
EFFICIENT OBLIVIOUS PROOFS OF 
CORRECT EXPONENTIATION 

Markus J akobsson 
Information Sciences Research Center, Bell Labs, Murray Hili, New Jersey 07974 

www.bell-Iabs.com/user/markusj 

Claus Peter Schnorr 
University of Frankfurt; work done whi/e visiting Bell Labs. 

Abstract We study the notion of meta-proofs, which, as the name indicates, are 
proofs about proofs. We employ the notion of meta-proofs to produce a 
highly efficient oblivous proof of correct exponentiation. It is minimum­
knowledge independently of whether the input is valid or not, a property 
that does not hold for many other protocols (that are zero-knowledge 
only for valid inputs.) This has direct security implications to multi­
party protocols, where the protocols we demonstrate - one interactive 
and one non-interactive - can be employed to obtain protocol robustness 
at a low cost. As a result of potential independent interest, we show 
how to turn any standard discrete log signature scheme into a scheme 
for proving equality of discrete logarithms. We demonstrate our method 
using the Schnorr signature scheme. 

1. INTRODUCTION 
In many applications, there is a need for parties to prove to each other 

that the correct computation was performed. Given today's choices of 
efficient primitives, this often boils down to proving that the intended 
exponentiation, in relation to some public key, was performed. In many 
multi-party protocols, whose robustness depend on these types of proofs, 
however, it is not known beforehand whether the relation holds or not. 
Therefore, if the proof for proving a correct exponentiation requires that 
the computation indeed was correctly performed, then such a protocol 
may leak important information when given invalid inputs. This in 
turn may end anger protocol properties, such as privacy, as it potentially 
allows attacks on the protocol. 

B. Preneel (ed.), Secure Information Networks
© Springer Science+Business Media Dordrecht 1999



72 

This begs the question of how to design protocols that do not leak any 
information whether given valid or invalid inputs. Since the very aim 
of the protocol may be to determine whether the input is valid or not, 
that limits us to protocols consisting of two sub-protocols, one for valid 
inputs and the other for invalid inputs, such that the behavior of the 
distributed prover is identical for both sub-protocols. Such a protocol 
is called oblivious, since it does not require the protocol participants to 
know beforehand whether the input is of one type or another in order 
to correctly perform the computation. 

Fujioka, Okamoto and Ohta [9] proposed the first protocol where the 
prover did not have to choose between two different sub-protocols. It is 
not clear, however, how to distribute their protocol, which is the main 
motivation in this paper. This was also the motivating element in the 
work by Jakobsson and Yung [10], who minted the term oblivious, and 
who proposed an oblivious multi-party protocol for determining whether 
a given exponentiation was correctly performed. Their protocol requires 
computation and communication logarithmic in the length of the secu­
rity parameter, e.g., requires O(k) rounds and exponentiations in order 
to reduce the failure probability to O(2-k ). Whereas this is not en­
tirely precluding the use of their protocol, it does limit the number of 
applications. 

By employing the not ion of a meta-prooj, we are able to limit the 
above mentioned costs to a low and constant cost. A meta-proof in our 
setting consists of two portions: (1) a "blinded" proof of the statement 
whose aim it is to prove or disprove - in our case "the exponentiation was 
correctly performed", and (2) a proof that the first proof was correctly 
performed. The first proof is blinded to avoid leaks of information; the 
second is employed to maintain soundness in the presence ofthe blinding. 
If both proofs succeed, the verifier concludes that the exponentiation 
was correctly performed. On the other hand, if the first proof fails and 
the second proof succeeds, this means that the exponentiation was not 
correctly performed. 

We demonstrate an oblivious and computationally minimum-knowledge 
meta-proof for deciding valid exponentiation. We exhibit two versions, 
one that is interactive and based on standard protocols for verification 
of undeniable signatures [5, 6]; the other non-interactive. The non­
interactive version can be based on any discrete log based signature 
scheme of a common format, e.g., [8, 12, 17]. We call such a proof a 
DLEQ signature, as it is both a signature and a proof of equality of 
discrete logs. 

The DLEQ signature is a result of potential independent interest. In 
order to obtain this result, we exhibit a first transformation method that 



73 

takes a quadruple (9, Y, m, s) as input, and generates the pair (G, Y) such 
that G is a generator and Y is a public key. We also exhibit a related 
second transformation method that generates a secret key X, for which 
Y = GX. Based on the random orade assumption, we show that it is 
only possible to determine the secret key X if l09gY = I09mS. 

Using these new parameters, the prover can use a standard discrete 
log based signature scheme to convince the verifier that the relationship 
between the discrete logarithms holds. This is done simply by the prover 
generating a signature on so me message using G as a generator, Y as a 
public key, and X as the corresponding secret key. This signature is given 
to the verifier. If the signature is valid, the verifier will condude that 
I09gY = I09mS, since the prover with overwhelming probability must have 
known X. We demonstrate our new method using Schnorr signatures 
[17] and a variant thereof. 

The method for transforming the input elements to a generator and to 
public and secret keys draws on work by Bellare, Garay and Rabin [1]. 
They introduced a construction that raises different factors of a product 
to different powers in order to improve the efficiency of batch verification 
of exponentiation. We use the same trick, but for a different purpose, 
namely to "lock together" different input components. We prove that it 
is only feasible to determine the secret key corresponding to these new 
aggregate components if the input components have a given discrete log 
relationshi p. 

Our contribution is threefold: First, we introduce the notion of meta­
proofs to improve the efficiency of protocols. Second, we use this new 
notion to develop an efficient method for verifying the correctness of 
exponentiation, with numerous applications within multi-party protocol 
design. Third, we show how to transform inputs that consists of pairs 
with the same discrete logarithm relationships into an output that cor­
responds to the public information needed in signature schemes. It is 
possible to generate signatures using these new parameters if and only 
if the common discrete log of the input pairs is known. The resulting 
non-interactive proof is useful in its own right to provide robustness of 
multi-party protocols. 

Outline. We start in section 2 by reviewing related work. We continue 
in section 3 by specifying the problem we strive to solve. Then, in 
section 4, we present an oblivious protocol to decide whether an input 
corresponds to a correct exponentiation. This is followed in section 5 
by the introduction of our new key transformation method, which in 
conjunction with standard signature schemes is used to make the above 



74 

oblivious decision protocol non-interactive. In section 6 we state the 
properties of our schemes; these are proven in the Appendix. 

2. RELATED WORK 
The effort of determining whether a given quadruple (g, y, m, s) is 

such that loggY = logms was started by Chaum and Antwerpen [5], who 
studied the problem in the context of verifying the validity of undeniable 
signatures (from whieh we borrow the above denotation). In [5] a method 
for proving validity of undeniable signatures was proposed. This was 
improved in [6], resulting in a method that was zero-knowledge for valid 
inputs. 

It was assumed in this setting that the prover would know whether 
the signature is valid or not. This is crucial, as by running the above 
mentioned zero-knowledge proof for an invalid input, the prover in fact 
leaks what the corresponding valid signature iso For invalid inputs, a 
standard "distinguishing protocol" (similar to what has been proposed 
to prove graph non-isomorphism) had to be used. 

In [13], Pedersen showed how to distribute the protocol for proving 
validity of undeniable signatures (or, in our terminology, of correct ex­
ponentiation), but still under the assumption that the prover al ready 
knew whether the input corresponds to a valid undeniable signature or 
not. However, this is often an unrealistie assumption, since it is circular 
in that it requires the prover to run the protocol for deciding the validity 
of the input before the proper protocol could be selected. 

In [9], Fujioka, Okamoto and Ohta introduced a protocol that was 
symmetrie in the sense that it contained two for the prover identieal 
portions, one for proving validity of undeniable signatures, the other for 
proving invalidity. It is not dear, however, how to distribute their proto­
col. The work on this type of symmetrie two-component protocols was 
continued by Jakobsson and Yung [10], who demonstrated an alterna­
tive proof protocol - whieh allows the distribution of the prover - and 
extended this to a setting in which the prover cannot leam whether the 
input is in the language or not. (Here, we are only concerned with the 
prover not having to know this fact beforehand, and allow the prover to 
learn this bit of information.) 

Another thread of work of interest to our result is that on random or­
ades, as we use results for random orades in our transformation scheme. 
We refer to [2, 3, 14, 15, 16] for a careful treatment of issues relating to 
random orades and their significance to signature schemes. 



75 

3. PROBLEM SPECIFICATION 
A quadruple (g, y, m, s) is given to a set of participants that share the 

secret key x corresponding to the public key y = gX. Here - and onwards 
- all computation is assumed to be modulo p, unless otherwise stated, 
where pis a large prime such that p = Iq+ 1 for an integer land another 
large prime q. 

It is the goal of these participants to determine whether or not s = m X 

holds. For simplicity of the protocol description it is also assumed that 
xis shared using a (k, n) threshold scheme, as described by Shamir [18]. 

Assumptions. The computational assumption we make is that a ran­
dom quadruple (g, gX, m, m X) cannot be distinguished from (g, gX, m, R) 
for a random R = m r , unless x is known. This assumption is known as 
the Decision Diffie-Hellman assumption. 

Requirements. We say that a quadruple (g, y, m, s) is in the language 
01 valid quadruples iff loggy = logms. This is with respect to a given pair 
of prime moduli (p, q) of the assumed format. 

We present a protocol for deciding language membership of given 
quadruples (g, y, m, s). We require our solution to be correct (all the 
computation can be performed by the participants involved), sound (the 
decision made corresponds to the true language membership with an 
overwhelming probability) and minimum-knowledge (the protocolleaks 
no information except for the desired one bit result.) To expand a little 
on the latter requirement, our protocols will be computational minimum­
knowledge, which means that given an orade for language membership, 
it is possible in p-time to simulate transcripts that cannot be distin­
guished with a non-negligible probability by any p-time participant from 
real protocol transcripts for the corresponding proof. Moreover, the pro­
tocol is oblivious, Le., the prover executes the same protocol for input 
quadruples in the language as for those that are not. 

As a protocol component of independent interest, we develop a trans­
formation method that takes as input a quadruple (g, y, m, s), such that 
loggy = logms, and outputs a pair (G, Y) such that G is a new generator, 
and Y is a new public key. A second transformation protocol outputs 
X = 10gaY given the quintuple (g, y, m, s, x), where x = loggy = logms. 
The new parameters can be used in any correct and sound discrete log 
based signature scheme of a common type. We require that the public 
key and secret key transformation protocols are correct, Le., if the gener­
ated keys are used in a signature scheme in the manner shown, then the 
signature proof succeeds if the input parameters to the transformation 



76 

protocol have the same pairwise discrete log relation. We also demand 
that the transformation protocols are sound, Le., the verifier of the sig­
nature protocol in which they are used will reject the signature with an 
overwhelming probability if the input parameters to the transformation 
protocol do not have the pairwise discrete log relation. 

4. AN OBLIVIOUS DECISION PROOF 
Let us consider the non-distributed version of the proof for simplicity 

of denotation. Of course, this is a setting where oblivious protocols are 
not needed for security reasons, since the prover can decide whether to 
use the protocol for language membership or non-membership before the 
start of the protocol. The protocol we present is easily distributed. 

The prover is given a quadruple (g, y, m, s), and needs to determine 
- and prove - whether loggY = logms. The prover knows x, the discrete 
logarithm of Y w.r.t. g. 

The protocol is as folIows: 

1. Setup. The prover selects a number a Eu Zq uniformly at random. 

2. First-order proof. The prover generates and outputs what corre­
sponds to a first order proof, Le., the tripie (s, (f, m) = (sa, m ax , m a). 
A verifier of this first proof accepts iff s = (f. 

3. Second-order proof. The prover proves that logmm = logss and 
that loggY = log;;ntf. The verifier of this second proof accepts iff 
both equations are found to hold. 

4. Decision. The verifier outputs exponentiation valid if he ac­
cepted both the first and second order proofs. 
He outputs exponentiation invalid if he rejected the first order 
proof and accepted the second order proof. 
Otherwise, he outputs cheating prover. 

Using a proof protocol for undeniable signatures [5, 6] to prove equal­
ity of discrete logs, an interactive version of the above protocol is ob­
tained. In the next section, we consider how to construct a simple 
and efficient non-interactive protocol for the same, using any common 
discrete-Iog based protocol. 



77 

5. KEY TRANSFORMATION & DLEQ SIG 

In this section we detail a non-interactive proof protocol for perform­
ing the two proofs of equality of discrete logs needed in the protocol in 
the previous section. This is obtained in two steps. First, we introduce 
our key transformation protocol, which takes an input with a certain 
daimed discrete log relation and successfully produces an output con­
sisiting of public and secret keys of a certain format if and only if the 
daimed relation holds. Second, we show how these new parameters can 
be used in standard signature schemes of a common format (we demon­
strate the method for Schnorr signatures). Here, the DLEQ proofis said 
to succeed if and only if the corresponding signature is valid. 

Again, we only consider the non-distributed version of the protocols, 
in order to simplify the notation, and given that the change needed to 
obtain the distributed version is trivial. 

In the following, we consider two different scenariij one in which it is 
impossible that loggm is known to the prover (e.g., m is chosen as a hash 
of a message and the system parameter g, or chosen by the verifier) j the 
second in which the prover may (but does not need to) know the value 
loggm. 

5.1 RELATION UNKNOWN 
We consider the solution that can be employed to efficiently prove 

equality of discrete logarithms of the type loggy = logm s when it is 
impossible that the prover knows 10gg m: 

Public Key Transformation Scheme. The tranformation algorithm 
takes as input the quadruple (g, y, m, s). Two randomizing coefficients 
are computed. These are ej = hash(g,y,m,s,j), for jE {1,2}, where 
hash is an arbitrary hash function that can be modelIed by a random 
orade. It then pairwise "locks together" the components of the input in 
the following manner: C = gel me2 , and Y = yel se2. The transformation 
algorithm outputs the pair (C, Y), where C is denoted the new generator 
and Y is denoted the new publie key. -

Secret Key Transformation Scheme. There is a similar transfor­
mation scheme between secret keys. This is much more straightforward, 
however, as it simply involves setting the output secret key to the input 
secret key, or X = x. We denote X the new seeret key. 

We note that the above can easily be extended to any polynomial 
number of components, without affecting the size of the resulting output 
values. Once we have generated the above values, these can be used in 



78 

a standard signature scheme. Let us review how Schnorr signatures [17] 
are generated: 

Standard Schnorr signatures. The prover selects a value k E Zq 
uniformly at random. He computes r = gk, and the value t = k -
cx mod q, where c = hash(lJ.., r), for a message IJ.. to be signed, and x is 
the secret key of the signer, with a corresponding public key Y = gX. 
The prover outputs (r, t) as a signature on m. The signature is verified 
by checking that r = yCg t for c = hash(lJ.., r). 

The Schnorr signature scheme can be directly used to prove the equal­
ity of discrete logarithms by using (C, Y, X) instead of (g, y, x). The 
message IJ.. is irrelevant in this setting. Similarly, any other signature 
scheme with this general structure may be employed. 

5.2 RELATION POTENTIALLY KNOWN 
In the following, we assurne the scenario in wh ich it is possible that 

the prover knows loggm, for a relation loggy = logms that he wants to 
prove. The reason that the above protocol cannot be employed is that 
the prover can generate a valid signature for any (g, y, m, s) where he 
knows (loggY, loggm, loggs) , whether or not 10ggY = logms, as he will 
always be able to generate the secret key required. 

The solution is closely related to the previously shown solution, but 
for some small differences: 

Key Transformation Scheme. Instead of producing only one pair 
(C, Y) as above, the prover generates two such pairs. In the simple 
case, where we only want to prove equality of two discrete logs, we can 
set (C, Y, M, S) = (g, y, m, s) and X = x. If more relations are to be 
shown to hold, we can let one of the pairs, e.g., (C, Y), correspond to 
all but one of the components of the proof. As above, we would then 
seperate individual components by raising them to random exponents. 
The second pair, (M, S) is set to the remaining two values, e.g., (M, S) = 
(m, s). 

Using a method employed in [11], a pair of related signatures can be 
constructed to show equality of two discrete logarithms, e.g., 10gGY = 
10gMS. We show how this can be done using the Schnorr signature 
scheme as a basis: 



79 

Siamese Schnorr Signature. The prover takes two generators, (gI, g2) 
as input, and one secret key x. He selects a value k E Zq uniformly at 
random and computes rl = gl k, r2 = gl, and t = k - cx mod q, where 
c = hash(p, r}, r2), for a message p to be signed, and a secret key x of 
the signer. The prover outputs (rI' r2, t) as a signature on m. (Alter­
natively, corresponding to the methods for short Schnorr signatures, he 
mayoutput (c, t), slightly altering the verification method.) 

The signature is verified by checking that rl = YI cgI t and r2 = Y2 Cg2 t 

for c = hash(p, rI, r2). 

6. PROPERTIES 
Our new schemes have the foHowing properties: The oblivious decision 

proof for correct exponentiation is computational minimum-knowledge 
(Theorem 1,) correet (Theorem 2,) and sound (Theorem 3.) Herein, we 
do not specify whether the interactive or non-interactive sub-protocol 
for proving valid exponentiation will be used. We then prove that our 
transformation protocols - which in conjuction with standard signature 
schemes can be used to produce proofs of equality of discrete logarithms, 
and in extension, of correct exponentiation - are correct (Theorem 4,) 
and sound (Theorem 5.) These properties are proven in the Appendix. 

7. CONCLUSION 
We have proposed an efficient method for performing oblivious proofs 

of correct exponentiation. Such proofs are weH suited to be used by a 
distributed prover to determine, and prove, whether a relation holds. 
This is so since the protocol for proving language membership is iden­
tical to that for proving non-membership, and so, it is not necessary 
for the servers to know this fact before the start of the protocol. This 
property avoids potentialleaks of information. Our methods employs a 
meta-proof structure, Le., uses two sub-proofs to prove or disprove the 
statement. In the first proof, the prover attempts to prove correctness of 
the statement, corresponding to language membership, and in the sec­
ond, he proves that the first proof was performed correctly. A verifier 
concludes that the statement in question is correct if both the proofs 
succeed, and that the statement is incorrect if only the second proof 
succeeds. As a partial result we show how to employ signature schemes 
of a common type for proving equality of discrete logarithms. 



ßO 

References 

[1] M. Bellare, J. Garay, T. Rabin, "Fast Batch Verification for 
modular Exponentiation and digital Signatures," Eurocrypt 
98, pp. 236-250. 

[2] M. Bellare and P. Rogaway, "Random Oracles are Practical: a 
Paradigms for Designing Efficient Protocols," Proc. of the 1st 
ACM Conference on Computer Communication Security, pp. 
62-73, 1993. 

[3] R. Canetti, O. Goldreich and S. Haievi, "The Random Ora­
cle Methodology, Revisited," Proc. STOC'98, ACM Press, pp. 
209-218, 1998. 

[4] D. Chaum, "Blind Signatures for Untraceable Payments," Ad­
vances in Cryptology - Proceedings of Crypto '82, pp. 199-203. 

[5] D. Chaum, H. Van Antwerpen, "Undeniable Signatures," Ad­
vances in Cryptology - Proceedings ofCrypto '89, pp. 212-216. 

[6] D. Chaum, "Zero-Knowledge Undeniable Signatures," Euro­
crypt '90, pp. 458-464. 

[7] A. De Santis, Y. Desmedt, Y. Frankei, and M. Yung, "How to 
Share a Function Securely," STOC '94, pp. 522-533. 

[8] T. EIGamal "A Public-Key Cryptosystem and a Signature 
Scheme Based on Discrete Logarithms," Crypto '84, pp. 10-18. 

[9] A. Fujioka, T. Okamoto, K. Ohta, "Interactive Bi-Proof Sys­
tems and Undeniable Signature Schemes," Eurocrypt '91, pp. 
243-256. 

[10] M. Jakobsson, M. Yung, "Proving Without Knowing: On 
Oblivious, Agnostic and Blindfolded Provers," Crypto '96, pp. 
186-200. 

[11] M. Jakobsson, K. Sako, R. Impagliazzo, "Designated Verifier 
Proofs and Their Applications," Eurocrypt '96, pp. 143-154. 

[12] National Institute for Standards and Technology, "Digital Sig­
nature Standard (DSS)," Federal Register Vol 56(169), Aug 
30, 1991. 

[13] T.P. Pedersen, "Distributed Provers with Applications to Un­
deniable Signatures," Advances in Cryptology - Proceedings 
of Eurocrypt '91, pp. 221-242. 

[14] D. Pointcheval and J. Stern, "Security Proofs for Signature 
Schemes," Proc. Eurocrypt'96, LNCS 1070, Springer-Verlag, 
pp. 387-398, 1996. 



81 

[15] D. Pointcheval and J. Stern, "Provably Secure Blind Signature 
Schemes," Proc. Asiacrypt'96, LNCS 1163, Springer Verlag, 
pp. 387-393, 1996. 

[16] D. Pointcheval, "Strengthened Security for Blind Signatures," 
Proc. Eurocrypt'98 LNCS 1403, Springer Verlag, pp. 391- 405, 
1998. 

[17] C.P. Schnorr, "Efficient Signature Generation for Smart 
Cards," Advances of Cryptology, Proceedings of Crypto '98, 
pp.239-252. 

[18] A. Shamir, "How to Share a Secret," Communications of the 
ACM, Vol. 22, 1979, pp. 612-613. 

Appendix: Proofs 

Theorem 1: If the Decision Diffie Hellman assumption holds, then our 
oblivious protocol for deciding correct exponentiation is computational 
minimum-knowledge, i.e., given a bit corresponding to the desired output 
of the verifier (exponentiation valid or exponentiation invalid, 
there is a simulator whose transcripts cannot be distinguished by a p­
time verifier from those generated by areal prover . 

Lemma 1: Consider a correct computational zero-knowledge proof 
(P, V) of language membership for quadruples (g, y, m, s). Here, P is 
the prover, V a p-time verifier, and S a p-time simulator of P. Assume 
that V does not know the discrete logarithms loggy vs. logms. Inter­
acting with S, it is infeasible for V to determine whether (g, y, m, s) is 
in the language or not, or V can be used as a black box to break the 
Decision Diffie-Hellman assumption. 

Proof of Lemma 1: 
We prove this by showing that for a valid quadruple (i.e., one in the 
language), there exist a simulator of valid transcriptsj and that it is 
impossible to distinguish transeripts of valid quadruples from transcripts 
of invalid quadruples. Let (g, y, m, s) be a quadruple for which we want 
to determine language membership. S is an simulator of P, which is a 
prover for proving - not deciding - language membership of the above 
type. We do not specify how P works here, but know that it exists, 
given that the protocol specified by P is zero-knowledge. We give the 
quadruple to S, who interacts with V to prove that (g, y, m, s) is in 
the language - whether this is true or not. Given that the proof is 
assumed to be correct, V will only reject a proof with a non-negligible 
probability. Since the proof is computational minimum-knowledge when 



82 

given a query in the language, and S is a simulator for the proof, we 
know that it is infeasible for a p-time limited verifier V to distinguish a 
simulation from areal proof. Therefore, V will only reject a simulated 
proof of a valid quadruple with a negligible probability. Assurne now 
that V will reject a simulation in which (g, y, m, s) is not in the language 
with a non-negligible probability. Then, we can use V to determine 
language membership of quadruples (g, y, m, s) of the valid format, by 
letting V interact with S on the given input. This would break the 
Decision Diffie-Hellman assumption. Therefore, we can conclude that it 
is not possible for V to determine language membership when interacting 
with a simulator. 

Proof of Theorem 1: 
Consider thefollowing simulator SIM: Given an input (g, y, m, s, result) , 
where result is the desired output ofthe verifier, the simulator performs 
the following: 

• result = exponentiation valid 
Select a Eu Zq, set m = mQ and (f = s = sQ. 

• result = exponentiation invalid 
Select a,ß Eu Zq, set m = m Q, s= sQ, and (f= sß. 

SIM sends ((f, s, m) to the verifier. Then, it calls the simulator S of 
lemma 1 for proving validity of the quadru pIe (g, y, m, (f), letting S inter­
act with the prover. Finally, SIM proves to the verifier that (s, s, m, m) 
is in the language of valid quadruples. (Since SIM knows a, it needs 
not simulate this proof.) 
The verifier compares sand (f, and accepts the first-order proof if s = (f, 
which happens with an overwhelming probability if and only if we have 
that the input to the simulator was result = exponentiation valid. 
Next, the verifier verifies the second-order proofs. According to Lemma 
1, he will accept the simulated proof with an overwhelming probability. 
Obviously, he will accept the real protocol with an overwhelming proba­
bility, since the sub-protocol for proving valid exponentiation is assumed 
to be correct. Therefore, the verifier will accept the second-order proof 
with an overwhelming probability. Consequently, the verifier will output 
the decision result and halt. 

Theorem 2: The oblivious protocol is correct, i.e., all computation can 
be performed by the participants, and the expected output is produced 
if all the participants are honest. 



83 

Proof of Theorem 2: 
We only consider the correctness of the main protocol, and refer to the 
proof of theorem 4 for the correctness of the DLEQ signature. We begin 
by establishing that all the computation can be performed by the par­
ticipants involved: 
First, it is clear that the prover can perform the set-up, as this only 
involves picking a number at random. Also, the prover can perform 
the first-order proof, since the prover (potentially distributively) knows 
both a and x, and therefore will be able to produce the tripIe (8,0=, m). 
Obviously, the verifier will be able to perform the computation of the 
first-order proofj this is a simple equality check. 
Second, it is clear that both the prover and the verifier can perform the 
computation for a general formulation of the second-order proof, as the 
prover knows the secrets involved (a resp. x), and no secret information 
is required by the verifier. Finally, it is clear that the verifier can perform 
the last step, which only entails making adecision given the decisions 
from the two sub-proofs. 
Now, considering the outputs in a situation where all the participants 
are honest, we see that the verifier will accept the first-order proof only 
when 8 = 0=, which for an honest prover will occur exactly when s = m X , 

Le., when the input quadruple is in the language of valid exponentia­
tions. 
Given the general version of the second-order proof, which will always 
cause the verifier to accept in the setting where all participants are hon­
est, we see that the final desicion output by the verifier will be correct. 

Theorem 3: The protocol is sound, Le., it is infeasible for a dishonest 
prover to make the verifier output exponentiation valid for an input 
quadruple not in the language, or exponentiation invalid for an input 
quadruple in the language. 

Proof of Theorem 3: 
Again, we consider only the general version of the oblivious proof. Given 
that the second order proof is sound (we refer to [6] resp. the proof of 
theorem 5 for this) we have that the prover cannot cheat in the first level 
proof. This holds since the second order proof governs the correctness 
of the first-level proof. Thus, the output corresponds to the result of 
the first-order proof, and we see that the verifier with overwhelming 
probability will accept if and only if the input is in the language. 

Theorem 4: The DLEQ signature is correct, i.e., when used in conjunc­
tion with asound and correct signature scheme, the resulting signature 
will be valid with an overwhelming probability if the input (9, y, m, s) 
to the transformation protocol is such that loggY = logms. 



84 

Proof of Theorem 4: 
For concreteness, we consider the particular implementation ofthe DLEQ 
signature that uses the Schnorr signature scheme. The general proof for 
an arbitrary signature scheme of the proper type follows easily. For the 
input quadruple (g, y, m, s), we have that YCGt = yelCse2Cgeltme2t = 
gel(t+CX)me2 (t+cx) = Gk = r. Therefore, since all the values involved can 
be computed by the all the participants, we have that the protocol is 
correct. 

Theorem 5: The transformation protocol is sound, i.e., when used in 
conjunction with asound and correct signature scheme, the resulting 
signature will be valid only if the input (g, y, m, s) to the transformation 
protocol is such that loggy = logms. 

Proof of Theorem 5: 
We prove this theorem by giving a reduction to computing discrete 
logarithms. Assume that we want to determine loggm. Call this un­
known value z. We know that el and e2 are random and uniformly 
distributed, following the random orade assumption. We also see that 
G = gel me2 = gel +e2z, and that Y = yel Se2 = gXlel mX2e2 = gelXl +e2X2Z , 

for y = gXl and s = m X2 . We assume that Xl =I X2, but that there 
exists a p-time algorithm A that can compute X, given the public input 
(g Y m s). This value X = logaY = e , xlte2x2z • We now treat this , , , el+e2 Z 

algorithm A, which must succeed with a non-negligible prob ability, as a 
blackbox. We choose values Xl and X2 randomly, and compute sand y 
from m and g, which constitute the input to our algorithm. Then, know­
ing XlJ X2, elJ e2 and the output X of the blackbox, we can compute z, 

which is the discrete log of m with respect to g. Therefore, if the dis­
crete log problem is hard and the random orade assumption holds, then 
we reach a contradiction. Thus, we condude that the transformation 
protocol is sound. 


