
PROTECTING KEY EXCHANGE AND 
MANAGEMENT PROTOCOLS AGAINST 
RESOURCE CLOGGING ATTACKS 

Rolf Oppliger 
Swiss Federal Office of Information Technology and Systems (BFI) 

IT Security Group 

Monbijoustrasse 74, CH-3003 Berne, Switzerland 

rolf.oppliger@mbox.bfi.admin.eh 

Abstract Many cryptographic key exchange and management protocols involve 
computationally expensive operations, such as modular exponentia­
tions, and are therefore vulnerable to resource clogging attacks. This 
paper overviews and discusses the basic principles and the rationale be­
hind an anti-clogging mechanism that was originally designed and pro­
posed to protect the Photuris Session Key Management Protocol against 
resource clogging attacks. The mechanism was later approved by the 
IETF IPsec WG to be included into the Internet Key Management Pro­
tocol (IKMP) or Internet Key Exchange (IKE) protocol respectively. 
The paper introduces and discusses the Photuris anti-clogging mecha­
nism, derives so me design considerations, and elaborates on possibilities 
to use similar techniques to improve an existing HTTP state manage­
ment protocol and to protect TCP /IP implementations against TCP 
SYN flooding attacks. 

Keywords: Photuris Session Key Management Protocol, Internet Key Management 
Protocol (IKMP), Internet Key Exchange (IKE), resource clogging at­
tacks, anti-clogging mechanism, anti-clogging token, HTTP state man­
agement, TCP SYN flooding attacks. 

1. INTRODUCTION 
To meet the security requirements of a steadily increasing number of 

Internet users, the Internet Engineering Task Force (IETF) chartered an 
IP Security (IPsec) Working Group (WG) to develop and standardize 
an IP Security Protocol (IPSP) and a corresponding Internet Key Man­
agement Protocol (IKMP). In August 1995, the IETF IPsec WG pub­
lished aseries of Request for Comment (RFC) documents (RFCs 1825 

B. Preneel (ed.), Secure Information Networks
© Springer Science+Business Media Dordrecht 1999



164 

to 1829) that specified a preliminary version of IPSP [Atk97,Opp98a] 
and the Internet Engineering Steering Group (IESG) approved this pro­
tocol specification to enter the Internet standards track as a Proposed 
Standard. 

Meanwhile, the participants of the IETF IPsec WG have been working 
hard to furt her refine the IP security architecture, and to finish up the 
IPSP and IKMP specifications accordingly. More recently, the IP secu­
rity architecture and the IPSP and IKMP were specified in RFCs 2401 to 
2412 as weIl as RFC 2451, and the IKMP was renamed to be further re­
ferred to as the Internet Key Exchange (IKE) protocol. As such, it com­
bines the Internet Security Association and Key Management Protocol 
(ISAKMP) and the OAKLEY Key Determination Protocol within the 
IPsec Domain ofInterpretation (DoI). In short, the ISAKMP provides a 
framework for authentication and key exchange protocols, whereas the 
OAKLEY Key Determination Protocol actually performs an authenti­
cated key exchange in this framework (which is basically a Diffie-Hellman 
key exchange with a subsequent authentication step). 

The IETF IPsec WG started from the insight that any key exchange 
or management protocol that is to scale for the global Internet must 
make use of public key cryptography. However, the IETF IPsec WG 
soon realized that there is a potential Achilles heel in any such protocol. 
The Achilles heel is due to the fact that the use of public key cryptog­
raphy requires computationally expensive operations, such as modular 
exponentiations, and that a corresponding key exchange or management 
protocol is therefore vulnerable to resource clogging attacks. Note that 
if an attacker can initiate several simultaneous key exchange or man­
agement protocol executions that each take some time and memory to 
perform, the victim's resources will be clogged very rapidly. To make 
things worse, the attacker can initiate the protocol executions with ran­
domly chosen IP source addresses (to stay anonymous). Consequently, 
resource clogging attacks represent a significant class of denial-of-service 
or degradation-of-service attacks that must be considered with care. 

Taking the feasibility of resource clogging attacks into account, some 
form of protection is required for any key exchange or management pro­
tocol that is going to be used on a large scale. This is equally true for the 
IKE protocol and for any other key exchange and management protocol 
(not necessarily based on IP). 

The aim of this paper is to elaborate on possibilities to protect key 
exchange and management protocols against resource clogging attacks. 
Consequently, the paper overviews and discusses an anti-clogging mech­
anism that has been developed within the IETF IPsec WG to protect 
the IPsec suite of security protocols in Section 2. The mechanism in-



165 

cludes an initial message exchange that is called the Cookie Exchange 
(note that the term "cookie" is used differently than in the context 
of the World Wide Web and the corresponding HTTP state manage­
ment protocol that is addressed in Section 4). The Cookie Exchange is 
briefly analyzed in Section 3, and corresponding design considerations 
for protecting key exchange and management protocols against resource 
clogging attacks are derived in Section 4. This section also elaborates 
on possibilities to use similar techniques to improve an existing HTTP 
state management protocol and to protect TCP implement at ions against 
SYN flooding attacks. Finally, conclusions are drawn in Section 5. 

2. COOKIE EXCHANGE 
In the early stages of the work of the IETF IPsec WG, Phil Karn 

developed and proposed a Photuris Session Key Management Protocol 
that was later submitted for possible standardization as IKMP. Note 
that in spite of the fact that a more recent version of the Photuris Ses­
sion Key Management Protocol specification was published in February 
1998 [KS98], this paper refers to a former (and outdated) version of the 
protocol specification (the one that was pusblished in November 1995). 
This poses no problem, since the paper does not focus on the specific 
characteristics of the Photuris Session Key Management Protocol, but 
rat her on its Cookie Exchange mechanism, which has remained essen­
tially the same throughout all subsequent versions of the protocol spec­
ification (and which has also remained the same for the IKE protocol 
specification). Also note that the protocol name is not an acronym, but 
rather a tribute to some unknown engineers. In fact, "Photuris" is the 
Greek name used by zoologists to designate the firefly, and "Firefly," 
in turn, is the name of a classified key exchange protocol designed by 
the D.S. National Security Agency (NSA) for the STD-III secure tele­
phone. A rumor tells that the design of Photuris is very closely related 
to that of the Firefly protocol. The Photuris protocol is also conceptu­
ally similar to the Station-to-Station (STS) protocol originally proposed 
by Whitfield Diffie, Paul van Oorschot, and Michael Wiener [DOW92]. 
Some of the techniques used in the Photuris protocol are covered by 
D.S. Patent 5,148,479, granted to IBM. In August 1995, however, IBM 
announced that it would grant the free use of the patented technologies 
in conjunction with the Photuris protocol and its derivates to the IETF 
[Low95]. 

Similar to the Firefly and STS protocols, the Photuris Session Key 
Management Protocol combines a Diffie-Hellman (DH) key exchange 
with a subsequent authentication step for the public parameters used in 



166 

the DH key exchange. The authentication is done with RSA signatures. 
In addition to the Firefly and STS protocols, the original Photuris pro­
tocol specification also incorporated an anti-clogging mechanism that 
was intended to be performed prior to the DH keyexchange. The aim 
of this mechanism is to protect Photuris entities against simple flood­
ing and resource clogging attacks with randomly chosen and bogus IP 
source addresses and UDP port numbers (note that the Photuris Session 
Key Management Protocol is layered on top of the connectionless User 
Datagram Protocol). 

In spite of the fact that the Photuris protocol was not approved as 
IKMP or IKE protocol, its anti-clogging mechanism has been included 
into several other key exchange and management protocols, including 
the ISAKMP and the OAKLEY Key Determination Protocol. Conse­
quently, the Photuris anti-clogging mechanism is part of the IKE pro­
tocol specification that is now being standardized. Since the Photuris 
anti-clogging mechanism includes an initial message exchange that is 
used to exchange anti-clogging tokens (ACTs) called "cookies," it is also 
called the Cookie Exchange. 

The entities involved in a Photuris protocol execution are called ini­
tiator on the requesting side, and responder on the serving side. In short, 
the protocol execution comprises three phases (refer to [Opp98b] for a 
more comprehensive overview about the Photuris protocol): 

• A Cookie Exchange; 

• A Value Exchange; 

• An Identification Exchange. 

Before the Photuris initiator and responder enter the Value Exchange 
phase and perform a computationally expensive DH key exchange (which 
includes modular exponentiation), they perform the Cookie Exchange, 
in which the initiator sends a Cookie-Request message to the responder, 
and the responder returns a Cookie-Response message to the initiator. 
The two messages include Initiator-Cookie and Responder-Cookie fields, 
both providing room for 16-byte (or 128-bit) ACTs or cookies that look 
like random values to an outsider. The fixed size of a cookie was cho­
sen for convenience, based on the output of some commonly available 
one-way hash functions, such as MD5 or RIPEMD-128 [MOV97]. AI­
ternatively, the size of the Initiator-Cookie and Responder-Cookie fields 
could also be increased to 20 bytes (or 160 bits) for other one-way hash 
functions, such as the Secure Hash Algorithm (SHA-l) or RIPEMD-160 
according to ISO/IEC 10118-3 [MOV97]. Recent results in cryptanalytic 
research have shown that it is even possible to truncate keyed one-way 



167 

hash function results if the length of the corresponding cookies is critical 
and must be minimized [BCK96]. Making use of this possibility provides 
a way to make the mechanism more efficient. 

More specifically, the IPsec Cookie Exchange works as folIows: First, 
the initiator initializes some local state, and sends a Cookie-Request mes­
sage to the responder. The initiator also starts aretransmission timer. 
If no Cookie-Response message is obtained within a certain amount of 
time, the Cookie-Request message is retransmitted. The Cookie-Request 
message includes an Initiator-Cookie field that contains a randomized 
value (notably the initiator cookie) to identify the exchange. The 
Initiator-Cookie field value in each retransmission to the same IP desti­
nation address and UDP port number (if no Cookie-Response message is 
received within the timelimit indicated by the retransmission timer) will 
actually be the same. For every new initiation of the protocol, however, 
the value of the Initiator-Cookie field will be different. The initiator 
uses this value to reject invalid responses. The Responder-Cookie field 
is zero or identifies a specific previous exchange (copied from a previous 
Cookie-Response message). 

On receipt of the Cookie-Request message, the responder determines 
if there are sufficient resources to begin another Photuris key exchange. 
When too many security associations (SAs) and corresponding secu­
rity parameters index (SPI) values are already in use for the requesting 
initiator, or some other resource limit is reached, a corresponding er­
ror message is returned. Otherwise, the responder generates a cookie, 
and returns it in the Responder-Cookie field of a Cookie-Response mes­
sage (the Initiator-Cookie field of the Cookie-Response message con­
tains the cookie that the initiator sent to the responder as part of the 
Cookie-Request message). Unlike the Initiator-Cookie field value, the 
Responder-Cookie field value may be different in each successive re­
sponse. Note that the responder creates no additional state at this 
point in time. In particular, the responder does not store the value 
that is included in the Responder-Cookie field of the Cookie-Response 
message. 

On receipt of the Cookie-Response message, the initiator validates 
the Initiator-Cookie field value. If the value is valid (meaning that it 
is identical to the one originally sent to the responder), the protocol 
execution continues with the Photuris Value Exchange and Identification 
Exchange phases. Otherwise, the message is silently discarded. In all 
subsequent messages the cookies are included in the Initiator-Cookie and 
Responder-Cookie fields and verified accordingly. 

The exact technique by which a Photuris entity generates a cookie 
(either an initiator or responder cookie) is implement at ion dependent. 



168 

The original Photuris protocol specification only stated that the method 
chosen must satisfy the following three requirements: 

1. The cookie must depend on the participating entities; 

2. It must not be possible for anyone other than the issuing entity to 
generate a cookie that will be accepted by that entity; 

3. The cookie generation and verification methods must be compu­
tationally efficient. 

The first requirement prevents an attacker from obtaining a valid 
cookie using his real IP address and UDP port number, and then using 
the cookie to attack the responder with a sequence of Exchange_Request 
messages with randomly chosen and bogus IP source addresses and UDP 
port numbers. Making a cookie dependent on the participating entities 
is actually the most important requirement for an effective anti-clogging 
mechanism. 

The second requirement implies that the generation and subsequent 
verification of a cookie must be cryptographically sound, and that the 
issuing entity must use some secret information in these computations. 
Without this secret information, an attacker must not be able to gener­
ate or verify a cookie. Also, he must not be able to deduce the secret 
information from a cookie. From a technical point of view, the situation 
is rat her simple, since the secret information is local and must not be 
distributed to peer entities. Cookie generation and verification is a local 
matter that does not involve any remote peer entity; this simplifies the 
management of secret information considerably. 

Finally, the third requirement is to thwart resource clogging at­
tacks against the anti-clogging mechanism itself. Note that if an anti­
clogging mechanism involved some computationally expensive opera­
tions, it would also be possible to launch a resource clogging attack 
against this particular mechanism (instead of launching the attack 
against the key exchange or management protocol that is protected 
with the mechanism). Consequently, an effective anti-clogging mech­
anism must use efficient cryptographic algorithms and techniques, such 
as keyed one-way hash functions [Gon89,Tsu92]. 

According to the original Photuris protocol specification, a recom­
mended technique (to generate and verify a cookie) is to compute a 
one-way hash function, such as MD5, over the IP source and destination 
addresses, the UDP source and destination port numbers, keyed with 
some locally generated secret value (which must not be different for dif­
ferent security associations). Any construction for keyed one-way hash 
functions can be used to generate and verify the cookies, the HMAC 



169 

construction being a good candidate [BCK96,KBC97]. Note that the 
use of the secret value and the corresponding computation of the keyed 
one-way hash nmction is slightly different on the initiator and responder 
sides. 

• On the initiator side, the secret value that affects the cookie should 
change for each responderj it is thereafter internally cached on 
aper responder basis. This provides improved synchronization 
and protection against replay attacks. An alternative is to cache 
the cookie instead of the secret value. Incoming cookies can then 
be compared directly without the computational costs of cookie 
regeneration. 

• On the responder side, the secret value may remain the same for 
many different initiators. Nevertheless, the latest version of the 
Photuris protocol specification requires a periodical change of the 
secret value and suggests changing it every 60 seconds. During the 
Value and Identification Exchanges, the responder regenerates the 
corresponding cookie for each validation. The responder cookie is 
not cached during the initial Cookie Exchange to avoid save state. 
Only after the first message of the Value Exchange phase (namely 
the Exchange-Request message) is received, both the initiator and 
responder cookies are cached to actually identify the exchange. 

The important point to note is that the responder doesn't create any 
state prior to receiving a valid cookie from the initiator to which it has 
previously issued it. The cookie is validated by comparing it to a recon­
structed value based on information in the incoming Exchange-Request 
message (the first message in the Photuris Value Exchange phase) plus 
the appropriate secret information. It does take some time to run the 
keyed one-way hash function, but it is minimal. It is certainly better 
than creating state and running the risk of being swamped in an attack 
similar to that which might be mounted with a sequence of TCP SYN 
messages [SKK+97]. 

3. BRIEF ANALYSIS 
In this section, we briefly analyze the security properties of the Pho­

turis or IPsec Cookie Exchange. Assuming the method to construct 
cookies with a keyed one-way hash function (e.g., using the HMAC con­
struction) to be cryptographically sound, an attacker has the following 
possibilities to circumvent the anti-clogging mechanism provided by the 
Cookie Exchange: 



170 

• First, the attacker can request a cookie with his true IP address 
and UDP port number, and use the returned cookie to launch a 
resource c10gging attackj 

• Secondly, the attacker can request a cookie with a wrong IP address 
and UDP port number, and use the returned cookie to actually 
launch the resource c10gging attackj 

• Thirdly, the attacker can also eavesdrop on a communications line 
and grab some valid cookies that are passing by in order to launch 
the resource c10gging attack. 

The first attack is yet possible but reveals the true IP address of the 
attacking entity (disabling the possibility to stay anonymous). Conse­
quently, this attack is not considered as a serious threat and can be 
countered accordingly. 

Unlike the first attack, the attacking entity can stay anonymous in 
the second attack. Note, however, that this attack is somehow more 
difficult to launch, since the attacked entity will return the responder 
cookie to the wrong IP address. The attacker must therefore either 
grab the response message on its route back to this (the wrong) IP 
address or enforce a route that passes through his site. A possibility 
to enforce this route may be the use of the IP source routing option in 
the cookie requesting message. A more pragmatic attacker would try to 
compromise a system that is phyically located on the same network as 
the victim and request the cookies from there. Since the compromised 
system is located on the same network it can also be used for grabbing 
the returned cookie and forwarding it to the attacker. 

In either case, the most serious threat is due to the third attack in 
which the attacker uses valid cookies to launch a resource clogging attack 
(spoofing appropriate IP addresses and UDP port numbers). Again, an 
attacker can make use of a compromised system that is physically 10-
cated on the same network as the victim to eavesdrop and collect valid 
cookies. Note, however, that according to the way in which cookies are 
generated, they are restricted to use from specific IP addresses and UDP 
port numbers. Consequently, the at tacker must spoof these IP addresses 
and UDP port numbers in order to initiate key exchange protocol ex­
ecutions and launch a corresponding resource clogging attack. In the 
following section two design considerations are derived that can be used 
to minimize the risks that result from this threat. 



171 

4. DESIGN CONSIDERATIONS 
In an authenticated key exchange protocol, the key exchange may be 

performed either before or after the authentication step: 

• In the first case, a shared secret is established before authentica­
tion is performed. Consequently, the identities of the participating 
entities can be protected or hidden with the shared secret, and 
some form of anonymity service can therefore be provided. Un­
fortunately, an outsider is also able to launch a resource clogging 
attack under a wrong identity (since the entity is not authenticated 
prior to the key exchange). 

• In the second case, authentication is performed before a shared 
secret is established. Consequently, anonymity services are difficult 
to provide and resource clogging attacks are hard to launch under 
a wrong identity (since the entity must be authenticated prior to 
the key exchange). 

There is an interesting trade-off between the possibility to hide the 
identities of the participants of an authenticated key exchange and the 
possibilities of an outsider to anonymously launch a resource clogging 
attack. Consequently, protecting a key exchange or management pro­
tocol against resource clogging attacks is important if the following two 
conditions hold: 

1. The protocol performs an authenticated key exchange in which the 
key exchange is performed prior to the authentication; 

2. The protocol is layered on top of a connectionless protocol, such 
as the Internet Protocol (IP) on the network layer or the User 
Datagram Protocol (UDP) on the transport layer. 

Most key exchange and management protocols that have been pro­
posed and submitted for standardization to the IETF IPsec WG fulfill 
these requirements. This is equally true for many other key exchange 
and management protocols. Note, however, that some key exchange and 
management protocols that are in widespread use today, such as the Se­
eure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols 
[üpp98b], are layered on top of the Transport Control Protocol (TCP) 
that is connection-oriented. This situation is less vulnerable to resource 
clogging attacks, since a TCP connection must first be established be­
fore a victim can be flooded with key exchange request messages, such 
as ClientKey Exchange messages in the case of SSL /TLS (this follows a 



172 

more general line of argumentation that connection-oriented protocols 
are generally simpler to secure). 

The IPsec Cookie Exchange provides some protection against resource 
clogging attacks. Having the analysis of the last section in mind, there 
are two considerations that one may think of in order to improve the 
effectiveness of an anti-clogging mechanism: 

1. Restricting the usability 0/ a eookie to just one simultaneous pro­
toeol exeeution: In general, a cookie is requested by an initiator of 
a key exchange or management protocol execution and is used by 
this entity exclusively. Consequently, there is no need to allow a 
cookie to be used for several protocol executions simulatenously, 
and the use of such a cookie can be detected and aborted. 

2. Restricting the li/etime 0/ a eookie: In general, a cookie may have 
a restricted lifetime and an initiator who has received a cookie 
may have to use it within a given time interval. There are several 
possibilities that one may think of in order to rest riet the lifetime 
of a cookie and to implement cookie aging accordingly: 

• One possibility is to use timestarnps and synchronized docks. 
For example, the ISAKMP requires inclusion of a timestamp 
in the cookie generation and restricts its lifetime to the life­
time of one security association (SA). 

• Another possibility would be to periodically change the secret 
information that is used to generate and verify the cookies. 

An additional word is due to the use of the mechanisms and technolo­
gies addressed in this paper to protect a key exchange or management 
protocol against resource clogging attacks to improve the security prop­
erties of" cookies" as used in a widely deployed HTTP state management 
protocol [KM97]. In essence, the use of such cookies allows an HTTP 
server to create a stateful session with specific HTTP request and re­
sponse messages. In general, cookies are downloaded and stored on the 
client side without protection. Anybody with write access to the cor­
responding file (which is cookies. txt in a Netscape environment) can 
either create or modify and resubmit a cookie without giving the server 
a chance to realize the change. Consequently, a data origin authentica­
tion and integrity service would be useful to allow a server to recognize 
whether a cookie has been modified since its original release. Again, this 
can be done using a keyed one-way hash function to compute a message 
authentication code (MAC) for the cookie, and again, the secret value 
that is used to key the one-way hash function must be known to the 
server only. This simplifies key management considerably. 



173 

FinaIly, note that a similar anti-clogging mechanism can also be 
used to protect a TCP implement at ion against SYN fiooding attacks 
[SKK+97]. In short, a TCP SYN fiooding attack works as follows: When 
a TCP entity receives a SYN message, it creates some local state, re­
turns a SYN-ACK message, and waits for the requesting entity to finish 
the connection establishment with a final ACK message. During this 
waiting period, some buffer space is occupied (at least until a timer ex­
pires), and since the entire buffer space is limited, a TCP entity can be 
fiooded quite easily through a sequence of TCP SYN messages. In oder 
to stay anonymous, an attacker typically sends out these messages with 
random IP source addresses. 

An obvious method to counter the TCP SYN fiooding attack is to 
increase the size of the buffer space. Note, however, that this does not 
solve the problem entirely, but only makes the attack more difficult to 
launch (since it only requires more TCP SYN messages to be sent by 
the at tacker ). 

In order to effectively counter the TCP SYN fiooding attack (launched 
with random IP source addresses), the creation of local state must be 
avoided on the server side until it can be verified that the requesting 
entity is actually using its true IP address. This can be done in a way 
that is similar to the Photuris or IPsec Cookie Exchange: Let's assurne 
a TCP entity S (standing for server) receives a SYN message from an­
other TCP entity C (standing for client) with a sequence number field 
value set to X. Let's further assurne that S does not create any local 
state at this point in time, but directly _returns a SYN-ACK message 
instead. In this message, the acknowledgment number field value is set 
to X + 1 (indicating the next sequence number that it expects) and the 
sequence number field value is set to Y that represents a keyed one-way 
hash function result truncated to 32 bit. Again, the message for which 
the keyed one-way hash value is generated includes the IP addresses and 
TCP port numbers of C and S (as weIl as some other information), and 
again, the secret value that is used to key the one-way hash function 
is a local matter and must not be distributed in one way or another. 
When S finally received a TCP ACK message that includes an acknowl­
edgment number field value of Y + 1, it would verify the validity of 
Y + 1 according to the information found in the corresponding message 
headers (IP addresses and TCP port numbers). If the value were valid, 
local state would be built for the TCP connection with C. Otherwise, 
the connection establishment request would be discarded and no state 
would actually be built. Note that the use of a keyed one-way hash 
function to compute the sequence number field value has better random 



174 

characteristics than generally used methods, making IP spoofing attacks 
generally more difficult to launch. 

Obviously, the analysis for the IPsec Cookie Exchange also applies 
for this mechanism to counter the TCP SYN flooding attack. Note, 
however, that the sequence number field in the TCP he ader is only 32 
bits in length, and that the keyed one-way hash function result must 
be truncated to this length accordingly. This may give some concerns, 
since a one-way hash function producing a 32-bit value is generally far 
away from being collision-resistant (an at tacker can find a message that 
hashes to a certain value in 231 trials on the average). Note, however, 
that an attacker does not know the secret value that is used to key the 
one-way hash function. If this key is sufficiently large, the attacker will 
not be able to find any collision that he may (mis)use in oder to correctly 
spoof his IP address and TCP port number. 

5. CONCLUSIONS 

Many cryptographic key exchange and management protocols involve 
computationally expensive operations, such as modular exponentiations, 
and are therefore vulnerable to resource clogging attacks. This paper has 
overviewed and discussed the basic principles and the rationale behind 
an anti-clogging mechanism that was originally designed and proposed 
to protect the Photuris Session Key Management Protocol against re­
source clogging attacks. In spite of the fact that the Photuris protocol 
was not approved as Internet Key Management Protocol (IKMP) or 
Internet Key Exchange (IKE) protocol respectively, the current IKE 
protocol specification inherits its anti-clogging mechanism. Based on a 
brief analysis of this mechanism, the paper has also derived some design 
considerations for anti-clogging mechanisms and has elaborated on pos­
sibilities to use similar techniques to improve an existing HTTP state 
management protocol and to protect TCP implementations against SYN 
flooding attacks. 

As protection against denial-of-service and degradation-of-service at­
tacks is becoming more and more important for Internet-based appli­
cations, furt her research is expected to be done in this area. For ex­
ample, the use of anti-clogging mechanisms in cryptographic (and non­
cryptographic) protocols deserves furt her study, and the trade-off be­
tween the possibility to hide the identities of the participants of an au­
thenticated key exchange and the possibilities of an outsider to anony­
mously launch a resource clogging attack has also not been studied in 
its entirety. Finally, prototype implement at ions will have to be done to 



175 

get some evidence about the performance characteristics of anti-clogging 
mechanisms. 

Acknowledgments 
The author thanks Phil Karn for explaining the rationale behind the Photuris 

Cookie Exchange and for sharing his ideas regarding the use of similar techniques to 
protect a TCP implementation against SYN fiooding attacks. In addition, the author 
also thanks the anonymous reviewers for their useful comments. 

References 
[Atk97] RJ. Atkinson. Toward a More Secure Internet. IEEE Computer, 

January 1997, pp. 57 - 61 
[BCK96] M. Bellare, R Canetti, and H. Krawczyk. Keyed Hash Func­

tions and Message Authentication. Proceedings of CRYPTO '96, pp. 
1 - 15 

[DOW92] W. Diflie, P.C. van Oorshot, and M.J. Wiener. Authentication 
and Authenticated Key Exchanges. Designs, Codes and Cryptography, 
1992, pp. 107 - 125 

[Gon89] L. Gong. Using One-Way Functions for Authentication. ACM 
Computer Communication Review, Vol. 19, No. 5, October 1989, pp. 
8 - 11 

[KBC97] H. Krawczyk, M. Bellare, and R Canetti. HMAC: Keyed­
Hashing for Message Authentication. RFC 2104, February 1997 

[KM97] D. Kristol and L. Montulli. HTTP State Management Mecha­
nism. RFC 2109, February 1997 

[KS98] P. Karn, and W.A. Simpson. Photuris: Session-Key Management 
Protocol. Internet Draft, February 1998, work in progress 

[Low95] J. Lowe. A Grant of Rights to Use a Specific IBM patent with 
Photuris. RFC 1822, August 1995 

[MOV97] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Hand­
book 01 Applied Cryptography. CRC Press, Boca Raton, FL, 1997 

[Opp98a] R Oppliger. Security at the Internet Layer. IEEE Computer, 
September 1998 

[Opp98b] R Oppliger. Internet and Intranet Security. Artech House 
Publishers, Norwood, MA, 1998 

[SKK+97] C.L. Schuba, I.V. Krsul, M.G. Kuhn, E.H. Spafford, A. Sun­
daram, and D. Zamboni. Analysis of a Denial of Service Attack on 
TCP. Proceedings of IEEE Symposium on Security and Privacy, May 
1997, pp. 208 - 223 

[Tsu92] G. Tsudik. Message Authentication with One-Way Hash Func­
tions. ACM Computer Communication Review, Vol. 22, No. 5, Octa­
ber 1992, pp. 29 - 38 


