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Abstract 
This paper makes three contributions to the area of multilevel secure (MLS) workflow management 
systems (WFMS). First, it proposes a multilevel secure workflow transaction model. This model 
identifies the task dependencies in a workflow that cannot be enforced in order to meet multilevel 
security constraints. Second, it shows how Petri nets, a mathematical as well as a graphical tool, 
can be used to represent various types of task dependencies. Third, it extends the original Petri 
net (PN) model by proposing a Secure Petri Net (SPN) that can automatically detect and prevent 
all the task dependencies that violate security. This paper then presents algorithms to construct 
and execute MLS workflow transactions. 
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1 INTRODUCTION 

Workflows typically represent processes involved in manufacturing and office environments and 
heterogeneous database management systems. In a workflow, the various activities in the process 
are separated into well defined tasks. These tasks in turn are usually related and dependent on 
one another, and therefore need to be executed in a coordinated manner. 

It has been recognized in (Georgakopoulos eta!. 1993, Georgakopoulos, Hornick & Sheth 1995) 
that, to ensure correctness and reliability, every workflow must be associated with a transaction 
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model. Transactions traditionally are characterized by simple application logic and short dura­
tion that typically execute within few minutes or seconds. Traditional transactions are built on 
the concepts of atomicity, consistency, isolation and durability (ACID properties). Although the 
traditional transaction concept can be useful in applications such as airline reservation systems, 
banking systems and electronic funds transfer, it is inadequate to model the dependencies and 
other semantic relationships among various tasks existing in workflows. As a result, the traditional 
transaction model has been extended to capture the task dependencies within a workflow trans­
action. For example, see the Extended Transaction Model (ETM) proposed in (Georgakopoulos 
et a!. 1993). 

The tasks within a workflow are usually related and dependent on one another. These task 
dependencies are known as intra-workflow dependencies. Thus a workflow transaction TW can 
be represented as a partially ordered set of tasks tw11 tw2, ••• , twn. In addition, dependencies exist 
among tasks that belong to different workflows, which are known as inter-workflow dependencies. 
As advances in workflow management take place, they are also required to support multilevel 
security. 

Security is concerned with the ability to enforce a security policy governing the disclosure, 
modification or destruction of information. The basic model of multilevel security was first in­
troduced by Bell and LaPadula (1976). The Bell-LaPadula (BLP) model is stated in terms of 
objects (that hold data such as a file or a record) and subjects (active entities that manipulate 
objects). Every object is assigned a classification and every subject a clearance. Classifications 
and clearances are collectively known as security classes (or levels) and are partially ordered. The 
BLP model comprises of the following two properties: ( 1) simple-security property: a subject is 
allowed to read an object only if the former's security level is identical or higher than the latter's 
security level (no read-up) and (2) *-property: a subject is allowed to write an object only if the 
former's security level is identical or lower than the latter's security level (no write-down). (For 
integrity reasons, most systems do not allow write-ups.) These two restrictions are intended to 
ensure that there is no flow of information from higher level objects to subjects at lower security 
levels (Denning 1982). Although they prevent direct flow of information from high to low*, they 
are not sufficient to ensure that security is not compromised since it could be possible that leakage 
of information can occur through indirect means via cm•ert channels. Covert channels are paths 
not normally meant for information flow that could nevertheless be used to signal information. 
They could occur as a subject at a higher security level delaying or aborting another subject at 
a lower security level. 

In the following, we provide an example of a multilevel secure workflow transaction. 

Example 1 Consider a workflow transaction that computes the weekly pay of all employees 
at the end of each week. This process involves several tasks as follows. Task tw1: compute the 
number of hours worked by an employee (h) which is the sum of regular hours worked (n) and 
overtime hours worked (o) by the employee during that week, Task tw2: calculate the weekly pay 
of an employee (p) by multiplying h with the hourly rate of the employee ( r ), and Task tw3 : after 
computing the pay for the week, reset h, n and o to zero. The information about hourly rate ( r) 
and weekly pay (p) are considered sensitive, and therefore are classified high, while the rest of 
the information is classified low. According to the two BLP restrictions, since tw1 and tw3 write 
objects at low (h, nand o) they must be low tasks, and since tw2 reads the high object (r) and 

*Often, we use the terms high and low in our discussion to represent two security levels, where 
high is greater than low in the partial order. 
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writes the high object (p), it must be a high task. Moreover, the following task dependencies exist 
among tw1 , tw2 and tw3 : tw2 can begin only after tw1 commits, and tw3 can begin only after 
tw2 commits. As seen in this example, a workflow transaction may consist of tasks at different 
security levels. 0 

In this paper, we first propose a multilevel secure workflow transaction model in which we 
identify the allowable and non-allowable task dependencies that lead to potential covert channels. 
Then, we show how Petri Nets (PNs) can be used to model MLS workflow transactions. In 
addition, we extend the traditional PN to represent the security level of a task, which we refer to 
as Secure Petri Net (SPN). We then demonstrate how SPN can be used to identify and eliminate 
the task dependencies that do not satisfy the MLS constraints. 

1.1 Our Approach 

In this section we will first justify why PN is an appropriate modeling tool for representing 
workflows and then review prior research in using PNs in similar environments. PNs have been 
extensively studied and used in modeling, specification, validation, performance analysis, control, 
and simulation of transaction systems. 

There are a number of reasons that make PNs an appropriate model to represent workflows. 
(1) PNs are a graphical as well as a mathematical modeling tool. As a graphical tool, PNs pro­
vide visualization (similar to flow charts, block diagrams, and the like) of the workflow process. 
As a mathematical tool, PNs enable analysis of the behavior of the workflow. For example, the 
safety of a workflow (i.e., a workflow will terminate in one of the specified acceptable termination 
states) can be examined by testing for reachability (see section 4 for a definition) of PN. Similar 
representations include state transition diagrams (Rusinkiewicz & Sheth 1994). Unlike a static 
state transition diagram, PN is live in the sense that it is capable of capturing the dynamic be­
havior of any system. It can visualize and represent all properties, relations and restrictions in 
a workflow such as parallelism, concurrency, synchronization, control flow dependency and tem­
poral relations. (2) PNs are even capable of modeling priorities, concurrent reader-writer, and 
mutual exclusion, which are relevant in multilevel secure transaction processing where a lower 
level task must always be prioritized over higher level tasks. (3) Moreover, PN is self-explanatory. 
If the system is modeled properly, no further verbal description is needed to aid in describing the 
workflow. (4) Furthermore, the theoretical results are plentiful; the properties of PNs have been 
and still being extensively studied (Murata 1989). (5) With respect to execution of workflows, 
ECA (Event-Condition-Action) rules have been used by other researchers. For example, the Ex­
tended Transaction Model (ETM) proposed in (Georgakopoulos et a!. 1993) uses a combination 
of rules and conventional transaction management mechanisms such as schedulers, where rules 
are primarily used to implement the task dependencies and schedulers to enforce correctness and 
reliability. With respect to implementation, PN can be modeled at a conceptual level and can 
easily be tied into the design specification and algorithms. The final PN can be treated as a test 
bed where the system can be simulated and validated before proceeding to detailed design and 
implementation. (6) Moreover, modification on PNs is relatively simple. 

Several researchers have used PNs in transaction processing. For example, in (Elmagarmid, 
Leu, Litwin & Rusinkiewicz 1990), Elmagarmid et a!. describe a scheduler for Flexible Transac-
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tions (Elmagarmid 1992)1 that uses PNs to identify the set of subtransactions schedulable in a 
given state. They use a special class of PNs called Predicate Petri Nets (PPNs) to capture the 
precedence relationships among subtransactions and represent each of them as a predicate for 
each subtransaction. 

As in (Elmagarmid et a!. 1990), we use PNs to execute MLS workflow transactions and show 
how several types of control-flow dependencies among the various tasks in it can be modeled using 
PNs. Our work goes well beyond that of (Elmagarmid et a!. 1990) in several aspects. (1) Since 
(Elmagarmid et a!. 1990) models the control-flow dependencies as a single predicate, the PPN 
does not provide a true visual representation of the dynamic behavior of the workflow (one of the 
main reasons for using PNs). Our model decomposes each task and represent it as a set of states 
and transitions. Thus it can explicitly specify the dependencies based on the task primitives. (2) 
Our model is consistent with the traditional PN model, thereby enabling us to adapt the well 
established analysis techniques into our work. (3) We extend the Petri net model to incorporate 
multilevel security, which prevents all task dependencies that cause potential covert channels. 
This feature is useful for concurrent scheduling of workflows especially when workflows are ad 
hoc in nature. ( 4) While modeling single tasks using PNs, we define dependencies and security 
levels in a more general form so that they can be applied as building blocks to compose large 
workflow system. 

This paper is organized as follows. In sections 2 and 3, we present the workflow transaction 
model and its multilevel secure counterpart, respectively. In section 4, we give a brief overview of 
PNs. In section 5, we give the PN model for different types of task dependencies, present our SPN, 
and propose a mechanism for eliminating covert channels. In section 6 we present algorithms for 
construction of SPNs and for execution of MLS workflow transactions. Finally, section 7 presents 
conclusions and some future research we intend to pursue in this area. 

2 WORKFLOW TRANSACTION MODEL 

In (Rusinkiewicz & Sheth 1994), three types of task dependencies in a workflow have been iden­
tified to control the coordination among different tasks. ( 1) Control flow dependencies: These are 
specified based on the task primitives such as begin, commit and abort of a task. An example of 
such dependency is "task tw; can begin only if task twi has committed.~ (2) Value dependencies: 
These are specified such that a task can be controlled based on the output value generated by 
another task. These dependencies are of the form, "'if the output of tw; is equal to x, then begin 
twi~ or "'twi can begin if tw; is a success (semantically).~* (3) External dependencies: They con­
trol the execution of tasks through external variables. Examples include a task tw; can start its 
execution only at 9:00am or task twi can start execution only 24hrs after the completion of task 
twk. 

The task dependencies can either be static or dynamic in nature. In the static case, the workflow 
transaction is defined well in advance to its actual execution, whereas dynamic dependencies 
develop as the workflow progresses through its execution (Sheth, Rusinkiewicz & Karabatis 1993). 

I A flexible transaction ic specified as a set of partially ordered subtransactions. 
*Failure of a task does not necessarily mean abort of a task. A task may still semantically fail 
even if it successfully commits. 
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Task dependencies may exist among tasks within a workflow transaction (intra-workflow) or 
between two different workflow transactions (inter-workflow). 

In this paper, we concentrate only on control flow dependencies based on the task primitives. 
Control-flow dependencies may even pass data to other tasks; we identify them as control-flow 
dependencies with data-flow. 

2.1 Control-flow Dependencies 

A control-flow dependency is of the form: 
A task tw1 can enter state st1 only after task tw; enter.• state st;. 
The state of a task can be expressed in terms of task management primitives such as begin, 

commit and abort. Thus, execution of a task, in addition to invoking operations on data items, re­
quires invocation of these task management primitives. Control flow dependencies can be modeled 
based on the ACTA framework (Chrysanthis 1991). Given two tasks tw; and twj in a workflow 
transaction, a list of possible control-flow dependencies are presented below. 

1. Strong Commit Dependency: A task twi commits only iftw; commits (represented as tw; ....:_. 
twj)· 

2. Abort Dependency: A task twi must abort if tw; aborts (represented as tw; ~ twi ). 
3. Termination Dependency: A task twi can terminate (either commit or abort) only after the 

completion (commit or abort) of tw; (represented as tw; .....:_. twi ). 
4. Begin Dependency: A task twi cannot begin until tw; has begun (represented as tw; ~ twi ). 
5. Begin-on-Commit Dependency: A task twi cannot begin until tw; commits (represented as 

tw; ~twi)· 
6. Group Commit: Given any two tasks tw; and twj, either both tw; and twi commit or neither 

commits (Biliris, Dar, Gehani, Jagadish & Ramamritham 1994).1 (represented as tw; ~ twi 
or twi ~ tw; ). 

A comprehensive list of task dependencies based on these three task primitives, namely, begin, 
commit and abort, can be found in (Elmagarmid 1992, Chrysanthis 1991), which include commit, 
weak-abort, exclusion, force-commit-on-abort, serial, begin-on-abort and weak-begin-on-commit 
dependencies. 

2.2 Control-flow Dependencies with Data-flow: 

A control-flow dependency with data-flow is of the form: 

A task twj can enter state sti only after task tw; enters state st; and tw; passes values of data 
objects to twi. 

In these dependencies, in addition to the control flow, there could even be informationflow (or 
data flow) between the tasks where a task needs to wait for data from another task. Notice that 

!Group commit involving a set of tasks can be defined using pairwise group dependencies. 
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control-flow dependency with data-flow is meaningful only for limited combinations of st; and 
st1. For example, st; and sti can be "commit'' and "begin.~ respectively, but cannot be "begin~ 
and ""commit.,, 

3 MULTILEVEL SECURE WORKFLOW TRANSACTION 
MODEL 

In a multilevel secure workflow, a workflow transaction may consist of tasks of different security 
levels (as in example 1). Thus, the dependency graph consists of nodes at different security 
levels where the dependency edges may connect tasks of either the same security level or different 
security levels, which can be distinguished as follows. The dependency edge connecting tasks of the 
same security level is referred to as intra-level dependency and that connecting tasks of different 
security levels as inter-level dependency. Since intra-level dependencies by themselves cannot 
violate any multilevel security constraints and are no different from the task dependencies in a non­
secure environment, hereafter we concentrate only on inter-level dependencies. We further divide 
inter-level dependencies into two categories: high-to-low'.! and low-to-high since their treatment has 
to be different in a MLS environment because of its "no downward information flow~ requirement. 

Example 2 Returning to example 1, task twz can begin only after tw1 commits, thus tw1 ~ 
twz, and tw3 can begin only after tw2 commits, i.e., tw2 ~ tw3, as shown in figure 1. Both 

tw1 ~ tw2 and tw2 ~ tw3 are inter-level dependencies where the former is a low-to-high and 
the latter high-to-low. D 

b~;in / 

com/ 

tw 2 High Task: Compute p based on r 

""" b~~n 
~mmit 

Low Task: Compute h,o,n tw I tw 3 Low Task: Reset h,o,n to zero 

Figure 1 Inter-level dependencies of the multilevel workflow transaction in example 1 

Correct execution of a workflow transaction involves (1) enforcing all intra-task and inter-task 
dependencies, (2) assuring correctness of interleaved execution of multiple workflows, and (3) 
preserving atomicity of a transaction. Indeed, satisfying each of the above three criteria may 
conflict with the constraints imposed by multilevel security. In this paper, we focus only on the 
first criterion, i.e., enforcing the task dependencies. 

Enforcing a low-to-high dependency will not result in violation of security. However, although 
one cannot directly enforce high-to-low dependencies without compromising security, in some 

cases, we can simulate their effect. We explain this with example 1 by considering tw2 ~ tw3. 
The intention of this dependency is to avoid tw3 to overwrite data that tw2 has yet to read. Since 

'.!Although we use the term high-to-low, this dependency also includes those among two incom­
parable security levels. 
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we cannot delay tw3 until tw2 's commit, we may keep an old version of all data that tw3 updates. 
Thus we avoid delaying tw3 's begin by providing an old version to the high task tw2 • Or, one can 
redesign the workflow in a clever way as in (Blaustein, Jajodia, McCollum & Notargiacomo 1993) 
such that no high-to-low dependencies exist in the workflow itself. It is important to note that 
this type of simulation (or even redesign) may not be possible with all types of dependencies. 
Since enforcing a high-to-low dependencies may introduce covert channels, a secure WFMS must 
identify and prevent such dependencies. 

One way of dealing with the covert channels is to reduce the bandwidth of the channel. An­
other way is to completely eliminate enforcing the high-to-low dependencies. In the first case, the 
following mechanism can be used to enforcing high-to-low dependencies. 

An approach is to use a buffer at high (assume its size is sufficiently large) in which the commit 
message of the high task is stored. This message will first be subjected to a delay of some random 
duration, and then will be transmitted to low. If several such messages of a single workflow 
transaction get accumulated during the delay period of the first message, these messages cannot 
be sent at the same time, but must be sent individually with the delay incorporated in between 
each of them. Thus, though there exists a channel of downward information flow, the bandwidth 
ofthis channel would be low. It is important to note that for a system to be secure, (at B3 or A1 
level) it is not required to completely eliminate the covert channels but their bandwidth should 
not exceed 100 bits per second. 

In this paper, we take the second approach and provide a protocol to prevent all high-to-low 
dependencies. Our approach uses a PN representation of the task dependencies and detects and 
prevents all high-to-low dependencies. In the next section we give a brief overview of PNs. 

4 OVERVIEW OF PETRI NETS 

A Petri Net (PN) is a bipartite directed graph consisting of two kinds of nodes called places and 
transitions where arcs (edges) are either from a place to a transition or from a transition to a 
place. While drawing a PN, places are represented by circles and transitions by bars. A marking 
may be assigned to places. If a place pis marked with a value k, we say that pis marked with 
k tokens. Weights may be assigned to the edges of PN, however, in this paper we use only the 
ordinary PN where weights of the arcs are always equal to 1. Moreover, we allow a marking with 
only one token for each place. 

Definition 1 (Murata 1989) A Petri net (PN) is a 5-tuple, P N = (P, T, F, M 0 , I) where 
P = {pl,pz, . .. ,pn} is a finite set of places, 
T = {t1, tz, ... , tn} is a finite set of transitions, 
F ~ (P x T) U (T x P) is a set of arcs, 
Mo = P-+ {0, 1, 2, 3, ... } is the initial marking, 
I= (F' ~ (P x T))-+ {0, 1} where 1 represents a regular arc and 0 an inhibitor arc, and 
P n T = 0 and P u T f. 0. o 

We use m(p) to denote the marking (or token) of place p, i(p, t) = 0 to denote an inhibitor arc 
and i(p, t) = 1 to denote a regular arc. 

A transition (place) has a certain number (possibly zero) of input and output places (transi­
tions). 
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Definition 2 (Murata 1989) Given a PN, the input and output set of transitions (places) for 
each place Pi ( ti) are defined as, 
the set of input transitions of Pi, denoted •Pi = {tji(tj,Pi) E F} 
the set of output transitions of Pi, denoted Pi• = {ti I(Pi, ti) E F}, and 
the input and output set of places for each transition t; are defined as, 
the set of input places of ti, denoted •ti = {Pii(Pi• ti) E F} 
the set of output places of ti, denoted ti• = {Pil(ti,Pi) E F}. D 

At any time a transition is either enabled or disabled. A transition ti is enabled if each place in 
its input set •t; has at least one token (in case of an inhibitor arc, ti is enabled if there is no token 
in that input place). An enabled transition can fire. In order to simulate the dynamic behavior 
of a system, a marking in a PN is changed when a transition fires. Firing of ti removes the token 
from each place in •ti (no token is removed in case of an inhibitor arc), and deposits it into each 
place in ti•· The movement of tokens has been depicted in figure 2. The consequence of firing a 
transition results in a change from the original marking M to a new marking M'. For the sake 
of simplicity, we assume firing of a transition is an instantaneous event. The firing rules can be 
formally stated as follows: 

Definition 3 

1. A transition ti is said to be enabled if '</pi E eti, either (m(pj) > 0) A (i(pj,ti) = 1) or 
(m(pj) :f 0) A (i(pj,ti) = 0); 

2. Firing an enabled transition ti results in a new marking M' as follows: 'Vpj E eti, and '</pk E ti•, 
if m(pj) > 0 then m'(Pj) = m(pj)- 1 A m'(Pk) = m(pk) + 1, otherwise m'(Pk) = m(pk) + 1. D 

Example 3 Figure 2 shows an example of a simple PN. It comprises of four places Pl, p2, PJ, and 
p4, and two transitions t1 and t2. The input and output sets of the places and transitions are as 
follows: •h = {p1,p2}, •t2 = {p2}, t1• = {pa}, t2• = {p4}, •pa = {tl}, •P4 = {t2}, P1• = {tl}, 
and P2• = {h, t2}. Note that the arc from P2 to t2 is an inhibitor arc. 

(a) before t I fires 

Pi Pi 

~ 
~ 

(b) after t I fires 

Figure 2 An example of PN 

(c) after t 2 fires 

The initial state of the PN is shown in figure 2(a) where Pl and P2 are both marked with one 
token each. Since both places in the input set oft1 are marked (i.e., both m(p1), m(p2) > 0) and 
the arcs from places P1 and P2 to t1 are regular arcs (i.e., i(p1, ti) = i(P2, tl) = 1) t1 is enabled. 
However, t2 is not enabled because the arc from P2 to t1 is an inhibitor arc and p2 is marked 
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(i.e., m(p2 ) fc 0). After t 1 fires it results in a new marking where the tokens from p1 and p2 are 
removed and a token is placed in p3, as shown in figure 2(b). Since P2 becomes empty after the 
firing of t 1 , it now enables t2 (because the arc from p2 to t2 is an inhibitor arc), but disables h­
As a result, t 2 fires and places a token in p4 , as depicted in figure 2(c). Since there are no more 
transitions to fire, the PN stops (said to be not live) and thus the PN in figure 2( c) is the final 
marking. 0 

Definition 4 A marking M is said to be reachable from a marking M0 if there exists a sequence 
of firings that transforms M 0 to M. 0 

Reachability is a fundamental property for studying the dynamic properties of any system. It 
has been shown (Kosaraju 1982) that the reachability problem is decidable although it takes at 
least exponential space and time. 

5 PETRI NET REPRESENTATION OF MLS WORKFLOW 
TRANSACTIONS 

In this section, first we will show how the various types of control-flow dependencies can be 
modeled using PNs. Then we will extend PNs to incorporate security levels. 

A task in its simplest form consists of a set of states and a set of transitions that changes the 
state of the task from one state to the another. Let the initial state of a task tw; be in;, execution 
state be e:c;, commit state be em; and abort state be ab;. Transition begin (b;) moves the task 
from in; to e:c;, transition commit (c;) moves tw; from e:c; to em; and transition abort (a;) moves 
tw; from e:c; to ab;. PN representation of tw; is shown in figure 3. 

Cj Cfflj 

Figure 3 A PN representation of task tw; 

5.1 PN Representation of Control Flow Dependencies 

In this section, we will show how a control flow dependency can be modeled as a PN. First we 
present the PN representation of a general control flow dependency and then show each type of 
control-flow dependency discussed in section 2.1 as a PN. 

A control flow dependency, in general, is as follows: Given any two tasks tw; and twj. twi can 
enter state stj only after task tw; enters state st;. This can be explicitly represented by the PN 
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shown in figure 4. We add a buffer state b;jX which has an input arc from •st; (or t; in figure 4) 
and an output arc from b;jX to •.•tj (or tj in figure 4). 

Figure 4 shows the PN model for the general control flow dependency. In this figure, and all the 
subsequent figures, we use thick lines to represent the portion of the net included to enforce the 
dependency. Here, tasks tw; and twj move from states st;_ 1 and stj- 1 to st; and stj when the 
events t; and tj occur (or transitions t; and tj fire), respectively. Let us inspect how the control 
flow dependency can be enforced with this PN model. 

Before task tw; enters state st; (or before the firing oft;), b;jX is not marked, and therefore 
prevents transition tj to fire (or task twj to enter stj) by disabling it. However, when task tw; 
enters state st; with the firing of transition t;, one token is deposited in both st; and b;jx. At this 
point, transition tj fires because both of its input places are marked. Thus, task twj is allowed to 
enter state stj only if task tw; enters state st;. 

There are two reasons for using a buffer state b;jX to connect their preceding transitions t; and 
ti instead of directly connecting st; to stj via a transition. ( 1) It ensures that once tw; enters st;, 

twi can enter sti whenever twi is ready to enter stj (tj is enabled). On the other hand, using 
a transition to directly connect st; to stj, gives a different interpretation that twj must enter stj 
when tw; enters st;, which is an incorrect representation of the original dependency. (2) It allows 

modeling of multiple dependencies (e.g. tw; ~ twj and tw; ~ twj ). 

~-----------

1 Task tw. I 
I I 

I st;.] ti st i 1 
I 

-----------, 
I Task tw· I 
I J 
1 st j-1 t j st j I 

b ijx 

t i : the transition before entering st i 

t j: the transition before entering s1 

Figure 4 A PN model for Control-flow dependency 
Although the PN representation of various types of control flow dependencies can be con­

structed from the general case shown in figure 4, some types need modification. In the following, 
we will present the PN representation of the type of dependencies presented in section 2. 

Strong commit dependency: To model this dependency, we insert an additional buffer state 
b;jC and connect an incoming arc from c; to b;jc and another outgoing arc from b;jC to Cj as shown 
in figure 5. A token is placed in b;jC only when tw; commits. So task twj will not be allowed to 
commit until •cJ as well as b;jc are marked. 

Abort dependency: Here we make an assumption that once twi commits before tw; aborts, 
it cannot be aborted later. We first create a buffer state b;ia where we connect an incoming arc 
from a; and insert an inhibitor arc to every transition except ai (i.e., to bj and Cj ), as shown in 
figure 6. Once task tw; aborts, these two inhibitor arcs prevent (1) the starting of execution of 
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~j 

Figure 5 A PN for modeling strong commit de- F' 6 A PN " d 1· b t d 1gure wr mo e mg an a or epen-
pendency dency 

twi if it has not already started by using a buffer transition b/j such that •b/j = {ini, b;ja} and 
b/j• = {abi} (This ensures that tokens in inj and b;ia will fire b/1, thereby moving tw1 to state 
abj. ), and (2) the commit of twi if it has not yet committed. When a; fires, b;ia is filled with a 
token, thus both b1 and Cj cannot fire, but only ai can fire. 

Figure 7 A PN model for termination depen- Figure 8 A PN model for begin dependency 
dency 

Termination dependency: To represent this dependency, we insert a buffer state b;1t such that 
•b;jt = {c;,a;} and b;jt• = {cj,aj} as shown in figure 7. This PN ensures that only when task 
tw; terminates by firing either c; or a;, b;jt will be marked and thus allows Cj or ai to be enabled. 

Begin dependency: Similar to the modeling of strong commit dependency, we add a buffer 
state b;ib such that eb;jb = {b;} and b;jb• = {bj} as shown in figure 8. 

Begin-on-commit dependency: This is similar to begin dependency except that we replace 
b;ib with b;ibc and connect arcs from c; to bi as in figure 9. 

Group commit: Group cominit must ensure that either both tw; and twi commit or neither of 
them commit. To illustrate this using PN, we create two buffer states b;jgc and b1;gc such that 
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Figure 9 A PN model for begin-on-commit de- Figure 10 A PN model for group-commit de-
pendency pendency 

•b;jgc = b;jgc• = {c;,aj} and •bi;gc = bi;gc• = {a;,cj} as shown in figure 10. By modeling this 
way, we ensure that once c; (or a;) fires, ai (or Cj) will be disabled and thus only Cj (or ai) is 
enabled. Similar argument can be made if Cj (or ai) fires first. 

Control-flow dependency with data flow: The PN model of the general control-flow depen­
dency with data flow is similar to figure 4, except that the token is associated with a data value 
(represented as a shaded dot instead of a filled dot as shown in figure 11). This represents that 
task twi can enter state sti only after tw; enters state st; and tw; passes a value of data contained 
in the token to tw;. To derive the PN representation of a specific control flow with data flow, one 
can combine this PN with the PN for that specific type of dependency. 

~-----------

1 Task tw; I 
I I 
I Slj.J I j st; I 

I I 
I 
I 

b .. x 
I) 

-----------, 
I Task fWj I 
I I 
I I 
I I 
I I 
I _____ j 

1 i :the transition(s) before entering st 1 
1 j :the transition(s) before entering st j 

Figure 11 A PN model for control flow dependency with data flow 

5.2 A Secure Petri Net (SPN) Model 

To model MLS workflows, we extend the ordinary PN by incorporating multilevel secure con­
straints, which we call Secure Petri Net (SPN). We associate security level to each place as well 
as to each token, which results in various types of places and tokens. The idea is similar to as­
signing strong types to places as in typed Petri nets and assigning colors to tokens as in colored 
Petri nets (Peterson 1981), however, we incorporate both these techniques into SPN. 

Let S be a partially ordered set of security levels. Each task tw; is assigned a security level 
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such that s(tw;) = 8 E S. All places and transitions within a task assume the same security level 
of the task. We use s(p; ), where 8 E S to represent the security level associated to place p;. 

To distinguish the typed places from the regular places, we use double circles as opposed to 
single circles. Similarly, the token is represented as a "shaded dot~ instead of a "filled dot." We use 
the same notation as in case of control- flow dependency with data flow. The reason is as follows. 
Assigning a security level to a token and assigning a value to a token are analogous. Therefore, 
although we do not explicitly address value dependencies in this paper, we believe that they can 
be modeled in a similar way as inter-level dependencies. 

The extended Petri net is defined as follows: 

Definition 5 A Secure Petri Net (SPN) is a 2-tuple, SP N = (P N, S), such that 
s(p; ), where 8 E Sis the security level of place p;, and 
8( m(p;) ), where 8 E S is the security level of the token in p; 

The following security constraint restricts the security level of tokens. 

e A token m(p;) is allowed to reside in place p; only if 8( m(p;)) = 8(p; ). 

The new firing rules for the SPN with typed tokens and places are as follows: 

Definition 6 

0 

1. A transition t; is said to be enabled if Vpi E •t;, either ( m(pj) > 0) A ( i(pj ,t;) = 1) or 
(m(pj) 'f 0) A (i(pj, t;) = 0) (same as rule 1 in definition 3) 

2. Firing an enabled transition t; results in a new marking M' as follows: Vpj E •t; and Vpk E t;•, 

(a) if s(m(pj)) > s(pd then m'(pj) = m(pj) -1, 
(b) if s( m(pj)) ::=; s(pk) then 

(m'(pj) = m(pj)- 1 /\ m'(Pk) = m(pk) + 1), whenever (i(pj, t;) = 1) 
m'(Pk) = m(pk) + 1, whenever (i(pj. t;) = 0). 
In either case, s( m' (Pk)) = s(pk ). 0 

The second firing rule states that upon firing, one token is reduced from each place p; in •t; 
and one token is inserted to each place Pk in the output set oft; according to the two rules: (1) 
if the original token in p; (i.e. m(p;)) has a security level higher than that of Pk, upon firing, we 
only remove tokens from p; but do not insert any token to Pk· (2) if the original token in p; has 
a security level equal to or lower than that of Pk• upon firing, we remove a token from p; and 
insert a token to Pk. The security level of the inserted token will be equal to the level of the place 
where the token is being inserted. This does not introduce any covert channels because according 
to our firing rules. no token is allowed to pass from a place with higher security level to a place 
with lower security level. 

Example 4 As an example, consider the SPN shown in figure 12, where transition t 1 has three 
input places PI, P2 and P3 with security levels high, high and very high, respectively, and one 
output place P4 with s(p4) = high. Assume m(p2) = m(p3) = 1 and m(p!) = 0, and while arcs 
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(p2 , tl) and (p3 , tl) are regular arcs, (p1 , tl) is an inhibitor arc. The security levels of the tokens 
are as follows: s(m(p2 )) =high and s(m(p3 )) = very high. 

When t 1 fires, tokens are removed from both P2 and p3, and a token is placed in P4 since there 
is a token m(p2 ) whose security level is less than or equal to that of p4 • The security level assigned 
to this inserted token is high because s(p4) = high. 0 

s(~)=high 

S(f2)=high 

s(m(p2 )) = high 

s(ij)=very high 

s(m(p)) = very high 

(a) before t1 fires 

s(m(P. )) =high 
'4 

(b) after t 1 fires 

Figure 12 An example depicting the behavior of a Secure Petri Net 

5.3 Modeling inter-level dependencies 

Now we propose a mechanism that can automatically detect and prevent covert channels by 
disabling all high-to-low flow for every control flow dependency tw; ....:_. twi. The buffer place b;j 
is assigned the security level of twi (i.e., s(b;JX) = s(twj)). We create two buffer places b;jxl 
and b;jx2 such that s(b;jxl) = s(tw;) and s(b;jx2) = s(twj)· Both these places are connected 
to prevent;jX with inhibitor arcs as figure 13 shows. This mechanism is required only for those 
d d . . h . h'b' h c b be d epen encws w1t out any m 1 1tor arcs sue as tw; ---+ twi, tw; ---+ tw1, tw; ---+ twj, an 

tw; __.!_. twi. 
This works as follows: b;jxl is initially marked with a token such that s(m(b;jxl) = s(b;jxl). 

So transition detect;jX is enabled initially. For all cases where (s(tw;)::; s(twj )), i.e., low-to-high, 
or dependencies among tasks of the same level, the token m(b;1xl) will be moved from b;1xl 
to b;jx2. Since b;jx2 is not empty, prevent;JX is not enabled. Thus the specified control flow 
dependency is enforced. If (s(tw;) 1:. s(twj)), (i.e., to include dependencies between high-to-low 
and between incomparable) no token will be inserted into b;jX when t; fires. 

The transition detect;jX fires but token m(b;jxl) will be removed from b;1xl but will not 
be inserted into b;ix2 because s(m(b;jxl)) = s(b;ixl) 1:. s(b;jx2). These two empty places will 
further enable the transition prevent;} x. prevent;j x fires and inserts a token with the security 
level s(m(b;jx)) = s(b;jx) = s(twj) to its output place b;1x. Because b;jX is not filled with a 
token through the firing oft;, but via the firing of prevent;jX, the high-to-low dependency is not 
enforced and twi is processed independently. Thus, even though s(tw;) > s( b;i ), it does not cause 
any covert channel. 
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For those dependencies with inhibitor arcs such as (tw; ~ twj) and (tw; ~ twj), the 
dependency is already secure and thus they do not require this mechanism. As an example, 
consider a high-to-low abort dependency (refer to figure 6). The absence of token in buffer b;1a 
enables both bj and e1, which implies the dependency is no longer enforced. 

prevent ··T tj 
"-o 
~ttx 

detect .. x 
l} 

J 
Figure 13 A PN model to enforce inter-level dependency 

6 EXECUTION OF WORKFLOWS 

Execution of a workflow transaction involves submitting tasks to the workflow management sys­
tem (WFMS) while ensuring all the task dependencies being preserved. We will show how this 
can be accomplished using PNs. It is important to note that these algorithms can be used even 
to execute concurrent workflows with little modification. Our model is helpful when scheduling 
workflow transactions concurrently, especially when transactions are ad hoc in nature. The SPN 
of each newly submitted transaction can simply be added to the existing SPN of the currently 
executing workflows. 

Algorithm 1 [An Algorithm to Construct SP N(TW)] 

for each tw; E TW, 
/* construct PN of tw; as follows:*/ 
create places P; = {in;,ex;,em;,ab;} 
create transitions T; = {b;,e;,a;} 
connect P; and T; with directed arcs as follows: 
•in; = 0, in;• = {b;}, eb; ={in;}, b;• ={ex;}, •ex; = {b;}, ex;• = {cs, a;}, 
•e; = {ex;},e;• ={em;}, ea; ={ex;}, a;• = {ab;}, •em; = {e;}, 
em;• = 0, •ab; ={a;}, ab;• = 0 

end{for} 
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for each tw; ....:.._. tw1 E TW, where twi can enter state sti only when tw; enters state st; 

1. add the buffer place b;i :x and arcs as shown in figure 411 
2. /*Construct SP N(TW) as follows: * / 

create two places b;i:x1, b;i:x2 and two transitions detect;i:x,prevent;i:x 
connect arcs such that •b;j:X1 = 0, b;j:xh = {deted;j:x,prevent;j:x} where i(b;j:x1,prevent;j:x) 
= o·· 
•b;1:x2 = {detect;1:x }, b;j:x2• = {prevent;j:X} where i(b;j:x2,prevent;j:x) = 0, 
prevent;i :x• = { b;j :x} 

3. /*assign the security level to the places as follows:*/ 
s(in;),s(e:x;),s(cm;),s(ab;) <-- s(tw;), 
s(in1 ),s(e:xj),s(cmj),s(abj) <-- s(tw,), 
s(b;j:x) <-- s(twj), s(b;j:x1) <-- s(tw;), s(b;j:x2) <-- s(twj) 

end{for} 

Algorithm 2 [An Algorithm to Execute TW] 

/* Mark SPN with M as follows: * / 
for each tw;, twi E TW 

m(in;) <-- 1, m(inj) <-- 1 and m(b;j:x1) <-- 1 
/*assign security level to tokens as follows:*/ 
s( m( in;)) <-- s( in;); 
s(m(ini )) <-- s(inj ), s(m(b;1:x1)) <-- s(b;j:xl), 

end {for} M' <-- 0 /* initialize next state of marking * / 
M-' <-- 0 /* initialize previous state of marking * / 
whileM-' f M 

/* execute PN by firing the enabled transition * / 
for each t; E SPN(TW) 

'I pi, Pk E SP N(TW), where Pi E •t; and Pk E t;•, 
1. if s( m(pj)) > s(pk) then m'(Pj) = m(pj) - 1, 
2. if s( m(pj)) :::; s(pk) then 

M-' <-- M 
M<-M' 

end{while} 

(m'(Pj) = m(pj)- 111 m'(Pk) = m(pk) + 1), whenever (i(pj, t;) = 1) 
m'(pk) = m(pk) + 1, whenever (i(pj,ti) = O) 
s(m'(pk)) = s(pk) 

As an example, algorithm 1 can be used to construct SPN for the workflow transaction in 
example 1, which is shown in figure 14. The SPN thus constructed can be executed using algorithm 

II For simplicity, we consider only the general case of control flow dependency. For a specific control 
flow dependency, buffer transitions and additional buffer places may be required as presented in 
section 5.1. 
**We omit explicitly specifying i(b, t) if its value is equal to 1. 
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2, which is as follows. First all the places representing the initial state of the task (in;} and the 
buffer state b;1xl of every task dependency tw; .2.. twj in TW are marked with a token. This 
forms the initial marking M. When all the enabled transitions fire, it results in a new marking M'. 
This continues until no new transitions fire. Notice that in figure 14, the high-to-low dependency 

tw2 ~ tw3 is detected and disabled because a token is deposited in b23bc by firing prevent23bc. 
This immediately enables b3 without waiting for the commit of tw2 thereby eliminating covert 
channels. 

detect 12bc 

Figure 14 SPN of workflow transaction in example 1 

7 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, first we have presented a multilevel secure workflow transaction model where we 
identify the task dependencies that have to be prevented in order to eliminate covert channels. 
Then we have used Petri nets to model various types of control flow dependencies and extended 
the traditional PN to SPN which automatically detects and prevents all task dependencies that 
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violate security. We have also proposed algorithms to construct an SPN for a given MLS workflow 
transaction and to execute them. Note however preventing all high-to-low dependencies may result 
in an incorrect workflow execution. 

As part of future work, we intend to represent value dependencies and external dependencies 
as PNs. Representation of external dependencies involve using a special case of PNs known as 
timed PNs. We intend to implement and perform reachability analysis of SPN. 

ACKNOWLEDGMENT 

This work was supported in part by the National Science Foundation under grant IRI-9624222. 

REFERENCES 

Bell, D. & LaPadula, L. (1976), Secure computer systems: Unified exposition and multics inter­
pretation., Technical Report MTR-2997, The Mitre Corporation, Bedford, MA. 

Biliris, A., Dar, S., Gehani, N., Jagadish. H. & Ramamritham, K. (1994), ASSET: a system for 
supporting extended transactions, in 'Proc. ACM SIGMOD Int'l. Conf. on Management of 
Data', Minneapolis, MN, pp. 44-54. 

Blaustein, B. T., Jajodia, S., McCollum, C. D. & Notargiacomo, L. (1993), A model of atomicity 
for multilevel transactions, in 'Proc. IEEE Symposium on Security and Privacy', Oakland, 
California, pp. 120-134. 

Chrysanthis, P. (1991), ACTA, A framework for modeling and reasoning about extended trans­
actions, PhD thesis, Department of Computer and Information Science, University of Mas­
sachusetts, Amherst. 

Denning, D. E. (1982), Cryptography and Data Security, Addison-Wesley, Reading, MA. 
Elmagarmid, A. K. (1992), Database Transaction Models for Advanced Applications, Morgan Kauf­

mann, San Mateo. California. 
Elmagarmid, A. K .. Leu. Y .. Litwin, W. & Rusinkiewicz, M. (1990), A Multidatabase Transaction 

Model for Inter Base, in 'Proc. 16th Int'l. Conf. on Very Large Data Bases', Briabane, Australia, 
pp. 507-518. 

Georgakopoulos, D., Hornick, M. & Sheth, A. (1995), 'An Overview of Workflow Management: 
From Process Modeling to Workflow Automation Infrastructure', Distributed and Parallel 
Databases pp. 119-153. 

Georgakopoulos, D. et a!. (1993), 'An Extended Transaction Environment for Workflows in Dis­
tributed Object Computing', Bulletin of IEEE Technical Committee on Data Engineering 
16(2), 24-27. 

Kosaraju, S. R. (1982), Decidability and reachability in vector addition systems, in 'Proc. of the 
14th ACM Symposium on Theory of Computing', pp. 267-281. 

Murata, T. (1989), 'Petri nets: Properties, analysis and applications', Proceedings of the IEEE 
77( 4), 541-580. 

Peterson, J. L. ( 1981 ), Petri net theory and modeling of Systems, Prentice-Hall, Englewood Cliffs, 
NJ. 



258 Part Seven New Directions 

Rusinkiewicz, M. & Sheth, A. ( 1994), Specification and Execution of Transactional Workflows, in 
W. Kim, ed., 'Modern Database Systems: The Object Model, Interoperability, and Beyond', 
Addison-Wesley. 

Sheth, A., Rusinkiewicz, M. & Karabatis, G. (1993), 'Using Polytransactions to Manage Interde­
pendent Data', Bulletin of IEEE Technical Committee on Data Engineering 16(2), 37-40. 

BIOGRAPHY 

Vijayalakshmi Atluri is an Assistant Professor of Computer Information Systems in the MS/CIS 
Department at Rutgers University. She received her B.Tech. in Electronics and Communications 
Engineering from Jawaharlal Nehru Technological University, Kakinada, India, in 1977, M.Tech. 
in Electronics and Communications Engineering from Indian Institute of Technology, Kharagpur, 
India, in 1979, and Ph.D. in Information Technology from George Mason University, USA, in 
1994. Her research interests include Information Systems Security, Database Management Sys­
tems, Workflow Management and Distributed Systems. 

Wei-Kuang Huang received his B.S. in Naval Architecture Engineering from National Taiwan 
University, Taiwan in 1987, and M.S. in Management Information System from Boston University, 
Massachusetts in 1991. He is currently a Ph.D. candidate in the MS/CIS department at Rutgers 
University, New Jersey. His research is in the areas of database security, workflows management 
and Petri net modeling and analysis. 


