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Finite Markov Mixture Modeling

10.1 Introduction

In this and the following chapters, finite mixture models are extended to deal
with time series data that exhibit dependence over time. Broadly speaking,
this is achieved by substituting the discrete latent indicator Si introduced
as an allocation variable for finite mixture models by a hidden Markov chain.
This leads to a surprisingly rich class of nonlinear time series models that solve
a variety of interesting problems in applied time series analysis, as demon-
strated in Chapter 12.

Section 10.2 starts with the definition of a finite Markov mixture distribu-
tion, whose properties are studied in some detail. Section 10.3 introduces the
basic Markov switching model and deals with its extensions. The problem of
econometric estimation of a Markov switching model from an observed time
series is then discussed in Chapter 11.

10.2 Finite Markov Mixture Distributions

Let {yt, t = 1, . . . , T} denote a time series of T univariate observations taking
values in a sampling space Y which may be either discrete or continuous.
As common in time series analysis, {yt, t = 1, . . . , T} is considered to be the
realization of a stochastic process {Yt}T

t=1. Modeling is based on special cases
from the class of doubly stochastic time series models (Tjøstheim, 1986) that
have been found to be very useful for applied time series analysis.

It is assumed that the probability distribution of the stochastic process
Yt depends on the realizations of a hidden discrete stochastic process St. The
stochastic process Yt is directly observable, whereas St is a latent random
process that is observable only indirectly through the effect it has on the
realizations of Yt. A simple example is the hidden Markov chain model Yt =
µSt + εt, where εt is a zero-mean white noise process with variance σ2.
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10.2.1 Basic Definitions

We start with specifying the properties of the hidden process {St}T
t=0, which

is assumed to be a discrete-time process with finite state space {1, . . . , K}
that obeys the following condition S4.

S4 St is an irreducible, aperiodic Markov chain starting from its ergodic dis-
tribution η = (η1, . . . , ηK):

Pr(S0 = k|ξ) = ηk.

The stochastic properties of St are sufficiently described by the (K × K)
transition matrix ξ, where each element ξjk of ξ is equal to the transition
probability from state j to state k:

ξjk = Pr(St = k|St−1 = j), ∀j, k ∈ {1, . . . , K}.

Evidently, the jth row of the transition matrix ξ defines, for all t = 1, . . . , T ,
the conditional distribution of St given the information that St−1 is in state
j. We sometimes use the notation ξj· to refer to row j. All elements of ξ are
nonnegative and the elements of each row sum to 1:

ξjk ≥ 0, ∀j, k ∈ {1, . . . , K},

K∑
k=1

ξjk = 1, ∀j = 1, . . . , K. (10.1)

ξ = (ξ1·, . . . , ξK·) takes values in the product space (EK)K , where EK is the
unit simplex defined in Subsection 1.2.1. Further assumptions about ξ are
necessary to fulfill condition S4; see Subsection 10.2.2 for more details.

We continue with describing how the distribution of Yt depends on St. Let
T (θ) be a parametric distribution family, defined over a sampling space Y
which may be either discrete or continuous, with density p(y|θ), indexed by a
parameter θ ∈ Θ. Let {Yt}T

t=1 be a sequence of random variables that depend
on {St}T

t=0 in the following way.

Y4 Conditional on knowing S = (S0, . . . , ST ), the random variables Y1, . . . , YT

are stochastically independent. For each t ≥ 1, the distribution of Yt arises
from one out of K distributions T (θ1), . . . , T (θK), depending on the state
of St:

Yt|St = k ∼ T (θk).

Hidden indicators comparable to St have been introduced also for a finite
mixture model, using the symbol Si. The original definition of a mixture
distribution in Section 1.2, however, started with the marginal distribution of
Yi without introducing the latent indicator Si right from the beginning.
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For the doubly stochastic process {St, Yt}T
t=1 obeying conditions S4 and

Y4 it is rather easy to derive the marginal distribution of Yt:

p(yt|ϑ) =
K∑

k=1

p(yt|St = k,ϑ)Pr(St = k|ϑ).

Because St is a stationary Markov chain and the conditional distribution of
Yt given St = k has density p(yt|θk), one obtains that the unconditional
distribution of Yt is a finite mixture of T (θ) distribution with the ergodic
probabilities η = (η1, . . . , ηK) acting as weight distribution (Baum et al.,
1970):

p(yt|ϑ) =
K∑

k=1

p(yt|θk)ηk. (10.2)

Hence the process Yt is said to be generated by a finite Markov mixture
of T (θ) distributions. Stationarity of Yt is evident from (10.2). Furthermore
such a process is autocorrelated (see Subsection 10.2.4), which is an important
difference to a (standard) finite mixture of T (θ) distributions, which produces
sequences of independent random variables.

One early example of a finite Markov mixture distribution is the hidden
Markov chain model (Baum and Petrie, 1966), where Yt is a discrete random
signal taking one out of D values {1, . . . , D} according to a discrete probability
distribution, which depends on the state of St:

Pr(Yt = l|St = k) = πk,l,

for k = 1, . . . , K and l = 1, . . . , D. The transition matrix ξ as well as the
matrix Π = (πk,l) is assumed to be unknown and has to be recovered from
observations y = (y1, . . . , yT ) of the process {Yt}T

t=1, whereas St is unobserved.
Another early example is a Markov mixture of normal distributions (Baum

et al., 1970), where Yt is a discrete signal observed with noise:

Yt =

⎧⎪⎨⎪⎩
µ1 + εt, εt ∼ N

(
0, σ2

1
)
, St = 1,

...
µK + εt, εt ∼ N

(
0, σ2

K

)
, St = K.

Many more examples appear throughout the remaining chapters.
The mathematical properties of a process generated by a finite Markov

mixture distribution have been studied for specific processes obeying con-
ditions Y4 and S4 such as hidden Markov chain models (Blackwell and
Koopmans, 1957; Heller, 1965), white noise driven by a hidden Markov chain
(Francq and Roussignol, 1997), discrete-valued time series generated by a
hidden Markov chain (MacDonald and Zucchini, 1997), Markov mixtures of
normal distributions (Krolzig, 1997), and Markov mixtures of more general
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location-scale families, where Yt = µSt
+ σSt

εt, with εt being an i.i.d. process
(Timmermann, 2000).

After a short introduction into irreducible, aperiodic Markov chains in
Subsection 10.2.2 these results are summarized for arbitrary processes Yt being
generated by a Markov mixture obeying conditions Y4 and S4.

10.2.2 Irreducible Aperiodic Markov Chains

In this subsection we briefly review properties of irreducible aperiodic Markov
chains, focusing on results that are needed later on. For a more detailed survey
we refer to Karlin and Taylor (1975).

Let St be a homogeneous first-order Markov chain with transition matrix
ξ, where the elements of ξ are unconstrained apart from the natural con-
straints defined in (10.1). The transition matrix ξ plays a prominent role in
understanding the properties of the corresponding Markov chain.

Any probability distribution η = (η1, . . . , ηK) that fulfills the invariance
property

ξ
′
η = η, (10.3)

is called an invariant distribution of St. The practical importance of the in-
variant distribution for the Markov chain St is the following. Assume that at
time t − 1 the states of St−1 are drawn from an invariant distribution of ξ.
Then the following holds ∀k = 1, . . . , K,

Pr(St = k|ξ) =
K∑

j=1

Pr(St = k|St−1 = j, ξ)Pr(St−1 = j|ξ)

=
K∑

j=1

ξjkηj = ηk.

Therefore the states of St are again drawn from η, and so on for St+1, . . ..
It is possible to show that such an invariant distribution exists for any

finite Markov chain. By rewriting the constraint (10.1) as

ξj·1K×1 = 1, ∀j = 1, . . . , K,

where ξj· refers to row j of ξ, and 1K×1 is a column vector of ones, it becomes
apparent, that for any transition matrix ξ one of the eigenvalues is equal to
1:

ξ1K×1 = 1 × 1K×1.

By rewriting (10.3) as

η
′
ξ = η

′ × 1,



10.2 Finite Markov Mixture Distributions 305

it becomes apparent that, formally, η is the (suitably normalized) left-hand
eigenvector of ξ, associated with the eigenvalue 1.

The invariant distribution, however, is not unique for arbitrary transition
matrices ξ ∈ (EK)K ; consider, for instance, the transition matrix ξ = IK , for
which any arbitrary probability distribution will be invariant. An outstanding
subset in the class (EK)K contains transition matrices for which this invariant
distribution is unique and, additionally, the distribution of St converges to
this invariant distribution, regardless of the state of S0. Such a Markov chain
is called an ergodic Markov chain, and the invariant distribution η is called
the ergodic distribution of the Markov chain.

Necessary restrictions on ξ to achieve ergodicity may be defined in terms
of properties of ξh = ξ · · · ξ, the hth power of the transition matrix ξ. ξh

determines the long-run behavior of the Markov chain in terms of the h-step
ahead predictive distribution Pr(St+h = l|St = k, ξ) of St+h given St = k:

Pr(St+h = l|St = k, ξ) = (ξh)kl, (10.4)

where (ξh)kl is the element (k, l) of ξh. (10.4) is obvious for h = 1 from the
definition of ξ. For h > 1, (10.4) is easily derived by induction:

Pr(St+h = l|St = k, ξ)

=
K∑

j=1

Pr(St+h = l|St+h−1 = j, ξ)Pr(St+h−1 = j|St = k, ξ)

=
K∑

j=1

ξjl(ξh−1)kj = (ξh)kl.

Uniqueness of the invariant distribution follows for any transition matrix that
leads to an irreducible Markov chain. Irreducibility means that starting St

from an arbitrary state k ∈ {1, . . . , K} any state l ∈ {1, . . . , K} must be
reachable in finite time, or in terms of (ξh)kl:

∀(k, l) ∈ {1, . . . , K} ⇒ ∃h(k, l) : (ξh(k,l))kl > 0. (10.5)

It follows that any transition matrix ξ where all elements ξjk are positive leads
to irreducibility and uniqueness of the invariant distribution. More generally,
irreducibility follows if (ξh)kl > 0 for some h ≥ 1, independent of k, l. If any
element (ξh)kl is 0 for all h ≥ 1, then the Markov chain is reducible; consider,
for instance, the following transition matrix

ξ =
(

ξ11 1 − ξ11
0 1

)
, (10.6)

which reappears in Subsection 10.3.3 in the context of change-point modeling.
It is easily verified that this transition matrix leads to a reducible Markov
chain, in as much as for all h ≥ 1:
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ξh =
(

ξh
11 1 − ξh

11
0 1

)
.

Solving (10.3) for K = 2 leads to the following invariant probabilities,

η1 =
1 − ξ22

(1 − ξ11) + (1 − ξ22)
=

ξ21

ξ12 + ξ21
, (10.7)

η2 =
1 − ξ11

(1 − ξ11) + (1 − ξ22)
=

ξ12

ξ12 + ξ21
.

For a Markov chain with ξ11 = ξ22, the invariant probability distribution is
uniform: η1 = η2 = 0.5; ξ11 > ξ22 favors state 1: η1 > η2, whereas ξ11 < ξ22
favors state 2: η1 < η2.

For K > 2, some numerical method has to be used for solving (10.3). A
closed-form expression for the invariant probability distribution η in terms of
the transition matrix ξ is derived in Hamilton (1994b, Section 22.2). Define a
matrix A as

A =
(

IK − ξ
′

11×K

)
, (10.8)

with IK being the identity matrix with K rows and 11×K being a row vector
of ones. Then η is given as the (K + 1)th column of the matrix (A

′
A)−1A

′
:

η =
(
(A

′
A)−1A

′)
·,K+1

. (10.9)

Now let us turn to the distribution Pr(St|ξ) of a Markov chain St, starting
with S0 being drawn from a certain probability distribution. If the states of
S0 are drawn from the invariant distribution η of ξ, then by the invariance
property Pr(St|ξ) is equal η for all t ≥ 1, but what happens if S0 is drawn from
a different distribution or is assumed to be a fixed starting value? Consider,
for instance, the following irreducible transition matrix

ξ =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ . (10.10)

This matrix is an example of a doubly stochastic matrix where both the row
and the column sums are equal to 1:

K∑
k=1

ξjk = 1,

K∑
j=1

ξjk = 1.

For such matrices the uniform distribution, ηk = 1/K, is an invariant distri-
bution:
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K∑
j=1

ξjkηj =
1
K

K∑
j=1

ξjk =
1
K

, ∀k = 1, . . . , K.

Because (10.10) is irreducible, the uniform distribution is the unique in-
variant distribution; the distribution Pr(St|ξ), however, does not converge to
the invariant distribution if S0 is started with a different distribution, such as
the degenerate distribution Pr(S0 = 1) = 1, because

Pr(St = 1|S0 = 1, ξ) = 1, iff t = 3m + 1, m ∈ {1, 2, 3, . . .},

Pr(St = 2|S0 = 1, ξ) = 1, iff t = 3m + 2, m ∈ {1, 2, 3, . . .},

Pr(St = 3|S0 = 1, ξ) = 1, iff t = 3m, m ∈ {1, 2, 3, . . .}.

The main reason for this failure of convergence is that the transition matrix
(10.10) is periodic and captures a kind of seasonal pattern.

Ergodicity of a Markov chain with transition matrix ξ holds, if the Markov
chain is aperiodic. Aperiodicity is defined as the absence of periodicity such as
the one observed in the transition matrix (10.10). Consider, for each state k, all
periods n for which the transition probability Pr(St+n = k|St = k, ξ) = (ξn)kk

is positive. The period of a state is the greatest common divisor (GCD) of all
periods n. A Markov chain is aperiodic, if the period of each state is equal to
one:

GCD{n ≥ 1 : (ξn)kk > 0} = 1, ∀k ∈ {1, . . . , K}.

A Markov chain is aperiodic if all diagonal elements of ξ are positive.
Ergodicity of a Markov chain implies that the distribution Pr(St|ξ, S0 = k)

which is equal to the kth row (ξh)k· of ξh converges to the ergodic distribution,
regardless of the state k of S0:

lim
h→∞

(ξh)k· = η
′
.

For understanding Markov mixture models it is helpful to know if this conver-
gence is fast or if the Markov chain St is persistent, meaning that the state of
St is mainly defined by the state of St−1. It turns out that the second largest
eigenvalues of ξ play a crucial role in this respect.

Consider, for instance, a two-state Markov chain, where

ξ =
(

ξ11 1 − ξ11
1 − ξ22 ξ22

)
.

A two-state Markov chain is ergodic if 0 < ξ11 + ξ22 < 2. The eigenvalues are
obtained from∣∣∣∣ ξ11 − λ 1 − ξ11

1 − ξ22 ξ22 − λ

∣∣∣∣ = (λ − 1)(λ − (ξ11 + ξ22 − 1)) = 0.

Apart from λ = 1, the other eigenvalue is equal to:
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λ = ξ11 + ξ22 − 1 = ξ11 − ξ21. (10.11)

For K = 2 a simple representation of ξh in terms of the ergodic probability
distribution is possible (Hamilton, 1994a, p.683):

ξh =
(

η1 η2
η1 η2

)
+ λh

(
η2 −η2

−η1 η1

)
, (10.12)

with λ being the second eigenvalue derived in (10.11) which demonstrates that
persistence of St is higher, the closer λ is to 1.

Persistence is also related to the issue of duration of a certain state. Given
that the Markov chain St is currently in state j, the duration Dj of that state
is a random variable following a geometric distribution with parameter 1−ξjj

(see Appendix A.1.7),

Pr(Dj = l|St = j) = Pr(St+1 = j, . . . , St+l−1 = j, St+l �= j|St = j)

=
l−1∏
m=1

Pr(St+m = j|St+m−1 = j)Pr(St+l �= j|St+l−1 = j)

= ξl−1
jj (1 − ξjj).

Therefore the expected duration of state j is given by

E(Dj) =
1

1 − ξjj
. (10.13)

Two interesting conclusions may be drawn from (10.13). First, the expected
duration of state j is longer the closer the persistence probability ξjj is to
1. Second, if the persistence probabilities differ in the various states, then
also the expected duration of the state differs across states. Therefore Markov
mixture distributions are able to capture asymmetry over time as observed
for economic time series such as unemployment (Neftçi, 1984) and GDP, in-
vestment, and industrial production (Falk, 1986) over the business cycle.

10.2.3 Moments of a Markov Mixture Distribution

Because the unconditional distribution of a random process Yt, being gener-
ated by a Markov mixture of T (θ)-distribution is a standard finite mixture of
T (θ)-distribution with the ergodic probabilities acting as weights, the expec-
tation of any function h(Yt) of Yt is given by the results of Subsection 1.2.4,
where η is substituted by the ergodic distribution of St.

From Subsection 1.2.4 it is known that standard finite mixture distri-
butions are able to generate probability distributions with asymmetry and
fat tails. Timmermann (2000) studied finite Markov mixture distributions
taken from a location-scale family and demonstrated that the introduction of
Markovian dependence into the hidden indicator St even increases the scope
for asymmetry and fat tails in the generated process.
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Moments of a Markov Mixture of Two Normal Distributions

More explicit results are given for a Markov mixture of two normal distribu-
tions:

Yt =
{

µ1 + εt, εt ∼ N
(
0, σ2

1
)
, St = 1,

µ2 + εt, εt ∼ N
(
0, σ2

2
)
, St = 2.

The unconditional distribution of Yt is given by a mixture of two normal
distributions:

p(yt|ϑ) = η1fN (yt; µ1, σ
2
1) + η2fN (yt; µ2, σ

2
2), (10.14)

where the ergodic probabilities η1 and η2 are given by (10.7). The marginal
distribution (10.14) exhibits nonnormality as long as either µ1 �= µ2 or σ2

1 �=
σ2

2 . Multimodality of the marginal distribution is possible for appropriate
choices of (µ1, µ2, σ

2
1 , σ2

2 , ξ11, ξ21) and could be checked for a given parameter
using the results of Subsection 1.2.2.

From Subsection 1.2.4 the following coefficient of skewness results,

E((Yt − µ)3|ϑ)
E((Yt − µ)2|ϑ)3/2 = η1η2(µ1 − µ2)

3(σ2
2 − σ2

1)2 + (η2 − η1)(µ2 − µ1)2

σ3 ,

with µ = E(Yt|ϑ) and σ2 = Var(Yt|ϑ) being the mean and variance of the
mixture distribution (10.14):

µ = η1µ1 + η2µ2,

σ2 = η1σ
2
1 + η2σ

2
2 + η1η2(µ2 − µ1)2.

Skewness in the marginal distribution will be present whenever both the means
and the variances are different. For a model where the means are the same, no
skewness is present. If the variances are the same and the means are different,
skewness is possible only iff η1 �= η2. Thus, for a Markov mixture model
with different means but equal variances, asymmetry is introduced into the
marginal distribution only through asymmetry in the persistence probabilities,
namely ξ11 �= ξ22.

From Subsection 1.2.4, excess kurtosis is given by

E((Yt − µ)4|ϑ)
E((Yt − µ)2|ϑ)2

− 3 = η1η2
3(σ2

2 − σ2
1)2 + c(µ1, µ2)

σ4 , (10.15)

where c(µ1, µ2) = 6(η1 − η2)(σ2
2 − σ2

1)(µ2 − µ1)2 + (µ2 − µ1)4(1 − 6η1η2); see
also Timmermann (2000, Corollary 1). Therefore if µ1 = µ2, the marginal
distribution has fatter tails than a normal distribution as long as σ2

1 �= σ2
2 .
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10.2.4 The Autocorrelation Function of a Process Generated by a
Markov Mixture Distribution

A finite Markov mixture distribution generates an autocorrelated process Yt

where the autocorrelation strongly depends on the persistence of St. The
autocorrelation function of Yt is defined in the usual way as

ρYt(h|ϑ) =
E(YtYt+h|ϑ) − µ2

σ2 , (10.16)

with µ = E(Yt|ϑ) and σ2 = Var(Yt|ϑ) being the unconditional moments and

E(YtYt+h|ϑ) =
∫

ytyt+hp(yt, yt+h|ϑ)dytdyt+h.

MacDonald and Zucchini (1997) derive the autocorrelation function for hid-
den Markov chain models for time series of counts, whereas Krolzig (1997),
Rydén et al. (1998), and Timmermann (2000) consider continuous data. In
the following we provide results for arbitrary processes obeying conditions S4
and Y4.

To this aim it is useful to give an explicit form for the density p(yt, yt+h|ϑ)
of the joint unconditional distribution of Yt and Yt+h:

p(yt, yt+h|ϑ) =
K∑

k,l=1

p(yt|St = k,ϑ)p(yt+h|St+h = l, ϑ)

× Pr(St+h = l|St = k, ξ)Pr(St = k|ξ). (10.17)

The predictive distribution Pr(St+h = l|St = k, ξ) is given by (10.4), and
(10.17) reduces to

p(yt, yt+h|ϑ) =
K∑

k=1

p(yt|θk)ηk

K∑
l=1

p(yt+h|θl)(ξh)kl, (10.18)

where (ξh)kl is the element (k, l) of the hth power of the transition matrix ξ.
Therefore E(YtYt+h|ϑ) is given by

E(YtYt+h|ϑ) =
K∑

k=1

ηkµk

K∑
l=1

(ξh)klµl, (10.19)

and the autocorrelation function results from (10.16):

ρYt(h|ϑ) =

K∑
k=1

µkηk

K∑
l=1

µl(ξh)kl − µ2

σ2 .

Because the process Yt is uncorrelated conditional on knowing St, the auto-
correlation function depends on h only through ξh, and autocorrelation in the
marginal process Yt, where St is unknown, enters through persistence in St,
only. Note that Yt, in contrast to St, is no longer a Markov process of first
order.
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Autocorrelation for a Two-State Model

From the specific form of ξh given in (10.12), the following autocorrelation
function results for any two-state finite Markov mixture model,

ρYt
(h|ϑ) =

η1η2(µ1 − µ2)2

σ2 λh, (10.20)

with λ = ξ11 − ξ21 being the second eigenvalue of ξ.
No autocorrelation in Yt is present if µ1 = µ2. Otherwise, autocorrelation

of Yt is caused through the hidden Markov chain St, whenever ξ11 �= ξ21. The
process Yt exhibits positive autocorrelation provided that ξ11 > ξ21, otherwise
negative autocorrelation results. An equivalent criterion is to check if ξ11 +ξ22
is larger or smaller than 1.

Relation to ARMA Models

There exists a close relationship between Markov mixture models and nonnor-
mal ARMA models. For a two-state Markov mixture model, for instance, the
autocorrelation function of Yt given in (10.20) fulfills, for h > 1, the following
recursion,

ρYt(h|ϑ) = λρYt(h − 1|ϑ),

and corresponds to the autocorrelation function of an ARMA(1, 1) process,
whereas the nonnormality of the unconditional distribution of Yt is preserved
through the mixture distribution. In general, Poskitt and Chung (1996) proved
for a univariate K-state hidden Markov chain Yt = µSt

+ ut the existence of
an ARMA(K −1, K −1) representation with a homogeneous zero-mean white
noise process.

10.2.5 The Autocorrelation Function of the Squared Process

An interesting feature of any finite Markov mixture model is that it generates
processes Yt, with Y 2

t being autocorrelated. This is of particular interest when
Markov mixture models are applied to financial time series; see Section 12.5.
Timmermann (2000, Proposition 5) derived the autocorrelation function for
a Markov mixture based on the continuous location-scale family. It is quite
easy to generalize these results to any process obeying conditions Y4 and S4.

The autocorrelation function of Y 2
t is defined as

ρY 2
t
(h|ϑ) =

E(Y 2
t Y 2

t+h|ϑ) − E(Y 2
t |ϑ)2

E(Y 4
t |ϑ) − E(Y 2

t |ϑ)2
, (10.21)

where E(Y 2
t |ϑ) =

∑K
k=1 E(Y 2

t |θk)ηk, and E(Y 4
t |ϑ) =

∑K
k=1 E(Y 4

t |θk)ηk, and
E(Y 2

t Y 2
t+h|ϑ) is obtained from (10.18) as
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E(Y 2
t Y 2

t+h|ϑ) =
K∑

k=1

ηkE(Y 2
t |θk)

K∑
l=1

E(Y 2
t+h|θl)(ξh)kl, (10.22)

with (ξh)kl being the element (k, l) of the hth power of the transition ma-
trix ξ. Although the process Y 2

t is uncorrelated conditional on knowing St,
autocorrelation in Y 2

t enters through persistence in St.

Autocorrelation in the Squared Process for a Two-State Model

We provide here further details for a Markov mixture of two normal distri-
butions. From the general autocorrelation function of Y 2

t given by (10.21),
together with the representation of the transition matrix ξ of a two-state
Markov model as in (10.12), one obtains:

E(Y 2
t Y 2

t+h|ϑ) = E(Y 2
t |ϑ) + η1η2(µ2

1 − µ2
2 + σ2

1 − σ2
2)2λh, (10.23)

with λ = ξ11 − ξ21 being the second eigenvalue of ξ. Therefore:

ρY 2
t
(h|ϑ) =

η1η2(µ2
1 − µ2

2 + σ2
1 − σ2

2)2

E(Y 4
t |ϑ) − E(Y 2

t |ϑ)2
λh. (10.24)

The squared process exhibits positive autocorrelation provided that ξ11 >
ξ21, otherwise if ξ11 < ξ21 negative autocorrelation will result. An equivalent
criterion is to check if ξ11 + ξ22 is larger or smaller than 1. Interestingly, state
dependent variances are neither necessary nor sufficient for autocorrelation in
the squared process. Even if σ2

1 = σ2
2 , the marginal process shows conditional

heteroscedasticity, as long as St does not degenerate to an i.i.d. process. On
the other hand, if ξ11 = ξ21, no autocorrelation in the squared returns is
present, even if σ2

1 �= σ2
2 .

By comparing the autocorrelation of Y 2
t , given by (10.24), with the au-

tocorrelation of Yt, given by (10.20), we find that a Markov mixture of two
normal distributions with µ1 = µ2 will produce an uncorrelated process with-
out skewness in the marginal distribution, whereas Y 2

t is correlated and the
marginal distribution has fat tails, as long as σ2

1 �= σ2
2 . As for other mod-

els that capture autocorrelation in the squared process, such as the GARCH
model (Bollerslev, 1986), differences in the variances alone are insufficient to
capture asymmetry in the marginal distribution.

10.2.6 The Standard Finite Mixture Distribution as a
Limiting Case

Any standard finite mixture of T (θ)-distributions defined in Chapter 1 may be
thought of as that limiting case of a finite Markov mixture of T (θ)-distribution
where St is an i.i.d. random sequence, in which case the transition probabilities
from state j to state k are equal to Pr(St = k|St−1 = j) = Pr(St = k) = ηk.
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Thus a random variable Yt drawn from a standard finite mixture of T (θ)-
distribution with weight distribution η is observationally equivalent with a
process Yt generated by a finite Markov mixture of T (θ)-distributions where
all rows of the transition matrix of St are identical to η:

ξ =

⎛⎜⎝ η1 · · · ηK

...
...

η1 · · · ηK

⎞⎟⎠ .

In this case the transition matrix ξ is idempotent, ξh = ξ for all h ≥ 1, and
(10.19) reduces to

E(YtYt+h|ϑ) =
K∑

k=1

ηkµk

K∑
l=1

ξklµl = µ2.

Thus the autocorrelation ρYt
(h|ϑ) of Yt, given by (10.16), is equal to 0 for

h > 1. Similarly, (10.22) reduces to

E(Y 2
t Y 2

t+h|ϑ) =
K∑

k=1

ηkE(Y 2
t |θk)

K∑
l=1

E(Y 2
t+h|θl)ξkl = E(Y 2

t |ϑ)2,

and the autocorrelation ρY 2
t
(h|ϑ) of Y 2

t , given by (10.21), is equal to 0 for
h > 1.

10.2.7 Identifiability of a Finite Markov Mixture Distribution

For a finite Markov mixture distribution one has to distinguish between the
same three types of nonidentifiability that have been discussed for a standard
finite mixture distribution in Section 1.3. There exists nonidentifiability due
to invariance to relabeling the states of the hidden Markov chain as well as
generic nonidentifiability.

Consider all s = 1, . . . , K! different permutations ρs : {1, . . . , K} →
{1, . . . , K}, where the value ρs(k) is assigned to each value k ∈ {1, . . . , K}.
Let ϑ = (θ1, . . . ,θK , ξ) be an arbitrary point in the parameter space
ΘK = ΘK × (EK)K , and define a subset UP (ϑ) ⊂ ΘK by

UP (ϑ) =
K!⋃
s=1

{ϑ� ∈ ΘK : ϑ� = (θρs(1), . . . ,θρs(K), ξ
ρs)}, (10.25)

where ξρs is related to ξ by permuting the rows and the column in the same
fashion:

ξρs

jk = ξρs(j),ρs(k), ∀j, k ∈ {1, . . . , K}. (10.26)
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Then evidently, all points in UP (ϑ) generate the same Markov mixture distri-
bution, however, with a different labeling of the states of the hidden Markov
chain.

A weak inequality constraint, similar to the one discussed for finite mix-
tures in Subsection 1.3.3 requiring that the state-specific parameters θk and
θl differ in at least one element, which need not be the same for all states,
will rule out these identifiability problems.

Blackwell and Koopmans (1957) is an early reference addressing generic
identifiability problems for some special hidden Markov chain models, where
Yt is a discrete signal. Petrie (1969) proved generic identifiability for hidden
Markov chain models, where the observed process Yt takes values in a finite
set. Identifiability for rather general finite Markov mixtures is addressed in
Leroux (1992b).

One necessary condition for generic identifiability of a Markov mixture of
T (θ)-distributions is that a standard finite mixture of T (θ)-distributions is
generically identifiable; see again Subsection 1.3.4. A second necessary con-
dition is that the hidden Markov chain is irreducible and aperiodic; it is,
however, not necessary to assume that S0 started from the invariant distribu-
tion.

10.3 Statistical Modeling Based on Finite Markov
Mixture Distributions

Researchers have found Markov mixture models increasingly useful in applied
time series analysis.

10.3.1 The Basic Markov Switching Model

Assume that a time series {y1, . . . , yT } is observed as a single realization of
a stochastic process {Y1, . . . , YT }. In the basic Markov switching model the
time series {y1, . . . , yT } is assumed to be a realization of a stochastic process
Yt generated by a finite Markov mixture from a specific distribution family:

Yt|St ∼ T (θSt
),

where St is an unobservable (hidden) K state ergodic Markov chain, and Yt

fulfills assumption Y4.
The basic Markov switching model found widespread applications in many

practical areas including bioinformatics, biology, economics, finance, hydrol-
ogy, marketing, medicine, and speech recognition. Various terminology became
usual to denote models based on hidden Markov chains. The term Markov mix-
ture models is preferred by biologists (Albert, 1991). Markov mixture models
are usually called hidden Markov models in engineering applications (Zuc-
chini and Guttorp, 1991; Thyer and Kuczera, 2000) and in speech recognition



10.3 Statistical Modeling Based on Finite Markov Mixture Distributions 315

(Levison et al., 1983; Rabiner, 1989). The terms Markov switching models or
regime-switching models are preferred by economists who used Markov switch-
ing models to analyze stock market returns (Pagan and Schwert, 1990; Engel
and Hamilton, 1990), interest rates (Ang and Bekaert, 2002) and asymmetries
over the business cycle (Neftçi, 1984; Hamilton, 1989); see the monographs
by Bhar and Hamori (2004), Krolzig (1997) and Kim and Nelson (1999) and
Chapter 12 for further references and more details.

An interesting special case of the basic Markov switching model arises if
{y1, . . . , yT } is a discrete-valued time series (MacDonald and Zucchini, 1997).
Because one may choose Markov mixtures of any discrete distribution, it is
possible to model many different types of discrete valued time series data, for
example, binary time series by

Pr(Yt = 1|St) = πSt , (10.27)

time series of bounded counts by a Markov mixture of binomial distributions,

Yt|St ∼ BiNom (nt, πSt) , (10.28)

or time series of unbounded counts by a Markov mixture of Poisson distribu-
tions,

Yt|St ∼ P (µSt) ; (10.29)

see also Section 11.7. An important feature of applying Markov mixture mod-
els to discrete-valued time series is the ease with which autocorrelation is
introduced, and the properties of the marginal distribution are easily ana-
lyzed.

Similarly, the basic Markov switching model could be applied to deal with
autoregression in positive-valued time series (Lawrance and Lewis, 1985) sim-
ply by choosing the observation density p(yt|θ) from any density on �+, such
as the exponential, the Gamma, or the Weibull distribution.

The basic Markov switching model has been generalized in several ways
as outlined in the following subsections as well as in Chapter 12.

10.3.2 The Markov Switching Regression Model

An early attempt at introducing Markov switching models into econometrics
in order to deal with time series data that depends on exogenous variables is
the switching regression model of Goldfeld and Quandt (1973), which extends
the switching regression model (Quandt, 1972) described earlier in Section 8.2.
Whereas Quandt (1972) assumes that St is an i.i.d. random sequence, Goldfeld
and Quandt (1973) allow explicitly for dependence between the states by
modeling St as a two-state hidden Markov chain.

The general Markov switching regression model reads,

Yt = xtβSt
+ εt, εt ∼ N

(
0, σ2

ε,St

)
, (10.30)
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where St is a hidden Markov chain and xt is a row vector of explanatory
variables including the constant (Lindgren, 1978; Cosslett and Lee, 1985). For
discrete-valued explanatory variables, the Markov switching regression model
will suffer from the same identifiability problems as the standard finite mixture
of regression models studied in Subsection 8.2.2, a fact that has remained
unnoted in the literature.

10.3.3 Nonergodic Markov Chains

In certain applications it makes sense to consider Markov switching models
driven by a nonergodic Markov chain. An important example is a model driven
by a Markov chain with transition matrix ξ defined in (10.6) which captures a
single structural break or change-point. Assume that the Markov chain starts
in S0 = 1. The Markov chain will stay in state 1 for h periods; that is,
S1 = · · · = Sh = 1 with probability ξh

11. Once state 2 is reached for the first
time, the process remains there. An important aspect of this model is that
the time of change-point occurrence is random.

A multiple change-point model with K change-points may be modeled
through a Markov switching model with the following transition matrix (Chib,
1998),

ξ =

⎛⎜⎜⎜⎜⎜⎝
ξ11 1 − ξ11 0 · · · 0
0 ξ22 1 − ξ22 · · · 0

. . . . . . . . .
0 ξK−1,K−1 1 − ξK−1,K−1

0 1

⎞⎟⎟⎟⎟⎟⎠ . (10.31)

A more general Bayesian time series model of multiple structural changes in
level, trend, and variance is studied in Wang and Zivot (2000). For a review of
other methods of testing for the presence of unknown breakpoints in normal
linear regression see Ploberger et al. (1989) and Andrews et al. (1996).

10.3.4 Relaxing the Assumptions of the Basic Markov
Switching Model

The basic Markov switching model has been extended by many authors with
the aim of formulating even more flexible models for a wide range of time
series data.

Let {St}T
t=0 be a finite-state Markov process with state space {1, . . . , K},

and let {Yt}T
t=1 be a sequence of random variables with sampling space Y.

A general Markov switching model is obtained by specifying the density
p(S,y|ϑ) of the joint distribution of S = {St}T

t=0 and Y = {Yt}T
t=1, which is

equal to:

p(S,y|ϑ) = p(S0|ϑ)
T∏

t=1

p(yt|yt−1,St, ϑ)p(St|St−1,yt−1, ϑ). (10.32)
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p(yt|yt−1,St, ϑ) is the one-step ahead predictive density of the conditional
distribution of Yt, knowing the past realizations yt−1 = (y1, . . . , yt−1) of
Yt−1 and knowing the states St = (S0, . . . , St). p(St|yt−1,St−1, ϑ) is the
density of the conditional distribution of St, knowing all past states St−1 =
(S0, . . . , St−1) and the past realizations yt−1. The parameter ϑ contains un-
known model parameters such as the transition matrix ξ, and other parame-
ters indexing the densities p(yt|yt−1,St, ϑ) and p(St|St−1, ϑ).

The basic Markov switching model, formulated in Subsection 10.2.1, re-
sults under rather strong assumptions concerning the densities p(yt|yt−1,St, ϑ)
and p(St|St−1,yt−1, ϑ). Under assumption Y4, the density p(yt|yt−1,St, ϑ)
is not allowed to depend on past realizations yt−1 nor on the previous states
of St−1: p(yt|yt−1,St, ϑ) = p(yt|θSt

). Assumption S4 implies that the condi-
tional distribution p(St|St−1,yt−1, ϑ) is influenced by the state of St−1, only,
and is independent of t. More general Markov switching models result by con-
sidering more general observation densities p(yt|yt−1,St, ϑ) or more general
probability models of the hidden Markov chain.

More General Observation Densities

First of all, the conditional distribution of Yt given St may be allowed to
depend on past realizations yt−1 = (y1, . . . , yt−1) of Y1, . . . , Yt−1, leading to
assumption

Y3 Only the present value of St influences the density p(yt|yt−1,St, ϑ) and
dependence on past values of St is not allowed:

p(yt|yt−1,St, ϑ) = p(yt|yt−1, St, ϑ), (10.33)

for t = 1, . . . , T . Furthermore, p(yt|yt−1, St, ϑ) is allowed to depend on
exogenous variables zt.

The Markov switching regression model discussed in Subsection 10.3.2 results
as that special case where p(yt|St, ϑ) is independent of yt−1 while depend-
ing on exogenous variables zt. Further examples are the Markov switching
autoregressive model suggested by McCulloch and Tsay (1994b), which is dis-
cussed in Section 12.2, and the Markov switching dynamic regression model,
discussed in Section 12.3.

Assumption Y3 is not fulfilled by the original Markov switching autore-
gressive model suggested by Hamilton (1989), which fulfills the more general
condition

Y2 The present value of St, as well as a limited number of past values
St−1, . . . , St−p influences the observation density p(yt|yt−1,St, ϑ):

p(yt|yt−1,St, ϑ) = p(yt|yt−1, St, . . . , St−p, ϑ). (10.34)

Assumption Y2 is still too restrictive for switching ARMA models (Billio and
Monfort, 1998) and switching GARCH models (Francq et al., 2001); see also
Subsection 12.5.5. These models fulfill only the most general assumption
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Y1 The observation density p(yt|yt−1,St, ϑ) depends on yt−1 and all past
states of St.

More General Models for the Hidden Markov Chain

The change-point model discussed in Subsection 10.3.3 shows that sensible
Markov switching models result, when assumption S4 is relaxed in the fol-
lowing way.

S3 St is a first-order homogeneous Markov chain with arbitrary transition
matrix ξ, which need not be irreducible or aperiodic, and starts from an
arbitrary distribution p0 = (p0,1, . . . , p0,K), where

p0,k = Pr(S0 = k). (10.35)

Furthermore it is possible to relax the assumption of homogeneity of the
hidden Markov chain St as done in Subsection 12.6.1 for models with time-
varying transition probabilities:

S2 St is a first-order inhomogeneous Markov chain, with the conditional dis-
tribution of St being independent of yt−1 and depending on the most
recent value St−1 and on some exogenous variables zt:

Pr(St = k|St−1,yt−1) = Pr(St = k|St−1, zt), ∀k ∈ {1, . . . , K}.

Some Markov switching models with time-varying transition matrices also
allow for dependence of the transition matrix on previous realizations yt−1.

S1 St is a first-order Markov chain, and the conditional distribution of St

depends on the history yt−1 of Yt:

Pr(St = k|St−1,yt−1) = Pr(St = k|St−1,yt−1), ∀k ∈ {1, . . . , K},

for t = 1, . . . , T .

The Initial Distribution of S0

To complete the model specification for the process St, the distribution p0
needs to be specified. Under assumption S4, St starts from the ergodic prob-
ability distribution, hence p0 = η. This assumption could be relaxed by as-
suming that St starts from an arbitrary discrete probability distribution p0,
independent of ξ. Note that the resulting Markov chain is no longer stationary.

The initial distribution p0 could either be a uniform distribution over
{1, . . . , K} (Frühwirth-Schnatter, 2001b), or could be treated as an unknown
parameter to be estimated from the data (Goldfeld and Quandt, 1973; Leroux
and Puterman, 1992).

For certain reducible Markov chains it is sensible to assume that the start-
ing value S0 is a known value. Consider, for instance, the transition matrix
(10.31), which captures structural breaks at unknown time points when start-
ing with S0 = 1.




