
4

RBAC ON THE WEB BY SECURE COOKIES

Joon S. Park, Ravi Sandhu and SreeLatha Ghanta

Abstract Current approaches to access control on Web servers do not scale to enterprise­
wide systems, since they are mostly based on individual users. Therefore, we
were motivated by the need to manage and enforce the strong access control
technology of RBAC in large-scale Web environments. Cookies can be used to
support RBAC on the Web, holding users' role information. However, it is inse­
cure to store and transmit sensitive information in cookies. Cookies are stored
and transmitted in clear text, which is readable and easily forged. In this paper,
we describe an implementation of Role-Based Access Control with role hierar­
chies on the Web by secure cookies. Since a user's role information is contained
in a set of secure cookies and transmitted to the corresponding Web servers, these
servers can trust the role information in the cookies after cookie-verification pro­
cedures and use it for role-based access control. In our implementation, we used
CGI scripts and PGP (Pretty Good Privacy) to provide security services to se­
cure cookies. The approach is transparent to users and applicable to existing
Web servers and browsers.

Keywords: Cookies, role-based access control, Web security

1. INTRODUCTION

WWW is commonplace. Increased integration of Web, operating system,
and database system technologies will lead to continued reliance on Web tech­
nology for enterprise computing. However, current approaches to access con­
trol on Web servers are mostly based on individual users; therefore, they do
not scale to enterprise-wide systems.

A successful marriage of the Web and a strong and efficient access control
technology has potential for considerable impact on and deployment of effec­
tive enterprise-wide security in large-scale systems. Role-based access control
(RBAC) [14] is a promising technology for managing and enforcing security
in large-scale enterprise-wide systems, and it will be a central component of

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
V. Atluri et al. (eds.), Research Advances in Database and Information Systems Security

10.1007/978-0-387-35508-5_22

http://dx.doi.org/10.1007/978-0-387-35508-5_22

50 DATABASE AND INFORMATION SYSTEMS SECURITY

emerging enterprise security infrastructures. We were motivated by the need
to manage and enforce the strong access control technology of RBAC in large­
scale Web environments.

To support RBAC on the Web, we chose a relatively mature technology,
cookies - widely used on the Web - and have extended it for our purpose.
Cookies were invented to maintain continuity and state on the Web [5, 6]. The
purpose of a cookie is to acquire information and use it in subsequent com­
munications between the Web server and the browser without asking for the
same information again. Technically, it is not difficult to make a cookie carry
relevant information. However, it is not safe to store and transmit this sensitive
information in cookies because cookies are insecure. Cookies are stored and
transmitted in clear text, which is readable and easily forged. Therefore, we
should render secure cookies to carry and store sensitive data in them.

We will provide secure cookies with three types of security services: au­
thentication, integrity, and confidentiality. Authentication services verify the
owner of the cookies. Integrity services protect cookies against the threat that
the contents of the cookies might be changed by unauthorized modification.
Finally, confidentiality services protect cookies against the values of the cook­
ies being revealed to an unauthorized entity. Details for these techniques have
varying degrees of security and convenience for users and system administra­
tors1.

In this paper, we will describe how we implemented RBAC with role hierar­
chies [4, 18] on the Web using the secure cookies. To provide security services
to secure cookies, we used CGI scripts and the PGP (Pretty Good Privacy)
package, which are already in widespread current use.

2. RELATED TECHNOLOGIES

2.1 ROLE-BASED ACCESS CONTROL (RBAC)

Role-based access control (RBAC) [14] has rapidly emerged in the 1990s
as a promising technology for managing and enforcing security in large-scale
enterprise-wide systems. The basic notion of RBAC is that permissions are
associated with roles, and users are assigned to appropriate roles. This greatly
simplifies security management.

With RBAC, system administrators can create roles, grant permissions to
those roles, and then assign users to the roles on the basis of their specific

1 For secure communications on the Web, we may consider using other existing technologies, such as,
SHTIP (Secure HITP [10, 19]) and SSL (Secure Socket Layer [21]). However, these technologies cannot
solve the stateless problem of HTIP. Furthermore, none of these can prevent end-system threats to cookies.

RBAC on the Web by Secure Cookies 51

job responsibilities and policy. Therefore, role-permission relationships can be
predefined, which makes it simple to assign users to the predefined roles. With­
out RBAC, it is difficult to determine what permissions have been authorized
for what users.

RBAC is a promising alternative to traditional discretionary and mandatory
access controls, and ensures that only authorized users are given access to cer­
tain data or resources. It also supports three well-known security policies: data
abstraction, least-privilege assignment, and separation of duties.

2.2 COOKIES

Although there are many ways to use cookies on the Web, the basic process
and the contents of cookies are similar. The detailed cookie specifications are
available in [5, 6].

Cookies contain strings of text characters encoding relevant information
about the user. Cookies are sent to the user's memory via the browser while
the user is visiting a cookie-using Web site, and are stored on the user's hard
disk after the browser is closed. Whenever a browser sends an HTTP request
for a URL to a Web server, only those cookies relevant to that server will be
sent by the browser. If the server finds any cookies that are related to the server,
those cookies are used during this communication between the browser and the
server. However, if the server does not find any cookies specified for it, either
that server does not use cookies in the communication or the server creates new
cookies for subsequent communication between the browser and the server.

Web servers may update the contents of their cookies for any specific cir­
cumstance. The cookie-issuer is not important for cookie validation. In other
words, a server can create cookies for other servers in the domain. This is an
important aspect of cookies that will be used in our implementations described
in Section 4 ..

2.3 PRETTY GOOD PRIVACY (PGP)

POP (Pretty Good Privacy), a popular software package originally devel­
oped by Phil Zimmermann, is widely used by the Internet community to pro­
vide cryptographic routines for e-mail, file transfer, and file storage applica­
tions [22]. A proposed Internet standard has been developed [2], specifying
use of POP. It uses existing cryptographic algorithms and protocols and runs
on multiple platforms. It provides data encryption and digital signature func­
tions for basic message protection services.

POP is based on public-key cryptography. It defines its own public-key pair
management system and public-key certificates. The POP key management

52 DATABASE AND INFORMATION SYSTEMS SECURITY

system is based on the relationship between key owners, rather than on a single
infrastructure such as X.509. Basically, it uses RSA [13] for the convenience
of the public-key cryptosystem, message digests (MDS [12]) and IDEA [7] for
the speed of process, and Diffie-Hellman [3] for key exchange. The updated
version supports more cryptographic algorithms.

Even though the original purpose ofPGP is to protect casual e-mail between
Internet users, we decided to use the PGP package. The package is already
widely used and satisfies our requirements, in conjunction with Web servers
via CGI scripts for our implementation to protect cookies. These cookies have
role information of the user.

3. SECURE COOKIES

3.1 SECURITY THREATS TO COOKIES

We distinguish three types of threats to cookies: network security threats,
end-system threats and cookie-harvesting threats. Cookies transmitted in clear
text on the network are susceptible to snooping (for subsequent replay) and to
modification by network threats. Network threats can be foiled by use of the
Secure Sockets Layer (SSL) protocol [21] which is widely deployed in servers
and browsers.2 However, SSL can only secure cookies while they are on the
network. Once the cookie is in the browser's end system it resides on the hard
disk or memory in clear text. Such cookies can be trivially altered and can be
easily copied from one computer to another, with or without connivance of the
user on whose machine the cookie was originally stored. We call this the end­
system threat. The ability to alter cookies allows users to forge authorization
information in cookies and to impersonate other users. The ability to copy
cookies makes such forgery and impersonation all the easier. Additionally, if
an attacker collects cookies by impersonating a site that accepts cookies from
the users (who believe that they are communicating with a legitimate Web
server), later he can use those harvested cookies for all other sites that accept
those cookies. We call this the cookie-harvesting threat. These attacks are all
relatively easy to carry out and certainly do not require great hacker expertise.

3.2 DESIGNING SECURE COOKIES

In this subsection, we describe how to transform regular cookies - which
have zero security - into secure cookies, which provide the classic security

2In many cases, due to export restrictions from USA, only weak keys (40 bits) are supported, but SSL
technology is intrinsically capable of very strong protection against network threats.

RBAC on the Web by Secure Cookies 53

___ 0!!"2-"i!! __ !::!•If. _P.;!Ih __ ___ _ __

ame_Cookie : I acme.com Alice I FALSE 112131/99 1:

Director
lr-------r--.---.-------.----------.----,----,

Role_Cookie :

Life_Cookie :I acme.com ITRuE I I I Life_Cookie I 12131/99 I FALSE 112131/991:
I· I

lr-------r--.---.-------.----------.----,----,
Pswd_Cookie I

IP_Cookie

- - - _ _ _ Cookie_lssuer Signs on lhe Cookies ---
Seai_Cookie

• Hash of the passwords is an alternative to the content of the Pswd_Cookie.

Figure 4.1 A set of secure cookies for RBAC on the Web.

services against the three types of threats to cookies (described in the previous
subsection).

Secure cookies provide three types of security services: authentication, in­
tegrity, and confidentiality services. Selection of the kinds and contents of
secure cookies depends on applications and a given situation.

Figure 4.1 shows a set of secure cookies that we will create and use for
RBAC on the Web. The Name_Cookie contains the user's name (e.g., Al­
ice), and the Role_Cookie holds the user's role information (e.g., Director).
The Life_Cookie is used to hold the lifetime of the secure-cookie set in its
Cookie_ Value field and enables the Web server to check the integrity of the
lifetime of the secure-cookie set. To protect these cookies from possible at­
tacks, we will use IP _Cookie, Pswd_Cookie, and SeaL Cookie. Authentication
cookies (i.e., IP_Cookie and Pswd_Cookie) verify the owner of the cookies by
comparing the authentication information in the cookies to those coming from
the users. The IP _Cookie holds the IP number of the user's machine, and the
Pswd_Cookie holds the user's encrypted passwords. This confidentiality ser­
vice protects the values of the cookies from being revealed to unauthorized
entity. In our implementation, we used the IP _Cookie and Pswd_Cookie to­
gether to show the feasibility, but only one of those authentication cookies can
be used to provide the authentication service. The choice of an authentication
cookie depends on the situation.3 Finally, the SeaLCookie- which has the dig-

3It is also possible for authentication to be based on use of RADIUS [II], Kerberos [20, 8], and similar
protocols. Our focus in this work is on techniques that make secure cookies self-sufficient rather than partly
relying on other security protocols, which is always possible.

54 DATABASE AND INFORMATION SYSTEMS SECURITY

Role Server

Figure 4.2 A schematic of RBAC on the Web.

ital signature of the cookie-issuing server on the secure cookie set - supports
integrity service, protecting cookies against the threat that the contents of the
cookies might be changed by unauthorized modification.

There are basically two cryptographic technologies applicable for secure
cookies: public-key-based and secret-key-based solutions. In our implemen­
tation, we use the public-key-based solution for security services provided
by a PGP package via CGI scripts. In the next section, we will describe
secure cookie creation, verification, and use of the role information in the
Role_Cookie for RBAC with role hierarchies, in tum.

4. RBAC IMPLEMENTATION BY SECURE COOKIES

Figure 4.2 shows a schematic of RBAC on the Web. The role server has
user-role assignment information for the domain. After a successful user au­
thentication, the user receives his or her assigned roles in the domain from
the role server. Later, when the user requests access to a Web server with the
assigned roles in the domain, the Web server allows the user to execute trans­
actions based on the user's roles instead of identity. The Web servers may have
role hierarchies or constraints based on their policies.

However, how can the Web servers trust the role information presented by
users? For instance, a malicious user may have unauthorized access to the Web
servers by using forged role information. Therefore, we must protect the role
information from being forged by any possible attacks on the Web as well as
in the end-systems.

There can be many possible ways to support the above requirement [9]. In
this paper, as one possible solution, we will describe how to protect the role

RBAC on the Web by Secure Cookies 55

Cookie_ lssuer
(Role Server)

Access

Assigning Roles & Creating Secure Cookies
...C····· ·········

.,. -- - -·-- - - ...
Web Server n 1

I '
I

I

' I
Response', 1

" 1',
I '
I
I

Figure 4.3 RBAC on the Web by secure cookies.

information from possible threats using secure cookies, and how we imple­
mented RBAC (Role-Based Access Control) with role hierarchy on the Web.
Figure 4.3 shows how the secure cookies (including a Role_Cookie) for RBAC
are created and used on the Web. If a user, let's say Alice, wants to execute
transactions in the Web servers in an RBAC-compliant domain, she first con­
nects to the role server in the beginning of the session. After the role server
authenticates Alice, it finds Alice's explicitly assigned roles in the URA (User­
Role Assignment [17, 15]) database and creates a set of secure cookies. Then,
those secure cookies are sent to and stored in Alice's hard drive securely so that
Alice does not need to go back to the role server to get her assigned roles until
the cookies expire. Namely, she can use the roles in her Role_Cookie securely
in the RBAC-compliant domain as long as the cookies are valid.

When Alice requests access to a Web server- which has PRA (Permission­
Role Assignment [16]) information- by typing the server URL in her browser,
the browser sends the corresponding set of secure cookies to the Web server.
The Web server authenticates the owner of the cookies by using the IP _Cookie
and Pswd_Cookie, comparing the value in the cookies with the values com­
ing from the user. The user's passwords are encrypted in the Pswd_Cookie
using the Web server's public key. The Web server decrypts the value of the
Pswd_Cookie by using the corresponding key to read the user's passwords.
Finally, the Web server checks the integrity of the cookies by verifying role

56 DATABASE AND INFORMATION SYSTEMS SECURITY

I.UseriO,
Passwords,
IP

Authentication
Database

16. Sec:IU'e Cookies
3. User JD, Passwords

2. User ID, Passwords, IP

15. Secure Cookies

set -cookie.cgi

5. User ID

User-Role Assignment
Database

Figure 4.4 Creating secure cookies.

server's digital signature in the SeaLCookie using the role server's public key.
If all the cookies are valid and verified successfully, the Web server trusts the
role information in the Role_ Cookie and uses it for RBAC with a role hierarchy
and permission-role assignment information in the Web server.

4.1 SECURE COOKIE CREATION

Figure 4.4 is a collaborational diagram in UML (Unified Modeling Lan­
guage [1]) style notation for secure cookie creation. This diagram shows how
we create a set of secure cookies for our implementation (refer to the left side
of Figure 4.3).

When a user, Alice, connects to the role server (which supports HTTP) of
the domain with her Web browser, she is prompted by the HTML form to
type in her user ID and passwords for the domain. The "set-cookie.cgi" pro­
gram first retrieves the user ID and passwords, and the IP number of the client
machine. The program authenticates the user by comparing the user ID and
passwords with the ones in the authentication database.4 It then assigns the
user to roles by matching the user ID and the corresponding roles from the
URA (User-Role Assignment) database.

Subsequently, a subroutine for encryption is called to another CGI pro­
gram (encrypt.cgi), which uses PGP to encrypt the passwords by the cookie­
verifying Web server's public key. These encrypted passwords will be stored in
the Pswd_Cookie by the "set-cookie.cgi" program. Then, the "set-cookie.cgi"
program creates IP _Cookie, Pswd_Cookie, Name_Cookie, Life_Cookie, and

4If the user already has an authentication cookie in a set of secure cookies, Web servers can use the authen­
tication cookie for user authentication instead of authentication databases.

RBAC on the Web by Secure Cookies 51

list.gou.edu TRUE I FAlSE 924951853 Hau Alice

1 ist.gou. edu TRUE I fAlSE 924951853 Role 01 rector

list .gou.edu TRUE I FALSE 924951853 life 12/31199

1ist .gou.edu TRUE I FALSE 924951853 IP 129.174.40.15

1ist . gou.edu TRUE I FA LSE 924951853 Pswd hEwDNHB8leJQr
WEBAf9ldJR FKIY2B ry30YgnK6rJJQ1 xqRzbey l YkuWUObfwKSXyOXIX8dT8s4k 1 cyoZ2nii CzJJn 1
F8 pPUqR 89x S V 1 7pgAAAC8 w 76 i NNPT51 vSHxx f + 3dBR HI I78pwwWrTz jT cOX? cXtQ- • •94Cd

1 i st. gou. edu TRUE I FALSE 924951853 Seal owEBigB114kAV
QMFPIJb6U+sOwEGV41 CtYQEBcUo811 kGcm.ZqRS FxbHsdHVFBxfeq6QOFRUCTrwyye 7lkaNynsRheX

Figure 4.5 An example of secure cookies stored in a user's machine.

..

Role_Cookie, giving each cookie the corresponding value: IP number of the
client machine, encrypted passwords, user's name, lifetime of the cookie set,
and assigned roles.

To support the integrity service of the cookies, the "set-cookie.cgi" program
calls another CGI program (sign.cgi), which uses PGP to sign the message
digest with the role server's private key. The "set-cookie.cgi" then creates
the SeaLCookie, which includes the digital signature of the role server on the
message digest of the cookies.

Finally, the Web server sends the HITP response header, along with the
cookies, back to the user's browser, and the cookies are stored in the browser
until they expire. These secure cookies will be verified and used in the Web
servers as described in the following subsections. Figure 4.5 is an actual snap­
shot of a set of secure cookies from our implementation that are stored in
the user's machine after the cookies are generated by the cookie-issuing Web
server. The contents of the cookies exactly reflect the ones presented in Fig­
ure 4.1.

4.2 SECURE COOKIE VERIFICATION

Figure 4.6 is a collaborational diagram in UML style notation for secure
cookie verification. This diagram shows how we verify (corresponding to the
right side of Figure 4.3) the set of secure cookies that we generated in the previ­
ous subsection for our implementation. When Alice connects to a Web server
(which accepts the secure cookies) in an RBAC-compliant domain, the con-

58 DATABASE AND INFORMATION SYSTEMS SECURITY

Figure 4.6 Verifying secure cookies.

nection is redirected to the "index.cgi" program. The related secure cookies
are sent to the Web server and she is prompted by the HTML form to type in
her user ID and passwords. The "index.cgi" program checks the validity of all
the cookies. The two IP addresses, one from the IP cookie and the other from
the environment variable, REMOTRADDR, are compared. If they are iden­
tical, then the host-based authentication is passed, and a hidden field "status"
with the value of "IP-passed" is created to indicate that this stage was passed5 .

However, if the IP numbers are different, the user is rejected by the server.

When the user submits her user ID and passwords to the server, the Web
server translates the request headers into environment variables, and another
CGI program, "password-ver.cgi," is executed. The first thing the "password­
ver.cgi" does is to check the hidden field "status" to see if the previous stage
was successfully completed. If this is "IP-passed," the program decrypts the
value of the Pswd_Cookie (encrypted user password) using the PGP with the
Web server's private key, since it was encrypted with the Web server's public
key by the role server. The program (password-ver.cgi) then compares the two
passwords: one from the user and the other decrypted from the Pswd_Cookie.
If they are identical, then the user-based authentication is passed, and a hidden
field "status" with the value of "password-passed" is created to indicate that
this stage was passed. However, if the two passwords are different, the user
has to start again by either retyping the passwords or receiving new cookies
from the role server.

After the password verification is completed, another CGI program,
"signature-ver.cgi," is activated to check the integrity of the cookies. Like the

5We used a hidden field to check the completion of the previous stage, which is passed on to the next
program. This hidden field protects the pages from being accessed directly, skipping required verification
steps, by a malicious user. For example, without this hidden field, a malicious user can access the pages
directly with forged cookies.

Project Lead I (PL I)

Production 0 Quality
Engineer 1 Engineer 1

(PEl) (QEl)

Engineer 1 (El)

Project 1

RBAC on the Web by Secure Cookies 59

Director (DIR)

Production
Engineer 2

(PE2)

Engineering Department (ED)

Employee (E)

/'>Lead 2(PL2) Quality

"" Engineer 2

"" (QE2)

Engineer 2 (E2)

Figure 4. 7 An example role hierarchy.

other programs, it first checks the value of "status" passed on from the previous
program, and it proceeds only if it shows the user has been through the pass­
word verification stage. If the value is "password-passed," then the program
verifies the signature in the SeaLCookie with the role server's public key using
PGP. If the integrity is verified, it means that the cookies have not been altered,
and a hidden field "status" with the value of "verify-passed" is created to indi­
cate that this stage was passed and forwarded to the final program, "rbac.cgi."
This program uses the role information in the Role_Cookie for role-based ac­
cess control in the server as described in the following subsection. However, if
the signature verification is failed, the user has to start again by receiving new
cookies from the role server.

4.3 RBAC IN THE WEB SERVER

After verifying all the secure cookies, the Web server allows the user, Al­
ice, to execute transactions based on her roles, contained in the Role_Cookie,
instead of her identity. In other words, the Web server does not care about the
user's identity for authorization purposes. This resolves the scalability prob­
lem of the identity-based access control, which is being used mostly in existing
Web servers. Furthermore, the Web server can also use a role hierarchy, which
supports a natural means for structuring roles to reflect an organization's lines
of authority and responsibility. Each Web server may have a role hierarchy
defferent from that in other servers. In our implementation, we used a role
hierarchy in the Web server, depicted in Figure 4.7.

60 DATABASE AND INFORMATION SYSTEMS SECURITY

If the "rbac.cgi" program in Figure 4.6 receives the value, "verify-passed;'
from the previous verification step, it means that the cookies have success­
fully passed all the verification stages, such as IP, passwords, and signature
verification. Therefore, the Web server can trust the role information in the
Role_Cookie, and uses it for role-based access control in the server.

How then can the Web server protect the pages from being accessed by
unauthorized users? Suppose a malicious user, Bob, has the role PEl but
wishes to access pages that require the PLl role. He could change the value
of his Role_Cookie so that it has PLl, or roles senior to PLl. He would go
through the password verification stages, since he would be able to log in as
Bob by using his own passwords. However, when his Seal_Cookie is being
verified, there would be a problem, as the signature verification would fail.
Therefore, he would not be allowed to move beyond this stage. On the other
hand, he could try accessing the pages directly by typing the URLs. This would
not be allowed, since each page checks to see if he has activated the required
role, PLl, or roles senior to PLl. In other words, Bob is not allowed to ac­
cess the pages, which require roles senior to his, because he cannot activate the
senior roles, which are out of his available role range.

As a result, the Web server allows only users, who have gone through all
the verification steps with the secure cookies (Name_Cookie, Life_Cookie,
Role_Cookies, IP _Cookie, Pswd_Cookie, SeaLCookie), to access the pages.
This access also is possible only if the users have the required roles and acti­
vate them among their available roles based on the role hierarchy.

5. CONCLUSIONS

In this paper, we have described how we implemented RBAC with role hier­
archies on the Web using secure cookies. To protect the role information in the
cookies, we provided security services, such as authentication, confidentiality,
and integrity, to the cookies using PGP and CGI scripts in the Web servers.
This access control mechanism solves the scalability problem of existing Web
servers. The use of secure cookies is a transparent process to users and appli­
cable to existing Web servers and browsers.

Acknowledgments

This work is partially supported by the National Security Agency under its IDEA program.

References

[1] Booch, G., Jacobson, 1., and Rumbaugh, J. (1998). The unified modeling
language user guide. Addison-Wesley.

RBAC on the Web by Secure Cookies 61

[2] Callas, J., Donnerhacke, L., Finney, H., and Thayer, R. (1998). OpenPGP
massage Format. RFC 2440.

[3] Diffie, W. and Hellman, M. (1997). ANSI X9.42: Establishment of Sym­
metric Algorithm Keys Using Diffie-Hellman. American National Stan­
dards Institute.

[4] Ferraiolo, D., Cugini, J., and Kuhn, R. (1995). Role-based access control
(RBAC): Features and motivations. Proceedings of the Eleventh Annual
Computer Security Application Conference, pp. 241-248.

[5] Kristol, D. M. and Montulli, L. (1998). HTTP state management mecha­
nism. draft-ietf-http-state-man-mec-8.txt.

[6] Kristol, D. M. and Montulli, L. (1998). HTTP state management mecha­
nism. draft-ietf-http-state-man-mec-1 O.txt.

[7] Lai, X. and Massey, J. (1991). A proposal for a new block en-
cryption standard. In Advances in Cryptography - CRYPT0'90
Proceedings,Spinger-Verlag, pp. 389-404.

[8] Neuman, B. C. (1994). Using Kerberos for authentication on computer
networks. IEEE Communications, 32(9).

[9] Park, J. S. and Sandhu, R. (1999). RBAC on the Web by smart certificates.
Proceedings of Fourth ACM Workshop on Role-Based Access Control.

[10] Rescorla, E. and Schiffman, A. (1998). Security Extensions For HTML.
draft-ietf-wts-shtml-05.txt.

[11] Rigney, C., Rubens, A., Simpson, W. A., and Willens, S. (1997). Remote
Authentication Dial In User Service RADIUS. RFC 2138.

[12] Rivest, R. (1992). The MD5 message digest algorithm. RFC 1321.
[13] Rivest, R., Shamir, A., and Adleman, L. (1978). A method for obtaining

digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2), pp. 120-126.

[14] Sandhu, R. (1998). Role-based access control. Advances in Computers,
46.

[15] Sandhu, R. and Bhamidipati, V. (1997). The URA97 model forrole-based
administration of user-role assignment. Database Security XI: Status and
Prospects (eds. T.Y. Lin and X. Qian), North-Holland.

[16] Sandhu, R., Bhamidipati, V., Coyne, E., Ganta, S., and Youman, C.
(1997). The ARBAC97 model for role-based administration of roles: Pre­
liminary description and outline. Proceedings of Second ACM Workshop
on Role-Based Access Control, pp. 41-50.

[17] Sandhu, R. and Park, J. S. (1998). Decentralized user-role assignment
for Web-based intranets. Proceedings of Third ACM Workshop on Role­
Based Access Control, pp. 1-12.

62 DATABASE AND INFORMATION SYSTEMS SECURITY

[18] Sandhu, R. S., Coyne, E. J., Feinstein, H. L. and Youman, C. E. (1996).
Role-based access control models. IEEE Computer, 29(2), pp. 38-47.

[19] Schiffman, A. and Rescorla, E. (1998). The Secure HyperText Transfer
Protocol. draft-ietf-wts-shttp-06.txt.

[20] Steiner, J., Neuman, C. and Schiller, J. (1988). Kerberos: An authen­
tication service for open network systems. Proceedings of the Winter
USENIX Conference.

[21] Wagner, D. and Schneier, B. (1996). Analysis of the SSL 3.0 protocol.
Proceedings of the Second UNIX Workshop on Electronic Commerce.

[22] Zimmermann, P.R. (1995). The Official PGP User's Guide. MIT Press.

	4 RBAC ON THE WEB BY SECURE COOKIES
	1. INTRODUCTION
	2. RELATED TECHNOLOGIES
	2.1 ROLE-BASED ACCESS CONTROL (RBAC)
	2.2 COOKIES
	2.3 PRETTY GOOD PRIVACY (PGP)

	3. SECURE COOKIES
	3.1 SECURITY THREATS TO COOKIES
	3.2 DESIGNING SECURE COOKIES

	4. RBAC IMPLEMENTATION BY SECURE COOKIES
	4.1 SECURE COOKIE CREATION
	4.2 SECURE COOKIE VERIFICATION
	4.3 RBAC IN THE WEB SERVER

	5. CONCLUSIONS
	Acknowledgments
	References

