
8

Formal Verification of Communication Protocols

M. A. S. Smith*
Laboratory for Computer Science, MIT

Cambridge, MA 02139, USA, (617)253-1499, {617}253-3480, mass@lcs.mit.edu

Abstract
In this paper we present a formal abstract specification for TCP /IP transport level pro­
tocols and formally verify that TCP satisfies this specification. We also present a formal
description of an experimental protocol, T /TCP, which proposes to provide the same
service as TCP, but with optimizations to make it efficient for transactions. We further
show that this protocol does not provide the same service as TCP, and propose a weaker
specification for this protocol. Our specifications are presented using an untimed automa­
ton model, and we present the protocols using a timed automaton model. The formal
verification is done using invariant assertion and simulation techniques.

Keywords
Verification, automata and languages, network protocols

1 INTRODUCTION

The original motivation for this work was to do a formal verification of an experimental
transport level protocol called T /TCP. This protocol, by Braden and Clark (Braden, 1992;
Braden, 1994; Braden and Clark, 1993), is designed to be a unified transport protocol in
that it should work well for both transactions and streaming. A transaction is typically
a request from a client and a response from a server. Streaming on the other hand is the
sending of significant amounts of data. The idea behind the design of T /TCP is to extend
the Transmission Control Protocol (TCP) to make it efficient for transactions (hence the
name T /TCP).

TCP is the most commonly used transport level protocol on the Internet. The basic
service that it provides is reliable end-to-end delivery of data between application pro­
grams. On the Internet packets sent from one user to another may get duplicated, lost,
or arrive out of order. TCP ensures that these packets are delivered to the application
programs without duplication, without loss, and in the correct order. While TCP works
well for data streaming, it does not work well for transactions because it has an open
phase (the three-way handshake protocol) that forces two round trips across the network
for a client to send a request and get a response from a server. Ideally we would like the
request and response to be done in one round trip across the network.

The designers of T /TCP believed their protocol was correct since it is based on TCP,

*Supported by Air Force Contract AFOSR F49620-92-J-0125, NSF contract 9225124CCR, and
ARPA contracts N00014-92-J-4033, F19628-95-C-0118, and DABT63-94-C-007.

R. Gotzhein et al. (eds.), Formal Description Techniques IX
© IFIP International Federation for Information Processing 1996

130 Part Two FDT-Application

but the changes they made were sufficiently complex to make them uncertain. Therefore,
they thought a formal correctness proof would be useful (Braden and Clark, 1993). Our
initial plan of attack for verifying T /TCP was to assume the correctness of TCP and
leverage off this correctness in the verification of T /TCP. However, we could not find
any work that verified TCP in sufficient generality to use in our work. Other works have
verified parts of TCP or protocols similar to TCP. In (S!i!gaard-Andersen, Lampson, and
Lynch, 1993) the correctness the five packet handshake protocol (Belsnes, 1976) which
forms the basis of the open and close phase of TCP and ISO-TP4 is formally verified.
However, this work does not verify enough of TCP for us to use directly in the verification
ofT /TCP. In (Murphy and Shankar, 1989) a connection management protocol for the
transport layer is also specified and verified, but the protocol is of their own design, not
TCP.

The informal specification of TCP (Postel, 1981) is quite complicated, and an impor­
tant contribution of this work is the presentation of a precise specification of the transport
level problem TCP is supposed to solve. In our formal presentation of TCP we do make
some simplifications. For example, we do not include security parameters, and the conges­
tion control aspect of TCP. We also assume a client/server model which means one side
is always active and the other passive, whereas in full TCP either side can initiate com­
munication. Even with these simplifications we know of no other work that attempts to
verify TCP at the level of generality we do in this work. After specifying the problem and
formally verifying TCP, the next step in our verification of T /TCP was to show that it
implements TCP. However, we discovered that under certain circumstances T /TCP does
not behave the way TCP does, and in fact does not satisfy the specification we have for
the transport layer. (Murphy, 1996) has also found a situation different from the one we
discovered where T /TCP does not behave as TCP. We present the scenario we discovered
in this paper and also discuss a weaker specification for T /TCP that is not violated by
the scenario.

We use invariant assertion and simulation (refinement) techniques to verify TCP. We
use the formalization of simulations developed in (Lynch and Vaandrager, 1993; Lynch
and Vaandrager, 1995). These methods are used for proving trace inclusion relationships
between concurrent systems. The methodology is developed in the context of a very sim­
ple and general automaton for both untimed (Lynch and Vaandrager, 1993) and timed
(Lynch and Vaandrager, 1995) systems. We elaborate on the model and methodology in
Section 2. Simulation techniques are known to be quite useful in the verification of concur­
rent systems, and other researchers use this method in their work (Abadi and Lamport,
1991; Lampson, Lynch, and S\'lgaard-Andersen 1993; Murphy and Shankar 1989). This
paper is closest in scope to the work in (Lampson, Lynch, and S\'lgaard-Andersen, 1993).

The rest of the paper is organized as follows. Section 2 contains a brief description of
the formal models we use in the paper. Section 3 contains an informal description of TCP
and T /TCP. In Section 4 we present the specification of the transport layer problem, and
we verify that TCP satisfies this specification in Section 5. We give a formal description
of T /TCP, show how it does not behave as TCP, and discuss an alternative specification
for it in Section 6. Finally, in Section 7 we make some concluding remarks and discuss
future work.

Formal Verification of Communication Protocols 131

2 FORMAL MODELS

In this section we give a definition of untimed and timed automata and also give a de­
scription of the simula,tion techniques we use.

2.1 Automata models

The formal model we use to represent the specification of the transport level problem is the
untimed automaton model of (Lynch and Vaandrager, 1993). An automaton A consists of
four components, a set states(A) of states, a nonempty set start(A) ~ states(A) of start
states, a set acts(A) of actions, and a set steps(A) ~ states(A) x acts(A) x states(A)
of steps. The set acts(A) can be partitioned into three disjoint sets, in(A), out(A), and
int(A) of input actions, output actions and internal actions respectively. The union of
the input actions and output actions we denote as external actions, those actions visible
to the environment.

We describe TCP and T /TCP as timed automata. A timed automaton (Lynch and
Vaandrager, 1995) is an automaton as described above, but its set of actions includes R+,
the set of positive reals. Actions from R+ are referred to as time-passage actions.

To show that an automaton A "implements" another automaton B we show a trace
inclusion relationship between them. The trace inclusion relationship is a safety property
and shows that a protocol does nothing bad, but does tell us if a protocol does anything
(liveness). The safety property is sufficient in our work, since we are clearly dealing with
protocols that do something. The set of traces of an automaton consists of the set of
sequences of visible actions that the automaton can perform. In timed systems these
actions are paired with their time of occurrence to form timed traces. Thus, A implements
B if the set of (timed) traces of A is included in that of B.

2.2 Simulation techniques

In this paper we use the formalization of simulations for untimed and timed systems
in (Lynch and Vaandrager, 1993; Lynch and Vaandrager, 1995) respectively. Let I be
an automaton representing an implementation of a protocol and S be an automaton
representing an abstract specification of the protocol. If I and S have the same input and
output actions, then a simulation from I to S is a relation between states of I and states of
S such that certain conditions hold. The conditions that hold depend on if we do a forward
simulation (a special case of which is a refinement mapping) or a backward simulation.
The simulation techniques have two general conditions. First, the start states of the two
automata must be related in a certain way, and second, each step of the implementation
must "simulate" some sequence of steps in the specification. That is, for each step in the
implementation, there must exist a sequence of steps in the specification between states
related by the simulation relation to the pre and post-state of the implementation step
such that the sequence of specification steps contains exactly the same external actions as
the implementation step, which implies that (timed) traces of I are also (timed) traces of
S. Forward and backward simulations for untimed and timed automata are shown to be
sound for proving trace inclusion in (Lynch and Vaandrager, 1993; Lynch and Vaandrager,
1995).

132 Part Two EDT-Application

During the process of performing a simulation proof sometimes a situation that is
impossible to solve comes up, but then it turns out the situation happens in an unreachable
state. Since we only need to consider the steps of the implementation automaton which
start in a reachable state, an invariant that avoids these "bad" states is found. Invariants
are properties that are true of all reachable states.

In (Abadi and Lamport, 1991) it is shown that in some instances even though it is
not possible to find a refinement mapping from implementation I to specification S, by
adding history variables to I a mapping can be found. History variables record the past
history of a system and places no constraints on the behavior of the implementation.

In describing the transport level problem, it is not necessary to mention time, so our
specification is presented using untimed automata. However, TCP and T/TCP are timed
systems, so we presented them as timed automata. The methods we used do not allow
direct simulations between timed and untimed systems. The same issue comes up in
(S!ilgaard-Andersen, Lynch and Lampson, 1993), and they develop the patient operator
which converts an untimed automaton into a timed automaton by adding arbitrary time
passage steps.

3 INFORMAL DESCRIPTION OF PROTOCOLS

In this section we present informal descriptions of TCP and T /TCP. These description
are presented here to give the reader some intuition for when we present the abstract
specification and the formal descriptions of the protocols.

In order to guarantee reliable data streaming, TCP requires synchronized states at both
end-points. This synchronization uses three phases: an open phase, a bi-directional data
transfer phase, and a close phase. The open phase is often referred to as the "three-way
handshake protocol" because it requires the sending of three packets between the client
and the server. When the client and server receive the signal to open a connection, they
choose initial sequence numbers (ISN), read from a 32 bit clock, from which they start
numbering packets. To synchronize, the client and server must know each others ISN, so
the client starts the three-way handshake by sending a SYN packet with its ISN. When
the server receives this packet, it notes that the sequence number of the next packet it
should receive is the ISN of the client plus one. It sends back this value to the client along
with its own ISN in a SYN(ACK) packet. When the client receives this return packet, it
verifies that the server received its correct ISN, and notes the ISN of the server plus one.
The final packet of the three-way handshake is the packet the client sends in response.
This packet has the next sequence number for the client and the value of the ISN of the
server plus one. When the server receives this packet, it confirms that it has the right
ISN for the client and that the client has its correct ISN. At this point both ends are
synchronized and are in what is called the established state. Data transfer takes place in
this state.

Once the client and server agree on each other's ISN, they increment their sequence
number for each piece of data sent. The sequence numbers are used to make sure data is
received in the right order. An acknowledgment mechanism is used to ensure the retrans­
mission of packets lost in the network. That is, a packet is retransmitted after a suitable
retransmission timeout (RTO) until an acknowledgment is received for that packet. The

Formal Verification of Communication Protocols 133

acknowledgment of a packet means every packet up to that one has been successfully
received. We make the simplifying assumption that every packet must get an acknowl­
edgment before the next one is sent.

The close phase begins when either host receives the signal to close from the user. When
this happens it sends any remaining data it has to send, and then sends a FIN packet.
The host that receives the FIN packet responds with a FIN(ACK) packet. The behavior
is symmetric when the other host receives the signal to close. The host that sends the last
FIN(ACK) goes to timed-wait state. The host that receives that FIN(ACK) closes, and
the host that sent it waits for a time of 2 x MPL (Maximum Packet Lifetime) before it
closes. This wait is to ensure that if a new incarnation of the same connection is started,
old duplicate packets will have been dropped from the network. Incarnations are time
sequential connections of the same client/server pair. The use of the clock to choose ISN's
also helps to distinguish between packets from different incarnations.

The basic idea in the design ofT /TCP is to keep most of TCP, in particular the things
that make it good for data streaming, but to add two optimizations that eliminates the
inefficiencies of TCP for transactions. In this work we only discuss the main optimiza­
tion because by itself it causes T /TCP to behave differently from TCP. The optimization,
known as TCP Accelerated Open (TAO), eliminates the need for the three-way handshake
protocol at the opening phase of communication. This optimization is accomplished by
having persistent monotonic connection counts. Persistent state is state that is kept af­
ter a connection closes. Each time a new connection is opened, the connection count is
incremented. The client and server hosts keep in local persistent caches their own con­
nection counts and a copy of the last connection count they received from the host they
are communicating with. Therefore, when a client wants to open a new connection, it
can send the incremented connection count with the initial packet containing the request
data. When the server receives this packet, it checks that the connection count is bigger
that the last connection count it saw from that client, and can immediately accept the
new data if it is. The server responds with a packet that contains data and an echo of the
client's connection count. The client uses the echoed value to determine if the response is
valid. With TAO, a transaction can be carried out in one round trip across the network.
If the client or server ever lose the connection count information (for example after a
crash), T /TCP uses the the three-way handshake protocol to establish connection and
also to reset the connection count information. T /TCP also uses sequence numbers to
order data, but since the initial sequence number is not needed to distinguish data from
different incarnations, the initial sequence number can always start at 0.

4 SPECIFICATION

We know of no other work that gives an abstract formal specification of the user visible
behavior of TCP /IP transport level protocols. Such a specification is important because
it captures the essential properties of the problem, provides precise guidelines for someone
who wants to implement a transport level protocol, and provides a measure against which
other transport level protocols can be checked for correctness.

Due to space limitations we present only part of the specification here. The full specifi­
cation appears in (Smith, 1996). The specification can be viewed as a "black box", which

134 Part Two EDT-Application

has a user interface that gets all the inputs that the protocol receives and sends out all
the outputs that we want the protocol to produce. The specification defines a relationship
on the inputs and outputs that gives precisely the desired behavior any protocol solving
the problem should have. The user interface for TCP and our specification, S, is shown
in Figure 1.

The user interface for TCP in the Internet standard (Postel, 1981), has an explicit
active-open input and separate send-msg and close inputs. We combined these actions
in our specification into the single send-msgc (open, m, close} * action on the client side
because we want to allow for the situation where the client side user opens the connec­
tion, sends just one message, and closes immediately. The interface where the actions are
combined facilitates such a transaction without losing any of the functionality of the usual
TCP interface. Braden (Braden, 1994) suggests a similar interface forT /TCP. We do not
combine the three actions into one action on the server side because that side is passive
and cannot send any data until it has formed a connection with the client. However, we
combine the send-msg and close actions to facilitate a reply message and an immediate
close.

We use the untimed automaton model described in Section 2 to formally present the
specification. The steps are presented in a precondition, effect style commonly used with
1/0 automata (Lynch and Tuttle, 1989). That is, the state during which an act is enabled
is given as a precondition, and the resulting state is given by the effects of the action.
Input actions have no precondition.

Some of the steps t of the automaton for the specification, S, are shown in Figure 2. To
capture the essence of at-most-once delivery of messages, we use FIFO queues. Data is
added to the back of a queue, and removed from the front. Since the queues do not lose
or duplicate data, we get the property we want. If there is a crash, then some data can
be nondeterministically removed from the back of the queues. The variables recc and rec.
are used to indicate when the client and server respectively are recovering from crashes.
Most actions are disabled or have no effect when these variables are true. To represent
the idea of the sides opening and forming a connection, we assign id's from infinite and
stable sets (CID and SID for the client and server side respectively) to the client and the
server ends when they open, and then pair them to form an association. A stable variable
is one that does not lose its value after a crash. To make sure associations are distinct,
id's are removed from the sets once they are used, and an id is never paired with more
than one other id to form an association. We use another stable set, assoc, to keep track
of the associations that have already been formed, and the special value nil is used to
indicate when a host is closed.

To ensure the separation of data for each incarnation, we use two infinite arrays of FIFO
queues that are indexed by the id's of the client and server. That is, the client sends data

*open and close are boolean, and m E Msg U null, where the set Msg is the set of all possible finite
strings over some basic message alphabet that does not include the special symbol null which indicates
the absence of a message.

tThroughout the paper we use the following operations on queues: let q be a queue (eo, ... , en- 1) with
elements eo through en-1· Then q · m and tail(q) denote the lists (eo, ... , en-1, m), and (e 1, ... , en-1),
respectively, and head(q) is the element e0 • Also let dom(q) ~ {iiO :'S i < lql}, suffix(q) ~ {{ilj :'S i <
lqi}IO :'S j < lql}, and delete(q,I) ~ (qlill i E dom(q) IIi rf. I). The empty queue is denoted by c

Formal Verification of Communication Protocols 135

Figure 1 The user interface for TCP /IP transport level protocols.

on the queue indexed by its id (queuesc), and the server sends data on the queue indexed
by its id (queuesc)· A host can only receive data (the receive-msgc(m) and receive-msg.(m)
actions) from a queue if its current id is associated with the id of the sender of the data,
and since each id can only be associated with one other id, a host can only receive data
from a unique incarnation during the life of that incarnation. Thus, there is no danger of
receiving data from a previous incarnation. Associated with each queuecs and queuesc are
the flags q-statcs and q-statsc respectively. A queue's status is dead if it has never been
used to send messages, or if it has been used and its receiving host has closed or crashed.
Only queues with status live can have messages added and/or removed.

When a host opens it also sets the variable mode to active to indicate that it can
receive messages from the user, and sets it to inactive when it receives the close signal
from the user. A host should only close, barring a crash, when it has sent all its data (it
received a close signal from the user) and when it has received all the data from the other
host. In the specification a remote host can determine when the other host has sent all its
data by checking the mode or id variable of the other host. The internal action to close a
host is set-nil.

Our specification includes another stable set, overlap, which contains all the pairs of
id's of clients and servers that co-existed in time. We need this set because we want to
allow associations to be formed by id's that are not necessarily the current id's of the
client and server, but id's that existed at the same time.

5 TCP

We specify the client and server as timed automata. The protocol is too large to present
in its entirety in this paper, so we only present the steps of the open phase. The steps
are also somewhat simplified to ease the exposition in this paper. For the full protocol see
(Smith, 1996).

Figure 3 shows the structure of the TCP protocol, T. We use two channels, Channelcs
and Channel.c, for sending packets from the client to the server and from the server to
the client respectively. We model the channels as timed automata. When a packet gets
placed on the network and is not dropped, it eventually gets delivered. However packets
can be lost, duplicated and reordered. A packet that is placed on a channel and does not
get delivered within the MPL gets dropped from the channel. In our model packets on
the channels are stored in the multiset variables in-transitcs and in-transitsc for packets
on Channelcs and Channel.c respectively.

136 Part Two FDT-Application

Client side

Input send-msge(open, m, close)
Effect:

if ~ rece then
if open /1. ide = nil then

ide := any element E CID
CID := CID \ ide
modee := active
q-state, (ide) := live
if id, f' nil then

overlap:= overlap U {(ide, id,)}
if modee = active/\ m f' null /1.
q-state,(ide) = live then

queuee,(ide) := queuee,(ide) · m

if close then modee := inactive

Internal make-assc(i,j)
Precondition: (i, j) E overlap /1.

'V k(i, k) rf. assoc
/1. 'VI (I, j) rf. assoc

Effect: assoc := assoc U {(i,j)}

Output receive-msge(m)
Precondition: ~ rece /1.

q-stat,e(i) = live /1. (ide, j) E assoc /1.

queue,e(i) f' f /1. head(queue,e(j)) = m
Effect: queue,e(i) := tail(queue,e(j))

Internal set-nile
Precondition: ~ rece /1.

ide f' nil /1. modee = inactive
/1. 3j s.t. (ide, j) E assoc /1. queue,e(i) = f

/1. (mode, = inactive V id, f' j)
Effect:

ide :=nil
q-stat,e(i) := dead

Input crashe
Effect:

if ide # nil then
recc :=true

if 3 j s.t. (ide, j) E assoc then
queue,e(i) := f

q-stat,e(i) := dead

Internallosee{I)
Precondition: rece /1. I E suffix(queuee,(ide)}
Effect: queuee,(ide) := delete(queuee,(ide), I)

Server side

Input passive-open
Effect:

if ~ rec, then
if id, = nil then

id, := any element E SID
SID := SID \ id,
mode, :=active
q-statoe(id,) := live
if ide f' nil then

overlap := overlap U {(ide, id,)}

Input send-msg, (m, close}
Effect:

if ~ rec, then
if mode, = active /1. m f' null /1.
q-stat,e(id,) = live then

queue,e(id,) := queue,e(id,) · m
if close then mode, := inactive

Output receive-msg, { m)
Precondition: ~ rec, /1.

q-state,(i) = live /1. (i, id,) E assoc /1.

queuee,(i) f' f /1. head(queuee,(i)) = m
Effect: queuee,(i) := tail(queuee,(i))

Internal set-nil,
Precondition: ~ rec, /1.

id, # nil /1. mode, = inactive /1.
3i s.t. (i, id,) E assoc /1. queuee,(i) = f

/1. (modee = inactive V ide f' i)
Effect:

id, :=nil
q-state,(i) :=dead

Input crash,
Effect:

if id, # nil then
rec, :=true
if 3 i s.t. (i, id,) E assoc then

queuee,(i) := f

q-state,(i) :=dead

Internal lose, (I)
Precondition: rec, /1. I E suffix(queue,e(id,))
Effect: queue,e(id,) := delete(queue,e(id,), I)

Figure 2 Some of the steps of the specification S.

Formal Verification of Communication Protocols 137

Figure 3 The Structure of TCP.

5.1 Steps of TCP

The steps of the open phase of the timed automaton for TCP are shown in Figure 4. The
protocol starts when the client receives the action send-msgc (open, m, close) with open
set to true and the server receives a passive-open input. These two actions signal that both
hosts can try to establish a connection with each other. The active open and passive open
are only valid if the hosts are closed. When the client and server receive the open signal
they change to modes syn-sent and listen respectively. These modes indicate that the
client is about to or has sent a SYN packet and that the server is listening for one. We
represent the choosing of the ISN's as the routines choose-isnc () and choose-isn. (). The
send-msgc(open, m, close) action might also have data to be sent. If this is the case, the
data is appended to the queue send-bufc which is where the client keeps messages to be
sent. If close is true this means the connection should be closed and no more data should
be accepted from the user to be sent.

Assuming the client does not open and close without receiving any data, the client
performs the action send-segcs (SYN, snc), where snc is the ISN, as the first step of the
three-way handshake. Note that this action, along with all the other send-seg actions have
as a precondition (no we - time-sentc 2 RTO) which controls retransmission. When this
packet is received by the server, if it is in mode listen, it changes to mode syn-rcvd
and also records the next sequence number it expects, snc+ 1, in the variable ack •. After
it receives the first packet of the three-way handshake, the server performs the action
send-segsc (SYN, sn., ack.) which is the second packet of the three-way handshake. In this
packet sn5 is the server's ISN. When the client receives this packet, it accepts it only if it
is in mode syn-sent and it knows the server received its correct ISN. The client knows the
server received its correct ISN if ack. = snc + 1. If the received packet is valid, the client
goes to mode estb and makes assignments in preparation for sending the final packet in
the three-way handshake. First ackc is set to sns + 1 for the next expected packet, and
time-sentc gets set to 0. Then if there is data to be sent, the flag prep-msgc is set to enable
the internal action, prepare-msgc. If there is no data to be sent, then the sending of just an
acknowledgment is enabled by setting send-ackc. If there is data in send-bufc, the prepare­
msgc action increments the sequence number snc, sets ready-to-sendc to true and moves
the head of the send buffer to msgc which will get sent with the next packet. The final
part of the 3-way-handshake is the action send-segcs (snc, ackCJ msgc) that acknowledges
the SYN packet from the server. The precondition of this action is to prevent the sending
of a final ack before all received data has been passed to the user, and the condition in
the effect clause sets up the wait of timed-wait state if the ack is a FIN(ACK). In the

138 Part Two EDT-Application

Client side

Input send-msgc(open, m, close)
Effect: if modec = closed A open then

snc := choose-isnc(}
modec := syn-sent

if mDdec E {syn-sent, estb, close-wait} A

....., rcvd-closec A m '# null then
send-bufc := send-bufc

if close then
rcvd-closec := true

if modec = syn-sent A !Jend-bufc = (then
modec := closed

Internal send-seucs(SYN, snc)
Precondition: (nowc- time-sentc '?: RTO) 1\

modec = syn-sent

Effect: time-sentc := nowc

Internal receive-seusc(SYN, sn,, acks}
Effect: if modec = syn-sent 1\ ack, = .mc+l then

modec := estb

ackc := sn, + 1
time-sentc := 0
ready-to-sendc :=false
if send-bufc '# (then prep-msgc := true
else send-ackc := true

Internal prepare-msgc
Precondition: modec ::/:. rec 1\ prep-msgcl\

V (modec E {estb, close-vait} A •ready-to-sendc
A (send-bufc :f:. f V rcvd-closec))

Effect: prep-msgc := false
ready-to-sendc := true
if send-bttfc :f:. t: then

snc := .!nc + 1
msgc := head(send-bttfc)
send-bufc := tail(send-bufc)

if rcvd-closec A .!end-bufc = f then
snc := snc + 1
ready-to-sendc :::::: false
send-fine := true
if modec ::::: estb then modec := fin-vait-1
else if modec = close-vait then

modec := last-ack

Internal send-segc.! (sncj a eke, msgc)
Precondition: (nowc- time-sentc ~ RTO) A

((ready-to-sendc V send-ackc) A

modec E {estb, fin-vait-1, fin-vait-2}) V
((ready-to-sendc V send-ackc) A

modec E {closing, timed-wait close-vait}
A rcv-bufc = t:)

Effect: time-sentc =~ nowc
if modec = timed-vait then

start-waite := nowc
time-.!entc := oo

Server side

Input passive-open
Effect: if mode.! = closed then

sn, := chose-isn, ()
mode, :::: listen

Input send-msg,(m, close)
Effect: if mode8 E {syn-rcvd, estb, close-vait} A

--, rcvd-close, A m :f:. null then
send-btt/.5 := send-buf, · m

if close then
rcvd-close 8 := true
if mode, ::: list-en A send-buf, = f then

modes := closed

Internal receive-seucs {SYN, snc)
Effect: if mode, = listen then

mode, := syn-rcvd
ack, := snc + 1
time-sents := 0

Internal send-seg,c(SYN, sns, ack,)
Precondition: (nows - time-sent, ~ RTO) A

mode.! = syn-rcvd
Effect: time-sent8 := nows

Internal prepare-mag.!
Precondition: modes 1:- rec A prep-msg.51\

V (mode.! E { estb, close-vait} A •ready-to-sends
1\ (8end-buj, # < V rcvd-clo8e,))

Effect: prep-msg, := false
ready-to-send, := true
if send-buj, :f:. t: then

sn, ::=::: sn~ + 1

msus := head(send-huf,)
send-bufs := tail(send-buj,)

if rcvd-closes A send-buf, = f then
sn, := sn, + 1
ready-to-send, := false
send-fin, :=true
if modes = estb then mode, :::: fin-vait-1
else mode, = close-wait then

mode, := last-ack

Internal receive-segc, {snc, ackc, msgc)
Effect: if mode, :f:. rec then

if snc = ack, then
acks :::: snc + 1
time-sent, := 0
rcv-buf, := rcv-buf, · msgc
send-ack, := true

if ackc = sn, + 1 then
ready-to-send, := false
send-fin, := false
if mode, = syn-rcvd then mode, :== estb
if send-buj, 1:- f then

prep-msg, :=true
send-ack, :== false

Figure 4 Steps from the open phase of TCP.

Formal Verification of Communication Protocols 139

open phase, when the server receives the corresponding input, mode, will be syn-rcvd
and it will then change to estb. If there is valid data in the packet, that is snc = ack., it
is placed on the receive buffer, ack. is incremented, and send-ack. is set to true.

5.2 The correctness of TCP

In S, we can only lose messages between a crash and a recovery. In some low-level pro­
tocols, whether a message gets lost or not may not be decided until after recovery. This
decision is dependent on race conditions that may exist on the channels. The postponing
of nondeterministic choices in the implementations suggests the need for a backward sim­
ulation. A similar situation comes up in (SI!Igaard-Andersen, Lynch and Lampson, 1993)
and they develop the idea of a Delayed-Decision Specification. We use this idea, and our
Delayed-Decision Specification D is similar to the one in their work. The main idea of
a Delayed Decision Specification is to have it as an intermediate specification that has
the postponed nondeterminism we see in implementations. This idea allows us to do a
backward simulation from D to S instead of doing it directly from the implementation to
S, and then a refinement mapping from the implementation to D. Doing the simulations
in this manner is useful because D is very similar to S, so the backward simulation from
it to S is much simpler than one from the implementation to S would be. Also backward
simulations are generally much more complicated than refinement mappings, so the two
simulations turns out to be easier than a direct backward simulation.

In D messages on the queues are tagged with either ok or marked. Also, instead of
deleting messages between a crash and a recovery, D marks these messages. Marking
changes an ok tag to marked. Marked messages can then be dropped at any time, but
because only marked messages can be dropped, only messages that were in the system at
the time of a crash can be deleted. Marked messages can still be delivered to users. The
specification D and the backward simulation from D to S are presented in (Smith, 1996).

The next step in the verification of TCP is to show the refinement mapping from
automaton T to D. As we discussed in Section 2 we have to apply the patient operator
to D to get a timed version. We call this new automaton DP. The Embedding Theorem
of (S(tlgaard-Andersen, Lynch and Lampson, 1993) states that automaton A implements
an automaton B iff patient(A) implements patient(B). Applying the theorem here means
DP implements patient(S). We also add history variables to T. We call the resulting
automaton Th. The history variables we add toT are assoc, overlap, isnc, and isn.; assoc
and overlap correspond to the variables of the same name in the specification, and isnc and
isn. correspond to the id's of an incarnation on the client and the server side respectively.
We also need some invariants on the reachable states of Th. These invariants, /y, are
presented and proved in (Smith, 1996).

In our definition of the refinement mapping from Th to DP we write k. variable to denote
the value of variable in state k. We also use the notation s.current-msgc and s.pos-pacc to
represent the current message and a possible packet respectively on the client side in state
s. The current message is the message that is being sent, but has not yet been received
paired with the value ok to match variables on the queues in specification D. When the
message is received, current-msgc becomes the empty string since the particular message
will be on the receive buffer. A possible packet is a set consisting of packets with a message
that could still possibly be delivered even though the sender crashes before receiving an

140

1.

2.

3.

4.

u.ide

u.modec

u.q-state,(i)

u.queuee,(i)

Part Two FDT-Application

s. isne if s. modee f closed
nil if s.modee = closed

active if s.modee E {syn-sent, estb, close-wait} 1\ ~ s.rcvd-closee
inactive if s.rcvd-closee V modee = closed

live if(s.isne = i 1\ (i,s.isn,) ¢ s.assoc) V((i,s.isn,) E s.assoc 1\s.mode, ¢
{ rec, closed})

dead otherwise

(s.send-bufe x ok)

concatenation of:
• (s.rcv-buf, x ok)
• (msg(s.pos-pace)
x marked)
concatenation of:
• (s.rcv-buf, x ok)
• s. current. msge
• (s.send-bufe x ok)

if ~(s.isne = i V (i, s.isn,) E s.assoc) V (s.mode, E
{rec,closed} 1\(i,s.isn,) E s.assoc) (A)
if s.isne = i 1\ s.modee E {syn-sent, rec} 1\ (i, s.isn,) ¢
s.assoc (B)
if ((s.isne f i 1\ (i, s.isn,) E s.assoc) V (s.modee =
rec 1\ i = s.isne 1\ (i, s.isn,) E s.assoc)) 1\ s.mode, ¢
{ rec, closed} (C)

if i = s.isne 1\ (s.modee = estb V (i, s.isn,) E
s.assoc) 1\ s.modee f rec 1\ s.mode, ¢ {rec, closed}
(D)

Figure 5 Part of the refinement mapping RTD from Th to flP.

acknowledgment of this packet. The packet may or may not get delivered depending on
if all copies get dropped from the channel or if the receiving side crashes. The message
by the crashed sender may still be delivered while the sender is recovering or is in an
unsynchronized state, but is definitely lost if the crashed sender recovers and gets back to
a synchronized state. This is the case because after a side crashes, TCP forces the other
side to reset before they can both be synchronized again. Therefore, if the sender got back
to a synchronized state, it means the other side closed and reopened, thus starting a new
incarnation. We use the notation msg(packet) to mean the message from a packet, so for
example, msg(s.pos-pacc) is s.msge.

We define a function RTD from states(I'h) to states(DP). In the definition, when we
write, for example, "(send-bufc X ok)", we mean the element of (Msg x ok}* obtained
from send-bufc by pairing every message with ok. The main definitions for RTD are shown
in Figure 5. We only show the mappings for client side variables since the mappings for
server side variables are basically symmetric. If s E states(I'h} then RTn(s) is the state
u E states(DP} such that the equations of RTn hold.

The intuition behind the mappings of u.idc and u.modec is straightforward. The more
difficult cases are for u.q-statc.(i) and u.queuec,(i). In Th there are four variables that
possibly correspond to parts of the abstract queues in flP for messages going from client to
server. These variables are s.send-bu/c, s. msgc, s. in-transite., and s. rcv-buf,. As soon as the
client opens and assigns s.isnc, the corresponding queue is activated, so u.q-statc,(s.isnc)
becomes live. In this situation, (s.send-bufc X ok) (case (B)) corresponds to the abstract
queue. If the client opens right after it crashed, the server side might still be receiving

Formal Verification of Communication Protocols 141

data from the previous incarnation, that is, if (i, s.isn,) E assoc 1\ i op s.isnc, so that
queue may still be live. In that case the message from the possible packet on the channel
paired with marked, since it might get dropped, concatenated with (s.rbuf. x ok), that
is queues from (C), correspond to the abstract queue. The status of a queue is also live
when both client and server are up and their isn's have formed an association. Queues in
group (D) correspond to this situation. The tricky part of this mapping is dealing with
the current message being sent, s.msgc, because it may have duplicates on the channel
and another duplicate in the receive buffer of the server. Our definition of s.current-msgc
handles this by becoming the empty string when s.msgc is received at the server, and the
duplicates on the channel are ignored until there is a crash, in which case u.queuecs(i) is
in group (C). A queue that is live becomes dead when its receiving end stops accepting
data because of a close or a crash.

Lemma 1 RTD is a refinement mapping from Th to DP with respect to h.

Proof. The proof of this Lemma is in (Smith, 1996). We give a brief sketch here. The proof
has two parts. The first part, which is quite straightforward, is to show that the start states
of Th and DP correspond. The second part is to show that for each step (s, a, s') of Th,
where s and s' satisfy the invariant IT, there exists a sequence of steps (u, a1 , ... , an, u')
of flP with the same timed trace. This part is done by doing case analysis for each step,
a, of Th and is quite long. •

Theorem 1 TCP implements the patient version of specification S.

Proof. This Theorem follows from the Embedding Theorem, Lemma 1 and the soundness
of backward simulations and refinement mappings. •

6 T/TCP

In this Section we show some of the steps of the timed automaton for T /TCP. We also
present the situation where T /TCP does not behave like TCP and propose an alternative
specification that would allow this situation.

6.1 Steps ofT /TCP

The steps shown in Figure 6 are the ones necessary for a transaction using TAO. When the
client opens it increments its connection count (cc_genc) and assigns that value to cc_sendc
which stores the connection count value the client will send for the current incarnation
of the connection. If cache_cc_sentc (the persistent copy of the connection count for the
previous incarnation) is undefined or greater that cc_sendc it means that this value cannot
be used. In this case a three-way handshake is needed. Those steps are not shown here.
Otherwise the client prepares to send a packet with the CC option which means a TAO
test should be done by the server when the packet is received. If there is a message, it is
placed on send-bufc and prep-msgc is set to true to enable the internal action prepare-msgc
which is not shown here, but is very similar to the one for TCP in Figure 4.

142 Part Two FDT-Application

Client side

Input send-msgc(open, m, close}
Effect: if modec ::: closed A open then

cc_genc := cc_genc + 1
cc_&endc :::: cc_genc
snc := 0

modec := syn-sent
if cache_cc_sentc is undefined V

cc_sendc < cache_cc-sentc then
cc_newc := true
cache_cc_sentc :::: 0

else
ccc :::: true
cache_cc_.sentc :::: cc_sendc

if modec E {syn-sent, estb, close-vait} A
...., rcvd-closec A m :/;null then

send-bufc := send-bufc · m
if modec = syn-sent A CCc 1\ snc = 0 then

prep-msgc := true
if close then

rcvd-closec := true
if modec = syn-sent A snc = 0

A send-bufc = f then
modec ::::::: closed

Internal send-segcs-
(SYN, CC, cc_sendc, .me, msgc, FIN)
Precondition: (no we - time-sentc ?: RTO) A

modec = syn-sent• A cc A, send-rstc A send-fine
Effect: time-sentc := nowc

Internal receive-segsc-
(SYN, CCE, cc_rcvd!J, sn!J, acks, msg!J, FIN)
Effect: if cc_rcvd!J = cc_sendc then

if modec = syn-sent then
modec := close-wait

if modec = syn-sent• then
modec := timed-wait

cache_cc-sentc := cc_sendc
time-.sentc := 0

ready-to-sendc := false
.send-fine := false
if .sn!J = ackc then

rcv-bufc := rcv-bufc · m

ackc := sns + 1
send-ackc := true

if send-bufc :f:. t then
prep-msgc := true
send-ackc := false

Server side

Input passive-open
Effect: if modes = closed then

cc_send!J := inc(cc_gen!J)
sn!J := 0
mode!J := listen

Input .send-msg.,(m, close}
Effect:

if modes E {syn-rcvd, estb, estb•, close-wait,
close-vait•} A ..., rcvd-close!J Am :/:.null then

send-bufs := send-bufs · m
if close then

rcvd-close!J := true
else if modes = listen A send-buj!J = t then

modes := closed

Internal receive-segc.s-
(SYN, CC, cc_sendc., snc., msgc., FIN)
Effect: if mode!J = listen then

cc_rcvd!J := cc-sendc.
acks := snc + 1
time-sents := 0

if cache_ccs > cc_sendc. then
cache-cc!J := cc_sendc.
rcv-bufs := rcv-bufs · m
cc_echo:= true
mode!J := close-wait•

else
mode, := syn-rcvd
cache-Ccs := 0
temp-data:= m

fin-rcvd:= true

Internal send-seg.,c-
(SYN, CCE, cc_rcvd!J, sn!J, ack!J, msg!J, FIN)
Precondition: (now!J - time-.sent!J ~ RTO) A

mode, E {fin-vaitl•,last-ack•} A
cc_echo A send-fin!J

Effect: time-sent!J := now!J

Figure 6 Steps for T jTCP Accelerated Open.

Formal Verification of Communication Protocols 143

The next action shown for the client, send-segcs (SYN, CC, cc_sendc, snc, msgc, FIN),
is enabled if the client when it opened got a message to send, and also the signal to close.
This is the type of transaction T /TCP is meant to optimize. When the server receives
this packet, receive-segcs (SYN, CC, cc_sendc, snc, msgc, FIN), it checks if the value of
cc_sendc is greater than the connection count value of the previous incarnation (cache_cc,).
If it is, the TAO test is passed and the data can be accepted, otherwise the data is stored
in a temporary variable until it can be validated by a three-way handshake. After the
server passes the data to the user, if it gets a send-msg, (m, close) input with response
data and the signal to close from the user, it sends the packet with the response data to
the client with the action send-seg,c(SYN, CCE, cc_rcvd., sn., ack" msg" FIN). When
the client receives this packet, it checks that the echoed connection count value, cc_rcvd.,
is the same connection count value it sent. If the data is valid, the client can pass it to
the user on its side, which means a transaction is performed in only one round trip across
the network.

6.2 T /TCP behaves differently from TCP

The situation where the TAO mechanism cause T /TCP to behave differently from TCP
occurs in the execution described above, if the server crashed after it passed the data to the
user, but before it had a chance to send a response, and then after it recovers and reopens,
it receives a new copy of the initial packet (either a retransmission or a duplicate from
the network). This reception causes it to go through the three-way handshake protocol
and accept the message again. The three-way handshake is necessary because cache_cc, is
undefined after a crash. This delivery of the same data twice does not happen in TCP, and
also violates our specification. The duplicate delivery occurs because neither the client nor
server can tell that the message had been delivered before.

The designers ofT /TCP do not seem to think that this behavior ofT /TCP is necessarily
bad. Therefore, a weaker specification must be formulated that allows this behavior. The
key observation is that T /TCP has a weaker notion of an association. That is, in T /TCP
an id chosen by either side can form an association with more than one id from the other
side. However, we want to allow an id that is already in the set of associations to form
an association with another id only if the previous id's it is associated with are crash
id's. Crash id's are id's a host has when it crashes. To incorporate this idea into our
specification, we need variables to keep track of the crash id's on both sides, and we
change the precondition of make-assoc(i,j) to allow associations to be formed if neither i
nor j are currently in the set assoc, or if one of them is there already, but the id's it is
paired with are in the set of crash id's.

7 CONCLUSION

In this paper we presented a formal abstract specification, using a simple automaton
model, for the problem of reliable data delivery for transport level protocols. The specifi­
cation gives the precise requirements for these protocols without the clutter of implemen­
tation details. It is the first such specification for the user visible behavior of TCP, and it
can be used to guide the design of other transport level protocols. Using a timed version

144 Part Two FDT-Application

of the automaton model, we also presented TCP, and formally verified that it satisfied the
specification of the problem. Our formal verification of TCP is the most comprehensive
that we know of to date, and is further indication that the models and techniques used in
this work are viable for verifying large practical protocols. We also presented the experi­
mental protocol T /TCP. The verification of this protocol was the original motivation for
our work. The designers of the protocol thought it implemented TCP; however, we have
shown that it does not. The behavior that T /TCP exhibits might still be acceptable for
some applications and we proposed a weaker specification for T /TCP.

Currently we are working to formally verify that T /TCP satisfies our weaker speci­
fication. We would also like to formulate precisely the conditions under which T /TCP
does implement TCP, which will give insights into which applications T /TCP can be
substituted for TCP without the potential for problems. Finally, we are also interested in
either designing a protocol that satisfies our initial specification and can still perform a
transaction in one round trip across the network, or formally showing that it is impossible
to design such a protocol.

REFERENCES

Abadi, M. and Lamport, L. (1991) The existence of refinement mappings. Theoretical Computer
Science, 82(2):253-284.

Belsnes, D. (1976) Single message communication. IEEE Tmnsactions on Communications,
24(2).

Braden, R. (1992) Extending TCP for transactions- concepts. Internet RFC-1379.
Braden, R. (1994) T /TCP- TCP extensions for transactions- functional specification. Internet

RFC-1644.
Braden, R. and Clark, D. (1993) Transport protocols for transactions and streaming. Unpub­

lished manuscript.
Lampson, B., Lynch N, and S0gaard-Andersen, J. (1993) Correctness of at-most-once message

delivery protocols. In FORTE'93 - Sixth International Conference on Formal Description
Techniques, pages 387-402, Boston, MA.

Lynch, N. and Tuttle, M. (1989) An introduction to input/output automata. CWI Quarterly,
3(2).

Lynch, N. and Vaandrager, F. (1995) Forward and backward simulations- part II: Time-based
systems. To Appear in Information and Computation.

Lynch, N. and Vaandrager, F. (1993) Forward and backward simulations - part I: Untimed
systems. Technical Memo MIT/LCS/TM-486, M.I.T ..

Murphy, S. (1996) Private communication.
Murphy, S. and Shankar, A. (1989) Connection management for the transport layer: Service

specification and protocol verification. Technical Report UMIACS-TR-88-45.1, University of
Maryland, June 1988. Revised December. 1989.

Postel, J. (1981) Transmission conrol protocol- DARPA Internet program specification (Internet
standard STC-007). Internet RFC-793.

S0gaard-Anderson, J., Lynch, N. and Lampson, B. (1993) Correctness of communications pro­
tocols, a case study. Technical Report MIT/LCS/TR-589, M.I.T ..

Smith, M. (1996) Formal Verification of Communications Protocols for Data Streaming and
Tmnsactions. PhD thesis, M.I.T. In progress.

