
7

ARCHITECTURES FOR TESTING
DISTRIBUTED SYSTEMS

Andreas Ulricha, Hartmut Konigb
a Siemens AG, Corporate Technology, ZT SE /, 81739 Miinchen, Germany

E-mail: andreas.ulrich@mchp.siemens.de
b BTU Cottbus, Department of Computer Science, PF 101344, 03013 Cottbus, Germany

E-mail: koenig@informatik.tu-cottbus.de

Abstract Stabilizing network infrastructures has moved the focus of software system
engineering to the development of distributed applications running on top of
the network. The complexity of distributed systems and their inherent concur­
rency pose high requirements on their design and implementation. This is also
true for the validation of the systems, in particular the test. Compared to proto­
col testing the test of distributed systems and applications requires different
methods for deriving test cases and for running the test. In this paper, we dis­
cuss architectures for testing distributed, concurrent systems. We suggest three
different models: a global tester that has total control over the distributed sys­
tem under test (SUT) and, more interestingly, two types of distributed testers
comprising several concurrent tester components. The test architectures rely on
a grey-box testing approach that allows to observe internal interactions of the
SUT by the tester. In order to assure a correct assessment of the test data col­
lected by the distributed tester components, the tester has to maintain a correct
global view on the SUT. This can be achieved either by the use of redundant
points of control and observation or by test coordination procedures. We out­
line the features of each approach and discuss their benefits and shortages.
Finally, we describe possible simplifications for the architectures.

Keywords: Distributed systems, concurrency, test architectures, specification-based test­
ing, concurrent transition tour.

1 INTRODUCTION

Designing, implementing, and validating complex distributed systems
requires a deep understanding of the communication taking place and the
order of communication messages exchanged between the individual compo-

93

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing

10.1007/978-0-387-35567-2_25

1999
G. Csopaki et al. (eds.), Testing of Communicating Systems

http://dx.doi.org/10.1007/978-0-387-35567-2_25

94 TESTING OF COMMUNICATING SYSTEMS

nents to avoid unwanted behavior during runtime. This applies in particular to
the testing of these systems. Compared to protocol testing the test of distrib­
uted systems and applications requires different methods for deriving test
cases and for running the tests. In [12] we introduced the concept of a concur­
rent transition tour an approach for providing test cases for distributed sys­
tems. The derivation of concurrent transition tours was represented in [13]. In
this paper we continue the approach with the discussion of possible test archi­
tectures to run these tests.

We assume that a distributed system consists of a collection of compo­
nents, each of them realizing a sequential flow of execution. Each component
has an interface that defines its incoming and outgoing Messages. The test of
distributed systems usually follows the steps of single component tests, inte­
gration tests of components, and finally the system test. Especially, the inte­
gration test is mainly aggravated by the following properties of distributed
applications:

• true concurrency between components,
• absence of a global clock, and
• message exchanges between components that are unobservable by a tester.

We assume that a test architecture for distributed systems consists of the fol­
lowing basic elements:

• the system under test (SUT), i.e. the executable implementation of the dis­
tributed software system to be tested,

• the tester that implements a test case and also assesses the results of a test
run,

• points of control and observation (PCOs) between tester and SUT, and
• possibly test coordination procedures which coordinate the actions

between different tester components.

The paper defines requirements to the test architecture that need to be
matched to support the execution of test runs and their correct assessment
afterwards. These requirements address the SUT, which must be prepared in a
suitable way to perform a test run. Requirements in this category are referred
commonly to rules of "design for testability". Further requirements are suited
to design testers that correctly assess the results of a test run. Note that our
discussion is confined for the testing of functional aspects. We do not con­
sider quality-of-service and performance aspects of distributed systems that
are discussed in [15].

Two principal test architectures are presented: a global tester that observes
and controls all distributed components of a SUT in a central manner, and a
distributed tester that consists of a number of distributed, concurrent tester
components, each of them collecting only partial information about the exe-

Architectures for Testing Distributed Systems 95

cution progress in components of the SUT. Especially, a distributed tester is
of interest since it makes better use of system resources and supports concur­
rency within the SUT directly. Whereas the .global tester can be a perfor­
mance bottleneck during a test run.

Assuming a grey-box testing approach and the right choice of points of
control and observation (PCOs) between tester and SUT, we show that also a
distributed tester works correctly and brings up the expected result. The
PCOs must be provided in the implementation of the SUT to allow the tester
to observe necessary information for assessing a test run. A common means
for this purpose is the insertion of software probes into the SUT.

The paper is organized as follows. In Section 2 we introduce some basic
notions as well as an example which are used in the following discussion.
Section 3 describes the proposed test architectures. Section 4 discusses possi­
ble simplifications for the application of these architectures. The final
remarks summarize the results and give an outlook on needed further
research.

2 PRELIMINARIES

2.1 BASIC NOTATIONS
We suppose a specification of a distributed system as a parallel composition

= M1 II ... II Mk of interacting components. Each component realizes a cer­
tain function of the distributed system, e.g. in the form of a client and/or
server. It is described by a sequential automaton (labeled transition system,
LTS). Components communicate with each other solely via interaction
points. The communication pattern used is synchronous communication and
non-blocking send based on interleaving semantics. Transmitting messages
and their receipt through interaction points are referred to actions.

Definition 1. A labeled transition system (LTS or machine for short) M is
defined by a quadruple (S, A, s0), where S is a finite set of states; A is a
finite set of actions (the alphabet); c S x Ax Sis a transition relation; and
s0 e S is the initial state.

To distinguish the different kinds of communication, we denote all inputs and
outputs of the distributed system implementation from/to the environment as
external (reactive system), analogously all inputs and outputs belonging to
the inter-component communication as internal. Events appearing only inside
a module are not considered.

Consider the simple system =A II B whose LTSs are given in Figure 1.
Under the assumption that actions a and c in each LTS synchronize, removal

96 TESTING OF COMMUNICATING SYSTEMS

of parallel operator II by applying interleaved-based semantics rules yields the
composite machine C3.

Figure I. Example systemS =A II Band its composite machine C3.

2.2 TEST SUITES FOR CONCURRENT SYSTEMS
A conventional approach to test suite generation starts from the composite
machine. The generation of a transition tour from the interleaving model of
the composite machine has its limitations since concurrent events are serial­
ized. Due to a lack of controllability during testing, this approach is not feasi­
ble. The resulting order of concurrent events in a test run could not be
predicted. The order of events is, however, essential to assess whether an
implementation is correct or not.

Possible test cases of our example derived from the composite machine in
Figure 1 are the following sequences:

cr1 = a.b.c.b.d.e.a, cr2 = a.b.c.b.e.d.a, cr3 = a.b.c.e.b.d.a.

All three sequences can be equally employed in a test run. They possess the
same fault detection capability [7]. They differ only in different orders of the
interleaving actions b, d and e. However, this order cannot be predicted in a
sequential test run.

In [12], we extended the notion of a transition tour [8] to a concurrent
transition tour (C17) and applied it as a test suite for distributed systems. In
the context of distributed systems, a transition tour is extended to a CTT such
that all transitions in all modules of the system are visited at least once on the
shortest possible path through the system. A CTT takes concurrency among
actions of different modules into account. It is depicted graphically as a time
event sequence diagram where nodes are events and the directed arcs define
the causality relation between events. A feasible construction algorithm of a
CTT is presented in [13].

Definition 2. A lposet (labeled partially ordered set) is defined by the qua­
druple (E, A, l), where E is a set of event names; A is a set of action names;

Architectures for Testing Distributed Systems 97

is a partial order expressing the causality information between events, i.e. e
event e precedes event fin time; l: E is a labeling function assign­

ing action names to events. Each labeled event represents an occurrence of
the action labelling it, with the same action possibly having multiple occur­
rences. A pomset (partially ordered multiset) is an isomorphism class over
event renaming of an lposet, denoted [E, A,:::;, l].

Definition 3. (CTT) A concurrent transition tour of a concurrent system g is
the least pomset CIT= [Es, As. l] such that all actions of g are covered at
least once in the pomset, i.e. a E As for all actions in g and Es is minimal.

Figure 2 depicts the CTT of the example system g =A II B.

Figure 2. A CTT of system g =A II B.

The CTT is used as a test case to test a distributed system. The CTT assumes
that also the internal actions within the SUT are visible to the tester. There­
fore, it supports the grey-box testing approach. To guarantee full coverage of
all executable transitions of a distributed system, usually a set of CTTs is
required that makes up the test suite for the distributed system.

2.3 ASSUMPTIONS ON A TEST ARCHITECTURE
A test architecture is defined as a parallel, synchronous composition of the
system under test (Sun of the distributed system S and its tester. If a test
suite comprises several test cases, a separate tester is built for each test case.
It is required that the number of LTSs in the SUT is constant when the test run
takes place (static system). Furthermore, the structure of the systemS, i.e. its
composition of n LTSs, is preserved in the implementation. From the testing
perspective, it should be stated what actions can be observed and controlled.
To avoid nondeterministic execution of the SUT due to nonobservability, we
assume that all internal and external actions are observable during testing
(grey-box testing approach).

In testing distributed systems the information about action names
observed during a test run is not sufficient to assess conformance between
specification and SUT. Due to the existence of multi-rendezvous among com-

98 TESTING OF COMMUNICATING SYSTEMS

ponents of the SUT, the tester must also know what components participate in
a specific multi-rendezvous. Furthermore, the issue of nondeterminism within
the SUT requires that the tester has the power not only to observe an action of
the SUT, but must also control the occurrence of a multi-rendezvous. Thus,
the crucial point in testing concurrent systems is to perform a deterministic
test run.

The problem is addressed by applying instant replay techniques used for
debugging concurrent systems [10]. The proposal in [10] assumes a global
controller that is asked for permission by the components of the SUT before
they are allowed to interact with each other. To achieve this, control code,
called probes, is added into the source code of the components before each
interaction invocation. Only after the tester has received all requests to exe­
cute a certain interaction from participating components, it grants this inter­
action. If not or if a wrong component asks for permission, an error in the
SUT has occurred.

3 TEST ARCHITECTURES FOR TESTING
DISTRIBUTED SYSTEMS

3.1 GLOBAL TESTERS
In this section, we describe possible test architectures that can be employed
for the test of distributed systems. We first start with the simplest model, the
global tester, that entirely simulates the environment of the STU as a sequen­
tial process during a test run. The global tester centrally collects information
of the distributed SUT and derives the test verdict.

A global tester is implemented as a sequential machine T G· The tester runs
in parallel with the distributed system observing and controlling if necessary
all external and internal actions of the SUT (grey-box test):

TciiSUT

After starting the test run the tester executes the events of the test sequence a
step by step. This leads to a rendezvous or multi-rendezvous communication
between the tester and the SUT. The tester participates in the execution of a
test event and records it together with the components of the SUT participat­
ing in this test event.

The global tester performs an action sequence derived from the composite
machine of the distributed system as a test case. This action sequence con­
tains a certain, assumed interleaving order of concurrent events. This
assumed order must be validated to exist in the SUT during the test run. How­
ever since the interleaving sequence consists of concurrent test events with no

Architectures for Testing Distributed Systems 99

causal dependency between them, the action sequence assumed in the global
tester is only observed by chance during a test run.

The global tester itself is modeled as an acyclic machine T G = (ST, AceTo
--771 Sro) with lcrl+ I states. The transitions in T G are determined by the
sequence of actions cr = a 1.a2 an used as the test case:

Sro -aJ--7 Sn, Sn -az--7 Sn, · · ., STn-1 -an-? STn

For assigning the test verdict, a verdict label is attached to each state: pass to
the final state and fail to all other states. If the tester reaches the final state
after correctly executing cr, the test verdict pass is assigned to the test run. In
all other cases the test run results in a fail verdict. The tester may not reach
the final state if a desired component of the SUT is not able to participate in a
certain test event; the test architecture including the tester and the SUT dead­
locks in this case.

Figure 3 shows the test architecture with a global tester to test the system
SUTz =A II B. Note again that the tester has access to the internal actions of
the SUT. The model of a global tester implementing cr1 = a.b.c.b.d.e.a as a
test case is given in Figure 4.

The advantage of the global tester approach is its simplicity. Due to its
global view on the distributed system under test, it can register the processed
test events immediately as a unique sequence which preserves the correct
causal dependencies between the actions of the SUT. A severe drawback of
the global tester is however that it requires strict control over the execution of
concurrent test events. This control might heavily intervene in the original
behavior of the SUT. The question is whether there are other options to real­
ize a test architecture that takes attention to the concurrency of actions in a
SUT.

Figure 3. The test architecture with a global tester T G for system SUTz =A II B.

100 TESTING OF COMMUNICATING SYSTEMS

d

Figure 4. A global tester to test the system SUTs =A II B.

3.2 DISTRIBUTED TESTERS

3.2.1 General Characteristics

A distributed tester is characterized by the following properties:
• It consists of several concurrently operating tester components which pro­

cess together, but independently a global test case (TC). The tester can be
described in the same way as the SUT, e. g. as a set of communicating
machines.

• Each tester component executes a partial test case (PTC). A PTC is pro­
jection of the global test case TC which comprises only those events
which can observed at the particular tester component. The causal depen­
dencies between the test events of a PTC are determined by the global TC.

• Each tester component observes a subset of the set of all PCOs. Their
selection and assignment to a tester component is a decision taken by the
designer of the test architecture.

• The behavior of the tester components is controlled by a Test Coordina-
tion Procedure (TCP).

The general issue in distributed tester design is that the tester may assign a
successful verdict to a test run although the SUT contains faults. This is pos­
sible because there is no global view on the SUT if a distributed tester is used.
This problem can be tackled by a TCP between the distributed tester compo­
nents, either by introducing synchronization events into the partial test cases
of tester components or by the use of redundant PCOs to observe internal
events of the SUT simultaneously by several tester components. For example,
if a component of the SUT sends a message to another component, one tester
component observes the send event of this communication, whereas another
tester component observes the resulting receive event.

We can describe a distributed tester T D by means of a set of concurrent
tester components

Tv= Tm II TD211 ... II Tvn

Architectures for Testing Distributed Systems 1 01

which are controlled by a TCP. Each tester component processes a sequential
partial test case in an acyclic machine that might be augmented with synchro­
nization events. We further assume the same markings of fail and pass to
assign a test verdict as discussed for the global tester.

In a test run, the distributed system (T Dl II T D2 II . .. II Ton) II SUT is exe­
cuted. The tester components and the SUT participate in the respective test
events and transfer from one local state to the next. If a test event or synchro­
nization event of a TCP cannot be executed, the whole test architecture dead­
locks. Only if all tester components reach their final state, the verdict pass is
assigned to the test run.

3.2.2 Distributed Testers with Synchronization Events

A common distributed test architecture that is often used in testing distributed
telecommunication systems uses synchronization events to implement a TCP.
We discuss this type of distributed testers first.

We develop a distributed tester 1 T D for the example system in Figure 1
and assume two tester components: 1 T Dl observes the actions b and d of the
SUT, while 1T02 tests the actions a, c and e.

ITo= lyDIIIITD2

Additionally, the tester components exchange the synchronization event sync.
Figure 5 shows this test architecture.

The derivation of test cases for the tester components is done as a projec­
tion of test events observable by the particular tester component from the glo­
bal test case.

SUTz

I A B

d b c a e

I
...,.....,

1Tot .1ync 'Toz
.' ·' I

Figure 5. Test architecture with distributed tester 1T0 and synchronization event sync.

Let us assume the CTT in Figure 2 as the global test case for system g . The
projected and linearized partial test cases for the two tester components are
the following:

102 TESTING OF COMMUNICATING SYSTEMS

1cr1 = b.b.d for tester component 1Tp,1 and
1cr2 = a.c.e.a. for tester component T DZ·

These sequences must be supplemented with synchronization events. Syn­
chronization events are included when the control goes over from one tester
component to the other.

Figure 6. The CTT of the example system with arrows denoting necessary
synchronization events within the partial test sequences.

We consider Figure 6. It depicts the global CTT of our example system. The
actions of 1 T D1 are represented by squares , those of 1 T DZ by diamonds .
The grey arrows mark the change from one tester component to the other one.
At these points a synchronization event must be included to guarantee the
correct global view on the SUT. Consequently, the tester components run the
following partial test cases:

1cr1' = sync.b.sync.sync.b.d.sync
1 ' O'z = a.sync.sync.c.sync.e.sync.a

Note that the synchronization events are indispensable for assuring the cor­
rect global view on the SUT. If, for instance, the first appearance of action b
in component A of the SUT follows action c, a distributed tester without a test
coordination procedure would not detect this fault.

Assuming that a tester component is assigned to each component of the
SUT, the distributed tester can fully exploit the concurrency among test
events. For example, the total order of the interleaving actions b, d and e is
not important for assessing a test run. Any test run is correct if only the causal
dependency "b before d" is assured. Action e can interleave at any time
instant within the constraints of the sync events.

Thus, the distributed tester does not need to control the execution of the
test case entirely. Each tester component can run independently its partial test
case. Only coordination between the tester components is necessary to guar­
antee the correct global view on the SUT.

3.2.3

Architectures for Testing Distributed Systems 103

Distributed Testers with Redundant Observation of
Internal Events

The insertion of synchronization events is not the only possibility to realize
coordination among tester components. Another and a more elegant option is
the redundant observation of internal actions of the SUT by several tester
components. This type of distributed test architecture is discussed again using
the example from Section 2. It consists of two tester components

2r D = 2r Dl II 2r D2.

Each tester component controls and observes all interactions of a single com­
ponent of the SUT. Thus, the tester represents an inverted image of the SUT.
Figure 7 shows the test architecture of tester 2T D·

Partial test cases for the tester components are derived in the same manner
as already described for the first type of distributed testers in Section 3.2.2 by
projecting and linearizing the global test case of a CTI. We also assume the
same marking of states in the tester components with fail and pass as dis­
cussed for the global tester. Using the CTI in Figure 2 as the basis for the
derivation of partial test cases, the tester components 2T Dl and 2T D2 need to
implement the following partial test cases:

2cr1 = a.b.c.b.d.a for tester component 2T Dl and
2cr2 =a. c. e. a for tester component 2T D2·

SUT<J

A

d b

Figure 7. Test architecture with the distributed tester 2r D and redundant observation
of test events.

Since both tester components observe the internal actions of the SUT, they
are able to coordinate each other to maintain the correct global view on the
system. In case of message passing, a practical solution to implement the
redundant observation of internal communication is the observation of the
send event of a message by one tester component and the observation of the

104 TESTING OF COMMUNICATING SYSTEMS

related receive event by another one. The causal dependency between the
send and the receive event for the same communication action (message pass­
ing) can then be reconstructed.

In a test run the distributed system (T D1 II T D2 II ... II T Dn) II SUT is exe­
cuted. The tester components and the SUT participate in the respective test
events. A multi-rendezvous between the SUT components and the tester com­
ponents takes place when internal actions of the SUT are executed as test
events. In this case, the participating tester components synchronize to pre­
serve the global view on the SUT. If a test event cannot be executed, the tester
components associated to this test event deadlock. Only if all tester compo­
nents reach their final state, the verdict pass is assigned to the test run.

Note also here that concurrency within the SUT is supported to a large
extend if a tester component is provided for each component of the SUT. The
advantage of this second distributed test architecture is that no additional syn­
chronization events are needed to coordinate the tester components.

4 SIMPLIFICATIONS OF THE PROPOSED TEST
ARCHITECTURES

The test architectures presented above contain several restrictive elements.
For certain applications, the following test assumptions may be too restric­
tive:

• the control and observation of all actions of the SUT including the internal
actions, and

• inclusion of additional synchronization events.

In the following discussion we shortly sketch some conditions which permit
simplifications of the test architecture. More details are given in [14].

4.1 OBSERVATION OF INTERNAL
COMMUNICATION

The complete observation of the internal communication (grey-box test) was
introduced to force a deterministic test run. By observing the internal com­
munication of the SUT by means of a controller according to [10] the SUT is
forced to follow a certain execution order defined by the CTT. To (partially)
omit the internal observation, it must be proved whether the behavior of the
SUT does not lead to a nondeterministic behavior which cannot be detected
by the tester. This requires that we need to take into consideration the follow­
ing types of nondeterminism *:

Architectures for Testing Distributed Systems 105

• nondeterminism within a component, i.e., it exists the possibility of two or
more outputs in the same local state, and

• race conditions, i.e., it exists a global state with at least two inputs to the
same component enabled.

If the analysis of the specification of the SUT shows that these types of non­
determinism do not appear, additional means to force a deterministic test run
can be omitted. This approach requires however that the components of the
SUT are correctly implemented. To assure this a step-wise test method as pro­
posed in [4] can be applied.

4.2 RENUNCIATION OF TEST COORDINATION
PROCEDURES

In cases in which the number of additional synchronization events that are
needed to implement the distributed tester of Section 3.2.2 is very high or in
cases in which the redundant observation of internal actions of the SUT as
required for the distributed tester of Section 3.2.3 is not possible, it might be
desired to renounce the test coordination procedures. To synchronize the then
asynchronously acting tester components, the following possibilities exist:

Simulation of a global clock by means of a synchronization protocol
There exist several such protocols in literature. A well-known one is the Net­
work Time Protocol (NTP) [5]. It supports a synchronization of a few milli­
seconds divergence for local area networks and some 10 milliseconds for
wide area networks. This precision is scarcely acceptable for many practical
applications as the following measurements of the transmission time of RPC
messages show. RPC (Remote Procedure Call) is a network service for the
transparent execution of procedures on remote machines. It is the basic ser­
vice used by the middleware platform CORBA. The transmission time of an
about 8 kilobyte RPC message over an Ethernet network is 7,2 msec. For a
100 Byte message, the time is 0,29 msec only. In an ATM network with a 155
Mbps transfer rate, these times shorten to 0,5 and 0,02 msec, respectively.
These measurements indicate that within the precision limits of NTP (1 msec
in the best case), several messages can be sent over an Ethernet such that the
causal dependencies between messages cannot be correctly established in a
test run. For ATM and other high speed networks, the situation is even worse.

* Another kind of nondeterminism is interleaving, since the selection among
two concurrent actions is arbitrary and unpredictable. We do not consider
interleaving as nondeterminism here, because we allow concurrent actions in
a test run to be carried out if a distributed tester is used.

106 TESTING OF COMMUNICATING SYSTEMS

Use of logical clocks in the test architecture
Logical clocks [2] are a very reliable and robust means to synchronize actions
in a distributed system. It requires, however, that logical clocks are available
in all components of the distributed system, i.e. also in the SUT. That means,
the software of the SUT must be augmented such that logical clock values are
piggybacked for each message exchanged between SUT and tester and
between internal SUT components.

Emulation of a synchronous execution by means of a synchronizer
In our current discussion we assumed an asynchronous execution between the
components of the SUT. A synchronized execution can be forced by introduc­
ing a synchronizer that determines the time for the execution of a communi­
cation event [I]. However, a synchronous execution of components in a
distributed system cannot be assumed for most implementations. Moreover,
the introduction of a synchronizer for the purpose of testing only would
change the implementation enourmously. An approach that works similar to a
synchronizer is discussed in [3].

Generation of synchronizable test suites
Synchronizable test suites which can be separately executed on different
tester components without synchronization events are an attractive solution
for this problem. Existing approaches [6], [11] run short because they can
only be applied if a global composite machine for the distributed SUT is
available. Approaches that support communicating machines as the descrip­
tion model for the SUT do not exist up to now.

5 FINAL REMARKS

In this paper we have suggested different architectures for the test of distrib­
uted systems. We have discussed rules for the positioning of PCOs as well as
means to ensure a deterministic test run. Two principle test architectures have
been considered: a global and a distributed tester. The global tester is a
sequential component that observes all actions of the SUT at its PCOs,
whereas the distributed tester consists of several concurrent tester compo­
nents that observe partial behavior of the SUT only. These tester components
must synchronize each other by means of a test coordination procedure to
assure a correct and consistent global view on the SUT.

The presented approaches base on a synchronous communication para­
digm between the components of the SUT and the test architecture. The
assumption of synchronous communication is required for two reasons. First
it restricts the state space of the distributed systems to a finite set, and sec-

Architectures for Testing Distributed Systems 107

ondly it allows to preserve the correct causal dependencies between the test
events. Using an asynchronous communication paradigm, these properties
would not hold anymore. The state space would be infinite and the causal
dependencies between test events could not be correctly assessed. Neverthe­
less, it is necessary also to pursue research within this direction, because
asynchronous communication is common in practice.

References

[1] C. T. Chou, I. Cidon, I. Gopal, S. Zaks: Synchronizing asynchronous
bounded-delay networks; IEEE Transactions on Communications, vol.
38,no.2(Feb. 1990);pp. 144-147.

[2] C. J. Fidge: Logical Time in Distributed Computing Systems; IEEE
Computer, vol. 24, no. 8 (August 1991); pp. 28-33.

[3] C. Jard, T. Jeron, H. Kahlouche, C. Viho: Towards Automatic Distribu­
tion of Testers for Distributed Conformance Testing; IFIP Joint Int'l
Conference on Formal Description Techniques, and Protocol Specifica­
tion, Testing, and Verification (FORTE/PSTV'98); Paris, France; 1998.

[4] H. Konig, A. Ulrich, M. Heiner: Designfor Testablility: A Step-wise
Approach to Protocol Testing; Proceedings of the IFIP lOth Int'l Work­
shop on Testing of Communicating Systems (IWTCS'97), Seoul,
Korea; 1997; pp. 125-140.

[5] D. L. Mills: Precision Synchronization of Computer Network Clocks;
ACM Computer Communication Review, vol. 24, no.2 (April 1994;
pp. 28-42.

[6] G. Luo, R. Dssouli, G. v. Bachmann, P. Venkataram, A. Ghedamsi:
Test generation with respect to Distributed lnteifaces; Computer Stan­
dards & Interfaces, val. 16, no. 2 (June 1994); pp. 119-132.

[7] A. Petrenko, A. Ulrich, V. Chapenko: Using partial-orders for detect­
ing faults in concurrent systems; Proceedings of the IFIP 11th Int'l
Workshop on Testing of Communicating Systems (IWTCS'98), Russia,
1998.

[8] Sidhu, D. P.; Leung, T. K.: Formal methods for protocol testing: a
detailed study; IEEE Trans. on Software Eng. 15 (1989) 4, 413-426.

[9] K. C. Tai, R. H. Carver: Testing of distributed programs; in A. Zomaya
(ed.): Handbook of Parallel and Distributed Computing; McGraw Hill;
1995; pp. 956-979.

[10] K. C. Tai, R. H. Carver, E. E. Obaid: Debugging concurrent Ada pro­
grams by deterministic execution; IEEE Trans. on Software Eng., vol.
17, no. 1 (Jan. 1991); pp. 45-63.

[11] K. C. Tai, Y. C. Young: Port-synchronizable test sequences for commu­
nication protocols; 8th Int'l Workshop on Protocol Test Systems

108 TESTING OF COMMUNICATING SYSTEMS

(IWPTS'95); Paris, France; 1995; pp. 379-394.
[12] A. Ulrich, S. T. Chanson: An approach to testing distributed software

systems; 15th PSTV 1995; Warsaw, Poland; pp. 107-122; 1995.
[13] A. Ulrich, H. Konig: Specification-based testing of concurrent systems;

IFIP Joint Int'l Conference on Formal Description Techniques, and
Protocol Specification, Testing, and Verification (FORTEIPSTV'97);
Osaka, Japan; Nov. 18-21, 1997.

[14] A. Ulrich: Testfallableitung und Testrealisierung in verteilten Systmen;
Dissertation (in German), Magdeburg University; Shaker Verlag, 1998.

[15] T. Walter, I. Schieferdecker, J. Grabowski: Test architectures for dis­
tributed systems: state of the art and beyond; 11th Int'l Workshop on
Testing of Communicating Systems (IWTCS'98), Russia, 1998.

	7 ARCHITECTURES FOR TESTING DISTRIBUTED SYSTEMS
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 BASIC NOTATIONS
	2.2 TEST SUITES FOR CONCURRENT SYSTEMS
	2.3 ASSUMPTIONS ON A TEST ARCHITECTURE

	3 TEST ARCHITECTURES FOR TESTING DISTRIBUTED SYSTEMS
	3.1 GLOBAL TESTERS
	3.2 DISTRIBUTED TESTERS

	4 SIMPLIFICATIONS OF THE PROPOSED TEST ARCHITECTURES
	4.1 OBSERVATION OF INTERNAL COMMUNICATION
	4.2 RENUNCIATION OF TEST COORDINATION PROCEDURES

	5 FINAL REMARKS
	References

