
6

A principled approach to object
deletion and garbage collection
in multilevel secure object bases

Elisa Bertino Elena Ferrari
Dipartimento di Scienze dell'Informazione
Universita di Milano
Via Comelico 39/41, 20135 Milano,Italy
e-mail: {bertino, ferrarie }<Ddsi. unimi. it

Abstract
This paper introduces guidelines to prevent illegal information flows due to
object deletion in multilevel secure object database management systems
(ODBMSs). The guidelines are formally stated as security principles. We also
show how to design a garbage collection mechanism in a multilevel secure
ODBMS that ensures both security and referential integrity.

Keywords
Object Database Management Systems, Object Deletion, Garbage Collection

1 INTRODUCTION

Object-oriented database management systems and recent object-relational
database management systems (in what follows we will refer to both kind of
systems as object database management systems - ODBMSs for short) con­
tinue to be an active research area for both the academic and the industrial
world. Issues related to security and privacy have been investigated in the
area of ODBMSs and models have been proposed for both mandatory access
controls (Jajodia et al. 1990, Millen et al. 1992, Thuraisingham 1989) and
discretionary access controls (Rabitti et al. 1991). However, much work is
still needed in this area. In particular, even if some approaches, developed for
relational DBMSs, can be directly applied to ODBMSs, new security prob­
lems arise that are specific to object manipulation in ODBMSs. We believe
that addressing such security issues is important given the relevance of object
technology in the current and next generations of DBMSs.

An important issue in ODBMSs is related to object deletion. Two different
approaches are used by existing ODBMS to enforce object deletion; under

Database Security XI T.Y. Lin and Shelly Qian (Eds)
Q 1998 IFJP. Published by Chapman & Hall

96 Part Three Object-Oriented Systems

the first users are allowed to explicitly delete objects; under the second a
garbage collection mechanism is used by which an object is removed by the
system when no longer reachable by other objects. Because under the latter
approach no explicit delete operation is provided at application level, refer­
ential integrity is ensured. However, object deletion and garbage collection
are operations that, if not properly implemented, could be exploited as covert
channels. An important requirement for those operations is therefore to be
secure from covert channels and, at the same time, to ensure referential in­
tegrity among objects in the database. Because of the relevance of garbage
collection in object systems, several algorithms have been proposed for both
centralized and distributed systems (Kolodner et al. 1989, Moss 1992). Here,
we continue our investigation in object deletion and secure garbage collection
(Bertino et al. 1994). We first show how object deletion and garbage collec­
tion could be illegally exploited to perform unauthorized data accesses; then,
we introduce some principles ensuring a secure delete operation. Moreover,
we present a garbage collection protocol which is secure against covert chan­
nels. The main differences between this work presented and our previous work
(Bertino et al. 1994) can be summarized as follows. First, here we provide a
formal setting to address secure object delete operations. Second, in our pre­
vious paper the copying approach to garbage collection was considered. Here,
we consider a different approach, based on the mark-and-sweep technique,
and show how the proposed approach is secure wrt the formal setting. The
formal setting we propose consists of a number of principles forming the basic
guidelines for secure object deletion and garbage collection. These guidelines
provide a concrete embodiment of the general Bell-LaPadula principles (Bell
et al. 1975) for the specific case of object deletion and garbage collection. We
believe that such guidelines are an important step towards the development
of secure object systems.

The remainder of this paper is organized as follows. Section 2 recalls the
basic concepts of multilevel security and outlines the object model we refer
to in this paper. Section 3 introduces the problem of object deletion and
provides rules for secure object deletion. Section 4 analyzes the mark-and­
sweep garbage collection protocol with respect to the principles presented in
Section 3. Section 5 provides conclusions.

2 PRELIMINARY CONCEPTS

We first recall the basic concepts of multilevel security and describe the mes­
sage filter model (Jajodia et al. 1990). Then, we characterize the object model
we refer to in the paper.

Object deletion and garbage collection in object bases 91

2.1 The multilevel security model

The system consists of a set 0 of objects, a set S of subjects, and a set Lev
of security levels with a partial ordering relation ::; . A level Li is dominated
by a level Lj if Li ::; Lj. A level Li is strictly dominated by a level Lj (written
Li < Lj) if Li ::; Lj and i '# j. We say that two levels Li and Lj are
incomparable (written Li <> Lj) if neither Li ::; Lj nor Lj ::; Li holds. A
total function £, called security classification function, is defined from 0 U S
to Lev. Given an object o, function £returns the security classification of o.
Similarly, given a subject s, £(s) denotes the security classification of s.

A secure system enforces the Bell-LaPadula restrictions (Bell et al. 1975)
that can be stated as follows: 1) a subject s is allowed to read an object o iff
£(0) ::; £(s) (no-read-up); 2) a subject sis allowed to write an object o iff
£(s)::; £(0) (no-write-down).

The second property is also known as the *-property and prevents leakage
of information due to Trojan Horses.

2.2 The reference object model

An object database consists of a set of objects exchanging information via
messages. An object consists of a unique object identifier (om), which is fixed
for the whole life of the object, and a set of attributes, whose values represent
the state of the object. The value of an attribute can be an object or a set of
objects. Moreover, an object has a set of methods encapsulating the object
state. An object can be primitive (like an integer, or a character), or can
be built from other objects (either primitive or non-primitive). We denote a
non-primitive object as a triple (oid, state,meths), where: oid is the object
identifier; state = (ai : vi, a2 : v2, ... , an : Vn), where a; is an attribute
name (the names of object attributes must be distinct), and v; is the value of
attribute a;, 1 = i, ... , n; meths is a set of method names.

Let o and o' be two objects. We say that o is a high-level (low-leveij object
with respect too', if £(01) < .C(o) (.C(o) < .C(o')). Similarly, let o and o' be
two objects such that o stores in one of its attribute the om of o'. We say
that the om of o' is a high-level (low-leveij om with respect to o if £(0) <
£(0').

Whenever an object o has as value of one of its attributes the om of an
object o', we say that o references o'. *

In our model, no reference is allowed among objects at incomparable secu­
rity levels. Moreover, we make the assumption, common to most proposals,

•An object o may reference a high-level object o1 provided that: (a) the creation of o1 has
been requested by o (or by another object at a level lower than or equal to the level of o);
(b) the OID of o1 is generated according to a covert-channel free OID generation mechanism
(see (Bertino et al. 1994) for such a mechanism).

98 Part Three Object-Oriented Systems

that all objects are single-level and, therefore, all attributes of an object have
the same security level. Multilevel objects can easily be represented in terms of
single-level objects; we refer the reader to (Bertino et al. 1997b) for a detailed
discussion on this issue.

The methods of an object can be invoked by sending a message to the object.
Upon the reception of the message, the corresponding method is executed, and
a reply is returned to the object sending the message. The reply can be either
an om, a primitive object, or a special nil value, denoting that no information
is returned.

The invocation of a method m on the reception of a message can be either
synchronous or asynchronous. In the former case, the sender waits for the
reply value, that is, it is suspended until the invoked method terminates. In
the latter case, a nil reply value is immediately returned to the sender which
will be executed concurrently with the receiver; the sender will be able to
get the reply value successively. In this paper we do not distinguish between
synchronous and asynchronous method invocations. Moreover, we assume that
method invocations are performed sequentially during a user session within
the system.

The fact that messages are the only means by which objects can exchange
information makes information flow in object systems have a very concrete
and natural embodiment in terms of messages and their replies (Jajodia et al.
1990). Thus, information flow in object systems can be controlled by mediating
message exchanges among objects.

2.3 The message filter model

The Bell-LaPadula model has been applied to the object model by means
of the message filter (Jajodia et al. 1990). Under this approach all messages
exchanged among objects in the system are filtered according to the follow­
ing rules: 1} if the sender of the message is at a level strictly dominating the
level of the receiver, the method invoked by the message is executed by the
receiver in restricted mode, that is, no update can be performed. More pre­
cisely, a restricted mode execution at a level l should be memoryless at level l.
Therefore, even though the receiver can see the message, the execution of the
corresponding method on the receiver should leave the state of the receiver
(as well as of any other object at a level not dominated by the level of the
receiver) as it was before the execution. 2} If the sender of the message is at a
level strictly dominated by the level of the receiver, the method is executed by
the receiver in normal mode, but the returned value is nil. To prevent timing
channels, the nil value is returned to the sender before actually executing the
method.

The first principle ensures that an object does not write-down, whereas the
second one ensures that an object does not read-up. The message filter is

Object deletion and garbage collection in object bases 99

a trusted component of the object system in charge of enforcing the above
principles on all message exchanges among objects. Note that, according to the
reference object model, an object is allowed to reference a high-level object;
this means that an object may have as value of one of its attributes a high-level
om. This possibility allows an object to send information to objects at higher
levels. However, since every message is intercepted by the message filter, this
possibility does not violate the overall security of the system since read-up
operations will always return a nil response value. Moreover, an object of level
Li may only stores the oms of the high-level objects whose creation has been
requested by a level lower than or equal to level Li. The mechanism we adopt
for oms generation is described in (Bertino et al. 94).

3 DELETE OPERATION

Existing ODBMSs use different approaches with respect to the delete opera­
tion. There are two categories of systems: systems supporting explicit delete
operations (like Orion (Kim et al. 1990) and Iris (Fishman et al. 1989)), and
systems using a garbage collection mechanism (like 02 (Deux et al. 1990)
and Gemstone (Maier et al. 1986)). A garbage collector is a piece of software
that deletes objects no more accessible. There is a special object, called root,
which is always persistent. All objects that can be reached from the root by
traversing object references, are persistent. An object is removed when it can
no longer be reached from the root.

If the delete operation is not properly executed, covert channels may be
established.

Figure 1 An object o' with references from its own level and a higher level

Example 1 Consider two objects o and o' such that .C(o) = .C(o') = Li,
and an object o" such that .C(o") = L2, with L1 < £2. Suppose that both o
and o" reference o' (see Figure 1). Suppose that the reference from o to o' is
removed, because o has been deleted. If a garbage collection approach is used,
o' would not be deleted since there is still another object (i.e., o") referencing
it. Therefore two subjects at levels L1 and £ 2 , respectively could exploit this
fact to establish a covert channel. The subject at level Li would create two

100 Part Three Object-Oriented Systems

objects o and 0 1 , at its own level, such that o references o'. Then, the subject
at level L2 would create an object 0 11 , at its own level, such that 0 11 references
0 1 • Then, after an amount of time pre-defined by the two subjects, the subject
at level L1 would remove the reference from o to 0 1• If, after the reference
has been removed, object 0 1 still exists, this situation is interpreted as 1. By
contrast, if object 0 1 is removed, this situation is interpreted as 0. Note that the
subject at level L 1 would simply need to check storage occupancy to determine
whether 0 1 still exists.

Exploiting the above covert channel requires collusion of two subjects at
different levels. Note, however, that this is a common situation for many types
of covert channels. See as an example, covert channels exploiting concurrency
control mechanism in DBMS (Jajodia et al. 1992).

Moreover, whenever storage is deallocated because of object deletion, the
problem of dangling references may arise. In systems with explicit delete op­
erations dangling references may arise since an object can be removed even if
there are references to it. In a garbage collection environment, an untrusted
collector could intentionally remove an object to create a dangling reference.

A security problem is that dangling references can be used to establish
covert channels, as the following example shows.

Example 2 Consider Figure 2(a). If object o' is deleted by a subject at level
L2, a dangling reference appears in object o at level L1 < L2 (Figure 2(b)).
A subject at level L 1 could infer the deletion of object 0 1 by trying to send a
write message to the object. On the basis of the result of such operation, the
subject at level L1 gets one bit of information from a higher security level.

Thus, the deletion of objects referenced by low-level objects can be exploited
by low-level subjects to infer information from high-level objects. A subject
at a security level L2 could delete a subset of the objects referenced by objects
at a security level L1, with L1 < L2. Then a subject at level L1 could try
to access all high-level objects resulting in a set of unsuccessful-successful
accesses. Hence, an arbitrary string of bits of reseryed information could be
transmitted from a higher security level. Note that, in a garbage collection
environment an untrusted collector could intentionally remove the objects at
level L2 referenced by low-level objects in order to establish a covert channel.

As Examples 1 and 2 above show, there are many ways in which a delete
operation can be exploited to establish a covert channel. However, it is im­
portant to note that, when an object is deleted, the only side effects on the
database are a state transition of the database itself and, possibly, the gener­
ation of dangling references. Therefore, the only means to establish a covert
channel exploiting object deletion are those stated by the following definition.

Definition 1 (Delete Covert Channel) A delete covert channel is a co-

Object deletion and garbage collection in object bases 101

-f!' -f!' 0 L1 0 L1

a) b)

Figure 2 An object o referencing a high-level object

vert channel established by one of the following means: (i) exploiting dangling
references; (ii) monitoring the state of the system with respect to object or
memory allocation;* or (iii) performing intentional data scavenging.*

In the above definition, with the term state of the system we refer to the
state of all objects stored in the system and all the information related to the
system itself, such as memory allocation and method error codes.

Moreover, delete operations can be regarded as a form of write operations:
depending on the specific delete approach used, information may have to be
set into the object being deleted (such as reference counts). It is therefore
necessary to avoid that they can be exploited to establish a Trojan Horse.
The Trojan Horse is simply established by having at a high-level some piece
of code allowing or disallowing deletions of lower level objects or by plainly
writing sensitive data into lower-level system information, used when removing
the object (we call it Delete Trojan Horse). The above considerations lead to
the following definition of secure delete operation.

Definition 2 (Secure Delete Operation) A delete operation is secure iff
it cannot be exploited to establish a delete covert channel or a delete Trojan
Horse.

An important question is whether there could be other circumstances, be­
sides the ones considered in Definition 2, leading to insecure delete opera­
tions. We believe not. Indeed, illegal information flow may arise in two cases:
1) write-down operations, which for delete operations mean that a high-level
subject may cause or prevent the deletion of a low-level object, or write sensi­
tive data into lower-level system information. This case has been identified as
Delete Trojan Horse in the above definition; 2) read-up operations, which for
delete operations mean that dangling references* may arise, or that some low­
level subjects may read high-level information about memory occupancy or

*When we speak of object allocation rather than memory allocation, we mean information
about whether or not memory is allocated to a given object regardless of the amount of
memory it uses (e.g. the result of a query looking for the instances of a given class).
*Accesses to system resources such as memory pages and disk sectors no more allocated.
See also object reuse in (Chokhani 1992).
*This is because the delete operation just removes objects.

102 Part Three Object-Oriented Systems

de-allocated areas. All these situations have been identified as delete covert
channels in Definition l. Note that completeness of Definitions 1 and 2 is
based on the observation that a delete operation consists of two steps: (a) log­
ically removing the object (and then checking references to the object); (b)
physically removing the object (and thus de-allocating the storage allocated
to the object). Our definitions are based on analysis of security threats that
can arise in the above steps.

Even though the delete operation can be thought of as a form of write,
because of the many ways the delete operation is implemented in object sys­
tems, it is important to establish some basic principles, enforcing secure delete
operations, underlying any possible implementation of the delete operation.
These principles are the topic of the following subsection.

3.1 Security principles for object deletion

In the following we define a set of security principles, ensuring the security of a
delete operation. These principles state what needs to be done by the Trusted
Computing Base (TCB) (Chokhani 1992) to prevent illegal flows of informa­
tion due to object deletion, rather than how it will actually be implemented.
For instance, Figure 2 only shows how to exploit dangling references to es­
tablish a delete covert channel, regardless of implementation details. Indeed,
the TCB can easily block these illegal flows by simply using a strategy like
the one discussed in Subsection 2.3 for handling messages sent to high-level
objects.

We do not make any assumption whether deletion is implicit or explicit
or whether referential integrity is enforced. In order to make our approach
widely applicable, we do not assume a particular mandatory security model
and start from the basic mandatory access control principles introduced in
Subsection 2.1. Moreover, our principles do not assume any system architec­
ture (single-subject vs kernelized).

Since delete operations can be regarded as a form of write operations, delet­
ing a low-level object can be interpreted as a violation of the *-property.
Hence, we suggest the following principle:

Principle 1 (No Delete Down) An object o can cause the deletion of an
object o' if and only if .C(o)::; .C(o').

Note that we have used 'can cause the deletion' rather than 'can delete',
because in a garbage collection environment an object can only cause the dele­
tion of another object by updating all references to the given object, causing
its deletion by the collector. In systems supporting explicit deletions, an object
can cause the deletion of another object by issuing a delete command.

As we have seen in Example 1, an object oat level L could be referenced

Object deletion and garbage collection in object bases 103

by several high-level objects and these references from high-level objects to
low-level objects could be used to establish a delete covert channel. In order
to prevent this type of problem, the following principle is established:

Principle 2 (No Interference from High to Low) If an object o is ref­
erenced by high-level objects and by no object of level L', L' < C(o), a delete
operation invoked on object o from level C(o) cannot be prevented.

In Example 2, dangling references from low-level objects to high-level ob­
jects are used to infer higher level data. However, oms referencing high-level
objects are needed if write-up is allowed by the security model. Therefore, we
propose the following principle:

Principle 3 (No Dangling References from Low to High because of
High-Level Deletions) A delete operation invoked from level L on an object
o' of level L', L ~ L', must not be allowed if there exists at least an object o
such that C(o) < L and o references o'.

Note that Principle 3 does not forbid the deletion of an object o, refer­
enced by low-level objects, if this deletion is required by an object at a level
dominated by all the levels of the objects referencing o. Indeed, the dangling
references arising from this deletion cannot be exploited as a covert channel
trying to access the deleted object.

As stated by Definition 1, dangling references are not the only mean of
establishing a delete covert channel. For instance, using an untrusted garbage
collector that acts on the entire database, an object at level L could infer
the deletion of an object at level L', L < L', by monitoring the system re­
sources. Hence, system resources must be controlled according to the following
principle:

Principle 4 (No Global Information) Information about system resources
at security level L can be made available to an object o if and only if L ~ C(o).

It is important to note that the no read-up principle is normally intended
as a restriction imposed on the operations acting on the database, whereas
Principle 4 states a more general rule to avoid also leakage of information due
to system information, like memory allocation.

Example 3 The interplay among the given principles is illustrated with the
help of Figure 3. Suppose that a subject at level L2 invokes the deletion of
object o2 . Under the security principles, 02 is not deleted, since its deletion
would violate Principle 3. Note that, even if the deletion of 02 is not allowed,
Principle 2 is satisfied too, because object 02 is referenced by both a high-level
object (i.e., o3) and a low-level object (i.e., o1). By contrast, if a subject at

104 Part Three Object-Oriented Systems

Figure 3 An object referenced from multiple levels

level L1 invokes a delete operation on 02, this operation is allowed since the
deletion of 02 does not violate any principle.

The correctness of the above security principles is stated by the following
proposition.

Proposition 1 A delete operation is secure iff Principles 1- 4 are satisfied.

We refer the reader to (Bertino et al. 1997a) for the formal proof.

3.2 Implementation issues

The four principles guarantee the security of the delete operation. The de­
scription of a detailed implementation for the delete operation is outside the
scope of this paper. Nevertheless, it is possible to make some considerations
to help in securely designing and implementing such operation.

• The delete operation can be considered a special case of write operation.
Therefore a TCB enforcing the *-property verifies Principle 1.

• The delete operation must neither update the state of an object nor read
it, but it must physically remove an object. An important requirement for
a system to be secure is that the basic storage elements (e.g. disk sectors,
memory pages, etc.) be cleared prior to their assignment to an object so that
no intentional or unintentional data scavenging takes place. The storage
elements can be cleared when deallocated, that is, when an object is deleted.
The security principles are defined disregarding implementation details.
Hence we require the physical deletion to be performed by the TCB: when a
delete operation is invoked on an object, the TCB calls a trusted procedure
to perform the deletion.

• There are two possible approaches to enforce Principle 3: 1) upwards dan­
gling references are masked by concatenating the oms with the security
level where the object is allocated (Millen et al. 1992) and making such
dangling references ineffective (Bertino et al. 1994). This means that an
object trying to access a high-level object is returned a default reply value
even if the target object has been previously deleted. This can be per-

Object deletion and garbage collection in object bases 105

formed by the TCB that determines the security level from the om and
can, therefore, recognize a high-level om. This approach requires that the
om contains the security level of the object (cfr. Bertino et al. 1994); 2}
the deletion of an object like o' in Figure 2 is prevented by the TCB. *
In both cases Principle 3 is verified. In particular, the first solution makes
the upwards dangling references ineffective. Hence the principle is merely
satisfied since no low-to-high dangling reference can compromise security.
Note that this strategy can also be applied to incomparable security lev­
els. Moreover, according to the first of the above approaches, object 02 in
Figure 3 can be deleted by a subject at level L2 and Principle 3 is sat­
isfied because the dangling reference from object 01 to object 02, arising
from the deletion of 02, is masked by the TCB. The first approach can also
be adopted for the create operation. An object o requesting the creation
immediately receives the new om and the creation itself is executed asyn­
chronously: errors possibly occurred during the creation do not prevent
object o from immediately receiving the new om.

A TCB satisfying the requirements stated above can be designed on the
basis of the message filter approach described in Subsection 2.3. Finally, note
that referential integrity is not preserved by the security principles, because
they deal only with security. In particular, because of Principle 2, dangling
references can arise which, however, cannot be exploited as delete covert chan­
nels.

4 SECURE GARBAGE COLLECTION

Our aim is to achieve referential integrity in multilevel databases by means of
garbage collection. A serious drawback with conventional garbage collection
mechanisms is that the garbage collector would have to access objects at var­
ious security levels. The garbage collector would therefore have to be trusted.
We describe here a different approach, based on the mark-and-sweep tech­
nique; under this approach the collector is structured so that the trusted part
is minimized. We analyze this approach with respect to the four principles for
secure delete operations and we show that the garbage collector satisfies the
four security principles.

A mark-and-sweep collector follows pointers in the heap marking any object
that is reached (marking phase), then it collects all the non-marked objects
(sweeping phase) scanning the heap sequentially. The marking phase starts
from the root objects (objects containing information always needed). The
root objects are the "entry points" for a security level.

One way to implement a multilevel trusted collector is to employ a TCB
(Shockley et al. 1987) which controls the behavior of single-level untrusted
collectors and enforces the Bell-LaPadula principles. Therefore, we require

*Auxiliary information about low-level OIDs should be stored by the TCB for this purpose.

106 Part Three Object-Oriented Systems

root objects and a marking collector MCL for each security level L. The.
marking collector MCL is an object at level L in the database, which is
activated and controlled by the TCB. The marking collector MCL executes
the marking phase for level L, while all sweeping phases are performed by the
TCB to avoid data scavenging. MCL does not mark an object oat level Lor
higher i:ff all references to o from other objects at level L have been removed
(that is, the object is non-locally reachable). Garbage collection is managed
according to the stop-the-world approach: activities are suspended, garbage
is collected and then activities are restarted.

Since marking collectors are untrusted objects, each marking collector can
only read objects or system information at its security level or at lower levels.
In the following we show how to prevent the marking collectors from being
exploited as storage covert channels. Storage covert channels are illegal chan­
nels established via the exploitation of the dynamic allocation of memory or
via data scavenging. For example, a high-level subject could establish such
a covert channel by saturating the memory, to prevent the normal computa­
tion of a low-level subject, which in turn could infer high-level information.
To overcome this drawback, we adopt the following solution. System mem­
ory (volatile and non-volatile) is divided into a number of partitions of fixed
size, one for each security level. Subjects at level L can allocate memory only
from the partition assigned to L and the creation of a high-level object is
performed at the level requested for the new object. This allocation scheme
prevents storage covert channels from being established.

The marking collector MCL executes a write operation in order to mark an
object, hence it is only able to mark objects at level Lor higher. The marking
collector MCL cannot be aware of references from objects at security levels
higher than L because of the no read-up restriction. Therefore, dangling refer­
ences could arise at security levels higher than L after the garbage collection is
completed. The approach we propose to avoid dangling references is based on
copying operations. Under this approach, an object o, non-locally reachable at
its security level, is copied at higher security levels as needed. This mechanism
does not need to be trusted; therefore it can be implemented by the marking
collectors. The marking collector MCL * builds a table called Copy Table to
store pairs of related OIDs of the form (old-oid, new-oid), where old-oid is
the OID of a low-level non-marked object while new-oid is the om of its copy
created at level L by the marking collector MCL. The Copy Table at level L
is read by the marking collectors at levels higher than L to avoid redundant
copies. It is sufficient to create a copy of an object o, non-locally reachable,
at the lowest levels where o is needed and update all high-level objects refer­
encing o. When dealing with incomparable levels, a copy is generated for each
level as needed.

The marking collectors are activated by visiting the security lattice on the
basis of a sequence (Li, ... , Ln) called visit-sequence, where L1 is the lowest

*Except for the lowest level in the security lattice.

Object deletion and garbage collection in object bases 107

[i)=i L3

rn-['.] L2

W Li
after marking L3 after sweeping

visit-sequence = (Li, L2, L3)

Li< L2 < L3

Copy Table L2 : (oid(I), oid(l'))

Figure 4 Achieving referential integrity with garbage collection

level, Ln the highest and for each Li, Lj, 1 < i :S n, 1 :S j < i, Lj < L; or
Lj <> L;. The visit-sequence is a static list associated with a given database.

When level Lis visited, the marking collector MCL is activated and after its
termination the next security level in the visit-sequence is visited. The sweep­
ing phase must be postponed till the end of the marking phases, otherwise an
object could be removed before being copied: when the last collector completes
its execution, the sweeping phase is performed for all security levels.

Figure 4 shows an example of this approach: object 1 at level Li is not

marked by the marking collector MCLi; hence it is copied at level L2 by the
marking collector MCL2 that adds the pair (oid(l), oid(I')) to the Copy Table

at level L2. The om stored in object 4 at level L3 and referencing object 1
is updated with the om of the copy 1' generated at level L2. This update is
performed by the marking collector MCL3 by reading the Copy Table at level

L2.
This approach satisfies the security principles previously stated. Suppose

that the marking collectors correctly execute the marking phase. Principle 1
is satisfied. The marking collectors cannot perform explicit deletions. More­
over, they are objects under the control of the TCB; hence they cannot violate
the *-property by causing a low-level object to be deleted. Principle 2 is sat­
isfied. A non-marked low-level object is copied at higher security levels, if
needed, then it is deleted by the TCB. By contrast, if an object is locally

reachable, it is marked and cannot be deleted. Principle 3 is satisfied. No low­
to-high dangling reference appears if the marking collectors execute correctly

the marking phase. Principle 4 is satisfied. The rule stated by this security

principle is enforced by the TCB; hence we can assume that the principle is
satisfied. Even if a marking collector incorrectly executes the marking phase,
no security violation arises. The marking collector MCL cannot read infor­
mation at higher or incomparable levels; hence an incorrect marking phase
can only generate dangling references from objects at level L. The only dan­
gling references that could be exploited to establish a delete covert channel
are those referencing high-level objects that have been deleted during the
sweeping phases; these dangling references can be made ineffective by the
TCB (cfr. Subsection 3.2, solution 1). Moreover, the system memory is di­

vided into partitions of fixed size which is always the same. Therefore, it is

not possible to establish covert channels due to memory saturation, overflows

108 Part Three Object-Oriented Systems

and so on. Finally, timing channels due to the execution of marking collectors
can be avoided by properly controlling their execution time. For instance, the
execution time of each marking collector can be forced to be longer than a
pre-defined lower bound, which can be the same for each security level.

5 CONCLUDING REMARKS

We have analyzed issues related to object deletion in multilevel secure ODBMSs
and we have stated principles ensuring a secure delete operation. These prin­
ciples should be observed in designing and implementing garbage collection
mechanisms and mechanisms for data manipulation in object systems. We
have shown how a multilevel garbage collector algorithm, based on the mark­
and-sweep technique, can be analyzed with respect to the above principles.

An important question concerns the computational overhead associated
with each principle. The overhead is proportional to the number of refer­
ences that each object has and how such references are distributed across
levels. Such considerations are confirmed by some experimental evaluations
performed on the copying garbage collection algorithm. The experiments have
shown that the performance mainly depends on the number of copying op­
erations of objects from lower to higher levels. This number depends on the
number of references from higher-level objects to lower-level objects. Another
factor impacting the performance is the structure of the security levels lattice.
If the number of incomparable levels is high, the performance is good, because
the first phase of the collector can be activated in parallel for all the incom­
parable levels. By contrast, the performance is not optimal when all levels are
totally ordered. It is easy to see that these considerations apply also to the
mark-and-sweep collector.

REFERENCES

[1] Bell, D. and LaPadula, L. (1975) Secure computer systems: unified exposition
and multics interpretation. TR ESD-TR-75-306, MTR-2997, MITRE.

[2] Bertino, E. and Ferrari, E. (1997a) A Principled Approach to Object Deletion
and Garbage Collection in Multilevel Secure Object Bases. Pre-Proceedings
of the 11th Annual IFIP WG 11.3 Working Conj. on Database Security,
pages 75-86, Lake Tahoe, CA.

[3] Bertino E., Ferrari, E. and Samarati, P. (1997b) A multilevel entity model and
its mapping onto a single-level object model. Theory and Practice of Object
Systems, to appear.

[4] Bertino, E. Mancini, L. V. and Jajodia, S. (1994) Collecting garbage in mul­
tilevel secure object stores. In Proc. IEEE Symp. on Research in Security
and Privacy, Oakland, CA.

[5] Chokhani, S. (1992) Trusted products evaluation. Communications of the
ACM, 35(7):66-76.

Object deletion and garbage collection in object bases 109

[6] Deux, 0. et al. (1990) The story of 02. IEEE Trans. on Knowledge and Data
Engineering, 2(1):91-108.

[7] Fishman, D. et al. (1989) Overwiew of the Iris DBMS. Object-oriented con­
cepts, databases, and applications. Addison-Wesley, pages. 219-50.

[8] Kim, W. et al. (1990) Architecture of the ORION next-generation database
system. IEEE Trans. on Knowledge and Data Engineering, 2(1):109-24.

[9] Kolodner, E., Liskov B. and Weihl, W. (1989) Atomic garbage collection:
managing a stable heap. In Proc. ACM-SIGMOD Conj ..

[10] Jajodia, S. and Atluri, V. (1992) Alternative correctness criteria for concurrent
executions of transactions in multilevel secure database systems. In Proc. of
the IEEE Symp. on Research in Security and Privacy, Oakland, CA.

[11] Jajodia, S. and Kogan, B. (1990) Integrating an object-oriented data model
with multilevel security. In Proc. of the IEEE Symp. on Research in Security
and Privacy, Oakland, CA.

[12] Maier, D. et al. (1986) Development of an object-oriented DBMS. In Proc. of
the 1st OOPSLA Conference, Portland, Oregon.

[13] Millen, J. K. and Lunt, T. F. (1992) Security for object-oriented database
systems. In Proc. of the IEEE Symp. on Research in Security and Privacy,
Oakland, CA.

[14] Moss, J.E. (1992) Working with persistent objects: to swizzle or not to swizzle.
IEEE Trans. on Software Engineering, 18(8).

[15] Rabitti, F. Bertino, E. Kim, W. and Woelk, D. A model of authorization for
object-oriented and semantic database systems. A CM Trans. on Database
Systems, 16(1).

[16] Shockley, W. R. and Schell, R. R. (1987) TCB subsets for incremental evalu­
ation. In Proc. of the 2nd AIAA Conference on Computer Security.

[17] Thuraisingham, M.B. (1989) Mandatory security in object-oriented database
systems. In Proc. of the OOPSLA Conference, New Orleans, Louisiana.

BIOGRAPHY

Elisa Bertino is professor in the Department of Computer Science of the Univer­
sity of Milan. She has also been on the faculty in the Department of Computer
and Information Science of the University of Genova, Italy. She has been a visit­
ing researcher at the IBM Research Laboratory (now Almaden) in San Jose and at
the Microelectronics and Computer Technology Corporation in Austin, Texas. Prof.
Bertino is a co-author of the book "Object-Oriented Database Systems - Concepts
and Architectures" (Addison-Wesley, 1993) and is on the editorial board of the IEEE
Transactions on Knowledge and Data Engineering.

Elena Ferrari received a MS degree in Information Sciences from the University of
Milan in 1992. Since November 1993, she has been a PhD student at the Department
of Computer Science of the University of Milan. Her main research interests include
database security, temporal data models and multimedia databases. On these top­
ics she has published several papers. She has been a visiting researcher at George
Mason University, VA and at Rutgers University, NJ.

