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Nonlinear Time Series Analysis Based on
Markov Switching Models

12.1 Introduction

In practical time series analysis, an important aspect is properties of the
marginal distribution of Yt as well as properties of the one-step ahead predic-
tive density p(yt|yt−1, ϑ), implied by the chosen time series model. Typical
stylized facts of the marginal distribution of practical time series are asym-
metry and nonnormality with rather fat tails, and autocorrelation not only
in the level Yt, but also in the squared process Y 2

t . Properties of the predic-
tive distribution are nonlinear effects of past observation on the mean and
conditional heteroscedasticity.

It is well known that standard ARMA models (Box and Jenkins, 1970)
often are not able to capture stylized facts of practical time series. Some
unrealistic features of ARMA models based on normal errors are normality
of the predictive as well as the marginal density, linearity of the expecta-
tion E(Yt|yt−1, ϑ) in the past observation y1, . . . , yt−1, and homoscedasticity
of Var(Yt|yt−1, ϑ) (Brockwell and Davis, 1991; Hamilton, 1994b). Numerous
nonlinear time series models such as GARCH models, threshold autoregressive
models, and many others have been designed to reproduce empirical features
of practical time series (Tong, 1990; Granger and Teräsvirta, 1993; Franses
and van Dijk, 2000).

This chapter discusses Markov switching models that constitute another
very flexible class of nonlinear time series models and are able to capture
many features of practical time series by appropriate modifications of the ba-
sic Markov switching model introduced in Subsection 10.3.1. Section 12.2 deals
with the Markov switching autoregressive model and Section 12.3 considers
the related Markov switching dynamic regression model. Section 12.4 shows
that Markov switching models give rise to very flexible predictive distribu-
tions. Section 12.5 deals with Markov switching conditional heteroscedastic-
ity and switching ARCH models are introduced. Section 12.6 studies further
extensions, namely hidden Markov chains with time-varying transition proba-



358 12 Nonlinear Time Series Analysis Based on Markov Switching Models

bilities and hidden Markov models for longitudinal data and multivariate time
series.

12.2 The Markov Switching Autoregressive Model

It has been discussed in Subsection 10.2.4 that a Markov mixture model intro-
duces autocorrelation in the process Yt even for the basic Markov switching
model, where conditionally on knowing the states, the process Yt is uncorre-
lated. In this section the Markov switching autoregressive model is introduced
that deals with autocorrelation in a more flexible way than the basic Markov
switching model.

12.2.1 Motivating Example
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Fig. 12.1. GDP Data, quarterly data 1951.II to 1984.IV, left: time series plot of
yt in comparison to level 0, right: empirical autocorrelogram

A standard time series that has been analyzed in numerous papers is the
percentage growth rate of the U.S. quarterly real GDP series:

Yt = 100(log(GDPt) − log(GDPt−1)), (12.1)

t = 1, . . . , T . Figure 12.1 shows a time series plot of the data for the period
1951.II to 1984.IV, together with empirical autocorrelation. First, we fit vari-
ous AR(p) models to these data to capture autocorrelation in this time series.
Figure 12.2, comparing the unconditional distribution of Yt, implied by each of
the fitted AR(p) models with the empirical histogram of yt, reveals a striking
difference between the empirical histogram which evidently shows bimodality,
and any of the implied marginal distributions which are unimodal and, by the
way, show surprisingly little difference for the different model orders.
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Fig. 12.2. GDP Data, modeled by an AR(p) model with p = 0, 1, . . . , 4; implied
unconditional distribution of Yt (full line) in comparison to the empirical marginal
distribution of Yt (histogram)

From where does this bimodality in the empirical time series come? Fig-
ure 12.1 displays the growth rate of the U.S. GDP series in comparison to
the zero line. Evidently periods of positive growth rate, where yt > 0, are
followed by periods of negative growth rate, where yt < 0. What we find here
is known by economists as the business cycle. Macro-economic variables such
as the GDP are influenced by the state of the economy and follow different
processes, depending on whether the economy is in a boom or in a recession.
Figure 12.1 suggests that the marginal distribution of Yt is a mixture distri-
bution with different means and possibly different variances. If we fitted a
standard mixture of two normal distributions, the implied marginal distribu-
tion of Yt would be in fact multimodal, but marginally Yt would be a process
that is uncorrelated over time. To capture both multimodality and autocorre-
lation for such time series, Hamilton (1989) introduced the Markov switching
autoregressive model.
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12.2.2 Model Definition

The standard model to capture autocorrelation is the AR(p) model,

Yt − µ = δ1(Yt−1 − µ) + · · · + δp(Yt−p − µ) + εt, (12.2)

where εt ∼ N
(
0, σ2

ε

)
, which is equivalent to model

Yt = δ1Yt−1 + · · · + δpYt−p + ζ + εt, (12.3)

with ζ = µ(1 − δ1 − · · · − δp).
An important extension of the basic Markov switching model is the Markov

switching autoregressive (MSAR) model, where a hidden Markov chain is in-
troduced into model (12.2). This model was used independently in the work
of Neftçi (1984) and Sclove (1983), and became popular in econometrics for
analyzing economic time series such as the GDP data introduced in Subsec-
tion 12.2.1 through the work of Hamilton (1989) who allowed for a random
shift in the mean level of process (12.2) through a two-state hidden Markov
chain:

Yt − µSt
= δ1(Yt−1 − µSt−1) + · · · + δp(Yt−p − µSt−p

) + εt. (12.4)

An important alternative to model (12.4) was suggested by McCulloch and
Tsay (1994b), who introduced the hidden Markov chain into (12.3) rather than
into (12.2), by assuming that the intercept is driven by the hidden Markov
chain rather than the mean level:

Yt = δ1Yt−1 + · · · + δpYt−p + ζSt + εt. (12.5)

Although the parameterization (12.2) and (12.3) are equivalent for the stan-
dard AR model, a model with a Markov switching intercept turns out to be
different from a model with a Markov switching mean level. In (12.4), after a
one-time change from St−1 to St �= St−1, an immediate mean level shift from
µSt−1 to µSt

occurs. In (12.5), however, the mean level approaches the new
value smoothly over several time periods.

Both models violate assumption Y4 as the one-step ahead predictive den-
sity p(yt|yt−1,St, ϑ) depends on past values yt−1. For a model with switching
mean level it is evident from (12.4) that the predictive density p(yt|yt−1,St, ϑ)
depends not only on St, but also on the past values St−1, . . . , St−p of the hid-
den Markov chain fulfilling only assumption Y2 stated in Subsection 10.3.4.
On the other hand for a model with switching intercept the predictive density
p(yt|yt−1,St, ϑ) depends only on St and such a process fulfills the stronger
condition Y3. As discussed in Subsection 11.2.5, condition Y3 essentially in-
fluences the complexity of econometric inference about the hidden Markov
chain St. As a result, econometric inference for an MSAR model with switch-
ing intercept is not more complicated than for the basic Markov switching
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model, whereas for an MSAR model with switching mean inference on the
hidden Markov chain St is far more involved.

In its most general form the MSAR model allows that the autoregressive
coefficients are also affected by St (Sclove, 1983; Holst et al., 1994; McCulloch
and Tsay, 1994b):

Yt = δSt,1Yt−1 + · · · + δSt,pYt−p + ζSt
+ εt. (12.6)

The assumption that the autoregressive parameters switch between the two
states implies different dynamic patterns in the various states, and introduces
asymmetry over time. Asymmetry over time between the states is introduced
also through the hidden Markov chain as different persistence probabilities
imply different state duration; see (10.13). This combined asymmetry leads to
a rather flexible model that is able to capture asymmetric patterns observed
in economics time series, such as the fast rise and the slow decay in the U.S.
quarterly unemployment rate.

In any of these models the variance may be assumed to be constant, irre-
spective of the state of St, or it is possible to assume a shift in the variance,
εt ∼ N

(
0, σ2

ε,St

)
.

Subsequently the notation MS(K)-AR(p) is used occasionally to denote
a Markov switching autoregressive model with K states and autoregressive
order p. A more subtle notation that also differentiates between homo- and
heteroscedastic variances, switching in the mean level or in the intercept as
well as between invariant and switching autoregressive parameters is intro-
duced in Krolzig (1997).

Related Models

The mixture autoregressive model (Juang and Rabiner, 1985; Wong and Li,
2000) defines the one-step ahead predictive p(yt|yt−1, ϑ) directly as a mixture
of normal distributions with an AR structure in the mean:

p(yt|yt−1, ϑ) =
K∑

k=1

ηkfN (yt; µk,t, σ
2
k), (12.7)

where µk,t = E(Yt|yt−1, θk) = δk,1yt−1 + · · · + δk,pyt−p + ζk. This model re-
sults as that special of an MSAR model, where St is an i.i.d. process, with
each row of the transition matrix ξ being equal to the weight distribution in
(12.7). Because autocorrelation in Yt is introduced only through the observa-
tion equation this model is not able to capture spurious autocorrelation that
disappears once we condition on the state of St.

MSAR models are related to the self-exciting threshold autoregressive (SE-
TAR) models (Jalali and Pemberton, 1995; Clements and Krolzig, 1998) which
are themselves that special case of a threshold autoregressive (TAR) model
(Tong, 1990), where the mean and the autoregressive parameters switch ac-
cording to the level of the threshold variable zt = Yt−d:
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Yt =
{

δ1,1Yt−1 + · · · + δ1,pYt−p + ζ1 + εt, Yt−d ≤ r,
δ2,1Yt−1 + · · · + δ2,pYt−p + ζ2 + εt, Yt−d > r,

with εt ∼ N
(
0, σ2

ε

)
. Consider, for instance, a first-order SETAR model, where

p = 1 and d = 1 and define an indicator St such that

St =
{

1, Yt−1 ≤ r,
2, Yt−1 > r.

Then St follows a first-order Markov process with transition matrix ξ given
by

ξ =
(

Φ(r1) 1 − Φ(r1)
Φ(r2) 1 − Φ(r2)

)
,

with Φ(·) being the standard normal distribution, and rk = (r − µk)/σε.
Therefore the first-order SETAR model with d = 1 corresponds to a two-state
Markov switching autoregressive model with a restricted transition matrix,
which has a single free parameter, once µ1, µ2, and σ2

ε are known.

12.2.3 Features of the MSAR Model

The Markov switching autoregressive model is a special case of a dynamic
stochastic system with stochastic autoregressive parameters for which it is not
straightforward to find conditions under which the process Yt is strictly sta-
tionary and certain moments exist (Tjøstheim, 1986; Karlsen, 1990; Bougerol
and Picard, 1992b). Results on the stationarity of Markov switching autore-
gressive models can be found in Holst et al. (1994), Krolzig (1997), Yao and
Attali (2000), and Francq and Zakoian (2001). Timmermann (2000) illustrates
how the variance and higher-order moments of a process generated by an
MSAR model may be computed explicitly provided the process is stationary.

The Markov switching autoregressive model introduces autocorrelation
both through the hidden Markov chain as well as through the observa-
tion equation, leading to rather flexible autocorrelation structures. The au-
tocorrelation function may be computed explicitly provided that the pro-
cess is second-order stationary (Timmermann, 2000, Proposition 4). For an
MS(2)-AR(1) model with switching mean, fixed variance, and fixed AR coef-
ficients, for instance, the autocorrelation function of Yt reads:

ρYt(h|ϑ) =
1

Var(Yt|ϑ)

(
λh(µ1 − µ2)2η1η2 + δh

1
σ2

ε

1 − δ2
1

)
, (12.8)

with λ = ξ11 − ξ21 being the second eigenvalue of the transition matrix ξ and
the unconditional variance Var(Yt|ϑ) being equal to

Var(Yt|ϑ) = (µ1 − µ2)2η1η2 +
σ2

ε

1 − δ2
1
.
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The autocorrelation function fulfills, for h > 2, the following recursion,

ρYt(h|ϑ) = (δ1 + λ)ρYt(h − 1|ϑ) − δ1λρYt(h − 2|ϑ), (12.9)

and corresponds to the autocorrelation function of an ARMA(2, 1) model, but
has a nonnormal unconditional distribution.

Krolzig (1997) derived general results on the relation between Markov
switching autoregressive models and nonnormal ARMA models. A process
generated by an MS(K)-AR(p) model with switching intercept, but fixed vari-
ances and AR coefficients, for instance, possesses an ARMA(K +p−1, K −1)
representation (Krolzig, 1997, Proposition 3), whereas an ARMA(K + p −
1, K + p − 2) representation results, if a switching mean is considered, rather
than a switching intercept (Krolzig, 1997, Proposition 4).

12.2.4 Markov Switching Models for Nonstationary Time Series

The work of Nelson and Plosser (1982) started a discussion in econometrics, as
to whether macro-economic time series contain a deterministic or a stochastic
trend, the latter typically being a unit root in the autoregressive representation
of the time series. This is tested by applying a unit root test to Yt which often
leads to nonrejection of the unit root null hypothesis. Perron (1989, 1990)
found evidence for spurious unit roots in real interest rates under structural
breaks in the trend level and the growth rate.

Markov switching models are to a certain degree able to deal with spurious
unit roots caused by structural breaks. To illustrate this point consider a
process Yt, generated by a two-state Markov mixture of normal distributions
with µ2 �= µ1 and a highly persistent transition matrix where ξ11 and ξ22
are close to one, pushing the second eigenvalue λ = ξ11 − ξ21 toward 1. It is
evident from the autocorrelation function of Yt, derived in (10.20), that high
autocorrelation in the marginal process Yt is present, although there exists
no autocorrelation within the two regimes. Furthermore the autocorrelation
increases as the size |µ2 −µ1| of the shift in the mean increases. This may lead
to detecting a spurious unit root because a unit root test applied to Yt is biased
toward nonrejection of the unit root hypothesis under a sudden change in the
mean with increasing rate of nonrejection as the size |µ2 − µ1| of the break
increases. Garcia and Perron (1996), by modeling interest rates by a three-
state MSAR model with state-invariant autocorrelation and heteroscedastic
variances, show that the autocorrelation actually nearly disappears in the
various regimes.

This raises the question as to whether a Markov switching model should
be applied to the level or to the growth rate of a nonstationary time series.
Hamilton (1989), following the standard ARIMA modeling approach, which
is based on autoregressive modeling of the growth rate, applied the MSAR
model to the growth rate of a nonstationary time series such as the GDP. In
terms of the (log) level Yt the model reads:
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Yt = µt + Zt, (12.10)
µt = µt−1 + ζSt

,

δ(L)�Zt = δ(L)(1 − L)Zt = εt,

where L is the lag operator, δ(L) = 1−δ1L−· · ·−δpL
p and all roots of δ(L) lie

outside the unit circle. This model is also called the Markov switching trend
model, because the untransformed time series Yt has a stochastic trend with
a drift that is switching according to a hidden Markov chain.

Specification (12.10) assumes that Yt has a unit root, however, as noted by
Lam (1990), the results of Perron (1989, 1990) suggest that the unit root in
Yt disappears once occasional shifts in the deterministic trend are allowed for.
Lam (1990) assumes that Yt is trend stationary around a Markov switching
trend:

Yt = µt + Zt, (12.11)
µt = µt−1 + ζSt

,

δ(L)Zt = εt,

where all roots of δ(L) lie outside the unit circle. In this model the predictive
density p(yt|S,yt−1) depends on the whole history of St (assumption Y1) and
estimation has to be carried within the framework of switching state space
models; see Chapter 13.

As a compromise between these two models, Hall et al. (1999) consider a
model based on the Dickey–Fuller regression (Dickey and Fuller, 1981) and al-
low for regression parameter switching according to a two-state hidden Markov
chain:

�Yt = ζSt + ψStYt−1 +
p∑

j=1

δSt,j�Yt−j + εt. (12.12)

In (12.12), Yt is the (log) level of the observed process, whereas �Yt = Yt−Yt−1
is the growth rate. If ψ1 = ψ2 = 0 in both regimes then a unit root is present
in Yt, and the Markov switching trend model of Hamilton (1989) results. On
the other hand, if ψ1 �= 0 and ψ2 �= 0, then Yt is stationary around a trend
with Markov switching slope, leading to the model of Lam (1990).

Model (12.12) allows that Yt has a unit root in one state (ψ1 = 0), whereas
Yt is stationary in the other state (ψ2 �= 0). This model has been found useful
in applied time series analysis, for instance, in economics for modeling the
GDP (McCulloch and Tsay, 1994a), in finance for modeling interest rates
(Ang and Bekaert, 2002), as well as in geophysics (Karlsen and Tjøstheim,
1990).

Several authors investigate the power of unit root tests when the data arise
from particular Markov switching alternatives (Nelson et al., 2001; Psaradakis,
2001, 2002).
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12.2.5 Parameter Estimation and Model Selection

ML estimation is usually carried out through the EM algorithm (Hamilton,
1990; Holst et al., 1994). Asymptotic properties of the ML estimator for MSAR
models are established in Francq and Roussignol (1998), Krishnamurthy and
Rydén (1998), and Douc et al. (2004).

Bayesian estimation of the MSAR model relies on data augmentation and
MCMC (Albert and Chib, 1993; McCulloch and Tsay, 1994b; Chib, 1996;
Frühwirth-Schnatter, 2001b). For an MSAR model where all coefficients, in-
cluding the intercept and the variance, are switching, MCMC estimation is
carried out along the lines indicated in Algorithm 11.3, with step (a2) being the
only model-specific part. Sampling the model parameters ϑ = (β1, . . . ,βK ,
σ2

ε,1, . . . , σ
2
ε,K), with βk = (δk,1, . . . , δk,p, ζk), in combination with the conju-

gate priors

βk ∼ Np+1 (b0,B0) , σ2
ε,k ∼ G (c0, C0) ,

is closely related to sampling these parameters for a finite mixture regression
model as in steps (a2) and (a3) of Algorithm 8.1. An MSAR model, where
only some parameters are switching, may be considered as a special case of
a Markov switching dynamic regression model, which is introduced in Sec-
tion 12.3, where Bayesian estimation is discussed in Subsection 12.3.2.

The presence of the lagged values yt−1, . . . , yt−p, however, causes certain
technical problems that are avoided if inference is carried out conditional on
the first p values. For an unconditional analysis as in Albert and Chib (1993),
the first p values are considered to be random draws from the stationary dis-
tribution p(y1, . . . , yp|ϑ). An undesirable effect of an unconditional analysis is
that the posterior of ϑ = (β1, . . . ,βK , σ2

ε,1, . . . , σ
2
ε,K) no longer has a standard

form, as the stationary distribution depends on these parameters in a non-
conjugate manner. Albert and Chib (1993) suggest using rejection sampling
to sample from this posterior.

The most commonly occurring model selection problems for MSAR mod-
els is selecting the number of states of the hidden Markov chains well as order
selection. Frühwirth-Schnatter (2004) shows that it is important to consider
these model selection problems jointly in order to avoid underfitting the num-
ber of states while overfitting the AR order; see also Subsection 12.2.6.

12.2.6 Application to Business Cycle Analysis of the U.S.
GDP Data

The motivating example studied in Subsection 12.2.1 demonstrated one of the
key features of the business cycle, namely that periods of expansion and con-
traction are quite different. Whereas in expansion periods the output growth
rate is high and the economy is booming, growth rates are typically negative
in contraction periods, where the economy is in a recession. An important fea-
ture of macro-economic time series such as the GDP or industrial production
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is persistence of the respective states. Once the economy is in a certain state
it tends to remain there for more than one period. Furthermore there is some
asymmetry in this persistency, as longer periods of positive growth rates are
followed by shorter periods of negative growth rates. This asymmetry over the
business cycle has been captured using a basic Markov switching model for
unemployment rates (Neftçi, 1984) and GDP, investment, and productivity
(Falk, 1986).

Markov switching autoregressive models, often also called regime switch-
ing models by economists, became extremely popular in business cycle analy-
sis since Hamilton’s (1989) paper, and further applications include Goodwin
(1993), Sichel (1994), Clements and Krolzig (1998), and Kaufmann (2000),
among many others. For a theoretical justification of why Markov switching
might be sensible models for the economy we refer to Hamilton and Raj (2002)
and Raj (2002) and the references therein.

Model Selection for the GDP Data

We return to modeling the U.S. quarterly GDP series introduced in Sub-
section 12.2.1 within the framework of MSAR models, by comparing differ-
ent Markov switching models. The first model is the K-state MSAR model
with switching intercept, but state-independent AR parameters and state-
independent variances, defined in (12.5), which has been applied by Chib
(1996). The second is the K-state MSAR model with switching intercept,
switching AR parameters, and switching error variance (“totally switching”),
defined in (12.6) which was applied by McCulloch and Tsay (1994b). The
priors are selected to be rather vague and state-independent. We assume no
prior correlation among the regression parameters. The prior on the switching
intercept is N (0, 1); the prior both on switching and state-independent AR
parameters is N (0, 0.25). The prior both on switching and state-independent
variances is G−1 (2, 0.5). The prior on the rows ξk· of the transition matrix is,
for all k, D (ek1, . . . , ekK) with ekk = 2 and ekk′ = 1/(K − 1), if k �= k′.

We compare the Markov switching models (12.5) and (12.6), where K is
equal to 2 or 3, with the classical AR(p) model, which corresponds to K = 1,
using marginal likelihoods. We assume that p varies between 0 and 4, lead-
ing to a total of 25 different models. The marginal likelihoods are estimated
from the MCMC output of a random permutation sampler (M = 6000 after a
burn-in phase of 1000 simulations) using the “optimal” bridge sampling esti-
mator described in Subsection 5.4.6, where the construction of the importance
density q(ϑ) according to (11.29) is based on S = 100 · K! components.

From Table 12.1, reporting the log of the estimated marginal likelihoods,
we find that the two-state totally switching MSAR model of order p = 2 has
the highest marginal likelihood. This result is interesting for various reasons:
first, we were able to produce evidence in favor of Markov switching hetero-
geneity from univariate time series observations of the GDP alone, without
the need to include other time series as in Kim and Nelson (2001). Second, the
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Table 12.1. GDP Data, modeled by an AR(p) model (M1) and different Markov
switching models (M2 . . . switching intercept, M3 . . . totally switching) with dif-
ferent order p and different number of states K; log of marginal likelihoods
log p(y|Mj , K, p) (from Frühwirth-Schnatter (2004) with permission granted by the
Royal Economic Society)

M1 M2 M3

p K = 1 K = 2 K = 3 K = 2 K = 3

0 –199.71 –193.54 –192.25 –194.25 –193.10
1 –194.22 –192.54 –192.75 –193.58 –194.71
2 –196.30 –194.15 –194.38 –191.62 –194.33
3 –197.26 –194.59 –194.74 –193.67 –196.78
4 –199.18 –195.70 –195.72 –195.34 –199.88

evidence in favor of the hypothesis that the dynamic pattern of the economy
is different between contraction and expansion periods confirms the empirical
results of McCulloch and Tsay (1994b).

Testing for Markov switching heterogeneity is highly influenced by select-
ing the appropriate model order. If we compare in Table 12.1 the AR(1)
model, which has highest marginal likelihood among all AR(p) models con-
sidered, with a two-state totally switching model of order four, which is the
model considered by McCulloch and Tsay (1994b), we end up with evidence in
favor of no Markov switching heterogeneity. For a two-state totally switching
MSAR model, however, the optimal model order is p = 2 rather than p = 4.
Only if we compare the AR(1) model with a two-state switching model with
p close to the optimal order, will we end up with evidence in favor of Markov
switching heterogeneity. These results indicate the importance of simultane-
ously testing for Markov switching heterogeneity and selecting the appropriate
model order and might explain why other studies, reviewed in Kim and Nelson
(2001), have produced somewhat conflicting evidence concerning the presence
or absence of Markov switching heterogeneity in this time series.

Exploratory Bayesian Analysis

A number of exploratory cues with regard to model selection are available from
the point process representations of the MCMC output of the various models.
We start with the point process representations of various bivariate marginal
distributions for the three-state totally switching MSAR model of order four.
Although we allowed for three states, the scatter plots in Figure 12.3 indicate
that a model with three states is overfitting. If we compare this figure with
the simulations of a two-state totally switching MSAR model of order four
in Figure 12.4, we obtain a similar picture, with fuzziness being reduced due
to the smaller number of parameters; nevertheless the two states are not
very clearly separated. The bivariate marginal density of the autoregressive
parameters δk,3 and δk,4 clusters around 0 for all states, suggesting reducing
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Fig. 12.3. GDP Data, totally Markov switching model with K = 3 and p = 4;
MCMC simulations from various bivariate marginal densities obtained from random
permutation sampling

the model order p to 2. The point process representations MCMC simulations
for the two-state totally switching MSAR model of order 2 in Figure 12.5 show
a much clearer picture. As δk,2 has two simulation clusters, one of which is
shifted away from 0, there is no exploratory evidence that we should reduce the
model order further. Furthermore the two simulation clusters provide evidence
in favor of a totally switching rather than a switching intercept MSAR model.

On the whole, exploratory Bayesian analysis using projections of the point
process representations of the MCMC draws supports the findings from formal
model selection using marginal likelihood.

Parameter Estimation for the “Best” Model

To identify the two-state totally switching MSAR model of order two, we use
the identifiability constraint ζ1 < ζ2, as the growth rate in the two states is
expected to be different. This choice is supported by point process represen-
tation in Figure 12.5, showing that the simulations of ζk cluster around two
points, one having an intercept bigger, the other having an intercept smaller
than zero.
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Fig. 12.4. GDP Data, totally Markov switching model with K = 2 and p = 4;
MCMC simulations from various bivariate marginal densities obtained from random
permutation sampling

To produce simulations under the identifiability constraint we apply the
permutation sampler by reordering the MCMC output according to the con-
straint ζ1 < ζ2. If the constraint is violated for any MCMC draw, ζ

(m)
1 > ζ

(m)
2 ,

we permute the labels of all state-dependent parameters with ρ(1) = 2 and
ρ(2) = 1. This is the basic idea behind permutation sampling under an iden-
tifiability constraint. It has been proven in Frühwirth-Schnatter (2001b) that
due to the invariance of the posterior distribution to relabeling the states, this
is a valid strategy to produce a sample from the constrained Markov mixture
posterior distribution.

The resulting parameter estimates are summarized in Table 12.2. Positive
growth in expansion is followed by negative growth in contraction. The dy-
namic behavior of the U.S. GDP growth rate is different between contraction
and expansion with reaction to a percentage change of the GDP growth being
faster in expansion than in contraction. The expected duration of expansion
is longer than that of contraction.
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Fig. 12.5. GDP Data, totally Markov switching model with K = 2 and p = 2;
MCMC simulations from various bivariate marginal densities obtained from random
permutation sampling (from Frühwirth-Schnatter (2001b) with permission granted
by the American Statistical Association)

Table 12.2. GDP Data, totally Markov switching model with K = 2 and p = 2,
identified through ζ1 < ζ2; parameters estimated by posterior means; standard errors
given by posterior standard deviations in parentheses

Parameter Contraction (k = 1) Expansion (k = 2)

δk,1 0.249 (0.164) 0.295 (0.116)
δk,2 0.462 (0.164) –0.114 (0.098)
ζk –0.557 (0.322) 1.060 (0.175)

σε,k 0.768 (0.161) 0.692 (0.115)
ξkk′ 0.489 (0.165) 0.337 (0.145)
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12.3 Markov Switching Dynamic Regression Models

An important extension both of Markov switching autoregressive models and
the Markov switching regression model, discussed in Subsection 10.3.2, is the
Markov switching dynamic regression model.

12.3.1 Model Definition

The MSAR model (12.4) has been extended in the following way to deal with
the presence of exogenous variables zt =

(
zt1 · · · ztd

)
(Cosslett and Lee,

1985; Albert and Chib, 1993),

Yt − µSt − ztβ = δ1(Yt−1 − µSt−1 − zt−1β) + · · ·
+ δp(Yt−p − µSt−p − zt−pβ) + εt,

where the regression coefficient β is considered to be unaffected by St. In the
following dynamic regression model all parameters, including the regression
coefficient β, are affected by endogenous regime shifts following a hidden
Markov chain (McCulloch and Tsay, 1994b),

Yt = δSt,1Yt−1 + · · · + δSt,pYt−p + ztβSt
+ ζSt

+ εt.

For estimation it is useful to view this model as a Markov switching regression
model as in Subsection 10.3.2, without distinguishing between endogenous
variables, exogenous variables, and the intercept:

Yt = xtβSt
+ εt, (12.13)

where xt =
(
yt−1 · · · yt−p zt1 · · · ztd 1

)
. In the mixed-effects Markov switch-

ing dynamic regression model only certain elements of the parameter βSt
in

(12.13) actually depend on the state of the hidden Markov chain, and others
are state independent (McCulloch and Tsay, 1994b):

Yt = xf
t α + xr

tβSt
+ εt, (12.14)

where xf
t are those columns of xt that correspond to the state-independent

parameters α whereas the columns of xr
t correspond to the state-dependent

parameters. Any of these models may be combined with homoscedastic vari-
ances, εt ∼ N

(
0, σ2

ε

)
, or heteroscedastic variances, where the error variances

are different in the various states, εt ∼ N
(
0, σ2

ε,St

)
.

12.3.2 Bayesian Estimation

Bayesian estimation of the Markov switching dynamic regression model along
the lines indicated in Algorithm 11.3 is closely related to Bayesian esti-
mation of finite mixtures of regression models. Sampling the parameters
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(α,β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K) conditional on a known trajectory S of the hid-

den Markov chain in step (a2) of Algorithm 11.3 is exactly the same as for a
mixed-effects finite mixture regression model and may be implemented as in
Algorithm 8.2. As the Markov switching dynamic regression model includes
lagged values of Yt, inference is usually carried out conditional on the first p
observations y1, . . . , yp and t runs from t0 = p+1 to T . To adapt the formulae
of Subsection 8.4.4, in particular (8.36) and (8.37), to the slightly different
notation used here, note that i corresponds to t − p, whereas N corresponds
to T − p.

Usually an independence prior is applied where location and scale pa-
rameters are assumed to be independent a priori (Albert and Chib, 1993;
McCulloch and Tsay, 1994b):

p(α,β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K) = p(α)

K∏
k=1

p(βk)p(σ2
ε,k), (12.15)

α ∼ Nr (a0,A0) , βk ∼ Nd (b0,B0) , σ2
ε,k ∼ G (c0, C0) .

Conditionally conjugate priors exist only for two special cases of model (12.14);
first, for a model with homoscedastic variances, namely

p(α,β1, . . . ,βK , σ2
ε) = p(σ2

ε)p(α|σ2
ε)

K∏
k=1

p(βk|σ2
ε), (12.16)

α|σ2
ε ∼ Nr

(
a0, σ

2
εA0

)
, βk|σ2

ε ∼ Nd

(
b0, σ

2
εB0

)
, σ2

ε ∼ G (c0, C0) ,

and, second, for a model with heteroscedastic variances and no common pa-
rameters, where xf

t α vanishes in (12.14), namely

p(β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K) =

K∏
k=1

p(βk|σ2
ε,k)p(σ2

ε,k), (12.17)

βk|σ2
ε,k ∼ Nd

(
b0, σ

2
ε,kB0

)
, σ2

ε,k ∼ G (c0, C0) .

With increasing number K of states joint sampling of all regression parame-
ters (α, β1, . . . ,βK) may be rather time consuming, especially for regression
models with high-dimensional parameter vectors, and further blocking may
be applied (Albert and Chib, 1993; McCulloch and Tsay, 1994b; Kim and
Nelson, 1999).

12.4 Prediction of Time Series Based on Markov
Switching Models

12.4.1 Flexible Predictive Distributions

The predictive distribution of a Markov switching model is much more flexible
than the predictive distribution of more traditional time series models. Con-
sider the one-step ahead predictive density p(yt|yt−1, ϑ) of a Markov switching
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model that reads

p(yt|yt−1, ϑ) =
K∑

k=1

p(yt|yt−1, θk)Pr(St = k|yt−1, ϑ), (12.18)

if at least assumption Y2 holds. Various features of (12.18) are worth men-
tioning.

First, the one-step ahead predictive density p(yt|yt−1, ϑ) is a finite mix-
ture distribution and potentially nonnormal, even if the component densities
p(yt|yt−1, θk) are normal. The weights of this mixture density are given by
the one-step ahead predictive probabilities Pr(St = k|yt−1, ϑ), k = 1, . . . , K,
which are determined recursively by the filter derived in Subsection 11.2.2,
and are dynamic, depending on the past values of yt−1, as long as St does
not reduce to an i.i.d. process. Additional important features of the predictive
density are nonlinearity of E(Yt|yt−1, ϑ) in the past values yt−1, and condi-
tional heteroscedasticity, meaning that Var(Yt|yt−1, ϑ) depends on the past.
Also higher-order moments of p(yt|yt−1, ϑ) are dynamic and depend on the
past.

These features are made more explicit for a two-state Markov switching
model with normal component densities, p(yt|yt−1, θk) = fN (yt; µk,t, σ

2
k,t),

with µk,t = E(Yt|yt−1, θk) and σ2
k,t = Var(Yt|yt−1, θk) being the conditional

mean and the conditional variance. Obviously from (12.18), the predictive
density p(yt|yt−1, ϑ) is a mixture of two normal distributions,

p(yt|yt−1, ϑ) = wt−1(yt−1)fN (yt; µ1,t, σ
2
1,t)

+ (1 − wt−1(yt−1))fN (yt; µ2,t, σ
2
2,t), (12.19)

where wt−1(yt−1) = Pr(St = 1|yt−1, ϑ) is the predictive probability of St = 1
given time series observations up to t − 1. Using the filter equations given
in Subsection 11.2.3, it is possible to show that wt−1(yt−1) is a nonlinear
function of the past values yt−1. From (11.5) follows

wt−1(yt−1) = (1 − λ)η1 + λPr(St−1 = 1|yt−1, ϑ), (12.20)

where the filter equation (11.2) implies that the odds ratio for the filter prob-
ability Pr(St−1 = 1|yt−1, ϑ) is given by

logit Pr(St−1 = 1|yt−1, ϑ) = −.5

×
(

(yt−1 − µ1,t−1)2

σ2
1,t−1

− (yt−1 − µ2,t−1)2

σ2
2,t−1

+ log
σ2

1,t−1

σ2
2,t−1

)
+ logit wt−2(yt−1).

Consequently, the right-hand side of (12.20) is a nonlinear function of yt−1,
and by recursion, of all other previous values yt−2. Hence, the mean of the one-
step ahead predictive distribution p(yt|yt−1, ϑ) of a two-state hidden Markov
model, which is given by
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E(Yt|yt−1, ϑ) = µ1,twt−1(yt−1) + µ2,t(1 − wt−1(yt−1)),

is nonlinear in the past yt−1, even if the conditional means µ1,t and µ2,t are
linear as for the MSAR model.

Furthermore, the dependence of the weights wt−1(yt−1) on past obser-
vations through the nonlinear function (12.20) introduces conditional het-
eroscedasticity, even if the predictive densities are homoscedastic. For a two-
state hidden Markov model the variance of the one-step ahead predictive
distribution p(yt|yt−1, ϑ) is given by

Var(Yt|yt−1, ϑ) = σ2
1,twt−1(yt−1) + σ2

2,t(1 − wt−1(yt−1))
+ 2µ1,tµ2,twt−1(yt−1)(1 − wt−1(yt−1)),

wt−1(yt−1) depends on past observations through the nonlinear function
(12.20). Thus the conditional variance Var(Yt|yt−1, ϑ) of a Markov switch-
ing model is in general a nonlinear function of past squared errors and able
to capture conditional heteroscedasticy observed in financial time series; see
Section 12.5.

12.4.2 Forecasting of Markov Switching Models via
Sampling-Based Methods

Predictors ŷT+1, . . . , ŷT+h of a time series y = (y1, . . . , yT ) which are optimal
with respect to the mean-squared prediction error criterion may be computed
recursively for most Markov switching models (Krolzig, 1997; Clements and
Krolzig, 1998).

Bayesian forecasting of future observations yT+1, . . . , yT+h of a time se-
ries y = (y1, . . . , yT ) is based on the predictive density p(yT+1, . . . , yT+h|y)
which is not available in closed form for most time series models, even for sim-
ple AR(p) models (Schnatter, 1988a). Sampling-based forecasting procedures
that have been applied to AR models (Thompson and Miller, 1986) and to
ARCH models (Geweke, 1992) were extended to deal with Markov switching
autoregressive models (Albert and Chib, 1993).

The following algorithm shows how forecasting by a sampling-based ap-
proach is implemented for arbitrary Markov switching models fulfilling at least
assumption Y3 whereas St only needs to fulfill S1.

Algorithm 12.1: Forecasting of a Markov Switching Time Series Model For
each MCMC draw (ϑ(m), S

(m)
1 , . . . , S

(m)
T ) from the joint posterior p(S, ϑ|y)

carry out the following steps to sample from the posterior predictive density
p(yT+1, . . . , yT+h|y).

(a) Starting with S
(m)
T , sample a future path of the hidden Markov chain by

sampling S
(m)
T+s recursively for s = 1, . . . , h from the discrete distribution

p(ST+s|S(m)
T+s−1, ϑ

(m)). For a homogeneous Markov chain, this distribution
is equal to the kth row of ξ(m), if S

(m)
T+s−1 takes the value k.
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(b) Given ϑ(m) and S
(m)
T+1, . . . , S

(m)
T+h, sample y

(m)
T+1 from the predictive density

p(yT+1|y, ϑ, S
(m)
T+1), and for s = 2, . . . , h, sample y

(m)
T+s recursively from the

predictive density p(yT+s|y(m)
T+s−1, . . . , y

(m)
T+1,y, ϑ, S

(m)
T+s).

To implement step (b) for the MSAR model, for instance, one samples
future paths y

(m)
T+1, . . . , y

(m)
T+h recursively from:

yT+1|S(m)
T+1 = k1,y, ϑ(m) ∼

N
(
ζ
(m)
k1

+ δ
(m)
k1,1yT + · · · + δ

(m)
k1,pyT−p, σ

(2,m)
ε,k1

)
yT+2|S(m)

T+2 = k2, y
(m)
T+1,y, ϑ(m) ∼

N
(
ζ
(m)
k2

+ δ
(m)
k2,1y

(m)
T+1 + δ

(m)
k2,2yT + . . . , σ

(2,m)
ε,k2

)
yT+3|S(m)

T+3 = k3, y
(m)
T+2, y

(m)
T+1,y, ϑ(m) ∼

N
(
ζ
(m)
k3

+ δ
(m)
k3,1y

(m)
T+2 + δ

(m)
k3,2y

(m)
T+1 + δ

(m)
k3,3yT + . . . , σ

(2,m)
ε,k3

)
,

· · ·

where δ
(m)
k,l = 0 for l > p.

12.5 Markov Switching Conditional Heteroscedasticity

12.5.1 Motivating Example
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Fig. 12.6. New York Stock Exchange Data, left: time series plot; right:
smoothed histogram of the marginal distribution
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Fig. 12.7. New York Stock Exchange Data, left: log of the smoothed his-
togram (solid line) in comparison to the log of a normal distribution with same
mean and variance (dashed line); middle: empirical autocorrelogram of the returns;
right: empirical autocorrelogram of the squared returns

Figure 12.6 shows the weekly New York Stock Exchange Data inves-
tigated in Hamilton and Susmel (1994). The series originates from the CRISP
data tapes and consists of a value-weighted portfolio of stocks traded on the
New York Stock Exchange and starts with the week ending Tuesday, July 3,
1962 and ends with the week ending Tuesday, December 29, 1987, making
in total 1330 observations. The smoothed histogram of the marginal distri-
bution indicates asymmetry and fat tails. The empirical skewness coefficient
and excess kurtosis are given by −1.2923 and 17.6394, respectively.

A central topic of econometrics of financial markets is the question of how
to model the distribution of such returns, and how to estimate the variability,
usually termed volatility, of financial time series. The returns are in general
defined as yt = log pt − log pt−1, where pt is the price of a financial asset or
a stock index. Two important stylized facts of financial time series, known as
fat tails and volatility clustering, were discovered in the 1960s. Fama (1965,
p.48), when studying 30 stocks from the Dow Jones industrial average index,
summarized:

In any case the empirical distributions are more peaked than the nor-
mal in the centre and have longer tails than the normal distribution.

Departure from normality also occurs for the returns of the New York
Stock Exchange Data. Nonnormal tail behavior is evident in particular
from the left plot in Figure 12.7, comparing the log of the smoothed his-
togram with the log of a normal distribution with the same mean and the
same variance.

Concerning the second stylized fact, Mandelbrot (1963, p.418) states,

Large changes tends to be followed by large changes — of either sign
— and small changes tend to be followed by small changes.
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This kind of volatility clustering is also evident for the returns of the New
York Stock Exchange Data from the time series plot in Figure 12.6. The
presence of volatility clusters if often tested by analyzing the autocorrelation
in the squared process. Many studies find significant serial correlation in the
squared values of financial time series; see also the right-hand side plot in
Figure 12.7 for the returns of the New York Stock Exchange Data.

Later on researchers realized various asymmetric effects also called leverage
effects. As Engle and Ng (1995, p.173) summarize,

Overall, these results show a greater impact on volatility of negative,
rather than positive return shocks.

12.5.2 Capturing Features of Financial Time Series Through
Markov Switching Models

Markov switching models are often used by researchers to account for specific
features of financial time series such as asymmetries, fat tails, and volatility
clusters.

To deal with skewness and excess kurtosis in the unconditional distribution
of daily stock returns standard finite mixtures of normal distributions have
been applied quite frequently (Fama, 1965; Granger and Orr, 1972; Kon, 1984;
Tucker, 1992). Such a modeling approach, however, is appropriate for time
series data only if the processes Yt and Y 2

t do not exhibit autocorrelation,
as by the results of Subsections 10.2.4 and 10.2.5 a standard finite mixture
model implies zero autocorrelation in Yt and Y 2

t .
Volatility clustering implies persistence of states of high volatility and leads

to the rejection of standard time series models in favor of time series models
that allow the conditional variance Var(Yt|yt−1, ϑ) to depend on the history
yt−1, yt−2, . . . of the observed process such as the autoregressive conditionally
heteroscedastic (ARCH) model (Engle, 1982), where

Var(Yt|yt−1, ϑ) = γt + α1y
2
t−1 + · · · + αmy2

t−m,

and the generalized autoregressive conditionally heteroscedastic (GARCH)
model (Bollerslev, 1986). The popularity of ARCH models, in particular if
they are based on the tν-error distributions (Bollerslev et al., 1992), can cer-
tainly be explained by their ability to generate processes with serial correlation
in Y 2

t , whereas the introduction of tν-error helps to capture the tail behav-
ior appropriately. Tsay (1987) considered random coefficient autoregressive
models which are another example of a conditional heteroscedastic time series
model and showed that the ARCH process is a special case of this model class.
More recently, stochastic volatility models have been increasingly applied to
financial time series (Shephard, 1996; Kim et al., 1998; Chib et al., 2002).

As an alternative to these models, Markov mixture models where the vari-
ance of a location-scale family is driven by a hidden Markov chain have been
applied to financial time series (Engel and Hamilton, 1990; McQueen and
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Thorely, 1991; Rydén et al., 1998). Although these models introduce autocor-
relation in Y 2

t , while preserving nonnormality of the marginal distribution (see
again Subsection 10.2.5), a closer inspection of the autocorrelation function
of Y 2

t reveals that the basic Markov switching model generates only limited
persistence in the squared process. For a two-state model, where µ1 = µ2, for
instance, there exists a strong relationship between the fatness of the tails,
measured by the excess kurtosis, and autocorrelation of the squared process.

Far more general autocorrelation functions of Y 2
t are possible if Yt is gen-

erated by an MSAR model with or without switching AR coefficients; see
Timmermann (2000, Proposition 5). Hence the MSAR model has been ap-
plied to a number of financial time series (Hamilton, 1988; Turner et al.,
1989; Cecchetti et al., 1990; Engel, 1994; Gray, 1996; Ang and Bekaert, 2002).

To obtain even more flexibility in the autocorrelation of Y 2
t , for a given

marginal distribution of Yt, Hamilton and Susmel (1994), Cai (1994), and
Gray (1996) proposed to combine ARCH and Markov switching effects to
formulate the switching ARCH model, which is defined in Subsection 12.5.3
as a highly flexible, nonlinear time series model. Bekaert and Harvey (1995)
introduced a model that combines Markov switching models with multivariate
ARCH models to allow for time-dependence in the integration of emerging
markets. Francq et al. (2001) considered the switching GARCH model; see
Subsection 12.5.5.

Smith (2002) extends Markov switching models further, by incorporating
a regime-dependent variance parameter, when modeling stochastic volatility
in interest rates.

12.5.3 Switching ARCH Models

A simple model to capture volatility clusters in financial time series is the
ARCH model (Engle, 1982) which may be written as

Yt = σtεt, εt ∼ N (0, 1) ,

σ2
t = γt + α1Y

2
t−1 + · · · + αmY 2

t−m (12.21)

with γt ≡ γ. An alternative parameterization of this model reads:

Yt =
√

γthtεt,

h2
t = 1 +

α1

γt−1
Y 2

t−1 + · · · +
αm

γt−m
Y 2

t−m. (12.22)

The two parameterizations are equivalent if γt ≡ γ, however, they generate
different processes if γt is time dependent. The switching ARCH model results
by allowing time dependence of γt through a hidden K-state Markov chain
St: γt = γSt .

Such a switching parameter was introduced by Hamilton and Susmel
(1994) into parameterization (12.22):
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Yt =
√

γSt
htεt,

h2
t = 1 +

α1

γSt−1

Y 2
t−1 + · · · +

αm

γSt−m

Y 2
t−m,

whereas Cai (1994) introduced a two-state and Kaufmann and Frühwirth-
Schnatter (2002) a K-state switching parameter into parameterization (12.21):

Yt = σtεt,

σ2
t = γSt

+ α1Y
2
t−1 + · · · + αmY 2

t−m.

Gray (1996) introduced switching into all coefficients of the ARCH process,
represented by (12.21):

Yt = σtεt,

σ2
t = γSt

+ αSt,1Y
2
t−1 + · · · + αSt,mY 2

t−m. (12.23)

A special case of model (12.23) is the mixture autoregressive conditional het-
eroscedastic model (Wong and Li, 2001), where St is an i.i.d. process rather
than a Markov process. Francq et al. (2001) provide conditions under which
model (12.23) is second-order stationary; see also the discussion in Subsec-
tion 12.5.5.

The switching ARCH model may be combined with a Markov switching
autoregressive model for the mean equation that includes the same hidden
Markov chain (Gray, 1996):

Yt = ζSt + δSt,1Yt−1 + ut,

ut = σtεt, εt ∼ N (0, 1) ,

σ2
t = γSt + αSt,1u

2
t−1 + · · · + αSt,mu2

t−m. (12.24)

The switching ARCH model has been extended by including a leverage effect
into the ARCH specification (Hamilton and Susmel, 1994; Kaufmann and
Frühwirth-Schnatter, 2002) to deal with asymmetries in the marginal distri-
bution:

Yt = σtεt, εt ∼ N (0, 1) ,

σ2
t = γSt

+ α1y
2
t−1 + · · · + αmy2

t−m + �dt−1y
2
t−1, (12.25)

where dt = 1 if yt ≤ 0, dt = 0 if yt > 0 and � > 0.
Further applications of switching ARCH models in financial econometrics

include modeling of stock market returns (Hamilton and Lin, 1996; Fong,
1997), interest rates (Cai, 1994; Gray, 1996; Ang and Bekaert, 2002), and
exchange rate data (Klaasen, 2002).

Spurious Persistency in Squared Returns

A common finding when fitting GARCH models to high-frequency financial
data is the somewhat unexpected persistence of shocks to the variance implied
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by the estimated coefficients which led to the development of the class of in-
tegrated generalized autoregressive conditional heteroscedasticity (IGARCH)
models (Engle and Bollerslev, 1986). Lamoureux and Lastrapes (1990) in-
vestigated the possibility that the appearance of a unit root in the GARCH
model may be due to time-varying GARCH parameters. They show that a
deterministic structural shift in the unconditional variance, caused by exoge-
nous shocks such as changes in the monetary policy, will increase persistency
of squared residuals, however, when the structural break is accounted for,
persistency often decreases dramatically.

Introducing a hidden Markov chain into a variance model helps to explain
spurious persistence in squared returns. Consider, for illustration, a simple
Markov mixture of two normal distributions with µ1 = µ2 and σ2

1 �= σ2
2 driven

by a highly persistent transition matrix ξ with λ = ξ11 − ξ21 being close to 1.
Together with σ2

2 − σ2
1 being large this leads to slowly decaying persistence in

Y 2
t :

ρY 2
t
(h|ϑ) =

η1η2(σ2
1 − σ2

2)2

E(Y 4
t |ϑ) − E(Y 2

t |ϑ)2
λh

(see again (10.24)), although the squared returns are uncorrelated within each
regime. Also for the more general switching ARCH model, Hamilton and Sus-
mel (1994) attribute part of the high marginal persistence in Y 2

t , which is
typically much larger than autocorrelation of Y 2

t in the various regimes, to
this effect.

12.5.4 Statistical Inference for Switching ARCH Models

Parameter estimation for switching ARCH models may be carried out by
ML estimation (Hamilton and Susmel, 1994; Francq et al., 2001). Hamilton
and Susmel (1994) report extreme difficulties with maximizing the likelihood
function for the New York Stock Exchange Data, and only by restricting
seven transition probabilities to 0 were they able to run the optimization
procedure and to report standard errors for their final model.

Bayesian estimation of the switching ARCH model as exemplified in Kauf-
mann and Frühwirth-Schnatter (2002) has the advantage of coping with the
near boundary space problem by imposing a proper prior on the transition
matrix ξ as discussed in Subsection 11.5.1, in which case the posterior density
is proper also for unobserved transitions, and standard errors and confidence
regions are directly available. MCMC sampling may be carried out along the
lines indicated in Algorithm 11.3, however, the Metropolis–Hastings algorithm
is needed to implement step (a2) due to the nonlinear structure of the under-
lying model which does not lead to simple conditional densities.

Consider, as an example, the following special case of the switching AR-
ARCH model,
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yt = ζ + δ1yt−1 + ut, (12.26)
ut = σtεt, εt ∼ N (0, 1) , (12.27)
σ2

t = γSt
+ α1u

2
t−1 + · · · + αmu2

t−m,

where step (a2) in Algorithm 11.3 requires sampling the AR parameters
φ1 = (ζ, δ1) and the ARCH parameters φ2 = (γ1, . . . , γK , α1, . . . , αm) from
the appropriate conditional densities. To this aim, Kaufmann and Frühwirth-
Schnatter (2002) developed the following two-block Metropolis–Hastings step,
building on Nakatsuma (2000).

(a2-1) Sample the AR parameters φ1 = (ζ, δ1) from the conditional pos-
terior p(φ1|S,φ2,y) using a Metropolis–Hastings algorithm with proposal
density q(φnew

1 |φold
1 ).

(a2-2) Sample the ARCH parameters φ2 = (γ1, . . . , γK , α1, . . . , αm) from
the conditional posterior p(φ2|φ1,S,y) using a Metropolis–Hastings algo-
rithm with proposal density q(φnew

2 |φold
2 ).

Due to the presence of ARCH errors in regression model (12.26) no direct
method of sampling the AR parameters φ1 is available even if the ARCH
parameters φ2 are known and a normal prior φ1 ∼ N (b0,B0) is assumed
(Bauwens and Lubrano, 1998; Kim et al., 1998; Nakatsuma, 2000). The crucial
point is that the error variance σ2

t depends on φ1 = (ζ, δ1) through the lagged
residuals ut−1, . . . , ut−m:

σ2
t (φ1, φ2) = γSt + α1(yt−1 − ζ − δ1yt−2)2 + · · ·

+ αm(yt−m − ζ − δ1yt−m−1)2.

Because model (12.26) is a standard regression model with heteroscedastic
errors, if σ2

t (φ1, φ2) is independent of φ1, the following normal proposal
density results when substituting σ2

t (φ1, φ2) by σ2
t (φold

1 , φ2) (Kaufmann and
Frühwirth-Schnatter, 2002),

q(φnew
1 |φold

1 ) = fN (φnew
1 ;bN (φold

1 ),BN (φold
1 )),

bN (φ1) = BN (φ1)

(
T∑

t=m+2

1
σ2

t (φ1, φ2)
x

′
tyt + B−1

0 b0

)
,

BN (φ1) =

(
T∑

t=m+2

1
σ2

t (φ1, φ2)
x

′
txt + B−1

0

)−1

,

where b0 and B0 are the prior parameters and xt =
(
1 yt−1

)
.

Also the conditional posterior of the ARCH parameters φ2 is not of any
closed form. To derive a proposal density q(φnew

2 |φold
2 ), the switching ARCH

model is reformulated in Kaufmann and Frühwirth-Schnatter (2002) as a gen-
eralized linear model. From (12.27), u2

t = σ2
t (φ1, φ2)ε2

t , where ε2
t is a χ2

1
random variable that may be expressed as ε2

t = 1 + ε̃t with E(ε̃t) = 0 and
Var(ε̃t) = 2. Therefore:
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u2
t = γ1D

1
t + · · · + γKDK

t + u2
t−1α1 + · · ·

+ u2
t−mαm + σ2

t (φ1, φ2)ε̃t, (12.28)

where Dk
t = 1 iff St = k. A normal proposal for φ2 has been derived in Kauf-

mann and Frühwirth-Schnatter (2002) from model (12.28) by substituting the
nonnormal errors by normal ones with variance 2(σ2

t (φ1, φ
old
2 ))2.

Note that both the basic Markov switching model with heterogeneous
variances as well as the ARCH model are nested within the switching ARCH
model. Therefore model selection may be used to test for the usefulness of the
combined model as well as the correct model order. Francq et al. (2001) show
that the AIC and Schwarz criteria do not underestimate the correct order of
the switching ARCH model. Kaufmann and Frühwirth-Schnatter (2002) use
marginal likelihoods to select both the number of states as well as the model
order of a switching ARCH model.

Application to the New York Stock Exchange Data

For illustration, we return to the New York Stock Exchange Data. To
account for the autocorrelation found in yt and y2

t , as well as for the fat tails
and the asymmetry observed in the marginal distribution, Kaufmann and
Frühwirth-Schnatter (2002) fitted the following switching AR-ARCH model
to these data, which includes a leverage term,

yt = ζ + δ1yt−1 + ut, (12.29)
ut = σtεt, εt ∼ N (0, 1) ,

σ2
t = γSt

+ α1u
2
t−1 + · · · + αmu2

t−m + �dt−1y
2
t−1. (12.30)

Table 12.3. New York Stock Exchange Data, modeled by a switching AR-
ARCH model with leverage with different numbers of states K and different model
orders m; log of the marginal likelihoods under different priors on the switching
ARCH intercept (from Kaufmann and Frühwirth-Schnatter (2002) with permission
granted by Blackwell Publisher Ltd.)

log p(y|K, m)
K m (prior 1) (prior 2)

3 2 –2858.5 –2858.0
3 3 –2858.2 –2857.7
3 4 –2857.1 –2856.4

4 2 –2861.0 –2859.7
4 3 –2860.7 –2859.4
4 4 –2859.1 –2855.9

Table 12.3 summarizes the marginal likelihoods p(y|K, m) for different
numbers of states K and different model orders m. The marginal likelihoods
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are estimated using bridge sampling as described in Section 5.4.6. Kaufmann
and Frühwirth-Schnatter (2002) noted sensitivity of the model selection proce-
dure with respect to the prior on γk. Selecting the model order m is unaffected
by this prior and yields m = 4. Depending on the prior, the marginal like-
lihood would favor either a model with three or four states; see Table 12.3.
This sensitivity may be explained by the fact that for a four-state model one
of the states corresponds to a single outlier. Thus little information on the
parameters of the fourth state is available from the likelihood and the prior
dominates the posterior distribution.

12.5.5 Switching GARCH Models

Francq et al. (2001) consider the following switching GARCH(m, n) model,
where all coefficients are switching,

Yt = σtεt, εt ∼ N (0, 1) , (12.31)
σ2

t = γSt + αSt,1y
2
t−1 + · · · + αSt,my2

t−m + δSt,1σ
2
t−1 + · · · + δSt,nσ2

t−n.

By recursive substitution it becomes evident that the predictive density
p(yt|yt−1,St, ϑ) depends on the whole history of St. For the switching
GARCH(1, 1) model, for instance, the variance of the predictive density reads:

σ2
t = γSt

+ αSt,1y
2
t−1 + δSt,1(γSt−1 + αSt−1,1y

2
t−2)

+ δSt,1γSt−1(γSt−2 + αSt−2,1y
2
t−3) + · · · .

Thus the model obeys only the weakest assumption Y1 defined in Subsec-
tion 10.3.4. Due to the work of Francq et al. (2001), the theoretical properties
of the switching GARCH models are well understood.

First, Francq et al. (2001) establish necessary and sufficient conditions
ensuring the existence of a strictly stationary solution by rewriting (12.31) as
a stochastic dynamic system and considering the Lyapunov exponent of this
system as in Bougerol and Picard (1992a). For the switching GARCH(1, 1)
model, for instance, this condition reads:

K∑
k=1

ηkE(log
(
αk,1ε

2
t + δk,1

)
) < 0,

which reduces for K = 1 to the result given by Nelson (1990) for the stan-
dard GARCH(1, 1) model. This condition, however, does not guarantee the
existence of the unconditional variance of Yt.

Francq et al. (2001) establish necessary and sufficient conditions for the ex-
istence of second-order stationary solutions, which reduce to the requirement
that the spectral radius of a matrix derived from the stochastic dynamic sys-
tem mentioned above is strictly less than one. For a GARCH(m, n) model
where only the intercept is switching, this condition reduces to:
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m∑
j=1

αj +
n∑

j=1

δj < 1,

which is equal to the condition given by Bollerslev (1986) for a standard
GARCH(m, n) model.

Finally, Francq and Zakoian (1999) establish necessary and sufficient con-
ditions for the existence of higher-order moments of Y 2

t . They show that Y 2
t

admits a linear ARMA representation where the orders depend on m, n, and
the model coefficients, extending the well-known result that a GARCH(m, n)
process has the same autocorrelation as an ARMA(max(m, n), m) process.
Similar ARMA representations are also derived for powers of Y 2

t .
Practical application of switching GARCH models include stock market

returns (Dueker, 1997) and exchange rate data (Klaasen, 2002).

12.6 Some Extensions

12.6.1 Time-Varying Transition Matrices

Whereas the transition matrix ξ of the hidden process St is time invariant
under assumption S3 or S4, the transition probability from St−1 to St may
depend on exogenous variables under assumption S1 or S2, as suggested by
Goldfeld and Quandt (1973).

For a two-state Markov switching model, the transition probabilities
ξSt−1,St

may be reparameterized through a logit model in the following way,

ξSt−1,St =
exp(κSt−1,1)

1 + exp(κSt−1,1)
, St �= St−1.

A univariate exogenous variable zt may then be included as in Subsec-
tion 8.6.2:

ξSt−1,St =
exp(κSt−1,1 + ztκSt−1,2)

1 + exp(κSt−1,1 + ztκSt−1,2)
, St �= St−1, (12.32)

with κj,1 and κj,2, j = 1, 2 being unknown parameters. Note that the transi-
tion probability ξSt−1,St

not only depends on zt, but also on the state of St−1.
The logit transform could be substituted by another increasing function F (·),

ξSt−1,St = F (κSt−1,1 + ztκSt−1,2), St �= St−1, (12.33)

for instance, the standard normal distribution. If zt is equal to a lagged
value of Yt, zt = yt−d for some d > 0, then the so-called endogenous selec-
tion MSAR model (Krolzig, 1997, Subsection 10.3.2) results. If, in addition,
the parameters of model (12.32) or (12.33) are independent of the state of
St−1, κ1,1 = κ2,1, κ1,2 = κ2,2, then the resulting model is closely related to
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the smooth transition autoregressive model (Teräsvirta and Anderson, 1992;
Granger and Teräsvirta, 1993). Extensions to multiple exogenous variables
zt = (zt1, . . . , ztr) and to more than two states are possible.

Models with time-varying transition matrices found applications in hy-
drology (Zucchini and Guttorp, 1991; Pfeiffer and Jeffries, 1999), in financial
econometrics (Diebold et al., 1994; Peria, 2002; Schaller and van Norden, 2002;
Ang and Bekaert, 2002), and in business cycle analysis to capture duration
dependence, meaning that the transition probability between recession and
boom depends on how long the economy remained within the same regime
(Durland and McCurdy, 1994; Filardo, 1994; Filardo and Gordon, 1998).

A model with time-varying transition matrices may be estimated through
the EM algorithm (Diebold et al., 1994) or through MCMC methods (Filardo
and Gordon, 1998).

12.6.2 Markov Switching Models for Longitudinal and Panel Data

Some recent papers combine clustering methods and longitudinal analysis us-
ing hidden Markov models. In a health state model comparing the effective-
ness of two different medications for schizophrenia, Scott et al. (2005) assume
that the observed response yit for patient i at time t follows a multivariate
Student-t distribution,

yit|Sit = k ∼ tνk
(µk,Σk) , (12.34)

depending on a latent health state Sit. The health state is assumed to be a
hidden Markov chain with treatment-dependent transition matrix. Estimation
of this model is carried out using MCMC and BIC was used to select the
number of health states.

Frühwirth-Schnatter and Kaufmann (2006b) combine clustering and Markov
switching models in economic panel data analysis by assuming that K hid-
den groups are present in a panel and that within each group the parameters
may switch according to a hidden Markov chain. Consider, for example, the
mixed-effects model defined in Subsection 8.5.2,

yit = xf
itα + xr

itβ
s
it + εit, εit ∼ N

(
0, σ2

ε

)
. (12.35)

βs
it depends on two latent discrete indicators, first on a group indicator Si.

Second, within each group the regression coefficient corresponding to xr
it may

switch between two states, commonly thought of as the state of the economy,
depending on a group-specific hidden Markov chain It,k with group-specific
transition matrix ξk:

βs
it = βk + (It,k − 1)γk, Si = k.

This model allows pooling all time series within each group and is robust
against structural changes through including the hidden Markov chain. A
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simplified version where the hidden Markov chain is group independent has
been considered by Frühwirth-Schnatter and Kaufmann (2006a). Estimation
is carried out using MCMC methods.

For K = 1, this model reduces to the panel data Markov switching model
that has been applied to analyze the lending behavior of banks over the busi-
ness cycle (Asea and Blomberg, 1998; Kaufmann, 2002):

yit = xf
itα + xr

itβSt
+ εit, εit ∼ N

(
0, σ2

ε

)
, (12.36)

which allows a shift in the regression coefficient corresponding to xr
it between

the two states of St, commonly thought of as the state of the economy. Estima-
tion of model (12.36) may be carried out using the EM algorithm (Asea and
Blomberg, 1998) or MCMC methods (Kaufmann, 2002; Frühwirth-Schnatter
and Kaufmann, 2006a).

12.6.3 Markov Switching Models for Multivariate Time Series

Hidden Markov models have been extended in several ways to deal with multi-
variate time series {Yt, t = 1, . . . , T}, where Yt is random vector of r different
variables, for instance, the GDP from different countries. Common multivari-
ate time series models are the vector autoregressive (VAR) model (Sims, 1980)
and cointegration models (Engle and Granger, 1987); see also Shumway and
Stoffer (2000, Chapter 4) for a review of multivariate time series analysis.

To analyze the growth rate of GDP in a two-country set-up, Phillips (1991)
generalized the univariate MSAR model (Hamilton, 1989) by introducing a
hidden Markov chain into a bivariate VAR(1) model:

Yt − µSt
= Φ(Yt−1 − µSt−1

) + εt, εt ∼ Nr (0,Σ) ,

with Φ and Σ being (2×2) matrices, and µSt
being a vector of length 2. St =

(St,1, St,2) is a bivariate two-state hidden Markov chain, with St,j describing
the state of the economy in country j, which could be coded as a single Markov
chain with four states. The (4 × 4)-transition matrix ξ of St is unrestricted if
the states of the two economies are correlated, a restricted transition matrix
results if St,1 and St,2 are assumed to be independent. Hamilton and Lin
(1996) apply a related model to analyze jointly growth in industrial production
and volatility in stock returns, and discuss restricted transition matrices where
one indicator is leading the other.

Krolzig (1997) considered multivariate MS-VAR models, where a single
hidden Markov chain St may affect the intercept (or the mean level), the
matrix containing the AR coefficients as well as the error covariance matrix:

Yt = ΦStYt−1 + ζSt
+ εt, εt ∼ Nr (0,ΣSt) ,

with ΦSt and ΣSt being (r × r) matrices and ζSt
being a vector of length r.

Krolzig (1997) discusses ML estimation of this model using the EM algorithm
as well as Bayesian estimation using Gibbs sampling.
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A related model is applied in Ang and Bekaert (2002) to model interest
rates from three different countries, however, St = (St,1, St,2, St,3) is a trivari-
ate two-state hidden Markov chain, with St,j describing the hidden state in
country j, coded as a single Markov chain with eight states. Because the states
in different countries are assumed to be independent, a restricted transition
matrix ξ results for St.

Economic theory implies a long-run relationship between certain inte-
grated time series such as consumption and disposable income, implying that
the time series are cointegrated. As with unit root tests, discussed in Subsec-
tion 12.2.4, common cointegration tests are affected by shifts in the growth
rate of the underlying time series (Hall et al., 1997). For this reason several au-
thors considered the introduction of a hidden Markov chain into cointegration
models to account for unexpected shifts.

Paap and van Dyck (2003) introduce a multivariate Markov switching
trend model that accounts for different growth rates in a bivariate time series
Yt, containing the log of per capita consumption and disposable income:

Yt = µt + (St − 1)
(

δ
0

)
+ Zt,

µt = µt−1 + βSt
,

where St is a two-state hidden Markov chain. β1 is a vector containing the
slopes of the trend function of both time series, if St = 1 (expansion) and β2
contains the slopes if St = 2 (recession). δ accounts for possible level shifts
in the first time series during recession. Zt is assumed to follow a standard
VAR(p) process. Cointegration analysis based on the vector error correction
model is then carried out for Zt:

�Zt = ΠZt +
p−1∑
j=1

Φ̃j�Zt−j + εt, εt ∼ N2 (0,Σ) . (12.37)

Depending on the rank of Π three cases arise. If Π has rank zero, then the
bivariate MS-VAR model for the growth rates results; if Π has rank two,
then Zt is stationary and a generalization of the model of Lam (1990) results;
and finally, if Π has rank one, then the two time series are cointegrated.
Bayesian estimation of this model is carried out in Paap and van Dyck (2003)
using MCMC and the Bayes factor is used to test for the cointegration rank
(Kleibergen and Paap, 2002). The empirical results of Paap and van Dyck
(2003) suggest the existence of a cointegration relationship between U.S. per
capita disposable income and consumption.

Related approaches are a single equation cointegration analysis where the
parameters are allowed to undergo changes driven by a hidden Markov chain
(Hall et al., 1997) and an alternative Markov switching vector error correction
(MS-VEC) model (Krolzig and Sensier, 2000; Krolzig, 2001) where a Markov
switching intercept is introduced directly into a vector error correction model
for Yt; see also Krolzig (1997, Chapter 13).
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Further Markov switching models for multivariate time series, in particular
the Markov switching model dynamic factor model (Diebold and Rudebusch,
1996; Kim and Nelson, 1998), are special cases of switching Gaussian state
space models which are studied in Chapter 13.




