
IMPLEMENTING A SECURE LOG FILE
DOWNLOAD MANAGER FOR THE JAVA
CARD

Constantinos Markantonakis*, Simeon Xenitellist
Information Security Group, Royal Holloway,

University of London, Egham, Surrey, TW20 OEX, UK

{C.Markantonakis. S.Xenitellis}@rhbnc.ac.uk

Abstract Current smart card technology suffers from inadequate log file handling
mechanisms. While there are a number of theoretical security protocols
integrating smart cards in a variety of systems, there are very few test
implementations. In this paper we present details of an experimental
implementation of aseeure log file download protocol on two different
Java Card platforms. We also provide a diseussion of the performance
results along with our experiences from implementing the theoretical
design in areal multi-application smart eard environment.

Keywords: Seeurity, Smart eard, Java Card, Multi applieation smart
eards, Log files, Audit files.

1. INTRODUCTION
Among the meehanisms that help monitor system aetivity are audit

log services. Sueh services, implemented either in kernel spaee, user space
or, most eommonly, a eombination of both, ean be used for purposes such
as billing and debugging and, most importantly, in seeurity related ap­
plieations. An important seeurity related applieation is the monitoring
of system aetivity to identify seeurity breaches and determine who is to
be held aeeountable. In a smart eard environment, and particularly in
today's multi-application smart eards, log files are important in identify­
ing breaehes in system seeurity by maintaining a database of the aetions
that the eard has earried out. Smart eard log files eould be used to log

*The author's research is funded by Mondex International Limited. This work is the opinion
of the author and does not necessarily represent the view of the funding sponsor.
tThe author is funded by the State Scholarships Foundation of Greece.

B. Preneel (ed.), Secure Information Networks
© Springer Science+Business Media Dordrecht 1999

144

operating system or application information [7J or even the results of
card intrusion detection mechanisms.

With the introduction of true multi-application smart cards [3, 5, 12],
the amount of information to be logged increases substantially. First,
each transaction adds to the audit log file and second, multiple applica­
tions allow less file space for the log file(s). At the same time, since more
than one application will reside on the card, there are many security
related events to be logged.

An obvious question that needs to be answered is what happens when
the log file space becomes fuH. The currently favoured approach suggests
that the log files should be overwritten in a cyclic mode. In [6J we
proposed that the log files should be securely downloaded to some other
medium which will not suffer from immediate storage restrictions.

In this paper we give a secure log file download protocol, and describe
results from a test implementation. The protocol uses minimal cryptog­
raphy (as explained in the next section). It could also be considered as
a reference point when designing more complex smart card applications.

For the protocol implementation we used two of the most popular
Java Card API Ver 2.0 [8, 9, lOJ compliant implementations currently
available in the market, namely the GemXpresso Java Card [3J from
Gemplus and the Cyberfiex Open 16K Java Card [12J from Schlum­
berger. Notably, both these implement at ions aHow dynamic application
download and provide application isolation. Although Java Cards offer
multi-application capabilities, there are still certain limitations such as
the limited size of EEPROM and RAM, the limited processing power,
and the lack of cryptographic functions in general. These factors forced
certain design decisions which will become evident below.

This paper serves two purposes. First it provides performance mea­
surements for the log file download protocol, and thus proves the concept
is feasible. Secondly, it highlights issues which are relevant when devel­
oping real life Java Card applications. This last point is of particular
importance since there are very few Java Card applications available
today and we expect a substantial increase in the future.

The remainder of this paper is organised as follows. First, we outline
the main characteristics of the log file download protocol. Subsequently
we present the available smart card technology along with its main lim­
itations. The next two sections describe the implementation details for
the two platforms. Finally, we provide our concluding remarks and di­
rections for further research.

145

2. AN OVERVIEW OF THE LOG FILE
DOWNLOAD PROTOCOL

The following protocol is the simplest of the three presented in Cardis
98 [6]. The principal participants are as follows.

1. C (Card) represents the smart card. Typically, this is a tamper­
resistant device, and has access to a variety of cryptographic algo­
rithms and a good pseudorandom number generator.

2. ALSS (Audit Log Storage Server) receives and stores the transmit­
ted log files. Depending on the environment the ALSS could be a
"smart wallet", a personal computer used in conjunction with the
smart card, or even a repository server connected to the Internet.

3. LFDM (Log File Download Manager) resides in the card as the
only entity authorised to access the log files and implement the log
file download protocol.

4. PD (Personal Device) Le. the smart card reader/writer or personal
wallet used by the card to communicate with the outside world.

5. A (Arbitrator) is responsible for receiving the downloaded log files
in case of a dispute, and subsequently informing the entities in­
volved of its decision.

In the implementation described here the ALSS is implemented as
a PC-resident dient application, and the LFDM is implemented as a
smart card application. In practice the LFDM could also be a smart
card operating system entity.

Prior to downloading any log files we require that the cardholders will
be authenticated by their cards. An existing unilateral authentication
scheme can be used although its details are not within the scope of this
paper. The details of evidence generation are described in [1] and are
also outside the scope of this paper.

The protocol involves the LFDM sending message 1 to the ALSS and
the ALSS responding with message 2.

where

Mn = (F 11 Te 11 Ne 11 lAe 11 CBindn)

CBindn = h(h(Mn-d 11 Ne)

(1)

146

ALSS --7 LF DM : SBind (2)

where

SBind = (h(F) 11 "Log File Received" 11 Ts)

We assurne that the card shares a key (KAc) with an arbitrator. This
key could be stored in the card during the personalisation phase (prefer­
ably) or securely updated at any later stage during the life cycle of the
card. Additionally we assurne that the card maintains a sequence number
Ne which cannot be modified by any external events.

The notation used is as follows: h(Z) is the one-way hash of data Z
using an algorithm such as SHA-I, fK(Z) is the output of MAC function
f using as input secret key K and data string Z. The log file data is
represented by F, Te is a newly generated time-stamp, Ne is the current
sequence number Incremented by one, and IAe is the unique key identifier
for key KAe (telling the arbitrator which key to use to verify the MAC
of the message). The CBindn variable links the previously sent message
(Mn-d with the current message sequence number (Ne). After sending
1 the LFDM stores in the card (in protected memory) a hash of the
current file (F) and a hash of the current message sent (Mn). Note that
the LFDM has not yet ftushed the space occupied by the log file.

On receiving message 1 the ALSS informs the cardholder, e.g. by dis­
playing a message on the PD's screen, that the message has been suc­
cessfully received. Subsequently it extracts the log file (F) from message
(Mn). The ALSS reply to the card consists of message 2.

On receiving the response message, the card checks for the correct
hash value of the log file (F). If a correct hash value of the log file is
present, the LFDM ftushes the memory space used by the log file and
replaces the previous value of M n- 1 with the current value of Mn.

3. DESIGN

Software solutions that use smartcards can be easily separated into
the client-side program and the smartcard applet. In our case, in order
to implement the log file download protocol, two distinct entities have to
be developed. The first one will reside in the card (that is, the LFDM)
and the second will reside in the user's PC (the ALSS). In this section,
we outline the technology available for implementing these two entities.
Subsequently, we present the limitations and architectural characteris­
tics, to give the reader an understanding of the issues involved.

147

3.1 THE CLIENT APPLICATION
The dient application will implement the ALSS residing on the users

PC. For the dient side of the application, there are currently two in­
terfaces available that enable the dient to interact with the Java Card.
These interfaces provide a level of abstraction to the developer. For ex­
ample, with both interfaces the developer need not worry about how to
access the particular smart card reader.

• PC/SC [15] was developed by Microsoft, Hewlett-Packard, Siemens­
Nixdorf and the smart card manufacturers. PC /SC is tied to the
Windows platform and typical supported programming languages
are Visual Basic and various C++ compilers. This is the most
widely used and supported architecture. Most smart card manu­
fact ures provide drivers for PC/SC.

• Another more recent initiative is the OCF (OpenCard Framework)
[13], which enables Java applications to communicate with the
smart card in a transparent and portable fashion. OCF is writ­
ten in Java and was primarily developed by IBM and other com­
puter technology providers. Nowadays, OCF enjoys support from
Java Card manufacturers to banking organizations. It permits the
dient applications to access the smart card irrespective of the host
operating system and CAD (Card Acceptance Device or Card Ter­
minal). Support for OCF is currently becoming available on an
increasing number of Java Cards and Card Terminals. Note that
OCF and PC/SC do not require a Java Card; they both also work
with non-Java smart cards.

3.2 SMART CARD APPLICATION
DEVELOPMENT TOOLS

As previously stated the LFDM will be an application residing in
the smart card. Two widely known development tools that allow pre­
processing, downloading and execution of Java Card applets are as fol­
lows.

• The Gemplus GemXpresso Rapid Applet Development (RAD) Kit
[3], is a Java-based application development environment that en­
ables developers to write and test Java Card applets. The GemX­
presso applet-prototyping card is the first smart card implemented
on a 32-bit RISC processor. It is Java Card API 2.0 compatible but
it also differentiates itself with a cut-down version of an RPC (Re­
mote Procedure Call) [1] style protocol called DMI (Direct Method

148

Invocation) [14]. It is ISO 7816-2, -3, -4 compatible and it has 10KB
and 5KB of heap memory available for applications.

• The Cyberflex Open 16K [2] is Java Card API 2.0 compliant and
compatible with ISO 7816-2, -3, -4. It can accept applets with a
total size of 16 KB including the heap, and it has a stack size of
128 bytes. It uses an 8-bit processor.

The developer creates applets using a typical Java development envi­
ronment, pre-processes them using the development environment tools,
and downloads them to the Java Card. Development environment tools
enable communication with the running applet in the Java Card. Java
Card simulators are included in both environments.

3.3 LIMITATIONS OF THE SMART CARDS
AND THE DEVELOPMENT KITS

During the development of the test applications, we encountered the
following limitations, that had to do either with the smart card capabil­
ities or the Development Kits that accompanied them.

Of the two Java Cards, only the GemXpresso supports garbage collec­
tion. However, garbage collection, by nature, does not take place immedi­
ately after the memory ceases to be used, but after some implementation­
specific delay. Also, the applications running on a smart card have a very
short lifetime, so that cases of garbage collection that do not occur at all
will probably be commonplace. Furthermore, in many JVM implemen­
tations, garbage collection takes place when memory gets exhausted and
such a procedure would adversary affect the potential speed of the given
Java Card. Due to these issues, special attention had to be given when
coding not to use loeal variables and not dynamically alloeate memory
in frequently ealled funetions. In extreme eases, ''frequently'' is defined
as twiee or more. When a loeal variable is instantiated, the memory of
the stack is used. When a dynamic allocation is requested, the mem­
ory of the heap is used. In both eases, after the exit of the funetion,
no memory is claimed back, and we gradually beeome short of memory.
The solution is to use global variables, and reuse them as mueh as pos­
sible within the applet. It is desirable to restrict memory allocation to
inside the eonstruetor of the applet, beeause this is a guaranteed loeation
that is exeeuted only onee, and it is a location where the memory has
not beeome fragmented. We must note that garbage eolleetion is not a
prerequisite for Java Card 2.0 API eonformanee.

When sending data (Applieation Protocol Data Units [11]) from the
eard to the dient and viee versa, a limit of approximately 256 bytes
exists. In order to solve the problem, special programming has to be

149

used to send the data in blocks. This slows the applets significantly
when communicating with the dient, because switching from receiving
to sending, and vice versa, is a slow procedure.

The (lack of) availability of cryptographic functions on the Java Cards
is a two-fold problem. First, the export control restrietions imposed
by many governments dissuade manufacturers from implementing them.
Secondly, the JVM already takes up much of the resources of the Java
Card, and manufacturers need to invest heavily to put the cryptographic
core with the rest of the functionality. Both Java Cards used do not
currently support real cryptographic functions.

The development environment usually offers a "simulator" that enables
the programmer to easily test the applet without downloading it to the
Java Card every time it is to be executed. In the case of the development
kit of the Open16K, the simulator was not reliable enough, and attempts
to use it had to be abandoned. The GemXpresso Java Card simulator
was significantly better and quite usable.

The time from the generation-compilation of the applet on the devel­
opment environment until the applet is running on the Java Card was
computed to determine the compile-to-run cycle. It was noticed that the
resulting times were between one and two minutes. These times are very
long and in some cases involve aseries of repetitive steps. This often
leads to errors such as failing to correctly update the applet on the Java
Card and carrying out tests on the previous applet. This was the case
with the development environment of the Open 16K card.

3.4 DESIGN GOALS
The following are among the design principles followed while imple­

menting the log file downloading protocol.

• Ensure that the log file download protocol will start and the legit­
imate smart card holder will approve it.

• Effectively identify restricted smart card resources in order to allow
more adequate application design.

• Perform application code optimisation in order to achieve better
application performance.

• Design dummy cryptographic primitives, since most of the cards
do not offer such functionality (and when offered it is not fully
accessible, as explained later).

• Evaluate the usability of the Java Card development tools.

• Examine application execution performance for both platforms.

150

3.5 COMMON IMPLEMENTATION
DETAILS

Because the cryptographic functions were unavailable, dummy func­
tions were implemented to cover the lack of hash and MAC functions.
The input to the dummy MAC and hash functions was a buffer of arbi­
trary size and the output was a 16-byte string. The dummy hash was
implemented using the modulus operation over the input several times
and the dummy MAC was implemented using the dummy hash by adding
an "exclusive or" with a key value.

Although log files of 1-2Kb may be more desirable [7J we used smaller
files along with simple cryptographic functions for the following reasons.

It is rather difficult to manage large files (more than 512 bytes) on the
card, and problems were encountered when reading a single file larger
than 248 bytes from the card. It would also be time-consuming to per­
form cryptographic functions on large blocks of data. Additionally it
would further delay the protocol execution since more than one log file
packet would need to be transmitted (due to the 248-byte restrietion on
the APDU data buffer).

Yes

...
Prepare Ihe APOU (MAC

01 previous CBind and
Send 10 sequence number as

::"~-7'Ai=iLS~S:.=1 new CBind. append log
'---- file, Card limeslamp,

Sequence Number,
Ke 10

(Terminale)-NO

Send 10
Card

Haslhe user
been validaled?

Yes

*'

Figure 1 The two steps (SendData, VerifyReply) of the log file download protocol

Another issue that forced the common choice of log file size as 40
bytes, and such simple dummy cryptographic functions, was the poor
performance ofthe card reader for the Cyberfiex Java Card. As described

151

in §5.1, this card reader does not support long processing in the Java Card
due to the desynchronisation of client/card communications.

The log file information could have been spread across more than one
file to accommodate the limited abilities of the Java Cards. However,
such a solution was not adopted, as it would require changes to the log
file download protocol and generally to the security design of the system.
Therefore, it was decided that the log file should be relatively small (248
bytes when running on the simulator and 40 bytes when running on the
card). As previously mentioned, it was impossible to make the protocol
work (on the card) when the log file was more than 40 bytes. However,
we believe that with further code optimisations and more effective smart
card memory usage the protocol would work with larger files. The steps
of the log file download protocol are presented in figure 1.

Note that for the protocol to be implemented, the following function­
ality needs to be available. The card has to implement a hash and a
MAC function (§4.3 and §5.3). The card must also be capable of storing
certain transient information (Nc, IAC) while waiting for the ALSS's
reply. The ALSS has to implement the same hash function as the card.

The protocol functionality is encapsulated within three essential func­
tions: first, the Validate operation that accepts the PIN and compares it
with adefault one, second, the SendLogFileData operation that imple­
ments the part of the protocol that sends, among other information, the
log file data, and third the ReceiveALSSReply that implements the last
step of the protocol.

4. GEMXPRESSO IMPLEMENTATION
In this section we present the implementation details when using the

GemXpresso development kit.

4.1 GEMXPRESSO CHARACTERISTICS
AND LIMITATIONS

Note that, although GemXpresso contains certain dummy crypto­
graphie functions (DES, tripie DES, MAC), these were not used. Instead,
the dummy functions specified in §3.5 were used in both implementations
to improve the comparison between the two experimental platforms.

Within the GemXpresso development kit a simulator is also provided.
This simulator allows the programmer to experiment with the Java Card
applications prior to downloading to the card.

152

4.2 IMPLEMENTATION
In this section, we present a more detailed design for the GemXpresso

Java Card application. The application is written according to the DMI
specification in Java. In order to maintain compatibility with the Open
16K platform did not use any 32-bit data types (specifically in the hash
and MAC functions). We have shared the functionality of the log file
download protocol between an applet and a library.

The Java Card applet contains all the functions accessible to the out­
side world (Le. the dient). These functions provide an external interface
for the functions (defined in the li brary) directly accessing the log file .

I Client Applet Library

Check PIN
Get Log File
GenerateHash
GenerateMac
Verify Reply

,....--tI~ Flush LogFile

Figure 2 The arehitecture of the LFDM residing on the GemXpresso eard and the
Client applieation residing on the user's PC

In this architecture the sensitive log file information will only be ac­
cessed through the library dasses, and a malicious dient application
cannot directly call the procedures accessing the log file. Because the
library contains the basic log file access procedures (such as a log file
API), these functions can then be shared among other trusted Java Card
applications.

To see the advantages of this architecture, suppose the log file down­
load protocol is to be upgraded - a new Java Card applet, implementing
the new protocol and using the existing library, can be loaded into the
smart card, without endangering the library functions. Also a potential
log file library (Log File API) owner could easily "sell" access rights from
the library to other smart card application programmers.

The other half of the log file download protocol (the dient application)
was written using Microsoft J++ and Microsoft Java SDK Ver 2.02.

153

4.3 RESULTS AND PERFORMANCE
EVALUATION

Different results were generated depending on the actual size of the
log files and whether the application ran on the card or on the simulator.
The implementation and the testing of the dient and LFDM application
used a 400Mhz PC with 128 MB of RAM under Windows NT. When the
dient was communicating with the Java Card, the results were largely
PC speed independent because the operations were mostly 1/0 intensive.

The results from ten consecutive protocol executions on the simulator
with log file sizes of 248 and 40 bytes are presented in table 1. The
"Connect" figure indicates the time spent by the dient application con­
necting to the reader or the simulator. The next three values indicate
the time spent in the following procedures: "VerifyPIN" verifies the user
password, "SendData" forms the packets as defined by the protocol, and
"VerifyReply" verifies the ALSS reply. The "Disconnect" figure represents
the time spent dosing the connection with the reader or the simulator.

Table 1 GemXpresso simulator results using log files of 248 and 40 bytes

Simulator: 248 byte files Simulator: 40 byte files

Part name Time (ms) Std.Deviation Time (ms) Std.Deviation

Connect 11246 34.62 11246 24.18
Validation 210 4.97 210 4.20

Send Log File 200 0.42 140 0.32
Verify Reply 200 0.52 200 0.48
Disconnect 401 0.47 400.5 0.50

Total 12257 40.99 12197 29.68

It is worth mentioning that the "Connect" figure (for the simulator) is
not very accurate. This is because, when the dient is connecting to the
simulator and tries to select the applet, in most cases it returns "false"
(Le. that the applet could not be selected). Surprisingly though, the
applet execution continues as if the applet was properly selected.

From the figures in both tables we observe that the "Connect" and
"Disconnect" values are almost identical. Similarly, the "VerifyPIN" pro­
cedure consumes the same amount of time in both cases. The "SendData"
function in the second case takes less time since less data are involved in
constructing the protocol packets.

The main reason for providing execution results on the simulator
(which seems to successfully simulate the card behaviour) is as follows.
Firstly it provides an indication of the differences in execution times.

154

Secondly, it shows that the only reason that the log file download proto­
col does not operate on the card with large log files is the limited memory
space.

Timing results for when the protocol was executed in the card are
provided in table 2 (note that the results in the 'Estimated time' column
are explained below). When the protocol is executed in the card, we
tend to get slightly increased values, as was expected. This shows that
the simulator does not correctly simulate the card processing time.

Table 2 GemXpresso Java Card results using log file of 40 bytes and estimated
timings with variable Hash and MAC functions

GemXpresso Card

Part name Time (ms) Std. Deviation Estimated Time (ms)

Connect 2689 24.76 2689
Validation 371 6.13 371

Send Log File 1091 5.27 824 +x +y
Verify Reply 1862 9.81 1584 + 2x
Disconnect 130 4.59 130

Total 6143 38.57 5598 + 3x + Y

The Connect time is very big, compared with some results for the
Open16K Java Card presented later. We could partially attribute this
to the fact that, in this case, the dient is implemented in Java, while in
the other case it is implemented in Visual Basic.

To remove the influnece of the timings for the 'dummy' cryptographic
functions, the execution times for the dummy hash and MAC over a
20-byte buffer were measured, and the results are given in table 3.

Table 3 Dummy hash and MAC execution times on the GemXpresso Card

Java Card Hash (ms) MAC (ms)

GemXpresso 128 139

The results in table 3 were used to estimate the time needed to execute
the protocol on the GemXpresso Java Card, assuming that a hash takes
x milliseconds and a MAC takes y milliseconds (see table 2).

155

5. CYBERFLEX OPEN 16K
IMPLEMENTATION

In this section we present the implementation details when using the
Cyberflex Open16K Java Card.

5.1 DESIGN AND LIMITATIONS
The software that accompanies the Cyberflex Open16K Java Card

provides the developer with management utilities to download applets
to the Java Card and offers a rather simple interface to test them.

As noted in §3.5, the same dummy cryptographic functions were used
in both implementations. Because of constraints in the Java Cards, and
to maintain consistency between implementations, the protocol was im­
plemented using a 40-byte log file.

The Open16K JVM only supports data types of one and two bytes
because the Java Card has an 8-bit microprocessor. Thus, the two-byte
data type is implemented as two separate bytes. Also, an "int" (integer, 4
bytes) data type is not offered, which means that all results of arithmetic
operations should be "type casted" or converted to the one-byte or two­
byte data types.

For the Open16K Java Card, a "dump" card reader or card accep­
tance device (CAD) was available. Dump card readers are relatively
unsophisticated, and synchronisation problems often arise, causing fre­
quent problems with the experimental implementation, e.g. requiring PC
reboots.

The simulator supplied for the Open16K Java Card did not operate
correctly and a direct implementation to the Java Card had to be carried
out. However, despite the difficulties, a stable implementation of the
protocol was eventually produced.

5.2 IMPLEMENTATION
The functionality of the SendLogFileData and ReceiveALSSReply func­

tions is described in §3.5 and depicted in figure 3. The PIN number is
a 4-digit number and, once the user has been validated, she can invoke
the rest of the functions.

The dient side of the application was written in Visual Basic using a
COM component provided with the Java Card that provided the interface
with the PC /SC framework.

156

I Client ~-I Applet

GenerateHash.
GenerateMac.
SendLo gFileData.
ReceiveALSSReply

Figure 3 The Cyberflex implement at ion architecture.

5.3 RESULTS AND PERFORMANCE
EVALUATION

The results of the timings are presented in table 4.

Table 4 Open 16K Java Card using log file size 40 bytes.

Cyberflex Open16K

Part name Time (ms) Std. Deviation Estimated Time (ms)

Connect 280 23.66 280
Validation 220 15.81 220

Send Log File 2470 25.91 2100+x+y
Verify Reply 1925 21.32 1570 + 2x
Disconnect 1210 20.98 1210

Total 6105 107.68 5380 + 3x + Y

The connect time indudes the initialisation time that is needed to
access the COM component, to configure the connection with the card
reader and select the applet. Once this is done, the Validation can take
place. Afterwards, the dient sends arequest to the Java Card to receive
the Log File. Finally, the client parses the response and answers to the
card providing a hash that the latter has to verify. For each function we
indude host processing when applicable.

The Connect phase indudes initialisation procedures carried out on
the dient, such as the Java Card's selection of which applet to run. The
relatively small time is explained by the fact that much of the processing
is done on the host pe.

157

The Validation process is very short, and involves comparing the given
PIN with the correct one and informing the user whether it was correct.

The SendLogFile function is the most time-consuming function. It
makes use of array copies as described in §3.5 to create the message sent
to the dient. Also, it computes a dummy hash and a dummy MAC. It
then reads four files, totalling 74 bytes, from the file system of the Java
Card. Finally, it returns 94 bytes of data to the dient. The execution
time of this function is higher than for the GemXpresso card. The only
explanation would appear to be that reading and updating files in the
Cyberflex card is slower.

The VerifyReply function accepts from 34 bytes the dient, reads 40
bytes from within the Java Card and computes a hash. It then compares
26 bytes of data, advances a 32-bit sequence number by one using 8-bit
arithmetic, computes one more hash, and writes two files, totalling 20
bytes, to the Java Card. Finally, it notifies the dient whether the hash
was verified.

The Disconnect function takes a relatively long time, compared with
the Connect time. It can be assumed that this is PC jSC specific, or
more precisely, it is related to the drivers that implement the support for
the Open16K. Note that the Connect time is very short compared with
the GemXpresso, although exactly the opposite is true with respect to
the Disconnect time.

The time to execute the dummy hash and MAC over a 20-byte buffer
were measured and the results are given in table 5.

Table 5 Dummy hash and MAC execution times on the Open 16K Card

Java Gard Hash (ms) MAG (ms)

Open16K 177.5 192.5

Using the figures of table 5, we can estimate the protocol performance
assuming that a hash takes x milliseconds and a MAC y milliseconds
(see Table 4).

The communication speed between the Java Card and the dient was
9.6Kbps. In the implementation, this amounts to 2.1% ofthe total com­
munication time or to 126ms. If the communication speed was 57.6Kbps,
the contribution of the data transfer delay would drop to 105ms. If there
is need to optimize the protocol time to the level of hundreds of ms, then
we would see fit to make the communication speed higher.

158

6. CONCLUSION
The log file download protocols were implemented on two different

Java Card platforms. Although certain compromises had to be made
with regard to the smalllog file size and the use of dummy cryptographic
functions, we believe that we have shown that the concept of the secure
log download protocol is a workable one.

The availability of a working simulator is very important in the devel­
opment phases of the Java applet. It is not practical to have to download
the applet every time to the Java Card in order to execute it. Also, it
would be very useful for the simulator to be able to simulate aspects of
the Java Card, such as memory restrictions and processor speed, using
special options.

At a later stage, when cryptographic functions are provided as stan­
dard, it would be easy to replace the dummy functions.

The conclusion to be drawn from the speed of the hash and MAC func­
tions [4] is that these dummy functions do not contribute substantially
to the speed of the protocol. Other factors, such as file system access
and intern al array copying contribute to the speed slowdown.

Finally, from the overall execution speeds of the parts of the proto­
col, it is shown that a real-world implementation should be considered
viable in the near future. Once the cryptographic functions become avail­
able and the Java Card performance is further enhanced (towards better
handling of larger data structures), it is expected that more complex
applications will become feasible.

7. ACKNOWLEDGEMENT
The authors would like to thank Chris Mitchell and Dieter Gollmann

for their helpful comments.

References

[1] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
Systems: Concepts and Design. Addison-Welsey Publishing Com­
pany Inc., 1994.

[2] Cyberfiex. Cyberfiex open16k reference manual. Technical report,
Schlumberger, 1998.

[3] Gemplus. GemXpresso Reference Manual. Provided with the devel­
opment kit, July 1998.

[4] Helena Handschuch and Pascal Paillier. Smart Card Cryptoproces­
sors for Public Key Cryptography. In Third Smart Card Research

159

and Advanced Application Gonference Gardis '98, September 1998.
to be published.

[5] MAOSCO. MULTOS Reference Manual Ver 1.2. www.multos.com.
July 1998.

[6] Constantinos Markantonakis. Secure Log File Download Mecha­
nisms for Smart Cards. In Third Smart Gard Research and Advanced
Application Gonference Gardis'98, 1998. to be published.

[7] Constantinos Markantonakis. An architecture of Audit Logging in
a Multi-application Smart card Environment. In EIGAR '99 E­
Gommerce and New Media Managing Safety and Malware Ghal­
lenges Effectively, 1999. Aalborg, Danemark.

[8] Sun Microsystems. Java Card 2.0 Language Subset and Virtual
Machnine Specifieation.
http://www.javasoft.com/products/javacard/. 1998.

[9] Sun Microsystems. Java Card 2.0 Programming Coneepts.
http://www.javasoft.com/products/javacard/. 1998.

[10] Sun Microsystems. The Java Card API Ver 2.0 specification.
http://www.javasoft.com/products/javacard/. 1998.

[11] International Standard Organisation. ISO/lEG 7816-4, Information
technology - Identijication cards - Integrated circuits(s) cards with
contacts - Inderindustry Gommands for Interchange. International
Organization for Standardisation, 1995.

[12] Schlumberger . Cyberflex open 16k. http:
www.cyberflex.austin.et.slb.com. October 1998.

[13] OpenCard Framework Specifieation. Opencard framework.
www.opencard.org, 1997.

[14] Jean-Jacques Vandewalle and Erie Vetillard. Developing Smart
Card Based Applieations Using Java Card. In Third Smart Gard Re­
search and Advanced Application Gonference - GARDIS'98, Septem­
ber 1998. to be published.

[15] PC/SC Workgroup. Specifieations for PC-ICC interoperability.
www.smartcardsys.com. 1996.

