
BLACK BOX CHECKING

DORON PELED
Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974, USA

MOSHE Y. VARDI1

Rice University
Department of Computer Science
Houston, TX 77005, USA

MIHALIS YANNAKAKIS
Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract Two main approaches are used for increasing the quality of systems: in
model checking, one checks properties of a known design of a system; in testing,
one usually checks whether a given implementation, whose internal structure is
often unknown, conforms with an abstract design. We are interested in the com­
bination of these techniques. Namely, we would like to be able to test whether
an implementation with unknown structure satisfies some given properties. We
propose and formalize this problem of black box checking and suggest several
algorithms. Since the input to black box checking is not given initially, as is the
case in the classical model of computation, but is learned through experiments,
we propose a computational model based on games with incomplete informa­
tion. We use this model to analyze the complexity of the problem. We also
address the more practical question of finding an approach that can detect errors
in the implementation before completing an exhaustive search.

Keywords: Formal methods, Model checking, Specification, Testing, Verification.

1 INTRODUCTION

Model checking [5] and testing [16] are two complementary approaches for enhancing
the reliability of systems. Model checking usually deals with checking whether the
design of a finite state system satisfies some properties (e.g., mutual exclusion or re­
sponsiveness). On the other hand, testing is usually applied to the actual system, often

1Supported in part by NSF grants CCR-9628400 and CCR-9700061, and by a grant from the Intel
Corporation. Part of this work was done when this author was a Varon Visiting Professor at the Weizmann
Institute of Science.

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999

226

without having access to, or knowledge of its internal structure. It checks whether a
system (or an implementation) conforms with some design (i.e., informally, has the
same behaviors). Even if access to the internal structure of the tested system is pos­
sible, it is not always a good idea to use it when performing tests, as this may lead
to a bias in the testing process. Furthermore, the whole system may be very large
(e.g., millions of lines of code), while we are interested only in specific aspects of it;
think for example of a typical telephony switch and suppose we want to check that the
implementation of a particular feature, such as call waiting, meets certain correctness
properties. Extracting the part of the code that is relevant from the whole system, es­
pecially in the case of large legacy systems, is most probably infeasible (and is itself
subject to errors). Suppose one is interested in checking specific properties of some
system such as a communication switch or protocol system. Model checking would
be appropriate for checking properties of a model of the system, but not checking the
system itself. On the other hand, testing methods can compare the system with some
abstract design, but usually are not used for checking specific properties.

One motivation for the current work is the case where acceptance tests need to
be performed by a user who does not have access to the design, nor to the internal
structure of the checked system. Our aim is thus to combine the two approaches, hence
checking automatically properties of finite state systems whose structure is unknown.
Of course, a completely hidden structure cannot be effectively checked. Thus, the
following properties are assumed:

• A bound rz on the number of states of the checked system is known.

• The tester can always reset the system to its (unique) initial state.

• The input alphabet I: of the checked system is known.

• An experiment consists of repeatedly applying an input from L or a reset to the
current state. An indication of whether the input was possible (enabled) from
the current state is available.

• If an input a: was possible from the current state, the system makes the move.
Otherwise, it stays in the current state. No backtracking is available (but the
tester can simulate backtracking by resetting and repeating the successful prefix
of the experiment).

• The checked system is deterministic in the sense that from each state it can move
with any given input to at most one successor state.

We do not assume that the size of the system is known precisely: n is only an upper
bound. In particular, we would like to study the effect of the possibility that the bound
on the number of states n may be much bigger than the actual number of states. This
is the case when the number of states is only estimated. In practice, the system that
is being checked may be large and have multiple functions, while the property may
concern a specific aspect of the system. Although the system as a whole may be
quite big, large parts of it may be irrelevant to the property, and the system may be
equivalent to a much smaller finite state machine as far as checking the property is
concerned. In this case, n should be taken to be an estimate on the logical complexity
(the control structure) of the system with respect to the property at hand. Our methods

227

can be used also if no bound n is available, by running the algorithms to the extent
that the available time and space resources allow; the guarantees in this case depend
on the time spent.

Following the automata-theoretic approach to model-checking [12, 23], the (nega­
tion of the) checked property is directly given as, or translated into, a finite automaton
on infinite words, usually a Bilchi automaton [3]. Then, both the system and (the
complement of) the checked property are represented using automata. An example of
a system that is based on such principles is Spin [8, 1 0], where the specification is
given by an automaton called a never claim that recognizes the bad (or disallowed)
computations. In order to check whether the system under consideration satisfies the
checked property, we intersect the automaton representing the system with the automa­
ton representing the disallowed computations. Any sequence in the intersection is a
counterexample for the checked property, while the absence of any counterexample
means that the property is satisfied.

The problem we study here is a variant of the above model checking problem. We
are given the automaton that represents the computations not allowed by the checked
property. But the internal structure of the checked system is not revealed, and only
some experiments, as described above, are allowed on it. Still, we want to check
whether the system satisfies the given property. We call this problem black box check­
ing. To simplify the discussion, we will not deal here with machines with output.
Their treatment and the results are similar to the ones presented here. We will present
on-the-fly algorithms that are aimed at quickly detecting errors in a checked system.

The choice of an appropriate computational model is central to the issue of black
box checking. Unlike standard decision problems, the input is not given here at the
beginning of the computation, but is learned through a sequence of experiments. We
propose a computational model based on games with incomplete information, and use
this model to analyze the complexity of the problem.

Our methods combine techniques from model checking, conformance testing and
learning theory. All three areas have been actively pursued for a number of years and
there is an extensive body of literature. Model checking has been a vibrant area of
research for more than 15 years with the development of the theory and a number of
software tools. Most tools check properties of finite state models expressed in some
formal notation. One tool that is directed at the checking of software systems without
a model is VeriSoft [7]: it is aimed at checking state invariants (assertions) of commu­
nicating processes, using partial order reduction methods for space exploration. For a
recent book on model checking see [5].

The study of testing black box automata was initiated in Moore's classical paper
from 1956 [15], where he defined and studied several problems including the machine
identification problem (infer the state transition diagram of an unknown black box au­
tomaton). He also posed the fault detection or conformance testing problem (checking
that the black box conforms to a specified design automaton). This problem has been
studied in the subsequent years by many researchers, obtaining good bounds on the
lengths of the tests needed, as well as efficient algorithms that check for conformance
for different types of automata (machines with a distinguishing sequence or with reset,
or in general without) [4, 9, 24, 25]. In the last 15 years, there has been a lot of work

228

on conformance testing in the protocols community, with a large number of papers,
many of them based on the black box automaton testing models and methods. Early
surveys of the work in the 50's and 60's can be found in e.g., [II, 22], and surveys of
the more recent results and related work on protocol testing can be found in [13, 20].
Finally, there is substantial work in the learning community on the problem of learning
finite automata (i.e. machine identification) with the help of a teacher. Efficient algo­
rithms for learning different types of automata in this framework have been developed
in [2. 14, 19].

2 PRELIMINARIES

AUTOMATA THEORETIC MODEL-CHECKING
A Btichi automaton is a quintuple (S, S0 , I:, c5, F), where S is a finite set of states,
So ~ S are the initial states, I: is the finite alphabet, c5 ~ S x I: x S is the transition
relation, and F ~ S are the accepting states. A run over a word a 1 a2 . . . E I:'"'
is an infinite sequence of states s1s2 s3 •• . , with s 1 E S0 , such that for each i >
0, (s;, a:;, si+1) E c5. A run is accepting if at least one accepting state occurs in
it infinitely many times. A word is accepted by a Btichi automaton exactly when
there exists a run accepting it. The language .C(A) of a Btichi automaton A is the
set of words that it accepts. Two automata are equivalent when they accept the same
language.

An implementation automaton B = (S 8) Sf!' I:, 68) S 8) has several restrictions.
We assume that the number of states IS8 1 is bounded by some value n, that Sfj is a
singleton { t }, and that F 8 = S 8 , namely, all the states are accepting.

We can view an implementation machine in our model as a Mealy machine: at each
state v and for each input a, the machine outputs 0 if the transition is not enabled, and
then remains in the same state, and I if it is enabled. Furthermore, we assume that the
implementation automaton is deterministic, i.e., if (s, a, t) E c58 and (s, a, t') E c5 8 ,

then t = t'.
For a specification automaton P = (SP, Sf, I:, c5P, FP), we will denote the num­

ber of states IS PI by m. Let the size of the alphabet I:, common to the implementation
and the specification, be p. As we mentioned in the introduction, we can easily extend
the framework of this paper, and the results to implementation machines with arbi­
trary output (i.e., Mealy machines), and specification machines that describe the legal
input-output behaviors.

The intersection (or product) B X pis (S 8 X sP, Sf! X sr:, I:, c5', S 8 X FP),
where

c5' = {((s, s'), a:, (t, t'))l(s, a:, t) E c5 8 1\ (s', a:, t') E c5P}.

Thus, the intersection contains (initial) states that are pairs of (initial, respectively)
states of the individual automata. The transition relation relates such pairs following
the two transition relations. The accepting states are pairs whose second component
is an accepting state of P. We have that .C(B x P) = .C(B) n .C(P).

A reset is an additional symbol of S 8 , not included in I:, allowing a move from
any state to the initial state. An experiment is a finite sequence a:1a:2 ... a:A,-I E

229

(:E U {reset})*. such that there exists a sequence of states s1 s2 ... s~r of S B, with
s 1 E S!. and for each 1 ::; j < k, either

1. a; =reset and sH1 = L (a reset move), or

2. (s3, a1, si+l) E JB (an automaton move), or

3. there is notE sB such that (s1, a1, t) E JB and s;+l = s; (a disabled move).

GAMES OF INCOMPLETE INFORMATION

The computation model for experiments on black box automata is not the standard
one, in which the input is known from the beginning of the computation. Here, part of
the input is hidden, and its structure is studied through experiments.

The relevant computational model is related to games of incomplete information [1,
18]. where an 3-player plays against a deterministic environment (representing a de­
generate version of a \;/-player). Each such game consists of a nondeterministic ma­
chine with finitely many configurations2 C. containing the following disjoint subsets:
C; are the initial configurations, n:+ and w- are the positive and negative win­
ning configurations for the 3-player, respectively. Intuitively, since we want to check
properties of systems, w+ corresponds to finding an error, and w- corresponds to
concluding that there is no error.

Let £3 and L'V be sets of labels for the 3-player and the environment, respectively.
Then the sets of moves are M3 ~ C x £3 x C, and M'V E C 1--t L'V x C, respectively.
The 3-player can have a choice of moves, thus J..f3 is a relation, connecting the current
configuration with all possible pairs of move-labels and resulted successor configura­
tions. The moves of the environment M'V are deterministic, and thus are defined as a
function from the current configuration into the unique transition label and successor
configuration. No move can originate in a winning configuration. Moreover, any two
different moves from the same configuration must have different labels. The two play­
ers make moves in alternation, starting with the 3-player, who makes the first move
from an initial configuration. A play is a sequence from (CL 3 CL'V)*C, where each
adjacent triple over C(£3 U L'V)C conforms with a move of one of the players. A play
is winning if it ends with a winning configuration in HT+ U w-. There is no initial
configurations starting both a play that ends with a configurations in w+ and a play
that ends with a configurations in w- 0

The incomplete information is stated by the partition of the configurations C into
equivalence classes called information sets. The 3-player cannot distinguish between
configurations c1 and c2 that are in the same information set, denoted c1 ~ c2 . There­
fore, the move function M3 must allow moves with the same labels for all the config­
urations that are in the same equivalence class. Furthermore, if CJ ~ C2 then CJ E w+
(ci E w-, respectively) if and only if c2 E TV+ (c2 E w-, respectively).

A deterministic strategy for the 3-player is a function st3 : C x (L't U { ini t}) 1--t

M3, such that

2Since the games that will be described later involve choosing an automaton and performing experiments

on it. we choose to distinguish between a configuration of a game and a state of an automaton.

230

Figure I: A combination lock automaton

I. If the 3-player will keep playing st3 (c, l) when it is his turn from configuration
c and after the environment has played a move labeled with l, the sequence will
end with a configuration in w+ u w-.

2. If c ~ c', then the labels on st3 (c, l) and st3 (c', l) are the same.

The additional value ini t is paired with initial configurations from C; (since there is
no previous label for this configuration). A path played according to a strategy is an
alternating sequence of configurations and labels, starting with an initial configuration.
A winning path ends with a winning configuration. We will define the deterministic
time complexity of a strategy as the length of the longest winning path in a strategy
that ends with a configuration in w+ u w-.

We also define a nondeterministic strategy nst3 : C x (Lv U { ini t}) f-t M3 for
the 3-player. Let c E C; be an arbitrary configuration such that there exists a play
from c that ends with a configuration in w+. Every play starting with c in which the
3-player keeps playing his tum according to the nst3 strategy will end with a config­
uration in w+. The second constraint that was imposed on the deterministic strategy
does not have a counterpart in the definition of the nondeterministic strategy. The in­
tuition is that in the nondeterministic case, an 3-player that is playing according to a
nondeterministic strategy can make guesses that can distinguish between configura­
tions that are in the same information set.

COMBINATION LOCK AUTOMATA

The following set of automata [15, 24] plays a major role in proving lower bounds on
experiments with black box automata. A combination lock automaton [15] is a finite
automaton such that there exists some complete order of the states s1 , s2, ... sn with
s1 the initial state, and where the state sn has no enabled transition. For each state
s;, i < n, there is a transition labeled with some f3i E :E to Bi+I· For all other letters
1 E :E \ {(3i}, there is a transition labeled with 1 from Si back to the initial state. It is
called the combination automaton for (31 f32 .•. f3n-I· Figure I depicts a combination
lock automaton for n = 5.

A sequence leading to a state without a successor (or even to a state where not all
the letters are enabled) in a combination automaton must have a suffix of length n - 1

231

that is (31(32 ... f3n_ 1. (This is a necessary, but not a sufficient condition. For example,
the automaton in Figure 1 does not reach a deadlock state as a result of the sequence
f31(32(31f32(33(34 when fJ1 -::/: (33, since the second fJ1 only causes it to return to its initial
state.) Every path that does not contain the consecutive sequence (31(32 ... f3n- 1 is
allowed (enabled) by the automaton.

3 BLACK BOX DEADLOCK DETECTION

In this section we describe a simpler problem related to black box checking. Given
a deterministic finite state system B, with no more than n states, we want to check
whether this machine deadlocks, namely reaches a state from which no input is possi­
ble.

In this problem, part of the model is unknown and is learned via experiments, which
motivates modeling the problem as a game with incomplete information. We will also
demonstrate that the deterministic and nondeterministic complexity do not have the
same connections as in the standard model of computation that is based on Turing
Machines.

For each implementation automaton with n or less states, there exists a single initial
configuration. Each configuration in C in a play contains the same automaton as in the
initial configuration, the current state of this automaton, as controlled by the moves of
the 3-player, and some information about the sequence of moves played so far. The
current state of the automaton in an initial configuration is its initial state. The moves
Mv of the environment are labeled by success or fail. The label indicates whether
the environment was successful or not in changing the state of the implementation
automaton using the transition chosen according to the label of the last move of the 3-
player. The moves of the 3-player are the possible input symbols, or a reset followed
by a symbol (A reset is always successful.)

Projecting the labels of the moves of the 3-player from a play ~. we obtain an
experiment over the implementation automaton in the initial configuration of~. If the
configurations c1 and c2 are reachable using the prefixes of two plays 6 and 6 that
correspond to the same experiment, then c1 ~ c2 . The winning set w+ contains only
configurations that include an automaton that has a deadlock. Similarly, the winning
set w- contains only configurations that include an automaton without a deadlock.

A NONDETERMINISTIC STRATEGY
The 3-player guesses in each move a label, forming a sequence of length smaller than
n that brings the state of the selected machine from its initial state to some deadlock
state. He then checks that this state has no enabled transitions.

Complexity: Nondeterministic time 0(n + p). The only information that is needed
to be kept in each configuration is a counter from 0 to n-1 and a counter on the number
of labels checked from the final state.

232

A DETERMINISTIC STRATEGY

The 3-player checks systematically the possible sequences, up to length n- 1, starting
from the initial state. (Of course, there is no need to check sequences that include
prefixes that have led to a failure.)

Complexity: Deterministic time 0 (pn).

Theorem 1 The deterministic time complexity for black box deadlock detection is
n(pn-1).

Proof. Suppose that the initial configuration includes an implementation automaton
B with n states that allows any input from any state. Consider a play~. played using a
deterministic strategy for the 3-player. Assume that~ has less than pn-1 moves of the
3-player, and terminates with a winning configuration Cw in w-. Then at least one
sequence /31 /32 ••• f3n- 1 does not appear consecutively in the experiment associated
with ~· If instead of the above automaton B, the environment would have chosen a
combination lock automaton for /31 /32 ... f3n- 1, the deterministic strategy would have
resulted in a prefix of a play that has the same labels as ~. Now we would have reached
a configuration c' such that Cw ~ c'. Further, Cw is associated with an automaton
without deadlocks, while c' is associated with an automaton with deadlocks. This
contradicts the assumption that Cw E w-. ..

In the standard complexity model, it is not known whether one can obtain a poly­
nomial deterministic algorithm from a nondeterministic polynomial algorithm. Here,
the (tight) lower deterministic bound is exponentially larger than the nondeterministic
complexity. This justifies the use of games with incomplete information as an alterna­
tive for the common computational model of Turing machines.3

4 CHECKING PROPERTIES OF BLACK BOX FI­
NITE STATE MACHINES

We address now the problem of black box checking. Namely, given a specification
Btichi automaton P with m states, and a black box implementation automaton B with
no more than n states, over a mutual alphabet :E with p letters, we want to check if
there is a sequence accepted by both P and B. The automaton P accepts the bad
computations, i.e., those that are not allowed. Thus, if the property is given originally
e.g., using a linear temporal logic (LTL) [17] property <p, then Pis the automaton cor­
responding to -.~.p. For an efficient translation from LTL to automata, see e.g., [6]. The
following simple theorem demonstrates that the current problem is at least exponential
in time in the size of the automaton B.

Theorem 2 The deterministic time complexity of black box checking is n(pn-1).

3 Another observation, connected with the space complexity of this model, which was not defined for­
mally in this paper, is that the common space efficient strategy of binary search cannot be used here.

233

Proof. Similar to the proof of Theorem I, we construct variants of a combination
lock automata. The deadlock state is replaced now with a self loop labeled by 'Y· The
symbol 'Y is disabled in the initial state. This removes at most half of the possible
combinations (in the case where p = 2), so the complexity changes only by a constant
factor. The property automaton P consists of two states: t0 which is an initial state,
and t 1 which is an accepting state. There is a self loop from t0 to itself on each label
from :E, and from t 1 to itself on 'Y· There is also an edge labeled by 'Y fr~m t0 to
t 1• Thus, the intersection is nonempty exactly if a state can be reached in the black
box automaton, where 'Yw can be executed. The only such state of a combination lock
black box is the state at the end of the path prescribed by the combination. .1

4.1 AN OFF-LINE STRATEGY

A straightforward way to perform black box checking is to infer first the structure
of the black box system, and then to apply model checking techniques to its newly
revealed structure. The machine identification problem is a well studied problem.
Typically, it is applied to automata that produce output, either at the states (Moore
machines) or at the transitions (Mealy machines). As we mentioned, an implementa­
tion machine in our model can be viewed as a Mealy machine, where output 0 on a
transition means that it is not enabled and output I means that it is enabled.4

It is well known that if two machines with n states are not equivalent, then there
is an input of length at most 2n - 1 that distinguishes them. This implies that any
machine with at most n states is completely characterized by its output on all input
strings of length 2n - 1. That is, a black box is uniquely determined by applying all
such p2n-l input strings. A p-ary tree of depth 2n- 1 can be constructed from the
responses of the black box, and it can be minimized to produce the minimal machine
M consistent with these outputs [22]. Then we can use model checking to check
whether M satisfies the given property P. The length of the test sequence (or in terms
of games with incomplete information, the length of the corresponding play), which
gives us the time complexity, is O(np2n-l). If implemented in the straightforward
way, the space complexity is also exponential (to record the tree all the input strings
and their output), but the minimization can be done incrementally in polynomial space.
The time for the model checking is comparatively small, O(pmn) where m is the size
of the property automaton P (which is typically very small).

The complexity of this method is not that far off the lower bound, and in the worst
case one may indeed need to identify in effect the black box machine in order to check
a property. However, intuitively it is clear that in many cases this method can be
wasteful in that it does not take advantage of the property to avoid doing a complete
identification. For example, suppose that the property is that some error indication
label 'Y never occurs. The property automaton P, representing the bad computations is

4By this convention, the output provides some partial infonnation also on the next state, namely if the
output is 0 then we know that the state does not change. This is not important for what follows (i.e. all
the methods apply to any Mealy machine) but it can be used to do obvious optimizations on the tests. For
·example, if we apply input a and it is not enabled, then it is pointless to try again a until an enabled transition
has been perfonned.

234

in this case a simple 2 state automaton. Obviously in this example, there is no reason
to wait until we reconstruct the full black box automaton before we check the property.
The sensible thing to do would be to check the assertion (i.e., try to see if 'Y is enabled
in the current state) as we go along during the test, and if it gets violated at some point,
then an error has been found and the check is complete.

In general, it would be obviously beneficial to use the property automaton on the
fly to detect errors as early as possible and prune the test. Notably, if the estimate non
the number of states is much higher than the actual number of different states, or if it
is accurate, but there is still a 'small' counterexample, i.e. there is a small set of states
that exhibits the faulty behavior, we would like to be able to find the error without
searching the whole space, if possible. This is not always as easy, especially in the
case of properties that depend on the infinite behavior of the system, that is, in cases
where the property automaton is a genuine Biichi automaton. We will investigate such
methods in the following sections.

4.2 AN ON-THE-FLY STRATEGY

We will present now a strategy that can terminate quickly when the actual size of the
automaton is much smaller than n, and an error is present (i.e., the intersection of B
and P is nonempty).

A NONDETERMINISTIC STRATEGY

As before, we start with a nondeterministic version, in order to demonstrate the prin­
ciple behind the on-the-fly black box checking.

According to the strategy, the 3-player guesses a path a of the automaton P, starting
from an initial state, that can be partitioned into two subpaths a 1 and a 2, Each of which
is of length smaller or equal to mn. Both subpaths end with the same accepting state
t of P. Furthermore, the blackbox automaton must allow executing the transitions of
a 1 a~+l after a reset.

Correctness: Consider the unknown end state of the intersection automaton for
each iteration of a 2 in the experiment a 1 a~+l. Then at least one component state
s of B must occur twice with the same accepting component state t of P (as there
are no more than n states in the intersection that have the same component t). Thus,
the path a must include a cycle through an accepting state, which guarantees that an
infinite accepting run exists in the intersection. Conversely, it is easy to see that if the
intersection of B and P is nonempty, such a guess exists.

Complexity: Nondeterministic time O(n2m).

A DETERMINISTIC STRATEGY

The strategy finds a path as in the nondeterministic case, but in a systematic way. Now,
a search for two paths of length bounded by mn is performed. The first path a1, when
input to the automaton P needs to terminate with an accepting state t. The second path
a 2 , when starting in state t of P, needs to terminate with taswell. For each such pair,
we apply the second path n more times. That is, we try to execute the path a 1 (a2t+1.

235

If we succeed, this means that there is a cycle in the intersection through a state with
a t (which is accepting) as the P component, since there are at most n ways to pair up
t with a state of B. In this case, there is an infinite accepting path in the intersection.

Complexity: Deterministic time O(n2 p2mn m). This is because there are p2mn
choices of such paths. Each is of length bounded by mn, and we repeat it n + 1 times.

The following comments should be noted:

• Unlike the off-line strategy, the complexity of this strategy depends on the num­
ber of states m of P. Typically however m is small, or even fixed, when talking
about a fixed property.

• For properties that can be specified by automata on finite strings (i.e., depend
essentially on finite computations), we need to search only for the first string a 1

and the complexity is O(npmn m).

• When searching for the strings a 1 , a 2 , we need only consider strings that can
be extended to accepting strings of the property automaton. Furthermore, we
can start by limiting the length of the subpaths that we explore and gradually
increase that length as we proceed in the search. In this way, if the actual size
of the the automaton B is much smaller than n, and an error occurs, it can be
found much earlier than in the exhaustive strategy, as required above.

4.3 A STRATEGY BASED ON LEARNING AND TESTING

We show now that the factor m in the exponent can actually be removed. We provide
below a strategy with complexity whose exponential term is O(pn). Furthermore, if
the black box has an error, the time complexity will be exponential only in the actual
size of the minimized version of the black box automaton.

In this algorithm, we will use an algorithm for conformance testing of a known
finite automaton with a black box automaton by Vasilevskii and Chow [4, 24]. We
will not repeat this algorithm here, but will use the result that its time complexity is
0(12 n pn-l+1), where n is the assumed size of the black box automaton, l ~ n is
the actual size, and p is the alphabet size. Intuitively, the algorithm has to check the
states and transition relation of the black box automaton, and that no error that follows
a 'combination lock' occurs from any one of its node.

Another procedure that we use in our strategy is an algorithm for learning au­
tomata with reset using membership tests and questions to an oracle (a teacher) by
Angluin [2]. In the learning algorithm, the teacher answers equivalence tests to a
proposed machine and provides a counterexample in case of inequivalence. We will
replace the teacher with experiments on the black box automaton. Starting from a triv­
ial automaton, Angluin's algorithm generates successively larger candidate automata
Mi. fori = 1, 2, ... (the number of states in each conjectured automaton is monoton­
ically increasing). It asks the teacher for equivalence. If equivalence does not hold, it
uses a counterexample provided by the teacher, queries some more strings, and then
generates the next conjectured automaton with more states, until it reaches the correct
number of states. At this point the conjectured automaton is the correct one.

We modify Angluin's algorithm as follows. Our modification can use two kinds of
counterexamples, provided by the teacher:

236

1. A simple counterexample of the form a E :E*, meaning that a belongs to one of
the checked automata, but not the other.

2. A pair of words a 1 , a 2 E :E* such that a 1 a2 belongs to one of the checked
automata, but not the other.

We construct a sequence of automata M 1 , M 2 , .•• that attempt to converge into

the black box automaton B. Membership queries are just experiments on the black

box B. For equivalence queries, suppose we have a conjectured automaton M; for the

black box. First, we check if M; generates a word accepted also by the specification

automaton P, namely if C(M;) n C(P) # 0. If the intersection is not empty, it must

contain an ultimately periodic word of the form a1 a~ [21]. We input reseta1a;+l to

the black box B. If this experiment succeeds, then there is an error as .C(B) n .C(P)
contains a 1 a~ and thus is not empty. If it fails, then this gives a counterexample for

the equivalence of B with M;. We use this in Angluin's algorithm to generate the next

candidate automaton with more states.
If M; does not generate any word accepted by P, we check whether M; conforms

with B. Let k be the number of states of M;. We start the conformance test between

M; and B assuming B has k states and apply the Vasilevskii-Chow algorithm. If the

conformance test fails, we use the counterexample in Angluin's learning algorithm to

generate Mi+1 . If the conformance test succeeds, we repeat it with k+l, k+2, ... , n.
If n is reached, we declare that the black box satisfies the checked property.

This strategy is described in Figure 2. The procedure call V C (M;, k) calls the

Vasilevskii and Chow algorithm for conformance testing M; with the black box au­

tomaton B, assuming that B has no more than k states. VC returns (true,-) if the

conformance test succeeds. If it fails, it returns (fail,a), where a is a word that is in

one of the automata B or M; but not the other. The procedures ANGLUIN accepts

the previous attempted automaton, and a counterexample, and returns a new attempted

automaton. In the first call to ANGL UIN in the strategy, it is executed with an empty

automaton, and the second parameter (the counterexample) is ignored.
Complexity: Suppose that the minimum equivalent automaton M; of the black box

has 1 states. If the black box has an error, then the strategy will produce the automaton

M; in time 0(13 p1), and declare the error. This is because some earlier conjectured

automaton may have an empty intersection with P, in which case the strategy will need

to do conformance testing until a string that distinguishes the conjectured automaton

from B is found.
If the black box satisfies the property, then the strategy will generate M; in time

0(13 p1), but then it will have to spend 0(13 pn-1+1) more time to verify that the black

box is indeed equivalent to M; (by conformance checking M; with B). It should be

noted that the complexity of doing the exhaustive check for trying to distinguish the

conjectured automaton from B is dominating over the complexity of the other tests

prescribed by the above strategy. Moreover, since O(pn + pn-1) = O(pn), we need

to consider only the last exhaustive check. Thus, we have the following theorem.

Theorem 3 Black box checking, for a black box automaton B with l states, where l
is unknown but is smaller than some bound n, and a property automaton P with m
states can be done in time

Mt: =ANGLUIN(empty, -);
i: =1 i

learn: X:=M; x P;
if .C(X) = 0 then

else

k:=number of states of M;
loop

(conforms, a) :=VC(M;,k);
k: =k + 1

until k > n or -.conforms;
if conforms then WIN(+);

let a1 , a2 be s. t. a1 a'{ E .C(X);
if B allows reseta1a2 then WIN (-)

237

else a:=prefix of a1 a2 not allowed by B;
Mi+t: =ANGLUIN(M;, a);
i: =i + 1 i
goto learn;

Figure 2: A strategy using learning

• O(l3 p1 + l2mn), when there is an error (i.e., the intersection of B and p is
nonempty), and

• O(l3 p1 + l 3 pn-l+l + l 2mn), when there is no error.

If we do not have a bound n on the number of states of the automaton B, we can
run the algorithm as long as time permits. Consider first a property characterized by
an automaton on finite strings (such as deadlock freedom and other safety properties).
If we ever encounter an error, i.e. find a string a accepted by both the black box and
the property automaton P, then it is a true error and we can stop the test. If there is
an error and B has size l (or the smallest counterexample has length l), we are sure to
find the error within time O(l3 p1 + l 2m). Conversely, if after the allocated time no
error has been found, then this means that either the black box is correct, or else the
smallest possible counterexample and the size of the black box must exceed a certain
bound, which depends on the time spent on the test.

Suppose that we have a genuine Biichi automaton that depends on infinite behav­
iors. Suppose that at some point the conjectured black box automaton M; has a
nonempty intersection with the property automaton P, and let a1a2 be a string in
the intersection. If the conjectured automaton M has l states at this point and P has
m states, then the strings a 1 , a2 have length at most lm. We can input reseta1 to the
black box followed by repeated applications of a2 until either the black box does not
accept it or we run out of time. In the first case, we have found at least one new state
and we continue the algorithm as before. In the second case, that is, if we run out of
time after executing r repetitions of a 2 , then we can conclude that either there is an
error, or the size of the implementation machine exceeds r.

238

Finally, if the conjectured automaton has an empty intersection with the property
automaton then we perform conformance testing for increasingly larger values of the
bound n on the black box. At the end we can place again a lower bound on the size of
the black box or conclude that it is otherwise correct.

Let us comment finally on the exponential lower bound derived from the combina­
tion lock automata. Obviously these are rather pathological, worst case examples. The
'average' automata are much better behaved and do not exhibit this nasty performance
bottleneck. This can be formalized by considering a probabilistic model for machines
with output. Formally, there has been extensive work studying the properties of ran­
dom machines [22]. The usual model of a random Mealy machine on l states is defined
as follows. For each state and input symbol choose the next state and output uniformly
at random. For the average machine, polynomial time will suffice to find an error. In
the following statement, 'almost all machines' means that the probability tends to 1 as
the size goes to infinity.

Theorem 4 For almost all black box machines with l states, if an error is present, it
will be found after a test of length O(lp log2 l + l2nm).

This can be shown using the following two nice properties of almost all random
machines: (1) if a state q can reach another state q1 then it .can reach it in O(logP l)
steps; (2) any two states can be distinguished by input strings of length logP log9 l
[22]. Of course, if there is no error and we want to make sure that we do not have
any other automaton at hand with at most n states, then we still would need to do the
conformance testing (at a cost exponential in the difference n -l) in order to be certain
of the correctness.

5 CONCLUSIONS
We defined the problem of black box checking, showed lower bounds and provided
three strategies for solving the problem. The lower bound in Theorem 2 implies that
the complexity of black box checking is exponential in the estimated size of the un­
known automaton. For comparison, checking the emptiness of the intersection of
the same automata (now both structures are given) is in NLOGSPACE-complete. In
conformance testing, one checks whether a given known automaton P of length l is
equivalent to a black box automaton B of length bounded by some n ~ l. Vasilevskii
and Chow [24, 4] showed a lower and upper bound of O(l2npn-l+l) for conformance
testing with reliable resets. When n = l, namely the actual size of the black box
automaton is known, this is a much more tractable complexity than that of black box
checking. Thus, if a model (abstract design) is available or feasible to construct, then
a good strategy for the developer of a system is to separately do a conformance test of
an abstract design against the system, and then model check the design with respect to
various properties. However, when a model is not available or n can be considerably
bigger than l this approach does not help.

It is quite clear that the off-line strategy is suboptimal as it does not take advantage
of the property at hand. On the other hand, the on-the-fly strategies, while still ex­
ponential, may work in practice in some important cases. One case is when an error

239

exists and the estimate n is much higher than the actual size of the checked system
or the size of a portion of the system that provides a counterexample. Another case is
when the specification automaton P limits the possible bad executions considerably.
An example for a "helpful" specification will be that P specifies sequences of the form
a* (!3 + ')'). An example of an "unhelpful specification" is X*a, where X allows any
letter of~ except a.

The last strategy, based on learning, uses the property P while trying to learn the
structure of B. Thus, an error may be found before completing the construction of
a minimized automaton equivalent to B. It is also possible that no explicit bound is
given on the size of the black box automaton. In this case, we can use the strategy as
long as we are willing to spend time.

There is a number of issues in black box checking that deserve further investigation.
Some open problems are finding strategies for partially specified automata, or known
automata where the actual implementation deviates from the known design in no more
thank changes ('implementation errors'). Another problem is to develop an algorithm
for black box checking when reliable reset moves are not available. It is possible that
similar techniques can be used by combining the learning algorithm of [19] with the
conformance testing algorithm of [25] for machines without reset.

References
[1] R. Alur, C. Courcoubetis, M. Yannakakis, Distinguishing tests for nondeter­

ministic and probablistic machines, Symposium on Theory of Computer Sci­
ence, 1995, ACM, 363-372.

[2] D. Angluin, Learning Regular Sets from Queries and Counterexamples, In­
formation and Computation, 75,87-106 (1978).

[3] J. R. Biichi, On a decision method in restricted second order arithmetic, Pro­
ceedings oflntemational Congress on Logic, Methodology and Philosophy of
Science, Palo Alto, CA, USA, 1960, 1-11.

[4] T. S. Chow, Testing software design modeled by finite-state machines, IEEE
transactions on software engineering, SE-4, 3, 1978, 178-187.

[5] E.M. Clarke, 0. Grumberg, D. Peled, Model Checking, MIT Press, to appear
1999.

[6] R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple on-the-fly automatic verifica­
tion of linear temporal logic, Protocol Specification Testing and Verification,
1995, Chapman & Hall, 3-18, Warsaw, Poland.

[7] P. Godefroid, Model checking for programming languages using VeriSoft,
Proc. 24th ACM Symp. on Progr. Lang. and Sys., 174-186, 1996.

[8] G. J. Holzmann, The model checker SPIN, IEEE transactions on Software
Engineering, 23(5):279-295.

240

[9] F. C. Rennie, Fault detecting experiments for sequential circuits, Proc. 5th
Ann. Symp. Switching Circuit Theory and Logical Design, 95-110, 1964.

[1 0] G. J. Holzmann, D. Peled, The State of Spin, 8th International Conference on
Computer Aided Verification, Springer Verlag, LNCS, 1102,385-389, 1996,
New Brunswick, NJ, USA.

[11] Z. Kohavi, Switching and Finite Automata Theory, 1978, McGraw Hill.

[12] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes : The
Automata-Theoretic Approach, Princeton University Press, 1995.

[13] D. Lee, M. Yannakakis, Principles and methods of testing finite state machines
-a survey, Proceedings of the IEEE, 84(8), 1090-1126, 1996.

[14] 0. Maler, A. Pnueli, On the learnability of infinitary regular sets, Information
and Computation 118 (1995), 316-326.

[15] E. F. Moore, Gedanken-experiments on sequential machines, Automata Stud­
ies, Princeton University Press, 1956, 129-153.

[16] G. J. Myers, The Art of Software Testing, Wiley International, 1979.

[17] A. Pnueli, The temporal logic of programs, 18th IEEE symposium on Foun­
dation of Computer Science, 1977, 46-57.

[18] J.H. Reif, The complexity of two-player games of incomplete information,
Journal of computer and system sciences, 29, 1984, 274-301.

[19] R. L. Rivest, R. E. Schapire, Inference of finite automata using homing se­
quences, Information and Computation 103,299-347, 1993.

[20] D. P. Sidhu, T. K. Leung, Formal methods for protocol testing: a detailed
study, IEEE Trans. Sw Eng., 15,413-426, 1989.

[21] W. Thomas, Automata on infinite objects, Handbook of Theoretical Computer
Science, MIT Press, J. van Leeuwen (Ed.), 135-192.

[22] B. A. Trakhtenbrot, Y. M. Barzdin, Finite Automata: Behavior and Synthesis,
North Holland, 1973.

[23] M. Y. Vardi, P. Wolper, An automata-theoretic approach to automatic pro­
gram verification, Proceedings of the First Symposium on Logic in Computer
Science, Cambridge, UK, 322-331.

[24] M.P. Vasilevskii, Failure diagnosis of automata, Kibertetika, no 4, 1973, 98-
108.

[25] M. Yannakakis, D. Lee, Testing finite state machines: fault detection, J. Com­
puter and Syst. Sci., 50, 209-227, 1995.

