k),
therefore p(θk|y) = p(θρs(k)|y). Because this holds all permutations s =
1, . . . , K!, the seemingly component-specific marginal posterior densities p(θk|y)
are actually state-independent and the same for all k �= k′:

p(θk|y) = p(θk′ |y). (3.17)

It could be proven in a similar way that the marginal posterior density of the
component weight ηk is state-independent:

p(ηk|y) = p(ηk′ |y), (3.18)

for all k �= k′. State independence holds for other marginal densities, such as
the marginal distribution of any two parameters from different components
where k �= k′ and ρs arbitrary:

p(θk, θk′ |y) = p(θρs(k), θρs(k′)|y). (3.19)
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As this relation holds in particular for ρs(k) = k′ and ρs(k′) = k, the posterior
in (3.19) is symmetric:

p(θk, θk′ |y) = p(θk′ , θk|y). (3.20)

For a mixture of univariate normal distributions, for instance, we obtain
∀k, k′ = 1, . . . , K, k �= k′:

p(µk|y) = p(µk′ |y), p(σ2
k|y) = p(σ2

k′ |y),
p(µk, σ2

k|y) = p(µk′ , σ2
k′ |y),

p(µk, µk′ |y) = p(µ1, µ2|y) = p(µ2, µ1|y),
p(σ2

k, σ2
k′ |y) = p(σ2

1 , σ2
2 |y) = p(σ2

2 , σ2
1 |y).

The Posterior Mean

The posterior mean is a commonly used point estimator, which is optimal
with respect to a quadratic loss function; see, for instance, Zellner (1971) and
Berger (1985). From the mixture posterior distribution, the following result
may be derived,

E(ϑ̃s|y) = E(ϑ|y), (3.21)

where the parameter ϑ̃s has been defined for each permutation ρs in (3.14).
Identity (3.21) follows from the invariance property (3.16).

As (3.21) holds for all permutations, it follows that the seemingly compo-
nent-specific posterior mean of θk and ηk is actually state-independent:

E(θk|y) = E(θk′ |y), E(ηk|y) = E(ηk′ |y),

for any k �= k′. Consequently, the mean E(ϑ|y) of the mixture posterior is
not a sensible point estimator for the component parameters and the weight
distribution. More sensible point estimators are discussed in Subsection 3.7.6.

3.3.3 The Marginal Posterior Distribution of the Allocations

We now turn to the posterior density p(S|y) of the allocations S, which is of
importance when dealing with Bayesian clustering in Section 7.1. p(S|y) is a
discrete distribution over the lattice

SK = {(S1, . . . , SN ) : Si ∈ {1, . . . , K}, i = 1, . . . , N}. (3.22)

As noted by Chen and Liu (1996) and Casella et al. (2000), for many mixture
models it is possible to derive an explicit form for the marginal posterior p(S|y)
of the indicators S, where dependence on the parameter ϑ is integrated out.
By Bayes’ theorem, the marginal posterior p(S|y) is given by
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p(S|y) ∝ p(y|S)p(S), (3.23)

where the integrated likelihood p(y|S) and the integrated prior p(S) are equal
to

p(y|S) =
∫

p(y|S,θ1, . . . ,θK)p(θ1, . . . ,θK)d(θ1, . . . ,θK),

p(S) =
∫

p(S|η)p(η)dη.

Assume that the prior p(ϑ) takes exactly the same form as (3.3) and (3.8).
Then:

p(y|S) =
K∏

k=1

∫ ∏
i:Si=k

p(yi|θk)p(θk)dθk,

p(S) =
∫

p(S|η)p(η)dη.

Under the conditionally conjugate prior η ∼ D (e0, . . . , e0) we obtain:

p(S) =
Γ (Ke0)

∏K
k=1 Γ (Nk(S) + e0)

Γ (N + Ke0)Γ (e0)K
, (3.24)

where Nk(S) = #{Si = k}. If the component densities in the mixture come
from the exponential family as in (1.11), then under a conditionally conjugate
prior p(θk), the integrated likelihood p(y|S) is the product of the normalizing
constants of each nonnormalized complete-data posterior, which are easily
derived from (2.19):

p(y|S) =
K∏

k=1

(
p(θk)

p(θk|y,S)

∏
i:Si=k

p(yi|θk)

)
. (3.25)

For a mixture of Poisson distributions, for instance, this yields:

p(y|S) =
N∏

i=1

1
Γ (yi + 1)

bKa0
0

Γ (a0,k)K

K∏
k=1

Γ (ak(S))
bk(S)ak(S) ,

where ak(S) and bk(S) are the posterior moments of the complete-data pos-
terior densities given in (2.18):

ak(S) = a0 + Nk(S)yk(S),
bk(S) = b0 + Nk(S).
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3.3.4 Invariance of the Posterior Distribution of the Allocations

State invariance occurs also for the seemingly component dependent allo-
cations S. p(S|y) is a marginal density obtained from integrating the joint
posterior p(S, ϑ|y) with respect to ϑ:

p(S|y) =
∫

ΘK

p(S, ϑ|y)dϑ.

Because this holds for any S, it also holds for S̃s = (ρs(S1), . . . , ρs(SN )) for
an arbitrary permutation. When using the same permutation for transforming
the parameter ϑ in this integration, we obtain:

p(S̃s|y) =
∫

ΘK

p(S̃s, ϑ̃s|y)dϑ̃s =
∫

ΘK

p(S, ϑ|y)dϑ̃s = p(S|y),

because the joint posterior is invariant to relabeling, and the order of integra-
tion may be rearranged arbitrarily. Therefore, for an arbitrary permutation
ρs(·) of {1, . . . , K}, the posterior density p(S|y) is invariant to relabeling:

p(S1, . . . , SN |y) = p(ρs(S1), . . . , ρs(SN )|y). (3.26)

It follows that any two sequences S and S′ that imply the same partition of
the data obtain the same posterior probability. Consider, as a simple example,
N = 3 and K = 2; then there are only four different partitions, each of which
has the same posterior probability:

p(1, 1, 1|y) = p(2, 2, 2|y), p(2, 1, 1|y) = p(1, 2, 2|y),
p(1, 2, 1|y) = p(2, 1, 2|y), p(1, 1, 2|y) = p(2, 2, 1|y).

The Marginal Posterior of a Single Allocation

When a finite mixture model is fitted to data with the aim of performing
posterior clustering, one would hope to infer how likely the event {Si = k} is
in light of the data. A natural candidate appears to be the posterior probability
Pr(Si = k|y). Somewhat surprisingly, it turns out that this marginal posterior
probability is state-independent and equal to 1/K, regardless of the data:

Pr(Si = k|y) =
1
K

. (3.27)

This follows from (3.26), by integrating both sides with respect to the indica-
tors (S1, . . . , Si−1, Si+1, . . . , SN ), which yields that the seemingly component-
specific posterior probability Pr(Si = k|y) is actually state invariant:

Pr(Si = k|y) = Pr(ρs(Si) = k|y) = Pr(Si = ρ−1
s (k)|y).

As this holds for all permutations, (3.27) follows immediately.
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3.4 Classification Without Parameter Estimation

One of the most the challenging inference problems in finite mixture modeling,
commonly known as the clustering problem, is classifying observations from a
mixture distribution into K groups without knowing the component param-
eters. This interesting issue is studied in detail in Section 7.1; some aspects,
however, are addressed at this point because they provide a good opportu-
nity to introduce two important MCMC technique, namely Gibbs sampling
and the Metropolis–Hastings algorithm, which are of relevance not only for
classification, but also for Bayesian parameter estimation.

Bayesian clustering without parameter estimation is based on the marginal
posterior distribution p(S|y) of the hidden allocation vector S, where the
mixture parameter ϑ is integrated out, which is known up to a normalizing
constant explicitly for mixtures from the exponential family; see again Sub-
section 3.3.3. p(S|y) is a discrete distribution over the lattice SK , defined in
(3.22), which increases rapidly with the number of observations and the num-
ber of components. For N = 10 and K = 3, for instance, there are 59,049
different allocations S, whereas for N = 100 and K = 3 the number of dif-
ferent allocations is of the order 5 · 1047. For a very small data set from a
mixture with very few components it would be possible to determine p(S|y)
for all KN possible allocations, and to find the allocation with the highest pos-
terior probability p(S|y). With increasing sample size and increasing number
of components, however, this is infeasible, and some search strategy has to be
implemented to find an optimal allocation. Exploring the space SK , however,
is in general quite a challenge.

Common search strategies that are applied in a Bayesian context are based
on sampling allocations S(1), . . . ,S(M) from the marginal posterior distribu-
tion p(S|y), which are then used for further inference, as explained in Subsec-
tion 7.1.7. Direct sampling of S from p(S|y) is not simple, as unconditionally
the allocations S1, . . . , SN are correlated. Chen and Liu (1996) showed how
sampling of the allocation through Markov chain Monte Carlo methods is
feasible. An MCMC sampler starts from some preliminary classification S(0).
During sweep m, m ≥ 1, of the MCMC sampler, the allocation Si of each ob-
servation yi is resampled in an appropriate manner, and the updated alloca-
tions are then stored as S(m). Two common methods to implement an MCMC
sampler are single-move Gibbs sampling and the Metropolis–Hastings algo-
rithm. Both methods are described in Subsection 3.4.1 and Subsection 3.4.2,
respectively.

For a detailed account we refer to the relevant literature on Markov chain
Monte Carlo methods, in particular Gamerman (1997), Liu (2001), and Robert
and Casella (1999).
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3.4.1 Single-Move Gibbs Sampling

In this subsection we briefly introduce Gibbs sampling in the context of clas-
sification without parameter estimation, following Chen and Liu (1996) who
used single-move Gibbs sampling to sample allocations S from the posterior
distribution p(S|y) given in Subsection 3.3.3.

The single-move Gibbs sampler starts from some preliminary classification
S(0). Within each sweep m, m ≥ 1, of the Gibbs sampler, the old allocations
S = S(m−1) are updated for each observation yi, for i = 1, . . . , N . Starting
with i = 1, a new classification Snew

i is sampled, while holding the classifi-
cations S−i = (Snew

1 , . . . , Snew
i−1 , Si+1, . . . , SN ) of all other observations fixed.

As not only y, but also S−i are assumed to be known, the appropriate pos-
terior distribution for sampling Snew

i is the conditional posterior distribution
p(Snew

i |S−i,y). Well-known properties of conditional distributions yield:

p(Snew
i |S−i,y) =

p(Snew
i ,S−i|y)
p(S−i|y)

∝ p(y|Snew
i ,S−i)p(Snew

i ,S−i)

∝ p(yi|Snew
i ,S−i)p(Snew

i |S−i),

where constants independent of Snew
i were dropped. This is a univariate dis-

crete density with K categories, which is easily sampled. Once Snew
i has been

simulated, the Gibbs sampler proceeds with sampling the next indicator Snew
i

after increasing i by 1, until i = N . Then the new allocations are stored as
S(m) = (Snew

1 , . . . , Snew
N ), m is increased by 1, and the whole procedure is

repeated.
This sampling algorithm generates a sequence S(m), m = 1, 2, . . . of clas-

sifications, which are obviously a Markov chain, as the distribution of S(m)

depends on S(m−1), only:

p(S(m)|S(m−1),y) =
N∏

i=1

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y),

where Si:j denotes the whole sequence Si, Si+1, . . . , Sj . Well-known results
from Markov chain theory guarantee that in the long run, as m → ∞, the
distribution of S(m) converges to a stationary distribution, which could be
shown to be equal to the desired marginal posterior p(S|y). When starting
from an arbitrary allocation, the Markov chain will not be in equilibrium at
the beginning, but will reach the stationary distribution after a suitable burn-
in phase. Thus the first M0 simulations are discarded before the simulated
allocations may be used for posterior inference.

Algorithm 3.1: Single-Move Gibbs Sampling of the Allocations Start with
some classification S and repeat the following steps for m = 1, . . . , M0, . . . , M+
M0.

(a) Choose a certain observation yi, i ∈ {1, . . . , N}, hold the most recent
allocation of all observations but yi fixed, and let S−i be the sequence
containing these allocations.
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(b) Find a new allocation Snew
i for the observation yi in the following way.

Determine the univariate discrete distribution

p(Snew
i |S−i,y) ∝ p(yi|Snew

i ,S−i)p(Snew
i |S−i), (3.28)

for all possible values Snew
i = 1, . . . , K. Sample Snew

i from this distribu-
tion, and substitute the old allocation Si by the new allocation Snew

i .

Repeat these steps until the allocations of all observations are updated. Store
the actual values of all allocations as S(m), increase m by one, and return to
step (a).

Assume the current allocation of yi is equal to k : Si = k. Before sampling
Snew

i from the posterior given in (3.28), the likelihood p(y|S−i, S
new
i ), given

by (3.25), and the prior p(Snew
i |S−i), given by (3.24), have to be evaluated for

all values Snew
i = l, l = 1, . . . , K. This is straightforward for Snew

i = Si = k.
Whenever the allocation changes (i.e., Snew

i = l with l �= k), the number
of observations attached to component k and l need to be updated before
applying (3.24):

Nk(Snew
i ,S−i) = Nk(S) − 1, Nl(Snew

i ,S−i) = Nl(S) + 1.

In a similar way, the statistics of the complete-data likelihood have to be up-
dated before evaluating the likelihood p(y|S−i, S

new
i ) from (3.25) for Snew

i = l,
where l �= k. For mixtures of Poisson distributions, for instance, this reads:

bk(Snew
i ,S−i) = bk(S) − 1, bl(Snew

i ,S−i) = bl(S) + 1,
ak(Snew

i ,S−i) = ak(S) − yi, al(Snew
i ,S−i) = al(S) + yi.

Similar simple updates are available for many other standard finite mixture
models. For various other more complex mixture models, such as mixtures of
regression models, Chen and Liu (1996) developed an efficient algorithm to
compute the likelihood p(y|S−i, S

new
i ) recursively from p(y|S−i, Si).

Why Single-Move Gibbs Sampling Works

It is instructive to verify that single-move Gibbs sampling works, by showing
that sampling S(m) from p(S(m)|S(m−1)) yields a sample from p(S|y), once
the chain reaches equilibrium, and S(m−1) is drawn from p(S|y). Let f(S(m))
denote the density of the distribution of S(m), which is given by

f(S(m)) =
∑

S(m−1)∈SK

p(S(m)|S(m−1),y)p(S(m−1)|y) =

=
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
2 =1

N∏
i=1

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

N∏
i=2

p(S(m−1)
i |S(m−1)

i+1:N ,y)

·

⎛⎜⎝ K∑
S

(m−1)
1 =1

p(S(m−1)
1 |S(m−1)

2:N ,y)

⎞⎟⎠ ,
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where the innermost term is obviously equal to 1. Therefore

f(S(m)) =
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
3 =1

N∏
i=2

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

·
N∏

i=3

p(S(m−1)
i |S(m−1)

i+1:N ,y)

⎛⎜⎝ K∑
S

(m−1)
2 =1

p(S(m−1)
2 |S(m−1)

3:N ,y)p(S(m)
1 |S(m−1)

2:N ,y)

⎞⎟⎠ .

The innermost term is equal to p(S(m)
1 |S(m−1)

3:N ,y), therefore

f(S(m)) =
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
4 =1

N∏
i=3

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

·
N∏

i=4

p(S(m−1)
i |S(m−1)

i+1:N ,y)

⎛⎜⎝ K∑
S

(m−1)
3 =1

p(S(m−1)
3 |S(m−1)

4:N ,y)p(S(m)
1:2 |S(m−1)

3:N ,y)

⎞⎟⎠ .

The innermost term is equal to p(S(m)
1:2 |S(m−1)

4:N ,y), therefore:

f(S(m)) =
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
5 =1

N∏
i=4

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

·
N∏

i=5

p(S(m−1)
i |S(m−1)

i+1:N ,y) ·

⎛⎜⎝ K∑
S

(m−1)
4 =1

p(S(m−1)
4 |S(m−1)

5:N ,y)p(S(m)
1:3 |S(m−1)

4:N ,y)

⎞⎟⎠ ,

where the innermost term is equal to p(S(m)
1:3 |S(m−1)

5:N ,y). This is repeated until
we obtain:

f(S(m)) =
K∑

S
(m−1)
N =1

p(S(m)
N−1|S

(m)
1:N−2, S

(m−1)
N ,y)p(S(m)

N |S(m)
1:N−1,y)p(S(m−1)

N |y)

·

⎛⎜⎝ K∑
S

(m−1)
N−1 =1

p(S(m−1)
N−1 |S(m−1)

N ,y)p(S(m)
1:N−2|S

(m−1)
N−1:N ,y)

⎞⎟⎠ ,

which yields the desired result:

f(S(m)) = p(S(m)
N |S(m)

1:N−1,y)
K∑

S
(m−1)
N =1

p(S(m)
1:N−1|S

(m−1)
N ,y)p(S(m−1)

N |y)

= p(S(m)|y).
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3.4.2 The Metropolis–Hastings Algorithm

Alternatively to the Gibbs sampler described in Algorithm 3.1, the Metropolis–
Hastings algorithm may be applied to draw from the density p(S|y). Running
a Gibbs sampler may be impractical if K is large, as in (3.28) the probability
p(Snew

i |S−i,y) needs to be evaluated for all Snew
i = 1, . . . , K.

Whereas the Gibbs sampler used the density p(Snew
i |S−i,y) for proposing

Snew
i , the Metropolis–Hastings algorithm uses an arbitrary discrete density

q(Snew
i |Si), where Si is the current allocation, to propose Snew

i . Without mod-
ifications, the resulting Markov chain S(m) would not draw from the desired
posterior distribution p(S|y). To obtain draws from the desired distribution,
the proposed allocation Snew

i is not accepted in any case, but only with a cer-
tain probability α(Snew

i |Si). If the new value is accepted, then S
(m)
i = Snew

i ,
otherwise Snew

i is rejected and the chain does not move: S
(m)
i = Si.

As pointed out by Chib and Greenberg (1995), the accept–reject step is
necessary as q(Snew

i |Si) is not likely to fulfill the detailed balance condition.
For instance, it may happen that

p(Si|S−i,y)q(Snew
i |Si) > p(Snew

i |S−i,y)q(Si|Snew
i ), (3.29)

meaning that too many moves from Si to Snew
i , and too few moves from

Snew
i to Si are made. The probability α(Snew

i |Si) of accepting a move from
Si to Snew

i is introduced, in order to ensure detailed balance. The acceptance
probability α(Snew

i |Si) is chosen precisely to ensure that the Markov chain
S

(m)
i is reversible with respect to p(Si|S−i,y). Following Chib and Greenberg

(1995), α(Si|Snew
i ) should be set to 1, if (3.29) holds, as moves from Snew

i

to Si are too rare. The reverse probability α(Snew
i |Si) is then determined by

forcing a detailed balance in (3.29),

p(Si|S−i,y)q(Snew
i |Si)α(Snew

i |Si) = p(Snew
i |S−i,y)q(Si|Snew

i ). (3.30)

Thus α(Snew
i |Si) which could not be larger than 1, is given by

α(Snew
i |Si) = min

(
1,

p(Snew
i |S−i,y)q(Si|Snew

i )
p(Si|S−i,y)q(Snew

i |Si)

)
, (3.31)

if p(Si|S−i,y)q(Snew
i |Si) > 0. Interestingly, other acceptance rules are possi-

ble (see Liu, 2001, Section 5), however, Peskun (1973) proves superiority of
(3.31) in terms of statistical efficiency.

Algorithm 3.2: Sampling the Allocations Through a Metropolis–Hastings Al-
gorithm Start with some classification S and repeat the following steps for
m = 1, . . . , M0, . . . , M + M0.

(a) Choose a certain observation yi, i ∈ {1, . . . , N}, hold the most recent
allocations of all observations but yi fixed, and let S−i be the sequence
containing these allocations.



3.5 Parameter Estimation Through Data Augmentation and MCMC 73

(b) Find a new allocation Snew
i for the observation yi in the following way.

Sample Snew
i from a proposal density q(Snew

i |Si) and substitute the old
allocation Si by the new allocation Snew

i with probability min(1, ri), where

ri =
p(y|S−i, S

new
i )p(Snew

i |S−i)q(Si|Snew
i )

p(y|S−i, Si)p(Si|S−i)q(Snew
i |Si)

. (3.32)

If Ui < min(1, ri), where Ui is random number from the U [0, 1]-distribution,
then Si is substituted by Snew

i , otherwise leave Si unchanged.

Repeat these steps until the allocations of all observations are updated. Store
the actual values of all allocations as S(m), increase m by one, and return to
step (a).

If q(Snew
i |Si) = p(Snew

i |S−i,y), then ri = 1, and the Metropolis–Hastings
algorithm reduces to the Gibbs sampler described in Algorithm 3.1. To avoid
the functional evaluations that are necessary to sample from this specific pro-
posal density, much simpler proposal densities are used for the Metropolis–
Hastings algorithm.

Some simplifications are possible when evaluating ri. If Snew
i = Si, the

likelihood and the prior cancel, and ri is equal to the proposal ratio. If Snew
i = l

while Si = k with k �= l, the acceptance ratio ri simplifies to

ri =
p(y|S−i, S

new
i )(Nl(S) + 1 + e0,l)q(Si|Snew

i )
p(y|S−i, Si)(Nk(S) + e0,k)q(Snew

i |Si)
,

where Nk(S) and Nl(S) are the current numbers of allocations. For mixtures
of Poisson distributions the likelihood ratio reduces to:

p(y|S−i, S
new
i )

p(y|S−i, Si)
=

Γ (ak(S) − yi)Γ (al(S) + yi)bk(S)ak(S)bl(S)al(S)

Γ (ak(S))Γ (al(S))(bk(S) − 1)ak(S)−yi(bl(S) + 1)al(S)+yi
.

3.5 Parameter Estimation Through Data Augmentation
and MCMC

Markov chain Monte Carlo sampling is not only useful for the purpose of
sampling allocations, but also for parameter estimation.

3.5.1 Treating Mixture Models as a Missing Data Problem

As already discussed in Subsection 2.3.3, for mixture models from exponen-
tial families such as mixtures of Poisson distributions or mixtures of normal
distributions, a conjugate analysis is feasible for the complete-data likelihood
function (2.8) when the allocations S = (S1, . . . , SN ) are observed. For un-
known allocations, however, this is not the case.
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Following the seminal paper by Dempster et al. (1977), a mixture model
may be seen as an incomplete data problem by introducing the allocations S
as missing data. The benefit of this data augmentation (Tanner and Wong,
1987) is that conditional on S we are back in the conjugate setting of complete-
data Bayesian estimation considered in Subsection 2.3.3. On the other hand,
conditional on knowing the parameter ϑ, we are back to the classification
problem studied in Section 2.2, where the posterior distribution of the allo-
cations takes a very simple form. It is then rather straightforward to sample
from the posterior (3.2) using Markov chain Monte Carlo methods, in par-
ticular Gibbs sampling. Early papers realizing the importance of Gibbs sam-
pling for Bayesian estimation of mixture models are Evans et al. (1992), West
(1992), Smith and Roberts (1993), Diebolt and Robert (1994), Escobar and
West (1995), Mengersen and Robert (1996), and Raftery (1996b). We first
give specific results for a mixture of Poisson distributions in Subsection 3.5.2
and then proceed with a discussion for more general finite mixture models in
Subsection 3.5.3.

3.5.2 Data Augmentation and MCMC for a Mixture of
Poisson Distributions

For N observations y = (y1, . . . , yN ), assumed to arise from a finite mixture
of K Poisson distributions, the mixture likelihood function p(y|ϑ) is given by

p(y|ϑ) =
N∏

i=1

p(yi|ϑ) =
N∏

i=1

(
K∑

k=1

ηkfP (yi; µk)

)
, (3.33)

where fP (yi; µk) is the density of a Poisson distribution with mean µk. Al-
though direct sampling from (3.33) is not easy, a straightforward method of
sampling from (3.33) based on data augmentation is possible.

For each observation yi, i = 1, . . . , N , the group indicator Si taking a value
in {1, . . . , K} is introduced as a missing observation. Conditional on knowing
the group indicator Si, the observation model for observation yi is a Poisson
distribution with mean µSi

:

yi|µ1, . . . , µK , Si ∼ P (µSi
) . (3.34)

All observations with the same group indicator Si equal to k, say, arise
from the same P (µk)-distribution. Therefore the complete-data likelihood
p(y,S|ϑ), which has been defined in (2.8), reads:

p(y,S|ϑ) =
K∏

k=1

( ∏
i:Si=k

fP (yi; µk)

) (
K∏

k=1

η
Nk(S)
k

)
,

where Nk(S) = #{Si = k}. p(y,S|ϑ), considered as a function of ϑ, is the
product of K + 1 independent factors. Each of the first K factors depends
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only on µk, whereas the last factor depends on η. Assuming independence
a priori, the parameters µ1, . . . , µK , η are independent a posteriori given the
complete data (y,S):

p(µ1, . . . , µK , η|S,y) =
K∏

k=1

p(µk|S,y)p(η|S).

Each of the conditional posteriors can be handled within the conjugate set-
ting discussed in Subsection 2.3.3. We express prior knowledge about µk as a
G (a0, b0)-distribution. Then from Bayes’ theorem:

p(µk|S,y) ∝
( ∏

i:Si=k

fP (yi; µk)

)
p(µk). (3.35)

The posterior distribution p(µk|S,y) is a G (ak(S), bk(S))-distribution, where

ak(S) = a0 + Nk(S)yk(S), bk(S) = b0 + Nk(S), (3.36)

and Nk(S) = #{Si = k} and yk(S) are the number of observations and the
mean in group k.

Based on assuming a Dirichlet D (e0, . . . , e0)-distribution for η, the poste-
rior distribution of the weight distribution η given S is a D (e1(S), . . . , eK(S))-
distribution, where

ek(S) = e0 + Nk(S), k = 1, . . . , K. (3.37)

MCMC Estimation Using Gibbs Sampling

MCMC estimation of a mixture of Poisson distributions under fixed hyperpa-
rameters a0 and b0 consists of the following steps.

Algorithm 3.3: Gibbs Sampling for a Poisson Mixture Start with some clas-
sification S(0) and repeat the following steps for m = 1, . . . , M0, . . . , M + M0.

(a) Parameter simulation conditional on the classification S(m−1):
(a1) Sample η1, . . . , ηK from a D

(
e1(S(m−1)), . . . , eK(S(m−1))

)
-distribution,

where ek(S(m−1)) is given by (3.37).
(a2) For each k = 1, . . . , K, sample µk from a G

(
ak(S(m−1)), bk(S(m−1))

)
-

distribution, where ak(S(m−1)) and bk(S(m−1)) are given by (3.36).
Store the actual values of all parameters as ϑ(m) = (µ(m)

1 , . . . , µ
(m)
K , η(m)).

(b) Classification of each observation yi conditional on knowing ϑ(m): sample
Si independently for each i = 1, . . . , N from the conditional posterior
distribution p(Si|ϑ(m), yi), which by the results of Subsection 2.2.1 is given
by

p(Si = k|ϑ(m), yi) ∝ (µ(m)
k )yie−µ

(m)
k η

(m)
k .

Store the actual values of all allocations as S(m), increase m by one, and return
to step (a). Finally, the first M0 draws are discarded.
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Hierarchical Priors

Under the hierarchical prior (3.12), an additional block has to be added in
Algorithm 3.3, where b0 is sampled from the conditional posterior distribution
p(b0|µ1, . . . , µK ,S,y), given by Bayes’ theorem:

p(b0|µ1, . . . , µK ,S,y) ∝
K∏

k=1

p(µk|b0)p(b0) (3.38)

∝
K∏

k=1

ba0
0 exp(−µkb0) p(b0) ∝ bg0+Ka0−1

0 exp

(
−(G0 +

K∑
k=1

µk)b0

)
.

Under a conjugate G (g0, G0)-prior for b0, this posterior is a Gamma distribu-
tion, depending on the data only indirectly through the component means.

Gibbs sampling requires the following modification of Algorithm 3.3. Select
a starting value b0

(0) and run step (a2) conditional on b0
(m−1). A third step

is added to sample the hyperparameter b0
(m):

(c) Sample b
(m)
0 from p(b0|µ(m)

1 , . . . , µ
(m)
K ) given by (3.38):

b0|µ(m)
1 , . . . , µ

(m)
K ∼ G

(
g0 + Ka0, G0 +

K∑
k=1

µ
(m)
k

)
. (3.39)

3.5.3 Data Augmentation and MCMC for General Mixtures

As for the Poisson mixture, Bayesian estimation of a general mixture model
through data augmentation estimates the augmented parameter (S, ϑ) by
sampling from the complete-data posterior distribution p(S, ϑ|y). This pos-
terior is given by Bayes’ theorem,

p(S, ϑ|y) ∝ p(y|S,ϑ)p(S|ϑ)p(ϑ), (3.40)

thus the complete-data posterior is proportional to the complete-data likeli-
hood likelihood p(y,S|ϑ) defined in (2.8) times the prior p(ϑ) on ϑ; see again
Subsection 2.3.3 for more details. Sampling from the posterior (3.40) is most
commonly carried out by the following MCMC sampling scheme, where ϑ is
sampled conditional on knowing S, and S is sampled conditional on knowing
ϑ. This scheme is formulated for the general case, where the observations yi

may be multivariate.

Algorithm 3.4: Unconstrained MCMC for a Mixture Model Start with some
classification S(0) and repeat the following steps for m = 1, . . . , M0, . . . , M +
M0.

(a) Parameter simulation conditional on the classification S(m−1):
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(a1) Sample η from the D
(
e1(S(m−1)), . . . , eK(S(m−1))

)
-distribution, where

ek(S(m−1)) is given by (3.37).
(a2) Sample the component parameters θ1, . . . ,θK from the complete-data

posterior p(θ1, . . . ,θK |S(m−1),y).
Store the actual values of all parameters as ϑ(m) = (θ(m)

1 , . . . ,θ
(m)
K , η(m)).

(b) Classification of each observation yi conditional on knowing ϑ(m): sample
Si independently for each i = 1, . . . , N from the conditional posterior
distribution p(Si|ϑ(m),yi), which by the results of Subsection 2.2.1 is given
by

p(Si = k|ϑ(m),yi) ∝ p(yi|θ(m)
k )η(m)

k . (3.41)

Store the actual values of all allocations as S(m), increase m by one, and return
to step (a). Finally, the first M0 draws are discarded.

The structure of the posterior p(θ1, . . . ,θK |S,y) depends on the specific
distribution families appearing in the components of the mixture model and
on the chosen priors. If the components come from an exponential family, the
results of Subsection 3.2.3 will be helpful. Under the conditionally conjugate
prior (3.9), the component parameters θ1, . . . ,θK are independent given S
and may be sampled from the conditional posterior p(θk|S,y) given by (3.10)
for each k = 1, . . . , K.

The MCMC sampler described in Algorithm 3.4 starts with sampling the
parameter ϑ based on allocations S(0) defined by the investigator. Theoret-
ically, it does not make any difference if the sampling steps (a) and (b) are
interchanged, in which case the algorithm starts with sampling the allocations
S based on a parameter ϑ(0). Practical MCMC convergence diagnostics for
finite mixture models is considered by Robert et al. (1999).

Hierarchical Priors

Under the hierarchical prior discussed in Subsection 3.2.4, an additional block
has to be added in Algorithm 3.4 to sample the hyperparameter δ conditional
on knowing θ1, . . . ,θK from

p(δ|θ1, . . . ,θK) ∝
K∏

k=1

p(θk|δ)p(δ). (3.42)

In many cases, this density will be of closed form. This leads to the following
modification of Algorithm 3.4. Select a starting value δ(0) and run step (a2)
conditional on δ(m−1). A third step is added to sample the hyperparameter
δ(m) from p(δ|θ(m)

1 , . . . ,θ
(m)
K ), given by (3.42).
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3.5.4 MCMC Sampling Under Improper Priors

MCMC sampling under improper priors is possible as long as the conditional
posterior p(ϑ|S,y) is proper for all possible allocations. What happens, if un-
intentionally MCMC sampling is carried out under a prior like the improper
product prior (3.4), where the posterior is improper (Natarajan and McCul-
loch, 1998)?

For a mixture of Poisson distributions, for instance, an improper product
prior based on µk ∼ G (0, 0) or µk ∼ G (0.5, 0) leads to an improper posterior
distribution by the results of Subsection 3.2.2. If Nk(S(m−1)) = 0 for a certain
draw, then the conditional posterior p(µk|S(m−1),y) given by (3.36) is equal
to the improper prior and the MCMC sampler breaks down when drawing
µ

(m)
k , warning us that something is not in order.

In other cases, it is possible to obtain sensible looking results when running
data augmentation and MCMC under the product prior (3.4). Consider, for
instance, a synthetic data set of size N = 500, simulated from a mixture of
two Poisson distributions, where µ1 = 1, µ2 = 5, and η1 = 0.4. We estimated
(µ1, µ2, η1, η2) under the uniform D (1, 1) prior on (η1, η2), with an improper
G (0.5, 0) as well as a proper G (0.01, 0.01) prior on µ1 and µ2, running MCMC
for 1 million iterations without problems. Furthermore, for both priors the re-
sulting density estimates were indistinguishable. To understand this, consider
the following representation of the posterior p(ϑ|y),

p(ϑ|y) =
∑

S∈SK

p(ϑ|S,y)p(S|y),

where the complete-data posterior p(ϑ|S,y) is weighted by the posterior prob-
ability of the corresponding partition S. If partitions S, where the correspond-
ing complete-data posterior is improper, have very low posterior probability,
then it is very unlikely (though possible) that such a classification is selected
during MCMC sampling. Therefore the estimated posterior

p̂(ϑ|y) =
1
M

M∑
m=1

p(ϑ|S(m),y)

will be proper. Nevertheless, is not recommended to sample from improper
posterior distributions in this way, as statistical inference drawn from such a
posterior distribution lacks any theoretical justification.

3.5.5 Label Switching

The term label switching has been introduced into the literature on mixture
models by Redner and Walker (1984) to describe the invariance of the mix-
ture likelihood function under relabeling the components of a mixture model
described in Subsection 2.4.2. Label switching is of no concern for maximum
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likelihood estimation, where the goal is to find one of the equivalent modes
of the likelihood function. In the context of Bayesian estimation, however,
label switching has to be addressed explicitly because in the course of sam-
pling from the mixture posterior distribution, the labeling of the unobserved
categories changes. Interestingly, the label switching problem was totally ne-
glected in the early papers on MCMC estimation of finite mixture models and
was addressed only later on by Celeux (1998), Celeux et al. (2000), Stephens
(2000a, 2000b), Casella et al. (2000), and Frühwirth-Schnatter (2001b).
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Fig. 3.1. Hidden age groups — Synthetic Data Set 1; MCMC draws of µ1 and µ2

(left-hand side) and estimated marginal posterior densities of µ1 and µ2 (right-hand
side)

Some Illustration

For illustration, we reconsider the example of Subsection 2.4.3, where we sim-
ulated artificial data sets of length N = 100 from the following mixture of
normals,

p(y) = 0.5fN (y; µy, 1) + 0.5fN (y; µo, 1),

where µy and µo are the mean of a random variable Y in a younger and in
an older subgroup in the population. For MCMC estimation of µ1 and µ2,
we apply data augmentation as in Subsection 3.5.3 under the prior p(µk) ∼
N (0, 100). The details of step (a2) for the specific example of a mixture of
normal distributions appear later in Subsection 6.2.4. The MCMC draws of µk

as well as the estimated marginal densities p(µk|y) are plotted in Figure 3.1
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and Figure 3.2 for two artificial data sets, where µy = 1 and µo = 3 for the
first, and µy = 1 and µo = 1.5 for the second data set.
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Fig. 3.2. Hidden age groups — Synthetic Data Set 2; MCMC draws of µ1 and µ2

(left-hand side) and estimated marginal posterior densities of µ1 and µ2 (right-hand
side)

For each data set we started at µ1 = µy and µ2 = µo, which corresponds
to labeling 1. For synthetic data set 1 the sampler stays within the modal
region corresponding to this labeling, as this region is well separated from the
region where the other labeling is valid; see again Figure 2.5. Note that the
estimated marginal posterior densities in Figure 3.1 are unimodal and that
Gibbs sampling leads implicitly to a unique labeling.

For synthetic data set 2, however, the marginal posterior densities are
bimodal and the MCMC draws suffer from label switching. For this data
set parameters around the nonidentifiability set UE(µ̂), where µ̂ = y, have
considerable likelihood under both labelings; consider again Figure 2.6. Even
if we start in the modal region corresponding to labeling 1, where µ1 < µ2, the
sampler is likely to move into the area where µ1 > µ2. In this area, however,
the parameter (µ1, µ2) has higher likelihood if µ1 is associated with the older
subgroup, rather than with the younger one. Therefore, when sampling the
group indicators S, there is a certain risk that the labeling changes and now µ1
is associated with the older subgroup. After such a label switching takes place,
the sampler remains in the second modal region for a while until it returns
to the area where µ1 < µ2. Then there exists considerable likelihood that
the sampler switches back to labeling 1. This occasional change of labeling is
obvious from the MCMC draws in Figure 3.2.
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3.5.6 Permutation MCMC Sampling
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Fig. 3.3. Hidden age groups — Synthetic Data Set 1 and 2; marginal posterior
densities of µ1 and µ2 estimated from two different runs of Gibbs sampling under
the same prior for Data Set 1 (left-hand side) and Data Set 2 (right-hand side)

The examples of the previous subsection demonstrated that the behavior
of the Gibbs sampler described in Algorithm 3.4 is somewhat unpredictable.
For synthetic data set 1 it is trapped at one modal region, whereas it jumps
from time to time to the other modal region for data set 2. In both cases the
sampler did not explore the full mixture posterior distribution.

This matters especially when estimating marginal densities. Assume that
we want to assess the influence of the prior p(ϑ) on the posterior distribution
p(ϑ|y). To do so, we usually compare the marginal posterior densities p(θk|y)
obtained under different prior distributions p(θk). There, the marginal density
is estimated from the MCMC draws by some kernel smoothing method.

For a mixture model it turns out that estimating the marginal density
from the MCMC draws may lead to a poor estimate when unbalanced label
switching takes place. It may even happen that although we assume the same
prior distribution p(θk), the marginal posterior densities p(θk|y) estimated
from different runs of the MCMC sampler, are very different. For illustra-
tion, Figure 3.3 compares estimates of the marginal density obtained from
two different runs of full conditional Gibbs sampling for M = 2000 under the
same prior for the two synthetic data sets considered earlier. The estimated
marginal densities are nearly identical for data set 1, where no label switching
took place. We observe a substantial difference in these densities for data set
2, the reason being that sampler did not explore the whole mixture poste-
rior distribution as label switching took place only from time to time in an
unbalanced manner.
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Fig. 3.4. Hidden age groups — Synthetic Data Set 1 and 2; marginal posterior
densities of µ1 and µ2 estimated from random permutation Gibbs sampling under
the same prior for Data Set 1 (left-hand side) and Data Set 2 (right-hand side)

A simple, but efficient solution to obtain a sampler that explores the full
mixture posterior distribution is to force balanced label switching by con-
cluding each MCMC draw by a randomly selected permutation of the label-
ing. This method is called random permutation MCMC sampling (Frühwirth-
Schnatter, 2001b).

Algorithm 3.5: Random Permutation MCMC Sampling for a Finite Mixture
Model Start as described in Algorithm 3.4.

(a) and (b) are the same steps as in Algorithm 3.4.
(c) Conclude each draw by selecting randomly one of the K! possible per-

mutations ρs(1), . . . , ρs(K) of the current labeling. This permutation is
applied to η(m), the component parameters θ

(m)
1 , . . . ,θ

(m)
K , and the allo-

cations S(m):
(c1) The group weights η

(m)
1 , . . . , η

(m)
K are substituted by η

(m)
ρs(1), . . . , η

(m)
ρs(K).

(c2) The component parameters θ
(m)
1 , . . . ,θ

(m)
K are substituted by θ

(m)
ρs(1),

. . . , θ
(m)
ρs(K).

(c3) The allocations S
(m)
i , i = 1, . . . , N, are substituted by ρs(S

(m)
i ), i =

1, . . . , N .

For illustration we consider once more the synthetic data sets 1 and 2. Let
(µ(m)

1 , µ
(m)
2 ,S(m)) denote a draw obtained from Gibbs sampling as in Algo-

rithm 3.4. To implement the random permutation Gibbs sampler, we perform
a random permutation of the labels after each draw. For K = 2, there are only
two permutations, namely the identity ρ1(1) = 1, ρ1(2) = 2, and interchang-
ing the labels: ρ2(1) = 2, ρ2(2) = 1. Thus with a probability of 0.5 the draws
remain unchanged, whereas with probability 0.5 the labels are interchanged
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by substituting (µ1, µ2) by (µ2, µ1), and switching the allocations, which take
the value 1, if they are 2, and take the value 2, if they are 1. Figure 3.4
shows the marginal posterior densities p(µk|y) estimated from random per-
mutation MCMC sampling for both synthetic data sets. As expected from the
theoretical considerations in Subsection 3.3.2, these densities are identical.

3.6 Other Monte Carlo Methods Useful for
Mixture Models

In the previous section we focused on data augmentation and MCMC meth-
ods, but other Monte Carlo methods have been found to be useful for finite
mixture models.

3.6.1 A Metropolis–Hastings Algorithm for the Parameters

Several authors (Celeux et al., 2000; Brooks, 2001; Viallefont et al., 2002) use
a Metropolis–Hastings algorithm to generate a sample from the mixture pos-
terior distribution p(ϑ|y). This is feasible, because the Metropolis–Hastings
algorithm requires knowledge of the mixture posterior density p(ϑ|y) only up
to a normalizing constant. The Metropolis–Hastings algorithm, introduced
in Subsection 3.4.2 in the context of sampling allocations S from the poste-
rior p(S|y), is implemented in the following manner to simulate ϑ from the
mixture posterior p(ϑ|y).

Algorithm 3.6: Sampling the Parameters of a Finite Mixture Through a Metro-
polis–Hastings Algorithm Start with some parameter ϑ(0) and repeat the
following steps for m = 1, . . . , M0, . . . , M + M0.

(a) Propose a new parameter ϑnew by sampling from a proposal density
q(ϑ|ϑ(m−1)).

(b) Move the sampler to ϑnew with probability min(1, A), where

A =
p(y|ϑnew)p(ϑnew)q(ϑ(m−1)|ϑnew)

p(y|ϑ(m−1))p(ϑ(m−1))q(ϑnew|ϑ(m−1))
. (3.43)

If U < min(1, A), where U is a random number from the U [0, 1]-
distribution, then accept ϑnew and set ϑ(m) = ϑnew, otherwise reject
ϑnew and set ϑ(m) = ϑ(m−1).

Increase m by one, and return to step (a).

Hurn et al. (2003) use the following multivariate random walk proposal
on a suitably transformed parameter φ(ϑ), which is obtained from a log-
transform on variance parameters and a logit transform on the weights,

φ(ϑnew|ϑ(m−1)) = φ(ϑ(m−1)) + Cε,
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where ε follows a multivariate Cauchy distribution. C is calibrated during a
pilot-run to lead to an acceptance rate of about 40%.

An advantage of this method compared to data augmentation and MCMC
is that sampling of the indicators is avoided. A disadvantage is that tuning
the proposal density may require several pilot runs.

3.6.2 Importance Sampling for the Allocations

An alternative attempt at sampling from p(S|y) has been investigated in
Casella et al. (2000). Rather than drawing from p(S|y), they draw a sequence
S(1), . . . ,S(L) from an importance density q(S). One way to construct the
importance density is to ignore posterior correlation among the indicators,
which is actually only introduced through the prior p(S), and to use a density
with independent components:

q(S) =
N∏

i=1

q(Si|yi), q(Si|yi) ∝ p(yi|Si)p(Si). (3.44)

Under the conjugate Dirichlet prior η ∼ D (e0, . . . , e0), we obtain the following
marginal prior for a single indicator Si,

p(Si) ∝ Γ (1 + e0)Γ (e0)K−1, (3.45)

and the marginal likelihood of yi given Si = k results from (3.25),

p(yi|Si = k) =
p(yi|θk)p(θk)

p(θk|yi)
, (3.46)

where p(θk|yi) is the posterior density from the single observation yi. The
right-hand side of (3.46) may be evaluated for arbitrary θk, in particular
for the posterior mode of p(θk|yi). (3.46) is likely to be unstable for high-
dimensional parameter θk, where the posterior p(θk|yi) is not well defined
from a single observation.

To improve the efficiency of importance sampling, Casella et al. (2000)
use stratified importance sampling by decomposing the space of all possible
allocations into all partition sets with identical allocation size Nk(S). Casella
et al. (2000) argue that among these partition sets only a few carry most of
the weights.

Casella et al. (2000) use draws from the importance density to approximate
the posterior expectation of any function h(ϑ) as explained, for instance, in
Geweke (1989):

E(h(ϑ)|y) ≈ 1
L

L∑
l=1

E(h(ϑ)|y,S(l))
p(S(l)|y)
q(S(l))

. (3.47)

A certain objection to this approach is that the ergodic average (3.47) may
be biased due to undetected label switching.
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3.6.3 Perfect Sampling

Like MCMC, perfect sampling is based on the idea of constructing a Markov
chain where the stationary distribution is equal to an untractable posterior
distribution. Whereas MCMC exploits the fact that for an ergodic Markov
chain the stationary distribution is also the limiting distribution, perfect sam-
pling is an algorithm for generating independent draws from precisely the
exact stationary distribution; see Casella et al. (2001) for an introduction.

The construction of a perfect sampler for mixture models is a delicate
issue as the first attempt of Hobert et al. (1999) demonstrates where they
applied perfect sampling to two- and three-component mixtures where the
component parameters are known. Casella et al. (2002) extend these results
to finite mixtures with an arbitrary number of components and unknown
component parameters where the marginal posterior p(S|y) of the allocations
is available explicitly up to a constant; see also Subsection 3.3.3.

3.7 Bayesian Inference for Finite Mixture Models Using
Posterior Draws

From a Bayesian perspective, the posterior density p(ϑ|y) contains all in-
formation provided by the data, and is the basis for drawing inference on
any quantity of interest. If a sampling-based approach as described in Sec-
tions 3.5 and 3.6 is pursued for practical estimation, a sequence of draws
{ϑ(m), m = 1, . . . , M} from the posterior distribution p(ϑ|y) is available,
which could be used to approximate all quantities of interest. In what fol-
lows, it is assumed that an appropriate amount of initial draws M0 has been
removed, if the draws were produced by an MCMC sampler.

3.7.1 Sampling Representations of the Mixture Posterior Density

It is sometimes helpful to visualize the mixture posterior density p(ϑ|y), but
producing a simple density plot is feasible only for very simple problems, where
the unknown parameter ϑ is at most bivariate. If the dimension of ϑ exceeds
two, other tools have been developed for visualizing the mixture posterior
density p(ϑ|y). Draws from the posterior density p(ϑ|y) have been used as a
sampling representation of the mixture posterior distribution, which is then
visualized in an appropriate manner (Celeux et al., 2000; Frühwirth-Schnatter,
2001b; Hurn et al., 2003).

To illustrate the equivalence of a density plot and the sampling repre-
sentation, Figure 3.5 compares the contours of the mixture posterior density
p(µ1, µ2|y) with MCMC draws µ

(m)
1 and µ

(m)
2 from p(µ1, µ2|y) obtained from

random permutation Gibbs sampling using Algorithm 3.5 for the synthetic
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Fig. 3.5. Hidden age groups — Synthetic Data Set 1 (left-hand side) and Data
Set 2 (right-hand side); top: contours of the mixture posterior density p(µ1, µ2|y),
bottom: MCMC draws from the mixture posterior density p(µ1, µ2|y) obtained from
random permutation sampling)

data sets 1 and 2 discussed earlier in Subsection 3.5.6. By using the ran-
dom permutation Gibbs sampler, rather than standard Gibbs sampling, the
exploration of both modes of the posterior distribution is forced.

In particular, for higher-dimensional problems sampling representations
are a very useful tool for visualizing the mixture posterior distribution. One
interesting view is the bivariate marginal density p(θk,j , θk′,j |y), where k �= k′,
visualized for each j = 1, . . . , d, through scatter plots of the MCMC draws
(θ(m)

k,j , θ
(m)
k′,j ). By the results of Subsection 3.3.2, this density is the same for all

pairs of (k, k′), thus k = 1 and k′ = 2, or any other pair, may be selected, pro-
vided that the random permutation Gibbs sampler has been used. These fig-
ures allow us to study how much the jth element θk,j of the component param-
eter θk differs among the various components. If this element is significantly
different among all components, then this plot shows K2 − K = K(K − 1)
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Fig. 3.6. Synthetic data of size N = 500 simulated from a mixture of three uni-
variate normal distributions with η1 = 0.3, η2 = 0.5, µ1 = −3, µ2 = 0, µ3 = 2,
σ2

1 = 1, σ2
2 = 0.5, σ2

3 = 0.8; sampling representation of p(µk, µk′ |y) (left-hand side)
and p(σ2

k, σ2
k′ |y) (right-hand side) based on random permutation Gibbs sampling

simulation clusters. If this element is nearly the same in all components, then
this plot shows a single simulation cluster; see Figure 3.6 for illustration.

Another useful view is the bivariate marginal density p(θk,j , θk,j′ |y), which
is visualized separately for each pair j, j′ = 1, . . . , d, j �= j′ through scatter
plots of the MCMC draws (θ(m)

k,j , θ
(m)
k,j′ ). By the results of Subsection 3.3.2,

this density is the same for all k = 1, . . . , K, thus k = 1 or any other value
may be selected. If the dimension of θk is equal to two, this scatter plot is
closely related to the point process representation of the underlying mixture
distribution, discussed in Subsection 1.2.2. The MCMC draws will scatter
around the points corresponding to the true point process representation, with
the spread of the clouds representing the uncertainty of estimating the points;
see Figure 3.7 for illustration. This is also true for multivariate component
parameters, where the plots correspond to projections of the point process
representation onto bivariate subspaces.

These figures allow us to study the component parameters in relation to
each other without having to worry about label switching. In Figure 3.7,
for instance, it becomes evident that the components differ mainly in the
mean, that two components have nearly the same variance, whereas the third
component has a variance which is slightly smaller.

For a mixture with a univariate component parameter θk a bivariate plot
is not available. In this case θ

(m)
k may be plotted against η

(m)
k or an auxiliary

parameter ψ(m) which is drawn from a standard normal distribution.

3.7.2 Using Posterior Draws for Bayesian Inference

On the basis of the posterior density p(ϑ|y), inference is drawn on quantities
of interest such as the posterior mean E(ϑ|y), which commonly is used as a
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Fig. 3.7. Synthetic data of size N = 500 simulated from a mixture of three univari-
ate normal distributions with η1 = 0.3, η2 = 0.5, µ1 = −3, µ2 = 0, µ3 = 2, σ2

1 = 1,
σ2

2 = 0.5, σ2
3 = 0.8; point process representation of the finite mixture distribution

(left hand side) and point process representation of draws from p(µk, σ2
k|y) based

on random permutation Gibbs sampling (right-hand side)

point estimator of ϑ, or the predictive density p(yf |y), which is a pointwise
estimator of the density of the marginal distribution of the observed random
variable Y.

For finite mixture models, as for many other interesting and complex sta-
tistical models, no explicit expression is available for most quantities of inter-
est, and draws {ϑ(m), m = 1, . . . , M} from the posterior density are used to
approximate all quantities of interest. Consider, as an example, the posterior
expectation

E(h(ϑ)|y) =
∫

h(ϑ)p(ϑ|y)dϑ

of a function h(ϑ), which is approximated by averaging over the draws from
the posterior distribution in the following way,

hM =
1
M

M∑
m=1

h(ϑ(m)). (3.48)

Under mild conditions, hM converges to E(h(ϑ)|y) by the law of large num-
bers, even if the draws were generated by a Markov chain Monte Carlo method
(Tierney, 1994). There are several questions associated with Bayesian inference
based on posterior draws, in particular convergence diagnostics and choosing
appropriate values of M , which are beyond the scope of this book, and are
addressed, for example, in the excellent books by Robert and Casella (1999)
and Liu (2001).

For finite mixture models, a specific issue arises that is related to the
invariance of the posterior distribution discussed in Subsection 3.3.2 and the
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label switching problem discussed in Subsection 3.5.5. Bayesian inference for
finite mixture models using posterior draws may be, but need not, be sensitive
to label switching.

Label switching does not matter whenever the function h(ϑ) is invariant
to relabeling the components of the mixture:

h(ϑ) = h(ϑ̃s), (3.49)

where ϑ̃s is the permuted parameter defined in (3.14). In such a case, av-
eraging over the draws h(ϑ(m)) as in (3.48) is evidently insensitive to label
switching, and any of the methods discussed in Section 3.5 such as data aug-
mentation and Gibbs sampling (Algorithm 3.4) or data augmentation and
random permutation Gibbs sampling (Algorithm 3.5) may be used.

It is not always easy to identify functionals that are invariant to relabeling,
in particular, if inference concerns the component parameters (θk, ηk). Obvi-
ous estimators turn out to be sensitive to label switching, in which case it is
necessary to identify the model before making an inference, as explained in
detail in Subsection 3.7.7. Clustering of a single object yi, based on the poste-
rior probability distribution Pr(Si = k|y), into one of the K hidden groups, is
a further example of an inference problem where any kind of label switching
matters; see Subsection 7.1.7 for more detail.

3.7.3 Predictive Density Estimation

A quantity that often is of interest when fitting a finite mixture model, is the
posterior predictive density p(yf |y) of a future realization yf , given the data
y, which is given by

p(yf |y) =
∫

p(yf |ϑ)p(ϑ|y)dϑ.

This density is the posterior expectation of following function h(ϑ) = p(yf |ϑ),

p(yf |ϑ) =
K∑

k=1

ηkp(yf |θk), (3.50)

which is invariant to relabeling the components of the mixture. Therefore, the
density estimated from the MCMC draws,

p̂(yf |y) =
1
M

M∑
m=1

(
K∑

k=1

η
(m)
k p(yf |θ(m)

k )

)
, (3.51)

is robust against label switching. For illustration, consider Figure 3.8 which
compares a histogram of the synthetic data sets 1 and 2 discussed earlier in
Subsection 3.5.5 with the predictive density estimate p̂(yf |y).
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Fig. 3.8. Hidden age groups — Synthetic Data Set 1 (left-hand side) and
Synthetic Data Set 2 (right-hand side); predictive density estimate obtained from
fitting a two-component normal mixture with µ1, µ2, and η1 unknown (variance
σ2

1 = σ2
2 = 1 fixed) in comparison to a histogram of the data

For univariate mixtures of normals, Richardson and Green (1997) studied
MCMC estimation under various constraints, and observed that the predictive
density estimator p̂(yf |y) differed significantly across the constraints, which is
not surprising as a poor constraint introduces a bias; see again the discussion
in Subsection 3.5.6. For this reason it is recommended to use draws from the
unconstrained posterior when the mixture model is used for practical density
estimation or as a smoothing device. Due to the invariance to relabeling,
the estimator p̂(yf |y) could be based on Gibbs sampling (Algorithm 3.4) or
random permutation Gibbs sampling (Algorithm 3.5).

The Posterior Predictive Distribution of a Sequence

It is possible to predict a whole sequence yf = (yf,1, . . . ,yf,H) of length
H ≥ 1, given the data y. The posterior predictive density p(yf |y) of yf ,
conditional on the observations y is given by

p(yf |y) =
∫ H∏

h=1

p(yf,h|ϑ)p(ϑ|y)dϑ. (3.52)

Analytical integration is not possible, but one could easily draw a sample from
(3.52) if a sequence of draws from the posterior density p(ϑ|y) is available,
using the following algorithm.

Algorithm 3.7: Sampling from the Posterior Predictive Distribution Assume
that a sequence of draws ϑ(1), . . . ,ϑ(M) from the posterior density p(ϑ|y) is
available. Perform the following two steps for m = 1, . . . , M .
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(a) Draw H component indicators S1, . . . , SH independently from the discrete
distribution (η(m)

1 , . . . , η
(m)
K ).

(b) For each h = 1, . . . , H, sample y(m)
f,h from the component density p(y|θh),

where θh = θ
(m)
Sh

. Define y(m)
f = (y(m)

f,1 , . . . ,y(m)
f,H).

The sample y(1)
f , . . . ,y(M)

f produced by this algorithm is a sample from the
posterior predictive distribution p(yf |y).

3.7.4 Individual Parameter Inference
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Fig. 3.9. Hidden age groups — Synthetic Data Set 1 (left-hand side) and Syn-
thetic Data Set 2 (right-hand side); reconstruction of the individual means µs

i for the
two age groups obtained from fitting a two-component normal mixture with µ1, µ2,
and η1 unknown (variance σ2

1 = σ2
2 = 1 fixed); box plots of the posterior draws of

µs
i

Often it is of interest to make an inference about the individual parameters
θs

i , which are defined for each subject i, i = 1, . . . , N , by

θs
i =

K∑
k=1

θkI{Si=k}. (3.53)

Obviously, θs
i is invariant to relabeling the components of the mixture. Con-

sequently, the sequence {(θs,(m)
1 , . . . ,θ

s,(m)
N ), m = 1, . . . , M}, which is deter-

mined from the posterior draws {ϑ(m)}, m = 1, . . . , M through the transfor-
mation (3.53),

θ
s,(m)
i = θ

(m)
km

, km = S
(m)
i ,
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contains M draws from the joint posterior distribution p(θs
1, . . . ,θ

s
N |y), which

are insensitive to label switching. It is possible to visualize the individ-
ual parameters θs

i through box-plots of {θ
s,(m)
i , m = 1, . . . , M} for each

i = 1, . . . , N , which estimate the marginal distribution p(θs
i |y). To obtain

a point estimator of θs
i , the expected value E(θs

i |y) is estimated from the
posterior draws in an obvious way:

θ̂
s

i =
1
M

M∑
m=1

θ
s,(m)
i .

An Illustrative Example

For illustration we consider the synthetic data sets 1 and 2, discussed earlier
in Subsection 3.5.5. The true value of µs

i is equal to µy for the younger age
group and equal to µo for the older age group. In Figure 3.9, box plots of
µ

s,(m)
i are shown for both data sets, based on data augmentation and random

permutation Gibbs sampling (Algorithm 3.5). Reconstruction of µs
i is rather

precise for data set 1, whereas the lack of separation between the two groups
leads to rather imprecise reconstructions for data set 2. This is, however,
not due to any deficiencies of the sampling method, but due to a lack of
information in the data.

3.7.5 Inference on the Hyperparameter of a Hierarchical Prior

Note that the hyperparameter δ is invariant by definition, and may be eas-
ily estimated from the MCMC output by taking ergodic averages over the
posterior draws δ(1), . . . , δ(M).

3.7.6 Inference on Component Parameters

When making an inference about the component parameters θ1, . . . ,θK , one
is actually interested in an inference on the corresponding hidden groups in
the population. Only under a unique labeling, does a fixed link exist between
a hidden group with group-specific parameter θG and a certain component in
the mixture with component parameter θk. If this labeling remains the same
throughout MCMC sampling, then the draws {θ

(m)
k , m = 1, . . . , M} may be

regarded as posterior draws for the parameter θG, and it is possible to average
over these draws to obtain a point estimator of the group-specific parameter
θG:

θ̂G =
1
M

M∑
m=1

θ
(m)
k . (3.54)
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However, if label switching took place during sampling, then the hidden group
parameter θG no longer has to be associated with θk, but with another com-
ponent parameter θk′ . When averaging over the draws of θk as in (3.54), a
biased point estimator of the group-specific parameter θG results, which is
pulled toward the overall mean E(θk|y) of the unconstrained posterior.

To draw an inference about hidden groups by averaging over posterior
draws, it is essential that these draws arise from a single labeling subspace
L. We denote such draws as ϑL,(m) = (θL,(m)

1 , . . . ,θ
L,(m)
K , η

L,(m)
1 , . . . , η

L,(m)
K ).

These draws could be used to estimate the parameters in the hidden groups
by

θ̂k =
1
M

M∑
m=1

θ
L,(m)
k , (3.55)

as well as the group sizes by

η̂k =
1
M

M∑
m=1

η
L,(m)
k . (3.56)

It is discussed in detail in Subsection 3.7.7 how to obtain posterior draws from
a unique labeling subspace.

Choosing Invariant Loss Functions

It should be noted that not all point estimators of ϑ are sensitive to label
switching. Whether this is the case depends on the underlying loss function.
Within a decision-theoretic framework any point estimator ϑ� is derived as
that value which minimizes the expected posterior loss under a certain loss
function R(ϑ̂, ϑ):

ϑ� = arg min
ϑ̂

E(R(ϑ̂, ϑ)|y) =
∫

Θ

R(ϑ̂,ϑ)p(ϑ|y)dϑ;

see Berger (1985) for a full account. If this framework is applied to finite
mixture models, sensible estimators are obtained only if the loss function
R(ϑ̂, ϑ), which corresponds to h(ϑ) in (3.48), is invariant to relabeling the
components of the mixture.

This leads immediately to problems with the quadratic loss-function
R(ϑ̂, ϑ) = (ϑ̂ − ϑ)

′
(ϑ̂ − ϑ), which yields the posterior mean E(ϑ|y) as opti-

mal estimator, and is for many other statistical models the most commonly
used loss function. Evidently, the functional value of R(ϑ̂, ϑ) changes when
the components of the mixture are relabeled, leading to an ambiguous defini-
tion of the expected risk. Interestingly enough, it was realized earlier that the
posterior mean E(ϑ|y) is not a sensible point estimator as it does not contain
any component-specific information; see again (3.21).
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The 0/1 loss function, for which the posterior mode turns out to be the
optimal estimator (see, for instance, Zellner, 1971), is easily adapted to finite
mixture models by defining that R(ϑ̂, ϑ) = 0 iff ϑ̂ and ϑ are identical up to
permutations, otherwise R(ϑ̂, ϑ) is equal to 1. This loss function is invariant
to relabeling, and the mode of the mixture posterior may be used for esti-
mation. The posterior mode may be approximated from the posterior draws
{ϑ(m), m = 1, . . . , M} through that value which maximizes the nonnormalized
mixture posterior density p�(ϑ|y) = p(y|ϑ)p(ϑ).

Various alternative loss functions have been considered for parameter es-
timation in mixture models. Celeux et al. (2000) consider loss functions that
are based on the predictive density p(yf |ϑ) which is invariant to relabeling
the components; see again (3.50). Examples include the integrated squared
difference

R(ϑ̂, ϑ) =
∫

Y
(p(yf |ϑ) − p(yf |ϑ̂))2dyf ,

and the symmetrized Kullback–Leibler distance

R(ϑ̂, ϑ) =
∫

Y

(
p(yf |ϑ)log

p(yf |ϑ)

p(yf |ϑ̂)
+ p(yf |ϑ̂)log

p(yf |ϑ̂)
p(yf |ϑ)

)
dyf ,

where in both cases integration reduces to summation for a discrete sample
space Y. In both cases the expected loss is given by an expression that contains
expectations of terms such as p(yf |ϑ), p(yf |ϑ)2, or log p(yf |ϑ), with respect
to the posterior density p(ϑ|y). The practical evaluation of these estimators
is rather involved and Celeux et al. (2000) follow the two-step procedure of
Rue (1995). In a first step, expectations with respect to the posterior density
are evaluated using posterior draws and integration with respect to yf is
carried out using some numerical technique. In a second step, the minimization
problem for the estimator ϑ� is solved using simulated annealing. We refer to
Celeux et al. (2000) for further computational details.

Dias and Wedel (2004) provide an empirical comparison of EM and MCMC
performance, which includes different prior specifications and various proce-
dures to deal with the label switching problem.

3.7.7 Model Identification

The parameter estimation problem discussed in Subsection 3.7.6 illustrated
that care must be exercised when using draws from the mixture posterior den-
sity p(ϑ|y) to estimate functionals of ϑ, which are not invariant to relabeling
the components of the finite mixture. Inference on such functionals is sensi-
ble only if the posterior draws come from a unique labeling subspace of the
unconstrained parameter space. The discussion of this subsection is devoted
to the difficult task of identifying such draws.
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Gibbs sampling as described in Algorithm 3.4 may lead to implicit model
identification if the K! modal parts of the mixture posterior density are very
well separated, and the sampler is trapped in one of modal regions; see again
the discussion in Subsection 3.5.6. In this case the posterior draws obtained
by Algorithm 3.4 may be treated as coming from a unique labeling subspace,
ϑL,(m) = ϑ(m), m = 1, . . . , M , as was done for instance in Chib (1996). It is,
however, not recommended to rely blindly on this implicit model identifica-
tion, as the behavior of Gibbs sampling is unpredictable in this respect.

One strategy is to relabel the posterior draws {ϑ(m), m = 1, . . . , M} in
such a way that draws {ϑL,(m), m = 1, . . . , M} from a unique labeling sub-
space result. This may be achieved by isolating a sensible identifiability con-
straint through exploring the posterior draws (Frühwirth-Schnatter, 2001b)
or by unsupervised clustering of the posterior draws (Celeux, 1998).

Model Identification Through Identifiability Constraint

Fig. 3.10. Hidden age groups — Synthetic Data Set 3; draws from the bivariate
marginal distributions p(µk, ηk|y) (left-hand side); posterior draws of (µ1, η1) under
the constraint µ1 < µ2 (right-hand side)

A common reaction to the label switching problem is to impose some
formal identifiability constraint as in Subsection 1.3.3 within sampling-based
Bayesian estimation (Albert and Chib, 1993; Richardson and Green, 1997).
It has been realized only rather recently that an arbitrary formal identifia-
bility constraint does not necessarily generate a unique labeling and that a
poorly chosen constraint introduces a bias (Celeux, 1998; Celeux et al., 2000;
Stephens, 2000b; Frühwirth-Schnatter, 2001b); recall also the discussion at
the end of Subsection 2.4.3.

To identify sensible identifiability constraints, Frühwirth-Schnatter (2001b)
explored the point process representation of the MCMC draws, introduced
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earlier in Subsection 3.7.1. Note that the constraint is only an indirect device
to describe the differences between the components, and therefore is not nec-
essarily unique. Various case studies where it is useful to explore the point
process representation of the MCMC draws in this way may be found through-
out the book; see also Frühwirth-Schnatter (2001a, 2001b), Kaufmann and
Frühwirth-Schnatter (2002), and Frühwirth-Schnatter et al. (2004).

A straightforward method to impose a constraint on the posterior draws
is to postprocess the MCMC draws that were generated from the mixture
posterior. Whenever a draw does not satisfy the constraint, one permutes the
labeling of the components such that the constraint is fulfilled (Richardson
and Green, 1997; Stephens, 1997b; Frühwirth-Schnatter, 2001b). Frühwirth-
Schnatter (2001b) also provides a formal proof that this method actually
delivers a sample from the constrained posterior.

For illustration, we return to the synthetic data set 3 introduced at the
end of Subsection 2.4.3. Figure 3.10 shows a sampling representation of the
bivariate marginal distribution p(µk, ηk|y) for these data. From this scatter
plot it is obvious that the component parameters differ mainly in the mean,
whereas the weights are rather equal. The constraint µ1 < µ2 is actually able
to impose a unique labeling.

Model Identification Through Unsupervised Clustering of the
Posterior Draws

For higher-dimensional problems, in particular for multivariate mixtures, it is
possible, but somewhat time-consuming to search for identifiability constraints
in the MCMC output (Frühwirth-Schnatter et al., 2004). As a more automatic
procedure, Celeux (1998) suggested permuting the MCMC draws obtained
from unconstrained sampling by using a clustering procedure. His algorithm is
an on-line k-means type algorithm with K! clusters, which is initialized from
the first 100 draws after reaching burn-in, by defining K! reference centers
from these draws. For each MCMC draw ϑ(m) the distance to each of these
K! centers is computed, which is then used to permute the labels.

Model Identification Through Clustering in the Point
Process Representation

A related method is to search for clusters in the point process representation of
the MCMC draws, introduced earlier in Subsection 3.7.1, which additionally
provides some control over the important question of whether the model is
overfitting the number of components.

Each of the MCMC simulations θ
(m)
1 , . . . ,θ

(m)
K corresponds to a certain

point process representation that will cluster around the point process repre-
sentation of the underlying true finite mixture distribution. If the heterogene-
ity between the underlying points is large enough, K simulation clusters will
be present in the point process representation of the MCMC draws.
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Permuting the labels of θ
(m)
1 , . . . ,θ

(m)
K does not change the point represen-

tation; it only changes the one-to-one correspondence between the component-
specific draws and the simulation clusters. A unique labeling is achieved
if all draws θ

(m)
k are associated with the same simulation cluster for all

m = 1, . . . , M . This is achieved by applying a standard k-means cluster-
ing algorithm with K clusters to a sample of size MK, formed from the
MCMC draws {(θ(m)

1 , . . . ,θ
(m)
K ), m = 1, . . . , M}, with the posterior mode esti-

mator (θ�
1, . . . ,θ

�
K) serving as a starting value for the cluster means. The clus-

tering algorithm delivers a classification sequence {(ρm(1), . . . , ρm(K)), m =
1, . . . , M}, where ρm(k) determines to which simulation cluster the MCMC
draw θ

(m)
k belongs.

If the simulation clusters are well separated, then the classification se-
quence {ρm(1), . . . , ρm(K)} is a permutation of {1, . . . , K}; that is,

K∑
k=1

ρm(k) =
K(K + 1)

2
. (3.57)

In this case it is possible to relabel the MCMC draw ϑ(m) through the per-
mutation {ρm(1), . . . , ρm(K)}; that is

ϑL,(m) = (θL,(m)
ρm(1), . . . ,θ

L,(m)
ρm(K), η

L,(m)
ρm(1) , . . . , η

L,(m)
ρm(K)) (3.58)

defined by:

θ
L,(m)
ρm(k) = θ

(m)
k , η

L,(m)
ρm(k) = η

(m)
k , k = 1, . . . , K.

As all component-specific draws are associated with the same simulation clus-
ter, the draws defined in (3.58) may be regarded as coming from an identified
mixture model.

If in addition to ϑ(m), allocation variables S(m) = (S(m)
1 , . . . , S

(m)
N ) have

been stored, then the same permutation could be used on them to define
allocation under a unique labeling for each i = 1, . . . , N :

S
L,(m)
i = ρm(S(m)

i ). (3.59)

If {ρm(1), . . . , ρm(K)} is not a permutation of {1, . . . , K} (i.e., if (3.57) is
violated for a considerable fraction of the MCMC draws), this is an indication
that the mixture is overfitting the number of components, a problem that is
discussed in Subsection 4.2.2.

Further Approaches Toward Relabeling the MCMC Draws

Various authors found other ways of relabeling the MCMC draws useful.
Stephens (1997b) suggested relabeling the MCMC output so that the esti-
mated marginal posterior distributions of the parameters of interest are as
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close to unimodality as possible. Stephens (2000b) tackles the whole relabel-
ing problem from a decision-theoretic viewpoint and shows that the relabeling
strategies studied in Stephens (1997b) and Celeux (1998) may be viewed as
an attempt to minimize the posterior expectation of a certain loss function.




