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Abstract Two main approaches are used for increasing the quality of systems: in 
model checking, one checks properties of a known design of a system; in testing, 
one usually checks whether a given implementation, whose internal structure is 
often unknown, conforms with an abstract design. We are interested in the com­
bination of these techniques. Namely, we would like to be able to test whether 
an implementation with unknown structure satisfies some given properties. We 
propose and formalize this problem of black box checking and suggest several 
algorithms. Since the input to black box checking is not given initially, as is the 
case in the classical model of computation, but is learned through experiments, 
we propose a computational model based on games with incomplete informa­
tion. We use this model to analyze the complexity of the problem. We also 
address the more practical question of finding an approach that can detect errors 
in the implementation before completing an exhaustive search. 
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1 INTRODUCTION 

Model checking [5] and testing [16] are two complementary approaches for enhancing 
the reliability of systems. Model checking usually deals with checking whether the 
design of a finite state system satisfies some properties (e.g., mutual exclusion or re­
sponsiveness). On the other hand, testing is usually applied to the actual system, often 
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without having access to, or knowledge of its internal structure. It checks whether a 
system (or an implementation) conforms with some design (i.e., informally, has the 
same behaviors). Even if access to the internal structure of the tested system is pos­
sible, it is not always a good idea to use it when performing tests, as this may lead 
to a bias in the testing process. Furthermore, the whole system may be very large 
(e.g., millions of lines of code), while we are interested only in specific aspects of it; 
think for example of a typical telephony switch and suppose we want to check that the 
implementation of a particular feature, such as call waiting, meets certain correctness 
properties. Extracting the part of the code that is relevant from the whole system, es­
pecially in the case of large legacy systems, is most probably infeasible (and is itself 
subject to errors). Suppose one is interested in checking specific properties of some 
system such as a communication switch or protocol system. Model checking would 
be appropriate for checking properties of a model of the system, but not checking the 
system itself. On the other hand, testing methods can compare the system with some 
abstract design, but usually are not used for checking specific properties. 

One motivation for the current work is the case where acceptance tests need to 
be performed by a user who does not have access to the design, nor to the internal 
structure of the checked system. Our aim is thus to combine the two approaches, hence 
checking automatically properties of finite state systems whose structure is unknown. 
Of course, a completely hidden structure cannot be effectively checked. Thus, the 
following properties are assumed: 

• A bound rz on the number of states of the checked system is known. 

• The tester can always reset the system to its (unique) initial state. 

• The input alphabet I: of the checked system is known. 

• An experiment consists of repeatedly applying an input from L or a reset to the 
current state. An indication of whether the input was possible (enabled) from 
the current state is available. 

• If an input a: was possible from the current state, the system makes the move. 
Otherwise, it stays in the current state. No backtracking is available (but the 
tester can simulate backtracking by resetting and repeating the successful prefix 
of the experiment). 

• The checked system is deterministic in the sense that from each state it can move 
with any given input to at most one successor state. 

We do not assume that the size of the system is known precisely: n is only an upper 
bound. In particular, we would like to study the effect of the possibility that the bound 
on the number of states n may be much bigger than the actual number of states. This 
is the case when the number of states is only estimated. In practice, the system that 
is being checked may be large and have multiple functions, while the property may 
concern a specific aspect of the system. Although the system as a whole may be 
quite big, large parts of it may be irrelevant to the property, and the system may be 
equivalent to a much smaller finite state machine as far as checking the property is 
concerned. In this case, n should be taken to be an estimate on the logical complexity 
(the control structure) of the system with respect to the property at hand. Our methods 
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can be used also if no bound n is available, by running the algorithms to the extent 
that the available time and space resources allow; the guarantees in this case depend 
on the time spent. 

Following the automata-theoretic approach to model-checking [12, 23], the (nega­
tion of the) checked property is directly given as, or translated into, a finite automaton 
on infinite words, usually a Bilchi automaton [3]. Then, both the system and (the 
complement of) the checked property are represented using automata. An example of 
a system that is based on such principles is Spin [8, 1 0], where the specification is 
given by an automaton called a never claim that recognizes the bad (or disallowed) 
computations. In order to check whether the system under consideration satisfies the 
checked property, we intersect the automaton representing the system with the automa­
ton representing the disallowed computations. Any sequence in the intersection is a 
counterexample for the checked property, while the absence of any counterexample 
means that the property is satisfied. 

The problem we study here is a variant of the above model checking problem. We 
are given the automaton that represents the computations not allowed by the checked 
property. But the internal structure of the checked system is not revealed, and only 
some experiments, as described above, are allowed on it. Still, we want to check 
whether the system satisfies the given property. We call this problem black box check­
ing. To simplify the discussion, we will not deal here with machines with output. 
Their treatment and the results are similar to the ones presented here. We will present 
on-the-fly algorithms that are aimed at quickly detecting errors in a checked system. 

The choice of an appropriate computational model is central to the issue of black 
box checking. Unlike standard decision problems, the input is not given here at the 
beginning of the computation, but is learned through a sequence of experiments. We 
propose a computational model based on games with incomplete information, and use 
this model to analyze the complexity of the problem. 

Our methods combine techniques from model checking, conformance testing and 
learning theory. All three areas have been actively pursued for a number of years and 
there is an extensive body of literature. Model checking has been a vibrant area of 
research for more than 15 years with the development of the theory and a number of 
software tools. Most tools check properties of finite state models expressed in some 
formal notation. One tool that is directed at the checking of software systems without 
a model is VeriSoft [7]: it is aimed at checking state invariants (assertions) of commu­
nicating processes, using partial order reduction methods for space exploration. For a 
recent book on model checking see [5]. 

The study of testing black box automata was initiated in Moore's classical paper 
from 1956 [15], where he defined and studied several problems including the machine 
identification problem (infer the state transition diagram of an unknown black box au­
tomaton). He also posed the fault detection or conformance testing problem (checking 
that the black box conforms to a specified design automaton). This problem has been 
studied in the subsequent years by many researchers, obtaining good bounds on the 
lengths of the tests needed, as well as efficient algorithms that check for conformance 
for different types of automata (machines with a distinguishing sequence or with reset, 
or in general without) [4, 9, 24, 25]. In the last 15 years, there has been a lot of work 
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on conformance testing in the protocols community, with a large number of papers, 
many of them based on the black box automaton testing models and methods. Early 
surveys of the work in the 50's and 60's can be found in e.g., [II, 22], and surveys of 
the more recent results and related work on protocol testing can be found in [ 13, 20]. 
Finally, there is substantial work in the learning community on the problem of learning 
finite automata (i.e. machine identification) with the help of a teacher. Efficient algo­
rithms for learning different types of automata in this framework have been developed 
in [2. 14, 19]. 

2 PRELIMINARIES 

AUTOMATA THEORETIC MODEL-CHECKING 
A Btichi automaton is a quintuple (S, S0 , I:, c5, F), where S is a finite set of states, 
So ~ S are the initial states, I: is the finite alphabet, c5 ~ S x I: x S is the transition 
relation, and F ~ S are the accepting states. A run over a word a 1 a2 . . . E I:'"' 
is an infinite sequence of states s1s2 s3 •• . , with s 1 E S0 , such that for each i > 
0, (s;, a:;, si+1) E c5. A run is accepting if at least one accepting state occurs in 
it infinitely many times. A word is accepted by a Btichi automaton exactly when 
there exists a run accepting it. The language .C(A) of a Btichi automaton A is the 
set of words that it accepts. Two automata are equivalent when they accept the same 
language. 

An implementation automaton B = (S 8 ) Sf!' I:, 68 ) S 8 ) has several restrictions. 
We assume that the number of states IS8 1 is bounded by some value n, that Sfj is a 
singleton { t }, and that F 8 = S 8 , namely, all the states are accepting. 

We can view an implementation machine in our model as a Mealy machine: at each 
state v and for each input a, the machine outputs 0 if the transition is not enabled, and 
then remains in the same state, and I if it is enabled. Furthermore, we assume that the 
implementation automaton is deterministic, i.e., if (s, a, t) E c58 and (s, a, t') E c5 8 , 

then t = t'. 
For a specification automaton P = (SP, Sf, I:, c5P, FP), we will denote the num­

ber of states IS PI by m. Let the size of the alphabet I:, common to the implementation 
and the specification, be p. As we mentioned in the introduction, we can easily extend 
the framework of this paper, and the results to implementation machines with arbi­
trary output (i.e., Mealy machines), and specification machines that describe the legal 
input-output behaviors. 

The intersection (or product) B X pis (S 8 X sP, Sf! X sr:, I:, c5', S 8 X FP), 
where 

c5' = {((s, s'), a:, (t, t'))l(s, a:, t) E c5 8 1\ (s', a:, t') E c5P}. 

Thus, the intersection contains (initial) states that are pairs of (initial, respectively) 
states of the individual automata. The transition relation relates such pairs following 
the two transition relations. The accepting states are pairs whose second component 
is an accepting state of P. We have that .C(B x P) = .C(B) n .C(P). 

A reset is an additional symbol of S 8 , not included in I:, allowing a move from 
any state to the initial state. An experiment is a finite sequence a:1a:2 ... a:A,-I E 
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( :E U {reset})*. such that there exists a sequence of states s1 s2 ... s~r of S B, with 
s 1 E S!. and for each 1 ::; j < k, either 

1. a; =reset and sH1 = L (a reset move), or 

2. (s3, a1, si+l) E JB (an automaton move), or 

3. there is notE sB such that (s1, a1, t) E JB and s;+l = s; (a disabled move). 

GAMES OF INCOMPLETE INFORMATION 

The computation model for experiments on black box automata is not the standard 
one, in which the input is known from the beginning of the computation. Here, part of 
the input is hidden, and its structure is studied through experiments. 

The relevant computational model is related to games of incomplete information [ 1, 
18]. where an 3-player plays against a deterministic environment (representing a de­
generate version of a \;/-player). Each such game consists of a nondeterministic ma­
chine with finitely many configurations2 C. containing the following disjoint subsets: 
C; are the initial configurations, n:+ and w- are the positive and negative win­
ning configurations for the 3-player, respectively. Intuitively, since we want to check 
properties of systems, w+ corresponds to finding an error, and w- corresponds to 
concluding that there is no error. 

Let £3 and L'V be sets of labels for the 3-player and the environment, respectively. 
Then the sets of moves are M3 ~ C x £3 x C, and M'V E C 1--t L'V x C, respectively. 
The 3-player can have a choice of moves, thus J..f3 is a relation, connecting the current 
configuration with all possible pairs of move-labels and resulted successor configura­
tions. The moves of the environment M'V are deterministic, and thus are defined as a 
function from the current configuration into the unique transition label and successor 
configuration. No move can originate in a winning configuration. Moreover, any two 
different moves from the same configuration must have different labels. The two play­
ers make moves in alternation, starting with the 3-player, who makes the first move 
from an initial configuration. A play is a sequence from (CL 3 CL'V )*C, where each 
adjacent triple over C(£3 U L'V )C conforms with a move of one of the players. A play 
is winning if it ends with a winning configuration in HT+ U w-. There is no initial 
configurations starting both a play that ends with a configurations in w+ and a play 
that ends with a configurations in w- 0 

The incomplete information is stated by the partition of the configurations C into 
equivalence classes called information sets. The 3-player cannot distinguish between 
configurations c1 and c2 that are in the same information set, denoted c1 ~ c2 . There­
fore, the move function M3 must allow moves with the same labels for all the config­
urations that are in the same equivalence class. Furthermore, if CJ ~ C2 then CJ E w+ 
(ci E w-, respectively) if and only if c2 E TV+ (c2 E w-, respectively). 

A deterministic strategy for the 3-player is a function st3 : C x (L't U { ini t}) 1--t 

M3, such that 

2Since the games that will be described later involve choosing an automaton and performing experiments 

on it. we choose to distinguish between a configuration of a game and a state of an automaton. 
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Figure I: A combination lock automaton 

I. If the 3-player will keep playing st3 ( c, l) when it is his turn from configuration 
c and after the environment has played a move labeled with l, the sequence will 
end with a configuration in w+ u w-. 

2. If c ~ c', then the labels on st3 ( c, l) and st3 ( c', l) are the same. 

The additional value ini t is paired with initial configurations from C; (since there is 
no previous label for this configuration). A path played according to a strategy is an 
alternating sequence of configurations and labels, starting with an initial configuration. 
A winning path ends with a winning configuration. We will define the deterministic 
time complexity of a strategy as the length of the longest winning path in a strategy 
that ends with a configuration in w+ u w-. 

We also define a nondeterministic strategy nst3 : C x (Lv U { ini t}) f-t M3 for 
the 3-player. Let c E C; be an arbitrary configuration such that there exists a play 
from c that ends with a configuration in w+. Every play starting with c in which the 
3-player keeps playing his tum according to the nst3 strategy will end with a config­
uration in w+. The second constraint that was imposed on the deterministic strategy 
does not have a counterpart in the definition of the nondeterministic strategy. The in­
tuition is that in the nondeterministic case, an 3-player that is playing according to a 
nondeterministic strategy can make guesses that can distinguish between configura­
tions that are in the same information set. 

COMBINATION LOCK AUTOMATA 

The following set of automata [15, 24] plays a major role in proving lower bounds on 
experiments with black box automata. A combination lock automaton [15] is a finite 
automaton such that there exists some complete order of the states s1 , s2, ... sn with 
s1 the initial state, and where the state sn has no enabled transition. For each state 
s;, i < n, there is a transition labeled with some f3i E :E to Bi+I· For all other letters 
1 E :E \ {(3i}, there is a transition labeled with 1 from Si back to the initial state. It is 
called the combination automaton for (31 f32 .•. f3n-I· Figure I depicts a combination 
lock automaton for n = 5. 

A sequence leading to a state without a successor (or even to a state where not all 
the letters are enabled) in a combination automaton must have a suffix of length n - 1 
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that is (31(32 ... f3n_ 1. (This is a necessary, but not a sufficient condition. For example, 
the automaton in Figure 1 does not reach a deadlock state as a result of the sequence 
f31(32(31f32(33(34 when fJ1 -::/: (33, since the second fJ1 only causes it to return to its initial 
state.) Every path that does not contain the consecutive sequence (31(32 ... f3n- 1 is 
allowed (enabled) by the automaton. 

3 BLACK BOX DEADLOCK DETECTION 

In this section we describe a simpler problem related to black box checking. Given 
a deterministic finite state system B, with no more than n states, we want to check 
whether this machine deadlocks, namely reaches a state from which no input is possi­
ble. 

In this problem, part of the model is unknown and is learned via experiments, which 
motivates modeling the problem as a game with incomplete information. We will also 
demonstrate that the deterministic and nondeterministic complexity do not have the 
same connections as in the standard model of computation that is based on Turing 
Machines. 

For each implementation automaton with n or less states, there exists a single initial 
configuration. Each configuration in C in a play contains the same automaton as in the 
initial configuration, the current state of this automaton, as controlled by the moves of 
the 3-player, and some information about the sequence of moves played so far. The 
current state of the automaton in an initial configuration is its initial state. The moves 
Mv of the environment are labeled by success or fail. The label indicates whether 
the environment was successful or not in changing the state of the implementation 
automaton using the transition chosen according to the label of the last move of the 3-
player. The moves of the 3-player are the possible input symbols, or a reset followed 
by a symbol (A reset is always successful.) 

Projecting the labels of the moves of the 3-player from a play ~. we obtain an 
experiment over the implementation automaton in the initial configuration of~. If the 
configurations c1 and c2 are reachable using the prefixes of two plays 6 and 6 that 
correspond to the same experiment, then c1 ~ c2 . The winning set w+ contains only 
configurations that include an automaton that has a deadlock. Similarly, the winning 
set w- contains only configurations that include an automaton without a deadlock. 

A NONDETERMINISTIC STRATEGY 
The 3-player guesses in each move a label, forming a sequence of length smaller than 
n that brings the state of the selected machine from its initial state to some deadlock 
state. He then checks that this state has no enabled transitions. 

Complexity: Nondeterministic time 0( n + p). The only information that is needed 
to be kept in each configuration is a counter from 0 to n-1 and a counter on the number 
of labels checked from the final state. 
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A DETERMINISTIC STRATEGY 

The 3-player checks systematically the possible sequences, up to length n- 1, starting 
from the initial state. (Of course, there is no need to check sequences that include 
prefixes that have led to a failure.) 

Complexity: Deterministic time 0 (pn). 

Theorem 1 The deterministic time complexity for black box deadlock detection is 
n(pn-1 ). 

Proof. Suppose that the initial configuration includes an implementation automaton 
B with n states that allows any input from any state. Consider a play~. played using a 
deterministic strategy for the 3-player. Assume that~ has less than pn-1 moves of the 
3-player, and terminates with a winning configuration Cw in w-. Then at least one 
sequence /31 /32 ••• f3n- 1 does not appear consecutively in the experiment associated 
with ~· If instead of the above automaton B, the environment would have chosen a 
combination lock automaton for /31 /32 ... f3n- 1, the deterministic strategy would have 
resulted in a prefix of a play that has the same labels as ~. Now we would have reached 
a configuration c' such that Cw ~ c'. Further, Cw is associated with an automaton 
without deadlocks, while c' is associated with an automaton with deadlocks. This 
contradicts the assumption that Cw E w-. .. 

In the standard complexity model, it is not known whether one can obtain a poly­
nomial deterministic algorithm from a nondeterministic polynomial algorithm. Here, 
the (tight) lower deterministic bound is exponentially larger than the nondeterministic 
complexity. This justifies the use of games with incomplete information as an alterna­
tive for the common computational model of Turing machines.3 

4 CHECKING PROPERTIES OF BLACK BOX FI­
NITE STATE MACHINES 

We address now the problem of black box checking. Namely, given a specification 
Btichi automaton P with m states, and a black box implementation automaton B with 
no more than n states, over a mutual alphabet :E with p letters, we want to check if 
there is a sequence accepted by both P and B. The automaton P accepts the bad 
computations, i.e., those that are not allowed. Thus, if the property is given originally 
e.g., using a linear temporal logic (LTL) [17] property <p, then Pis the automaton cor­
responding to -.~.p. For an efficient translation from LTL to automata, see e.g., [6]. The 
following simple theorem demonstrates that the current problem is at least exponential 
in time in the size of the automaton B. 

Theorem 2 The deterministic time complexity of black box checking is n(pn-1 ). 

3 Another observation, connected with the space complexity of this model, which was not defined for­
mally in this paper, is that the common space efficient strategy of binary search cannot be used here. 
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Proof. Similar to the proof of Theorem I, we construct variants of a combination 
lock automata. The deadlock state is replaced now with a self loop labeled by 'Y· The 
symbol 'Y is disabled in the initial state. This removes at most half of the possible 
combinations (in the case where p = 2), so the complexity changes only by a constant 
factor. The property automaton P consists of two states: t0 which is an initial state, 
and t 1 which is an accepting state. There is a self loop from t0 to itself on each label 
from :E, and from t 1 to itself on 'Y· There is also an edge labeled by 'Y fr~m t0 to 
t 1• Thus, the intersection is nonempty exactly if a state can be reached in the black 
box automaton, where 'Yw can be executed. The only such state of a combination lock 
black box is the state at the end of the path prescribed by the combination. .1 

4.1 AN OFF-LINE STRATEGY 

A straightforward way to perform black box checking is to infer first the structure 
of the black box system, and then to apply model checking techniques to its newly 
revealed structure. The machine identification problem is a well studied problem. 
Typically, it is applied to automata that produce output, either at the states (Moore 
machines) or at the transitions (Mealy machines). As we mentioned, an implementa­
tion machine in our model can be viewed as a Mealy machine, where output 0 on a 
transition means that it is not enabled and output I means that it is enabled.4 

It is well known that if two machines with n states are not equivalent, then there 
is an input of length at most 2n - 1 that distinguishes them. This implies that any 
machine with at most n states is completely characterized by its output on all input 
strings of length 2n - 1. That is, a black box is uniquely determined by applying all 
such p2n-l input strings. A p-ary tree of depth 2n- 1 can be constructed from the 
responses of the black box, and it can be minimized to produce the minimal machine 
M consistent with these outputs [22]. Then we can use model checking to check 
whether M satisfies the given property P. The length of the test sequence (or in terms 
of games with incomplete information, the length of the corresponding play), which 
gives us the time complexity, is O(np2n-l ). If implemented in the straightforward 
way, the space complexity is also exponential (to record the tree all the input strings 
and their output), but the minimization can be done incrementally in polynomial space. 
The time for the model checking is comparatively small, O(pmn) where m is the size 
of the property automaton P (which is typically very small). 

The complexity of this method is not that far off the lower bound, and in the worst 
case one may indeed need to identify in effect the black box machine in order to check 
a property. However, intuitively it is clear that in many cases this method can be 
wasteful in that it does not take advantage of the property to avoid doing a complete 
identification. For example, suppose that the property is that some error indication 
label 'Y never occurs. The property automaton P, representing the bad computations is 

4By this convention, the output provides some partial infonnation also on the next state, namely if the 
output is 0 then we know that the state does not change. This is not important for what follows (i.e. all 
the methods apply to any Mealy machine) but it can be used to do obvious optimizations on the tests. For 
·example, if we apply input a and it is not enabled, then it is pointless to try again a until an enabled transition 
has been perfonned. 
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in this case a simple 2 state automaton. Obviously in this example, there is no reason 
to wait until we reconstruct the full black box automaton before we check the property. 
The sensible thing to do would be to check the assertion (i.e., try to see if 'Y is enabled 
in the current state) as we go along during the test, and if it gets violated at some point, 
then an error has been found and the check is complete. 

In general, it would be obviously beneficial to use the property automaton on the 
fly to detect errors as early as possible and prune the test. Notably, if the estimate non 
the number of states is much higher than the actual number of different states, or if it 
is accurate, but there is still a 'small' counterexample, i.e. there is a small set of states 
that exhibits the faulty behavior, we would like to be able to find the error without 
searching the whole space, if possible. This is not always as easy, especially in the 
case of properties that depend on the infinite behavior of the system, that is, in cases 
where the property automaton is a genuine Biichi automaton. We will investigate such 
methods in the following sections. 

4.2 AN ON-THE-FLY STRATEGY 

We will present now a strategy that can terminate quickly when the actual size of the 
automaton is much smaller than n, and an error is present (i.e., the intersection of B 
and P is nonempty). 

A NONDETERMINISTIC STRATEGY 

As before, we start with a nondeterministic version, in order to demonstrate the prin­
ciple behind the on-the-fly black box checking. 

According to the strategy, the 3-player guesses a path a of the automaton P, starting 
from an initial state, that can be partitioned into two subpaths a 1 and a 2, Each of which 
is of length smaller or equal to mn. Both subpaths end with the same accepting state 
t of P. Furthermore, the blackbox automaton must allow executing the transitions of 
a 1 a~+l after a reset. 

Correctness: Consider the unknown end state of the intersection automaton for 
each iteration of a 2 in the experiment a 1 a~+l. Then at least one component state 
s of B must occur twice with the same accepting component state t of P (as there 
are no more than n states in the intersection that have the same component t). Thus, 
the path a must include a cycle through an accepting state, which guarantees that an 
infinite accepting run exists in the intersection. Conversely, it is easy to see that if the 
intersection of B and P is nonempty, such a guess exists. 

Complexity: Nondeterministic time O(n2m). 

A DETERMINISTIC STRATEGY 

The strategy finds a path as in the nondeterministic case, but in a systematic way. Now, 
a search for two paths of length bounded by mn is performed. The first path a1, when 
input to the automaton P needs to terminate with an accepting state t. The second path 
a 2 , when starting in state t of P, needs to terminate with taswell. For each such pair, 
we apply the second path n more times. That is, we try to execute the path a 1 (a2t+1. 
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If we succeed, this means that there is a cycle in the intersection through a state with 
a t (which is accepting) as the P component, since there are at most n ways to pair up 
t with a state of B. In this case, there is an infinite accepting path in the intersection. 

Complexity: Deterministic time O(n2 p2mn m). This is because there are p2mn 
choices of such paths. Each is of length bounded by mn, and we repeat it n + 1 times. 

The following comments should be noted: 

• Unlike the off-line strategy, the complexity of this strategy depends on the num­
ber of states m of P. Typically however m is small, or even fixed, when talking 
about a fixed property. 

• For properties that can be specified by automata on finite strings (i.e., depend 
essentially on finite computations), we need to search only for the first string a 1 

and the complexity is O(npmn m). 

• When searching for the strings a 1 , a 2 , we need only consider strings that can 
be extended to accepting strings of the property automaton. Furthermore, we 
can start by limiting the length of the subpaths that we explore and gradually 
increase that length as we proceed in the search. In this way, if the actual size 
of the the automaton B is much smaller than n, and an error occurs, it can be 
found much earlier than in the exhaustive strategy, as required above. 

4.3 A STRATEGY BASED ON LEARNING AND TESTING 

We show now that the factor m in the exponent can actually be removed. We provide 
below a strategy with complexity whose exponential term is O(pn). Furthermore, if 
the black box has an error, the time complexity will be exponential only in the actual 
size of the minimized version of the black box automaton. 

In this algorithm, we will use an algorithm for conformance testing of a known 
finite automaton with a black box automaton by Vasilevskii and Chow [4, 24]. We 
will not repeat this algorithm here, but will use the result that its time complexity is 
0(12 n pn-l+1 ), where n is the assumed size of the black box automaton, l ~ n is 
the actual size, and p is the alphabet size. Intuitively, the algorithm has to check the 
states and transition relation of the black box automaton, and that no error that follows 
a 'combination lock' occurs from any one of its node. 

Another procedure that we use in our strategy is an algorithm for learning au­
tomata with reset using membership tests and questions to an oracle (a teacher) by 
Angluin [2]. In the learning algorithm, the teacher answers equivalence tests to a 
proposed machine and provides a counterexample in case of inequivalence. We will 
replace the teacher with experiments on the black box automaton. Starting from a triv­
ial automaton, Angluin's algorithm generates successively larger candidate automata 
Mi. fori = 1, 2, ... (the number of states in each conjectured automaton is monoton­
ically increasing). It asks the teacher for equivalence. If equivalence does not hold, it 
uses a counterexample provided by the teacher, queries some more strings, and then 
generates the next conjectured automaton with more states, until it reaches the correct 
number of states. At this point the conjectured automaton is the correct one. 

We modify Angluin's algorithm as follows. Our modification can use two kinds of 
counterexamples, provided by the teacher: 
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1. A simple counterexample of the form a E :E*, meaning that a belongs to one of 
the checked automata, but not the other. 

2. A pair of words a 1 , a 2 E :E* such that a 1 a2 belongs to one of the checked 
automata, but not the other. 

We construct a sequence of automata M 1 , M 2 , .•• that attempt to converge into 

the black box automaton B. Membership queries are just experiments on the black 

box B. For equivalence queries, suppose we have a conjectured automaton M; for the 

black box. First, we check if M; generates a word accepted also by the specification 

automaton P, namely if C(M;) n C(P) # 0. If the intersection is not empty, it must 

contain an ultimately periodic word of the form a1 a~ [21]. We input reseta1a;+l to 

the black box B. If this experiment succeeds, then there is an error as .C(B) n .C(P) 
contains a 1 a~ and thus is not empty. If it fails, then this gives a counterexample for 

the equivalence of B with M;. We use this in Angluin's algorithm to generate the next 

candidate automaton with more states. 
If M; does not generate any word accepted by P, we check whether M; conforms 

with B. Let k be the number of states of M;. We start the conformance test between 

M; and B assuming B has k states and apply the Vasilevskii-Chow algorithm. If the 

conformance test fails, we use the counterexample in Angluin's learning algorithm to 

generate Mi+1 . If the conformance test succeeds, we repeat it with k+l, k+2, ... , n. 
If n is reached, we declare that the black box satisfies the checked property. 

This strategy is described in Figure 2. The procedure call V C ( M;, k) calls the 

Vasilevskii and Chow algorithm for conformance testing M; with the black box au­

tomaton B, assuming that B has no more than k states. VC returns (true,-) if the 

conformance test succeeds. If it fails, it returns (fail,a), where a is a word that is in 

one of the automata B or M; but not the other. The procedures ANGLUIN accepts 

the previous attempted automaton, and a counterexample, and returns a new attempted 

automaton. In the first call to ANGL UIN in the strategy, it is executed with an empty 

automaton, and the second parameter (the counterexample) is ignored. 
Complexity: Suppose that the minimum equivalent automaton M; of the black box 

has 1 states. If the black box has an error, then the strategy will produce the automaton 

M; in time 0(13 p1), and declare the error. This is because some earlier conjectured 

automaton may have an empty intersection with P, in which case the strategy will need 

to do conformance testing until a string that distinguishes the conjectured automaton 

from B is found. 
If the black box satisfies the property, then the strategy will generate M; in time 

0(13 p1), but then it will have to spend 0(13 pn-1+1 ) more time to verify that the black 

box is indeed equivalent to M; (by conformance checking M; with B). It should be 

noted that the complexity of doing the exhaustive check for trying to distinguish the 

conjectured automaton from B is dominating over the complexity of the other tests 

prescribed by the above strategy. Moreover, since O(pn + pn-1 ) = O(pn), we need 

to consider only the last exhaustive check. Thus, we have the following theorem. 

Theorem 3 Black box checking, for a black box automaton B with l states, where l 
is unknown but is smaller than some bound n, and a property automaton P with m 
states can be done in time 



Mt: =ANGLUIN(empty, -); 
i: =1 i 

learn: X:=M; x P; 
if .C(X) = 0 then 

else 

k:=number of states of M; 
loop 

(conforms, a) :=VC(M;,k); 
k: =k + 1 

until k > n or -.conforms; 
if conforms then WIN(+); 

let a1 , a2 be s. t. a1 a'{ E .C(X); 
if B allows reseta1a2 then WIN (-) 
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else a:=prefix of a1 a2 not allowed by B; 
Mi+t: =ANGLUIN(M;, a); 
i: =i + 1 i 
goto learn; 

Figure 2: A strategy using learning 

• O(l3 p1 + l2mn), when there is an error (i.e., the intersection of B and p is 
nonempty ), and 

• O(l3 p1 + l 3 pn-l+l + l 2mn), when there is no error. 

If we do not have a bound n on the number of states of the automaton B, we can 
run the algorithm as long as time permits. Consider first a property characterized by 
an automaton on finite strings (such as deadlock freedom and other safety properties). 
If we ever encounter an error, i.e. find a string a accepted by both the black box and 
the property automaton P, then it is a true error and we can stop the test. If there is 
an error and B has size l (or the smallest counterexample has length l), we are sure to 
find the error within time O(l3 p1 + l 2m). Conversely, if after the allocated time no 
error has been found, then this means that either the black box is correct, or else the 
smallest possible counterexample and the size of the black box must exceed a certain 
bound, which depends on the time spent on the test. 

Suppose that we have a genuine Biichi automaton that depends on infinite behav­
iors. Suppose that at some point the conjectured black box automaton M; has a 
nonempty intersection with the property automaton P, and let a1a2 be a string in 
the intersection. If the conjectured automaton M has l states at this point and P has 
m states, then the strings a 1 , a2 have length at most lm. We can input reseta1 to the 
black box followed by repeated applications of a2 until either the black box does not 
accept it or we run out of time. In the first case, we have found at least one new state 
and we continue the algorithm as before. In the second case, that is, if we run out of 
time after executing r repetitions of a 2 , then we can conclude that either there is an 
error, or the size of the implementation machine exceeds r. 
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Finally, if the conjectured automaton has an empty intersection with the property 
automaton then we perform conformance testing for increasingly larger values of the 
bound n on the black box. At the end we can place again a lower bound on the size of 
the black box or conclude that it is otherwise correct. 

Let us comment finally on the exponential lower bound derived from the combina­
tion lock automata. Obviously these are rather pathological, worst case examples. The 
'average' automata are much better behaved and do not exhibit this nasty performance 
bottleneck. This can be formalized by considering a probabilistic model for machines 
with output. Formally, there has been extensive work studying the properties of ran­
dom machines [22]. The usual model of a random Mealy machine on l states is defined 
as follows. For each state and input symbol choose the next state and output uniformly 
at random. For the average machine, polynomial time will suffice to find an error. In 
the following statement, 'almost all machines' means that the probability tends to 1 as 
the size goes to infinity. 

Theorem 4 For almost all black box machines with l states, if an error is present, it 
will be found after a test of length O(lp log2 l + l2nm). 

This can be shown using the following two nice properties of almost all random 
machines: (1) if a state q can reach another state q1 then it .can reach it in O(logP l) 
steps; (2) any two states can be distinguished by input strings of length logP log9 l 
[22]. Of course, if there is no error and we want to make sure that we do not have 
any other automaton at hand with at most n states, then we still would need to do the 
conformance testing (at a cost exponential in the difference n -l) in order to be certain 
of the correctness. 

5 CONCLUSIONS 
We defined the problem of black box checking, showed lower bounds and provided 
three strategies for solving the problem. The lower bound in Theorem 2 implies that 
the complexity of black box checking is exponential in the estimated size of the un­
known automaton. For comparison, checking the emptiness of the intersection of 
the same automata (now both structures are given) is in NLOGSPACE-complete. In 
conformance testing, one checks whether a given known automaton P of length l is 
equivalent to a black box automaton B of length bounded by some n ~ l. Vasilevskii 
and Chow [24, 4] showed a lower and upper bound of O(l2npn-l+l) for conformance 
testing with reliable resets. When n = l, namely the actual size of the black box 
automaton is known, this is a much more tractable complexity than that of black box 
checking. Thus, if a model (abstract design) is available or feasible to construct, then 
a good strategy for the developer of a system is to separately do a conformance test of 
an abstract design against the system, and then model check the design with respect to 
various properties. However, when a model is not available or n can be considerably 
bigger than l this approach does not help. 

It is quite clear that the off-line strategy is suboptimal as it does not take advantage 
of the property at hand. On the other hand, the on-the-fly strategies, while still ex­
ponential, may work in practice in some important cases. One case is when an error 
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exists and the estimate n is much higher than the actual size of the checked system 
or the size of a portion of the system that provides a counterexample. Another case is 
when the specification automaton P limits the possible bad executions considerably. 
An example for a "helpful" specification will be that P specifies sequences of the form 
a* (!3 + ')'). An example of an "unhelpful specification" is X*a, where X allows any 
letter of~ except a. 

The last strategy, based on learning, uses the property P while trying to learn the 
structure of B. Thus, an error may be found before completing the construction of 
a minimized automaton equivalent to B. It is also possible that no explicit bound is 
given on the size of the black box automaton. In this case, we can use the strategy as 
long as we are willing to spend time. 

There is a number of issues in black box checking that deserve further investigation. 
Some open problems are finding strategies for partially specified automata, or known 
automata where the actual implementation deviates from the known design in no more 
thank changes ('implementation errors'). Another problem is to develop an algorithm 
for black box checking when reliable reset moves are not available. It is possible that 
similar techniques can be used by combining the learning algorithm of [ 19] with the 
conformance testing algorithm of [25] for machines without reset. 
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