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Abstract We present a new method for the formal requirements specification and the 
design of Authentication and Key-Agreement protocols. The method "SDL 
combined with inverse BAN logic", SDUiBAN is based on the inverse 
application of the BAN logic of Burrows, Abadi and Needham and the 
integration with the Specification and Description Language SDL. The 
exemplary formal design of Kerberos demonstrates the applicability and 
reliability of the method. We cJassify cryptosystems and protocol runs and 
provide a generic design approach, which is on an idealised layer independent 
from the cryptosystem to be used. We show, how concrete specifications of 
new protocols may be derived and propose the integration of our method with 
existing specification methods and software development tools. 

1. BACKGROUND AND MOTIVATION 

Communication over public networks must be protected by providing the 
required security services like authentication, confidentiality and non­
repudiation. Such security services are implemented by integrating 
cryptographic mechanisms into the communication protocols. For an 
authenticated communication, a protocol entity has to prove its identity to its 
partners. In a mutually authenticated session, all parties are convinced of the 
partner's identity and the integrity and timeliness of exchanged messages. 
For a confidential communication, unauthorised read access to the protocol 
messages must be prevented by encrypting them, so encryption and 
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decryption keys have to be agreed upon. For a non-repudiable 
communication, the origin and destination of the protocol messages must be 
provable, so signature and validation keys have to be agreed upon. The 
problem of entity authentication and key agreement grows with the square of 
the number of involved entities, so efficient and reliable mechanisms are 
required for this purpose. 

Diffie and Hellman introduced the concept of public key cryptography 
for solving the key distribution problem in large, public networks in 1976 
[7]. Needham and Schroeder made proposals for authentication and key 
agreement (AKA) protocols using conventional, shared key and public key 
cryptography with the help of a trusted third party [16]. These and further 
publications of AKA protocols were the subject of informal analysis and 
discussions and many protocols have shown to be flawed. The detection of 
flaws often takes place years or even decades after the initial protocol 
publication. Denning and Sacco showed a weakness in the Needham­
Schroeder shared key protoco1 in 1981 and Lowe did this for the public key 
protocol in 1996 [6][13]. 

Flaws in AKA protocols bury a high risk, because it is mostly much 
easier for an attacker to break the protocol, than to break a cryptographic 
algorithm. In order to analyse AKA protocol specifications in an efficient 
and reliable manner, formal analysis methods were deve10ped 
[14][11][9][3]. A well-known approach is the so called BAN logic of 
Burrows, Abadi and Needham [4]. Work on AKA protocol design is even 
now mostly limited to the definition of informal design principles, which can 
not be considered as an adequate mechanism for the design of re1iable, 
efficient AKA protoco1s [1][2]. Meadows demands formal design methods 
for this purpose [15]. Buttyan et al. present a formallogical design method 
for AKA protocols, which uses channe1s, that are a generalisation of 
communication links [5]. In the following, we present a new method for the 
formal requirements specification and design of AKA protocols and show 
how it fits into a layered development process for AKA protocols. 

2. A LAYERED DEVELOPMENT APPROACH 

We divide a development process into four phases and corresponding layers. 
Each layer uses the results of the above 1ayer as the starting point: 
1) Requirements Specification 
2) Design 
3) Specification 
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4) Implementation 

1) The development process begins with the specification of requirements 
for the AKA protocol. They are basically derived from the security 
requirements of the communication service to be protected, the chosen 
trust-model and assumptions made on the infrastructure. The 
requirements are described using the formallanguage of layer 2). 

2) The main purpose of this layer is the design of a reliable and secure 
protocol from a logical point of view. The required messages, their 
ordering and their security mechanisms are derived from the 
requirements specification and represented in a new form, which may be 
easily transformed into the layer 3) representation. 

3) The specification layer delivers an abstract specification of the protocol, 
from which interoperable implementations may be derived. We propose 
the use of combined SDLlASN.1 specifications in this layer [10]. With 
this method, data structures and protocol behaviour can be represented in 
a specification diagram. The transformation to layer 4) can be done 
automatically using existing tools. 

4) The lowest layer, the implementation layer, may consist of source-code 
modules, libraries, compilers and debuggers for a high-level language 
like "C". The result of this layer is executable object code of the AKA 
protocol for a specific computer and operating system. 

Our new method for the implementation ofthe layers I) and 2) is introduced 
in the following. For layers 3) and 4), the reader is encouraged to consult the 
existing literature. 

3. A FORMAL DESIGN METHOD 

The original purpose of the BAN logic is the analysis of formal AKA 
protocol descriptions which were derived from an informal protocol 
description through an idealisation process. The analysis starts with the 
initial assumptions of the protocol. Logical formulas, assertions about the 
state of the system, before and after each protocol step are derived by 
applying the inference rules of the logic. The assertions after the last 
protocol step contain the conclusions of the protocol - formulas representing 
the belief in keys or secrets. 

The basic approach of our new design method is the inversion of the 
original BAN analysis process. The starting point for the protocol design 
process is the definition of the final conclusions Z and initial assumptions Y 
from the requirements specification which are described using the BAN 
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syntax (see App. A). We start at the end of the protocol with the ftnal 
conc1usions and apply the inverted rules of the logic backwards in an 
iterative process until we reach the initial assumptions. In this way, we get 
the required logical send statements, representing the messages of the 
idealised protocol. The design may be divided into two sub-Iayers. The 
logical layer on top deftnes the process of exchanging formulas about the 
entity's state of belief. The idealised layer below deftnes security 
mechanisms for the protection of the exchanged formulas. We call this 
approach the "inverse BAN logic", iBAN. 

The BAN logic does not consider time in a protocol run, it makes only a 
distinction between past and present. Moreover, the direction of transmitted 
messages may not be expressed using BAN. In order to enhance these 
features, we propose the integration of BAN with SDL, see ftg. 1. The SDL 
dia gram represents the timely behaviour and message flow of the protocol. 
The SDL symbols contain BAN expressions. The SDL "send" and "receive" 
symbols represent the protocol messages in a new form, corresponding to the 
"says" and "see" expressions of the original BAN syntax. SDL decision 
symbols contain sending and receiving conditions for messages. The initial 
assumptions and fmal conc1usions are contained in assignment blocks. 

Process-Name 

Stan-Marker 

AssiJUlment Block 

Initial Assumptions 

Sendin$! Conditions 

~ Stoll Symbol 

Stole Svmbol 

Outllut/Send Symbol 

MessQJ!e 

InllutlReceive Symbol 

Receivin$! Conditions 

Decision Svmbol 

Final Conclusions 

Figure 1: Elements of SDL/iBAN 

Fig. 1 contains exemplary expressions of the logical layer. P and Q are 
variables on users. We insert initial and ftnal states in the diagram for each 
process and assign the initial assumptions Y and fmal conc1usions Z from 
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the requirements specification. A final state rnay only be entered, if all final 
conc1usions hold after receiving the last message. For this, we insert an SDL 
decision symbol containing Z, e.g. Q t= p t= X, as receiving conditions Rj. 
We postulate, that an expression of the form Q t= p t= X, which is not an 
initial assumption, must be preceded by Q's receipt ofthe expression P t= x. 
As no further processes are defined in this example, P must have sent this 
expression to Q with message Mj. Before a process P rnay send statements 
about its current belief, these expressions must hold. For this, we insert a 
decision symbol with the corresponding sending condition Sj. From the 
sending conditions, we derive the required receiving conditions Rj-l of 
Message Mj-l and proceed with the iteration until we reach sending 
conditions SI that are accomplished by the initial assurnptions. 

Now, we transform the protocol into the idealised layer. We postulate, 
that private and secret keys may not be revealed to unauthorised users, i.e. 
R <l P~ or R<l PAQ is not allowed if R:;tQ;tP and R is not a trusted party. 
An appropriate basic cryptosystem or a combination of them has to be 
chosen which provides the required security properties, see Appendix F. 
Then the corresponding BAN rules have to be applied. Fig. 2 shows an 
example of the idealised layer. Q's initial assumptions Y on the secret key 
and nonce used are shown in the block after the process start marker. Based 
on the receiving conditions and the initial assurnptions, we derive 
expressions of the form P<l X using the inverted message meaning rules. 
Then we replace the logical expressions in the diagram with the derived 
expressions in idealised form. 

Figure 2: SDL/,.BAN - Idealised layer 
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We caH this method "SDL combined with inverse BAN logic", 
SDLlzBAN. The representation of the design results may facilitate the 
transformation into the standardised SDLlASN.l specification form of layer 
3) [10]. In Appendix B we show how the idealised messages in SDLlzBAN 
are mapped to a conventional notation which is commonly used in the 
specification literature. By this, we are able to make our results comparable 
with existing publications. By providing strict rules for this transformation 
process, we aim at minimising the risk of inserting flaws at this step. The 
informal idealisation process of the original BAN logic, however, may lead 
to misinterpretations. Lowe discovered a flaw in the public key protocol in 
[16], which was not detected by BAN, because the protocol idealisation 
masked the problem [4][13]. 

4. APPLYING THE METHOD 

The applicability of the method is demonstrated now, by deriving a 
popular and weH understood AKA protocol, Kerberos [12]. In the 
requirements specification, we demand second level beliefs in a symmetric 
Session key AAB for both parties A and B as fmal condusions of the 
protocol. A is the initiator and B is the responder in the protocol. The initial 
assumptions express the party's trust in keys shared with an authentication 
server S. The timeliness of protocol messages is guaranteed by using 
timestamps of synchronised docks. We define the corresponding belief 
statements using BAN and insert them into the SDLlzBAN diagram in 
Appendix C. In the following, we show how to derive messages Mj, 
receiving conditions Rj and sending conditions Sj by applying the BAN rules 
inversely, according to chapter 3. The results are shown in App. C. 

The iterative design process starts on the logical layer with the last 
message Mn, which is derived from the 2nd level belief of one party. The 
number of messages in the protocol is unknown at this step, later on we set 
n=3. We are free to either select A or B as the receiver of message Mn, and 
choose N. The 2nd level belief of A is expressed as: 

Za2) A 1= B 1= AAB 
According to chapter 3, the receiving condition is set to Rn=Za2 and we 

get the expression B 1= AAB which is sent from B to A. B may send this last 
message only, if the expression holds at this step, so one sending condition 
Sn (=S31, see App. C) is B 1= AAB. Furthermore, all the required final 

1 We will show the result for the inverse case further below. 
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conc1usions Zb of B must hold at this step, so we add them as sending 
conditions (S32). From the sending conditions, the required receiving 
conditions for further messages are derived. R21 is derived from S31 using 
the initial assumption Yb2) (A F S => AAB) and the jurisdiction rule. S32 
can not be inferred further, so we set R22=S32. From R21 and R22, we 
conc1ude, that B must have received the expressions S F AAB and 
A F AAB before. We are free to decide, how these expressions are 
transferred to B, either separately or in a combined message. In Kerberos, 
the second option is chosen for message M2 from A to B. Before sending 
M2, A F AAB must hold and A must possess the expression S F AAB, so 
we get S2, and S22. Accordingly, we get RI, and, by applying the possession 
rule from [8], we get Rb (A <l S F AAB). From this, we infer MI 
(S F AAB for A, S F AAB for B) from S to A and S 1, (S F AAB). At this 
point we have reached asending condition, which is an initial assumption so 
our process of backwards inference is complete. The protocol could start 
with MI, but according to the requirements specification A should be the 
initiator. So, an initialisation message Ma is added. 

Now, we have all protocol elements on a logical layer and the required 
security mechanisms for all messages Mi may be derived on the idealised 
layer of the design process. We show as an example how to infer Mn from 
Rn. The only rule, which helps us to solve this expression with iBAN is the 
nonce-verification rule, see App. A. We apply this rule inversely and get 

1) A t= #(AAB), A t= B r (AAB). 

From the second part we derive an expression of the form A <l X, 
meaning "A sees X", using the appropriate message meaning rule for shared 
keys. The expression A t= #(AAB) from 1) is not an initial assumption. So 
we have to extend Za2 using the inverted rules for sets of statements and get 

2) A t= B t= #(X, AAB). 

Xis a variable. We apply the nonce-verification rule inversely and get 

3) A t= #(X, AAB), A t= B r (X, AAB). 

Using the freshness rule and comparing X with the initial assumptions, we 
get 

4) A t= #(Ta, AAB), A t= B r (Ta, AAB). 

The first part of 4) is accomplished using the initial assumptions. The second 
part is derived to 

5) A t= AAB, A <l {Ta, AAB }K,.b' 

The first part of 5) is equal to S21 and will be solved in further steps. The 
second part represents the idealised last message of Kerberos from B to A. 
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We insert it in the SDLliBAN diagram of the idealised layer in Appendix C. 
We proceed with the derivation of all messages Mi and conditions Si, Ri from 
the logicallayer and add them to the diagram. The expression in Ra means, 
that S sees arequest for a new session key which is to be shared between A 
and B. According to our mapping rules for secret cryptosystems from 
Appendix B, we transfer the expressions into the conventional representation 
of the specification layer: 
M3: { Ta, B }K"b M2: { Ts, A, Kab }Ka.' { Ta, A }Kab 

MI: { Ts, B, Kab }Kas, {Ts, A, Kab}Ka. Ma: A, B 

The result corresponds with the ticket granting protocol of Kerberos 
version V. The redundant double encryption of the server ticket, like in the 
repeatedly criticised Kerberos version IV, is avoided when using our 
method. M3 differs slightly from the original specification, where B's name 
is omitted. Ticket lifetimes in the original are an implementation aspect, and 
could be added to the mapping rules. 

5. GENERIC DESIGN 

In the following, we present a universal, generic design model for 
efficient AKA protocols and show how to infer generic design schemes 
using the basic method SDL/iBAN. Such a generic design scheme is 
independent from the concrete cryptosystems and freshness mechanisms to 
be used in a protocol. Different concrete protocol design results may be 
easily derived from the generic scheme. The basic idea comes from the 
observation, that today' s cryptographic systems can be c1assified into a 
generic model. The model considers the function of a key in a protocol, 
which can be the provision of confidentiality by encryption and decryption, 
or authenticity by signing and proving, see also App. F. 

In the most general case, which we consider here, we have one key for 
each operation at each of the communication partners. We call such a 
cryptosystem, according to the number of keys, CS-8. In fact, CS-8 may be 
implemented by a combination of available cryptosystems. For example, the 
EI-Gamal public key encryption algorithm, providing solely confidentiality 
with Q's public encryption key ~Q and P's private decryption key P~, 
may be combined with NIST's Digital Signature Algorithm using P's private 
signature key P~ and the public proving key ~Q for Q's signature. By 
inheriting the features of encryption and signature proving keys from CS-8 
we get one private key per user, P~. The same is done for decryption and 
signature keys, where we get one user's public key, ~P. We call this type 



104 

CS-4. RSA eould be an example implementation of CS-4 [18]. CS-8 and 
CS-4 are both types of publie key eryptosystems. We proeeed and inherit the 
features of the user's private key and his partner's publie key and get an 
asymmetrie key pair, P,.K.(Q) and Q~(P), for a pair of users. Eaeh user has 
to keep his key of CS-2 private. All eryptographie operations in aseeure 
eommunication with a partner are done with sueh a multi-purpose key. The 
PohligIHellman algorithm is an example implementation of CS-2 [17]. All of 
the above eryptosystems support non-repudiation with the help of a trusted 
third party, whieh either eertifies a user's publie key of CS-8 or CS-4 or 
generates and distributes keys of CS-2 and is therefore able to prove the 
origin of a message definitely. We get this feature by using asymmetrie 
algorithms. Asymmetrie algorithms are known to be relatively slow and 
therefore not well suited for data eneryption. Eneryption is mainly done with 
symmetrie eryptosystems of type CS-l, where eaeh user pair has a eommon 
seeret key PA.Q (=QA.P), e.g. the DES algorithm. CS-l is derived from CS-
2 by inheriting the features of both user's private keys. All eryptographie 
operations in abilateral eommunication are done with the same key, henee 
the proof of a message's origin eannot be definite. 

Crypto Keys used by P Keys used by Q 
system encrypt prove decrypt sign encrypt prove decrypt sign 

CS-8 ~Q ~Q p~ p~ ~p ~p Q$ Q~ 
CS-4 ~Q p~ ~p Q~ 

CS-2 P~(Q) Q~P) 
CS-l PÄQ 

Table 1: Generic classes of keys 

The exeeution efforts of an AKA protoeol depend mainlyon the number 
of protoeol steps, the efforts for eryptographic operations and the amount of 
exchanged data elements. We call an AKA protocol "efficient", if these 
efforts are low for a given combination of requirements for initial 
assumptions and fmal eonc1usions. In order to determine a minimum number 
of protocol steps, we analyse the exchange of logical statements: Using 
communicating sequential processes for protocol design, the evolution of 
logical beliefs must also be sequential. This means, that a 2nd level belief in a 
formula must be preceded by the corresponding 1 sI level belief. Fig. 3 shows 
the possible evolution in the case of 2nd level beliefs for both parties. The 
symbol "q" indicates the point oftime of a message transmission. There are 
always two mirrored variants of a protocol, depending on who, either the 
initiator (P=A) or the responder (P=B), reaches the final conc1usions at last. 
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PI=QI=Xqp 

Figure 3: Logical belief evolution 

We distinguish between two phases of an AKA protocol. During the 
agreement phase, keys or secrets are exchanged using cryptographic 
messages. The protocol, however starts with a synchronisation phase, where 
an initialisation message and data representing timeliness may be exchanged. 
Timeliness may be guaranteed using Nonces Np and Nq, which are generated 
and relied upon by either user, or using timestamps T of synchronised 
clocks. In the foIlowing, we consider timestamps as a special case, where 
Np=Nq=T. In oUf generic design, we use Np and Nq. 

Now, we have introduced aIl the building blocks for OUf generic design 
method and can start to describe the design process. For the requirements 
specification and the generic design of efficient AKA protocols, we use 
cryptosystem CS-4 in OUf classification, for the representation of exchanged 
session keys as weIl as for applied master keys. The reason for this is, that 
the original BAN logic does not cover cryptosystems of OUf most general 
type CS-8. In the requirements specification, we define the number of 
involved parties, the final conc1usions and the initial assumptions using 
BAN. The assumptions on trust in the authority on keys are fundamental and 
lead to different generic protocol schemes with two or three parties. We use 
OUf method SDLliBAN for the backward inference of messages and 
conditions and start from the final conc1usions, defined in the requirements 
specification. In the idealisation layer we use the message meaning rule for 
public keys of CS-4. Concrete protocol designs may be derived from a 
generic protocol scheme by combining generic keys according to table 1. 
The result is a SDLliBAN diagram which makes use of a particular 
cryptosystem on the design layer. The design result may be mapped to the 
specification layer using mapping rules, as in chapter 4. 

6. EXAMPLES 

In App. D, the idealised, generic AKA three-party protocol is shown, as 
an example result of applying OUf design method from chapter 32• Master 
keys are marked by an asterisk. The SDL connection symbols link with the 
SDLliBAN diagram ofthe chosen synchronisation phase in App. E. 

2 The detailed sending and receiving conditions, are left for clarity. 
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Now, we show how we could derive Kerberos from the generic protocol: 
We choose CS-l for the session keys as weIl as for the master keys. This 
means, that according to Table I, the dass CS-4 keys ~Q, P~ and ~P, 
Q~ are combined to a single dass CS-l key P~Q. The master keys ~Q* 
and S~ are combined to S~Q. The nonces Nq and Np are replaced by a 
timestamp T, using synchronised docks, as we proposed in chapter 5. As a 
consequence of combining authenticity and confidentiality using one key, 
we get redundant formulas after the replacement in the generic diagram. We 
delete those redundant parts, which do not provide the required 
confidentiality for the secret session key. This leads to the following 
protocol messages in idealised form, which we may replace for the generic 
messages in the SDLliBAN diagram in Appendix D: 

M3 P--7Q: {T}1<pq 

M2 Q--7P: {T, P~Q }JS,., {T}1<pq 

MI S--7Q: {T, P~Q }Kq.,{T, P~Q }Kps 

If we replace variable P with initiator A and variable Q with responder B, 
then we get the original Kerberos protocol. If we do it just the other way 
round and set P=B and Q=A, then we get a new, "mirrored" Kerberos 
protocol. This variant leads to the same protocol goals in a different order. 
The synchronisation phase consists of a single initialisation message Ma, see 
App. E. Fig. 5a) shows the mapping to the commonly used conventional 
representation of the specification layer1. 

Our next example is a new three-party AKA protocol using private 
master and session keys of CS-2 and nonces. According to our table, ~Q, 
P~ are combined to a private session key P~Q), also represented as ~ 
for cryptograms. The master keys ~Q*, S~ are combined to S~(Q*), also 
represented as K~. Accordingly, we get the inverse private session key 
Q~(P) and S~(P*), also represented as K.j, = (K~yl respective1y~. After 
replacing the expressions in the generic diagram and deleting the redundant 
formulas, we get the idealised messages of the new protocol: 

M3 P~Q: {Nq,P~(Q)}~ 

M2 Q~P: {Np,P~(Q)}~,{Np,Q~(P)}~ 

MI S~Q: {Nq,Q~(P)}~,{Np,P~(Q)}~ 

This protocol provides privacy and, with the help of S, non-repudiation 
with a single cryptographic transformation using a combined encryption and 
signature algorithm, e.g. [17]. Synchronisation is done using nonces, see 

3 We provide this representation only for the purpose ofbeing comparable with otherpublications. 
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App. E. We map the idealised fonn into the conventional representation of 
the specification layer, see Fig. Sb). 

~8 
? 

(;) 
{T,A} M3) 

Kab • 

a) "Mirrored" Kerberos Protocol 

o {N."A,Kb~}~ 
Mb) ~.,B, Kä6}K;.! 

A,N .. 
B,Nb MI 

f;\ _~_2)_{~_:....:~~~~::..-{,_}K,;; __ 1_' {_:_;..:::;~+I~t;\ \V A,N. MaJ.V 
b) Private Key Protocol 

Figure 5: Protocol examples 

7. CONCLUSIONS 

The method, which we presented here, sha11 enable the development of 
AK.A protocols in a reliable, efficient and intelligible way. The results may 
be direct1y used as design tools by a protocol designer. We offer two options 
for this: The basic method SDLliBAN may be used for a creative, logical 
design process. Alternatively, concrete protocols may be derived from 
generic design schemes without in-depth knowledge ofthe logic by choosing 
the relevant parameters. 

It was shown, how protocol specifications may be derived from generic 
design templates. The process, which was demonstrated here for three-party 
protocols, is also applicable for two-party protocols. We presented mappings 
to a conventional specification representation in order to compare the results 
with existing publications. Furthennore, for the proposed general 
development approach mappings to SDLlASN.1 specifications are required. 
This, along with the integration into reliable software generating systems 
could be subject of future work The ultimate goal would be the automatie 
generation of seeure and robust code implementing AK.A protocols which 
depends only on the weH defined result from the requirements specification. 
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APPENDIX A: USED EXPRESSIONS AND RULES OF 
THE BAN LOGIC 
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A,B,S 
P,Q,R 

Kab 
Ka 

Protocol entities with specific roles: A=Initiator; B=Responder; S=Key Server 
Variables for protocol entities without roles 

KaI 
Kab 
Na 
X,Y 
K 

Secret key, shared between A and B 
A's public key for communication with anyone 
A's private key for communication with anyone 
A's private key for communication with B •• 
Nonce, generated by A. 
Variables for statements 
Variable for keys 
Conjunction 
P believes in X 
Psees X 
P says (sends) X 
P possesses X4 

P has authority on X 
Xis fresh (e.g. a Nonce) 

P and Q share a common secret key K 

Pj=X 
P<lX 

PrX 
P3X 
P~X 

#(X) 
P~Q 
J4> 
P~ 

P~(Q) 

{X}K 

K is P's public key. This implies, that P owns the inverse private Key K-I 
K-I is p's private key. This implies, that an inverse public key K exists 4 

K~ is p's private key, used exciusively for communicating with Q 4 

X was encrypted using key K 

Message meaning rules 

p ~ P~Q, P <J {X}K 

P~QrX 

Nonce-verification rule 

P ~ #(X), P ~ Q t X 

P~Q~X 

lurisdiction rule 

P~Q:=}X,P~Q~X 

P~X 

Freshness rule 

P ~ #(X) 

P ~#(X, Y) 

Rules for sets of statements 

P ~ (X, Y) 

P~X 

P ~ ~Q, P <J {Xkl 

P~QrX 

P~Q~(X, Y) 

P~Q~X 

4 These expressions are not contained in the original BAN logic. 
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APPENDIX B: MAPPING RULES 

Basic Rules for Public Key Cryptosystems CS-4: 
1) R r{X, R~ }K;l q {X}K;l 

This expression means, that R shows, that he owns and is able to apply his private Key Krl . 

Everyone who believes in the public key Kr of R can definitely prove this. On a logical level, 
the private key is part of the signed expression and represents its meaning. The specification 
level provides the signed data structure. Data representing the key itselfmust not occur. 

2) R r{X, ~Q }K;l q {X, Q, Kq}K;l 

Here R says, that Kq is Q's public key. On a logicallevel, the link between Q and its key is 
explicitly expressed in the formula. On the specification level, the link is provided by naming 
Q and its key explicitly in the signed data structure. 

3) R r{Y,{X, p~ }K;l}~ q {Y, {X, Kj;I}K;l}~ 

With this message R says, that Kpl is P's private key. Private keys must always be encrypted 
for transmission. Only P has the decryption key (K;r l . So, the intended recipient is implicitly 
defined by using P's encryption key. Therefore, on the specification level, the name of the 
recipient must not be contained in the data structure. 

Derived Rules for Private Key Cryptosystems CS-2: 
In CS-2 the signature and encryption keys of CS-4 are combined to a single private key for 
each of the partners. So we get: 

12) R r{X, R~ (Q) }Kr~ q {X}Kr~ 
This signature can definitely be proved only by the owner Q ofthe inverse private key Kq":. 

22) R r{Y, { X, P~(Q)}~ q {Y, {X, Q, KiiI}~ 

With this message R says, that Kp"4 is P's private key for communicating with Q. The link 
between the private key and P is done implicitly, as above by encrypting the message with a 
key KrJ, so that only P may decrypt it. The link between Q and P's private key for Q is 
explicitly provided in the data structure containing Q's name. 

Derived Rules for Secret Key Cryptosystems CS-l: 
In CS-I we have one common secret key used by both partners. We get: 

11) R r{X, R~Q }Krq q {X, R}Krq 
Here, the "signature" is ambiguous. 80th, R or Q could have produced and submitted the 
message. This may lead to protocol weaknesses, because message originator and recipient are 
not explicit. So, we add the originator's name to the data structure in the specification. 

2 1) R r{y,P~Q}Krp q {Y, Q, Kpq}Krp 

Like in CS-2 we have to provide the link between the secret key and the partner entity by 
indicating its name explicitly. 

Common Rules: 
4) A q A 
Cleartext expressions remain unchanged. 
5) {T}K q {T}K 
Encrypted expressions containing plain data like timestamps or nonces remain unchanged. 



APPENDIX C: IDEALISED KERBEROS PROTOCOL 

Yal)A~AAs 
Yal) A ~s => AAB 

@ Ya3) A~#(Ts) 
Ya4)A~#(Ta); YaS)A 3 Ta 

Ma 

MI 

YS1)S~AAs 
Ys2) s ~BAs 
Ys3) s ~AAB 
Ys4)S3Ts 

Ybl)B~ BAs 
Yb2) B ~ s =>AAB 
Yb3) B ~ #(Ts) 

Yb4) B ~ #(Ta) 

M2 
-4--------------~ 

M3 
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APPENDIX D: GENERIC, IDEALISED PROTOCOL FOR 
THREE PARTIES 

(process P 

Ypj) P p S =>~Q 

@ Yp2) P pS =>P~ 
Yp3)Pp~S 

Yp4) P pP~ 
Yp5) Pp #(Np) 

CD '-----,----' 

Zpl) P p(~Q' P~) 
@ Zp2)PpQp(~P,Q~) 

Ysl) S p Q~, ~Q 

Ys2) S p P~, ~P 

Ys3) S p S~ 
Ys4) S p~P 
Ys5)SP~Q 

{Nq,~P }K;' 

{{Nq, Q~}K;'}Kq 

{Np,~Q}K;' 
({Np, P~}K,'}Kp 

M2 

M3 

Yql) Q p S =>~P 

Yq2) Q pS =>Q~ 

Yq3) Q p~S 

Yq4) Q pQ~ 
Y q5) Q p #(Nq) 

y 

{Np,~Q}K;' 

{{Np, P~}K;'}Kp 
{Np,~ P, Q~}K~ 

Zql) Q p(~P, Q~) 
Zq2) Q pPp(~Q,P~) 

End 



APPENDIX E: SYNCHRONISATION PHASES FOR 
THREE PARTIES 

Ai 

____________________________________ M! ______ _ 

Synchronisation using nonces 

Ai 

Ma 

Ba 

Synchronisation using timestamps 

APPENDIX F: PROPERTIES OF BASIC CRYPTO­
SYSTEMS 

~ypeofkey Typeofkey Cryptogram Proofof IProofof 
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~rypto- ~onfi-
system ~sed by used by origin priginal ~entiality 

Originator P RecipientQ ~estination 
Symmetrie Secret key Secretkey {M}Kpq ambiguous ambiguous yes 
~ryptosystem 

Publie Signa- lPrivate sig- lPublie {M, Q}Kjl definite definiteS no 
rure System ~ature key IProving key 
Publie Encryp- lPublie en- IPrivate de- {M}Kq no no yes 
ion System eryption key eryption key 

Private Private Key Inverse) {M}K-t definite definite yes 
Cryptosystem Private Key pq 

One-way Shared Shared IM,H(M,Npq) ambiguous ambiguous no 
Funetion Secret Secret 

S For this, Q's name has to be provided explieitly in the cryptogram_ 


