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Abstract 
This paper introduces guidelines to prevent illegal information flows due to 
object deletion in multilevel secure object database management systems 
(ODBMSs). The guidelines are formally stated as security principles. We also 
show how to design a garbage collection mechanism in a multilevel secure 
ODBMS that ensures both security and referential integrity. 
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1 INTRODUCTION 

Object-oriented database management systems and recent object-relational 
database management systems (in what follows we will refer to both kind of 
systems as object database management systems - ODBMSs for short) con­
tinue to be an active research area for both the academic and the industrial 
world. Issues related to security and privacy have been investigated in the 
area of ODBMSs and models have been proposed for both mandatory access 
controls (Jajodia et al. 1990, Millen et al. 1992, Thuraisingham 1989) and 
discretionary access controls (Rabitti et al. 1991). However, much work is 
still needed in this area. In particular, even if some approaches, developed for 
relational DBMSs, can be directly applied to ODBMSs, new security prob­
lems arise that are specific to object manipulation in ODBMSs. We believe 
that addressing such security issues is important given the relevance of object 
technology in the current and next generations of DBMSs. 

An important issue in ODBMSs is related to object deletion. Two different 
approaches are used by existing ODBMS to enforce object deletion; under 
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the first users are allowed to explicitly delete objects; under the second a 
garbage collection mechanism is used by which an object is removed by the 
system when no longer reachable by other objects. Because under the latter 
approach no explicit delete operation is provided at application level, refer­
ential integrity is ensured. However, object deletion and garbage collection 
are operations that, if not properly implemented, could be exploited as covert 
channels. An important requirement for those operations is therefore to be 
secure from covert channels and, at the same time, to ensure referential in­
tegrity among objects in the database. Because of the relevance of garbage 
collection in object systems, several algorithms have been proposed for both 
centralized and distributed systems (Kolodner et al. 1989, Moss 1992). Here, 
we continue our investigation in object deletion and secure garbage collection 
(Bertino et al. 1994). We first show how object deletion and garbage collec­
tion could be illegally exploited to perform unauthorized data accesses; then, 
we introduce some principles ensuring a secure delete operation. Moreover, 
we present a garbage collection protocol which is secure against covert chan­
nels. The main differences between this work presented and our previous work 
(Bertino et al. 1994) can be summarized as follows. First, here we provide a 
formal setting to address secure object delete operations. Second, in our pre­
vious paper the copying approach to garbage collection was considered. Here, 
we consider a different approach, based on the mark-and-sweep technique, 
and show how the proposed approach is secure wrt the formal setting. The 
formal setting we propose consists of a number of principles forming the basic 
guidelines for secure object deletion and garbage collection. These guidelines 
provide a concrete embodiment of the general Bell-LaPadula principles (Bell 
et al. 1975) for the specific case of object deletion and garbage collection. We 
believe that such guidelines are an important step towards the development 
of secure object systems. 

The remainder of this paper is organized as follows. Section 2 recalls the 
basic concepts of multilevel security and outlines the object model we refer 
to in this paper. Section 3 introduces the problem of object deletion and 
provides rules for secure object deletion. Section 4 analyzes the mark-and­
sweep garbage collection protocol with respect to the principles presented in 
Section 3. Section 5 provides conclusions. 

2 PRELIMINARY CONCEPTS 

We first recall the basic concepts of multilevel security and describe the mes­
sage filter model (Jajodia et al. 1990). Then, we characterize the object model 
we refer to in the paper. 
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2.1 The multilevel security model 

The system consists of a set 0 of objects, a set S of subjects, and a set Lev 
of security levels with a partial ordering relation ::; . A level Li is dominated 
by a level Lj if Li ::; Lj. A level Li is strictly dominated by a level Lj (written 
Li < Lj) if Li ::; Lj and i '# j. We say that two levels Li and Lj are 
incomparable (written Li <> Lj) if neither Li ::; Lj nor Lj ::; Li holds. A 
total function £, called security classification function, is defined from 0 U S 
to Lev. Given an object o, function £returns the security classification of o. 
Similarly, given a subject s, £(s) denotes the security classification of s. 

A secure system enforces the Bell-LaPadula restrictions (Bell et al. 1975) 
that can be stated as follows: 1) a subject s is allowed to read an object o iff 
£(0) ::; £(s) (no-read-up); 2) a subject sis allowed to write an object o iff 
£(s)::; £(0) (no-write-down). 

The second property is also known as the *-property and prevents leakage 
of information due to Trojan Horses. 

2.2 The reference object model 

An object database consists of a set of objects exchanging information via 
messages. An object consists of a unique object identifier (om), which is fixed 
for the whole life of the object, and a set of attributes, whose values represent 
the state of the object. The value of an attribute can be an object or a set of 
objects. Moreover, an object has a set of methods encapsulating the object 
state. An object can be primitive (like an integer, or a character), or can 
be built from other objects (either primitive or non-primitive). We denote a 
non-primitive object as a triple (oid, state,meths), where: oid is the object 
identifier; state = ( ai : vi, a2 : v2, ... , an : Vn), where a; is an attribute 
name (the names of object attributes must be distinct), and v; is the value of 
attribute a;, 1 = i, ... , n; meths is a set of method names. 

Let o and o' be two objects. We say that o is a high-level ( low-leveij object 
with respect too', if £(01) < .C(o) (.C(o) < .C(o')). Similarly, let o and o' be 
two objects such that o stores in one of its attribute the om of o'. We say 
that the om of o' is a high-level (low-leveij om with respect to o if £(0) < 
£(0'). 

Whenever an object o has as value of one of its attributes the om of an 
object o', we say that o references o'. * 

In our model, no reference is allowed among objects at incomparable secu­
rity levels. Moreover, we make the assumption, common to most proposals, 

•An object o may reference a high-level object o1 provided that: (a) the creation of o1 has 
been requested by o (or by another object at a level lower than or equal to the level of o); 
(b) the OID of o1 is generated according to a covert-channel free OID generation mechanism 
(see (Bertino et al. 1994) for such a mechanism). 
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that all objects are single-level and, therefore, all attributes of an object have 
the same security level. Multilevel objects can easily be represented in terms of 
single-level objects; we refer the reader to (Bertino et al. 1997b) for a detailed 
discussion on this issue. 

The methods of an object can be invoked by sending a message to the object. 
Upon the reception of the message, the corresponding method is executed, and 
a reply is returned to the object sending the message. The reply can be either 
an om, a primitive object, or a special nil value, denoting that no information 
is returned. 

The invocation of a method m on the reception of a message can be either 
synchronous or asynchronous. In the former case, the sender waits for the 
reply value, that is, it is suspended until the invoked method terminates. In 
the latter case, a nil reply value is immediately returned to the sender which 
will be executed concurrently with the receiver; the sender will be able to 
get the reply value successively. In this paper we do not distinguish between 
synchronous and asynchronous method invocations. Moreover, we assume that 
method invocations are performed sequentially during a user session within 
the system. 

The fact that messages are the only means by which objects can exchange 
information makes information flow in object systems have a very concrete 
and natural embodiment in terms of messages and their replies (Jajodia et al. 
1990). Thus, information flow in object systems can be controlled by mediating 
message exchanges among objects. 

2.3 The message filter model 

The Bell-LaPadula model has been applied to the object model by means 
of the message filter (Jajodia et al. 1990). Under this approach all messages 
exchanged among objects in the system are filtered according to the follow­
ing rules: 1} if the sender of the message is at a level strictly dominating the 
level of the receiver, the method invoked by the message is executed by the 
receiver in restricted mode, that is, no update can be performed. More pre­
cisely, a restricted mode execution at a level l should be memoryless at level l. 
Therefore, even though the receiver can see the message, the execution of the 
corresponding method on the receiver should leave the state of the receiver 
(as well as of any other object at a level not dominated by the level of the 
receiver) as it was before the execution. 2} If the sender of the message is at a 
level strictly dominated by the level of the receiver, the method is executed by 
the receiver in normal mode, but the returned value is nil. To prevent timing 
channels, the nil value is returned to the sender before actually executing the 
method. 

The first principle ensures that an object does not write-down, whereas the 
second one ensures that an object does not read-up. The message filter is 
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a trusted component of the object system in charge of enforcing the above 
principles on all message exchanges among objects. Note that, according to the 
reference object model, an object is allowed to reference a high-level object; 
this means that an object may have as value of one of its attributes a high-level 
om. This possibility allows an object to send information to objects at higher 
levels. However, since every message is intercepted by the message filter, this 
possibility does not violate the overall security of the system since read-up 
operations will always return a nil response value. Moreover, an object of level 
Li may only stores the oms of the high-level objects whose creation has been 
requested by a level lower than or equal to level Li. The mechanism we adopt 
for oms generation is described in (Bertino et al. 94). 

3 DELETE OPERATION 

Existing ODBMSs use different approaches with respect to the delete opera­
tion. There are two categories of systems: systems supporting explicit delete 
operations (like Orion (Kim et al. 1990) and Iris (Fishman et al. 1989)), and 
systems using a garbage collection mechanism (like 02 (Deux et al. 1990) 
and Gemstone (Maier et al. 1986)). A garbage collector is a piece of software 
that deletes objects no more accessible. There is a special object, called root, 
which is always persistent. All objects that can be reached from the root by 
traversing object references, are persistent. An object is removed when it can 
no longer be reached from the root. 

If the delete operation is not properly executed, covert channels may be 
established. 

Figure 1 An object o' with references from its own level and a higher level 

Example 1 Consider two objects o and o' such that .C(o) = .C(o') = Li, 
and an object o" such that .C(o") = L2, with L1 < £2. Suppose that both o 
and o" reference o' (see Figure 1). Suppose that the reference from o to o' is 
removed, because o has been deleted. If a garbage collection approach is used, 
o' would not be deleted since there is still another object (i.e., o") referencing 
it. Therefore two subjects at levels L1 and £ 2 , respectively could exploit this 
fact to establish a covert channel. The subject at level Li would create two 



100 Part Three Object-Oriented Systems 

objects o and 0 1 , at its own level, such that o references o'. Then, the subject 
at level L2 would create an object 0 11 , at its own level, such that 0 11 references 
0 1 • Then, after an amount of time pre-defined by the two subjects, the subject 
at level L1 would remove the reference from o to 0 1• If, after the reference 
has been removed, object 0 1 still exists, this situation is interpreted as 1. By 
contrast, if object 0 1 is removed, this situation is interpreted as 0. Note that the 
subject at level L 1 would simply need to check storage occupancy to determine 
whether 0 1 still exists. 

Exploiting the above covert channel requires collusion of two subjects at 
different levels. Note, however, that this is a common situation for many types 
of covert channels. See as an example, covert channels exploiting concurrency 
control mechanism in DBMS (Jajodia et al. 1992). 

Moreover, whenever storage is deallocated because of object deletion, the 
problem of dangling references may arise. In systems with explicit delete op­
erations dangling references may arise since an object can be removed even if 
there are references to it. In a garbage collection environment, an untrusted 
collector could intentionally remove an object to create a dangling reference. 

A security problem is that dangling references can be used to establish 
covert channels, as the following example shows. 

Example 2 Consider Figure 2(a). If object o' is deleted by a subject at level 
L2, a dangling reference appears in object o at level L1 < L2 (Figure 2(b)). 
A subject at level L 1 could infer the deletion of object 0 1 by trying to send a 
write message to the object. On the basis of the result of such operation, the 
subject at level L1 gets one bit of information from a higher security level. 

Thus, the deletion of objects referenced by low-level objects can be exploited 
by low-level subjects to infer information from high-level objects. A subject 
at a security level L2 could delete a subset of the objects referenced by objects 
at a security level L1, with L1 < L2. Then a subject at level L1 could try 
to access all high-level objects resulting in a set of unsuccessful-successful 
accesses. Hence, an arbitrary string of bits of reseryed information could be 
transmitted from a higher security level. Note that, in a garbage collection 
environment an untrusted collector could intentionally remove the objects at 
level L2 referenced by low-level objects in order to establish a covert channel. 

As Examples 1 and 2 above show, there are many ways in which a delete 
operation can be exploited to establish a covert channel. However, it is im­
portant to note that, when an object is deleted, the only side effects on the 
database are a state transition of the database itself and, possibly, the gener­
ation of dangling references. Therefore, the only means to establish a covert 
channel exploiting object deletion are those stated by the following definition. 

Definition 1 (Delete Covert Channel) A delete covert channel is a co-
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Figure 2 An object o referencing a high-level object 

vert channel established by one of the following means: (i) exploiting dangling 
references; (ii) monitoring the state of the system with respect to object or 
memory allocation;* or (iii) performing intentional data scavenging.* 

In the above definition, with the term state of the system we refer to the 
state of all objects stored in the system and all the information related to the 
system itself, such as memory allocation and method error codes. 

Moreover, delete operations can be regarded as a form of write operations: 
depending on the specific delete approach used, information may have to be 
set into the object being deleted (such as reference counts). It is therefore 
necessary to avoid that they can be exploited to establish a Trojan Horse. 
The Trojan Horse is simply established by having at a high-level some piece 
of code allowing or disallowing deletions of lower level objects or by plainly 
writing sensitive data into lower-level system information, used when removing 
the object (we call it Delete Trojan Horse). The above considerations lead to 
the following definition of secure delete operation. 

Definition 2 (Secure Delete Operation) A delete operation is secure iff 
it cannot be exploited to establish a delete covert channel or a delete Trojan 
Horse. 

An important question is whether there could be other circumstances, be­
sides the ones considered in Definition 2, leading to insecure delete opera­
tions. We believe not. Indeed, illegal information flow may arise in two cases: 
1) write-down operations, which for delete operations mean that a high-level 
subject may cause or prevent the deletion of a low-level object, or write sensi­
tive data into lower-level system information. This case has been identified as 
Delete Trojan Horse in the above definition; 2) read-up operations, which for 
delete operations mean that dangling references* may arise, or that some low­
level subjects may read high-level information about memory occupancy or 

*When we speak of object allocation rather than memory allocation, we mean information 
about whether or not memory is allocated to a given object regardless of the amount of 
memory it uses (e.g. the result of a query looking for the instances of a given class). 
*Accesses to system resources such as memory pages and disk sectors no more allocated. 
See also object reuse in (Chokhani 1992). 
*This is because the delete operation just removes objects. 
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de-allocated areas. All these situations have been identified as delete covert 
channels in Definition l. Note that completeness of Definitions 1 and 2 is 
based on the observation that a delete operation consists of two steps: (a) log­
ically removing the object (and then checking references to the object); (b) 
physically removing the object (and thus de-allocating the storage allocated 
to the object). Our definitions are based on analysis of security threats that 
can arise in the above steps. 

Even though the delete operation can be thought of as a form of write, 
because of the many ways the delete operation is implemented in object sys­
tems, it is important to establish some basic principles, enforcing secure delete 
operations, underlying any possible implementation of the delete operation. 
These principles are the topic of the following subsection. 

3.1 Security principles for object deletion 

In the following we define a set of security principles, ensuring the security of a 
delete operation. These principles state what needs to be done by the Trusted 
Computing Base ( TCB) ( Chokhani 1992) to prevent illegal flows of informa­
tion due to object deletion, rather than how it will actually be implemented. 
For instance, Figure 2 only shows how to exploit dangling references to es­
tablish a delete covert channel, regardless of implementation details. Indeed, 
the TCB can easily block these illegal flows by simply using a strategy like 
the one discussed in Subsection 2.3 for handling messages sent to high-level 
objects. 

We do not make any assumption whether deletion is implicit or explicit 
or whether referential integrity is enforced. In order to make our approach 
widely applicable, we do not assume a particular mandatory security model 
and start from the basic mandatory access control principles introduced in 
Subsection 2.1. Moreover, our principles do not assume any system architec­
ture (single-subject vs kernelized). 

Since delete operations can be regarded as a form of write operations, delet­
ing a low-level object can be interpreted as a violation of the *-property. 
Hence, we suggest the following principle: 

Principle 1 (No Delete Down) An object o can cause the deletion of an 
object o' if and only if .C(o)::; .C(o'). 

Note that we have used 'can cause the deletion' rather than 'can delete', 
because in a garbage collection environment an object can only cause the dele­
tion of another object by updating all references to the given object, causing 
its deletion by the collector. In systems supporting explicit deletions, an object 
can cause the deletion of another object by issuing a delete command. 

As we have seen in Example 1, an object oat level L could be referenced 
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by several high-level objects and these references from high-level objects to 
low-level objects could be used to establish a delete covert channel. In order 
to prevent this type of problem, the following principle is established: 

Principle 2 (No Interference from High to Low) If an object o is ref­
erenced by high-level objects and by no object of level L', L' < C( o), a delete 
operation invoked on object o from level C(o) cannot be prevented. 

In Example 2, dangling references from low-level objects to high-level ob­
jects are used to infer higher level data. However, oms referencing high-level 
objects are needed if write-up is allowed by the security model. Therefore, we 
propose the following principle: 

Principle 3 (No Dangling References from Low to High because of 
High-Level Deletions) A delete operation invoked from level L on an object 
o' of level L', L ~ L', must not be allowed if there exists at least an object o 
such that C(o) < L and o references o'. 

Note that Principle 3 does not forbid the deletion of an object o, refer­
enced by low-level objects, if this deletion is required by an object at a level 
dominated by all the levels of the objects referencing o. Indeed, the dangling 
references arising from this deletion cannot be exploited as a covert channel 
trying to access the deleted object. 

As stated by Definition 1, dangling references are not the only mean of 
establishing a delete covert channel. For instance, using an untrusted garbage 
collector that acts on the entire database, an object at level L could infer 
the deletion of an object at level L', L < L', by monitoring the system re­
sources. Hence, system resources must be controlled according to the following 
principle: 

Principle 4 (No Global Information) Information about system resources 
at security level L can be made available to an object o if and only if L ~ C(o). 

It is important to note that the no read-up principle is normally intended 
as a restriction imposed on the operations acting on the database, whereas 
Principle 4 states a more general rule to avoid also leakage of information due 
to system information, like memory allocation. 

Example 3 The interplay among the given principles is illustrated with the 
help of Figure 3. Suppose that a subject at level L2 invokes the deletion of 
object o2 . Under the security principles, 02 is not deleted, since its deletion 
would violate Principle 3. Note that, even if the deletion of 02 is not allowed, 
Principle 2 is satisfied too, because object 02 is referenced by both a high-level 
object (i.e., o3 ) and a low-level object (i.e., o1). By contrast, if a subject at 
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Figure 3 An object referenced from multiple levels 

level L1 invokes a delete operation on 02, this operation is allowed since the 
deletion of 02 does not violate any principle. 

The correctness of the above security principles is stated by the following 
proposition. 

Proposition 1 A delete operation is secure iff Principles 1- 4 are satisfied. 

We refer the reader to (Bertino et al. 1997a) for the formal proof. 

3.2 Implementation issues 

The four principles guarantee the security of the delete operation. The de­
scription of a detailed implementation for the delete operation is outside the 
scope of this paper. Nevertheless, it is possible to make some considerations 
to help in securely designing and implementing such operation. 

• The delete operation can be considered a special case of write operation. 
Therefore a TCB enforcing the *-property verifies Principle 1. 

• The delete operation must neither update the state of an object nor read 
it, but it must physically remove an object. An important requirement for 
a system to be secure is that the basic storage elements (e.g. disk sectors, 
memory pages, etc.) be cleared prior to their assignment to an object so that 
no intentional or unintentional data scavenging takes place. The storage 
elements can be cleared when deallocated, that is, when an object is deleted. 
The security principles are defined disregarding implementation details. 
Hence we require the physical deletion to be performed by the TCB: when a 
delete operation is invoked on an object, the TCB calls a trusted procedure 
to perform the deletion. 

• There are two possible approaches to enforce Principle 3: 1) upwards dan­
gling references are masked by concatenating the oms with the security 
level where the object is allocated (Millen et al. 1992) and making such 
dangling references ineffective (Bertino et al. 1994). This means that an 
object trying to access a high-level object is returned a default reply value 
even if the target object has been previously deleted. This can be per-
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formed by the TCB that determines the security level from the om and 
can, therefore, recognize a high-level om. This approach requires that the 
om contains the security level of the object (cfr. Bertino et al. 1994); 2} 
the deletion of an object like o' in Figure 2 is prevented by the TCB. * 
In both cases Principle 3 is verified. In particular, the first solution makes 
the upwards dangling references ineffective. Hence the principle is merely 
satisfied since no low-to-high dangling reference can compromise security. 
Note that this strategy can also be applied to incomparable security lev­
els. Moreover, according to the first of the above approaches, object 02 in 
Figure 3 can be deleted by a subject at level L2 and Principle 3 is sat­
isfied because the dangling reference from object 01 to object 02, arising 
from the deletion of 02, is masked by the TCB. The first approach can also 
be adopted for the create operation. An object o requesting the creation 
immediately receives the new om and the creation itself is executed asyn­
chronously: errors possibly occurred during the creation do not prevent 
object o from immediately receiving the new om. 

A TCB satisfying the requirements stated above can be designed on the 
basis of the message filter approach described in Subsection 2.3. Finally, note 
that referential integrity is not preserved by the security principles, because 
they deal only with security. In particular, because of Principle 2, dangling 
references can arise which, however, cannot be exploited as delete covert chan­
nels. 

4 SECURE GARBAGE COLLECTION 

Our aim is to achieve referential integrity in multilevel databases by means of 
garbage collection. A serious drawback with conventional garbage collection 
mechanisms is that the garbage collector would have to access objects at var­
ious security levels. The garbage collector would therefore have to be trusted. 
We describe here a different approach, based on the mark-and-sweep tech­
nique; under this approach the collector is structured so that the trusted part 
is minimized. We analyze this approach with respect to the four principles for 
secure delete operations and we show that the garbage collector satisfies the 
four security principles. 

A mark-and-sweep collector follows pointers in the heap marking any object 
that is reached (marking phase), then it collects all the non-marked objects 
(sweeping phase) scanning the heap sequentially. The marking phase starts 
from the root objects (objects containing information always needed). The 
root objects are the "entry points" for a security level. 

One way to implement a multilevel trusted collector is to employ a TCB 
(Shockley et al. 1987) which controls the behavior of single-level untrusted 
collectors and enforces the Bell-LaPadula principles. Therefore, we require 

*Auxiliary information about low-level OIDs should be stored by the TCB for this purpose. 
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root objects and a marking collector MCL for each security level L. The. 
marking collector MCL is an object at level L in the database, which is 
activated and controlled by the TCB. The marking collector MCL executes 
the marking phase for level L, while all sweeping phases are performed by the 
TCB to avoid data scavenging. MCL does not mark an object oat level Lor 
higher i:ff all references to o from other objects at level L have been removed 
(that is, the object is non-locally reachable). Garbage collection is managed 
according to the stop-the-world approach: activities are suspended, garbage 
is collected and then activities are restarted. 

Since marking collectors are untrusted objects, each marking collector can 
only read objects or system information at its security level or at lower levels. 
In the following we show how to prevent the marking collectors from being 
exploited as storage covert channels. Storage covert channels are illegal chan­
nels established via the exploitation of the dynamic allocation of memory or 
via data scavenging. For example, a high-level subject could establish such 
a covert channel by saturating the memory, to prevent the normal computa­
tion of a low-level subject, which in turn could infer high-level information. 
To overcome this drawback, we adopt the following solution. System mem­
ory (volatile and non-volatile) is divided into a number of partitions of fixed 
size, one for each security level. Subjects at level L can allocate memory only 
from the partition assigned to L and the creation of a high-level object is 
performed at the level requested for the new object. This allocation scheme 
prevents storage covert channels from being established. 

The marking collector MCL executes a write operation in order to mark an 
object, hence it is only able to mark objects at level Lor higher. The marking 
collector MCL cannot be aware of references from objects at security levels 
higher than L because of the no read-up restriction. Therefore, dangling refer­
ences could arise at security levels higher than L after the garbage collection is 
completed. The approach we propose to avoid dangling references is based on 
copying operations. Under this approach, an object o, non-locally reachable at 
its security level, is copied at higher security levels as needed. This mechanism 
does not need to be trusted; therefore it can be implemented by the marking 
collectors. The marking collector MCL * builds a table called Copy Table to 
store pairs of related OIDs of the form ( old-oid, new-oid), where old-oid is 
the OID of a low-level non-marked object while new-oid is the om of its copy 
created at level L by the marking collector MCL. The Copy Table at level L 
is read by the marking collectors at levels higher than L to avoid redundant 
copies. It is sufficient to create a copy of an object o, non-locally reachable, 
at the lowest levels where o is needed and update all high-level objects refer­
encing o. When dealing with incomparable levels, a copy is generated for each 
level as needed. 

The marking collectors are activated by visiting the security lattice on the 
basis of a sequence (Li, ... , Ln) called visit-sequence, where L1 is the lowest 

*Except for the lowest level in the security lattice. 
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Figure 4 Achieving referential integrity with garbage collection 

level, Ln the highest and for each Li, Lj, 1 < i :S n, 1 :S j < i, Lj < L; or 
Lj <> L;. The visit-sequence is a static list associated with a given database. 

When level Lis visited, the marking collector MCL is activated and after its 
termination the next security level in the visit-sequence is visited. The sweep­
ing phase must be postponed till the end of the marking phases, otherwise an 
object could be removed before being copied: when the last collector completes 
its execution, the sweeping phase is performed for all security levels. 

Figure 4 shows an example of this approach: object 1 at level Li is not 

marked by the marking collector MCLi; hence it is copied at level L2 by the 
marking collector MCL2 that adds the pair (oid(l), oid(I')) to the Copy Table 

at level L2. The om stored in object 4 at level L3 and referencing object 1 
is updated with the om of the copy 1' generated at level L2. This update is 
performed by the marking collector MCL3 by reading the Copy Table at level 

L2. 
This approach satisfies the security principles previously stated. Suppose 

that the marking collectors correctly execute the marking phase. Principle 1 
is satisfied. The marking collectors cannot perform explicit deletions. More­
over, they are objects under the control of the TCB; hence they cannot violate 
the *-property by causing a low-level object to be deleted. Principle 2 is sat­
isfied. A non-marked low-level object is copied at higher security levels, if 
needed, then it is deleted by the TCB. By contrast, if an object is locally 

reachable, it is marked and cannot be deleted. Principle 3 is satisfied. No low­
to-high dangling reference appears if the marking collectors execute correctly 

the marking phase. Principle 4 is satisfied. The rule stated by this security 

principle is enforced by the TCB; hence we can assume that the principle is 
satisfied. Even if a marking collector incorrectly executes the marking phase, 
no security violation arises. The marking collector MCL cannot read infor­
mation at higher or incomparable levels; hence an incorrect marking phase 
can only generate dangling references from objects at level L. The only dan­
gling references that could be exploited to establish a delete covert channel 
are those referencing high-level objects that have been deleted during the 
sweeping phases; these dangling references can be made ineffective by the 
TCB (cfr. Subsection 3.2, solution 1). Moreover, the system memory is di­

vided into partitions of fixed size which is always the same. Therefore, it is 

not possible to establish covert channels due to memory saturation, overflows 
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and so on. Finally, timing channels due to the execution of marking collectors 
can be avoided by properly controlling their execution time. For instance, the 
execution time of each marking collector can be forced to be longer than a 
pre-defined lower bound, which can be the same for each security level. 

5 CONCLUDING REMARKS 

We have analyzed issues related to object deletion in multilevel secure ODBMSs 
and we have stated principles ensuring a secure delete operation. These prin­
ciples should be observed in designing and implementing garbage collection 
mechanisms and mechanisms for data manipulation in object systems. We 
have shown how a multilevel garbage collector algorithm, based on the mark­
and-sweep technique, can be analyzed with respect to the above principles. 

An important question concerns the computational overhead associated 
with each principle. The overhead is proportional to the number of refer­
ences that each object has and how such references are distributed across 
levels. Such considerations are confirmed by some experimental evaluations 
performed on the copying garbage collection algorithm. The experiments have 
shown that the performance mainly depends on the number of copying op­
erations of objects from lower to higher levels. This number depends on the 
number of references from higher-level objects to lower-level objects. Another 
factor impacting the performance is the structure of the security levels lattice. 
If the number of incomparable levels is high, the performance is good, because 
the first phase of the collector can be activated in parallel for all the incom­
parable levels. By contrast, the performance is not optimal when all levels are 
totally ordered. It is easy to see that these considerations apply also to the 
mark-and-sweep collector. 
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