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Switching State Space Models

13.1 State Space Modeling

As an introduction into the vast area of state space modeling, we start in
Subsection 13.1.1 with the local level model which is a simple but character-
istic example of the linear Gaussian state space form that is discussed in full
generality in Section 13.1.2.

13.1.1 The Local Level Model with and Without Switching

In a local level model, a random process {Y1, . . . , YT } is generated by the
following stochastic difference equation,

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ

)
, (13.1)

Yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
, (13.2)

where all error terms wt and εt are mutually independent and independent
of µ0; see, for instance, Durbin and Koopman (2001) for an excellent intro-
duction. The random process {Y1, . . . , YT } is assumed to be observable and
the realizations are denoted by {y1, . . . , yT }. The distribution of Yt is allowed
to depend on an unobservable latent variable, in this case the level µt, which
follows a random walk. Because µt is a hidden Markov process, this model is
related to the hidden Markov chain model considered in Chapter 10; the latent
process, however, does not live on a discrete state space, but on a continuous
one.

The process Yt is nonstationary as long as the variance σ2
µ is positive.

There is a close relationship between the local level model and more classical
time series models; see, for instance, Abraham and Ledolter (1986). By taking
first differences, we obtain:

∆Yt = wt + εt − εt−1.
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The lag 1 autocorrelation is given by

ρ∆Yt(1) = −σ2
ε/(2σ2

ε + σ2
µ),

whereas higher autocorrelations are zero. Because this autocorrelation func-
tion is the same as that of an MA(1) process, the local level model has an
ARIMA(0, 1, 1) representation, where the MA(1) coefficient θ1 is constrained
to the interval [0, 1] and results from equating the lag 1 autocorrelation in
both models:

ρ∆Yt(1) =
θ1

1 + θ2
1

⇒ θ1 =
1 −

√
1 − 4ρ∆Yt(1)2

2ρ∆Yt
(1)

.

The advantage of the state space form (13.1) and (13.2) as compared to
the ARIMA(0, 1, 1) representation is manifold as discussed extensively in the
monograph of West and Harrison (1997). First, one may extract much more
information from the observed time series as it is possible to estimate the
level µt for each t using the Kalman filter; see Section 13.3. Second, further
components capturing seasonal patterns in the time series or trend behavior
are easily added, as discussed in Subsection 13.2.1. Third, it is much easier to
deal with time series irregularities such as outliers or structural breaks in the
state space form.

Consider, for instance, a process generated by a local level model that
is disrupted by occasional observation outliers. Based on the finite mixture
approach to outlier modeling discussed in Section 7.2, the local level model
may be modified in the following way,

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ

)
,

Yt = µt + εt, εt ∼ η1N
(
0, σ2

ε,1
)

+ η2N
(
0, σ2

ε,2
)
.

After introducing an i.i.d. binary indicator St with Pr(St = 1) = η1 as in ear-
lier chapters, conditional on knowing St, this model is a local linear model as
defined in (13.1) and (13.2), however, the observation variance σ2

ε is switching
between two values:

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ

)
,

Yt = µt + εt, εt ∼ N
(
0, σ2

ε,St

)
.

This is a first example of a switching state space model, which is commonly
applied to deal with outliers in time series; see Subsection 13.2.3 for a more
detailed discussion. Another useful switching state space model results if St

follows a hidden Markov chain as in Chapter 10, rather than an i.i.d. process,
because this introduces conditional heteroscedasticity in the error term εt; see
also Subsection 13.2.2.

Apart from the observation variance, other model parameters may be
switching in a state space model. Consider, for instance, the variance σ2

µ in
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the local level model, which determines how much µt changes over time. The
smaller σ2

µ, the less flexibility of µt is allowed a priori. To distinguish between
periods of smaller and greater variability of µt it may be assumed that the
variance σ2

µ switches between two values:

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ,St

)
.

A special case of this model is one where σ2
µ,1 is 0, whereas σ2

µ,2 > 0. Such a
model allows for an occasional level shift:

µt =
{

µt−1, St = 1
µt−1 + wt, wt ∼ N

(
0, σ2

µ

)
, St = 2.

(13.3)

Finally, two independent indicators S1
t and S2

t may be introduced to combine
heteroscedasticity in wt with observation outliers:

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ,S1
t

)
,

Yt = µt + εt, εt ∼ N
(
0, σ2

ε,S2
t

)
.

13.1.2 The Linear Gaussian State Space Form

The local level model introduced in the previous subsection is a special case
of a linear Gaussian state space model, which is a dynamic stochastic system
defined in the following way,

xt = Ftxt−1 + wt, wt ∼ Nd (0,Qt) , (13.4)
Yt = Htxt + εt, εt ∼ Nr (0,Rt) , (13.5)

where t = 1, . . . , T . The key variables in these formulations are the state
variable xt and the observation variable Yt.

The state variable xt is a latent d-dimensional random vector, which is
observed only indirectly through the effect it has on the distribution of Yt.
The transition equation (13.4), also called the state equation, specifies for
each t ≥ 1 how xt is generated from the previous state variable xt−1. The
linear relationship between xt and xt−1 which depends on the (d × d) ma-
trix Ft is disturbed by a zero-mean error wt following a normal distribution
with variance–covariance matrix Qt. To complete the model formulation, the
distribution of x0 is specified as x0 ∼ Nd

(
x̂0|0,P0|0

)
.

The observation variable Yt is a random vector of dimension r, which is as-
sumed to be observable for all time points t = 1, . . . , T . A single realization of
this process is denoted by {y1, . . . ,yT }. The dimension of Yt may be smaller,
larger or equal to the dimension of xt. For a scalar observation variable with
r = 1 we write Yt and denote the observed time series by {y1, . . . , yT }. The
observation equation (13.5), also called the measurement equation, specifies
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how the distribution of Yt is influenced by the state variable xt. The linear
relationship between Yt and xt which depends on the (r × d) matrix Ht is
disturbed by a zero-mean random observation error εt following a normal
distribution with variance–covariance matrix Rt, which reduces to a scalar
variance for r = 1.

Often the matrices Ft, Ht, Qt, and Rt emerge from putting a specific
time series model into a state space form; see Subsection 13.2.1. The local
level model introduced in Subsection 13.1.1, for instance, results with xt = µt,
Ft = Ht = 1, Qt = σ2

µ, and Rt = σ2
ε . The matrices Ft, Ht, Qt, and Rt need

not depend on time, in which case the notation F, H, Q, and R will be used.
Some elements of the matrices Ft, Ht, Qt, and Rt may depend on unknown

model parameters ϑ, such as for the local level model, where ϑ = (σ2
µ, σ2

ε). The
notations Ft(ϑ), Ht(ϑ), Qt(ϑ), and Rt(ϑ) are used whenever it is necessary
to make this dependence explicit. Identification becomes an important issue
whenever part of the system matrices Ft(ϑ) and Ht(ϑ) are unknown; see
Hannan and Deistler (1988) for an extensive treatment of this issue.

Further assumptions are necessary to complete the model definition. Most
important, wt is uncorrelated with xt−1 for all t:

E
(
wtx

′
t−1

)
= 0, t = 1, . . . , T.

Second, the observation error εt as well as wt is uncorrelated over time:

E
(
εtε

′
s

)
= 0, E

(
wtw

′
s

)
= 0, ∀s, t ∈ {1, . . . , T}, t �= s.

Finally, the two error sequences εt and ws are uncorrelated for all t, s:

E
(
εtw

′
s

)
= 0, ∀s, t ∈ {1, . . . , T}.

On various occasions, it is useful to introduce additional terms that influence
the mean of the transition as well as the observation equation:

xt = Ftxt−1 + Gtut + wt, (13.6)
Yt = Htxt + Atzt + εt. (13.7)

In (13.6), ut is a vector of dimension n, which may be smaller, larger, or equal
to the dimension of xt. In engineering applications ut often is a controllable
input vector (Anderson and Moore, 1979). In econometric problems ut often
is a vector of n exogenous variables being observable at time t. The expected
value of xt given ut and xt−1 is a linear function in ut, depending on the
(d × n) matrix Gt. In (13.7), zt is a vector of m variables being observable at
time t, which could be exogenous variables or past values of Yt. The expected
value of Yt given xt and zt is a linear function in zt, depending on the (r×m)
matrix At. For a further review of various aspects of state space modeling we
refer to the monographs of Aoki (1990), Harvey (1993), West and Harrison
(1997), and Durbin and Koopman (2001).
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Originally, the state space model was developed by Kalman (1960, 1961)
in aerospace research for tracking some target such as an aircraft. In this ap-
plication the transition equation is derived from physical laws describing the
motion of the target, whereas the observation vector measures properties of
this target that are observable through some device such as a radar, subject
to some measurement error; see also related tracking problems in high-energy
physics (Frühwirth, 1987). Due to their flexibility and generality state space
models found applications in many research areas in engineering such as hy-
drology (Schnatter et al., 1987) and speech recognition (Juang and Rabiner,
1985; Rabiner and Juang, 1986), just to mention two; see Anderson and Moore
(1979) for further references.

The application of state space models in the econometric literature started
in the 1970s with the time-varying coefficient model; see the review of Nicholls
and Pagan (1985). In the 1980s, it was recognized that econometric models
that rely on unobservable quantities could be cast into a state space form,
and state space models found wide applications in economics and finance, for
instance, to estimate the ex ante real interest rate (Fama and Gibbons, 1982),
unobserved expected inflation (Burmeister et al., 1986), or the potential real
GDP (Kuttner, 1994); see Granger and Teräsvirta (1993) and Kim and Nelson
(1999) for further applications of state space models in econometrics.

13.1.3 Multiprocess Models

The simplest way of introducing a latent discrete indicator into the linear
Gaussian state space form is multiprocess models. A multiprocess model is a
collection of K state space models, indexed by a hidden random indicator S
taking values in a discrete space {1, . . . , K}. Conditional on knowing the state
of S, the model for Yt is a linear Gaussian state space form:

xt = F[S]
t xt−1 + G[S]

t ut + wt, wt ∼ Nd

(
0,Q[S]

t

)
, (13.8)

Yt = H[S]
t xt + A[S]

t zt + εt, εt ∼ Nr

(
0,R[S]

t

)
. (13.9)

Multiprocess models were well known in the control engineering literature for
many years (see, for instance, Magill, 1965) before they were introduced into
the statistics literature by Harrison and Stevens (1976). Multiprocess models
were applied to forecasting multiple time series (Schnatter et al., 1987), to
deal with unobserved heterogeneity in longitudinal studies (Gamerman and
Smith, 1996), or to cluster time series in panel data (Frühwirth-Schnatter and
Kaufmann, 2006b).

13.1.4 Switching Linear Gaussian State Space Models

The basic idea of a switching state space model is that a priori no single model
is expected to hold for all time points t, rather the possibility that different
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models hold at different times points is explicitly recognized by modeling the
hidden model indicator St as being dynamic over time.

A switching linear Gaussian state space model is based on the state space
form introduced in Subsection 13.1.2, however, some (or all) system matrices
are driven by a hidden model indicator St:

xt = F[St]
t xt−1 + G[St]

t ut + wt, wt ∼ Nd

(
0,Q[St]

t

)
, (13.10)

Yt = H[St]
t xt + A[St]

t zt + εt, εt ∼ Nr

(
0,R[St]

t

)
. (13.11)

{St, t = 1, . . . , T} is a sequence of random variables, allowed to take values in
the discrete space {1, . . . , K}. The degenerate case St ≡ St−1 ≡ S reduces to
the multiprocess model introduced in Subsection 13.1.3.

To complete the model specification, some probabilistic structure has to
be imposed on St. We distinguish two cases of switching state space models,
namely finite mixtures of state space models, if St is an i.i.d. sequence with
probability distribution η = (η1, . . . , ηK), and Markov switching state space
models, if St is a hidden Markov chain with transition matrix ξ as introduced
in Chapter 10. The first structure may be regarded as a special case of the sec-
ond structure with restricted transition matrix; see Subsection 10.2.6. Finite
mixtures of state space models are sometimes called “multi process models”
(Harrison and Stevens, 1976; Smith and West, 1983), whereas Markov switch-
ing state space models are sometimes called “state space models with regime
switching” (Kim and Nelson, 1999).

The engineering literature has seen several pioneering works on switching
state space models since the 1960s. For target tracking problems, for instance,
Nahi (1969) assumes a nonzero probability that any observation consists of
noise only, leading to a state space model where Ht is switching between
a zero and a nonzero value; see Bar-Shalom and Tse (1975) and Shumway
and Stoffer (1991) for a related application. In control engineering research
Ackerson and Fu (1970) consider a linear Gaussian state space model, where
the covariance matrices in the transition and in the observation equation are
allowed to depend on a hidden Markov chain.

Harrison and Stevens (1976) introduced finite mixtures of linear Gaussian
state space models into the statistics literature; further applications are found
in medicine (Smith and West, 1983; Gordon and Smith, 1990), speech recog-
nition (Juang and Rabiner, 1985; Rabiner and Juang, 1986), and hydrology
(Schnatter, 1988b). The Markov switching linear Gaussian state space model
became popular in econometrics through the work of Kim (1993a, 1993b, 1994)
and Shephard (1994); see also the monograph of Kim and Nelson (1999) for
further applications and references.

13.1.5 The General State Space Form

A useful way of thinking of a state space model is in terms of a hierarchical
model, where on a first level the model specifies the conditional distribution
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p(y1, . . . ,yT |x1, . . . ,xT ) of the process Y1, . . . ,YT given the whole state pro-
cess x1, . . . ,xT . On a second level the model characterizes the distribution
p(x1, . . . ,xT ) of the state process. The following structure is characteristic
of a state space model. The random variables Y1, . . . ,YT are independent
of each other given the state process x1, . . . ,xT and Yt is independent of
x1, . . . ,xt−1 given xt:

p(y1, . . . ,yT |x1, . . . ,xT ) =
T∏

t=1

p(yt|xt). (13.12)

The state variable xt is a first-order hidden Markov process, hence indepen-
dent of x1, . . . ,xt−2 given xt−1:

p(x1, . . . ,xT ) =
T∏

t=1

p(xt|xt−1). (13.13)

Thus to define a state space model, one could directly specify for each t =
1, . . . , T the observation density p(yt|xt) and the transition density p(xt|xt−1).
Because these densities are in principle arbitrary, the hierarchical formulation
is very useful, as it allows us to introduce nonlinearities in the relationship
between yt and xt and xt and xt−1 as well as nonnormality by densities that
are intrinsically nonnormal.

For a linear Gaussian state space model the observation and the transition
density evidently are given by

Yt|xt ∼ Nr (Htxt + Atzt,Rt) ,

xt|xt−1 ∼ Nd (Ftxt−1 + Gtut,Qt) .

For a switching state space model the distributions (13.12) and (13.13) are
formulated conditional on knowing the hidden indicators S = (S0, S1, . . . , ST ),
whereas a third level is added by describing the probability law for S:

p(y1, . . . ,yT |x1, . . . ,xT ,S) =
T∏

t=1

p(yt|xt, St),

p(x1, . . . ,xT |S) =
T∏

t=1

p(xt|xt−1, St),

p(S) =
T∏

t=1

p(St|St−1).

As in Chapter 10, the transition density as well as the observation density is
assumed to depend on St only.
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13.2 Nonlinear Time Series Analysis Based on Switching
State Space Models

13.2.1 ARMA Models with and Without Switching

The linear Gaussian state space form introduced in Subsection 13.1.2 sub-
sumes many models that are popular in time series analysis, including regres-
sion models and ARMA models (Harvey, 1989; Shumway and Stoffer, 2000;
Durbin and Koopman, 2001). Consider the ARMA(p, q) process,

δ(L)(Yt − µ) = θ(L)εt, εt ∼ N
(
0, σ2

ε

)
,

where L is the lag operator, δ(L) = 1−δ1L−· · ·−δpL
p, and θ(L) = 1−θ1L−

· · · − θqL
q, with δ1, . . . , δp being the AR coefficients, and θ1, . . . , θq being the

MA coefficients. This model possesses for q = p − 1 the following state space
representation with xt ∈ �p,

Yt = µ + H(θ)xt, (13.14)

xt = F(δ)xt−1 +

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ εt, εt ∼ N
(
0, σ2

ε

)
, (13.15)

with

F(δ) =
(

δ1 . . . δp−1 δp

Ip−1 0(p−1)×1

)
, H(θ) =

(
1 −θ1 · · · −θq

)
. (13.16)

The same state space representation could be used if q < p − 1 after adding
(p − 1 − q) MA coefficients equal to 0: θ = (θ1, . . . , θq, 0, . . . , 0). If q ≥ p, a
similar state space representation with xt ∈ �q+1 could be used, with the
matrix F(δ) in (13.15) being defined after adding (q − p + 1) AR coefficients
equal to 0: δ = (δ1, . . . , δp, 0, . . . , 0).

In complex modeling situations it is often easier to work with the state
space representation, in particular when dealing with outliers, missing data,
interventions, mixed-effects, and structural changes (Kohn and Ansley, 1986;
Harvey et al., 1998).

This is, for instance, the case if a hidden Markov chain St is introduced
into an ARMA model, one example being the switching ARMA model (Billio
and Monfort, 1998; Billio et al., 1999), for which the one-step ahead predic-
tive density depends on the whole history of St. This long-range dependence
disappears conditional on the latent variables xt and St, if an ARMA(p, q)
process with switching mean is represented by the following switching state
space model,

Yt = µSt + H(θ)xt,
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with the state equation being the same as in (13.15). This facilitates statistical
inference in Section 13.3 and 13.4.

A similar result holds for the Markov switching autoregressive model of
Lam (1990), defined earlier in (12.11), which has the following state space
form,

Yt =
(
1 1

) (
µt

xt

)
,

(
µt

xt

)
=

(
1 0
0 F(δ)

) (
µt−1
xt−1

)
+

⎛⎜⎜⎜⎝
βSt

0
...
0

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎠ εt,

with xt and F(δ) being the same as in (13.15).

13.2.2 Unobserved Component Time Series Models

The state space approach is also useful for decomposing a time series into
unobserved components such as trend, cycles, seasonal, and irregular com-
ponents (Harvey, 1989). A simple example of such a model is the local level
model discussed in Subsection 13.1.1; a more flexible one is the basic structural
model (Harvey and Todd, 1983):

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N
(
0, σ2

µ

)
,

βt = βt−1 + wt,2, wt,2 ∼ N
(
0, σ2

β

)
,

γt = −
s−1∑
j=1

γt−j + wt,3, wt,3 ∼ N
(
0, σ2

γ

)
,

Yt = µt + γt + εt, εt ∼ N
(
0, σ2

ε

)
. (13.17)

µt is the slowly varying trend of the time series, γt is a periodic seasonal
component, and εt is a random disturbance term. If no seasonal component
is present in (13.17) then the resulting model is called the local linear trend
model.

Decomposing a time series into a stochastic and stationary component may
lead to identification problems (Nelson, 1988). The local level model discussed
in Subsection 13.1.1, for instance, is not identified if the two noise terms εt

and wt are allowed to be correlated. For this reason, it is assumed in the basic
structural model that all error terms are uncorrelated.

Unobserved component models found numerous applications in economics
and have been extended in several ways by including a hidden indicator. Many
applications of this model typically are based on the assumption that the
error terms in the state and in the observation equation are homoscedastic.
Heteroscedasticity may be caused by outliers as discussed in Subsection 13.2.3.
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In addition, it is reasonable to assume there exists some kind of conditional
heteroscedasticity in that errors with large variances tend to be followed by
errors with large variances and similarly errors with small variances tend to
be followed by errors with small variances.

To capture heteroscedasticity, Harvey et al. (1992) consider unobserved
component models with ARCH disturbances both in the transition as well as
in the observation equation. As an alternative, Kim (1993b) introduced un-
observed component time series models with Markov switching heteroscedas-
ticity, by assuming that the variances depend on a hidden Markov chain:

xt = Fxt−1 + wt, wt ∼ Nd

(
0,Q[St]

t

)
,

Yt = Hxt + εt, εt ∼ N
(
0, σ2

ε,St

)
.

Applications of this model include modeling the link between inflation rates
and inflation uncertainty (Kim, 1993b) and analyzing the U.S. stock market
with focus on the 1987 crash (Kim and Kim, 1996).

Alternatively, hidden indicators have been introduced into the structural
part of unobserved component models. Whittaker and Frühwirth-Schnatter
(1994) define a dynamic change-point model, where in a local level model, a
random walk drift is added after a structural break:

µt = µt−1 + (St − 1)βt−1 + wt,1, wt,1 ∼ N
(
0, σ2

µ

)
,

βt = βt−1 + wt,2, wt,2 ∼ N
(
0, σ2

β

)
,

where St is allowed a one-time change between state 1 and 2 at an unknown
change-point τ .

To capture different growth behavior in boom and recession, Luginbuhl
and de Vos (1999) model the log gross domestic product by a switching local
linear trend model. Two different drift components αt and βt are assumed
to be present, each of which follows a random walk, but only one of them
contributes to the trend:

µt = µt−1 + (1 − St)αt−1 + Stβt−1 + wt,1,

αt = αt−1 + wt,2,

βt = βt−1 + wt,3,

Yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
.

The indicator St, selecting one of the two trend components, is assumed to
follow a hidden Markov chain with state space {0, 1}.

13.2.3 Capturing Sudden Changes in Time Series

Detecting sudden changes, outliers, and level shifts is an important aspect of
practical time series analysis, often called intervention analysis (Tsay, 1988).
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Many authors generalized the linear Gaussian state space model with the
aim of establishing recursive estimation procedures that are robust to outliers
(Masreliez, 1975; Masreliez and Martin, 1975; West, 1981, 1984; Tsai and
Kurz, 1983; Peña and Guttman, 1988; Meinhold and Singpurwalla, 1989).
Peña and Guttman (1988) generalized the scale-contaminated model (Tukey,
1960; Box and Tiao, 1968), already discussed in Subsection 7.2.1, to the frame-
work of robust linear Gaussian state space models with univariate observation
vector Yt, by assuming that the noise εt in the observation equation (13.5)
follows a mixture of two normal distributions with mean zero, but different
variances:

εt ∼ (1 − η2)N
(
0, σ2

ε

)
+ η2N

(
0, kσ2

ε

)
,

where typically η2 is a small fraction of outliers, whereas k >> 1. For esti-
mation, however, it is useful to view such a robust state space model as a
switching Gaussian state space model, where the distribution of the observa-
tion noise is driven by a hidden i.i.d. sequence St:

σ2
ε,St

=
{

σ2
ε , St = 1,

kσ2
ε , St = 2,

with probability Pr(St = 2) = η2.
In Meinhold and Singpurwalla (1989) robustness is achieved by assum-

ing that both wt and εt have a marginal t-distribution of differing degree of
freedom ν1 and ν2, which may be written as

wt ∼ Nd

(
0,Q/ω1

t

)
, ω1

t ∼ G (ν1/2, ν1/2) ,

εt ∼ N
(
0, σ2

ε/ω2
t

)
, ω2

t ∼ G (ν2/2, ν2/2) .

A combination of these two robust state space models appears in Godsill
and Rayner (1998) for the reconstruction of signals that are degraded by an
impulsive noise:

Yt = xt + (St − 1)υt, υt ∼ N
(
0, σ2

υ/ωt

)
, ωt ∼ G (ν/2, ν/2) ,

where St is a hidden Markov chain taking the value 1, if no noise is present,
and 2 otherwise. xt is an AR(p) process modeled through a state space model
as in (13.15).

A more general model, where outliers may be observational as well as
innovational is considered in Godsill (1997) in the context of reconstructing
acoustically recorded signals, such as speech and music. The statistical model
is an ARMA(p, q) process observed with noise, which possesses the following
state space representation with observation equation,

Yt = µ + H(θ)xt + υt,

with xt and H(θ) being the same as in (13.15) and (13.16). Both υt as well
as the error term εt appearing in (13.15) are assumed to follow a mixture of
a normal and a t-distribution:
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υt ∼ N
(
0, σ2

υ,S1
t

)
,

σ2
υ,S1

t
= (2 − S1

t )σ2
υ + (S1

t − 1)σ2
υ/ω1

t , ω1
t ∼ G (ν1/2, ν1/2) ,

εt ∼ N
(
0, σ2

ε,S2
t

)
,

σ2
ε,S2

t
= (2 − S2

t )σ2
ε + (S2

t − 1)σ2
ε/ω2

t , ω2
t ∼ G (ν2/2, ν2/2) .

S1
t and S2

t are two independent two-state hidden Markov chains with unknown
transition matrices ξ1 and ξ2.

Another useful model to deal with structural or innovation outliers is the
random level shift time series model (Chen and Tiao, 1990; McCulloch and
Tsay, 1993):

Yt = µt + Zt,

µt = µt−1 + (St − 1)βt, βt ∼ N
(
0, kσ2

ε

)
,

δ(L)Zt = θ(L)εt, εt ∼ N
(
0, σ2

ε

)
,

where St is a two-state hidden i.i.d. indicator with St = 2 corresponding to
a shift that occurs a priori with probability Pr(St = 2) = η2. If η2 = 1, then
the level changes all the time and the model is related to the local trend
model (13.17). Gerlach and Kohn (2000) show how intervention analysis may
be treated through a switching state space model including both a hidden
Markov indicator as well as a second i.i.d. indicator to deal with outliers.

For any of these models traditional likelihood estimation is rather involved.
The Bayesian framework discussed in Section 13.4 offers the possibility of
locating the position and the size of outlier and shifts simultaneously with
parameter estimation.

13.2.4 Switching Dynamic Factor Models

Dynamic factor models, in which a large number of observed time series are
assumed to be influenced by a common unobserved component, are a special
case of a state space model which found various applications in economics,
for instance, to estimate wage rates (Engle and Watson, 1981) and to analyze
economic indicators that move together (Stock and Watson, 2002).

Diebold and Rudebusch (1996) combine the dynamic factor model with
the Markov switching model, one example being the following model,

�Yt = β + λft + εt, εt ∼ Nr (0,Σ) ,

δ(L)(ft − µSt
) = wt, wt ∼ N (0, 1) ,

where Σ is a diagonal matrix, and wt and εt are pairwise independent. ft is
the latent dynamic factor, β and the factor loadings λ are unknown parame-
ters. Diebold and Rudebusch (1996) extended this model by considering more
general structures for the error process εt such as a VAR model. Kim and
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Nelson (1998) generalize this model by introducing time-varying transition
matrices.

Application appeared mainly in business cycle analysis (Kim and Nelson,
1998, 2001; Kaufmann, 2000).

13.2.5 Switching State Space Models as a Semi-Parametric
Smoothing Device

State space models are a useful device for smoothing and interpolating time
series (Wecker and Ansley, 1983; Kohn and Ansley, 1987) which are closely
related to semiparametric optimal smoothing methods based on the roughness
penalty approach.

Kitagawa (1981), for instance, considers the following smoothness prior
approach for smoothing nonstationary time series,

yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
,

µt − 2µt−1 + µt−2 = wt, wt ∼ N
(
0, σ2

µ

)
, (13.18)

which is closely related to basic structural model (13.17) without a seasonal
component γt and has a very simple state space form. A model that is similar
to (13.17) was introduced by Kitagawa and Gersch (1984) for smoothing time
series with trends and seasonal components.

Posterior mode estimation for model (13.18) under diffuse priors on µ−1
and µ0 corresponds to minimizing the penalized least square criterion

T∑
t=1

(yt − µt)2 + λ

T∑
t=3

(µt − 2µt−1 + µt−2)2, (13.19)

with respect to µ1, . . . , µT , where the smoothness parameter λ is related to the
variances of the error terms through λ = σ2

ε/σ2
µ (Fahrmeir and Knorr-Held,

2000). If in (13.18), the fixed variance σ2
µ is substituted by the switching

variance σ2
µ,St

, then the smoothness parameter itself depends on the hidden
Markov chain St: λt = σ2

ε/σ2
µ,St

. In this respect, switching state space models
with heteroscedastic variances σ2

µ,St
may be seen as a device for smoothing

time series where the smoothness parameter changes over time.

13.3 Filtering for Switching Linear Gaussian State
Space Models

Filtering aims at deriving the posterior density p(xt|yt, ϑ) of xt given ob-
servations yt = (y1, . . . ,yt) up to t in an efficient manner for a fixed model
parameter ϑ. To keep notation simple, dependence on ϑ is not made explicit.
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13.3.1 The Filtering Problem

Regrettably, the posterior density p(xt|yt) is of closed form only for very
restricted state space models with the linear Gaussian state space model being
the most prominent one. For this model class, the posterior density p(xt|yt) is
a normal distribution, where the first two moments are given by the Kalman
filter (Kalman, 1960, 1961); see also Algorithm 13.1 below.

Long before the Bayesian community became aware of the Kalman filter,
the importance of the Bayesian approach for solving the filtering problem
was realized in the engineering literature (Magill, 1965; Alspach and Soren-
son, 1972). As pointed out by Alspach and Sorenson (1972, p.439) regarding
p(xt|yt),

If this posterior density function were known, an estimate of the state
for any performance criterion could be determined.

Also for a nonlinear non-Gaussian state space model the filter problem
is solved by recursions similar in structure, but not in complexity, to the
Kalman filter. Let p(xt−1|yt−1) be the posterior density of the state xt−1 given
information up to t−1. The first part of the filtering step is to propagate this
information into the future, by deriving the density p(xt|yt−1) which may be
obtained from integrating the density p(xt,xt−1|yt−1) with respect to xt−1.
By assumption (13.13), the propagation step reads:

p(xt|yt−1) =
∫

p(xt|xt−1)p(xt−1|yt−1)dxt−1.

Once an observation yt is available, Bayes’ theorem plays a crucial role in
finding a coherent way of combining information propagated from the past
with the information contained in yt. The updated posterior density p(xt|yt)
is obtained from Bayes’ theorem as

p(xt|yt) =
p(yt|xt)p(xt|yt−1)

p(yt|yt−1)
,

with the normalizing constant being identical to the one-step ahead predictive
density p(yt|yt−1):

p(yt|yt−1) =
∫

p(yt|xt)p(xt|yt−1)dxt.

13.3.2 Bayesian Inference for a General Linear Regression Model

It is useful to discuss the filtering problem first for a multivariate regression
model with general error variance–covariance matrix:

Y = Xβ + ε, ε ∼ Nr (0,R) , (13.20)
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where Y is a vector-valued random variable of dimension r, β is an unknown
regression coefficient of dimension d, X is a known (r × d) design matrix, and
R is a known variance–covariance matrix. In this context filtering refers to
inference on β through combining of the information contained in a single ob-
servation y from model (13.20) with prior information on β expressed through
a prior distribution p(β). Bayes’ theorem provides a coherent way of combin-
ing these two sources of information by deriving the posterior distribution
p(β|R,y):

p(β|R,y) ∝ p(y|β,R)p(β), (13.21)

where the likelihood function p(y|β,R) is equal to:

p(y|β,R) = (2π)−r/2|R|−1/2exp
(

−1
2
(y − Xβ)

′
R−1(y − Xβ)

)
.

For a known variance–covariance matrix R, the likelihood function p(y|β,R)
is a quadratic form in β, hence the conjugate prior p(β) for the regression
coefficient β is a normal distribution, β ∼ Nd (b0,B0), as is the resulting
posterior distribution:

β|R,y ∼ Nd (b1,B1) . (13.22)

If R−1 and B−1
0 exist, then the moments of the posterior density are given in

terms of the following information filter,

b1 = B1(B−1
0 b0 + X

′
R−1y), (13.23)

B1 = (B−1
0 + X

′
R−1X)−1.

The information filter expresses the posterior mean b1 as a weighted average
of the prior mean b0 and an estimator that is based entirely on the observation
y, with the weights depending on the information obtained in the prior distri-
bution and the likelihood function. If X

′
R−1X is invertible, the data-based es-

timator is equal to the weighted least square estimator (X
′
R−1X)−1X

′
R−1y,

and the weight matrices are equal to B1B−1
0 and B1X

′
R−1X, respectively.

The information filter involves the inversion of a (d × d) matrix to obtain
the posterior variance–covariance matrix B1. If the dimension of β is larger
than the dimension of the observation y (i.e., r < d), or if R or B0 are not
invertible, it is preferable to work with the following prediction-correction
filter which involves the inversion of an (r × r) matrix, only,

b1 = b0 + K1(y − Xb0), (13.24)
B1 = (Id − K1X)B0,

K1 = B0X
′
C−1,

C = XB0X
′
+ R. (13.25)
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The prediction-correction filter expresses the posterior mean b1 as a correction
of the prior mean b0, which is based on the prediction error y−Xb0, resulting
from using the prior mean b0 as an estimator of β.

It is useful to have an explicit form of the marginal likelihood p(y|R), that
is equal to the normalizing constant of the nonnormalized posterior p(β|R,y),
given by (13.21):

p(y|R) =
∫

p(y|β,R)p(β)dβ.

The marginal likelihood p(y|R) is obtained from evaluating the following ratio
for an arbitrary value of β,

p(y|R) =
p(y|β,R)p(β)

p(β|R,y)
.

Choosing β = b0 yields

p(y|R) = (2π)−r/2|C|−1/2exp
(

−1
2
(y − Xb0)

′
C−1(y − Xb0)

)
, (13.26)

which is the density of a multivariate normal distribution with mean Xb0 and
variance–covariance matrix C, when regarded as a function of y.

13.3.3 Filtering for the Linear Gaussian State Space Model

For the linear Gaussian state space model defined in (13.6) and (13.7) the
posterior density p(xt|yt) is a normal distribution, where the first two mo-
ments are given by the Kalman filter recursions, derived for the first time in
Kalman (1960) and Kalman (1961).

Algorithm 13.1: Kalman Filter Assume that the filter density p(xt−1|yt−1)
is the density of a normal distribution:

xt−1|yt−1 ∼ Nd

(
x̂t−1|t−1,Pt−1|t−1

)
. (13.27)

Then for a linear Gaussian state space model, the filter density p(xt|yt) at
time t is again the density of a normal distribution obtained from p(xt−1|yt−1)
and yt through the following steps.

(a) Propagation — determine the density p(xt|yt−1):

xt|yt−1 ∼ Nd

(
x̂t|t−1,Pt|t−1

)
, (13.28)

x̂t|t−1 = Ftx̂t−1|t−1 + Gtut,

Pt|t−1 = FtPt−1|t−1F
′
t + Qt.
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(b) Prediction — determine the predictive density p(yt|yt−1):

yt|yt−1 ∼ Nr

(
ŷt|t−1,Ct|t−1

)
, (13.29)

ŷt|t−1 = Htx̂t|t−1 + Atzt,

Ct|t−1 = HtPt|t−1H
′
t + Rt.

(c) Correction — determine the filter density p(xt|yt):

xt|yt ∼ Nd

(
x̂t|t,Pt|t

)
, (13.30)

x̂t|t = Htx̂t|t−1 + Kt(yt − ŷt|t−1),

Kt = Pt|t−1H
′
tC

−1
t|t−1,

Pt|t = (I − KtHt)Pt|t−1.

To start the Kalman filter, one has to choose the normal prior Nd

(
x̂0|0,P0|0

)
.

It is often recommended to start with a diffuse prior with P0|0 = κId with
κ being a large value. For state vectors containing both nonstationary and
stationary components, De Jong and Chu-Chun-Lin (1994) suggest combining
a vague prior with a stationary prior. On the whole, the correct initialization
of the Kalman filter is a very subtle issue, and we refer to Koopman (1997)
and Durbin and Koopman (2001, Chapter 5) for a very concise and excellent
discussion of this issue.

Derivation of the Kalman Filter

The Kalman filter is easily derived using filtering for a general linear model
as in Subsection 13.3.2, as exemplified in Harrison and Stevens (1976) and
Meinhold and Singpurwalla (1983).

The density p(xt|yt−1) appearing in the propagation step is the normaliz-
ing constant of the posterior density p(xt−1|xt,yt−1), given by Bayes’ theorem
as

p(xt−1|xt,yt−1) ∝ p(xt|xt−1)p(xt−1|yt−1). (13.31)

In (13.31), the transition density p(xt|xt−1) is the likelihood of a general
linear model with error variance-covariance matrix Qt, where the unknown
regression parameter xt−1 follows the prior p(xt−1|yt−1), being equal to the
filtering density (13.27). The marginal likelihood for this problem is given by
(13.26) and takes the form of a normal density in xt with the moments being
given exactly as in (13.28).

The predictive density p(yt|yt−1) is the normalizing constant of the filter
density p(xt|yt) which is given by Bayes’ theorem:

p(xt|yt) ∝ p(yt|xt)p(xt|yt−1). (13.32)
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In (13.32), the observation density p(yt|xt) is the likelihood of a general linear
model with error variance–covariance matrix Rt, where the unknown regres-
sion parameter xt follows the prior p(xt|yt−1) being equal to the propagated
density (13.28). Again from Subsection 13.3.2, the posterior p(xt|yt) is normal
with the moments given by (13.30), whereas the marginal likelihood p(yt|yt−1)
takes the form of a normal density in yt with the moments given exactly by
(13.29).

For alternative derivations of the Kalman filter based on the concept of
projection and minimum mean-squared estimation, see Jazwinski (1970), An-
derson and Moore (1979), and Harvey (1989).

13.3.4 Filtering for Multiprocess Models

In his pioneering work, Magill (1965) used Bayesian methods to show that for
a multiprocess model an explicit solution for the filtering problem is available.
If the hidden model indicator S takes K values, then the filter density is a
mixture of K normal distributions:

p(xt|yt) =
K∑

k=1

fN (xt; x̂
[k]
t|t ,P

[k]
t|t)Pr(S = k|yt), (13.33)

where the number of components remains fixed for all t = 1, . . . , T . The mo-
ments of the various components are obtained by running K parallel Kalman
filters as in Algorithm 13.1, each conditional on assuming that the state of
S is equal to k, for k = 1, . . . , K. The component weights are dynamically
changing over time and Sims and Lainiotis (1969) showed how they may be
updated recursively using Bayes’ theorem:

Pr(S = k|yt) ∝ fN (yt; ŷ
[k]
t|t−1,C

[k]
t|t−1)Pr(S = k|yt−1),

where the moments of the predictive density p(yt|S = k,yt−1) are obtained
from the Kalman filter corresponding to S = k.

13.3.5 Approximate Filtering for Switching Linear Gaussian State
Space Models

For a switching linear Gaussian state space model the filter density is a mixture
of normal distributions:

p(xt|yt) = (13.34)∑
(k1,...,kt)∈St

fN (xt; x̂
[k1,...,kt]
t|t ,P[k1,...,kt]

t|t )Pr(St = (k1, . . . , kt)|yt),

where St = {1, . . . , K}t is the space of all paths St = (S1, . . . , St) up to t.
This representation holds both for finite mixture as well as Markov switching
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state space models. In contrast to the multiprocess model, the number of
components in the filtering density is increasing exponentially fast. Running
an exact recursive filter requires combining all Kt−1 normal posterior densities
fN (xt−1; x̂

[k1,...,kt−1]
t−1|t−1 ,P[k1,...,kt−1]

t−1|t−1 ) with each of the K states of St, running in
total Kt parallel Kalman filters as in Algorithm 13.1. This is operational
only if the total number T of observations is not too large; see, for instance,
Schervish and Tsay (1988) for an empirical application of this filter.

In most cases some approximate filter has to be applied. Approximate
filters for switching Gaussian state space models were studied rather early
in the engineering literature; we mention here in particular Ackerson and Fu
(1970), Bar-Shalom and Tse (1975), Akashi and Kumamoto (1977), Tugnait
(1982), and Blom and Bar-Shalom (1988). Approximations in the statistical
and econometric literature were suggested by Harrison and Stevens (1976),
Cosslett and Lee (1985), Peña and Guttman (1988), Lam (1990), Gordon and
Smith (1990), Shumway and Stoffer (1991), and Kim (1994). To keep the
filter operational, the number of components of the filtering density has to be
limited, usually by merging components at each filter step. Other techniques
are trimming by removing unlikely components with small probability and
combining similar components into a single component.

A useful starting point for discussing the various approximate filters is
writing the filter density p(xt|yt) as

p(xt|yt) =
K∑

k=1

p(xt|yt, St = k)Pr(St = k|yt). (13.35)

In (13.35) we identify two filtering problems. First, we need to derive the dis-
crete filter probabilities Pr(St = k|yt) for k = 1, . . . , K without conditioning
on the continuous state vector xt; second, we need to derive filter recursion
for the continuous state xt conditional on knowing only the present state of
St.

For a hidden Markov chain St with transition matrix ξ, the discrete filter
is derived through Bayes’ theorem in a similar way as was done for Markov
switching models in Section 11.2:

Pr(St = k|yt) ∝ p(yt|St = k,yt−1)Pr(St = k|yt−1). (13.36)

The propagated probabilities Pr(St = k|yt−1) are essentially the same as in
Section 11.2 and read:

Pr(St = k|yt−1) =
K∑

j=1

ξjkPr(St−1 = j|yt−1).

For a hidden i.i.d. indicator this reduces to Pr(St = k|yt−1) = ηk as ξjk = ηk.
Because the likelihood p(yt|St = k,yt−1) in (13.36) will also appear in the
prediction step of the second filtering problem, both filtering problems are
related.
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To solve the second filtering problem, a recursion between the filter den-
sities p(xt−1|yt−1, St−1 = j) and p(xt|yt, St = k) has to be established. One
could, in principle, proceed as in Subsection 13.3.3, using the propagation step

p(xt|yt−1, St = k) = (13.37)∫
p(xt|xt−1, St = k)p(xt−1|yt−1, St = k)dxt−1,

the prediction step

p(yt|St = k,yt−1) =
∫

p(yt|xt, St = k)p(xt|yt−1, St = k)dxt, (13.38)

and the correction step

p(xt|yt, St = k) ∝ p(yt|xt, St = k)p(xt|yt−1, St = k). (13.39)

Because we are dealing with a finite or Markov mixture of linear Gaussian
state space models, the transition density p(xt|xt−1, St = k) and the obser-
vation density p(yt|xt, St = k) are normal, however, p(xt−1|yt−1, St = k)
does not have the required form of a conjugate normal prior. Nonnormality of
p(xt−1|yt−1, St = k) arises due to possible changes in the states of St−1 and
St between t − 1 and t, which may occur both for finite mixture as well as
Markov switching state space models. p(xt−1|yt−1, St = k) is a finite mixture
of the filtering densities at t − 1:

p(xt−1|yt−1, St = k) =
K∑

j=1

p(xt−1|yt−1, St−1 = j)wjk, (13.40)

where the weights are given by

wjk = Pr(St−1 = j|yt−1, St = k) ∝ ξjkPr(St−1 = j|yt−1).

For a Markov switching state space model, the weights read:

wjk =
ξjkPr(St−1 = j|yt−1)∑K
l=1 ξlkPr(St−1 = l|yt−1)

. (13.41)

For a finite mixture state space model, the weights are identical with the
discrete filter probabilities:

wjk = Pr(St−1 = j|yt−1). (13.42)

In principle, these formulae provide a recursion comparable to the Kalman
filter. However, because the filter density p(xt|yt, St = k) is given by a mixture
of Kt = KKt−1 components, where Kt−1 is the number of components at
t − 1, some method of limiting the number of components must be found to
make this filter operational. As pointed out by Blom and Bar-Shalom (1988),
different algorithms emerge, depending on the precise density and the precise
time point chosen for this simplification.
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Kim’s Algorithm

This algorithm was suggested independently by Tugnait (1982) and Kim
(1994). Assume that the filter density p(xt−1|yt−1, St−1 = j) is a normal
distribution:

p(xt−1|yt−1, St−1 = j) = fN (xt−1; x̂
[j]
t−1|t−1,P

[j]
t−1|t−1). (13.43)

Then the prior p(xt−1|yt−1, St = k) in (13.40) is a mixture of K normal
distributions as is the filter density p(xt|yt, St = k) in (13.39):

p(xt|yt, St = k) = (13.44)
K∑

j=1

fN (xt; x̂
[j,k]
t|t ,P[j,k]

t|t )Pr(St−1 = j|yt, St = k).

The component densities in the filter density are obtained by running in total
K2 Kalman filters, combining each normal density p(xt−1|yt−1, St−1 = j)
with each possible value for St = k. Each Kalman filter delivers the normal
one-step ahead predictive density

p(yt|yt−1, St−1 = j, St = k) = fN (yt; ŷ
[j,k]
t|t−1,C

[j,k]
t|t−1),

which could be used to compute the weights Pr(St−1 = j|yt, St = k) in (13.44)
through Bayes’ theorem:

Pr(St−1 = j|yt, St = k) ∝ (13.45)
p(yt|yt−1, St−1 = j, St = k)wjk,

where wjk were defined in (13.41) and (13.42), respectively. For each value of
k, the normalizing constant of the right-hand side of (13.45) is equal to the
one-step ahead predictive density p(yt|St = k,yt−1),

p(yt|St = k,yt−1) =
K∑

j=1

p(yt|yt−1, St−1 = j, St = k)wjk,

which is necessary for the computation of the discrete filter probabilities
Pr(St = k|yt) through (13.36).

To keep the filter operational, Kim (1994) collapses the mixture (13.44)
to a single normal density after having finished filtering at time t, which it is
then used as a prior density for the next filtering step:

p(xt|yt, St = k) ≈ fN (xt; x̂
[k]
t|t ,P

[k]
t|t),

x̂[k]
t|t =

K∑
j=1

x̂[j,k]
t|t Pr(St−1 = j|yt, St = k),

P[k]
t|t =

K∑
j=1

(x̂[j,k]
t|t (x̂[j,k]

t|t )
′
+ P[j,k]

t|t )Pr(St−1 = j|yt, St = k) − x̂[k]
t|t(x̂

[k]
t|t)

′
.
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A comparison of this approximate filter with exact inference in Kim (1994)
for the model of Lam (1990) indicates that this approximate filter is quite
accurate.

Tugnait (1982) extended this method by updating a whole sequence
(St−h, . . . , St) with h > 1.

Other Approximations

Several other approximations also assume that the prior p(xt−1|yt−1, St−1 =
j) is a normal distribution as in (13.43), reduction of filter complexity, how-
ever, is carried out in a different manner. Blom and Bar-Shalom (1988) suggest
collapsing the mixture density p(xt−1|yt−1, St = k) given by (13.40) to a sin-
gle normal density with the same moments prior to running through the filter
steps (13.37) to (13.38) at time t:

p(xt−1|yt−1, St = k) ≈ fN (xt; x̂
[k]
t−1|t−1,P

[k]
t−1|t−1)

x̂[k]
t−1|t−1 =

K∑
j=1

wjkE(xt−1|yt−1, St−1 = j), (13.46)

with a similar formula for the variance–covariance matrix. Filtering then re-
duces to running K Kalman filters, however, this filter is less precise than
Kim’s algorithm.

For finite mixture of state space models, the weights in (13.46) are inde-
pendent of k, wjk = Pr(St−1 = j|yt−1) (see again (13.42)), and all moments in
(13.46) reduce to the moments x̂t−1|t−1 and Pt−1|t−1 of the marginal posterior
p(xt−1|yt−1),

p(xt−1|yt−1, St = k) ≈ fN (xt; x̂t−1|t−1,Pt−1|t−1).

Such a filter is running through the filter steps (13.37) to (13.38) with the same
prior p(xt−1|yt−1, St = k) for all k and reduces the collapsing procedures
suggested by Harrison and Stevens (1976), Peña and Guttman (1988), and
Shumway and Stoffer (1991) for finite mixtures of state space models.

Ackerson and Fu (1970) and Bar-Shalom and Tse (1975) use the same col-
lapsing technique, where the unconditional posterior p(xt−1|yt−1) is approxi-
mated by a single normal density prior to filtering also for Markov switching
state space models. This procedure, however, is likely to be less optimal than
the collapsing method of Blom and Bar-Shalom (1988), especially for highly
persistent Markov chains, whereas there is little computational gain.

13.4 Parameter Estimation for Switching State
Space Models

Let ϑ summarize all unknown distinct parameters appearing in the definition
of a switching state space model that should be fitted to a univariate or multi-
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variate time series y = (y1, . . . ,yT ). In various applications of switching state
space models, the parameters of the probability law of St and the covariances
Qt and Rt are assumed to be known, often based by choosing somewhat ar-
bitrary values (Harrison and Stevens, 1976; Carter and Kohn, 1994), but in
general these parameters may be estimated from the data as well.

13.4.1 The Likelihood Function of a State Space Model

The likelihood function p(y|ϑ) is defined as the density p(y1, . . . ,yT |ϑ) of the
joint distribution of Y1, . . . ,YT where all latent variables, in particular the
state process x = (x0, . . . ,xT ) and the indicator process S = (S0, . . . , ST ),
are integrated out. In general, the likelihood of a state space model is derived
by using the following decomposition into one-step ahead predictive densities
(Schweppe, 1965; Kashyap, 1970),

p(y|ϑ) = p(y1, . . . ,yT |ϑ) =
T∏

t=1

p(yt|yt−1, ϑ).

For a linear Gaussian state space model the predictive density p(yt|yt−1, ϑ)
appears as part of the Kalman filter (see Algorithm 13.1), and the likelihood
function is obtained from a single run of the Kalman filter conditional on ϑ,
if the initial moments x̂0|0 and P0|0 are known:

−2 log p(y1, . . . ,yT |ϑ)

=
T∑

t=1

(
log |Ct|t−1(ϑ)| + (yt − ŷt|t−1(ϑ))

′
Ct|t−1(ϑ)−1(yt − ŷt|t−1(ϑ))

)
,

where ŷt|t−1(ϑ) and Ct|t−1(ϑ) are given by (13.29). Some care needs to be
exercised if the initial moments x̂0|0 and P0|0 are unknown, and we refer to
Durbin and Koopman (2001, Section 7.2) for further discussion.

For a switching linear Gaussian state space model, the likelihood p(y|ϑ)
where both sets of latent variables are integrated out is not available in closed
form. Like the filter density p(xt|yt, ϑ), the one-step ahead predictive den-
sity p(yt|yt−1, ϑ) is a mixture of normal densities with an increasing number
of components. However, any of the approximate filters discussed in Sub-
section 13.3.5 leads immediately to an approximation to the log likelihood
function. By rewriting the predictive density as

p(yt|yt−1, ϑ) =
K∑

k=1

p(yt|yt−1, St = k,ϑ)Pr(St = k|yt−1, ϑ),

it becomes evident that p(yt|yt−1, ϑ) is the normalizing constant of the right-
hand side of discrete filter distribution Pr(St = k|y, ϑ), given in (13.36).
Approximate ML estimation based on approximate filters has been applied
by Shumway and Stoffer (1991) and Kim (1994), among others.
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It is worth noting that certain partial likelihood functions are available in
closed form. When holding S fixed, one is dealing with a standard state space
model, and the likelihood p(y|ϑ,S) is obtained by running a Kalman filter
conditional on ϑ and S.

13.4.2 Maximum Likelihood Estimation

A straightforward method of obtaining the ML estimator is direct maximiza-
tion of the exact or approximate log likelihood function log p(y1, . . . ,yT |ϑ)
using some numerical technique such as Newton–Raphson methods; see, for
instance, Hamilton (1994b, Section 5.7) for a review of these methods.

It was realized by Shumway and Stoffer (1982) and Watson and Engle
(1983) that the EM algorithm of Dempster et al. (1977) may be applied to
linear Gaussian state space models without switching, because the complete-
data likelihood function p(y|x,ϑ)p(x|ϑ) turns out to be of simple form. Koop-
man (1993) proposed a very simple and efficient EM algorithm for unknown
parameters inside the variance–covariance matrices Qt and Rt of a linear
Gaussian state space form.

For a switching state space model, the presence of two sets of latent vari-
ables hinders a straightforward application of the EM algorithm, because the
required smoothed probabilities Pr(St = k|y) are not available in closed form.
Shumway and Stoffer (1991) substitute these probabilities by Pr(St = k|yt)
which are available from any approximate filter discussed in Subsection 13.3.5
and report that this pseudo EM algorithm works well.

Consistency and asymptotic normality of the ML estimator of the param-
eters of a state space model hold under fairly general conditions; see Shumway
and Stoffer (1982), Schneider (1988), Hamilton (1994b, Section 13.4), Jensen
and Petersen (1999), and Shumway and Stoffer (2000, p.326ff). The observed
time series, however, needs to be fairly long in order to achieve asymptotic
normality. Moreover, problems occur if some of the parameters are close to the
boundary of the parameter space. For this reason it seems sensible to consider
a Bayesian approach.

13.4.3 Bayesian Inference

Bayesian inference for switching state space models is based on deriving the
joint posterior density p(x,S, ϑ|y) of all continuous states x = (x0, . . . ,xT ),
all discrete states S = (S0, . . . , ST ), and unknown model parameters ϑ, in-
cluding unknown parameters in the probability law of S, if any are present.
Due to the hierarchical structure of a switching state space model, this density
is proportional to:

p(x,S, ϑ|y) ∝ p(y|x,S, ϑ)p(x|S,ϑ)p(S|ϑ)p(ϑ),

which simplifies to:
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p(x,S, ϑ|y) ∝ p(x0|ϑ)p(ϑ) (13.47)

×
N∏

t=1

p(yt|St,xt, ϑ)p(xt|St,xt−1, ϑ)p(S|ϑ).

The densities p(yt|St,xt, ϑ) and p(xt|St,xt−1, ϑ) result directly from the def-
inition of the state space model, where p(x0|ϑ) is the prior of x0. p(ϑ) is the
prior density of all model parameters. The density p(S|ϑ) results directly from
the definition of the probability law of St. If St is a hidden Markov chain, then

p(S|ϑ) = p(S0|ϑ)
N∏

t=1

p(St|St−1, ϑ).

If St is a hidden i.i.d. indicator, then

p(S|ϑ) =
N∏

t=1

p(St|ϑ).

Note that the derivation of the posterior density in (13.47) is not limited to
switching linear Gaussian state space models, but is valid for any switching
state space model.

The posterior density p(x,S, ϑ|y), however, is not of any closed form, even
for linear Gaussian state space models without switching and simulation-based
methods are usually applied for Bayesian estimation. Durbin and Koopman
(2000) propagate the application of importance sampling, several other au-
thors explored MCMC methods; see Section 13.5.

Choosing the Priors for Bayesian Estimation

If St is a hidden Markov chain with transition matrix ξ, then the joint prior
reads

p(x0|ϑ, S0)p(S0|ξ)p(ϑ)p(ξ), (13.48)

where each row ξj· of the transition matrix ξ is chosen from a Dirichlet dis-
tribution as in Chapter 11:

ξk· ∼ D (ek1, . . . , ekK) , k = 1, . . . , K. (13.49)

To obtain a prior that is invariant to relabeling, Frühwirth-Schnatter (2001a)
suggested choosing ekk = eP and ekk′ = eT , if k �= k′. By choosing eP > eT ,
a Markov switching state space model is bounded away from a finite mixture
state space model. Choosing the prior p(S0|ξ) of the discrete-valued state
variable S0 is closely related to choosing the same prior for finite Markov
mixture models; see Subsection 10.3.4 for various choices of this distribution.
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If St is a hidden i.i.d. indicator with probability distribution η, then the
joint prior reduces to

p(x0|ϑ)p(ϑ)p(η), (13.50)

where the prior for η is chosen from the Dirichlet distribution as in Chapter 2:

η ∼ D (e0, . . . , e0) . (13.51)

In both cases, p(x0|ϑ, S0) is the prior for the continuous state variable x0 used
for initialization in the Kalman filter, and is allowed to depend on S0 for a
Markov switching state space model.

The prior for the remaining parameters ϑ is usually chosen to be condition-
ally conjugate to the complete-data likelihood p(y|x,S, ϑ)p(x|S,ϑ). To give
an example, consider a local level model where both variances are switching,

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ,St

)
, (13.52)

Yt = µt + εt, εt ∼ N
(
0, σ2

ε,St

)
.

The complete-data likelihood reads with x = (µ0, . . . , µT ) and ϑ = (σ2
µ,1, . . .,

σ2
µ,K , σ2

ε,1, . . . , σ
2
ε,K):

p(y|x,S, ϑ)p(x|S,ϑ) ∝
K∏

k=1

(
1

σ2
ε,k

)Nk(S)/2

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(yt − µt)2

2σ2
ε,k

⎫⎪⎪⎬⎪⎪⎭
×

(
1

σ2
µ,k

)Nk(S)/2

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(µt − µt−1)2

2σ2
µ,k

⎫⎪⎪⎬⎪⎪⎭ ,

where Nk(S) = #{St = k}. Considered as a function of σ2
ε,k, this is an

inverted Gamma density. Therefore the conditionally conjugate prior for σ2
ε,k

is an inverted Gamma density G−1 (cε,0, Cε,0). Similarly, the complete-data
likelihood is an inverted Gamma density, when considered as a function of
σ2

µ,k. Thus the conditionally conjugate prior for σ2
µ,k is again an inverted

Gamma density G−1 (cµ,0, Cµ,0).

Complete-Data Bayesian Estimation

Estimation of the unknown model parameters ϑ conditional on the complete
data S, x, and y is closely related to various Bayesian inference problems
discussed earlier. If parameters appearing in the definition of the probability
law of St are a priori independent of parameters appearing in the definition of
the transition and observation densities, then this independence is preserved
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a posteriori. If St is an i.i.d. indicator with unknown probability distribu-
tion η, then η|S,x,y follows a Dirichlet distribution as discussed for finite
mixture models in Subsection 3.5.3, whereas the posterior of ξ|S,x,y under
a hidden Markov chain St with unknown transition matrix ξ is the same
as in Subsection 11.5.5. For unknown parameters appearing in the definition
of the observation and the transition density, the complete-data likelihood
p(y|x,S, ϑ)p(x|S,ϑ) in combination with a conditionally conjugate prior p(ϑ)
often leads to a posterior density p(ϑ|S,x,y) that is of closed form.

To give an example, consider a local level model where both variances
are switching as in (13.52) and St is a hidden Markov chain. Then ϑ =
(σ2

µ,1, . . . , σ
2
µ,K , σ2

ε,1, . . . , σ
2
ε,K , ξ) and the complete-data posterior p(ϑ|x,S,y)

reads:

p(ϑ|x,S,y) ∝ p(y|x,S, ϑ)p(x|S,ϑ)p(S|ξ)p(ϑ) ∝ p(S0|ϑ)
K∏

j=1

K∏
k=1

ξ
Njk(S)
jk

×
K∏

k=1

(
1

σ2
ε,k

)Nk(S)/2+cε,0+1

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(yt − µt)2

2σ2
ε,k

− Cε,0

σ2
ε,k

⎫⎪⎪⎬⎪⎪⎭
×

K∏
k=1

(
1

σ2
µ,k

)Nk(S)/2+cµ,0+1

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(µt − µt−1)2

2σ2
µ,k

− Cµ,0

σ2
µ,k

⎫⎪⎪⎬⎪⎪⎭ ,

where Njk(S) = # {St−1 = j, St = k} counts the numbers of transitions from
j to k and Nk(S) = #{St = k} =

∑K
j=1 Njk(S). The transition matrix ξ, as

well as all variances σ2
µ,k and σ2

ε,k are conditionally independent. The precise
form of the posterior of ξ and the method used for sampling from this density
depend on the assumptions concerning p(S0|ϑ), as has been discussed earlier
in Subsection 11.5.5. The variances σ2

µ,k and σ2
ε,k each follow an inverted

Gamma density G−1 (cµ,k(S), Cµ,k(S)) and G−1 (cε,k(S), Cε,k(S)), where

cε,k(S) = cε,0 + 0.5Nk(S), Cε,k(S) = Cε,0 + 0.5
∑

t:St=k

(yt − µt)2,

cµ,k(S) = cµ,0 + 0.5Nk(S), Cµ,k(S) = Cµ,0 + 0.5
∑

t:St=k

(µt − µt−1)2.

13.5 Practical Bayesian Estimation Using MCMC

Practical Bayesian estimation of switching state space models usually relies
on MCMC estimation and was implemented for specific models discussed in
Section 13.2 such as the state space model with Markov switching conditional
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heteroscedasticity (Carlin et al., 1992; Carter and Kohn, 1994, 1996), the ran-
dom level shift model (McCulloch and Tsay, 1993), partial Gaussian state
space model (Shephard, 1994), robust state space model (Godsill, 1997; God-
sill and Rayner, 1998), dynamic factor model with regime switching (Kim and
Nelson, 1998; Kaufmann, 2000), and various unobserved component models
with Markov switching (Luginbuhl and de Vos, 1999; Engel and Kim, 1999).
Frühwirth-Schnatter (2001a) provides a general discussion of MCMC methods
for switching linear Gaussian state space models.

13.5.1 Various Data Augmentation Schemes

Various MCMC schemes have been suggested to implement data augmen-
tation and Gibbs sampling for switching linear Gaussian state space models.
The following three-block Gibbs sampler has been applied in Shephard (1994),
Carter and Kohn (1994), and Frühwirth-Schnatter (2001a).

Algorithm 13.2: MCMC for a Switching Linear Gaussian State Space Model
— Full Conditional Gibbs Sampling Sampling is carried out in three steps.

(a) Sample a path x = (x0, . . . ,xT ) of the continuous state variable condi-
tional on ϑ and S from the density p(x|ϑ,S,y), preferably using forward-
filtering-backward-sampling; see Algorithm 13.4.

(b) Sample a path S = (S0, . . . , ST ) of the discrete state variable conditional
on ϑ and x from the density p(S|ϑ,x,y).

(c) Sample ϑ conditional on x and S from the complete-data posterior density
p(ϑ|x,S,y).

Sampling a path of the state process x0, . . . ,xT in step (a) is discussed
in full detail in Subsection 13.5.2. Sampling the indicators in step (b) is
straightforward, if St is a hidden i.i.d. sequence with probability distribu-
tion η = (η1, . . . , ηK). In this case, St is independent of all other indicators
S−t given x, and step (b) could be carried out in one sweep by sampling St

for each t = 1, . . . , T from

Pr(St = j|y,x, ϑ) (13.53)
∝ p(yt|St = j,xt, ϑ)p(xt|St = j,xt−1, ϑ)ηk.

If St is a hidden Markov chain, then the results derived earlier for sampling
hidden Markov chains are extended to deal with switching state space models;
see Algorithm 13.5 for more details. Sampling the unknown model parameters
in step (c) conditional on S, x, and y has been discussed earlier in Subsec-
tion 13.4.3.

Carter and Kohn (1996, Lemma 2.2) prove that full conditional Gibbs
sampling may lead to a reducible sampler for certain state space models. This
is the case, for instance, if one of the variances, say Q[k]

t , is assumed to be
exactly 0, if St = k. As a remedy, Carter and Kohn (1996) substitute step
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(b) in Algorithm 13.2 by a step that samples St without conditioning on the
continuous states x.

Algorithm 13.3: MCMC for a Switching Linear Gaussian State Space Model
— Marginal Sampling of the Indicators Whereas sampling of x and ϑ is
the same as in step (a) and (c) in Algorithm 13.2, marginal sampling of the
indicators is carried out in the following way.

(b) For t = 1, . . . , T , sample St from p(St|S−t, ϑ,y) without conditioning on
x.

Generating the indicators St in step (b) of this algorithm in an efficient way
is far from straightforward. Carter and Kohn (1996) and Gerlach and Kohn
(2000) discuss various samplers, that are reviewed in Subsection 13.5.3. The
results of Liu et al. (1994) suggest that Algorithm 13.3 is more efficient than
Algorithm 13.2, because the indicators are conditioned on fewer variables when
they are generated. This is supported by a small simulation study in Gerlach
and Kohn (2000).

Another modification of Algorithm 13.2 is a partially marginalized sampler
(McCulloch and Tsay, 1993; Godsill, 1997; Godsill and Rayner, 1998), where
sampling of the indicators and the states is carried out in a different manner.

13.5.2 Sampling the Continuous State Process from the
Smoother Density

In this section, sampling a path of the state process x0, . . . ,xT from the condi-
tional posterior p(x0, . . . ,xT |y,S, ϑ), also called smoother density, is discussed
in full detail. The transition density p(xt|xt−1) as well as the observation den-
sity p(yt|xt) depends on unknown parameters ϑ and the latent processes S.
This dependence, however, is dropped for the remainder of this subsection for
notational convenience.

Single-Move Sampling of the Continuous State Process

Carlin et al. (1992) used a single-move Gibbs sampler based on sampling the
state xt for each t = 1, . . . , T from the conditional posterior xt ∼ p(xt|x−t ,y),
where x−t is the collection all state vectors x0, . . . ,xT excluding xt. The
posterior p(xt|x−t ,y) is given by

p(xt|x−t ,y) ∝ p(y|x)p(x)

∝
T∏

t=1

p(yt|xt)
T∏

t=1

p(xt|xt−1)p(x0).

Dropping all quantities that are independent of xt yields for t = 1, . . . , T − 1:

p(xt|x−t ,y) ∝ p(yt|xt)p(xt+1|xt)p(xt|xt−1), (13.54)
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with obvious simplifications for t = 0 and t = T :

p(x0|x1, . . . ,xT ,y) ∝ p(x1|x0)p(x0),
p(xT |x0, . . . ,xT−1,y) ∝ p(yT |xT )p(xT |xT−1).

For a linear Gaussian state space model the first two densities in (13.54) may
be considered as the likelihood of a linear model with general, but known,
error covariance matrices and independent observations yt and xt+1,(

yt

xt+1

)
=

(
Ht

Ft+1

)
xt +

(
εt

wt+1

)
,

εt ∼ Nr (0,Rt) , wt+1 ∼ Nd (0,Qt+1) ,

where the unknown regression parameter xt follows the conjugate normal
prior p(xt|xt−1) as in Subsection 13.3.2. Thus for t = 1, . . . , T − 1 the density
p(xt|x−t ,y) is normal with

xt|x−t
,y ∼ Nd

(
x̂t|−t,Pt|−t

)
,

P−1
t|−t = H

′
tR

−1
t Ht + F

′
t+1Q

−1
t+1Ft+1 + Q−1

t ,

x̂t|−t = Pt|−t(H
′
tR

−1
t yt + F

′
t+1Q

−1
t+1xt+1 + Q−1

t Ftxt−1),

a result that allows direct sampling. For more general state space models,
p(xt|x−t

,y) is no longer a normal density, but it is possible to draw from this
density using a Metropolis–Hastings step (Carlin et al., 1992; Jacquier et al.,
1994).

As noted by Carter and Kohn (1994), this sampler converges rather slowly
when Qt approaches singularity and breaks down to a reducible sampler; see
also Pitt and Shephard (1999) for a theoretical investigation of this issue.

Multi-Move Sampling of the Continuous State Process

A more efficient way to sample x0, . . . ,xT for the linear Gaussian state
space model is joint or multi-move sampling of the states (Carter and Kohn,
1994; Frühwirth-Schnatter, 1994; De Jong and Shephard, 1995; Koopman
and Durbin, 2000). In contrast to single-move sampling, multi-move sampling
draws the whole path x = (x0, . . . ,xT ) from the joint posterior of all states:
(x0, . . . ,xT ) ∼ p(x0, . . . ,xT |y). The multi-move sampler starts by represent-
ing the joint density p(x|y) as the product of T + 1 conditional densities:

p(x|y) = p(xT |y)
T−1∏
t=0

p(xt|xt+1, . . . ,xT ,y). (13.55)

The densities p(xt|xt+1, . . . ,xT ,y) are the posterior densities of xt knowing
not only all observations y, but also all future values xt+1, . . . ,xT . This pos-
terior is obtained by Bayes’ theorem as
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p(xt|xt+1, . . . ,xT ,y) ∝ p(yt+1, . . . ,yT ,xt+1, . . . ,xT |xt,yt)p(xt|yt)

∝
T∏

s=t+1

p(ys|xs)
T−1∏
s=t

p(xs+1|xs)p(xt|yt).

Dropping terms that are independent of xt we find that this density is obtained
by combining the filter density p(xt|yt) with the likelihood of xt+1 measured
in terms of the transition density p(xt+1|xt):

p(xt|xt+1, . . . ,xT ,y) ∝ p(xt+1|xt)p(xt|yt). (13.56)

Equations (13.55) and (13.56) motivate was has been called forward-filtering-
backward-sampling (Frühwirth-Schnatter, 1994).

Algorithm 13.4: Forward-Filtering-Backward-Sampling (FFBS)

(a) Determine and store the moments x̂t|t and Pt|t of the filtering density
p(xt|yt) by running a Kalman filter from t = 1, . . . , T as described in
Algorithm 13.1.

(b) Start sampling of the path x0, . . . ,xT by sampling the latest state vector
xT from the most recent filter density p(xT |yT ).

(c) Sample the remaining states xt from p(xt|xt+1, . . . ,xT ,y) backward in
time for t = T − 1, . . . , 0.

There exist various ways to implement step (c). Following Carter and Kohn
(1994), p(xt+1|xt) may be considered as the likelihood of a general linear
model with known error covariance matrices as in Subsection 13.3.2, with
observations xt+1 and regression parameter xt following the conjugate normal
prior p(xt|yt). From Subsection 13.3.2, the density p(xt|xt+1, . . . ,xT ,y) is
normal with

xt|xt+1, . . . ,xT ,y ∼ Nd

(
x̂t|T (xt+1),Pt|T

)
, (13.57)

x̂t|T (xt+1) = (I − Bt+1Ft+1)x̂t|t + Bt+1(xt+1 − Gt+1ut+1),
Pt|T = (I − Bt+1Ft+1)Pt|t,

Bt+1 = Pt|tF
′
t+1

(
Ft+1Pt|tF

′
t+1 + Qt+1

)−1
.

If Qt+1 is positive definite, one could also use the information form of updating
the posterior in a general linear model. If Qt+1 is singular, then the conditional
density p(xt|xt+1, . . . ,xT ,y) is degenerate because part of xt is deterministic
given xt+1. Sampling from (13.57) based on a Cholesky decomposition of Pt|T
will lead to numerical problems. Furthermore the recursions in (13.57) are
inefficient, as they involve the inversion of a (d × d) matrix, with d = dimxt,
whereas xt only has s = rg(Qt) < d random components. Frühwirth-Schnatter
(1994) suggested transforming the state vector xt to a new state variable
with only s random components. Another efficient sampler is to simulate the
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disturbances wt rather than xt using a disturbance smoother (De Jong and
Shephard, 1995; Durbin and Koopman, 2002).

For more general state space models, such a multi-move sampler does
not exist. Shephard and Pitt (1997) designed a blocked sampler, where an
entire subblock xt, . . . ,xt+h is sampled from the appropriate density using a
Metropolis–Hastings step.

13.5.3 Sampling the Discrete States for a Switching State
Space Model

The notation St = (S0, . . . , St) is used to denote a whole path of the hidden
Markov chain St up to t, with S0 being dropped for finite mixtures of state
space models.

Full Conditional Sampling of a Hidden Markov Chain

Full conditional sampling of the states S of a hidden Markov chain is not
restricted to linear Gaussian state space models, but may be applied also to
more general models with nonnormal or nonlinear densities p(yt|St = j,xt, ϑ)
and p(xt|St = j,xt−1, ϑ).

Single-move sampling of p(St|S−t,x,y, ϑ) could be used as in Subsec-
tion 11.5.6, however, it is much more efficient to use a multi-move sam-
pler (Carter and Kohn, 1994; Shephard, 1994) that samples the whole path
S = (S0, . . . , ST ) jointly from p(S|x,y, ϑ). This multi-move sampler is closely
related to the sampler discussed in Algorithm 11.5 for finite Markov mixture
models.

Algorithm 13.5: Multi-Move Sampling of the Discrete States of a Switching
State Space Model

(a) Run a filter conditional on ϑ and x to obtain the filtered probability
distribution Pr(St = j|yt,xt, ϑ) for t = 1, . . . , T . The filter is started at
t = 1 with the initial distribution Pr(S0 = k|ξ). For each t ≥ 1, perform
one-step ahead prediction,

Pr(St = j|yt−1,xt−1, ϑ) =
K∑

k=1

ξkjPr(St−1 = k|yt−1,xt−1, ϑ),

and filtering for each possible value j = 1, . . . , K of St:

Pr(St = j|yt,xt, ϑ) (13.58)
∝ p(yt|St = j,xt, ϑ)p(xt|St = j,xt−1, ϑ)Pr(St = j|yt−1,xt−1, ϑ).

The probabilities in (13.58) need to be normalized to obtain a proper filter
distribution.

(b)Sample ST from the discrete probability distribution Pr(ST = j|yT ,xT , ϑ).
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(c) For t = T − 1, T − 2, . . . , 0 sample St from the conditional distribution
Pr(St = j|St+1,yt,xt, ϑ) given by

Pr(St = j|St+1,yt,xt, ϑ) =
ξj,St+1Pr(St = j|yt,xt, ϑ)

K∑
k=1

ξk,St+1Pr(St = k|yt,xt, ϑ)

.

Here St+1 is the most recent value sampled for the hidden Markov chain
at t + 1.

Marginal Sampling of the Indicators

Both Carter and Kohn (1996) and Gerlach and Kohn (2000) generate St from
the discrete density p(St|S−t,y, ϑ) without conditioning on the continuous
states x. Marginalization over x, however, leads to dependence among all the
values of St, even if the indicators are i.i.d., and generating St in an efficient
way is far from straightforward.

Suppose that St−1 has already been updated and that the first two mo-
ments of the normal density p(xt−1|yt−1,St−1, ϑ) are known. Bayes’ theorem
is used to obtain the density p(St|S−t,y, ϑ):

p(St|S−t,y, ϑ) ∝ p(St|S−t, ϑ)p(yt|yt−1,St, ϑ)p(yt+1, . . . ,yT |yt,S−t, St, ϑ).

For each of the K values of St, the predictive density p(yt|yt−1,St, ϑ) as
well as the filtering density p(xt|yt,St, ϑ), is obtained from a single step of
the Kalman filter. A direct but inefficient method to evaluate the predictive
density p(yt+1, . . . ,yT |yt,S−t, St) for the K different values of St is to use
T − t + 1 forecasting steps of the Kalman filter, which requires O(T ) steps
to generate St, and hence O(T 2) steps to generate the whole path S. Gerlach
and Kohn (2000) show how to obtain the term p(yt+1, . . . ,yT |yt,S−t, St) in
one step after an initial set of backward recursions, requiring O(T ) steps to
generate the whole path S. We refer to Gerlach and Kohn (2000) for more
details.

Finally, Gerlach and Kohn (2000) discuss an efficient way of sampling a bi-
nary indicator St which takes one of two values most of the time, for instance,
an indicator corresponding to an outlier or to an intervention variable.

13.6 Further Issues

13.6.1 Model Specification Uncertainty in Switching State
Space Modeling

The application of the state space approach to socioeconomic or biological
sciences is complicated by the need of model identification, because often
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little a priori information about the dynamics of the system is available. One
approach toward this model specification uncertainty is to fit several state
space models to a given time series and to apply some method of model
selection.

AIC was used in the context of model selection for state space models by,
among others, Kitagawa (1981) and Harvey (1989). AIC and BIC are defined
for state space models in the usual way as

AIC = −2 log p(y|ϑ̂) + 2 dim(ϑ), (13.59)

BIC = −2 log p(y|ϑ̂) + log(T ) dim(ϑ), (13.60)

where p(y|ϑ̂) is the (approximate) likelihood of a (switching) state space
model evaluated at the ML estimator ϑ̂. Durbin and Koopman (2001, p.152)
provide a corrected AIC and BIC for state space models with diffuse initial
conditions. Harvey (1989) and Durbin and Koopman (2001) prefer a definition
where the right-hand side of (13.59) and (13.60) is divided by T .

The marginal likelihood has been applied to model selection problems
involving state space models by, among many others, Frühwirth-Schnatter
(1995), Shively and Kohn (1997), and Koop and van Dijk (2000). Frühwirth-
Schnatter (2001a) discusses model comparison based on marginal likelihoods
for switching linear Gaussian state space models and uses the bridge sampling
techniques discussed in Subsection 5.4.6 to obtain a numerical approximation
of the marginal likelihood.

A Bayesian variable selection approach (Carlin and Chib, 1995) has been
applied to switching dynamic factor models by Kim and Nelson (2001).

13.6.2 Auxiliary Mixture Sampling for Nonlinear and Nonnormal
State Space Models

To deal with non-Gaussian or nonlinear state space models it is useful to ap-
proximate nonnormal densities by a finite mixture of common distributions.
Sorenson and Alspach (1971) and Alspach and Sorenson (1972) are pioneering
works using a Gaussian sum approximation to derive an approximate filter
for nonlinear and non-Gaussian state space models. Meinhold and Singpur-
walla (1989) represent the posterior density p(xt−1|yt−1) by a mixture of
t-distributions and suggest some approximate recursive scheme to obtain a
similar mixture approximation to p(xt|yt).

To facilitate statistical inference, Shephard (1994) introduced the con-
cept of partially Gaussian state space models and suggested approximating
nonnormal densities appearing in the definition of the state space model by
mixtures of normal distributions. This allows MCMC estimation through ef-
ficient multi-move sampling of the state process as in Algorithm 13.4 also for
non-Gaussian state space models, where usually single-move sampling has to
be applied.
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MCMC methods based on a finite mixture approximation have been de-
veloped in particular for stochastic volatility models (Shephard, 1994; Kim
et al., 1998; Chib et al., 2002; Omori et al., 2004). A stochastic volatility
model is a state space model with state vector ht, usually assumed to follow
an AR(1)-process, where the observation equation is nonlinear, because the
variance of the observation error is a nonlinear function of ht:

ht = δht−1 + ζ + wt, wt ∼ N
(
0, σ2

µ

)
,

Yt = eht/2zt, zt ∼ N (0, 1) .

This model may be transformed into a linear state space model with nonnor-
mal errors in the following way,

log Y 2
t = ht + εt,

where εt is equal to the log of a χ2
1 random variable. The density of the

log χ2
1 is approximated in Shephard (1994) by a mixture of univariate normal

distributions,

p(εt) =
K∑

k=1

wkfN (εt; mk, s2
k).

Shephard (1994) derived appropriate parameters (wk, mk, s2
k), k = 1, . . . , K,

for mixtures up to K = 7 components, whereas a more accurate approximation
with K = 10 components appears in Omori et al. (2004). By introducing i.i.d.
hidden indicators St for each t, the following finite mixture of linear Gaussian
state space models results,

ht = δht−1 + ζ + wt, wt ∼ N
(
0, σ2

µ

)
,

log Y 2
t = ht + mSt + εt, εt ∼ N

(
0, s2

St

)
,

with Pr(St = k) = wk. Filtering and parameter estimation as discussed in
Sections 13.3 to 13.5 may be applied.

Recently, Frühwirth-Schnatter and Wagner (2006) developed a similar aux-
iliary mixture sampler for state space modeling of count data, based on a finite
mixture approximation to the type I extreme value distribution. Frühwirth-
Schnatter and Frühwirth (2006) show that this sampler may be extended to
deal with state space modeling of binary and multinomial data.

13.7 Illustrative Application to Modeling Exchange
Rate Data

For illustration we reanalyze the U.S./U.K. real exchange rate from January
1885 to November 1995, originally published in Grilli and Kaminsky (1991)
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Fig. 13.1. U.S./U.K. Real Exchange Rate Data, exploratory Bayesian analysis
for a switching model with K1 = 4, K2 = 2, p = 3; top left-hand side: log(σ2

1,k) versus
ξ1

kk for all possible k; top right-hand side: log(σ2
2,k) versus ξ2

kk for all possible k;
bottom left-hand side: log(σ2

1,k) versus log(σ2
2,k) for all possible k; bottom right-hand

side: posterior of δ3 (from Frühwirth-Schnatter (2001a) with permission granted by
The Institute of Statistical Mathematics)

and reanalyzed by Engel and Kim (1999) and Frühwirth-Schnatter (2001a).
The real exchange rate is defined as the relative price of U.K. to U.S. producer
goods; that is, U.S./U.K. nominal exchange rate times the U.K. producer
price index divided by the U.S. producer price index. Engel and Kim (1999)
suggested decomposing the log of the real exchange rate Yt into a permanent
component µt and a transitory component ct:

log Yt = µt + ct,

where ct is assumed to follow an AR(p) process:

ct = δ1ct−1 + · · · + δpct−p + wt,1,

and µt follows a random walk process:

µt = µt−1 + wt,2.
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The conditional variance of the transitory component ct is assumed to switch
between K1 values according to a Markov chain S1

t with transition matrix ξ1,
whereas the conditional variance of the permanent component µt is assumed
to switch between K2 values according to a Markov chain S2

t with transition
matrix ξ2:

wt,1 ∼ N
(
0, σ2

1,S1
t

)
, wt,2 ∼ N

(
0, σ2

2,S2
t

)
.

The model can be put into state space form with the following state vector
xt and matrix F,

xt =

⎛⎜⎜⎜⎝
µt

ct

...
ct−p+1

⎞⎟⎟⎟⎠ , F =
(

1 01×p

0p×1 F(δ)

)
,

and F(δ) being the same as in (13.15).
This model is a switching linear Gaussian state space model with two hid-

den indicators. The estimation method used by Frühwirth-Schnatter (2001a)
is an extension of Algorithm 13.2 to the case of two hidden switching vari-
ables. Frühwirth-Schnatter (2001a) did not condition on the first values of the
state process as in Engel and Kim (1999), but sample in step (a) the whole
processes c1−p, . . . , c0, . . . , cT and µ0, . . . , µT including the starting values by
applying the multi-move sampler of Frühwirth-Schnatter (1994). The filter is
initialized with the prior x0 ∼ N

(
x̂0|0,P0|0

)
, where

x̂0|0 =

⎛⎜⎜⎜⎝
log y1

0
...
0

⎞⎟⎟⎟⎠ , P0|0 =
(

1000 01×(p−1)
0(p−1)×1 M

)

with

vec(M) = (Ip2 − F(δ) ⊗ F(δ))−1
(

σ2
1,S1

0

0(p−1)×1

)
,

and ⊗ is the Kronecker product of two matrices. This choice is based on the
suggestion of De Jong and Chu-Chun-Lin (1994) for combining a vague prior
with a stationary prior for state vectors containing both nonstationary and
stationary components.

As the Markov processes S1
t and S2

t are independent a posteriori, sam-
pling in step (b) is carried out independently for both indicators using Algo-
rithm 13.5. For S1

t the filter step (13.58) is based on

Pr(S1
t = j|yt,xt, ϑ)

∝ fN (ct; δ1ct−1 + · · · + δpct−p, σ
2
1,j)Pr(S1

t = j|yt−1,xt−1, ϑ),
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whereas for S2
t this step reads:

Pr(S2
t = j|yt,xt, ϑ) ∝ fN (µt; µt−1, σ

2
2,j)Pr(S2

t = j|yt−1,xt−1, ϑ).

Parameter estimation is based on the priors σ2
1,k ∼ G−1 (3, 8), k = 1, . . . , K1,

and σ2
2,k ∼ G−1 (3, 2), k = 1, . . . , K2. The prior for all rows of the transition

matrices ξ1 and ξ2 is chosen to be D (1, . . . , 1).
All variances σ2

1,k, k = 1, . . . , K1 and σ2
2,k, k = 1, . . . , K2 are sampled at

the same time, as they are conditionally independent, inverted Gamma dis-
tributed. This is different from Engel and Kim (1999) who impose a priori
an identifiability constraint on the variances and sample the variances in a
single-move manner from the constrained posterior.

Sampling of the AR(p) parameters δ1, . . . , δp is carried out from the re-
gression model ct = δ1ct−1 + · · · + δpct−p + σ1,S1

t
εt, where εt is i.i.d. standard

normal. As samples of c0, . . . , c1−r are available from step (a), t is running
from 1 to T . Within one iteration, sampling of the AR(p) parameters δ1, . . . , δp

is repeated until the stationarity condition on the AR(p) process is fulfilled.

Table 13.1. U.S./U.K. Real Exchange Rate Data, model selection using
marginal likelihoods (from Frühwirth-Schnatter (2001a) with permission granted
by The Institute of Statistical Mathematics)

Model log p(y|Model)

K1 = 4, K2 = 2, p = 3 –2562.4
K1 = 4, K2 = 1, p = 2 –2515.5
K1 = 4, K2 = 1, p = 1 –2612.5
K1 = 3, K2 = 1, p = 2 –2605.9
K1 = 5, K2 = 1, p = 2 –2880.2
No switching, p = 2 –2914.4

Engel and Kim (1999) selected a model where the variance of the transitory
component is driven by a three-state Markov switching process, the variance
of the permanent component is constant, and the order of the AR process is
equal to two, that is, K1 = 3, K2 = 1, p = 2. They adopt this specification by
exploring the posterior distributions without formal Bayesian model selection.

We proceed with an exploratory Bayesian analysis of a model with K1 = 4,
K2 = 2, and p = 3, using the MCMC output of a random permutation
sampler. Parts (a) and (b) of Figure 13.1 show a point process representation
of (σ2

1,k)(m) versus (ξ1
kk)(m) and (σ2

2,j)
(m) versus (ξ2

jj)
(m) for all possible states

k ∈ {1, . . . , K1} and j ∈ {1, . . . , K2}, respectively. For S1
t we have allowed for

four states and there are actually four simulation clusters; for S2
t , however,

we have allowed for two states, but there is just one simulation cluster. This
provides empirical evidence in favor of a homogeneous rather than a switching
variance of the permanent component. This hypothesis is further supported by
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part (c) of the figure where the point process representation of (σ2
1,k)(m) versus

(σ2
2,k)(m) is plotted. Finally, part (d) of the same figure plots the posterior of

the AR parameter δ3 which may be estimated directly from the output of
the random permutation sampler as δ3 is state independent. The mode of the
posterior is close to 0 providing evidence for the hypothesis that δ3 is equal
to zero. To sum up, the exploratory analysis provides evidence in favor of a
model with K1 = 4, K2 = 1, and p = 2 rather than K1 = 3, K2 = 2, and
p = 2.

In Frühwirth-Schnatter (2001a) the marginal likelihood, based on a bridge
sampling estimator, was used for model selection; see Table 13.1. For the
best model the variance of the transitory component is driven by a four-state
Markov switching process, the variance of permanent component is constant,
and the order of the AR process is equal to two; that is, K1 = 4, K2 = 1,
p = 2.

The marginal likelihoods reported in Table 13.1, however, clearly favor
the model with K1 = 4, K2 = 1, and p = 2, which differs from the one
selected in Engel and Kim (1999) by the number of states of the variance of
the transitory component. Increasing the number of states from four to five,
however, reduces the marginal likelihood drastically. For completeness, the
marginal likelihood for a model without switching is reported, showing that
this model is the most unlikely of all.
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Fig. 13.2. U.S./U.K. Real Exchange Rate Data, four-state model (K1 = 4,
K2 = 1, p = 2); left-hand side: smoothed real exchange rate p̂t|T ; right-hand side:
estimated time-varying variance σ̂2

1,t (K1 = 3, K2 = 1, p = 2) (from Frühwirth-
Schnatter (2001a) with permission granted by The Institute of Statistical Mathe-
matics)

We can draw further interesting inferences from the output of the random
permutation sampler without the need to identify the model. This is espe-
cially true for the smoothed permanent component p̂t|T which is compared
in Figure 13.2 with the observed time series. The resulting estimator of the
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permanent component is much smoother than the rather noisy estimate pub-
lished in Engel and Kim (1999), being nearly constant until the end of the
fifties and increasing afterwards. Another interesting picture is obtained if we
plot the time-varying variance σ2

1,t estimated from:

σ̂2
1,t =

1
M

M∑
m=1

(
σ2

1,s

)(m)
,

where s = (S1
t )(m) over time t as in Figure 13.2.

Table 13.2. U.S./U.K. Real Exchange Rate Data, estimation results for K1 =
4, K2 = 1, p = 2 (from Frühwirth-Schnatter (2001a) with permission granted by The
Institute of Statistical Mathematics)

Parameter Mean Std.Dev. 95%-H.P.D. Regions

σ2
1,1 0.634 0.151 0.371 0.93

σ2
1,2 2.05 0.196 1.67 2.42

σ2
1,3 7.63 1.07 5.9 9.88

σ2
1,4 36.4 9.13 20.7 53.9

σ2
2 0.366 0.132 0.121 0.608

δ1 1.06 0.0474 0.967 1.14
δ2 –0.0729 0.046 –0.158 0.0139

ξ11 0.968 0.0132 0.943 0.991
ξ12 0.0091 0.00861 2.84e–006 0.0256
ξ13 0.00639 0.00586 2.87e–006 0.0189
ξ14 0.0162 0.00987 0.000231 0.0341
ξ21 0.00855 0.00576 0.000165 0.0205
ξ22 0.973 0.00853 0.957 0.988
ξ23 0.00587 0.0057 6.19e–006 0.0155
ξ24 0.0123 0.00697 0.000484 0.0246
ξ31 0.00498 0.00489 1.24e–005 0.0144
ξ32 0.0139 0.0123 9.59e–006 0.0373
ξ33 0.956 0.0222 0.916 0.992
ξ34 0.0248 0.0161 0.00129 0.0562
ξ41 0.039 0.0338 0.000159 0.103
ξ42 0.147 0.0691 0.024 0.288
ξ43 0.123 0.0934 0.00108 0.309
ξ44 0.691 0.116 0.438 0.865

The selected model has to be identified to draw inference on the variances
of the different states as well as to obtain state estimates over the whole ob-
servation period. The identifiability constraint σ2

1,1 < σ2
1,2 < σ2

1,3 < σ2
1,4 is

suggested by the point process representation in Figure 13.1, showing that
the states of S1

t differ in the variance of the transitory component. If this
constraint is included in the permutation sampler, no label switching occurs.
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Table 13.2 reports point estimates as well as 95%-H.P.D.-regions for all model
parameters, including estimates of the state-specific variances as well as esti-
mates of the transition probabilities.

Fig. 13.3. U.S./U.K. Real Exchange Rate Data, smoothed state probabilities
for S1

t for a switching state space model with K1 = 4, K2 = 1, and p = 2 (from
Frühwirth-Schnatter (2001a) with permission granted by The Institute of Statistical
Mathematics)

Figure 13.3 plots the smoothed posterior state probabilities Pr(S1,L
t =

k|y) of being in a certain state k ∈ {1, 2, 3, 4} over time t, for a four-state
switching model, and compares them with the probabilities obtained from
the three-state model. The probabilities Pr(S1,L

t = k|y) are estimated from
the constrained MCMC output by

Pr(S1,L
t = k|y) =

1
M

#{(S1,L
t )(m) = k}.

Engel and Kim (1999) found the following interpretation of these probabili-
ties. The quietest state occurred during the first half of the forties and then
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from about 1952 to the end of the seventies, which are periods in which the
nominal exchange rate was fixed. The two medium-state variances correspond
to periods of floating nominal exchange rates. Periods of high-state variance
are rather singular events and can be identified with specific historical events.




