
SOFTWARE PACKAGES 
What you always wanted to know when buying software but were 
afraid to ask 

JAN DAMSGAARD1 and JAN KARLSBJERG2 

1 Dept. of Information Systems, Weatherhead School of Management, Case Western Reserve 
University, USA 
2 Dept. of Computer Science, Aalborg University, Denmark 

Abstract: This paper presents seven alerts that infonn organizations and individuals 
buying software packages. The research is based on our own studies as weIl as 
a review of theoretical and empirical studies of modem information systems 
and the networks associated with these systems. The paper departs from a 
monolithic view of buying software as an atomic event that is based solely on 
the software's independent features and its immediate price. Instead we 
promote a pluralistic multi-organizational view of buying software as a 
continuous process of trying to match available packages with a base of 
already installed information systems while anticipating future needs. We have 
formulated seven alerts that both researchers and practitioners should consider 
when studying these building blocks of e-business. 

1. INTRODUCTION 

Software systems pervade our lives, both as professionals working in 
some organization, and as private persons. Such systems are not uniquely 
designed for each use situation, but instead they are built around some 
standard, that allows (and by exclusion disallows) communication with other 
software systems. Organizations and individuals alike therefore have to 
make decisions about which Internet browser and email program to 
purchase. And organizations are making substantial investments in terms of 
both money and time resources when it comes to the choice of organization-

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2003
K. V. Andersen et al. (eds.), Seeking Success in E-Business

10.1007/978-0-387-35692-1_36

http://dx.doi.org/10.1007/978-0-387-35692-1_36


558 JAN DAMSGAARD and JAN KARLSBJERG 

wide systems like financial software or enterprise resource planning (ERP) 
software, customer relationship management (CRM) software, network 
operating systems, etc. For these and many other software choices the notion 
of networking is important, as the acquired software will meet its full 
potential for the organization only when it is successfully integrated with 
other systems inside the organization, and in some cases even with systems 
of other organizations. 

Very few organizations develop systems from scratch. Instead companies 
are buying standard software and adding it to a cumulative pool of standard 
systems that already exists in the organization. The result is that today an 
information system is not built as a "stand alone" micro cosmos; instead the 
system must obey many rules set by the installed base of existing IT systems 
in the organization with which it must interact in order to perform its 
intended function (Hanseth and Braa 1999). This paper argues for the urgent 
need to put the study of IT standards on the research agenda. 

We wish to emphasize that the management of information technology 
standards is crucial in order to achieve the coherence of organizational 
information systems that is necessary to graduate from doing electronic 
commerce into doing electronic business. With some notable exceptions 
(e.g. Bensaou 1999; George 2000; Markus 2001), unfortunately IS scholars 
have so far had little advice to companies and CIOs on how to maneuver in 
the seemingly erratic world of standard based IS systems. This lack of 
advice is particularly alarming when it comes to developing e-business 
systems, as it is generally accepted that the e-business user interface is just 
the tip of the iceberg and that all successful e-business are built on top of a 
coherent and cohesive IT infrastructure made up of standard software 
systems. And there is ample evidence of e-businesses collapses due to lack 
of integration between different software systems. 

2. SOFTWARE PACKAGES 

In the early years of commercial use of computers (starting in the mid 
1950s), all software systems were developed in-house out of simple 
necessity, since no software industry existed at the time (George 2000). As 
the software industry emerged, eventually most companies outsourced most 
of their software development to specialized software companies. Most 
software products were, however, still developed independently for each 
organization, i.e. there was little market standardization in the product, and 
little standardization in the production process. The next step was that each 
software producer developed its own set of standards in order to capture 
economies of scale in developing the software once for multiple customers 



Software Packages 559 

(Attewell 1992). This standardization also benefited the software buyers by 
lowering transaction costs as it was now possible to choose among a set of 
applications rather than merely choose among a set of software producing 
companies. Standardization also gives both producers and buyers of software 
a way of blackboxing knowledge by embedding it into the standardized 
components of the systems, thereby freeing resources for handling the 
exceptions (Scarbrough 1995). 

For the purposes of this paper we defme a standard software package as 
follows: 

A "standard software package" is a collection of software components that 
combined perform a set of generalized tasks that are applicable to a wide range 
of users (be they individuals or organizations). The software packaged is 
"standard" because the core components are identical across all of its 
implementations. Customization of the software may be performed to fit the 
software with use requirements unique to the individual implementations. This 
customization is implemented by adjusting program parameters, installing add­
on modules, interfacing the software with other software systems, etc. 

Three well-known categories of standard software packages are office 
application suites (including software like word processing, spreadsheets, 
and presentation software), database management software (DBMS), and 
enterprise resource planning (ERP) software. Some standard software 
packages require little customization on the part of the users before they are 
usable by an individual or an organization, while other standard software 
packages are mere tools on top of which the specific functionalities required 
by the user must be implemented in the customization process. In some 
cases, some customizations may be common among several customers, and 
the producer can then offer "standard customizations" on top of which only 
the site-specific customizations need be made. The German ERP producer 
SAP AG provides an example of this setup, since its system SAP R/3 exists 
in several standard customizations targeted at different industry sectors, e.g. 
chemical producing companies, retail store chains, and the pulp & paper 
industry. 

Organizations are increasingly relying on standard software packages. 
George (2000) reports a threefold increase in the time corporate IS groups 
spend working on packaged applications from 1997 to 1998. The move from 
one-off implementations towards standard systems is accelerated by the 
increasing maturity of standard software packages due to economies of 
scale, and further by what looks like a flocking effect exhibited by the 
buyers of standard systems - creating winner-takes-all situations in many 
markets for standard software systems: large-scale consolidation on the 
producer side (Liebowitz and Margolis 1999; Shapiro and Varian 1999). 



560 JAN DAMSGAARD and JAN KARLSBJERG 

At first glance, these developments in the market for software systems 
may appear to be to great advantage for user organizations buying software 
since both the quality of products offered and the stability of the market 
increases. But as we shall illustrate in the seven alerts, standards have 
interesting properties that enable some or all participants in the market to use 
standards as a tool to attempt to manipulate the market. 

It can be argued that in some large segments the market has narrowed 
down the range of options available to new buyers. For example bundling 
and co-branding agreements between hardware and software vendors often 
makes it impossible to buy a particular PC model without also paying for a 
license for Microsoft's Windows operating system. Another example 
concerns availability of particular versions of software products. Due to the 
high cost of supporting multiple versions of a software product, most 
software producers choose to let older versions expire, making it impossible 
for new users to buy a license to a particular version of the software which 
they may prefer over newer versions of the software. 

We argue that strong effects of the market forces such as the two 
examples described above do not relieve the buying organization or 
individual from the responsibility of choosing the standards that suit their 
particular situations. Rather, these effects of the market forces make it all the 
more important for individual users and organizations alike to be aware of 
standardization issues and heed our standards alerts. 

3. SEVEN ALERTS 

3.1 Alert 1: When you buy a software package you join 
its network 

The development from in-house development of software towards 
standard software packages puts the focus on standards and networks, since 
the users and producers of any given standard form a network (Shapiro and 
Varian 1999). Thus a decision to buy a particular product includes the 
implication of joining the network associated with the standard implemented 
by this product. The network is virtual in the sense that the members may 
not know each other, but they share a common interest in protecting their 
investments and therefore also in the evolution of the software. This is true 
whether or not the standard in question is a communication standard, 
because for all standards the adopters share common interests and 



Software Packages 561 

communicate indirectly if not directly, for example through training and 
education of personnel, etc. (Shapiro and Varian, 1999). 

The value of a network is determined by a combination of two factors: 
the number of members of the network and the interactions that take place in 
the network. First, Metcalfe's law (Shapiro and Varian, 1999) says that for a 
network with N participants, the potential value of the network is 
proportional to the number of possible interconnections in the network, 
which is N*(N -1) or approximately N squared. Thus the potential value of a 
network A with ten times as many members as a competing network B is not 
just ten times the value of network B, but a hundred times the value. 
Secondly, the network effects of a network are determined by the quantity 
and quality of actual interconnections and interaction in the network. If the 
network is sparsely connected because only few of the possible connections 
are realized, the network has little value; alternatively if the network enjoys 
rich communication and many interconnections, the members of the network 
reap large benefits of participating in the network. 

Software companies own the network that is formed by their proprietary 
software and have the power to determine the evolution of the network. This 
power can be challenged, however, if a sufficiently large group of important 
customers agree to form a user group to influence the software producer's 
decisions regarding the software. Not all networks are subject to such power 
struggles based on the financial strength of the network's participants. By 
defmition open standards are not owned by a single entity but rather by the 
community interested in the standard, i.e. the network of interested parties 
(Kindleberger 1983). Examples of open standards in information systems are 
most of the Internet standards such as the email protocols POP3 and SMTP 
(post office protocol 3, simple mail transfer protocol) which are 
implemented in every email client program used by Internet users worldwide 
regardless of which software producer developed the particular email client 
program. 

The open source movement that lies behind applications such as 
sendmail and even operating systems such as Linux is a special case of open 
standards. In open source systems, the software producers not only comply 
with the specifications of an open standard, they also make the inner 
workings of their implementation freely available to other developers and 
encourage improvements to their software products. Thus a community of 
users and developers is designed specifically to prevent ownership and to 
promote shared software (Raymond 1997; O'Reilly 1998; Ljungberg 2000). 
The open source communities or networks surrounding various information 
systems appear unattractive to some user organizations because these 
networks lack central guidance which may lead to uncertainty in the future 
of the standard. Other organizations view these same properties of the open 



562 JAN DAMSGAARD and JAN KARLSBJERG 

source networks as strengths since they protect the standard from the whims 
and opportunistic actions of individual stake holders, thus enhancing the 
continuity of the standard. We shall not conclude on this debate over open 
source here, but merely emphasize that organizations and individuals who 
choose to adopt a particular software package beware the intimate 
connection between any software package and its network. 

3.2 Alert 2: Take a long-term perspective: Look ahead 
but reason back 

Earlier when software was designed for a specific closed environment 
with well defined systems requirements, the focus was on immediate costs 
versus benefits when investment decisions were to be made. Often new 
software systems had both very short range and reach (Keen 1991 ; Weill and 
Broadbent 2000), i.e. they were standalone systems built to solve one 
particular task within a single organization, often even within a narrow 
setting in the organization. Thus, the buyer organization only had to consider 
short-range and short-reach implications of the software acquisition. As the 
standalone systems grew in numbers and size, a need emerged to move data 
between applications. The solution was standardized software platforms, e.g. 
operating systems, file systems, databases management systems. 

Many standards choices made in the early stages of computer use in an 
organization or in an industry as a whole prove to have surprisingly durable 
consequences as both software standards and data have shown very long 
lifespans, as any organization with legacy systems can attest to. Now, in the 
age of open standards and interconnected systems it is vital for organizations 
to consider each standards choice as a long-range and long-reach decision 
with long-term implications, because the network is not limited to the users 
of that one application or standard. Rather the network includes a family of 
related and compatible software products, as well as a host of suppliers, 
institutions and other users surrounding this family of products. And it is 
important to choose the network that will provide the best long term benefits 
for the organization as the technologies of the network evolve. Further, the 
growing importance of system interconnections within the organization will 
mean that the standards choice has consequences for other parts of the 
organization whose software standards, implementations and interests may 
not originally have been considered in the decision process regarding the 
new software acquisition. 

Two strategies for this choice are widely known as "best of suite" and 
"best of breed". In the "best of suite" strategy, the organization chooses the 
one best product or supplier that has the best all-round match with the 
organization's requirements. The reasoning behind this decision is to 



Software Packages 563 

optimize the internal consistency between the various components of the 
overall system. The risk of this strategy is of course that of putting all of 
one's eggs in one basket, and that this trust may later prove to have been 
misplaced when the standard or vendor starts to move in a different direction 
compared with the organization's own requirements. In the "best of breed" 
strategy, the organization goes cherry-picking to find elements from several 
standards or suppliers that fit the organization's every requirement. The 
motivation behind this decision is to achieve optimal solutions, The risk - or 
rather the cost - of this strategy is that the system can be complicated to 
manage. 

The evolution of many software applications is so that first an innovation 
is custom built by innovators and early adopters. Later several competing 
systems become available on the market (a breed of systems) and finally the 
systems become a commodity and bundled into a larger suite of standard 
software, like Microsoft Office Suite that contains a word processor, 
spreadsheet, presentation software, web site creation software, and database 
software. Awareness of this evolution trajectory for software applications 
helps the buying individual or organization focus on the potential long-term 
consequences of every software application acquisition. 

We stress these long-term perspectives of software standards even as the 
pace of evolution in the computer industry reduces the effective lifespan of 
most products to very few years. When a personal computer is four years 
old, it is essentially unusable for any current software application. The 
machine will be at least an order of magnitude slower than contemporary 
computers, and very likely the replacement and upgrade parts for it have 
long since been unlisted by the supplier. Software products also typically 
have a high turnover with updates being released every year for most 
products. But the long lifespan of standards and data necessitates awareness 
that the standards choice involves participation in a network that may last 
one or two decades or longer. 

An organization's initial choice of a standard software package for a 
particular task that has not previously been handled by a software package is 
a unique situation. There are fewer concerns about compatibility, both 
regarding existing technical systems, organizational processes, and 
knowledge management - old habits do not have to be unlearned. This 
situation is analogous to the choice of driving in the left side or the right side 
of the road. To the novice driver the decision is arbitrary; it does not matter 
in what side she drives. But to the experienced driver changing side 
represents a big challenge of "unlearning" as those of us who have tried it 
can attest to. The costs of changing to a different standard can be astounding 
to organizations with existing investments in technology and training. 



564 JAN DAMSGAARD and JAN KARLSBJERG 

3.3 Alert 3: When choosing a software package, there is 
safety in numbers 

Earlier when ordering a software product an organization in effect 
committed itself to a particular (often local) producer and this producer's 
ability to produce added functionality as requirements grew. Now, as the 
commitments move from a local producer towards global producers and 
standards, user organizations must be wary of the development and 
evolutions of these standards and producers, a task that is likely much more 
demanding than keeping track of a single local producer. 

As IT standards evolve and compete against each other, they may 
converge or diverge on some features, i.e. reaching or breaking compatibility 
with each other. As we shall describe in further detail in Alert 4, this 
development is caused by some party's perceived advantage in changing the 
degree of compatibility or interoperability between competing software 
standards. User organizations must be aware of the developments and seek 
to avoid the pitfalls of standards evolutions: blind alleys and one-way streets, 
which we describe next. 

The blind alley scenario refers to the situation where an organization has 
chosen a standard that is now about to lose to competing standards. David 
(1986) uses the term "angry orphans" to describe the losing standards. He 
points out that such standards or technologies often show a sudden rapid 
development as they are losing the battle. For example the greatest speed of 
innovation in sail ships happened as the steam engine was taking over as the 
leading technology on the sea. Thus, though an organization should seek to 
avoid the blind alley scenario, the death throws of a losing standard may 
actually prove to be invigorating for the organization's IT systems. And if 
the losing standard manages to capture a niche market network, it may 
sustain itself for several years - or even perpetually, giving user 
organizations the choice of staying with the incumbent producer or the time 
to look for migration paths towards the wide boulevard, where there is safety 
in numbers. At other times the "angry orphans" may seek to counter the 
establishment of a new reign by holding on to resources that are critical for 
establishing a new. A good example is frequency allocation for cellular 
phones in the US where coalitions of companies providing first and second 
generation cellular phone services refuse to give up their control over a 
certain part of the radio spectrum, which in effect blocks a fast establishment 
of a third generation network. 

A popular route taken by users who want to protect themselves against 
the blind alley scenario is the flocking strategy where users choose a 
standard based on the historic and current size and success of its associated 
network. As long as the network remains large, there will be a commercial 



Software Packages 565 

incentive for both the original owner of the network as well as competing 
software producers to cater to the users of the standard. The risk for the users 
is that the network owner may end up being powerful enough to force users 
into a one-way street scenario. 

The one-way street scenario describes the common situation where une is 
left with little choice when it comes to buying upgrades or expansions to 
existing systems. Often the purchase of a particular product in effect obliges 
the user to place future product purchases in the same product family, 
because the product or standard has low compatibility with other products or 
standards. This happens for example when the producer is ahead of the 
competition or if the producer has intentionally differentiated its 
implementation of the standard from the competition for competitive reasons 
rather than technological necessity. In this situation, the user organization 
may find itself so committed to the standard that the switching costs 
involved with moving to another software standard are prohibitive, and the 
organization is in effect locked-in to the standard software for better or for 
worse. 

3.4 Alert 4: Focus on compatibility and avoid false gold 

As we mentioned in Alert 2, the actual life expectancy of the data stored 
in software systems is often much longer than was expected at the time of 
the initial implementation. For user organizations this makes backward 
compatibility increasingly important, and the user organization must abstract 
from individual products and their features and instead focus on 
compatibility, product types and functionality. 

In some cases several software products adhere to one common standard, 
enabling user organizations to choose among competing products based on 
other product features such as price, performance, usability, etc. Most often, 
however, compatibility is not a clear black and white issue because 
producers differentiate their products by adding proprietary features and 
unwarranted extensions to a standard (Besen and Farrell 1994; Shapiro and 
Varian 1998). Microsoft calls its execution of this competitive business 
technique "embrace, extend, and extinguish" (Kingmand 2001). 

A user organization will often find these proprietary features attractive, 
but it is important to be aware that proprietary features are in reality false 
gold: Every time a proprietary feature is included in the organization's 
practice of use, the switching costs are raised, meaning that it will be harder 
to pull away from that producer if and when the organization should ever 
want to do so, for example when contracts are up for renewal or 
renegotiation. Instead, user organizations should keep their options open by 
staying close to compatible standards and look for gateway standards as a 



566 JAN DAMSGAARD and JAN KARLSBJERG 

way to break an existing lock-in (David and Bunn, 1988). The break-down 
of standards happens in many cases where there is no central governance of 
the standard by a central player or authority, and even if such governance 
does exist standards often break down anyway as competitors test and 
extend the limits of the standard. 

3.5 Alert 5: Choose a software package with an 
accessible base of knowledge 

Earlier user organizations needed proprietary knowledge to operate the 
systems built especially for them. Today a standard system guarantees 
access to standardized knowledge both in its use and exploitation. Ideally, 
the network of organizations using a technology is matched by a network of 
individuals with knowledge and skills specific to this standard. If the two 
networks are not aligned, both user organizations and producer organizations 
will experience problems. One example of misaligned networks is that of 
ERP systems, where the number of organizations using ERP systems has not 
been matched by the number of people with knowledge about the setup and 
configuration of ERP systems, resulting in disproportionately high costs for 
the people component of ERP implementations. 

Software producers employ various strategies for ensuring a network of 
knowledgeable users. One such strategy is to produce free or low cost 
versions of a product so people interested in the technology will be more 
likely to sample the products. One variation of this strategy is to make 
"academic versions" of the software available as free downloads or to bundle 
the products with textbooks used in educational institutions. Another 
variation is the bundling of products into product suites, resulting in a very 
wide distribution of even highly specialized software components (Shapiro 
and Varian 1999). By bundling feature-limited versions of the specialized 
software products, the vendor can even raise awareness about the products 
without serious loss of revenue from the sale of the full versions of the 
specialized software products. An example of feature limitation occurs in 
Microsoft's workstation (non-server) versions of Windows 2000 where the 
server modules (such as the web and file transfer protocol (FTP) modules) 
have been programmatically limited to ten simultaneous connections, 
effectively ensuring that organizations employing such services on some of 
their computers will invest in the much more expensive Windows 2000 
server licenses for these computers. 

A different strategy for building a network of knowledgeable users is 
formalization and institutionalization of the skills involved such as the 
establishing of authorized, branded training (courses and exams) for a 
technology, for example the multitude of titles in Microsoft's regime, such as 



Software Packages 567 

Microsoft Certified Systems Engineer. The process of institutionalizing 
skills is more complex for open standards such as open source products 
(sendmail, emacs, Linux, etc.) where there may be no single trusted 
certifying institution corresponding to the owner of the standard. Instead 
other forms of legitimization are used such as a person's ranking in 
recommender-systems such as discussion web sites for a particular product 
or community. Such online communities also make it very easy to see the 
contributions a particular member has made over the lifetime cOf the project, 
enabling potential customers or employers to get a quite detailed mental 
picture of the person's knowledge about a particular product, as well as her 
ability to explain technical issues to other users. 

The co-development ofthe two networks (that of the technology and that 
of its users) has a high inertia to the point of being irreversible. The existing 
network of knowledgeable users of an incumbent standard forms an entry 
barrier that is hard to break through by a new, competing standard that has 
only a small network. If the new standard is owned and the owner is willing 
and able to invest in the standard, one way for the new standard to achieve a 
critical mass of users is for the standard owner to bear some or all of the 
switching costs for the users or user organizations willing to switch (Shapiro 
and Varian 1998; Shapiro and Varian 1999). Due to Metcalfe's law (see 
Alert 1) the owner of the network standard will be fighting an uphill battle 
until the networks are of comparable size. An alternative approach is to 
introduce gateway features into the new standard easing the transition from a 
competitor's product (David and Bunn 1988). When Microsoft Word was 
winning over the majority of the word processor market from WordPerfect 
they circumvented the knowledge barriers by providing WordPerfect users 
an easy passage. Microsoft Word featured two gateway technology features: 
An alternative user interface where Microsoft Word could be made to 
emulate the keyboard shortcuts of WordPerfect, and "Help for WordPerfect 
users" where the use of Microsoft Word was explained in terms that 
WordPerfect users could relate to. The latter feature still exists in the newest 
installment of Microsoft Word (Microsoft Office XP) that was released in 
2001. 

3.6 Alert 6: Choose a software package with the right 
type of standardization 

Information technology standards are socio-technical constructs that 
comprise more than just technical specifications. Standardization can be 
achieved at many levels. Here we give an overview of the more common 
types of standardization, because it is important to choose the type that is 
right for the particular organization. 



568 JAN DAMSGAARD and JAN KARLSBJERG 

In standardization of output, the system's only compatibility restraint is 
that it must produce an output that can be used by the recipient users or 
systems. One example is that of web page production, where different users 
may use very different production techniques as long as their products fulfill 
agreed-upon requirements, such as a persistent look and feel when rendered 
on the five most popular web browser versions in use by the site's intended 
audience. This standardization strategy has the strength of allowing its users 
to optimize and personalize their data production methods without 
depending on consensus decisions. The strategy also has serious drawbacks 
if at any point in time the users need to share input or intermediate data. We 
would not recommend that this strategy be employed as the exclusive 
standardization strategy in an organization. 

Standardization of user interface is a popular strategy employed to limit 
the training requirements as implementation decisions are guided by the 
similarities of the user interfaces. After some experimental implementations 
of information systems in a particular field, a dominant design emerges 
(Webster 1991; Teece 1997). Referring to web design Nielsen (2000) 
reasons that users spend most of their time on other sites, and therefore they 
prefer any new web site to be designed like the other sites they already 
know. As a consequence the dominant designs sometimes become static and 
end up as anachronisms when the surrounding systems change. For example 
the diskette icon featured in most MS Windows applications invokes the 
"save" function, even though few files are ever saved to diskettes these days, 
and some personal computers do not even contain diskette drives. 

An organization might choose standardization of data files for one of two 
reasons, either seeking backward compatibility with existing data stored in 
legacy systems, or in an attempt to ensure access to the data using other 
information systems in the future. Employing this strategy, an organization 
can choose between a number of compatible software packages, thus 
bringing the simple advantage of choice in a market that may otherwise be 
dominated by a single producer. The disadvantage is that the user 
organization must abstain from using any proprietary features of the 
programs chosen (the false gold of Alert 4) in order to maintain data 
standardization. Examples of data standards with wide vendor support are 
the all-purpose information formatting language XML, the database 
language SQL, and Microsoft's rich text format (RTF). 

More advanced modes of standardization of data interfaces include 
interconnectivity and interoperability (Bailey, McKnight et al. 1995). 
Interoperable information systems are able to communicate during the 
execution of a particular task. An everyday example is when the 
functionality of a electronic spread sheet program is employed by a word 
processing program to perform a calculation in a text document. More 



Software Packages 569 

advanced implementations allow interoperability between systems running 
on different computers, even in different locations or different organizations. 
Recently implemented protocols such as Microsoft's .NET initiative and 
XML-RPC (extensible markup language - remote procedure call) allow 
relative simple runtime integration of information systems using 
standardized communication mechanisms over the common Internet. This 
will have far-reaching implications for the implementation of standard 
software packages and inter-organizational information systems in the 
coming years. 

Organizations may choose standardization of skills by employing only 
people with a particular training or education, or if necessary to carry the 
cost of training new employees to some formalized level of training (see 
Alert 5). This strategy helps ensure uniform performance and results of the 
work carried out by the employees, and fewer control mechanisms have to 
be in place to assure the quality of the output produced. Organizations can 
choose two types of skills on which to standardize: specific or generic skills. 
Specific or proprietary skills encompass a user's qualifications with a 
particular product or product suite, where the skills are certified by the 
product producer or a trusted third party. Every major vendor in the 
technology market has such certification programs, and many are even 
updated on a continuous basis, forcing certificate holders to take new exams 
in order to preserve their certificate status. Generic skills are skills such as 
programming, business knowledge, etc. that can be acquired at universities 
or similar educational institutes. 

3.7 Alert 7: Focus more on use and less on waiting 

In 1965 Intel co-founder Gordon E. Moore famously predicted that the 
number of transistors that can be placed on a single integrated circuit would 
continue to double every 18 months for the next ten years (Moore 1965). 
The press dubbed this prediction Moore's Law, and though the initial 
predictions only dared include the time until 1975, the law has held true to 
this date as measured by the number of transistors incorporated in the top 
processor models from Intel over the years (Intel 2000). The popularized 
version of Moore's law states that for a constant price, computer 
performance doubles every 18 months. Software production actually has 
negative scaling: When a software product grows it inherently becomes 
more complicated and demands more development resources (Brooks 1995). 
But successful standard software packages mature with time, and innovation 
and market forces combine to establish a small set of dominant software 
packages from which new buyers can choose. 



570 JAN DAMSGAARD and JAN KARLSBJERG 

This may lead to a wait-and-see position for buyers until they can 
determine which packages will prevail (Au and Kauffman 2001). Our advice 
to buyers is not to fall into this trap for the following two reasons. First of all 
the winner will only emerge when companies actually buy software, so by 
being part of the selection process there is a greater chance that software that 
fits the needs of the company will succeed. Secondly change is inevitable 
and waiting only leads to greater discrepancy between a company's existing 
software base and the available software packages. In a worst case scenario 
from a buyer's point of view a late purchase of some package forces the 
replacement of the existing base of software. 

Another trap buyers can fall into is waiting for the emergence of a 
software package that is a perfect fit with the buyer's 

4. CONCLUSIONS 

In this paper we have described and highlighted seven connotations that 
are related to buying a standard software package but less obvious than the 
two factors of price and immediate features. The seven alerts are depicted in 
table 1. 

1. When you buy a software package you join its network 
2. Take a long-term perspective: Look ahead but reason back 
3. When choosing a software package, there is safety in numbers 
4. Focus on compatibility and avoid false gold 
5. Choose a software package with an accessible base of knowledge 
6. Choose a software package with the right type of standardization 
7. Focus more on use and less on waiting 

Table 1. The seven alerts 

We have advocated a broad, networked view of the purchasing process 
and argued that the purchase of a software package is not an atomic, stand­
alone event similar to buying a piece of well established and packaged 
technology. Instead software packages are networked and built around 
standards that allow (and sometimes disallow (Wilson 2001») more or less 
seamless connection to other software systems. We promote _ a pluralistic 
multi-organizational view of buying software as a continuous process of 
trying to match available software packages with a base of already installed 
software systems while anticipating future needs. We have formulated seven 
alerts that both researchers and practitioners should consider when studying 
these building blocks of e-business. 

The first alert emphasizes that all software packages form networks of 
which their users become part. Secondly standards decisions should not only 



Software Packages 571 

be based on immediate benefits but should take a long-term perspective, 
weighing in the past and the future. The third alert argues that the size and 
value of a network formed by a software package means that there is safety 
in numbers when buying software packages. The fourth alert states that even 
though additional features are attractive they may be deceiving and in effect 
lock-in the buyer to the software package, and therefore it is better to focus 
on compatibility. Alert number five stresses the importance of not only 
considering the artifact but also the entire support infrastructure and 
complementary assets surrounding the package. Software packages can be 
standardized along a number of dimensions, and alert six stresses the 
importance of choosing the right type of standardization. Finally alert seven 
urges the buyer to take an active part in the selection process and use of a 
software package. 

We hope that these seven alerts will be used in practice by IT managers 
when evaluating different software alternatives. We have designed the alerts 
so that they each provide a particular yet practical concern when purchasing 
software. 

One fruitful area of further research is the need to study in detail the 
evolution of information infrastructures built up by software packages, and 
how interoperability and standards decisions by software houses lead to 
success or failure for their software. Especially the time criticality and 
scalability of an e-business infrastructure is particularly interesting. We are 
in the midst of performing longitudinal field studies that follows the 
evolution of large-scale IT infrastructures that are comprised of a multitude 
of standard software packages. 

ACKNOWLEDGEMENTS 

This research was carried out as part of the PITNIT project. PITNIT is 
supported by the Danish Research Agency, grant number 9900102. URL: 
http://www.cs.auc.dklresearchiISIPITNIT/ 

REFERENCES 

Attewell, P. (1992). "Technology diffusion and organizational learning: The case of business 
computing." Organization Science 3(1): 1-19. 

Au, Y. A. and R. J. Kauffinan (2001). Should We Wait? Network Externalities and Electronic 
Billing Adoption. Hawaii International Conference on System Sciences, Hawaii. 

Bailey, J., L. McKnight, et al. (1995). "The economics of advanced services in an open 
communications infrastructure: transaction costs, production costs, and network 
externalities." Infonnation Infrastructure and Policy 4: 255-277. 



572 JAN DAMSGAARD and JAN KARLSBJERG 

Bensaou, M. (1999). Electronically-Mediated Partnerships: The Use of CAD Technologies in 
Supplier Relations. Proceedings of ICIS 1999. 

Besen, S. M. and J. Farrell (1994). "Choosing how to compete: strategies and tactics in 
standardization." Journal of economic perspectives 8(2 - spring 1994): 117-131. 

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, 
Anniversary Edition (2nd Edition), Addison Wesley Longman, Inc. 

David, P. A. (1986). Narrow windows, blind giants and angry orphans: The dynamics of 
systems rivalries and dilemmas of technology policy. Technological Innovation Project -
working paper no. 10. 

David, P. A. and 1. A. Bunn (1988). "The economics of gateway technologies and network 
evolution: Lessons from electricity supply history." Information Economics and Policy 3: 
165-202. 

George, 1. F. (2000). The Origins of Software: Acquiring Systems at the End of the Century. 
Framing the Domains of IT Management: Projecting the Future Through the Past. R. 
Zmud. Cincinnati, Ohio, Pinnaflex Educational Resources, Inc.: 263-284. 

Hanseth, O. and K. Braa (1999). Hunting for the treasure at the end of the rainbow: 
standardizing corporate IT infrastructure. IFIP TC8 WG 8.2 - New Infonnation 
Technologies in Organizational Processes: Field Studies and Theoretical Reflections on 
the Future of Work, St. Louis, MO, Kluwer Academic Publishers. 

Intel (2000). "Moore's Law", http://www.intel.comlresearch/siliconlmooreslaw.htrn 
Keen, P. G. W. (1991). Shaping the Future: Business Design Through Information 

Technology, Harvard Business School Press. 
Kindleberger, C. P. (1983). "Standards as public, collective and private goods." KYKLOS -

International review for social sciences 36 (1983): 377-396. 
Kingmand, H. (2001). "The Microsoft Standard is Anything But" ZDNet News, 

http://www.zdnet.comlzdnn/stories/commentlO.5859.2784051.00.html 
Liebowitz, S. J. and S. E. Margolis (1999). Winners, Losers & Microsoft, Competition and 

antitrust in High Technology. Oakland, California, The independent institute. 
Ljungberg, 1. (2000). "Open Source Movements as a Model for Organizing." European 

Journal ofInformation Systems 9(4): 208-216. 
Markus, M. L. (2001). Process Integration In The Chemical Industry, (Working paper). 
Moore, G. E. (1965). "Cramming more components into integrated circuits." Electronics 

38(8). 
Nielsen, 1. (2000). "End of Web Design", http://www.useit.com/alertbox!20000723.html 
O'Reilly, T. (1998). The open-source revolution. Release 1.0, Ester Dyson's Monthly Report: 

3-26. 
Raymond, E. S. (1997). "The Cathedral and the Bazaar", http://www.tuxedo.org/­

esr/writings/cathedral-bazaar/cathedral-bazaar/ 
Scarbrough, H. (1995). "Blackboxes, Hostages and Prisoners." Organization Studies: 991-

1019. 
Shapiro, C. and H. R. Varian (1998). "The art of standards wars." California Management 

Review 41 (2): 8-32. 
Shapiro, C. and H. R. Varian (1999). Information Rules: a strategic guide to the network 

economy. Boston, Massachusetts, Harvard Business School Press. 
Teece, D. J. (1997). Capturing Value from Technological Innovation: Integration, Strategic 

Partnering, and Licensing Decisions. Managing Strategic Innovation and Change. A 
Collection of Readings. New York, Oxford Press: 287-306. 



Software Packages 573 

Webster, J. (1991). Advanced manufacturing technologies: work organisation and social 
relations crystallised. A Sociology of monsters: essays on power, technology and 
domination. J. Law. London and New York, Routledge: 192-221. 

Weill, P. and M. Broadbent (2000). Managing the IT Infrastructure: A Strategic Choice. 
Framing the Domains of IT Management: Projecting the Future Through the Past. R. 
Zmud. Cincinnati, Ohio, Pinnaflex Educational Resources, Inc.: 329-353. 

Wilson, D. (2001). "Talkin' to Me? Not if AOL Has Its Way" Los Angeles Times, 
http://www.latimes.comitechnology/la-000093189nov22.column?coll=la%2 
Dheadlines%2Dtechnology 


	SOFTWARE PACKAGES
	1. INTRODUCTION
	2. SOFTWARE PACKAGES
	3. SEVEN ALERTS
	3.1 Alert 1: When you buy a software package you joinits network
	3.2 Alert 2: Take a long-term perspective: Look aheadbut reason back
	3.3 Alert 3: When choosing a software package, there issafety in numbers
	3.4 Alert 4: Focus on compatibility and avoid false gold
	3.5 Alert 5: Choose a software package with anaccessible base of knowledge
	3.6 Alert 6: Choose a software package with the righttype of standardization
	3.7 Alert 7: Focus more on use and less on waiting

	4. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES




