
FORMAL DESIGN OF EFFICIENT
AUTHENTICATION AND KEY AGREEMENT
PROTOCOLS

Gunnar Jacobson
Siemens AG Corporate Technology, D-81730 Munich, GERMANY
gunnar.jacobson@mchp.siemens.de

Abstract We present a new method for the formal requirements specification and the
design of Authentication and Key-Agreement protocols. The method "SDL
combined with inverse BAN logic", SDUiBAN is based on the inverse
application of the BAN logic of Burrows, Abadi and Needham and the
integration with the Specification and Description Language SDL. The
exemplary formal design of Kerberos demonstrates the applicability and
reliability of the method. We cJassify cryptosystems and protocol runs and
provide a generic design approach, which is on an idealised layer independent
from the cryptosystem to be used. We show, how concrete specifications of
new protocols may be derived and propose the integration of our method with
existing specification methods and software development tools.

1. BACKGROUND AND MOTIVATION

Communication over public networks must be protected by providing the
required security services like authentication, confidentiality and non­
repudiation. Such security services are implemented by integrating
cryptographic mechanisms into the communication protocols. For an
authenticated communication, a protocol entity has to prove its identity to its
partners. In a mutually authenticated session, all parties are convinced of the
partner's identity and the integrity and timeliness of exchanged messages.
For a confidential communication, unauthorised read access to the protocol
messages must be prevented by encrypting them, so encryption and

B. Preneel (ed.), Secure Information Networks
© Springer Science+Business Media Dordrecht 1999

97

decryption keys have to be agreed upon. For a non-repudiable
communication, the origin and destination of the protocol messages must be
provable, so signature and validation keys have to be agreed upon. The
problem of entity authentication and key agreement grows with the square of
the number of involved entities, so efficient and reliable mechanisms are
required for this purpose.

Diffie and Hellman introduced the concept of public key cryptography
for solving the key distribution problem in large, public networks in 1976
[7]. Needham and Schroeder made proposals for authentication and key
agreement (AKA) protocols using conventional, shared key and public key
cryptography with the help of a trusted third party [16]. These and further
publications of AKA protocols were the subject of informal analysis and
discussions and many protocols have shown to be flawed. The detection of
flaws often takes place years or even decades after the initial protocol
publication. Denning and Sacco showed a weakness in the Needham­
Schroeder shared key protoco1 in 1981 and Lowe did this for the public key
protocol in 1996 [6][13].

Flaws in AKA protocols bury a high risk, because it is mostly much
easier for an attacker to break the protocol, than to break a cryptographic
algorithm. In order to analyse AKA protocol specifications in an efficient
and reliable manner, formal analysis methods were deve10ped
[14][11][9][3]. A well-known approach is the so called BAN logic of
Burrows, Abadi and Needham [4]. Work on AKA protocol design is even
now mostly limited to the definition of informal design principles, which can
not be considered as an adequate mechanism for the design of re1iable,
efficient AKA protoco1s [1][2]. Meadows demands formal design methods
for this purpose [15]. Buttyan et al. present a formallogical design method
for AKA protocols, which uses channe1s, that are a generalisation of
communication links [5]. In the following, we present a new method for the
formal requirements specification and design of AKA protocols and show
how it fits into a layered development process for AKA protocols.

2. A LAYERED DEVELOPMENT APPROACH

We divide a development process into four phases and corresponding layers.
Each layer uses the results of the above 1ayer as the starting point:
1) Requirements Specification
2) Design
3) Specification

98

4) Implementation

1) The development process begins with the specification of requirements
for the AKA protocol. They are basically derived from the security
requirements of the communication service to be protected, the chosen
trust-model and assumptions made on the infrastructure. The
requirements are described using the formallanguage of layer 2).

2) The main purpose of this layer is the design of a reliable and secure
protocol from a logical point of view. The required messages, their
ordering and their security mechanisms are derived from the
requirements specification and represented in a new form, which may be
easily transformed into the layer 3) representation.

3) The specification layer delivers an abstract specification of the protocol,
from which interoperable implementations may be derived. We propose
the use of combined SDLlASN.1 specifications in this layer [10]. With
this method, data structures and protocol behaviour can be represented in
a specification diagram. The transformation to layer 4) can be done
automatically using existing tools.

4) The lowest layer, the implementation layer, may consist of source-code
modules, libraries, compilers and debuggers for a high-level language
like "C". The result of this layer is executable object code of the AKA
protocol for a specific computer and operating system.

Our new method for the implementation ofthe layers I) and 2) is introduced
in the following. For layers 3) and 4), the reader is encouraged to consult the
existing literature.

3. A FORMAL DESIGN METHOD

The original purpose of the BAN logic is the analysis of formal AKA
protocol descriptions which were derived from an informal protocol
description through an idealisation process. The analysis starts with the
initial assumptions of the protocol. Logical formulas, assertions about the
state of the system, before and after each protocol step are derived by
applying the inference rules of the logic. The assertions after the last
protocol step contain the conclusions of the protocol - formulas representing
the belief in keys or secrets.

The basic approach of our new design method is the inversion of the
original BAN analysis process. The starting point for the protocol design
process is the definition of the final conclusions Z and initial assumptions Y
from the requirements specification which are described using the BAN

99

syntax (see App. A). We start at the end of the protocol with the ftnal
conc1usions and apply the inverted rules of the logic backwards in an
iterative process until we reach the initial assumptions. In this way, we get
the required logical send statements, representing the messages of the
idealised protocol. The design may be divided into two sub-Iayers. The
logical layer on top deftnes the process of exchanging formulas about the
entity's state of belief. The idealised layer below deftnes security
mechanisms for the protection of the exchanged formulas. We call this
approach the "inverse BAN logic", iBAN.

The BAN logic does not consider time in a protocol run, it makes only a
distinction between past and present. Moreover, the direction of transmitted
messages may not be expressed using BAN. In order to enhance these
features, we propose the integration of BAN with SDL, see ftg. 1. The SDL
dia gram represents the timely behaviour and message flow of the protocol.
The SDL symbols contain BAN expressions. The SDL "send" and "receive"
symbols represent the protocol messages in a new form, corresponding to the
"says" and "see" expressions of the original BAN syntax. SDL decision
symbols contain sending and receiving conditions for messages. The initial
assumptions and fmal conc1usions are contained in assignment blocks.

Process-Name

Stan-Marker

AssiJUlment Block

Initial Assumptions

Sendin$! Conditions

~ Stoll Symbol

Stole Svmbol

Outllut/Send Symbol

MessQJ!e

InllutlReceive Symbol

Receivin$! Conditions

Decision Svmbol

Final Conclusions

Figure 1: Elements of SDL/iBAN

Fig. 1 contains exemplary expressions of the logical layer. P and Q are
variables on users. We insert initial and ftnal states in the diagram for each
process and assign the initial assumptions Y and fmal conc1usions Z from

100

the requirements specification. A final state rnay only be entered, if all final
conc1usions hold after receiving the last message. For this, we insert an SDL
decision symbol containing Z, e.g. Q t= p t= X, as receiving conditions Rj.
We postulate, that an expression of the form Q t= p t= X, which is not an
initial assumption, must be preceded by Q's receipt ofthe expression P t= x.
As no further processes are defined in this example, P must have sent this
expression to Q with message Mj. Before a process P rnay send statements
about its current belief, these expressions must hold. For this, we insert a
decision symbol with the corresponding sending condition Sj. From the
sending conditions, we derive the required receiving conditions Rj-l of
Message Mj-l and proceed with the iteration until we reach sending
conditions SI that are accomplished by the initial assurnptions.

Now, we transform the protocol into the idealised layer. We postulate,
that private and secret keys may not be revealed to unauthorised users, i.e.
R <l P~ or R<l PAQ is not allowed if R:;tQ;tP and R is not a trusted party.
An appropriate basic cryptosystem or a combination of them has to be
chosen which provides the required security properties, see Appendix F.
Then the corresponding BAN rules have to be applied. Fig. 2 shows an
example of the idealised layer. Q's initial assumptions Y on the secret key
and nonce used are shown in the block after the process start marker. Based
on the receiving conditions and the initial assurnptions, we derive
expressions of the form P<l X using the inverted message meaning rules.
Then we replace the logical expressions in the diagram with the derived
expressions in idealised form.

Figure 2: SDL/,.BAN - Idealised layer

101

We caH this method "SDL combined with inverse BAN logic",
SDLlzBAN. The representation of the design results may facilitate the
transformation into the standardised SDLlASN.l specification form of layer
3) [10]. In Appendix B we show how the idealised messages in SDLlzBAN
are mapped to a conventional notation which is commonly used in the
specification literature. By this, we are able to make our results comparable
with existing publications. By providing strict rules for this transformation
process, we aim at minimising the risk of inserting flaws at this step. The
informal idealisation process of the original BAN logic, however, may lead
to misinterpretations. Lowe discovered a flaw in the public key protocol in
[16], which was not detected by BAN, because the protocol idealisation
masked the problem [4][13].

4. APPLYING THE METHOD

The applicability of the method is demonstrated now, by deriving a
popular and weH understood AKA protocol, Kerberos [12]. In the
requirements specification, we demand second level beliefs in a symmetric
Session key AAB for both parties A and B as fmal condusions of the
protocol. A is the initiator and B is the responder in the protocol. The initial
assumptions express the party's trust in keys shared with an authentication
server S. The timeliness of protocol messages is guaranteed by using
timestamps of synchronised docks. We define the corresponding belief
statements using BAN and insert them into the SDLlzBAN diagram in
Appendix C. In the following, we show how to derive messages Mj,
receiving conditions Rj and sending conditions Sj by applying the BAN rules
inversely, according to chapter 3. The results are shown in App. C.

The iterative design process starts on the logical layer with the last
message Mn, which is derived from the 2nd level belief of one party. The
number of messages in the protocol is unknown at this step, later on we set
n=3. We are free to either select A or B as the receiver of message Mn, and
choose N. The 2nd level belief of A is expressed as:

Za2) A 1= B 1= AAB
According to chapter 3, the receiving condition is set to Rn=Za2 and we

get the expression B 1= AAB which is sent from B to A. B may send this last
message only, if the expression holds at this step, so one sending condition
Sn (=S31, see App. C) is B 1= AAB. Furthermore, all the required final

1 We will show the result for the inverse case further below.

102

conc1usions Zb of B must hold at this step, so we add them as sending
conditions (S32). From the sending conditions, the required receiving
conditions for further messages are derived. R21 is derived from S31 using
the initial assumption Yb2) (A F S => AAB) and the jurisdiction rule. S32
can not be inferred further, so we set R22=S32. From R21 and R22, we
conc1ude, that B must have received the expressions S F AAB and
A F AAB before. We are free to decide, how these expressions are
transferred to B, either separately or in a combined message. In Kerberos,
the second option is chosen for message M2 from A to B. Before sending
M2, A F AAB must hold and A must possess the expression S F AAB, so
we get S2, and S22. Accordingly, we get RI, and, by applying the possession
rule from [8], we get Rb (A <l S F AAB). From this, we infer MI
(S F AAB for A, S F AAB for B) from S to A and S 1, (S F AAB). At this
point we have reached asending condition, which is an initial assumption so
our process of backwards inference is complete. The protocol could start
with MI, but according to the requirements specification A should be the
initiator. So, an initialisation message Ma is added.

Now, we have all protocol elements on a logical layer and the required
security mechanisms for all messages Mi may be derived on the idealised
layer of the design process. We show as an example how to infer Mn from
Rn. The only rule, which helps us to solve this expression with iBAN is the
nonce-verification rule, see App. A. We apply this rule inversely and get

1) A t= #(AAB), A t= B r (AAB).

From the second part we derive an expression of the form A <l X,
meaning "A sees X", using the appropriate message meaning rule for shared
keys. The expression A t= #(AAB) from 1) is not an initial assumption. So
we have to extend Za2 using the inverted rules for sets of statements and get

2) A t= B t= #(X, AAB).

Xis a variable. We apply the nonce-verification rule inversely and get

3) A t= #(X, AAB), A t= B r (X, AAB).

Using the freshness rule and comparing X with the initial assumptions, we
get

4) A t= #(Ta, AAB), A t= B r (Ta, AAB).

The first part of 4) is accomplished using the initial assumptions. The second
part is derived to

5) A t= AAB, A <l {Ta, AAB }K,.b'

The first part of 5) is equal to S21 and will be solved in further steps. The
second part represents the idealised last message of Kerberos from B to A.

103

We insert it in the SDLliBAN diagram of the idealised layer in Appendix C.
We proceed with the derivation of all messages Mi and conditions Si, Ri from
the logicallayer and add them to the diagram. The expression in Ra means,
that S sees arequest for a new session key which is to be shared between A
and B. According to our mapping rules for secret cryptosystems from
Appendix B, we transfer the expressions into the conventional representation
of the specification layer:
M3: { Ta, B }K"b M2: { Ts, A, Kab }Ka.' { Ta, A }Kab

MI: { Ts, B, Kab }Kas, {Ts, A, Kab}Ka. Ma: A, B

The result corresponds with the ticket granting protocol of Kerberos
version V. The redundant double encryption of the server ticket, like in the
repeatedly criticised Kerberos version IV, is avoided when using our
method. M3 differs slightly from the original specification, where B's name
is omitted. Ticket lifetimes in the original are an implementation aspect, and
could be added to the mapping rules.

5. GENERIC DESIGN

In the following, we present a universal, generic design model for
efficient AKA protocols and show how to infer generic design schemes
using the basic method SDL/iBAN. Such a generic design scheme is
independent from the concrete cryptosystems and freshness mechanisms to
be used in a protocol. Different concrete protocol design results may be
easily derived from the generic scheme. The basic idea comes from the
observation, that today' s cryptographic systems can be c1assified into a
generic model. The model considers the function of a key in a protocol,
which can be the provision of confidentiality by encryption and decryption,
or authenticity by signing and proving, see also App. F.

In the most general case, which we consider here, we have one key for
each operation at each of the communication partners. We call such a
cryptosystem, according to the number of keys, CS-8. In fact, CS-8 may be
implemented by a combination of available cryptosystems. For example, the
EI-Gamal public key encryption algorithm, providing solely confidentiality
with Q's public encryption key ~Q and P's private decryption key P~,
may be combined with NIST's Digital Signature Algorithm using P's private
signature key P~ and the public proving key ~Q for Q's signature. By
inheriting the features of encryption and signature proving keys from CS-8
we get one private key per user, P~. The same is done for decryption and
signature keys, where we get one user's public key, ~P. We call this type

104

CS-4. RSA eould be an example implementation of CS-4 [18]. CS-8 and
CS-4 are both types of publie key eryptosystems. We proeeed and inherit the
features of the user's private key and his partner's publie key and get an
asymmetrie key pair, P,.K.(Q) and Q~(P), for a pair of users. Eaeh user has
to keep his key of CS-2 private. All eryptographie operations in aseeure
eommunication with a partner are done with sueh a multi-purpose key. The
PohligIHellman algorithm is an example implementation of CS-2 [17]. All of
the above eryptosystems support non-repudiation with the help of a trusted
third party, whieh either eertifies a user's publie key of CS-8 or CS-4 or
generates and distributes keys of CS-2 and is therefore able to prove the
origin of a message definitely. We get this feature by using asymmetrie
algorithms. Asymmetrie algorithms are known to be relatively slow and
therefore not well suited for data eneryption. Eneryption is mainly done with
symmetrie eryptosystems of type CS-l, where eaeh user pair has a eommon
seeret key PA.Q (=QA.P), e.g. the DES algorithm. CS-l is derived from CS-
2 by inheriting the features of both user's private keys. All eryptographie
operations in abilateral eommunication are done with the same key, henee
the proof of a message's origin eannot be definite.

Crypto Keys used by P Keys used by Q
system encrypt prove decrypt sign encrypt prove decrypt sign

CS-8 ~Q ~Q p~ p~ ~p ~p Q$ Q~
CS-4 ~Q p~ ~p Q~

CS-2 P~(Q) Q~P)
CS-l PÄQ

Table 1: Generic classes of keys

The exeeution efforts of an AKA protoeol depend mainlyon the number
of protoeol steps, the efforts for eryptographic operations and the amount of
exchanged data elements. We call an AKA protocol "efficient", if these
efforts are low for a given combination of requirements for initial
assumptions and fmal eonc1usions. In order to determine a minimum number
of protocol steps, we analyse the exchange of logical statements: Using
communicating sequential processes for protocol design, the evolution of
logical beliefs must also be sequential. This means, that a 2nd level belief in a
formula must be preceded by the corresponding 1 sI level belief. Fig. 3 shows
the possible evolution in the case of 2nd level beliefs for both parties. The
symbol "q" indicates the point oftime of a message transmission. There are
always two mirrored variants of a protocol, depending on who, either the
initiator (P=A) or the responder (P=B), reaches the final conc1usions at last.

105

PI=QI=Xqp

Figure 3: Logical belief evolution

We distinguish between two phases of an AKA protocol. During the
agreement phase, keys or secrets are exchanged using cryptographic
messages. The protocol, however starts with a synchronisation phase, where
an initialisation message and data representing timeliness may be exchanged.
Timeliness may be guaranteed using Nonces Np and Nq, which are generated
and relied upon by either user, or using timestamps T of synchronised
clocks. In the foIlowing, we consider timestamps as a special case, where
Np=Nq=T. In oUf generic design, we use Np and Nq.

Now, we have introduced aIl the building blocks for OUf generic design
method and can start to describe the design process. For the requirements
specification and the generic design of efficient AKA protocols, we use
cryptosystem CS-4 in OUf classification, for the representation of exchanged
session keys as weIl as for applied master keys. The reason for this is, that
the original BAN logic does not cover cryptosystems of OUf most general
type CS-8. In the requirements specification, we define the number of
involved parties, the final conc1usions and the initial assumptions using
BAN. The assumptions on trust in the authority on keys are fundamental and
lead to different generic protocol schemes with two or three parties. We use
OUf method SDLliBAN for the backward inference of messages and
conditions and start from the final conc1usions, defined in the requirements
specification. In the idealisation layer we use the message meaning rule for
public keys of CS-4. Concrete protocol designs may be derived from a
generic protocol scheme by combining generic keys according to table 1.
The result is a SDLliBAN diagram which makes use of a particular
cryptosystem on the design layer. The design result may be mapped to the
specification layer using mapping rules, as in chapter 4.

6. EXAMPLES

In App. D, the idealised, generic AKA three-party protocol is shown, as
an example result of applying OUf design method from chapter 32• Master
keys are marked by an asterisk. The SDL connection symbols link with the
SDLliBAN diagram ofthe chosen synchronisation phase in App. E.

2 The detailed sending and receiving conditions, are left for clarity.

106

Now, we show how we could derive Kerberos from the generic protocol:
We choose CS-l for the session keys as weIl as for the master keys. This
means, that according to Table I, the dass CS-4 keys ~Q, P~ and ~P,
Q~ are combined to a single dass CS-l key P~Q. The master keys ~Q*
and S~ are combined to S~Q. The nonces Nq and Np are replaced by a
timestamp T, using synchronised docks, as we proposed in chapter 5. As a
consequence of combining authenticity and confidentiality using one key,
we get redundant formulas after the replacement in the generic diagram. We
delete those redundant parts, which do not provide the required
confidentiality for the secret session key. This leads to the following
protocol messages in idealised form, which we may replace for the generic
messages in the SDLliBAN diagram in Appendix D:

M3 P--7Q: {T}1<pq

M2 Q--7P: {T, P~Q }JS,., {T}1<pq

MI S--7Q: {T, P~Q }Kq.,{T, P~Q }Kps

If we replace variable P with initiator A and variable Q with responder B,
then we get the original Kerberos protocol. If we do it just the other way
round and set P=B and Q=A, then we get a new, "mirrored" Kerberos
protocol. This variant leads to the same protocol goals in a different order.
The synchronisation phase consists of a single initialisation message Ma, see
App. E. Fig. 5a) shows the mapping to the commonly used conventional
representation of the specification layer1.

Our next example is a new three-party AKA protocol using private
master and session keys of CS-2 and nonces. According to our table, ~Q,
P~ are combined to a private session key P~Q), also represented as ~
for cryptograms. The master keys ~Q*, S~ are combined to S~(Q*), also
represented as K~. Accordingly, we get the inverse private session key
Q~(P) and S~(P*), also represented as K.j, = (K~yl respective1y~. After
replacing the expressions in the generic diagram and deleting the redundant
formulas, we get the idealised messages of the new protocol:

M3 P~Q: {Nq,P~(Q)}~

M2 Q~P: {Np,P~(Q)}~,{Np,Q~(P)}~

MI S~Q: {Nq,Q~(P)}~,{Np,P~(Q)}~

This protocol provides privacy and, with the help of S, non-repudiation
with a single cryptographic transformation using a combined encryption and
signature algorithm, e.g. [17]. Synchronisation is done using nonces, see

3 We provide this representation only for the purpose ofbeing comparable with otherpublications.

107

App. E. We map the idealised fonn into the conventional representation of
the specification layer, see Fig. Sb).

~8
?

(;)
{T,A} M3)

Kab •

a) "Mirrored" Kerberos Protocol

o {N."A,Kb~}~
Mb) ~.,B, Kä6}K;.!

A,N ..
B,Nb MI

f;\ _~_2)_{~_:....:~~~~::..-{,_}K,;; __ 1_' {_:_;..:::;~+I~t;\ \V A,N. MaJ.V
b) Private Key Protocol

Figure 5: Protocol examples

7. CONCLUSIONS

The method, which we presented here, sha11 enable the development of
AK.A protocols in a reliable, efficient and intelligible way. The results may
be direct1y used as design tools by a protocol designer. We offer two options
for this: The basic method SDLliBAN may be used for a creative, logical
design process. Alternatively, concrete protocols may be derived from
generic design schemes without in-depth knowledge ofthe logic by choosing
the relevant parameters.

It was shown, how protocol specifications may be derived from generic
design templates. The process, which was demonstrated here for three-party
protocols, is also applicable for two-party protocols. We presented mappings
to a conventional specification representation in order to compare the results
with existing publications. Furthennore, for the proposed general
development approach mappings to SDLlASN.1 specifications are required.
This, along with the integration into reliable software generating systems
could be subject of future work The ultimate goal would be the automatie
generation of seeure and robust code implementing AK.A protocols which
depends only on the weH defined result from the requirements specification.

108

REFERENCES

[1] M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic Protocols.
Digital Systems Research Center Research Report 125, 1994.

[2] R. Anderson and R. Needham. Robustness Principles for Public Key Protocols. In
Advances in Cryptology CRYPTO '95 Proceedings, Springer Verlag, 1995, pp.236-247.

[3] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Advances in
Cryptology CRYPTO '93 Proceedings, Springer Verlag, 1993, pp. 232-249.

[4] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. Digital Systems
Research Center Research Report 39, 1989.

[5] L. Buttyän, S. Staamann, and U. Wilhelm. A Simple Logic for Authentication Protocol
Design. In 11th IEEE Computer Security Foundations Workshop, 1998, pp. 153-162.

[6] D. Denning and G. Sacco. Timestamps in Key Distribution Protoco1s. Communications
ofthe ACM, 24 (2), 1981, pp. 58-68.

[7] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on
InformationTheory Vol.IT-22 No. 6, 1976, pp. 644-654.

[8] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in Cryptographic
Protocols. Proc. of the 1990 IEEE Computer Society Symposium on Research in Security
and Privacy, 1990, pp. 234-248.

[9] S. Gritzalis, D. Spinellis, and P. Georgiadis. Security Protocols over open networks and
distributed systems: Formal Methods for their Analysis, Design, and Verification.
Computer Communications Journal, Elsevier, 22(8), 1999, pp. 695-707.

[10] International Telecommunications Union ITU."SDL Combined with ASN.l
(SDUASN.l)".ITU Recommendation Z.105, 1995.

[11] R. Kemmerer, C. Meadows, and J. Millen. Three Systems for Cryptographic Protocol
Analysis. Journal ofCryptology, 7(4); 1994, pp. 79-130.

[12] J. Kohl. The Evolution of the Kerberos Network Authentication Service. In EurOpen
Conference Proceedings, 1991, pp. 295-313.

[13] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR.
Tools and Algorithms for the Construction and Analysis of Systems. In Lecture Notes in
Computer Science, Springer Verlag, 1996, pp. 147-166.

[14] C.A. Meadows. Applying formal methods to the analysis of a key management protocol.
Journal of Computer Security, 1 (/), 1992, pp. 5-35.

[15] C.A. Meadows. Formal Verification of Cryptographic Protocols: A Survey. In Advances
in Cryptology-ASIACRYPT'94 Proceedings, Springer Verlag, 1994, pp. 133-150.

[16] R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in large
Networks ofComputers. Communications ofthe ACM, 21 (/2),1978, pp. 993-999.

[17] S. Pohlig and M. Hellman. An improved Algorithm for computing Logarithms in GF(p)
and its cryptographic significance. IEEE Transactions on Information Theory, 24(/),
1978, pp. 106-111.

[18] R. Rivest, A. Shamir, and L. Adleman. A Method for obtaining Digital Signatures and
Public Key Cryptosystems. Communications ofthe ACM, 21(2),1978, pp. 120-126.

APPENDIX A: USED EXPRESSIONS AND RULES OF
THE BAN LOGIC

109

A,B,S
P,Q,R

Kab
Ka

Protocol entities with specific roles: A=Initiator; B=Responder; S=Key Server
Variables for protocol entities without roles

KaI
Kab
Na
X,Y
K

Secret key, shared between A and B
A's public key for communication with anyone
A's private key for communication with anyone
A's private key for communication with B ••
Nonce, generated by A.
Variables for statements
Variable for keys
Conjunction
P believes in X
Psees X
P says (sends) X
P possesses X4

P has authority on X
Xis fresh (e.g. a Nonce)

P and Q share a common secret key K

Pj=X
P<lX

PrX
P3X
P~X

#(X)
P~Q
J4>
P~

P~(Q)

{X}K

K is P's public key. This implies, that P owns the inverse private Key K-I
K-I is p's private key. This implies, that an inverse public key K exists 4

K~ is p's private key, used exciusively for communicating with Q 4

X was encrypted using key K

Message meaning rules

p ~ P~Q, P <J {X}K

P~QrX

Nonce-verification rule

P ~ #(X), P ~ Q t X

P~Q~X

lurisdiction rule

P~Q:=}X,P~Q~X

P~X

Freshness rule

P ~ #(X)

P ~#(X, Y)

Rules for sets of statements

P ~ (X, Y)

P~X

P ~ ~Q, P <J {Xkl

P~QrX

P~Q~(X, Y)

P~Q~X

4 These expressions are not contained in the original BAN logic.

110

APPENDIX B: MAPPING RULES

Basic Rules for Public Key Cryptosystems CS-4:
1) R r{X, R~ }K;l q {X}K;l

This expression means, that R shows, that he owns and is able to apply his private Key Krl .

Everyone who believes in the public key Kr of R can definitely prove this. On a logical level,
the private key is part of the signed expression and represents its meaning. The specification
level provides the signed data structure. Data representing the key itselfmust not occur.

2) R r{X, ~Q }K;l q {X, Q, Kq}K;l

Here R says, that Kq is Q's public key. On a logicallevel, the link between Q and its key is
explicitly expressed in the formula. On the specification level, the link is provided by naming
Q and its key explicitly in the signed data structure.

3) R r{Y,{X, p~ }K;l}~ q {Y, {X, Kj;I}K;l}~

With this message R says, that Kpl is P's private key. Private keys must always be encrypted
for transmission. Only P has the decryption key (K;r l . So, the intended recipient is implicitly
defined by using P's encryption key. Therefore, on the specification level, the name of the
recipient must not be contained in the data structure.

Derived Rules for Private Key Cryptosystems CS-2:
In CS-2 the signature and encryption keys of CS-4 are combined to a single private key for
each of the partners. So we get:

12) R r{X, R~ (Q) }Kr~ q {X}Kr~
This signature can definitely be proved only by the owner Q ofthe inverse private key Kq":.

22) R r{Y, { X, P~(Q)}~ q {Y, {X, Q, KiiI}~

With this message R says, that Kp"4 is P's private key for communicating with Q. The link
between the private key and P is done implicitly, as above by encrypting the message with a
key KrJ, so that only P may decrypt it. The link between Q and P's private key for Q is
explicitly provided in the data structure containing Q's name.

Derived Rules for Secret Key Cryptosystems CS-l:
In CS-I we have one common secret key used by both partners. We get:

11) R r{X, R~Q }Krq q {X, R}Krq
Here, the "signature" is ambiguous. 80th, R or Q could have produced and submitted the
message. This may lead to protocol weaknesses, because message originator and recipient are
not explicit. So, we add the originator's name to the data structure in the specification.

2 1) R r{y,P~Q}Krp q {Y, Q, Kpq}Krp

Like in CS-2 we have to provide the link between the secret key and the partner entity by
indicating its name explicitly.

Common Rules:
4) A q A
Cleartext expressions remain unchanged.
5) {T}K q {T}K
Encrypted expressions containing plain data like timestamps or nonces remain unchanged.

APPENDIX C: IDEALISED KERBEROS PROTOCOL

Yal)A~AAs
Yal) A ~s => AAB

@ Ya3) A~#(Ts)
Ya4)A~#(Ta); YaS)A 3 Ta

Ma

MI

YS1)S~AAs
Ys2) s ~BAs
Ys3) s ~AAB
Ys4)S3Ts

Ybl)B~ BAs
Yb2) B ~ s =>AAB
Yb3) B ~ #(Ts)

Yb4) B ~ #(Ta)

M2
-4--------------~

M3

111

112

APPENDIX D: GENERIC, IDEALISED PROTOCOL FOR
THREE PARTIES

(process P

Ypj) P p S =>~Q

@ Yp2) P pS =>P~
Yp3)Pp~S

Yp4) P pP~
Yp5) Pp #(Np)

CD '-----,----'

Zpl) P p(~Q' P~)
@ Zp2)PpQp(~P,Q~)

Ysl) S p Q~, ~Q

Ys2) S p P~, ~P

Ys3) S p S~
Ys4) S p~P
Ys5)SP~Q

{Nq,~P }K;'

{{Nq, Q~}K;'}Kq

{Np,~Q}K;'
({Np, P~}K,'}Kp

M2

M3

Yql) Q p S =>~P

Yq2) Q pS =>Q~

Yq3) Q p~S

Yq4) Q pQ~
Y q5) Q p #(Nq)

y

{Np,~Q}K;'

{{Np, P~}K;'}Kp
{Np,~ P, Q~}K~

Zql) Q p(~P, Q~)
Zq2) Q pPp(~Q,P~)

End

APPENDIX E: SYNCHRONISATION PHASES FOR
THREE PARTIES

Ai

____________________________________ M! ______ _

Synchronisation using nonces

Ai

Ma

Ba

Synchronisation using timestamps

APPENDIX F: PROPERTIES OF BASIC CRYPTO­
SYSTEMS

~ypeofkey Typeofkey Cryptogram Proofof IProofof

113

~rypto- ~onfi-
system ~sed by used by origin priginal ~entiality

Originator P RecipientQ ~estination
Symmetrie Secret key Secretkey {M}Kpq ambiguous ambiguous yes
~ryptosystem

Publie Signa- lPrivate sig- lPublie {M, Q}Kjl definite definiteS no
rure System ~ature key IProving key
Publie Encryp- lPublie en- IPrivate de- {M}Kq no no yes
ion System eryption key eryption key

Private Private Key Inverse) {M}K-t definite definite yes
Cryptosystem Private Key pq

One-way Shared Shared IM,H(M,Npq) ambiguous ambiguous no
Funetion Secret Secret

S For this, Q's name has to be provided explieitly in the cryptogram_

